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ABSTRACT

This work is a study of the classical linear homogeneous 

differential equation

CL) = pC^y" + q(t)y* + r(t)y.

The following properties of solutions of (L) are considered:

(a) boundedness

(h) asymptotic behavior .

(c) behavior for large t values

(d) behavior of solutions possessing multiple zeros

(e) disconjugacy

(f) distribution of zeros.

A sufficient condition for disconjugacy of (L) is given, and 

conditions are stated which guarantee the existence of three linearly 

independent uniformly bounded solutions whose first three derivatives 

tend to zero.
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INTRODUCTION

This dissertation is a study of the linear homogeneous fourth, 

order differential equation

(L) = p(t)y'’ + q(t)y’ + r(t)y

where p(t), q(t), and r(t) are assumed to be continuous functions defined 

on the infinite half axis [a,”) for some real constant a. A variety of 

results for solutions of (L) are established using the techniques of 

Barrett [1], Lazer [5], Leighton [6], and Peterson [7].

Among the properties considered are distribution of zeros, asym­

ptotic behavior, boundedness, and infinite limits of solutions of (L). 

Also the topics of oscillation and nonoscillation are discussed in rela­

tion to solutions of (L).

We consider a solution of (L) to be nonosdilatory provided its 

set of zeros is bounded above, and we say equation (L) is nonosdilatory 

provided all its solutions are nonoscillatory. A solution of (L) is 

called oscillatory if its set of zeros is not bounded above.

Also we note that .most of the previous work on the fourth order 

linear homogeneous equations has dealt with the self-adjoint type of 

differential equation. Leighton [6J studied the equation

(a(t)y’’) " + c(t)y = 0,

and, recently, Peterson I7J studied a more general equation of a similar 
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type. In this paper, however, the equation (L) is not self-adjoint and 

many standard techniques employed by Leighton, Barrett, and Peterson 

simply are not applicable. For this reason much of the work of the 

first two chapters is based on the methods of Lazer [5] used in his 

study of the non self-adjoint third order equation

y' ’' + pCt)y* + q(t)y = 0.

Finally, we define the symbol y(t) e C [a,00) where K = 0,1,2,... 

It is equivalent to the.statement: "y(t) and its first K derivatives 

are continuous on the interval [a,™).”



CHAPTER I

PRELIMINARY RESULTS

In this chapter we shall consider results for equation (L) which 

are independent of the signs of the coefficient functions p(t), q(t) , 

and r(t). Various identities involving solutions of (L) are established 

and a relationship between (L) and its adjoint (L*) is obrained. The 

lemmas and theorems of this chapter are preliminary to those considered 

in the following chapters.

We begin by stating four lemmas which are easily proved using 

methods of calculus. These lemmas are independent of equation (L).

Lemma 1.1 Let y(t) e C'[a,=°) and assume / y(s)2ds < °°. Also suppose 
a

there exists a number M > 0 such that |y'(t)| < M for all t on [a,00).

Then lim y(t) = 0. 
00

Lemma 1.2 Let y(t) e C [a,”). If y(t) and its first K+l deriva­

tives are bounded on [a,”) and lim y(t) = R < », then 
t“>- 00

lim y'(t) = lim y’'(t) - ... = lim y^K)(t) = 0. 
t-> - t-> cc t-*- 00

Lemma 1.3 Let y(t) e C - [a,-’). Assume there exists Mo > 0, M2 > 0 

such that jy(t)| < Mq and jy’’(t)l < M2 for all t e [a,”). Then there 

exists such that |y'(t)l < MJ for all t e [a,”).
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Lemma 1.4 Let y(t) e C'fa,00) and assume y’(t) vanishes for arbitrarily 

large values of t. If y*(t) = 0 implies |y(t)| < M for all t where 

y'(t) = 0, then y(t) is bounded for all t s [a,”).

We now establish a basic identity which every solution of (L) 

must satisfy.

Lemma 1.5 Assume p(t),r(t) e C'[a,=°) and let y(t) 0 be any solution 

of (L). Define H[y(t)] by

(1.1) H[y(t)] = r(t)y(t)2 + p(t)y'(t)2 + y"(t)2 - 2y ’ (t)y "'(t).

If tj is a point such that a <_ tj < °°, then

t
(1.2) H[y(t)] = EtyCtj)] + / [(p*(s) - 2q(s))y'(s)2 + r'(s)y(s)2]ds

tl

Proof. Differentiating both sides of (1.1) with respect to t yields

- Sly (t-) 1 = r 'y2 + 2ryy ’ + p' (y ’) 2 + 2py 'y * * + 2y ’ ’y ’ ’ ’ 

_ 2y"y " ’ - 2y'y^) .

Substituting y^) = py’’ + qy* + ry, we see

= r'y2 + 2ryy’ + p'(y')2 + 2py'y'' - 2y'[py’’ + qy' + ry]

therefore ,

MxfOl = r'y2 + (p* - 2q)(y’)2.

Integrating both sides from tj to t yields the desired result.
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The following lemma yields an identity which will be useful in 

studying solutions of (L) having double zeros.

Lemma 1.6 Assume p(t) t C 2 [a,“) and q(t) e C’[a,=°). Let y(t) 0 

be any solution of (L) and define K[y(t)] by

(1.3) K[y(t)] = y(t)y”’(t) - y'(t)y”(t) - p (t) y (t)y'(t)

+ ^(p’Ct) - q(t))y(t)2.

If t} is a point such that a < ti < then

(1.4) K[y(t)] = K[y(t1)]
t

+ / [^(p’Vs) + 2r(s) - q'(s))y(s)2 - p (s)y’(s) 2-y ” (s) 2] ds. 
tl

Proof. Differentiating K[y(t)] in (1.3) yields

d.K[y(t)] = yy(£t) + _ yty,,, _ (y,,)2 _ p,yyl _ p(yy.r+(y.)2)

\ (p" - q')y2 + (p’ - q)yy’.

Substituting y^4^ = py1’ + qy' + ry, we have

= n(p,< _ q. + 2r)y2 _ (y.<)2 _ p(y.)2, 
dt

The result follows by integrating both sides from t, to t.

Ke now establish an identity which will be valuable in relating 

the behavior of solutions of (L) to the behavior of solutions of its 
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its adjoint (LA).

Lemina 1.7 Given the two fourth order equations:

(Lp + q1(t)y’ + ^(tjy,

(L2) y^) = p2(t)y" + q2(t)y’ + r2(t)y.

If u(t) and v(t) are solutions of (Lj) and (L2) respectively and if F(t) 

and M(t) are defined

(1.5) F(t) = v(t)u’’’(t) - u(t)v,l,(t) - v’(t)u’’(t) + u*(t)v’'(t),

(1.6) M(t) = F(t) - p1u'v + p2v’u + (q2 - p2')uv,

then

(1.7) M' (t) = (p2 - p^u'v' + (qx + q2 - px ' - p2’)u'v

+ (ri “ r2 + q2’ ~ p2',^uv*

Proof. Differentiating (1.6) yields:

M’ (t) = F’ (t) - p^u'v’ + u’ 'v) + P2(v,,u + v’u') - pi’u’v

+ p2’v’u + (q2 - P2')u,v + (q2 - p2’)uv' + (q2’ - p2'’)uv.

But F’(t) = vu^1*^ - uv^) and

vu^^ - uv^1^ = Pja^v - p9v,,u + qju’v - q3v:u + (r, - r2)uv.

Substituting this latter quantity for F*(t) yields:
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M'(t) = p1u”v - p2v”u + Qiu’v - q2v'u + (rj - r2)uv - p1u'v’

- p^u''v + P2V,'u + P2v’u’ - p^’u’v + p2,v*u + (q2-P2’)u'v

+ q2uv* - P2,uvl + (q2’ - P2,,)uv. Canceling, we have

M'(t) = (p2 - ppu’v’ + (q1 + q2 - p2’ - p1,)u’v

+ (rj - r2 + q2* - P2’*)uv.

The identity follows.

If we define the linear differential operator L(y) by

(1.8) L(y) = y^) - p(t)y” - q(t)y’ - r(t)y,

then our original differential equation may be written L(y) = 0.

Associated with the operator L(y) is an adjoint operator L*(z) which

may be written

(1.9) L*(z) = z^) - p(t)z" + (q(t) - 2p’(t))z' + (q'(t) - r(t) - p”(t))z.

Therefore, associated with our original differential equation

L(y) = 0 is an adjoint differential equation •

(1.10) L*(z) = 0.

It is a simple procedure to prove that the operators L(y) and

L*(z) satisfy Lagrange's identity

(1.11) zL(y) - yL*(z) = [y;z]*

where [y;?.]1 indicates the derivative of a bilinear form in y and z.
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We now state a theorem relating solutions of L(y) = 0 and

L*(z) = 0, the original equation and its adjoint equation.

Theorem 1.8 Let u(t), v(t) and w(t) be three linearly independent 

solutions of (L). Define the function z(t) by the determinant

u(t) v(t) w(t)

(1.12) z(t) = u'(t) v’(t) w'(t)

u”(t) v"(t) w”(t)

Then z(t) is a solution of L*(z) = 0.

Proof. Using the assumption that u(t), v(t), and w(t) are solutions of 
(L) (e.g. u^^Ct) = p(t)u’’ + q(t)u* + r(t)u) the following matrix

identities are easily established:

U V w U V w

u’ V* w* = p(t) u' V* w’ = p(t)«z(t)

U^) vO) W<4) U ' ’ V ’ ’ XV 1 *

U V w U V w

u" v” w” = q(t) u” v” w” = -q(t)-z(t)
uO) v(4) w(4) u' v’ w1

u’ V* w* u* v' w’

u" v" w” = r(t) u” v" w" = r(t)-z(t)
u(^) v(4) w(^) U V w
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Now we merely differentiate z(t)- using the normal rules for determinant

differentiation and we find:

u V w

z’(t) = u’ V1 w'

u* ' ’ vt ! 1 w’ ”

u V w U V w

z'’(t) = u' * v" WM + u’ V* w ’

u" ' V* * ' w«tt UG) v(4) «<->

u V w

= u” v” w* * + I>(t)«z(t)

u’” v' ’ * w”1

u* V* w * U V w

z'-’Ct) = u" v*’ w” + u” v” w” + (pz)’
uTtt V* ’ * w” ' u(4) V(O w<^

u* v’ w*

z”’(t) = u" v' * w' * - q(t)«z(t) + p(t) •z'(t) + p*(t)’z(t).

u’” V* * ’ w"’

Finally, calculating (t) yields

U V w
z<^(t) = u" v” w**

U (Lt) V W^1*)
+ [pz* + p * z - qz]1.
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Thus z^)(t) = rz + [pz1 + p'z - qz] 1 and it follows that 

z^^(t) = pz1’ + (2p* - q)z* + (r + p’’ - q’)z.

