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ABSTRACT 

Multi-drug resistant (MDR) Acinetobacter baumannii is increasingly more 

prevalent in nosocomial infections. Although in vitro susceptibility of A. baumannii 

to minocycline is promising, the in vivo efficacy of minocycline has not been well 

established. Moreover, the shortage of new effective antibiotics against MDR A. 

baumannii has created a need for maximizing the usage of currently available 

antibiotics. Therefore, we proposed to improve the therapeutic outcomes of 

minocycline for infections caused by A. baumannii. Our working hypothesis was 

that therapeutic outcomes could be improved by maximizing minocycline efficacy 

and suppressing the development of resistance in A. baumannii.  

We intended to achieve this proposed goal by: 1) deriving PK parameters for 

minocycline using a murine infection model; 2) determine the exposure-response 

relationship of minocycline; 3) suppressing the development of minocycline 

resistance. Our findings will fill the gaps in knowledge needed to optimize the use 

of minocycline and support its role as a first-line agent in the treatment of A. 

baumannii infections. Moreover, it is anticipated that our strategies for optimizing 

treatment with minocycline may be applicable to other tetracyclines, thereby 

expanding the viable options for MDR A. baumannii infections.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Various antibiotics have been developed since penicillin was first used in humans 

in 1940s. However, antimicrobial resistance has made these antibiotics less 

effective.  As a result, there is a shortage of effective antibiotics for the treatment 

of life-threatening bacterial infections (1). According to the Centers for Disease 

Control and Prevention (CDC), at least 2 million people were infected with 

resistant bacteria every year in the United States, and more than 23,000 of them 

died (2). The spread of antimicrobial resistance also increased the economic 

burden of the health care system markedly. In the United States, around $55 

billion were cost by antimicrobial resistance each year (3).  

Acinetobacter is one of the most problematic genus among all the pathogens. 

Infections associated with these bacteria were classified at a “serious concern 

level”, in a report by the Centers for Disease Control and Prevention (CDC). 

About 7% of healthcare-associated infections among the critically ill patients on 

mechanical ventilators were caused by Acinetobacter, and 63% of Acinetobacter 

are multi-drug resistant (MDR) (4). As a typical representative of this genus, 

Acinetobacter baumannii is the most problematic species, because it exhibits an 

outstanding ability to acquire and accumulate multi-drug resistance (5, 6). A. 

baumannii is an opportunistic pathogen, which mostly affects patients with 
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compromised immune function. It is commonly implicated in infections of the 

respiratory tract, bloodstream, urinary tract and skin. In recent years, the 

prevalence of MDR A. baumannii isolates has been increasing (7). Many 

commonly used antimicrobial agents are ineffective, and increased mortality was 

reported in patients infected with MDR A. baumannii (8, 9). In addition, we are 

facing a significant shortage of effective antibiotic agents against infections 

caused by MDR A. baumannii. Thus, improving the efficacy of the currently 

available antibiotics is the need of the hour. 

In 2013, Denys et al. collected the susceptibility data of Gram-negative bacteria 

from the U.S. between 2005 and 2011. In that study (n=883), the susceptibility 

rate of MDR Acinetobacter isolates to minocycline was 72.1 %, whereas most of 

the other drugs examined were found to be resistant (10). The in vitro 

susceptibility results of minocycline for A. baumannii are promising. However, the 

in vivo efficacy was not well established yet, and the currently using dosing 

regimen of minocycline may not be optimal. It is well accepted that antimicrobial 

resistance crisis was mainly caused by misuse of antibiotics, including overuse 

and inappropriate prescribing (1, 11). Improved understanding of the minocycline 

pharmacokinetics and pharmacodynamics is urgently needed. The rationale of 

dosing regimen design could help improving the therapeutic outcomes of 

infections caused by MDR A. baumannii. 
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On the other hand, the understanding of resistance development could help us 

suppress it. There are various known mechanisms that are responsible for 

decreased susceptibility of A. baumannii to antibiotics. The major reported 

resistance mechanisms of A. baumannii against tetracyclines include up-

regulation of efflux pump(s) and ribosomal protection (12). Tetracycline-specific 

efflux pumps are encoded by the tetA and tetB determinants, which could reduce 

intracellular concentration of tetracyclines. Ribosomal protection is regulated by 

tetM, which decreases the affinity of ribosomes to drug molecules (13, 14). In 

addition, multidrug efflux pumps, adeABC and adeIJK, also play an important 

role in tetracyclines resistance (15, 16). This type of efflux pumps could cause 

cross-resistance among multiple classes of antibiotics. Detoxification by enzyme 

and reduced uptake have been reported as tetracycline resistance mechanisms 

in Escherichia coli, other than A. baumannii (14). Among all the mechanisms, the 

most likely one(s) that emerge(s) in vivo during minocycline treatment is unclear.  

In 2011, the study reported by Hornsey, M. and colleagues compared two A. 

baumannii isolates from a patient, by whole genome sequencing. The isolates 

were collected from a patient before and after receiving tigecycline. However, the 

author could not determine whether the change in genome was caused by the 

drug exposure, or the patient initially had a mixed infection (17). In contrast, the 

conditions of animal studies could be well controlled. Therefore, in terms of the 
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clonal relationship with the parent isolate, mutant derived from animal model is 

superior for studying resistance development.  

1.2 Overview 

The overall objective of the proposed research is to improve therapeutic 

outcomes of minocycline against A. baumannii infections. To achieve this 

objective, we plan to study various factors that affect minocycline therapeutic 

outcomes, and which could guide treatment strategies. The project is separated 

into three specific aims as shown below. Briefly, Aim 1 will be focused on the 

pharmacokinetics of minocycline. In Aim 2, we will establish an exposure-

response relationship and strive to improve minocycline in vivo efficacy. Finally, 

Aim 3 is to study resistance development in A. baumannii during therapy. 

1.3 Specific aims 

The limited availability of new antibiotics for MDR A. baumannii makes it 

imperative for us to take a step back to assess the old antibiotics such as 

minocycline. Traditionally designed minocycline dosing regimen may not be 

optimal for MDR A. baumannii. Therefore, we need to optimize dosing strategies 

to improve therapeutic outcomes of minocycline. With the findings of the 

proposed project, minocycline could be re-purposed as an effective treatment 

against A. baumannii infections.  
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There are 3 specific aims in this project: 

Aim 1:  To characterize pharmacokinetics of minocycline. 

Our working hypothesis for this aim is that the PK of minocycline is linear in mice, 

for all the dose levels we evaluate. Therefore, we can use the best-fit PK 

parameters to simulate the corresponding drug exposure for different dosing 

regimens. We will test our hypothesis by performing PK studies with different 

minocycline dose levels.  

Aim 2:  To maximize minocycline in vivo efficacy.  

Our working hypothesis for this aim is that minocycline exposure is correlated to 

the reduction of in vivo bacterial burden. Therefore, efficacy could be improved 

by optimizing the dosing regimen. We will test our hypothesis by establishing the 

exposure-response relationship of minocycline. 

Aim 3:  To study in vivo resistance development in A. baumannii. 

Our working hypothesis for this aim is that development of minocycline 

resistance in A. baumannii can be suppressed by optimizing factors linked to 

resistance development. Therefore, understanding the mechanism(s) of 

resistance development could help improve therapeutic outcomes. We will test 

our hypothesis by studying A. baumannii resistance development in an animal 

infection model. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Minocycline 

Minocycline, a semi-synthetic derivative of tetracycline, was approved by FDA in 

1970. It has a broad spectrum of activity against Gram-positive and Gram-

negative bacteria. By binding to the 30S ribosomal sub-unit, minocycline can 

inhibit protein synthesis in bacteria. Compared to other tetracyclines, it has 

excellent penetration into tissues and a long elimination half-life (18, 19). Both of 

these are favorable pharmacokinetic properties. Conventionally, minocycline has 

not been used as a first-line agent in Gram-negative bacterial infections. 

However, the shortage of new and effective antibiotics against MDR A. 

baumannii, has motivated us to re-evaluate the utility of minocycline. Despite 

good in vitro results of minocycline against MDR A. baumannii, satisfactory 

clinical response was not consistently seen in patients treated with minocycline 

(20). A higher minocycline daily dose may be necessary for infections caused by 

MDR A. baumannii. Although the typical dosing regimen of minocycline is 200 

mg/day, 400 mg IV q12h with an 800 mg loading dose has been used in humans, 

for acute spinal cord injury (21). Therefore, a higher and safe dose of minocycline 

in human might be feasible. However, the in vivo efficacy of minocycline has not 

been well established and the rationale of the minocycline dosing regimen design 

needs to be further substantiated.  

http://en.wikipedia.org/wiki/30S_ribosomal_subunit
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Information about bio-distribution of minocycline is limited. In this study, we 

mainly focused on pneumonia, but data regarding pulmonary exposure of 

minocycline in humans is not available. Although a minocycline bio-distribution 

study has been performed in healthy rats by Nagpal, et al, infected animals have 

not been studied yet (22). Inflammation, which is caused by infections, might 

change the permeability of minocycline into lung tissues, as well as the volume of 

distribution. Therefore, we need to characterize pharmacokinetics of minocycline 

in both serum and ELF for the infected animals. 