Therefore z(t) satisfies (1.10).

Corollary 1.9 Let u(t), v(t) and w(t) be three linearly independent 

solutions of L*(z) = 0. Define the function z(t) by the determinant

(1.12).  Then z(t) is a solution of (L).

The proof of Corollary 1.9 is similar to that of Theorem 1.8 and 

is therefore omitted. We note that the assumption of linear independence 

on the three solutions is a necessary but not sufficient condition that 

z(t) be not identically zero.

We complete this chapter by stating a lemma which holds for 

certain real valued functions independent of our differential equation 

(L).

Lemma 1.10 Let u(t), v(t) e C’(a,b) and assume v(t) is of constant 

sign in this interval. If u(t) has two distinct zeros in (a,b), then 

the function D(t) = v(t)u’(t) - u(t)v'(t) cannot be of constant sign in 

the interval bounded by these zeros.

Proof. Suppose t = a and t = 3 are consecutive zeros of u(t) where 

a < a f < b. Assume, without loss of generality, that D(t) > 0 in 

(a,3). Then we see

0 < u(g)  u(a)
v(3) v(a)

and this contradiction proves the lemma.



11

For most theoretical uses it is more convenient to state the 

above lemma in the following equivalent form.

Lemma 1.11 Let u(t), v(t) e C'(a,b) and assume v(t) is of constant 

sign in this interval. If t = a and t = f3, a < a < 3 < b, are conse­

cutive zeros of u(t), then there exists a constant K such that the 

function n(t) - Kv(t) has a double zero in (a,3).

By a double zero we mean, as usual, that both the function and 

its derivative vanish at the point in question. The equivalence of 

Lemma 1.10 and Lemma 1.11 follows from the remark that D(t0) = 0 is 

equivalent to the existence of two constants c^ and C2, Cj2 + c^2" > 0, 

such that CjuCtg) - c2v(t0) = 0 and Cju’Ctg) - C2v'(tQ) = 0. 

Since v(t) / 0 in [ex,3], cannot be zero and may therefore be taken 

as unity.



CHAPTER II

CONSTRUCTION OF THREE LINEARLY INDEPENDENT BOUNDED SOLUTIONS

WHOSE FIRST THREE DERIVATIVES TEND TO ZERO

We shall now be concerned with the asymptotic behavior of solu­

tions of equation (L). Throughout this chapter certain sign assumptions 

will be required on the coefficient functions p(t), q(t), and r(t) . In 

most of the following lemmas and theorems we shall assume r(t) > 0 and, 

occasionally, p(t) > 0 for all t on the infinite half axis [a,™). 

Furthermore we require that the functions p(t), q(t), and r(t) are con­

tinuous on [a,00), and certain results will require that various combina­

tions of their derivatives be continuous.

Recall that the set of solutions of a homogeneous linear differ­

ential equation of order four forms a finite dimensional vector space 

of dimension four. One of the major results of this chapter will be the 

establishment of conditions on p(t), q(t), and r(t) which imply that the 

subspace of bounded solutions is of dimension three.

Finally it should be noted that motivation for these results is 

given by the equation

(2.1) y(1+) = py" + qy' + ry

where p, q, and r are real constants. This constant coefficient equation

12
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is completely solvable by methods of elementary differential equations.

We begin by proving a fundamental lemma relating to the 

"boundedness" of solutions of (L) ever certain intervals. In this 

lemma, as in many others that follow, the need exists for the following 

conditions:

p(t),r(t) e C*Ia,°“)
(2.2)

r*(t) <_ 0, p'(t) - 2q(t) < 0

for all t e [a,00) and not both of the latter inequalities are to be 

identically zero on any subinterval of [a,“>).

Lemma 2.1

(a) Let conditions (2.2) hold and suppose r(t) > M > 0 for all t 

on [a,00). If tj and t2 are points such that a < t^ < t2 and y(t) is 

a solution of (L) satisfying y^tj) = y’(t?) = 0, then

max [y(t)]2 
111^2

H[y(t1)]
- M

(b) Let conditions (2.2) hold and suppose r(t) > 0 and p(t) > 0

for all t on [a,^). If t^ and t2 satisfy a <_ t; < t2 and y’’’(ti) =

= 0 where y(t) is a solution of (L) , then

max [y"(t)]2 <_ H[y(t!)] 
t15t<_t2

In both (a) and (b) H[y(t)j is given by equations (1.1) and (1.2).
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Proof.

(a) Let X be such that tI <_ X <_ t?_ and assume X is the point where 

the maximum value of y(t) occurs in [tj,t2]< Since y'(t,) = y’(t2) = 0 

we have y'(X) = 0. Calculating H[y(X)] from equations (1.1) and (1.2) 

yields:

H[y(X)] = r(X)y(X)2 + y"(X)2

X
= H[y(t1)] + J [(p* - 2q)«(y')2 + r’y2]ds.

tl

Thus conditions (2.2) imply r(X)y(X)2 + y’'(X)2 _5_H[y(t1)] and, therefore 

r(X)v(X)2 £H[y(ti)]. Also r(X) > M > 0 implies >_ —> 0.
M r(X)

Finally, y(X)2 < 1 an(] (a) £g proven.
r(X) " M

■'To prove (b) , assume tj < X < t2 where X is the point where the 

maximum of y’’(t) occurs. Hence y''!(t1) = y,,,(t2) = 0 implies 

y’’'(X) =• 0. Calculating H[y(X)] yields

_ _ _ _ _r(X)y(X)2 + p(X)y'(X)2 + y’'(X)2 = H[y(t1)] + J (p' - 2q)*(y')2 + r’y2ds.

Hence r(t.) > 0. p(t) > 0 and conditions (2.2) imply y’’(X)2 _5_H[y(ti)] 

and (b) is proven.

We remark here that a slight modification of the above proof 

yields the following lemma which is a variation of Lemma 2.1. 
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Lemma 2.2 Let conditions (2.2) hold and suppose r(t) > M > 0 on 

[a,”). If tj and t^ are points such that a < tj < t2 and y(t) is a 

solution of (L) satisfying y'(t2) = 0, then

(2.3) max [y(t)]2_< max<^(tI)2> 17 (i) P\

X 11 /

An immediate consequence of Lemma 2.1 is now considered.

Lemma 2.3 

(a) Let conditions (2.2) hold and suppose r(t) >_ M > 0 on [a,=°).

If y(t) is a solution of (L) such that the set of zeros of y’(t) is not 

bounded above, then y(t) is bounded on [a,”).

(b) Let conditions (2.2) bold and suppose p(t) > 0, r(t) > 0 on [a,00). 

If y(t) is a solution of (L) such that the set of zeros of yM,(t) is 

not bounded above, then y’’(t) is bounded on [a.05).

Proof. We prove only part (a) and (b) follows similarly. Let t1 be 

the first zero of y’(t) to the right of a. Since y(t) e C[a,tj] there 

exists K1 > 0 such that |y(t)| < for all t e [a^^. Let t > tj be 

arbitrary. Since y*(t) vanishes for arbitrarily large t values, there

exists a point t? such that tj < t < t2 and yXt^) = y'(t2) = 0.

But Lemma 2.1 (a) implies that there exists a constant K2 > 0, 

depending only on tj and M, such that |y(t)| <_K7. Since t > t^ was

arbitrary, we see |y(t)| £ K2 for all t on (tj,®). Defining 

K = max iKpK,,} we conclude |y(t)| < K for all t on [a,™).
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We now record a result which follows directly from Lemma 1.5 

and conditions (2.2). Its proof is obvious from equation (1.2).

Lemma 2.4 Suppose conditions (2.2) hold and y(t) is a solution of

(L) which is not identically zero. Then H[y(t)], as defined by equa­

tion (1.2), is a strictly decreasing function on fa,”).

We continue by considering the behavior of solutions of (L) 

possessing a triple zero at some point of [a,”). By triple zero we 

mean that y(t), y'(t), and yTI(t) all vanish at the point in question. 

Recall from the uniqueness theorem that if a solution of (L) has a 
quadruple zero at t = c, i.e. y^^c) = 0, i = 0,1,2,3, then y(t) = 0 

on [a,00) . Hence if we assume y(t) 0 and y(t) has a triple zero at 

t = c, then y’’’(c) 4 0.

Lemina 2.5 Suppose conditions (2.2) hold and that r(t) > 0 on [a,00).

Let y(t) jS 0 be a solution of (L) with a triple zero at some point 

c c [a,”). Then

(i) H[y(t)] < 0 on (c,”),

(ii) y’(t) / 0 on (c,=°) ,

(iii) y(t)-y'(t) > O' on (c,“).

Proof. Since y(c) = y’(c) = y’'(c) = 0, we have from equation (1.1)

H[y(c)] = 0. By Lemma 2.4, H[y(t)] is strictly decreasing and hence 

H[y(t)] < 0 for t > c.

To prove (ii), suppose y'(c) = 0 for some c > c. Then, equation 

(1.1) implies H[y(c)] = r(c)y(c)‘L + y’’(c)2 > 0 and this contradicts (i) .
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The proof of (ill) follows from (ii) and the fact that 

y(c) = y'(c) = 0.

We are now ready to proceed with, one of the most important 

results of this chapter. Conditions are given which are sufficient 

to guarantee that the subspace of bounded solutions of (L) is of 

dimension three.

Theorem 2.6 Suppose conditions (2.2) hold and that r(t) > M > 0 

on [a,”). Then there exist three linearly independent uniformly bounded 

solutions of (L).

Proof. Let zp\a) = 6^, i,j = 0,1,2,3, be a canonical basis of 

solutions of (L) at the point t = a, where 6 is Kronecker’s 6 

function. For each integer n > a there exist numbers b , b, , c. ,& on’ 3n’ in’
c3n» ^2n> and d3n such that

<2-4) bon + b3n = cln 4 c3n = d2n + d3n = !

and

(2.5)

bonzo(n) + b3nz3<n) = 0

CmZ^n) + c3nz^(n) = 0

d2nz^(n) + d3nz^(n) = 0 .