In addition, serum protein binding is critical for understanding the 

pharmacokinetics and pharmacodynamics of antimicrobial agents. Only the free 

fraction is able to penetrate into extravascular space and exert antimicrobial 

effects. Serum protein binding of minocycline is usually accepted as 76%, which 

was determined by ultrafiltration (23). However, antimicrobial agents may show 

non-linear protein binding due to the saturation of binding sites, and typically the 

percentage of free fraction increases, with increasing total concentration (24, 25). 

Recently, a contrary phenomenon was reported in tigecycline and eravacycline 

(26-28). The percentage of free fraction decreased with increasing total 

concentration. It was suggested that the phenomenon could be due to the 

chelating effect of tetracyclines to divalent metal ions (29). It is possible that other 

tetracyclines would also have the same property (i.e., a class effect). Therefore, 
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we investigated different factors that might impact the binding of minocycline to 

serum proteins. 

2.2 Hospital-acquired pneumonia 

Hospital-acquired pneumonia (HAP), or nosocomial pneumonia, refers to 

pneumonia occurring at least 48 hours after being admitted in the hospital (30). 

HAP is the second most commonly occurring nosocomial infection (after urinary 

tract infections) (31), and is also the most important cause of death among all the 

hospital-acquired infections (32). In a multistate point-prevalence survey 

published in 2014, HAP accounted for around 22% of all the nosocomial 

infections (33). Usually, HAP is considered to include ventilator-associated 

pneumonia (VAP) and healthcare-associated pneumonia (HCAP). VAP is defined 

as  pneumonia occurring more than 48 to 72 hours after endotracheal intubation, 

while HCAP is defined as pneumonia occurring outside the hospital, but with the 

patients having close contact with the healthcare system (31).  

HAP is mainly caused by Gram-negative bacteria, such as Pseudomonas 

aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter species. 

In addition, methicillin-resistant Staphylococcus aureus (MRSA) is also an 

important pathogen for HAP (33). It was reported that age, male sex, structural 

lung disease and multi-organ system failure are factors which could increase the 

risk of HAP (33). About 1/3 of the HAPs occurred in intensive care unit (ICU), and 

90% of them were VAP (34). The neutropenic murine pneumonia model was 
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used in our project, to mimic the physiological conditions of HAP patients. Details 

of the model have been demonstrated previously (35). Serum tumor necrosis 

factor α (TNF-α) and interleukin 6 (IL-6) were found to be significantly higher in 

infected mice compared with control group, which was similar to the physiological 

conditions of patients with bacterial infections (36). Furthermore, two doses of 

cyclophosphamide administered prior to the experiments could induce 

neutropenia which mimics the condition of immunocompromised patients, who 

are usually vulnerable to HAP. 

2.3 Pharmacokinetic/ Pharmacodynamic (PK/PD) modeling of antibiotics 

In 2013, about 23000 deaths were caused by drug resistant bacteria in the U.S, 

while the number was 25000 in Europe (37). Misuse and sub-optimal dosing of 

antibiotics could be important reasons for treatment failure (38). On the other 

hand, over-dosing drugs will increase the risk of side effects and the cost of 

treatment. Therefore, to optimize dosing regimens of antibiotics, we have to 

understand the relationship between drug exposure and bacterial response.  

For antibiotics, the exposure of the drug in the human body (pharmacokinetics) 

and the response of bacterial pathogen to the drug (pharmacodynamics) could 

be linked by a PK/PD index. There are three commonly used PK/PD indices: the 

peak concentration and minimum inhibitory concentration ratio (Cmax/MIC), 

percentage of dosing interval that drug concentration is above MIC (%T>MIC) 

and area under the concentration-time curve to MIC ratio (AUC/MIC). The PK/PD 
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index is determined by the killing property of the antibiotics: Cmax/MIC is used 

when antimicrobial activity is concentration-dependent; %T>MIC is used when 

antimicrobial activity is time-dependent; AUC/MIC could be used when 

antimicrobial activity is both concentration and time dependent (38). Usually, the 

best PK/PD index for an antibiotic is determined by a dose fractionation study. 

With a fixed daily dose, the drug could be administered as a single dose or 

smaller doses with different dosing intervals. The most appropriate PK/PD index 

could be identified by comparing the correlation between PK/PD indices and the 

bacterial responses (39). The antimicrobial activities of tetracyclines are usually 

considered as both concentration and time dependent. Therefore, AUC/MIC is 

expected to be the most appropriate PK/PD index for minocycline. 

The relationships between the best PK/PD indices and the bacterial responses 

could be described by an inhibitory sigmoid Emax model (40). With the knowledge 

of exposure-response relationship, the magnitudes of PK/PD indices for the 

required PD targets could be calculated. Clinicians are able to select the optimal 

dosing regimens for the patients and minimize the risk of side effects.  

2.4 Resistance development  

The emergence of resistance is a major problem in antimicrobial therapy. 

Increased mortality, cost and patients’ suffering make it imperative for us to 

understand and suppress the development of resistance. There are three 

commonly accepted mechanisms responsible for bacterial adaptation to the 
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selective conditions. First, the adaptation is caused by altered regulatory 

mechanisms, rather than genetic change; second, the mutation is associated 

with increased copy of gene, which is called gene duplication-amplification (GDA) 

(increased level of enzyme or efflux pumps, etc.); third, the mutation is 

genetically stable, e.g., frameshift, deletion and insertion, etc. The gene 

regulatory response and GDA are usually common and reversible, whereas the 

third one is rare. Therefore, it was considered that GDA is the intermediate step 

of stable genetic mutation (41). Various technologies could be utilized to detect 

genetic mutations, including real-time quantitative PCR and next generation 

genome sequencing, etc.  

During exposure to antimicrobial treatment, there are two ways for bacteria to 

gain genetic resistance: acquired and de novo. In acquired resistance, mobile 

genetic elements are obtained from other bacteria, whereas de novo is 

developed in a step-wise manner through the mechanisms described above (42). 

In this project, we focused on suppressing the de novo pathway in A. baumannii. 

The minimum inhibitory concentration (MIC) of antibiotic may inhibit the visible 

growth of micro-organisms, but may not kill resistant sub-populations. To 

suppress the development of resistance, the mutant prevention concentration 

(MPC) is required. Thus, the MPC is the MIC of the most resistant subpopulation. 

According to the mutant selection window hypothesis, the selection window 

(concentration range between MPC and MIC99, which is drug concentration that 
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inhibits 99% of the subpopulations) is problematic, in terms of selective 

amplification of resistant sub-populations (43). Traditional dosing strategies tend 

to selectively amplify the resistant subpopulations during treatment, since MICs 

of parent isolates are usually used to design dosing regimens. Therefore, 

maintaining the drug concentration above the selection window is the best 

practice for avoiding resistance development (44). In the drug development 

stage, candidates with a narrow selection window are more promising than those 

with simply low MICs. The findings of the current project will help to optimize 

regimens to suppress resistance development in A. baumannii.  
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CHAPTER 3: GENERAL METHODS 

3.1 In vitro microbiology studies 

3.1.1 Quantitative culture 

Quantitative culture is a technique for quantifying bacteria in the sample. Briefly, 

samples were serially diluted with sterile saline (transferring 100 µL sample into 

900 µL saline). An aliquot of sample (200 µL) was dropped onto the Mueller-

Hinton agar (MHA) plate, and spread using the wet sterile cotton swab. The 

plates were incubated at 37°C overnight. A valid colony number (n) should be 

between 20 and 200. The bacterial burden was calculated as Log10(n*5) + 

dilution factor, and the unit of bacterial burden was log10 CFU/mL. 

3.1.2 Minimum inhibitory concentrations 

The minimum inhibitory concentrations (MICs) were defined as the lowest 

concentrations of chemicals that inhibit the visible growth of micro-organisms. 

The values indicate susceptibility of micro-organisms to the chemicals. MIC could 

be determined in liquid growth medium (broth) or on the surface of solid growth 

medium (agar). In the current project, both broth dilution method and ETEST 

approach were used to determine MICs of various antibiotics against the A. 

baumannii isolates. 
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3.1.2.1 Broth dilution method 

The protocol of broth dilution method followed the guidance of the Clinical and 

Laboratory Standards Institute (CLSI) (45). A concentration range which includes 

the anticipated MIC value was chosen for the antibiotic. The antibiotic was 

serially diluted by cation-adjusted Mueller-Hinton broth (Ca-MHB) into twice as 

much of the desired concentrations. An aliquot of 250 µL antibiotics was mixed 

with equal volume of bacterial suspension (106 CFU/mL of bacteria in Ca-MHB). 

Negative control was filled with 500 µL of Ca-MHB, while positive control was a 

mixture of 250 µL Ca-MHB and an equal volume of the bacterial suspension. 

Tubes were incubated at 37°C for 16 - 20 hours, and vortexed again. The MIC 

values were read at 24h of incubation. MIC of the antibiotic was the lowest 

concentration that the corresponding tube was clear. 

3.1.2.2 ETEST 

In ETEST method, the antibiotics were preloaded on a plastic strip, and the MICs 

were determined by the bacterial inhibition zone. Briefly, the concentration of 

bacterial cell suspension in Ca-MHB was adjusted to 0.15-0.25 absorbance at 

590nm wavelength. The suspension was spread on the MHA plates by a sterile 

cotton swab within 20 minutes. The excess moisture could be absorbed by the 

agar completely, after approximately 15-20min. ETEST strips were applied to the 

surface of inoculated agar with forceps. The air pockets under the strip could be 

removed by pressing gently on the strip without moving it. Agar plates were 
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incubated at 37 °C for 16-20 hours, and the lowest concentration of the inhibition 

zone was the corresponding MIC.  