Let un(t), vn(t) and wn(t) be solutions of (L) defined by 
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u (t) = b z (t) + b^z„(t)n on o 3n 3X
(2.6) ^(6) = c^z^t) + c3nz3(t)

wn(t) = d2nz2(t> + d3nz3(t) *

Evaluating equations (2.6) at t = a, yields

u^(a) = u^’(a) = vn(a) = v^’(a) =- wn(a) = w^(a) = 0

u (a) = b v'(a) = c w’’(a) = dn on n In n 2n
un’<a) = b3n v-’(a) = c3n w" ’ (a) = d3n .

Using the identity (1.1) and the above values, we see

H[u (a)] = r(a)b 2, 
n on

H[vn(a)] = P(a)cln - 2clnc3n,

Hlwn(a)] = d22 .

Also, equations (2.5) and (2.6) imply u^(n) = v^(n) = w^(n) = Hence 

using the inequality (2.3) of Lemma 2.2, we find that for t e [a,n]

u (t)2 < max / b 2, -a-b 2 / 
n — on’ M on/

vn(t)2 <_ max Zo, p(a)cin ~ 2cmc3n\ 
' M /
/ o \

^(t)" < max/ 0, d2^/M

Equations (2.4) imply there exists a number A > 0, independent of n.

such that
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un(t)2 < a\

(2.7) vn^t^2 --A / on Ia>nl- 

wn^t)2 1 M

Again, using equations (2.4) and the compactness of the unit circle, 

there exists a sequence of integers such that

lim b = b„ lira cln = Ci lim = d„on. o J-11: 1 2n. 2nj->- °° j nj-> “> J nj-> 00 J

lim bqri = b, lim c. = cD lim d_ = d_J 3n. 3 3n. 3m-* ™ J nj-> 00 J n^ 00 J

where b , b , c., cq, d„, and d, are numbers satisfying CD o i o Z* o

(2.8) b2 + b2 = c2 + c| = d2 + d2 = 1.

We now define three solutions of (L), u(t), v(t), and w(t), by

(2.9)

u(t) = bozo(t) + b3z3(t) 

v(t) = c1z1(t) + c3z3(t) 

w(t) = d2z2(t) + d3z3(t).

By the "unit circle" relations (2.8), we have u(t) 0, v(t) 0,

w(t) t 0. Also, the sequences {un (t)}, {v71 (t)\ and {wn (t)} converge 
j nj nj

pointwise on [a,a') to u(t), v(t) , and w(t) respectively.

Now let t be arbitrary in [a,”). Then by (2.7), we see
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un — A\
j _ \ _

vn, (t)2 <_ A > vzhenever n. > t .
j / J

wn.(t)2 < A/
nJ -

Thus u(t)2, v(t)2. and xv(t)2 are each less than or equal to A

for all t e [a,™). The boundedness is proven.

Before proving the linear independence of the three solutions 

u(t), v(t) and w(t), we prove the following useful lemma:

Lemma 2.7 Suppose conditions (2.2) hold and that r(t) > M > 0 on 

[a,00) . Let y(t) represent any one of the solutions u(t) , v(t) or w(t) 

constructed above. Then H[y(t)] > 0 for all t e [a,ro).

Proof. Suppose, for example y(t) = u(t). Recall u(t) = lim un (t) 
nj-> -» J

where un(t) = ^’onzo^t^ + ^3nz3^t^’ Al-so recall u^(n) = 0. Hence we 

see that H[un(n)] = r(n)un(n)2 + u^'(n)2 _> 0. But, by Lemma 2.4, 

H[un(t)] is strictly decreasing. Thus H[un(t)] > 0 for t e [a,n). Let 

t be an arbitrary point in [a,00). Then H[un (t)] > 0 for all n. > t. 

We conclude, therefore, H[u(t)] = lim H[u (t)] > 0. Since H[u(t)] is 
nj-> “ j 

decreasing it follows that H[u(t)] > 0 on [a,°°).

We now proceed with proving the linear independence of the three 

solutions: u(t), v(t) and w(t). Suppose u(t), v(t), and w(t) are 

linearly dependent. Then there exist constants kj, k2, and k^, not all 

zero, such that
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(2.10) k^Ct) + k2v(t) + k,w(t) = 0.

In particular, at t = a we have k^u(a) + k2v(a) + kow(a) = 0. But 

equations (2.9) imply v(a) = w(a) = 0. Thus, we have k 'by = 0, and 

two cases are possible:

(i) Suppose bo = 0. This implies b^ 4 0 and u(t) = bgZ3(t).

(ii) Suppose k^ = 0. This implies k^ + k^ 4 0. Thus, from (2.10), 

k2v’(t) + k3w’(t) h 0 and at t = a we find k2,c1 = 0. If c^ = 0, then 

Cg 4 0 and v(t) = cQZg(t). If k2 = 0, then kg 4 0 and kgW(t) E 0. This 

contradicts w(t) t 0. Hence in all cases, we find either

(2.11)
(1) U(t) = bgZg(t) , bg 4 0,

or (ii) v(t) = c3z3(t), c3 4 0.

Now, from the identity (1.1), we see H[bgZg(t)] = bgH[zs(t)] and 

H[c_z_(t)] = c|h[z (t)]. Moreover, z_(a) == z’(a) = z’’(a) = 0, and 

z’M(a) = 1. Hence by Lemma 2.5, H[z3(t)] < 0 on (a,™). But 

H[u(t)] = H[b3z3(t)J = b3H[z3(t)] < 0 for all t > a. Similarly 

H[v(t)] < 0 for all t > a. In either case, this is a contradiction to 

Lemma 2.7. Hence the three solutions are independent.

Lemma 2.8 Suppose r(t) 21 M > 0, p* (t) - 2 q(t) <_ d < 0 and r’ (t) < 0 

on [a,”). Let y(t) denote any one of the three solutions of Theorem 2.6.

Then / y'(s)2ds < =.
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Proof. Let t > a be arbitrary. By Lemma 2.7, H[y(t)] > 0 for all

t >_ a. Hence the identity (1.2) implies

t
* / [(?’ " 2q)(y’)2 + r'y2]ds < H[y(a)]. 

a

But r'(t) <^0 implies

t
- / (p’(s) - 2q(s))y'(s)2ds < H[y(a)]. 

a

Also, p’ - 2q < d < 0 implies 0 < -d < (p' - 2q)(-1). Thus we see

t t
-d / y’(s)2ds £-/(?’“ 2q)(y')2ds < H[y(a)]. 

a a

Dividing both sides of the latter inequality by (-d), yields

jVcsVds < •

(-d)

We now consider the final theorem of this chapter. One should 

note that its hypothesis includes no explicit assumption as to the sign 

of q(t) on [a,°°). Scrutiny of the explicit assumptions shows, however, 

that they are vacuous unless q(t) > 0 on [a,00) .

The motivation for this theorem is evident if one considers the 

constant coefficient equation (2.1) where p, q, and r are positive 

constants.

Theorem 2.9 Assume p(t), r(t) e C'[a,°°). Let p(t) > 0, r(t)_> M > 0,

r'(t) <_ 0, and p'(t) - 2q(t) _< d < 0 on [a,03). Also assume p(t) and q(t) 

are bounded on [a,"-). Thun if y(t) represents any one of the three
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linearly independent uniformly bounded solutions u(t), v(t) or w(t) we

have lim y’(t) = lim y''(t) = lim y”’(t) = 0. Moreover, if lim y(t) 
CO CO 00

exists, then lim y(t) = lim y(lt) (t) = 0. 
co oo

Proof. Let y(t) represent any one of the three solutions u(t), v(t),

or w(t). We consider two cases:

(i) the set of zeros of y”’(t) is not bounded above,

(ii) the set of zeros of y''’(t) is bounded above.

In case (i), Lemma 2.3 part (b) implies y”(t) is bounded on

[a,”). Moreover Lemma 2.8 implies / y’(s)2ds < °°. Hence by Lemma 1.1
a

we have lim y’(t) = 0. Moreover, since y(t), y’(t), y’’(t), p(t), q(t), 
t->- 00

and r(t) are bounded on [a,™), we have yC11) = py’’ + qy* + ry is also

bounded on [a,M). Therefore Lemma 1.3 implies y'^Ct) is bounded on

[a,00). Summarizing, we have found lim y'(t) = 0 and y’’(t), y’’'^)! 
t->- m

and y^) (t) are bounded. Thus Lemma 1.2 implies

lim y’’(t) = lim y'^Ct) = 0. Now, using equation (L) , we conclude
t-> CO 00

(2.12) lim y(^) (t) -- lim r(t)*lim y(t) .
co oo (.-> oo

But, by hypothesis lim r(t) = K > 0. We claim lim y(t) = 0. If not, 
00 t** 00

y(t) bounded implies lim y(t) = C where either C > 0 or C < 0. Hence 
t->- uO

(2.12) implies lim y(t,)(t) = K‘C where either K*C > 0 or K-C < 0. If 
t-> co
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K’C > 0, there exists a point t^ such that y^^(t) > 0 for all t > tj.

If K*C < 0 there exists a point t2 such that y^^(t) < 0 for all t > t^.

In either case we contradict the assumption that y'’'(t) has arbitrarily 

large zeros. Hence lim y^) (t) = lim y(t) = 0.
co t"* 00

We proceed with case (ii) and suppose the set of zeros of y’’*(t) 

is bounded above. Hence there exists a point t > a such that y’’'(t) 4 0 

for all t > t. Without loss of generality assume y’’’(t) < 0 for all 

t > t. This implies y’’(t) is eventually of one sign. We claim y’’(t) 

is eventually positive. If not, we have y*’(t) < 0, y’’'(t) < 0 for large 
t

t and lim y'(t) = - » which contradicts / y'(s)2ds < 00. Hence there 
t^- oo a

exists a point tj >_ t such that y”(t) > 0, y’’'(t) < 0 for all 

t > ti 1 t.

Now, we see that y'(t) is eventually of one sign. We claim y’(t) 

is eventually negative. If not, we would have y'(t) > 0, y’’(t) > 0 for 

large t and lim y(t) = + 00 which contradicts y(t) is bounded. In summary, 
oo

we have shown that there exists a point t^ > t > t such that 

y’(t) < o\

(2.13) y’'(t) > 0 y for all t > t2.
y"’(t) < 0 /

The inequalities (2.13) imply lim y'’(t) = 0 and y''(t) is 

bounded. The boundedness of y’'(t), ( y’(s)2ds < °°, and Lemma 1.1 
a
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imply lim y’(t) = 0. As in the proof of (i), we have y^) (t) is 
co

bounded, lim y'’’(t) = 0, and lim y^^(t) = lim r(t)"lim y(t).
oo £-->• co co co

Again we have lim r(t) = K > 0 and we assume lim y(t) = C where either
00 00

C > 0 or C < 0. If C > 0, there exists on integer N1 such that for all 

t > N^, y^^(t) > > 0. This implies y’’’(t) is eventually positive

contradicting (2.13). If C < 0, there exists an integer N2 such that 

for all t > N^, y(t) << 0. This implies y’’’(t) tends to - =°, 

contradicting that the lim y’’’(t) = 0. Our proof is now complete, 
t** 03

In Theorem 2.9 if we relax the assumption that p(t) and q(t) 

are bounded, we obtain a slightly weaker result. We record this result 

in the following corollary.

Corollary 2.10 Assume p(t), r(t) e C’Ia,<»). Let p(t) _> 0, 

r(t) >_ M > 0, r'(t) <_ 0, and p’(t) - 2q(t) _< d < 0 on (a,60). If y(t) 

denotes any one of the three linearly independent bounded solutions 

u(t), v(t) or w(t), and if lim y(t) exists, then
OO

(i) lim |y(t) | = C < 00 
t->- OO

(ii) lim y'(t) = 0 
OO

(iii) y’’(t) is bounded on [a,”).



CHAPTER III

STUDY OF ASYMPTOTIC BEHAVIOR OF SOLUTIONS POSSESSING

MULTIPLE ZEROS, AND THE CONSTRUCTION OF A

NONOSCILLATORY BASIS OF SOLUTIONS FOR (L)

In this chapter we shall continue our study of the asymptotic 

behavior of solutions of equation (L). Most of the results of this 

section will be dependent on the sign of the coefficient function q(t), 

unlike the lemmas and theorems of the majority of the preceding chapter. 

More specifically we shall be concerned with the behavior of solutions 

possessing double or triple zeros at some point of the infinite half 

axis la,00) . The asymptotic nature on both sides of such points will 

be considered, and infinite limits of such solutions will be discussed.

At this point we recall conditions (2.2) of Chapter II:

p(t),r(t) e C'la,”)
(2.2)

r’(t) < 0, p’(t) - 2q(t) <_ 0

for all t e [a,00) and not both of the inequalities are to vanish 

identically on any subinterval,of [a,”).

These conditions will again be extensively used, and, in addi­

tion, the following similar conditions will be important.

(3.1)
p(t) ,r(t) e C’ [a,00) 

r'(t) >_ 0, p’ (t) - 2q(t) >_ 0

26



27

for all t e [a,=°) and not both of the inequalities are to vanish 

identically on any subinterval of [a,”).

We begin our discussion with two well known lemmas.

Lemma 3.1 Assume p(t) > 0, q(t) > 0, and r(t) > 0 for all t e Ia,°°).

Let y(t) be a solution of (L) such that for some point c e Ia,m) 

y(i)(c) > 0 for i = 0,1,2,3 with strict inequality holding for at least 

one value of 1. Then y(i)(t) > 0 for all t > c and for i = 0,1,2,3; 

moreover lim y(t) = lim y'(t) = lim y’’(t) = + 00. If y^"^(c) < 0 for 
CO CO 00

i = 0,1,2,3 with strict inequality holding for at least one value of i, 

then y(i)(t) < 0 for all t > c and for i = 0,1,2,3; moreover,

lim y(t) = lim y’(t) = lim yM(t) = - 
t-*- 1:0 t-> 00 t-*’

Proof. Assume y(i)(c) > 0 for all i and let y’’’(c) > 0. By con­

tinuity there exists 6 > 0 such that

(3.2) y(t) > 0, y’(t) > 0, y”(t) > 0, and y”’(t) > 0 

on the interval (c,c+6).
On the other hand suppose strict inequality holds on y^\c) 

for either i = 0 or 1 or 2. Then y^)(c) = p(c)y,,(c) + q(c)y'(c) + r(c)y(c) 

and the sign assumptions on p, q, and r imply y^) (c) > 0 and again there 

exists a 6 > 0 such chat the inequalities (3.2) hold on (c,c+6).

We claim inequalities (3.2) hold for all t > c, for, if not, then 

there exists a first point c > c where they fail (i.e.

y(c)-y* 1(c)-y''(c)*y' ' '(c) = 0). Consider the following identity
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(yy *y' *y *' ') * f* yyttt^ytt^Z
<3‘3) ' o '+ yy'Cy’”)2 + yy,y,,Ipy,, + qy* + ryl •

By (3.2) we see (yy’y’’y”’)’ > 0 for t e (c,c). Hence it

c 
follows that I (yy’y’’y’’’)1 > 0* However 

c

jC(yy,y.,yMI). = _ { ) y । ( C } y t • ( .. ) M • ( .. ) ] < Q.

c

This contradiction proves that inequalities (3.2) hold for all t > c.

The infinite limits are an immediate consequence of the inequalities.
The proof in the case y^^(c) <_ 0 is similar and is omitted.

Lemma 3.2 Assume p(t) > 0, q(t) <; 0, and r(t) > 0 for all t e [a,”).

Let y(t) be a solution of (L) such that for some point c e [a,00) 
(-1):L»y(^) (c) >_ 0 for i = 0,1,2,3 with strict inequality holding for 

at least one value of i. Then C”l)^*y^^Ct) > 0 for all t e [a,c) and 

for all i.
If (-l)1,y^\c) < 0 for i = 0,1,2,3 with strict inequality 

holding for at least one value of i, then (-1) "*",y^^ (t) < 0 for all 

t e [a,c) and for all i.

Proof. Assume (-l)'L,y^-*-^ (c) > 0 for all i and suppose strict inequality 

when i = 3, i.e. y*”(c) < 0. By continuity there exists a 6 > 0 such 

that

(3.4)  y(t) > 0, y’(t) «; 0, y” (t) > 0, and y'”(t) < 0

on the interval (c-6,c).
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On the other hand suppose strict inequality holds for y^i)(c) 

for either i = 0, 1 or 2. Then 
y^^Cc) = p(c)y''(c) + q(c)y'(c) + r(c)y(c) > 0 and again there exists 

a 6 > 0 such that the inequalities (3.4) hold on (c-6,c).

We claim the inequalities (3.4) hold for all t e [a,c), for, 

if not, there exists a first point to the left of c. say c, where 

a _< c < c, such that y(c) *y' (c) *y' 1 (c) •y' ' 1 (c) = 0. Then by the 

identity (3.3) of the previous lemma we see (yy'y'’y'’’)’ < 0 for 
— rct e (c,c). Hence j_ (yy’y’'y'1’)' < 0. However 

c
c

J (yy’y1’y''')' = y(c)y'(c)y''(c)y''’(c) >_ 0. This contradiction proves 
c
the first part of the lemma. The proof in the case (-l)^y^^ (c) < 0 

is similar and is omitted.

Two lemmas are now considered which are valuable in studying 

solutions of (L) which possess double zeros.

Lemma 3.3 Assume p(t) > 0, q(t) > 0 and r(t) > 0 on [a,00) and let 

conditions (3.1) hold. If y(t) 0 is a solution of (L) such that 

y(c) = y’(c) ~ 0 for some point c c (a,«>), then in at least one of the 

two intervals [a,c), (c,'-°) all of the functions y(t), y'(t), y’’(t), and 

y”’(t) are different from zero. Moreover if y’ * (c) *y1 ’ * (c) < 0, then 

y(t)‘Y1(c)-y'’(t)*y1’'(t) 0 for t e [a,c). If y* *(c)*y’'’(c) >_ 0

then y(t) -y'(t) *y 1 ' (t)-y ' ''(t) 4- 0 for t e (c,"“).

Proof. We construct the following chart exhibiting all possible sign 
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combinations on y’’(t) and y’’’(t) at t = c. Note that y(t) t 0 fills 

in the middle blank. Moreover Lemma 3.1 fills in all the remaining 

blanks except for the two cases

(i) y”(c) > 0 (ii) y’-Cc) < 0

y’”(c) < 0 y"’(c) > 0

y”'(c) > 0 y”'(c) = 0 y”’(c) < 0

y”(c) > 0
y > 0,y* > 0 

y'' > 0,y'’ ' > 0 
for all t > c.

y > 0,y’ > 0
y’ ' > 0,y*'’ > 0 
for all t > c FT

V V
co

o o
G

A
 O o

y"(c) = 0
y > 0,y' > 0

y" > 0,y”’ > 0
for all t > c

y(t) e 0
y < 0,y* < 0

y" < 0,y'” < 0
for all t > c

y”(c) < 0 -"
C

Ft
-

A
 A

m
o 

o 
p)

 Sej n
- V V o

 

o

y < 0,y' < 0
y' ' < 0,y’’' < 0 
for all t > c

y < 0,y' < 0
y" < 0,y"’ < 0 
for all t > c

We consider case (i) y'’(c) > 0 

y*"(c) < 0.

The proof of case (ii) is omitted since we may regard it as the solution 

in case (i) multiplied by (-1). Since y(c) = y'(c) = 0, y’’(c) > 0, 

y’’'(c) < 0 there exists a 6 > 0 such that the inequalities

(3.5) y(t) > 0, y’(t) < 0, y’’(t) > 0, and y'’’(t) < 0

hold in the interval (c-6,c). We claim that y'''(t) < 0 for all 

t e [a,c) and hence that the inequalities (3.5) hold for all t e fa.c).
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Suppose there exists c, a < c < c such that y”’(c) = 0. Then 

y^'Ct) < 0 for t e (c,cj. Thus y’'(t) is decreasing on (c,c] and 

y'^c) > y''(c) > 0. Recall H[y(t)] as defined by (1.1) and (1.2). 

Conditions (3.1) imply that H[y(t)] is strictly increasing. But 

H[y(c)j = y'’(c)2 and since y’’(c) > y’’(c) we see

(3.6) y'’(c)2 + r(c)y(c)4 + p(c)y’(c)2 > y’'(c)2.

The left side of (3.6) is H[y(c)], and the right side is H[y(c)], 

Therefore H[y(c)] > H[y(c)j and H[y(t)j has decreased. This contradic­

tion proves the lemma.