3.2 Neutropenic murine pneumonia model 

A neutropenic murine pneumonia model was used in this project. The 

experimental setup was as previously described (35, 46). Female Swiss Webster 

mice weighing between 20 and 25 g (Harlan, Indianapolis, IN) were rendered 

neutropenic by two doses of intraperitoneal cyclophosphamide, prior to the 

experiment (150 mg/kg in day -4 and 100 mg/kg in day -1). Neutropenia could 

minimize the impacts of innate immune function and therefore reduce the inter-

subject variability of the animals.  

The animals were anesthetized by one dose of intraperitoneal 1.25% Avertin (2, 

2, 2-Tribromoethanol) (approximate 0.3 mL). Avertin was prepared by mixing 125 

mg 2,2,2-tribromoethanol and 0.25 mL tert-amyl alcohol (Sigma-Aldrich) with 10 

mL injection water. An overnight culture of bacteria was inoculated in fresh broth, 

and grown to log phase. Then the bacterial suspension was concentrated to the 

desired burden, on the basis of absorbance at 630 nm. The anesthetized mice 

were inoculated with approximately 107 - 108 colony forming unit (CFU) of A. 

baumannii under laryngoscopic guidance. The protocol was approved by 

Institutional Animal Care and Use Committee of the University of Houston. The 

immune response in mice after infection has been studied previously in our lab. 

Serum tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were found to be 
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significantly higher in the infected mice, compared with the control group (36). 

The results were consistent with the pathophysiology of patients with severe 

pneumonia (47).  

3.3 LC-MS/MS assay method development 

The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to 

determine drug concentrations in serum and epithelial lining fluid (ELF) samples. 

The LC-MS/MS system consists of a Waters AcquityTM UPLC with Waters BEH 

C18 column (1.7µm 2.1x50mm) and API5500 Qtrap triple quadrupole mass 

spectrometer (Applied Biosystem/MDS SCIEX, Foster City, CA, USA) equipped 

with Turbo-Ion-Spray TM source. The mobile phase A and B were 0.1% formic 

acid in distilled water and acetonitrile, respectively. 

3.3.1 Chromatographic and mass spectrometric conditions 

In the Ultra Performance Liquid Chromatography (UPLC) system, analytes were 

separated by gradient elution, which was: 0-0.5min: 98% A; 0.5-0.7min: 98-84% 

A; 0.7-1.2 min: 84-76% A; 1.2-1.7min:  76-70% A; 1.7-2.1min: 70-50% A; 2.1-2.5 

min: 50-5% A; 2.5-3.0min: 5% A; 3.0-3.2min: 5-98% A; 3.2-5min: 98% A.  The 

flow rate was set at 0.35 ml/min, and the temperature of the column was 45°C. 

The temperature of the sample chamber was maintained at 15°C. For the mass 

spectrum, the curtain gas, ionspray voltage, temperature, ion source gas 1 and 

gas 2 were 20, 5000 V, 500°C, 35 and 40, respectively. 
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3.3.2 Assay method validation 

For all the tested compounds, the methods have been validated at three different 

concentration levels (L: low, M: medium, H: high). LLOQ (Lowest Limit of 

Quantification) was defined as the concentration of drug peak with 10 times 

height of baseline, while HLOQ (Highest Limit of Quantification) was the highest 

concentration tested in the validation. For different compounds, the sample 

preparation procedures will be described in Chapter 4. 

3.3.2.1 Standards and quality controls 

Stock solutions of antibiotics (8192 mg/L) were prepared by dissolving drugs in 

water separately, and stored at -80°C. The stock solutions were thawed for 

preparing standard solutions prior to experiments, and serially diluted with 

distilled water or 0.5% (V/V) methyl-sulfoxide (DMSO). Quality control samples 

(QC) were made by diluting stock solution into different concentrations with 

serum or ELF, and stocked in -80℃ .  

3.3.2.2 Accuracy and precision 

Accuracy and intra-day precision were determined by analyzing 6 QC samples 

for each concentration level within 1 day. The inter-day precision was assessed 

by repeating the same experiment twice on different days. Therefore, there were 

6 samples for intra-day precision and 18 samples for inter-day precision, at each 

concentration level. Meanwhile, a standard curve generated by serially diluted 
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standards was prepared every day. According to the standard curve, 

concentration of each sample was determined. Accuracy was calculated as the 

average concentrations of QC divided by the nominal values, while precision was 

calculated as the standard deviation of the QC concentrations divided by their 

mean values (coefficient of variation). 

3.3.2.3 Recovery and matrix effects 

The recovery and matrix effects of 3 concentration levels were evaluated (L, M, 

H). Three different sets of samples were analyzed for determining recovery and 

matrix effects, and all the samples were triplicated. Set A was prepared in the 

same method as QC. Set B was the neat solution of analytes (dissolved in 10% 

acetonitrile for levofloxacin or in 50% methanol for minocycline and doxycycline). 

Set C was prepared by reconstituting blank matrix residual with set B. The peak 

area of analytes was used for calculation. Recovery was the ratio between set A 

and set C values, and matrix effects was the ratio between set C and set B 

values. 

3.3.2.4 Data analysis 

The results were analyzed in Multiquant 2.0.2. The 1/X2 weighted linear 

regression was used for the standard curves. The acceptable accuracy range of 

each concentration level is 85-115%, and the precision must be within 15%. The 
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extent of recovery should be close to 100%, while matrix effects should be close 

to 0. Both of them have to be consistent across all concentration levels. 
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CHAPTER 4: PHARMACOKINETICS OF MINOCYCLINE 

To translate our findings clinically, we need to explore the pharmacokinetics of 

minocycline in the neutropenic murine pneumonia model. The results of our 

studies could be correlated to patients in terms of the relevant drug exposure 

(AUC, concentration, etc.). In this chapter, we developed and validated a LC-

MS/MS assay method for minocycline in mouse serum and ELF. The assay 

methods of doxycycline and levofloxacin in mouse serum were also validated. 

The serum protein binding of minocycline was investigated by an in vitro 

microdialysis system. Finally, a modified 2-compartment PK model was used to 

fit the minocycline serum and ELF concentration data. 

4.1 Materials and methods 

4.1.1 Materials 

Liquid chromatography-mass spectrometry (LC-MS)-grade water, methanol and 

acetonitrile were purchased from EMD Millipore Corporation (Billerica, MA).  

Methyl-sulfoxide (DMSO) was obtained from EM SCIENCE (Gibbstown, NJ). LC-

MS-grade formic acid, minocycline hydrochloride, doxycycline hyclat, HEPES, 

dipotassium phosphate (K2HPO4) and monopotassium phosphate (KH2PO4) 

were purchased from Sigma-Aldrich (St. Louis, MO). Mouse and human sera 

were obtained from Equitech-Bio, Inc (Kerrville, TX). Mueller Hinton II Broth 

(cation-adjusted) was manufactured by BD Diagnostic Systems Europe. The 
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urea assay kit was from BioAssay Systems (Hayward, CA). CMA 12 Elite 

Microdialysis Probe was a product of CMA Microdialysis (Reference number 

8010434; Stockholm, Sweden). The semi permeable membrane (20,000 Da cut-

off) was made of polyarylethersulfone (PAES).  

4.1.2 LC-MS/MS assay  

4.1.2.1 Minocycline and doxycycline 

The chromatographic conditions have been described in section 3.3.1. The 

multiple-reaction monitoring (MRM) scan type in positive mode was used for 

mass spectrum. The transitions were m/z 458.3 to 441.2 and m/z 445.2 to 154.2 

for minocycline and doxycycline, respectively. The declustering potential (DP), 

collision energy (CE) and collision cell exit potential (CXP) of minocycline were 

55, 25 and 20; while the values of doxycycline were 50, 23 and 20, respectively. 

The sample preparation procedures were similar for these 2 drugs, and they 

were used as internal standard for each other. For standards, 10 µL of blank 

serum or ELF was mixed with 10 µL of standard solutions (0.5% DMSO, V/V) 

and 30 µL of internal standard solution (10 µg/ml in water). For serum or ELF 

samples, 10 µL of sample was mixed with 10 µL of 0.5% DMSO (V/V) and 30 µL 

of internal standard solution (10 µg/ml in water). Each tube was added 170 µL of 

acetonitrile (containing 0.03% formic acid, V/V).  After vortexing for 30 seconds, 

the samples were centrifuged for 15 minutes at 18000x g. An aliquot of 40 µL 
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supernatants were transferred to a new tube, and evaporated under a stream of 

ambient air. After being reconstituted with 1 mL of 50% methanol, 5 µL of the 

samples were injected into the UPLC system. The assay methods were validated 

as described in section 3.3.2. 

4.1.2.2 Levofloxacin 

The chromatographic conditions for levofloxacin were similar to that for 

minocycline and doxycycline. The multiple-reaction monitoring (MRM) scan type 

in positive mode was used. The transitions were m/z 362.1 to 318.1 and m/z 

332.1 to 268.3 for levofloxacin and ciprofloxacin (internal standard), respectively. 