Lemma 3.4 Assume p(t) > 0, q(t) < 0, and r(t) > 0 on [a,00), and let 

conditions (2.2) hold. If y(t) 0 is a solution of (L) such that 

y(c) = y’(c) = 0 for some point c s (a,°°), then in at least one of the

two intervals [a,c), (c,°°) all of the functions y(t) , y’(t), y'’(t),

and y’’’(t) are different from zero. Moreover, if y*'(c)"y’’'(c) > 0, 

then y (t)‘y1 (t) *y''(t) *y * ’'(t) / 0 for t e (c,00). If y1 ’ (c) *y ’ * ’ (c) <_ 0,

(i) y'!(c) > o

then y(t)-y'(t)-y''(t)-y*’'(t) 0 for t e [a,c).

Proof. We again construct a chart exhibiting all possible sign com­

binations on y''(t) and y”’(t) at t - c. As before y(t) 0 fills in 

the middle blank, and Lemma 3.2 fills in all remaining blanks except for 

the two cases:

(ii) y”(c) < 0

y'”(c) > 0 y'”(c) < 0
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y' " (c) > 0 y’,,(c) = 0 y',,(c) < 0

y"(c) > 0
y > 0,y* > 0

y’' > 0,y’ " > 0 
for all t > c

- V V
I

o 
o

o
- A A
 O

L __
°_

J

y > o>y* < o 
v" > 0,y”’ < 0 

t e [a,c)

y"(c) = 0
y < 0,y' > 0

y'’ < 0,y' " > 0 
t e [a,c)

y(t) e o Zk
c

rr
V V

m
o 

o
p)

 v:
Q

- A A 
O

O

y"(c) < 0

Ft
A

 A O
 O

P) o - - V V o
 

o

n
A

 A
co

o 
o

tu Q
 - - V V O

 

o

y < 0,y’ < 0 
y" < 0,y'” < 0 

for all t > c

As before we need prove only (i). In this case there exists a o > 0 

such that the inequalities

(3.7) y(t) > 0, y’(t) > 0, y”(t) > 0, and y'”(t) > 0

hold for t e (c,c+5). We claim y’”(t) > 0 for all t > c which will imply 

that inequalities (3.7) hold for all t > c. If there exists a first 

point c > c such that y’’’(c) = 0, then y'’(t) is increasing in [c,c) 

and 0 < y’r(c) < y’’(c). Thus we see

(3.8) y”(c)2 + r(c)y(c)2 + p(c)y'(c)2 > y"(c)2.

But tffS^left side of (3.8) is H[y(c)], and the right side is H[y(c)].

Therefore H[y(c)] > H[y(c)] and H[y(t)] has increased. However conditions 

(2.2) imply H[y(t)] is decreasing. This contradiction proves the lemma.

We now state two corollaries to the preceding lemmas. The 
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proofs are immediate and, therefore, are omitted.

Corollary 3.5 If either of the following two hypotheses holds:

a) p(t) > 0, q(t) > 0, r(t) > 0 on [a,m) and conditions (3.1),

b) p(t) > 0, q(t) < 0, r(t) > 0 on [a,“) and conditions (2.2), 

then every solution y(t) 0 of (L) has at most two double zeros. More­

over if a solution y(t) possesses two double zeros say at t=b and t=c,

a < b < c, then the only zeros of y(t) occur in the interval [b,c], and 

y(t) is nonoscillatory.

Corollary 3.6 Let either of the two hypotheses of Corollary 3.5 hold, 

and let y(t) 0 be a solution of (L) such that for a <_ b < c, 

y(b) = y(c) = y'(c) = 0. Then y(t) is nonoscillatory. Indeed, 

lim |y(t) | = + <». 
t->- 00

The following two lemmas shed light on solutions of (L) having 

triple zeros at a point of [a,ro).

Lemma 3.7 Assume p(t) > 0 and r(t) > 0 on [a,00) and let conditions

(2.2) hold. If y(t) is a solution of (L) such that

y(c) = y’(c) = yfl(c) = 0, y’’’(c) > 0 for some point c e [a,00), then

(3.9) y(t) > 0, y'(c) > 0, y’’(t) > 0, and y'’’(t) > 0 

for all t > c and lim y(t) = lim y'(t) = 4

If y(c) = y'(c) = y”(c) = 0, y”’(c) < 0, then y(1\t) < 0 for
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i = 0,1,2,3 and for all t > c, and lim y(t) = lira y'(t) = - c°. 
£->• oo {;->■ co

Proof. By continuity there exists a 6 > 0 such that the inequalities

(3.9) hold in (c,c+6). Suppose there exists a point such that one of 

the inequalities (3.9) fails. Let c > c be the first such point. Then 

by Rolle’s theorem we must have y',,(c) = 0. Hence

H[y(c)] = r(c)y(c)2 + p(c)y'(c)2 + y’’(c)2 >_ 0 and H[y(c)J = 0. There­

fore H[y(c)] - H[y(c)] ^_0. But

H[y(c)] - H[y(c)] = / (p’ - 2q)(y’)2 + r'y2 < 0. This contradiction 
c

yields the result.

Lemma 3.8 Assume p(t) > 0 and r(t) > 0 on [a,“) and let conditions

(3.1) hold. If y(t) is a solution of (L) such that

0 = y(c) = y’(c) = y''(c), y,M(c) < 0 for some point c £ [a,c®), then 

y(t) > 0, y'(t) < 0, y''(t) > 0, and y’’'(t) < 0 for all t e [a,c). 

If 0 = y(c) = y'(c) = y”(c), y’’’(c) > 0, then y(t) < 0, y'(t) > 0, 

y’’(t) < 0, and y’’’(t) > 0 for all t e [a,c).

Proof. Apply the identity for H[y(t)] to the left of t=c; the 

details are so similar to those of Lemma 3.7 that they are omitted.

We are now ready to state a theorem describing the nature of 

solutions possessing a triple zero at some point of [a,00) .

Theorem 3.9 Suppose that either of the two hypotheses of Corollary 3.5 

holds. If y(t) is a solution of (L) such that
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y(c) = y'(c) = y''(c) = 0 and y'’'(c) > 0, then

and

y(t) > o\
y’(t) > o \

\ for all t > c 
y”(t) > 0 /

y"’Ct) > 0/

y(t) < o\

y’(t) > o \
\for all t e [a,c).

y”(t) < o /

y" '(t) > 0 /

Moreover lim y(t) = lim y1 (t) = + o°.

If we assume instead that y(c) = yr(c) = y’’(c) = 0 and y’’’(c) < 0, then

and y(t) > 0 \
y'(t) < 0 \

\ for all t e [a,c).
y”(t) > o /

y * ' * (t) < 0 /

In this case lim y(t) = lim y’(t) = - •».
CO JO
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Proof. In hypothesis (a) of Corollary 3.5 apply Lemma 3.1 to the right 

of t=c and Lemma 3.8 to the left of t=c.

In hypothesis (b) of Corollary 3.5 apply Lemma 3.2 to the left 

of t=c and Lemma 3.7 to the right of t-c.

We now proceed with a theorem which guarantees the existence of 

a solution which asymptotically approaches a finite constant.

Theorem 3.10 If either of the hypotheses of Corollary 3.5 holds.

then (L) possesses a solution w(t) with the following properties:

(i) w(t) ‘w* 1 (ii) (iii) (t) ’w'' (t) 0 on [a,<»)

(ii) sgn w(t) = sgn wT,(t) + sgn w'(t) on la,00)

(iii) lim w'(t) = lim w’’(t) = 0 
CO co

(iv) lim w(t) = K (finite) 
t-*- 00

Proof. Let z^(t), i = 0,1,2,3 be the solutions of (L) defined by the 

initial conditions z(j)(a) = 6^ where j = 0,1,2, and 3. For each posi­

tive integer n > a let con, cln, c2n, and cOn be real numbers such that 

3
X cin 2i<n) = 0 
r=0

3
(3.10) £ cin z'(n) = 0

i=0

3
7 cln z[’(n) = 0 

1=0
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This is possible since the number of equations is less than the number 

of unknowns. Also we may assume

Indeed,

3
V c? + 0 for all n.

1=0 ln

, we may assume further that

(3.11)
3
7 c? = 1 for all n.
l- _ tni=0

Moreover since {z^(t) | i=0,l,2,3} forms a linearly independent set of 

solutions of (L), we must have

Assume

3
y cinzl,,(n) 0 for all n. 

i=0

without loss of generality that

(3.12)
3
2 c£nzj''(n) < 0 for all n. 

i=0

Consider the solution wn(t) of (L) defined by:

(3.13) "n^t) = conzo<t) + ••• + c3nz3(t).

Since wn(n) = w^(n) = w^'(n) = 0, and w^''(n) < 0, Theorem 3.9 implies

(3.14)
wn(t) > 0, w^(t) < 0

for t e [a,n), 
w^'(t) > 0, w^’Ct) < 0

By the compactness of the 4-sphere and equation (3.11), there exists a
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subsequence of integers {n.} such that lira c.
J n^ « J

c^ for i = 0,1,2,3

and

(3.15) Cq + c^ + c| + Cg = 1.

Consider the solution w(t) of (L) defined by

(3.16) w(t) = cozo(t) + ... + c3z(t).

Clearly (3.15) implies w(t) 0. Moreover the functions (t) ,

i = 0,1,2,3, converge uniformly to (t) for i = 0,1,2,3, respectively 

on any finite subinterval of [a,°°) .

Now let t e [a,°°) be an arbitrary point. By inequalities (3.14) 

we see that w (t) > 0, w' (t) < 0, w’’(t) > 0, and w'H(t) < 0 for all n. n. n. n.J J J J

n. > t. HenceJ

w(t) = lim w (t) >_ 0
n.» « nJ

w'(t) = lim w' (t) < 0n > 
nr ” j

w''(t) = 1 im w " (t) >_ 0 
nj->- =» j

w' ''(t) = lim w* ''(t) <_ 0.
nr ”nj

Since t was arbitrary in [a,O)) we conclude



39

(3.17)

(3.18)

(3.19)

(3.20)

w(t) > 0 \
w' (t) <_ 0 \

> for all t £ [a,00) .w’ '(t) >. 0 /

w”'(t) < 0/

Now we rule out equality in (3.17)—(3.20).

In (3.17): Suppose there exists a point t such that w(t) = 0. But 

w'(t) 0 for all t implies w(t) E 0 for all t >_ t. This contradicts

(3.15).

In (3.18); Suppose there exists a point t such that w'(t) = 0. But 

w’’(t) 0 for all t implies w'(t) E 0 for all t > t. Hence

w(t) e K > 0 for t >_ t. Then we have w(t) e K > 0,

w' (t) = w’ ’ (t) = w' '’(t) = w^^ (t) E 0 for all t >_ t. From (L) , we

see w^4)(t) = r(t)- K > 0 for all t > t. This contradiction shows 

w' (t) < 0 on [a,°°) .

In (3.19): Suppose there exists a point t such that w’’(t) = 0. Since 

w'*'(t) < 0 we have w''(t) E 0 for all t > t. Thus w'(t) E < 0 and 

w(t) e Kjt + K2 for all t > t. But for large t values w(t) E K^t + 

is eventually negative contradicting (3.17).

In (3.20): Here we prove only that w',,(t) 0. Suppose w1 1 1 (t) E 0.

Then we conclude w''(t) E > 0 and w’(t)= Kjt + K2 < 0. But for large 

t values Kjt + K2 is eventually positive. This contradiction proves that 

w'''(t) t 0.
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In summary then, we have' the following inequalities:

w(t) > 0

w’(t) < 0
(3.21)

w"(t) > 0

w’”(t) £ 0

for all t e [a,=-j) , where w'’'(t) 0.

Thus properties (i) and (ii) are proven. Properties (iii) and 

(iv) follow trivially from inequalities (3.21).

Before proceeding, we note that it is always possible to construct 

a solution of (L) with three zeros. These zeros may be either multiple 

or distinct. For example, suppose we desire a solution of (L), say u(t), 

such that u(b) = u(c) = u(d) = 0 where a <_ b < c < d. Let {2^(1)}, 

i = 0,1,2,3 be a canonical basis at t = a'T Since the number of unknowns 

exceeds the number of equations there exist constants c0, c^, c2, and c3 

with Cg + c^ + c^ + Cj 4 0 such that

cozo(b) + c1z1(b) + . .. + CgZ3(b) = 0

cqZq(c) + CgZgCc) + ... + c3z3(c) = 0

cQz0(d) + CjZgfd) + ... + c3Zg(d) = 0.

Now define a solution u(t) of (L) by u(t) = cQz0(t) 4- ... + c3z3(t).

Clearly u(t) "4 0 and u(b) = u(c) = u(d) = 0.

Similarly, if we desire a solution z(t) of (L) such that
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z(b) = z*(b) = 0, z(c) = 0, we consider

cozo(b) + ... + c3z3(b) = 0

c0z3(b) + ... + c3z^(b) = 0

cozo(c) + ... + c3z3(c) = 0

and define z(t) by

z(t) = cQz0(t) + ... + c3z3(t)

where c0, , c2, c3 is a solution of this system of equations.

We now proceed with the construction of a nonoscillatory basis 

of solutions for equation (L).

Theorem 3.11 If either of the two hypotheses of Corollary 3.5 

holds, then there exists a basis of solutions for (L) consisting of 

four linearly independent nonoscillatory solutions. Three of these 

solutions tend to infinity and one decreases asymptotically to a 

finite constant as t tends to infinity.

Proof. Consider the following four solutions:

(i) w(t): the solution constructed in Theorem 3.10. Here we 

assume w(t) > 0, w'(t) < 0, w' 1 (t) > 0, w' ’’(t) <_ 0 and 

lim w(t) = K > 0 (finite). 
t-> oo

(ii) z^(t): the solution defined by z0(a) = Zg(a) = z’’(a) = 0, 

z’"(a) = J.



(iii) ZjCt): the solution defined by Zj(b) = z](b) = z|'(b) = 0, 

z^ ' * (b) = 1 where b is an arbitrary point such that a < b.

(iv) Z£(t) : the solution defined by z2(a) = z2(b) = z2(b) = 0 where 

b is defined in (iii). This solution exists by the comments preceding 

this theorem.

We note that Theorem 3.9 completely, describes the behavior of

Zg(t) and z1(t). Moreover Corollary 3.6 describes the behavior of 

z2(t) as t ■* oo.

z2(t)
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We now prove that these four solutions are linearly independent.

Suppose they are dependent. Then there exist constants cQ, c2, c3

such that Cq + Cj + c^ + c| > 0 and

(3.22) coz(/t) + cizi^t5 + c2z2Ct) + c3w(t) = 0

(3.23) cnz*(t) + c.zUt) + c„z'(t) + c3w’(t) x 0

(3.24) c z’'(t) + c z"(t) + c z’’(t) + c w”(t) = 0 .
U U XX t- O

Evaluating equations (3.22) and (3.23) at t=b yields

(3.25)
cQz0(b) + c3w(b) = 0

cQz’(b) + c3w’ (b) = 0 .

But equations (3.25) have a nontrivial solution (c^Cj) if and only if 

w(b)z’(b) - w’(b)zQ(b) = 0. However w(b) > 0, zg(b) > 0, w’(b) < 0, 

amd z0(b) > 0 imply w(b)z’(b) - w’(b)z0(b) > 0. Hence we conclude 

c0 = c3 = 0* Now we evaluate equation (3.24) at t=b and using

Cq = c3 = 0, we find c2z2’(b) = 0. Suppose z2'(b) = 0. Then z2(t) has 

a triple zero at t=b and Theorem 3.9 implies z2(a) + 0 which is a con­

tradiction. Hence c~ = 0 = cn = co.z 0 3

Finally we evaluate equation (3.22) at t=a and use

c2 = c0 = c3 = Ne find c^z^a) = 0. But c2 = Cq = c3 = 0 implies 

Cj + 0, and hence z^(a) = 0. This is a contradiction of Theorem 3.9 

which implies Zj(a) < 0.

Thus the four solutions are independent and the theorem is 

proven.



44

We note that this theorem does not necessarily imply that the 

equation itself is nonoscillatory. The question must first be 

answered as to whether every linear combination of these four non­

oscillatory solutions is again a nonoscillatory solution. In the next 

chapter we shall give an added condition which will suffice to guarantee, 

the nonoscillation of equation (L).



CHAPTER IV

STUDY OF CONJUGATE POINTS, DISCONJUGACY, AND 

DISTRIBUTION OF ZEROS OF SOLUTIONS OF (L)

In order to continue our discussion of equation (L), we must 

introduce the concepts of conjugate points and distribution of zeros 

of solutions of (L).

Recall from the previous chapter that given three points, not 

necessarily distinct, there exists a nontrivial solution of (L) having 

zeros at these points. The next two definitions refer to situations 

where the total number of zeros of a solution is critical.

Definition 4.1 If no nontrivial solution of (I.) has more than three 

zeros on [a,™), counting multiplicities, then (L) is said to be 

disconjugate on [a,°°). (Hence disconjugacy is an extreme case of non­

oscillation.)

Definition 4.2 For n > 1 and t e la,00), the number n (t) is the — n
infimum of the set of numbers b > t such that there is a nontrivial 

solution y of (L) for which y(t) = 0 and y has at least n + 3 zeros, 

counting multiplicities, on [t,b]. If n (t) exists, it is called the 

n^ conjugate point of t. By nn(t) = ” we mean there is no nontrivial 

solution of (L) with a zero at t and having n + 3 zeros on [t,00).

We note that disconjugacy is equivalent to n, (t) = 00 for all

45



46

t £ [a,00). The functions n^(t), t e [a,00), K = 1,2,... are similarly 

defined for the adjoint equation L*(z) = 0.

Definition 4.3 A nontrivial solution y of (L) is said to have an 

i0 - i1 - ... - ia (a = 1,2,3; i = 1,2,3) distribution of zeros on 

[t,b] d [a,00) provided there are numbers tg, t^, . .., t such that 

t < tn < . . . < t < b and y has a zero at each tTZ of order at least 

iK'

Definition 4.4 For t e [a,”), the number r. . . (t) is theIqIi • • • J-ot

infimum of the set of numbers b > t such that there is a nontrivial

solution y of (L) having an i - i^ - . .. - i.^ 

on [t,00). The number r* . . (t) is defined
1q11...ia

equation L*(z) = 0.

distribution of zeros

similarly for the adjoint

Consider the following example:

Example 4.1 The equation y^^ + 10y'' + 9y = 0 has the following

four linearly independent solutions:

y^(t) = sin3t 

y2(t) = cos?t

. 73(t) = cos2t sin t

y^(t) = sin2t cos t.

(i) y^ (t) has a 3-3 distribution of zeros on [o,it]

(ii) the solutions y.;(t) and y4(t) have respectively a 1-2-1 

and a 2-.1-2 distribution of zeros on [o,t],

(iii) njCo) = rS3(c) = r.u(o) = r13(o) = r92(o) = tt ,
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(iv) ri|(o) = — = r112^^ ~ } (o)*

Example 4.2 We refer to the various results of Chapter III.

(i) Suppose p(t), q(t) and r(t) are positive for all t e [a,<”). 

By Lemma 3.1 r31(t) = 00 for all t e [a,°°).

(ii) Assume p(t) > 0, q(t) < 0, and r(t) > 0 for all t e [a,=°) .

By Lemma 3.2 r13(t) = 00 for all t e [a,<»).

(iii) Suppose that either hypothesis of Corollary 3.5 holds.

Then by Lemmas 3.3 and 3.4 we have r121(t) = 00 for all t e [a,<”) .

(iv) Assume that either hypothesis of Corollary 3.5 holds. Then 

by Theorem 3.9 we see r13(t) = r31(t) = °°.

The following series of lemmas and theorems were first developed 

■ by Leighton and Nehari [6] for the differential equation

(4.1) (ry*') ” + py = 0

where p(t) is assumed negative on [a,™).

These results depend not on equation (4.1) but, instead, on the 

fact that

(4.2) r121(t) = r13(c) = r31<t) = 00

if p(t) < 0 for all t c [a,”).

Returning to equation (L), we consider the following two

hypotheses:
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(a) p(t) > 0, q(t) > 0, r(t) > 0 on [a,«>) and conditions (3.1).
(4.3)

(b) p(t) > 0, q(t) < 0, r(t) > 0 on [a,°°) and conditions (2.2).

As pointed out in Example 4.2, either hypothesis yields the equalities 

in (4.2). Therefore in the following series of lemmas and theorems we 

assume that either hypothesis (a) or (b) of (4.3) holds.