The DP, CE and CXP of levofloxacin were 65, 25 and 20; while the values of 

ciprofloxacin were 40, 30 and 11, respectively. 

For standards, 10 µL of blank serum was mixed with 10 µL of standard solutions 

and 20 µL of internal standard (ciprofloxacin in 1% ammonium hydroxide, 8 

mg/L). For samples, 10 µL of serum samples were mixed with 10 µL of distilled 

water and 20 µL of internal standard (ciprofloxacin in 1% ammonium hydroxide, 8 

mg/L). Each tube was added 170 µL of acetonitrile. After vortexing for 15 

seconds, the samples were centrifuged for 15 minutes at 18000X g. An aliquot of 

20 µL supernatants were transferred to a new tube, and mixed with 220 µL of 

distilled water. The samples were ready for analysis, and the injection volume 

was 3 µL.  The assay methods were validated as described in section 3.3.2. 
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4.1.3 Serum protein binding 

4.1.3.1 Microdialysis 

Serum protein bindings of minocycline, doxycycline and levofloxacin were 

determined by in vitro microdialysis as described previously (26, 48). Briefly, a 

probe was inserted into a reservoir tube (containing serum spiked with an 

antimicrobial agent, incubated at 37°C). The perfusion medium was perfused 

through probe at the flow rate of 1.5 µL/min. The system was equilibrated for 30 

minutes, and then dialysates were collected between 30-40 and 40-50 minutes. 

Concurrent samples from reservoir tube were also collected at 30, 40 and 50 

minutes. Recovery of the microdialysis system was determined similarly and 

separately for each experiment; the reservoir tube was filled with a perfusion 

medium instead of serum. To minimize the non-specific binding of drugs to the 

tubing and membrane, the system was pre-conditioned by the same setup for 50 

minutes. The experiments were performed at least twice on different days and 

the free fraction was calculated by the average of the results. Schematic 

microdialysis setup was shown in Figure 1, and the serum protein bindings were 

calculated by the equations below. 
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Figure 1: Schematic microdialysis setup for protein binding determination 

 

 

 

Recovery =  
2 ×Cd,recovery(T1,T2)

Cr,recovery(T1)+Cr,recovery(T2)
  

Free fraction =  
2 ×Cd(T1,T2)

Cr(T1)+Cr(T2)
 ×

1

Recovery
   

Where Cd (T1, T2): Dialysate concentration collected between time 1 and time 2; 

                          Cr: Concentration of sample taken from reservoir tube 



25 

 

4.1.3.2 Time-kill 

Time-kill study was used as functional verification of minocycline serum protein 

binding. Studies performed previously in our lab suggested that the growth profile 

of A. baumannii in serum was similar as that in half-strength cation-adjusted 

Mueller-Hinton broth (0.5X Ca-MHB) (49). Briefly, the A. baumannii isolate was 

inoculated into 5mL sterile mouse serum or 0.5X Ca-MHB, and the inoculum was 

approximately 5 × 105 CFU/mL. The bacteria were incubated in a shaker water 

bath at 37°C. Serial samples were collected at different time points over 6h.  

Samples were centrifuged at 10000X g and 4°C for 15min, the supernatants 

were subsequently replaced by same volume of sterile saline. Finally, bacteria 

were quantified by quantitative culture as described in section 3.1.1.  

4.1.4 Minocycline in vivo exposure 

The single-dose pharmacokinetics of minocycline in mouse serum and ELF were 

characterized. The neutropenic murine pneumonia model was described in 

section 3.2. Minocycline was administered intraperitoneally in 67 animals 2h after 

infection. Serum or bronchoalveolar lavage (BAL) samples were collected serially 

over time (n≥3 for each time point). Blood samples were collected by cardiac 

puncture. BAL samples were recovered through the trachea after 1 mL of saline 

was injected into the lungs. Minocycline concentrations were determined by the 

LC-MS/MS method as detailed in 4.1.2.1. The minocycline concentrations in ELF 

were calculated by correcting minocycline concentrations in BAL with urea 
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concentrations as described previously (50).  The serum and ELF concentration-

time profiles were co-modelled by a modified two compartmental model in 

ADAPT 5 (51) (as shown in Figure 2 ). Three regimens were initially evaluated: 

25 mg/kg, 50 mg/kg and 100 mg/kg. Based on the preliminary results, a 

humanized regimen mimicking the human serum concentration-time profile of 

minocycline (when a clinical dose of 200 mg is given intravenously to humans) 

was validated. The area under the curve (AUC) of the serum and ELF 

concentration-time profiles were derived by integrating the best-fit instantaneous 

concentrations with respect to time. Pulmonary penetration ratio of minocycline 

was estimated by the AUC ratio of ELF to serum.  
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Figure 2: Structure of the pharmacokinetic model  

 

 Differential equations: 

dAserum / dt = ka × Adepot + kpc × AELF / P – (kcp + ke) × Aserum 

dAELF / dt = kcp × Aserum – kpc × AELF / P 

dAdepot / dt = – ka × Adepot 

Adepot: Amount of minocycline in depot created by IP injection 

AELF and Aserum: Amount of minocycline in ELF and serum; 

kcp, kpc: Inter-compartmental transfer rate constants; 

ka, ke: Absorption and elimination rate constants; 

P: Minocycline penetration ratio between lung ELF and serum. 
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4.2 Results 

4.2.1 LC-MS/MS assay 

4.2.1.1 Minocycline and doxycycline 

The retention times of minocycline and doxycycline were 2.5 and 3.1 minutes, 

respectively. The chromatogram was shown in Figure 3. The linear range of 

minocycline and doxycycline were 0.0625-128 mg/L and 0.125-64 mg/L, 

respectively (as shown in Figure 4). The results of LC-MS/MS assay validation 

were shown in Table 1.  
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Figure 3: Chromatogram of minocycline and doxycycline 
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Figure 4: Calibration curve of minocycline and doxycycline 

A. Minocycline 

 

B. Doxycycline 
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Table 1: Validation of minocycline and doxycycline LC-MS/MS assay 

 

A. Minocycline 

Matrix 
 

L (0.5mg/L) M (8mg/L) H (128mg/L) 

Mouse 
serum 

Intra-day (n=6) 
Accuracy 101.2% 101.1% 99.6% 

Precision 2.5% 2.2% 2.3% 

Inter-day (n=18) 
Accuracy 100.5% 101.6% 96.5% 

Precision 3.4% 3.4% 3.6% 

Recovery (n=3) 102.4% 98.8% 101.4% 

Matrix effects (n=3) 89.1% 100.2% 103.1% 

Mouse  
ELF 

Intra-day accuracy (n=6) 102.4% 89.7% 96.9% 

Matrix effects (n=3) 97.5% 89.0% 88.1% 

 

B. Doxycycline 

Matrix 
 

L (0.25mg/L) M (4mg/L) H (64mg/L) 

Mouse 
serum 

Intra-day (n=6) 
Accuracy 103.5% 94.8% 116.5% 

Precision 9.0% 7.0% 6.7% 

Recovery (n=3) 132.0% 95.1% 104.5% 

Matrix effects (n=3) 97.8% 104.2% 96.9% 
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4.2.1.2 Levofloxacin 

The retention times of levofloxacin and ciprofloxacin were both 2.3 minutes. The 

chromatogram was shown in Figure 5. The linear range of levofloxacin is 0.25-

64mg/L (as shown in Figure 6). The results of LC-MS/MS assay validation were 

shown in Table 2.  

 

 

 

 

 

 

 

 

 

 

 



33 

 

Figure 5: Chromatogram of levofloxacin and ciprofloxacin 
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Figure 6: Calibration curve of levofloxacin 
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Table 2: Validation of levofloxacin LC-MS/MS assay 

 

Matrix 
 

L (2mg/L) M (16mg/L) H (64mg/L) 

Human 
 serum 

Intra-day (n=6) 
Accuracy 100.5% 98.7% 94.9% 

Precision 5.7% 4.5% 6.7% 

Inter-day precision (n=18) 10.0% 11.3% 8.6% 

Recovery (n=3) 105.3% 97.0% 112.5% 

Matrix effects (n=3) 85.2% 91.2% 81.2% 
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4.2.2 Serum protein binding 

4.2.2.1 Microdialysis 

The protein binding of minocycline in mouse serum was studied at 4 

concentrations (0.5, 5, 15 and 50 mg/L), and 4 perfusion media [saline (sterile 

0.9% (W/V) sodium chloride solution), 0.1M HEPES buffer (pH=7.4, adjusted by 

sodium hydroxide), 0.1M and 1M PBS (pH=7.4)] were used. Both sterile and un-

processed mouse sera were used in the study, and no difference was observed. 

Free fractions of minocycline were shown in Figure 7. For all the perfusion media 

examined, the values decreased with the increase of total minocycline 

concentrations. Of note, the binding values could also vary among various 

perfusion media using the same total minocycline concentration. Compared to 

the buffer groups, the saline group had considerably lower free fraction values.  

Similar experiments were performed using human serum and a consistent trend 

was observed to that in mouse serum (Figure 8). Finally, protein bindings of 

doxycycline and levofloxacin in mouse serum were also determined at 3 

concentrations (0.5, 5 and 50 mg/L), using saline as the perfusion medium. The 

free fractions of doxycycline and levofloxacin in mouse serum were shown in 

Figure 9. Doxycycline had a similar trend of concentration-dependent protein 

binding, but the free fractions were slightly higher than that of minocycline. On 

the contrary, the protein binding values for levofloxacin were similar, and 

consistent with previously reported values (24 to 38%) (52). 