Lemma 4.1 If two nontrivial solutions of (L) have three zeros in common 

(of any type), then they are constant multiples of each other.

Proof. Let u(t) and v(t) be two such solutions of (L). Suppose first 

the zeros are distinct. Let a b < c < d be such that

u(b) = u(c) = u(d) = v(b) = v(c) = v(d) = 0. Since r121(t) = °° we have 

u’(c) + 0 and v’(c) + 0. Define a solution of (L) by

w(t) = v'(c)u(t) - u'(c)v(t). Clearly w(b) = w(c) = w’(c) = w(d) = 0 

and r121(t) = “ implies w(t) E 0 and u(t) and v(t) are dependent.

Suppose b = c. Then we have u(b) = u'(b) = 0, v(b) = v'(b) = 0 

and u(d) = v(d) = 0. Since r31(t) = °° we must conclude u’’(b) / 0, 

v'’(b) 4- 0. Define a solution of (L) by w(t) = vl,(b)u(t) - u’’(b)v(t). 

Then w(b) = w’(b) = w’'(b) = 0 = w(d) . But r31(t) = °°. Hence 

w(t) E 0 and u(t), v(t) are again dependent.

Finally, if b = c = d then u(t) and v(t) would have a common 

"triple zero" and would thus be dependent.

Lemma 4.2 Suppose u(t) and v(t) are two linearly independent solutions 

of (L) such that for a <_ b < c we have u(b) = v(b) = u(c) = v(c) = 0.

Then the zeros of u(t) and v(t) separate each other in (b,c).
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Proof. The hypothesis is not empty. If u(t) is one such solution take 

v(t) such that v(b) = v(c) = v(d) = 0 where d is any point, such that 

u(d) / 0. By Lemma 4.1 no zero of u(t) in (b,c) coincides with a zero 

of v(t). Suppose the lemma is false. Then there would exist two conse­

cutive zeros t = a,B (b < a < g < c) of one of the solutions, say u(t), 

such that v(t) + 0 for all t e [a,g]. But Lemma 1.11 implies there 

exists a constant K such that w(t) = u(t) - Kv(t) has a double zero in 

(a,g). However, w(b) = w(c) = 0 where b < a < g < c and w(y) = w’(y) - 0 

for some y in (a,g). This contradicts ~ 00'

We now state an immediate corollary.

Corollary 4.3 If two nontrivial solutions u(t) and v(t) of (L) have 

two zeros t = b,c in common where a <_ b < c, then the number of zeros 

of u(t) in (b,c) differs from the number of zeros of v(t) in (b,c) by at 

most one.

We note in Corollary 4.3 that if the solutions are linearly depen­

dent they have exactly the same zeros. If they are linearly independent 

we apply Lemma 4.2 realizing that the first and last zeros in (b,c) may " • 

both belong to the same solution. Hence we content ourselves with the " 

conclusion of the corollary.

We are now in a position to discuss the concept of the first 

conjugate point introduced above. Consider the class of solutions y(t) 

of (L) which vanish at t = a and have at least four zeros in [a,00), 

assuming this class is not empty. We denote by a^, a2, a3, (a = a^) 
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the first four zeros of y(t) in [a,00), and we desire an extremal solution 

which minimizes the value of a^ in this class. We may restrict ourselves 

to the class of solutions which have a double zero at t = a. Indeed, if 

y(t) is the solution from the class which is extremal and if a^ < a^, we 

may compare the number of its zeros in (3,3^) with that of the solution 

v(t) for which v(a) = v'(a) = v(a4) = 0. By Corollary 4.3 the extra zero 

which y(t) may have in (3,3^) is msde up for by the double zero of v(t) 

at t = a (zeros are counted by multiplicities), and v(t) therefore has 

at least as many zeros in [a,a^] as y(t).

We again denote by a-^, a^, a3, a^ (a = a^ = a^) the first four 

zeros of v(t) in [a,03), and we introduce a solution w(t) of (L) which 

has a double zero at t = a and is positive for t > a. We could take 

the solution determined by w(a) = w'(a) = w’’'(a) = 0, w’’(a) = 1. 

We search for an extremal solution in two categories of solutions:

(i) solutions for which a3 a^,

(ii) solutions for which a3 = a^.

In (i) we see w(t) / 0 on [a^a^] and v(t) has simple zeros at

t = 33,3^. Therefore Lemma 1.11 implies there exists a constant K such 

that the solution u(t) = v(t) - Kw(t) has a double zero in the interval 

(a3>ait) » say at th6 point t = a, a3 < a < a^. Clearly u(t) also has a 

double zero at t = a. Thus for the solution u(t) we have a = a^ = a2 

and a7 = a[t = a/which shows that u(t) belongs to solution category (ii) ;

furthermore, this shows that the extremal solution we desire belongs to 
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category (ii). Indeed, we claim that u(t) is the essentially unique 

extremal solution. If not, there would exist another solution, say 

z(t), such that z(a) = z*(a) = z(g) = z’(g) = 0 where a < g < a. Since 

both u(t) and z(t) have double zeros to the right of t = a, previous 

lemmas imply u’'(a)-u’’’(a) < 0 and z*’(z)•z’ ” (a) < 0. We assume with­

out loss of generality that u’’(a)«z'’(a) > 0, and it follows that 

u' ” (a)•z’'’(a) > 0. As a result of Corollary 3.5, u(t) and z(t) are non­

zero on (a,30) and (g,°°) respectively. Moreover, u’ 1 (a)-z' ' (a) > 0 implies 

that u(g)*z(a) > 0.

Finally, it is easily verified that z(t) = c^uCt) + c2w(t) for 

appropriate constants c1 and c2- Solving for c1 by calculating the 
z,M(a) third derivative at t = a we find c = —, . , , ; > 0. We assume therefore 1 u (a)

that c1 = 1. Now consider c2. At t = g we have 0 = u(g) + c2w(g) and 

thus c2 = -u(g)/w(g). At t = a we find z(a) = [-u(g)/w(g)]*w(a) implying 

z(a)*u(g) < 0 contradicting our result above.

We have proven the following theorem.

Theorem 4.4 If there exists a solution y(t) of (L) which vanishes 

at t = a and has at least four zeros in [a,”), there then exists a point 

t = a and an essentially unique solution u(t) with the following proper­

ties:

(a) u(t) has double zeros at t = a and t = a.

(b) u(t) has exactly four zeros in [a,ex] .

(c) any other solution y(t) such that y(a) = 0 has fewer than 
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four zeros in [a,a].

Properties (a) and (c) show that rij(a) = a, where n^Ca) is the 

first conjugate point of t = a defined above.

We are now in a position to obtain a sufficient condition for 

disconjugacy of equation (L). This will be accomplished using an 

identity from Lemina 1.6.

Theorem 4.5 Let q(t) e C'[a,“) and p(t) e C2Ia,ro). If 

p’’(t) + 2r(t) q'(t) and p(t) > 0 on [a,0"), then every solution of

(L) has at most one double zero in Ia,=°). (NOTE: Neither hypothesis 

(a) nor (b) of (4.3) is needed here.)

Proof Let y(t) be a.solution of (L) such that for a < b < c we have 

y(b) = y'(b) = y(c) = y’(c) = 0. By (1.3) and (1.4) of Lemma 1.6 we have 

K[y(t)] = yy'” - y’y” - pyy’ + ^(p* - q)y2 and

t
K[y(t)] = K[y(t1)J + J ^(p * ’ + 2r - q')y2 - p(y')2 - (y")2ds.

C1

Hence K[y(b)] = K[y(c)] = 0. Also 

c
I .= / [^(p’’ + 2r - q')y2 - p(y')2 - (y'')2]ds < 0 by hypothesis, 

b

However, I = K[y(c)] - K[y(b)] = 0. This contradiction proves the theorem.

We now state an immediate corollary.

Corollary 4.-6' Assume that one of the hypotheses (a) or (b) of (4.3)

holds.. Let-p(t) c C2[a,‘y') and q(t) e C'fa,00). If p'’(t) + 2r(t) <_q’(t) 
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on [a,00), then equation (L) is disconjugate and hence nonoscillatory.

Proof. We need merely show n^Ct) = 00 for t e [a,00). Using the proof 

of Theorem 4.4, r^Ct) will occur at a point t, t > t such that there 

exists a solution y(t) having double zeros at t and t. But by

Theorem 4.5 there exists no solution having two double zeros and hence 

(t) = 00. This proves the claim.

Note that this result yields much more than (L) being non­

oscillatory. Nonoscillation is equivalent to saying the set of zeros 

of every solution of (L) is bounded above, but the conditions of 

Corollary 4.6 yield that every solution of (L) has at most three 

zeros on [a,”).

This concludes our section of lemmas and theorems based on 

conditions (4.3). We shall return to these conditions a little later 

in this chapter. We now consider a result which is valid for equation 

L*(z) = 0 as defined by (1.9). One should recall the meaning of 

r.o(t), 1,1(1), r*o(t), and r* (t) as given by Definition 4.4. Note 1 w w * IO
that no sign assumptions are placed on p(t), q(t), or r(t).

Theorem 4.7 Consider equation (L) and its adjoint equation (L*)

(L) = py* 1 + qy* + ry

(L*) y(4) = py'' + (2p' - q)y' + (p' ' + r - q')y.
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The following hold:

(a) r13(t) < ” if and only if r31(t) < 00 and r13(t) = r*-, (t) 

for all t e [a,<») .

(b) rqi(t) < °° if and only if r* (t) < » and rQ1 (t) = r* (t)
■*- id di id

for all t e [a,”),

Proof It suffices to prove the following four implications:

(i) r*3(t) < ” implies r31(t) £r*3(t)?

(ii) r* (t) <” implies r (t) < r* (t) , 
O-L 1 J Ox

(iii) r13(t) < 00 implies r^Ct) < r^Ct) }

(iv) r (t) < =o implies r* (t) <_ r (t) OX X 0 ox

for t e [a,00) .

We shall prove only (i) and (iii) since (ii) and (iv) follow

similarly.

Consider (i). Suppose r*3(t) =. 8 < “ and the conclusion false. 

In other words we assume £ = r*,(t) < r31(t). We appeal to identities 

(1.5), (1.6), and (1.7) of Lemma 1.7 in which we assume (L^) is (L) and 

(L2) is (L*). We have p,(t) E p2(t) H p(t) , q3(t) E q(t), r^t) e r(t) 

q2(t) E 2p’(t) - q(t), r2(t) E p''(t) + r(t) - q'(t).

Calculating the coefficients on the right side of (1.7):
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P2 * Pi = P<c) - P(t) = °’ + ^2 " Pl - P2 = + 2P* “ " 2P’ = °’

rj - r2 + “ P2* = r-p,,-r + q' + 2p’’ - q* - p” = 0. Hence,

for the case where (L^ is (L) and (Lp is (L*), we see identity (1.7) 

becomes

(4.4) M’(t) = 0}

where

/ M(t) = F(t) - p^’v + p2v’u + (q2 - p’)uv ;

. (4'5)\* ■’ \
• ■ • ‘ 'F(t) = v(t)uT 1 ’ (t) - u(t)vM?(t) - vt(t)u?,(t) + u,(t)vT,(t).

Since g = r*j(t) < r31(t) there exists a solution v(t) of (Lx) such that 

v(B) = v'(g) = v’’(g) = 0, v'’'(g) = 1 and there exists a point

a s [t,g) such that v(a) = 0. Also any solution u(t) of (L) such that

u (a) = u'(a) = u''(a) = 0 satisfies u(t) 0 for a < t < g.

Now integrating (4.4) above from a to g yields

(4.6)
g

0 = / M'(t)dt = M(g) - M(a).
a

But from (4.5) we see M(g) = -u(g) 0, M(a) = v(a)*u,,,(g) = 0. This

contradicts (4.6).

We now prove (iii) Suppose r13(t) = g < =° and g = r13(t) < r31(t).

This implies there exists a solution u(t) of (L) and a point a e [t,g)
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such that u(a) = 0, u(6) = u’(g) = u''(0) = 0, and u’’'(3) = 1. Also 

any solution v(t) of (L*) such that v(a) = v’(a) = v'*(a) = 0, satisfies 

v(t) + 0 for a < t < g. Now (4.6) still holds and M(g) - M(a) = 0.

But from (4.5) we see M(g) = v(g) + 0, M(a) = -u(a)-v’’*(a) = 0, and this 

contradicts (4.6).

Cases (ii) and (iv) follow similarly.

Corollary 4.8 Suppose that either of the two following hypotheses 

holds:

(a) p(t), q(t), r(t) positive on [a,”) }

(b) p(t) >_ 0, r(t) >_ 0 on [a,°°) together with conditions (2.2).

Then r*3(t) = 00 .

Proof In (a) Lemma 3.1 implies r31(t) = 00

In (b) Lemma 3.7 implies r31(t) = 00 .

In either case r^tt) = 00 implies r*3(t) = °° by Theorem 4.7.

Corollary 4.9 Suppose that either of the following two hypotheses 

holds:

(a) p(t) > 0, q(t) < 0, r(t) > 0 on [a,”),

(b) p(t) > 0, r(t) > 0 on [a,™) together with conditions (3.1).

Then r^^t) = *”.

Proof In (a) Lemma 3.2 implies r13(t) = "

In (b) Lemma 3.8 implies t13(t) = ” .
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In either case r13(t) = =° implies r31(t) = 00 by Theorem 4.7.

We noxv state a corollary summarizing the results of Corollaries 

4.8 and 4.9.

Corollary 4.10 If either hypothesis (a) or (b) of conditions (4.3) 

holds, then r*g(t) = r^Ct) =

We now prove a theorem yielding sufficient conditions to 

guarantee that r22(t) = r22(t).

Theorem 4.11 Suppose that either hypothesis (a) or (b) of conditions 

(4.3) holds. Then r22(t) = r*2(t).

Proof. It suffices to prove that if there exists a solution v(t) 0 »• „
of (L*) having double zeros at t = u,8, then there exists a solution z(t) 

of (L) having double zeros at t = a,8 and conversely. We prove this in 

one direction only since the proof of the converse is so similar.

Suppose there exists a solution v(t) 7 0 of (L*) such that 

v(a) = v'(ct) - v(g) = v'(B) = 0 where a <_ a < g. Since 

r*3^t^ = = 00 we must have v’’(a) / 0 and v’VS) + 0.

We define two more solutions u(t) and w(t) of (L*) by:

u(i) (a) = 0 for i = 0,1,2

w(i) (g) = 0 for i = 0,1,2

and since t*3(t) = ^(t) = =°, we see u(3) 4 0 and w(a) + 0. We claim

u, v, and w are independent. For, if not, then there exist c , c , and c3 

Cj + c^ + c| > 0, such that
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(4.7) c^Ct) + c2v(t) + c3w(t) = 0

Evaluating (4.7) at t = a yields c3w(a) = 0 which implies c3 = 0.

Evaluating (4.7) at t = 8 yields 0^(8) = 0 which implies c^ = 0.

Hence we see that c2v(t) = 0 and c? 0 which implies v(t) H 0. This 

contradiction shows the linear independence of u, v, and w.

Now recall Corollary 1.9. Using this corollary let us define

the following solution z(t) of (L):

u'”(ci) v"’(o:)

U(t) v(t) w(t)

z(t) = u’(t) v'(t) w’ (t)

u”(t) v”(t) w”(t) *

We note that

0 0 w(a)

z(cx) = 0 0 w' (a) o.

0 v"(ct) w*1(a)

0 0 w(a)

z'(ct) = 0 0 w' (a) = o,

u' "(a) v* "(a) w* "(a)

0 0 w(a)

z”(<j) = 0 vM(a) w* *(a) -u,,’(a)-v”(a)-w(a).
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Since u(t) 0, u’’’(a) 4- 0. Also vT,(a) 4 0 from above, as well as 

w(a) 4 0. Hence z'’(a) 4 0 and we see z(t) 4 0. Similarly it is 

shown that z(B) = z'(g) = 0, z’’(6) 4 0. Hence z(t) 4 0 is a solution 

of (L) having double zeros at t = a,g and we are through. The converse 

follows in a similar manner.

Theorem 4.12

(a) If for equation (L) we have r^Ct) = r31(t) = r22(.t) = 60 

for t c [a,co), then r1H1(t) = r211(t) = r121(t) = rn2(t) = ™ for

t s [a,°°) .

(b) If for equation (L*) we have r*3(t) = ~ r22(r) = ”

for t £ [a,c°), then r*1H(t) = r*11(t) = r*12(t) = r*21(t) = ” for

t e [a ,co) .

Proof The same proof holds for (L) and (L*) and we prove it only 

for (L).

(i) Suppose r211(t) = y < 00 for some t. Then there exists a solution 

y(t) of (L) and points a,3 such that t < a < 3 < y and 

y(ot) = y'(cc) = y(3) = y(y) = 0. Consider another solution z(t) of (L) 

such that z(a) = z'(ct) = z’’(a.) = 0, z',r(ci) 4 0. Since r31(a) = »} 

we see z(t) 4 0 for t £ [3,y]. Hence by Lemma 1.11 there exists a constant 

K such that the solution w(t) = y(t) - Kz(t) has a double zero at some 

point c e (3,y). But then w(a) = w'(ci) = w(c) = w’(c) = 0 contradicting 

r22(i) = ”.
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(ii) Suppose = y < <» fOr some t. Then there exists a solution

y(t) of (L) and points a,g such that t <_ a < B < y and

y(a) = y(B) = yCy) = y'(y) = 0« Consider another solution z(t) of (L) 

such that z(y) = z'(y) = z''(y) = 0, zm,(y) 0. Since r13(t) = “, 

for all t we see z(t) + 0 for t e [ot,B]. Hence by Lemma 1.11 there 

exists a constant K such that the solution w(t) = y(t) - Kz(t) has a 

double zero at some point c e (a,B). But then w(c) = w’(c) = w(y) = w*(y) = 0 

contradicting r22^c^ = c°'

(iii) Suppose r121(t) = y < ” for some t. Then there exists a solution 

y(t) of (L) and points a,B such that t <_ a < g < y and

y(a) = y(B) = y'(B) = y(y) = 0. Clearly r22(a) = “ implies y’(a) T 0. 

Consider another solution z(t) of (L) defined by z(a) = z*(a) = z(g) = 0. 

By part (i) t211(a) = ” and we must have z(t) / 0 for t c (S,y]» An easy 

check shows that Lemma 1.11 still applies since z(t) has a single zero 

at t = B, and y(t) has a double zero at this point. Hence there exists 

a constant K such that the solution w(t) = y(t) - Kz(t) has a double 

zero at a point c e (B,y). But then w(ct) = w(B) = w(c) = w’(c) = 0 

contradicting r^^C01) = ” established in part (ii).

(iv) Suppose = y < 00 for some t. Then there exists a solution

y(t) of (L) and points a, B, H such that t<_ct<B<n<Y and 

y(a) = y(B) = y(p) = y(y) = 0. Consider another solution z(t) of (L) 

defined by z(a) = z'(a) = z(8) = 0. Since i’21i(a) = 00 by part (i) we 

have z(t) / 0 for t e [n,YJ• Hence Lemma 1.11 implies there exists a 

constant K such that the solution w(t) = y(t) - Kz(t) has a double zero
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at some point c £ (n,Y). But then w(a) = w(|3) = w(c) = w’(c) = 0 

contradicting = 0Q. The proof is now complete.

We now state an immediate corollary.

Corollary 4.13 If t e [a,”) and rij (t) < ”, then

DiCt) = min {r (t), r (t), r (t)}. Moreover, if n*(t) < ”, then 
J. O OX c* X

n*(t) = min {r*3(t), r31(t), r*2(t)}.

We now state an important theorem relating n^Ct) and p*(t).

Theorem 4.14 Suppose that either hypothesis (a) or (b) of (4.3) 

holds. Then n^t) = p*(t) .

Proof By Theorem 4.11 r22(t) r*2(t), and by Theorem 4.7 we have

r* (t) = r_.(t) and r* (t) = r.,(t). The result follows immediately
X O 0 1 0 1 Xu

from Corollary 4.13.

The final theorem of this chapter is an extension of Corollary 

4.6.

Theorem 4.15 Assume that one of the hypotheses (a) or (b) of (4.3) 

holds. Let p(t) £ C2[a,”) and q(t) e C'[a,”). If

p *’(t) + 2r(t) <_q'(t) on [a,”), then both equation (L) and equation 

(L*) are disconjugate and hence nonoscillatory.

Proof: By Corollary 4.6 p.(t) = ”, and Theorem 4.14 implies

Pj (t) = p*(t). Hence p*(t) = ” and the result follows.
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