37 

 

Figure 7: Free fraction of minocycline in mouse serum 

 

 

Note: Data shown as mean ± SD. Different media were used for perfusion. 
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Figure 8: Free fraction of minocycline in mouse and human sera 
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Figure 9: Free fraction of minocycline, doxycycline and levofloxacin in 
mouse serum 

 

 

Note: Data shown as mean ± SD. Saline was used as the perfusion medium. 
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4.2.2.2 Time-kill 

The growth profile of AB BAA 747 in mouse serum was comparable to that in half 

strength Ca-MHB (as shown in Figure 10). The profile of 2 mg/L minocycline in 

serum was comparable to that of 0.05 mg/L minocycline in 0.5X Ca-MHB. 

However, when minocycline concentration in 0.5X Ca-MHB increased to 0.1 

mg/L, the corresponding profile in serum required 50 mg/L minocycline (as 

shown in Figure 11).  
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Figure 10: Time-kill results of placebo in serum or 0.5X Ca-MHB 
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Figure 11: Time-kill results of minocycline in serum or 0.5X Ca-MHB 
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4.2.3 Minocycline pharmacokinetic study 

The initial estimation of serum AUC0-24h and the best-fit Cmax suggested that the 

pharmacokinetics of 25 mg/kg and 50 mg/kg doses were within the linear range. 

Also, the daily dose of 50 mg/kg was found to be comparable to the human 

equivalent AUC reported in a previous study (35). Therefore, the total daily dose 

was split into 5 doses to mimic a humanized regimen. Briefly, 18 mg/kg of 

minocycline was given at 0 h to achieve the serum Cmax similar to that in humans, 

and 4 supplemental doses (11 mg/kg, 9 mg/kg, 8 mg/kg and 4 mg/kg given at 4 

h, 9 h, 14 h and 22 h) were given to maintain the serum concentrations around 

the target pharmacokinetic profile reported in humans (18).  

The data from these 3 dosing regimens were co-modeled, and PK parameters 

were shown in Table 3. The best-fit minocycline concentration-time profiles of 

different dosing regimens were shown in Figure 12. The profiles of minocycline in 

both serum (r2 = 0.977) and ELF (r2 = 0.952) were captured satisfactorily (as 

shown in Figure 13). The elimination half-life in serum was 2.6 h. The serum 

AUC0-24h were 34 mg*h/L, 68 mg*h/L and 63 mg*h/L for 25 mg/kg, 50 mg/kg and 

humanized regimen, respectively; while the ELF AUC0-24h were 94 mg*h/L, 189 

mg*h/L and 175 mg*h/L. The pulmonary penetration ratio of minocycline was 2.8.  

Compared to 50 mg/kg, the AUC0-24h of the 100 mg/kg dose observed was more 

than 3 times higher. Therefore, the concentration-time profiles of 100 mg/kg were 

analyzed separately (as shown in Figure 12), and PK parameters were shown in 
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Table 3. The r2 were 0.971 and 0.867 for serum and ELF concentration-time 

profiles (as shown in Figure 13). The elimination half-life was prolonged (3.9 h), 

suggesting saturable clearance for the 100 mg/kg dose. The AUC0-24h were 227 

mg*h/L and 564 mg*h/L for serum and ELF, respectively. The pulmonary 

penetration ratio was 2.5.  
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Table 3: Best-fit PK parameters 

 

PK parameters 
Group 1  

(25, 50 mg/kg and 
 humanized regimen) 

Group 2  
(100 mg/kg) 

Ke (1/h) 0.27 0.18 

Vc (L/kg) 2.7 2.4 

Ka (1/h) 2.3 4.6 

Pulmonary penetration ratio 2.8 2.5 

t1/2 (h) 2.6 3.9 

CL (L/h/kg) 0.7 0.4 
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Figure 12: Minocycline serum and ELF concentration-time profiles 
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     Note: The observed data were shown as mean ± SD. 
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Figure 13: Correlation between observed and best-fit PK data 

 

A. 25 mg/kg, 50 mg/kg and humanized regimen 

 

 

 

 

 

 

B. 100 mg/kg 
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CHAPTER 5: MAXIMIZE MINOCYCLINE IN VIVO EFFICACY 

To maximize minocycline in vivo efficacy, we need to explore the drug exposure-

response relationship. Due to the complexity of serum protein binding, ELF 

exposure was used instead of systemic free drug exposure in the PK/PD 

modeling. Then the PK/PD magnitudes for different PD targets could be 

determined by the model. 

5.1 Materials and methods 

5.1.1 Materials 

The Ultra Clean microbial DNA isolation kit was from Mo Bio laboratories, Inc. 

(Carlsbad, CA); DNA Acinetobacter strain typing kit was a product of Diversilab 

(Marcy I’Etoile, France), and Taq DNA polymerase was purchased from Bioline 

USA Inc (Randolph, MA).  The urea assay kit was from BioAssay Systems 

(Hayward, CA).  

5.1.2 Bacterial isolates 

5.1.2.1 In vitro susceptibility 

Five A. baumannii isolates (1 laboratory wild-type isolate and 4 clinical isolates) 

with a wide range of minocycline MICs were used. Susceptibilities to minocycline, 

doxycycline, amikacin and imipenem were determined by the broth dilution 

method as recommended by CLSI (as described in section 3.1.2.1). 
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Pseudomonas aeruginosa strain ATCC 27853 (American Type Culture 

Collection, Manassas, VA) was used as a control strain. In addition, the MICs of 

minocycline for 4 isolates were determined in the in the presence of phenylanine-

arginine β-naphthylamide (PAβN) (100 mg/L), an efflux pump inhibitor (53). In 

order to exclude the inhibitory effect of PAβN, the bacterial burden of each 

positive control was determined by QC as described in section 3.1.1. 

5.1.2.2 Clonal relatedness 

The clonal relatedness of the A. baumannii isolates was assessed by repetitive-

element–based polymerase chain reaction (rep-PCR) (54, 55). Briefly, genomic 

DNA was isolated using Ultra Clean microbial DNA isolation kit, and used as the 

template for the Acinetobacter strain typing kit. The PCR reaction was performed 

on 2720 Thermal Cycler (Applied Biosystems, CA). The AmpliTaq DNA 

Polymerase was used, and the total reaction volume was 25 µL. Parameters of 

Thermal Cycler was listed in Table 4. The DNA fragments of rep-PCR products 

were separated by the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA), and compared by the DiversiLab software using the Pearson 

correlation coefficient (Bacterial Barcodes, Inc., Athens, GA). 
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Table 4: Parameters of AB 2720 Thermal Cycler 

 

Steps Temperature (°C) Time (seconds) 

Initial Denaturation 94 120 

Denaturation 94 30 

Annealing 50 30 

Extension 70 90 

Final Extension 70 180 

Hold 4 - 

Cycles 35 
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5.1.2.3 Resistance mechanisms 

Colony quantitative PCR (qPCR) was carried out to determine the presence of 

the tetA, tetB, tetM, and tet39 genes in A. baumannii strains. Colonies of 

overnight-streaked strains on LB agar plates were chosen, resuspended, heated, 

and used as PCR templates. The qPCR was run using Sybr green Select master 

mix (ABI) in an ABI 7000 sequence detection system. The threshold cycle (CT) 

values were normalized with the housekeeping gene recA of the same strain. 

The difference (ΔCT) was used as a logarithmic power (base = 2) to calculate the 

relative signal of the gene. The transcription levels of the known efflux genes, 

adeB, adeJ, and adeG, were determined by reverse transcription (RT)-qPCR. 

Cells were grown in cation-adjusted Mueller-Hinton broth (Ca-MHB) and 

centrifuged, and total RNA was isolated (Ambion RiboPure Bacteria RNA 

isolation kit [ABI]). The RT reaction was performed using the TaqMan reverse 

transcriptase reagent kit (ABI) with a mixture of primers. The results (CTs) were 

normalized with the housekeeping gene rpoB. 

5.1.3 Minocycline in vivo PD study 

The mice were inoculated with approximately 107 CFU of A. baumannii isolate by 

the methods described in section 3.2. Infected animals were treated with different 

dosing regimens of minocycline about 2 h after infection. For reference, there 

was a no treatment control group for each bacterial isolate. There were 80 

animals given 23 dosing regimen - bacterium combinations in total (n≥3 for each 



53 

 

regimen). For reference, there was a placebo (i.e., no treatment) control group 

for each bacterial isolate. The bacterial burdens in lung tissues were determined 

at 0h (baseline) and 24h after first dose of minocycline as described elsewhere 

(35, 56). Briefly, after the animals were sacrificed by CO2 asphyxiation, the lung 

tissues were harvested and homogenized in sterile saline. Pulmonary bacterial 

burdens were determined by quantitative culture (as shown in section 3.1.1), and 

normalized by the weights of lung tissues.  

5.1.4 Data analysis 

The relationships between minocycline PK/PD indices (unbound drug exposures 

in ELF) and bacterial burden in lung tissues at 24 h were described by an 

inhibitory sigmoid Emax model (as shown in Figure 14) (40). The coefficient of 

determination was used to discriminate the PK/PD index most closely correlated 

to bactericidal activity. In addition, the best-fit parameters were also used to 

derive the required PK/PD magnitudes for maintaining stasis or achieving 1 log 

reduction of bacterial tissue burden at 24h. 
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Figure 14: Inhibitory sigmoid Emax model 

 

 

Inhibitory sigmoid Emax model: E= E0 – Emax × XH / (IX50
H + XH) 

E: PD response at 24h 

E0: the top of the curve 

Emax: the maximum effect 

X: the value of PK/PD index (ELF) 

IX50: the required value of X to achieve 50% of the Emax 

H: the Hill slope of the curve 



55 

 

5.2 Results 

5.2.1 Susceptibility and clonality assessment 

The tetracycline resistance mechanisms and susceptibilities of the A. baumannii 

isolates to various antibiotics were shown in Table 5. No effects were attributed 

to the PAβN concentration used (data not shown). In the presence of PAβN, the 

MIC of AB7416 was not as low as those of the other strains. It is unclear if this is 

due to the presence of tetB or another, alternative mechanisms(s). Cross-

resistance was observed between minocycline and doxycycline. The isolates 

were found to belong to 3 clonally diverse groups (as shown in Figure 15 below). 
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Table 5: Susceptibilities of A. baumannii isolates 

 

Note: Bold fonts depict resistant phenotype as defined by the Clinical and 

Laboratory Standards Institute (CLSI) 

 

 

 

 

 

 

Isolate Source 
Tetracyline 
resistance 

mechanism(s) 

MIC (mg/L)  

Minocycline 
/Minocycline+PAβN 

Doxycycline Imipenem Amikacin 

AB BAA 
747 

Laboratory Wild-type 0.25/0.125 0.25 0.25 2 

AB 7283 Clinical 
Moderate 

overexpression 
of adeB 

0.5/0.125 0.5 128 128 

AB 1261 Clinical 
Moderate 

overexpression 
of adeB 

1/0.125 0.5 128 128 

AB 1129 Clinical 
adeABC and 

adeIJK 
overexpressed 

4/- 4 8 32 

AB 7416 Clinical 
tetB, moderate 
overexpression 

of adeB 

16/2 128 16 > 512 
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Figure 15: Dendrogram of A. baumannii clonality. 
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5.2.2 Minocycline in vivo PD study 

The baseline bacterial burdens in lung tissues ranged from 7.75 to 8.18 log 

CFU/g. In the absence of treatment, the tissue burdens increased to 8.60 to 9.65 

log CFU/g in 24h. All treatment groups infected with the minocycline-resistant 

isolate (AB7416) showed similar results as the no treatment control group, while 

the other susceptible / intermediate isolates were suppressed to various extents. 

Different dosing regimens with the daily dose of 50 mg/kg (i.e., 50 mg/kg single 

dose, 25 mg/kg every 12 h and humanized regimen) were given to mice infected 

with AB 7283, AB 1261 and AB 7416. For each isolate, there were no significant 

differences in bacterial burden at 24 h among these 3 dosing regimens. 

Therefore, ELF AUC/MIC should be the most appropriate PK/PD index for 

minocycline. 

5.2.3 PK/PD correlation 

According to the best-fit PK parameters, the PK/PD indices for ELF profiles of 

different dosing regimens against various A. baumannii isolates were calculated, 

and listed in Table 6. The relationships between minocycline PK/PD indices in 

ELF and bacterial tissue burden at 24h were shown in Figure 16. The strongest 

relationship was observed when the tissue burdens were correlated with AUCELF 

0-24h/MIC (r2 = 0.81). Using the best-fit parameters, the required AUCELF 0-24h/MIC 

for maintaining stasis was 140, and the required AUCELF 0-24h/MIC for achieving 1 

log reduction was 410. 
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Table 6: PK/PD indices for ELF profiles of different dosing regimens 
against various A. baumannii isolates 

AUC/MIC 

 
AB BAA 747 AB 7283 AB 1261 AB 1129 AB 7416 

Placebo 0 0 0 0 0 

25mg/kg 377 189 94 24 6 

25mg/kg x 2 743 371 186 46 12 

50mg/kg 755 377 189 47 12 

Humanized 701 351 175 44 11 

50mg/kg x 2 1478 739 369 92 23 

100mg/kg 2258 1129 564 141 35 

 

%T>MIC 

 
AB BAA 747 AB 7283 AB 1261 AB 1129 AB 7416 

Placebo 0 0 0 0 0 

25mg/kg 74 63 52 30 7 

25mg/kg x 2 100 100 100 61 14 

50mg/kg 85 74 63 41 19 

Humanized 100 100 100 80 0 

50mg/kg x 2 100 100 100 83 39 

100mg/kg 100 100 100 81 46 

 

Cmax/MIC 

 
AB BAA 747 AB 7283 AB 1261 AB 1129 AB 7416 

Placebo 0 0 0 0 0 

25mg/kg 76.1 38.1 19.0 4.8 1.2 

25mg/kg x 2 79.5 39.8 19.9 5.0 1.2 

50mg/kg 152.2 76.1 38.1 9.5 2.4 

Humanized 55.4 27.7 13.8 3.5 0.9 

50mg/kg x 2 159.1 79.5 39.8 9.9 2.5 

100mg/kg 333.6 166.8 83.4 20.8 5.2 
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Figure 16: Correlation of PK/PD indices in ELF and tissue burden at 24h 
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Each data point represents an observation from a single animal. In view of the 

logarithmic scale used, AUC/MIC values were input as 1 and Cmax/MIC values 

were input as 0.1 for placebo controls. 
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CHAPTER 6: RESISTANCE DEVELOPMENT 

To explore mechanisms of minocycline resistance development during therapy, 

resistant mutants of laboratory wild type strain AB BAA 747 were isolated from 

mouse lung tissue samples. In future, whole genome sequencing (WGS) will be 

used to identify mutant genes. In this chapter, the mutants were characterized to 

ensure clonal relatedness and stable susceptibility. Additional studies, such as 

cross resistance and growth rate, could provide more information for future 

studies about the resistance development mechanism. 

6.1 Materials and methods 

6.1.1 Resistant mutant preparation 

The same neutropenic murine pneumonia model as described in section 3.2, was 

used for resistant mutant preparation. The mice were infected with approximately 

107 CFU of AB BAA 747 (laboratory wild type isolate). A repeated dose of 

minocycline (25mg/kg) was administered everyday by intraperitoneal injection. 

The bacterial burdens in lung tissues were determined at 0h (baseline), 24h and 

48h after the first dose of minocycline. Resistant mutants were isolated by plating 

lung tissue sample on Mueller-Hinton agar plates, which contain 2 times MIC of 

minocycline (0.5 mg/L). The plates were incubated at 37°C, and mutants of 48h 

samples were collected.  
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6.1.2 Mutational frequency 

Mutational frequencies were calculated as the number of resistant mutants 

divided by the total bacterial burden. The in vitro baseline mutational frequency of 

AB BAA 747 was determined by inoculating approximately 109 CFU of bacteria 

on the minocycline-supplemented agar plates (2× MIC). Plates were incubated 

at 37°C, and the number of resistant mutants was determined after 48h. Mutants 

were collected for later susceptibility test. The inoculum was confirmed by 

quantitative culture as described in section 3.1.1. The sample was prepared in 

triplicate, and the experiment was repeated three times on different days. Finally, 

the average of mutational frequency values was reported. Similarly, the 

mutational frequencies of AB BAA 747 in mouse lung tissue samples were also 

determined. 

6.1.3 Characterization of the mutants 

6.1.3.1 Susceptibility and stability of mutants 

The MICs of minocycline for AB BAA 747 resistant mutants were determined by 

ETEST as described in section 3.1.2.2. The parent isolate AB BAA 747 was used 

as a control. To verify the stability of the mutation, mutants were sub-cultured in 

drug-free Ca-MHB 5 times. The MICs of minocycline were determined again. In 

addition, the MICs of levofloxacin for all the mutants were also determined by 

ETEST. 
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6.1.3.2 Time growth 

Time growth studies of AB BAA 747 and the mutants were performed in 216Dx 

UTI System (BacterioScan, MO). Briefly, each isolate was inoculated into Ca-

MHB, and incubated at 37 °C water bath, until achieving the log phase. Bacteria 

were diluted to approximately 5 × 105 CFU/mL, and 2 mL of each was transferred 

into the cuvette. The run time of the time growth study was 90 minutes, and the 

sampling interval was 5 minutes. Reads of bacterial burden were calibrated for 

AB BAA 747. A first order kinetics equation was used to fit the collected data in 

ADAPT 5. The differential equation was as shown below. The confidence 

intervals of kg were used to compare AB BAA 747 and the mutants. 

                                dN(t)/dt = N(t)*kg 

N(t): Size of bacterial population at time t; 

                                kg: growth rate constant. 

 

6.1.3.3 Repetitive Sequence-based polymerase chain reaction 

The clonal relatedness of the parent isolates and mutants was assessed by 

repetitive-element–based polymerase chain reaction (rep-PCR) as described in 

section 5.1.2.2. The procedure was modified due to the availability of reagents. 

Briefly, the PCR reaction was performed on ProFlex PCR system (Life 
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Technologies, Inc.). Primer was from the DiversiLab strain typing kit for 

Acinetobacter (BioMerieux, France). The GoTaq DNA Polymerase was used, 

and the total reaction volume was 25 µL. Parameters of PCR system were the 

same as that in Table 4. The DNA fragments of rep-PCR products were 

separated by the Agilent 4200 TapeStation system (Agilent Technologies, Santa 

Clara, CA). The high sensitivity D5000 tape was used, and AB 7416 was used as 

negative control. 

6.1.3.4 Pulsed-field gel electrophoresis 

Pulsed-field gel electrophoresis (PFGE) was used to further confirm the clonal 

relatedness of all the A. baumannii isolates. A previously published PFGE 

method for A. baumannii was modified in our study (57). Briefly, 3 mL of the 

overnight culture was centrifuged (3200×g, 4°C) for 15 minutes. The supernatant 

was discarded, and the pellet was re-suspended by 1mL cell suspension buffer 

(CSB: 100mM Tris-HCL, 10mM EDTA). The same volume of 1.6% low melting 

point agarose was mixed with the bacterial cell suspension, and the mixture was 

poured into mold to make insert plug. The plugs were incubated in 0.5mL cell 

lysis solution 1(CLS-1: 50mM Tris-HCL, 50mM EDTA, 2.5mg/mL lysozyme, 

150mg/L proteinase K) at 37°C for 5h, and then moved into 0.5mL CLS-2 

(0.5mM EDTA, 1% sarcosyl, 50mg/L proteinase K) at 55°C overnight. Plugs were 

washed with 5mL sterile ultra-pure water at 55°C for 15 minutes (3 times), and 
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then washed similarly by Tris-EDTA (TE). The plugs could be stored in TE buffer 

at 4°C for up to 2 years. 

ApaI endo-nuclease enzyme (New England Biolabs, MA) was used for restrictive 

digestion of genomic DNA (30U/sample). Plugs were incubated at 25°C 

overnight, washed with pure water, and then incubated in TE at 37°C for 1h. The 

PFGE gel consisted of 1.6% I.D.NA agarose (Lonza, Switzerland). DNA 

fragments were separated by a CHEF-DR III system (Bio-Rad Laboratories, 

Belgium) at 14°C, with 6 V/cm2 for 24h. The initial and final switch times were 2s 

and 28s, respectively. The gel was stained with 5µg/mL ethidium bromide for 

20min, and then de-stained in pure water for 30min. The results were visualized 

under UV lights. 

6.2 Results 

6.2.1 Mutational frequency 

The in vitro baseline mutational frequency of AB BAA 747 was 2.3×10-7. Ten 

mutants were randomly collected, and all of them showed elevated MIC of 

minocycline (≥3 times). After being passed 5 times in drug-free Ca-MHB, nine of 

them still showed stable susceptibility to minocycline (data is not shown here).  

For animal studies, increased average mutational frequency was observed, when 

mice were administered 25mg/kg/day minocycline. The mutational frequency 
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over time was shown in Figure 17. Nine resistant mutants were collected from 3 

mice at 48h.  
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Figure 17: Mutational frequency of AB BAA 747 collected from lung tissue 
samples 
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6.2.2 Characterization of mutants 

6.2.2.1 MIC and stability of mutation 

The MICs of minocycline for AB BAA 747 and its mutants were shown in Table 7. 

Compared to the parent isolates, seven out of nine isolates were observed 

elevated MIC (≥3 times). After being sub-cultured in drug free Ca-MHB for 5 

times, all the mutants showed stable elevated MIC. The susceptibilities of 

mutants to levofloxacin were also shown in the table, and two of the mutants 

showed cross-resistance between minocycline and levofloxacin. 
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Table 7: Susceptibility and stability of the mutants  

 

Strain 
Minocycline MIC 

(mg/L) 
Minocycline MIC 

after 5 days (mg/L) 
Levofloxacin MIC 

(mg/L) 

AB BAA 747 0.25 0.5 0.25 

Mutant 1 1.5 2 0.19 

Mutant 2 1.5 2 0.19 

Mutant 3 1.5 1.5 0.19 

Mutant 4 1.5 1.5 0.75 

Mutant 5 1.5 2 0.19 

Mutant 6 1.5 1.5 0.19 

Mutant 7 0.25 0.38 - 

Mutant 8 2 2 0.75 

Mutant 9 0.25 0.38 - 
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6.2.2.2 Time growth 

Seven mutants with elevated MICs were included in time growth study. Three out 

of seven isolates grew significantly slower than the parent isolate. The results 

were shown in Figure 18, and the growth rate constants were shown in Table 8.  
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Figure 18: Time growth results of AB BAA 747 and the mutants 
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Table 8: Growth rate constants of AB BAA 747 and the mutants 

 

 
kg (1/h) 

95% confidence interval of kg 

r2 

Low High 

AB BAA 747 1.854 1.743 1.965 0.993 

Mutant 1 1.86 1.746 1.974 0.993 

Mutant 2 2.029 1.937 2.121 0.996 

Mutant 3 1.636 1.493 1.779 0.985 

Mutant 4 1.842 1.683 2.001 0.985 

Mutant 5 1.576 1.47 1.682 0.991 

Mutant 6 1.618 1.503 1.733 0.990 

Mutant 8 1.214 1.112 1.315 0.983 
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6.2.2.3 Repetitive Sequence-based polymerase chain reaction 

Mutant 8 was excluded from this step due to the impurity of the isolate. The 

results of rep-PCR products in TapeStation were shown in Figure 19. All the 

mutants showed a pattern similar to that of AB BAA 747, and AB7416 showed 

different patterns. 
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Figure 19: Results of rep-PCR products in TapeStation 
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6.2.2.4 Pulsed-field gel electrophoresis 

The Photo of PFGE gel was shown in Figure 20. The tested isolates showed 

similar patterns of bands. Compared to AB BAA 747, only 1 additional band was 

observed for mutant 3 and 5.  
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Figure 20: Results of pulsed-field gel electrophoresis 
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CHAPTER 7: CONCLUSIONS  

7.1 Serum protein binding 

Tigecycline and eravacycline were previously reported to have atypical non-linear 

serum protein binding; the free fraction decreased with increasing total 

concentration. In this study, we extended the investigations to other tetracyclines 

and examined if this could be a generalized class effect. 

Although serum protein binding is known to play an important role in PK and PD 

of drugs, no standard method has been established yet. There are various 

methods available for determining serum protein binding, such as equilibrium 

dialysis, ultrafiltration, microdialysis, ultracentrifugation, fluorescence 

spectroscopy as well as chromatography and capillary electrophoresis (58). In 

addition, in vitro time-kill study could provide functional validation of the serum 

protein binding, although it is not as accurate as the analytical chemistry 

approaches (49). Usually, equilibrium dialysis is considered as the “reference 

method”， because it is more precise than other approaches (59, 60). However, 

it is time-consuming and labor-intensive. In contrast, microdialysis shares similar 

mechanism with equilibrium dialysis, but requires less time. The system has 

been well established, and been described in many papers (26, 61-63).  

In the current study, within a clinically achievable concentration range, 

minocycline and doxycycline were found to have the same trend of protein 
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binding as tigecycline. The atypical non-linear protein binding appears consistent 

across several tetracyclines. Serum protein binding of minocycline is usually 

accepted as 76% (determined by ultrafiltration) (23), and is similar to our results 

using PBS with a low minocycline concentration. If the atypical non-linear protein 

binding is confirmed, the use of tetracyclines for the treatment of bacteremia 

should be re-evaluated. This is especially relevant for pathogens with low to 

intermediate-level resistance, as higher doses may not yield better therapeutic 

outcomes. The exact mechanisms of the atypical non-linear protein binding is not 

clear, Singh RS et al. suggested that it could be caused by chelating effect of 

tetracyclines to divalent metal ions (29). The addition of 

ethylenediaminetetraacetic acid (EDTA) resulted higher unbound fraction, and 

the atypical profile disappeared. Moreover, our results also suggested that 

different perfusion media used might also have an impact on the microdialysis 

results. Therefore, specific conditions of the microdialysis experiments require 

further optimization / standardization. Correlating the results from in vitro systems 

to in vivo microdialysis should also be considered (64). 

In addition, time-kill studies with different minocycline concentrations in mouse 

serum or 0.5X Ca-MHB were used as functional validation of minocycline serum 

protein binding. Although, calculated protein binding values were higher than that 

derived by microdialysis, the observed trend of nonlinear serum protein binding 

was same as that in microdialysis studies. When minocycline concentration in 
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0.5X Ca-MHB increased from 0.05 to 0.1 mg/L, the comparable minocycline 

concentration in serum increased from 2 to 50 mg/L. 

In summary, serum protein binding of minocycline is atypically concentration-

dependent. In addition, the microdialysis results could vary considerably when 

different perfusion media are used. To understand the mechanism(s) and clinical 

implications of serum protein binding to minocycline, additional studies are 

warranted.  

7.2 Pharmacokinetics of minocycline 

Because of high lipophilicity, about 95%-100% of orally administered minocycline 

could be absorbed, and it has the highest penetration into organs among all the 

tetracyclines (65). In the current study, minocycline exposure in ELF was higher 

than systemic total drug exposure (2.5-2.8×). In the treatment of pneumonia, this 

property will lead to drug accumulation in the site of infection. Although the 

distribution of minocycline in humans ELF has not been reported, the ratio of 

minocycline concentrations between bronchial secretions and blood was studied 

before. However, the results were not consistent from one study to another, and 

the values ranged from 0.3 to 2.2 (23, 65-67). To optimize dosing regimen of 

minocycline in humans, a better understanding of the bio-distribution is required. 

Therefore, more data of minocycline bio-distribution in humans is desired. 
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The PK parameters of minocycline in animals and humans have been studied 

previously. In horses, the elimination half-life was 7.7 ± 1.9 h (mean ± SD) after a 

2.2 mg/kg single IV injection (68). A prolonged half-life (11.5 ± 3.2 h, mean ± SD) 

at steady state was observed when the dose was increased to 4 mg/kg q12h 

(69). The observation of non-linear pharmacokinetics reported with high doses 

was consistent with our findings from the current study (100 mg/kg in mice), and 

might be due to saturation of drug metabolism (70). Minocycline has variety of 

metabolites in humans. Two mono-N-demethylated derivatives and 9-

hydroxyminocycline were reported to be the major metabolites (70). With 

API5500 Qtrap triple quadrupole mass spectrometer, the same metabolites have 

been identified in mouse serum PK sample too (data not shown in here). The 

elimination half-life in humans ranged from 12 h to 18 h, and the AUC0-∞ of serum 

concentration-time profile were 70-86 mg*h/L after 200 mg was given 

intravenously (18). Only 8-20% of the dose was recovered from human urine (65, 

71). Therefore, little increase of elimination half-life was observed in renal 

impaired patients (72, 73). Up to 800 mg of minocycline daily has been given 

intravenously in a clinical trial for acute spinal cord injury (21), however there is 

little known to date about the dose linearity of minocycline in humans.  A 

prospective study examining the safety, tolerability, and pharmacokinetics of 

minocycline (single and multiple ascending doses) in heathy adults has been 

planned (ClinicalTrials.gov identifier: NCT02802631). In clinically achievable 
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dose, if the non-linear clearance of minocycline was also observed in humans, 

better therapeutic outcomes are expected due to the extra drug exposure. 

In conclusion, the pharmacokinetics of minocycline in mice serum and ELF were 

characterized. These findings could facilitate subsequent PK/PD study of 

minocycline for infections caused by A. baumannii. 

7.3 Exposure-response relationship of minocycline 

The shortage of new effective antibiotics against MDR A. baumannii prompted us 

to maximize the effectiveness of the currently available drugs, such as 

minocycline. With a good understanding of the drug exposures and bacterial 

susceptibilities likely to be encountered, a PK/PD model could facilitate the 

optimal use of minocycline. In vitro susceptibility results of minocycline are 

promising. Denys et al. reported the susceptibility data of Gram-negative bacteria 

from the U.S. between 2005 and 2011. In that study (n=883), the susceptibility 

rate of MDR Acinetobacter isolates to minocycline was 72.1 %, whereas most of 

other drugs examined were found to be resistant (10). Therefore, we want 

maximize minocycline in vivo efficacy by exploring the exposure-response 

relationship. 

Free drug exposures in serum are commonly used in PK/PD studies. In the 

current study, we found that minocycline concentrations in ELF were higher than 

those observed in the serum. Subsequently, the PK/PD analysis was performed 
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with unbound minocycline concentrations in ELF (i.e., the site of infection), as 

they were deemed to be more relevant to therapeutic outcomes of pneumonia. 

Furthermore, serum protein binding of the tetracyclines may not be as straight 

forward as one might anticipate. Tigecycline was previously shown to exhibit 

atypical serum protein binding; the fraction of binding was higher with increasing 

total drug concentration in serum (26). The serum protein binding of minocycline 

was found to be dependent on the experimental conditions. Microdialysis data 

suggested that protein bindings of minocycline in human and mouse sera were 

comparable at different concentrations (results shown in Figure 8).  Since the 

ELF exposure of minocycline achieved in humans after a clinical dose is not 

available, the total drug concentration-time profiles in the serum was mimicked 

and we assumed pulmonary penetration ratios of minocycline in humans and 

mice were similar.  

The first step of PK/PD modeling was to determine the most appropriate PK/PD 

index for minocycline. As we discussed in section 2.3, there are three commonly 

used PK/PD indices: Cmax/MIC, %T>MIC and AUC/MIC. Dose fractionation study 

could help determining the best PK/PD index for antibiotics. Briefly, the same 

daily dose could be designed into different regimens. The most appropriate 

PK/PD index is determined by comparing the PD response: 1) If the PD response 

of different regimens are similar, we should choose AUC/MIC; 2) If the PD 

response of the single dosing regimen is the best, Cmax/MIC is the best PK/PD 
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index; 3) If the PD response of the most frequent regimen is the best, the PD/PD 

index should be %T>MIC. In the current study, we used 3 different bacterial 

isolates, and the regimens with the same daily dose (50 mg/kg single dose, 25 

mg/kg every 12 h and humanized regimen) showed similar in vivo efficacy (data 

not shown here). Since these dosing regimens have similar AUC0-24h but different 

Cmax and %T>MIC, AUCELF 0-24h/MIC was expected be the PK/PD index best 

correlating to the bacterial burden. The subsequent study was tested with 5 A. 

baumannii isolates. Using a wide range of minocycline exposure and bacterial 

susceptibility (23 dosing regimen – bacterium combinations in total), our initial 

finding was substantiated by the results of the full PK/PD analysis (as shown in 

Figure 16). 

The PK/PD model described the relationship between minocycline exposure and 

bactericidal activity quantitatively. Maximum efficacy observed was 

approximately 1.5 log reduction of bacterial burdens from baseline. The required 

AUCELF 0-24h/MIC values for maintaining stasis or achieving 1 log reduction of 

bacterial tissue burdens were also estimated. AUCELF 0-24h of humanized regimen 

(a clinical dose of 200 mg is given intravenously to humans) was 175 mg*h/L. 

With a MIC of 0.25 mg/L, the corresponding AUCELF 0-24h/MIC (700) is expected 

to achieve more than 1-log kill. However, the therapeutic outcomes will vary 

when the MICs are different. Using these estimates, minocycline dosing 

regimens could be optimized when the susceptibility of an A. baumannii isolate is 
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known. Furthermore, it is also important to avoid selective amplification of the 

resistant subpopulation(s) during treatment. In the future, additional studies are 

warranted to evaluate resistance development during therapy, and correlating 

minocycline exposures to therapeutic outcomes of patients with infections 

caused by A. baumannii. 

In conclusion, we have identified threshold target exposures for achieving 

different PD responses in A. baumannii infections, and the information could be 

used to optimize minocycline dosing regimens. 

7.4 In vivo resistance development 

Increased mutational frequencies were observed for AB BAA 747 at 24h and 48h 

after the first dose, when mice were administered 25mg/kg/day. Six of the 

mutants isolated from mouse lung tissue samples had elevated MICs of 

minocycline. Cross resistance was observed for two of the mutants (mutant 4 

and 8) between minocycline and levofloxacin, which suggests the existence of 

multi-drug efflux pumps over expression. To further confirm this hypothesis, 

quantitative PCR could be used to compare expression of adeABC and adeIJK 

(15, 16).  

The clonal relatedness of the parent isolate and the mutants were determined by 

rep-PCR and PFGE. Both the results suggested that the selected mutants 

belonged to the same clonal family of AB BAA 747. The rep-PCR products of AB 
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isolates were previously separated by Agilent 2100 Bioanalyzer system, as 

described in 5.1.2.2. Due to the availability of reagents for Bioanalyzer, the 

Agilent 4200 TapeStation system was used. In rep-PCR study, the observed 

band patterns were the same for all the isolates. In PFGE study, only two 

mutants (mutant 3 and 5) were found to have one additional band, and the rest of 

the mutants had the same band pattern as AB BAA 747. According to the 

previously published criteria, AB BAA 747 and the mutants could be considered 

as “closely related” (74). There are several reasons that could cause changes in 

PFGE pattern:  1) The additional DNA fragments might be contributed by plasmid 

(75); 2) Genomic DNA may gain extra restriction sites, therefore some of the 

larger DNA fragments were broken into smaller fragments (76); 3) Similarly, loss 

of curtain genes that contain restriction sites could also change the PFGE 

patterns (77). Compared to AB BAA 747, only mutant 5 showed significantly 

slower growth rate. Mutant 3 also had decreased growth rate, but the difference 

was not significant. Both of them did not show cross resistance to levofloxacin, 

which suggested that the mutation did not involve over expression of multi-drug 

efflux pumps. 

Better understanding of the functions that controlled by the mutant genes could 

help us optimize the regimen of minocycline, and then suppress resistance 

development in A. baumannii. In future, these isolates will be analyzed by whole 

genome sequencing to identify the mutant genes. Among all the isolates, mutant 
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5 should be the first choice, because it had the most different phenotypes from 

the parent isolate. We expect mutant 5 will give us more information about the 

mechanisms of resistance development.   
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CHAPTER 8: FUTURE DIRECTIONS 

The minocycline serum protein binding was determined in the current study. 

Because of its complexity, we only confirmed the atypical non-linear serum 

protein binding of minocycline. It was found that different perfusion media applied 

in the microdialysis system could affect the results, and none of the results 

matched that of time-kill studies. To confirm the serum protein binding of 

minocycline, further studies are needed. Microdialysis could be used in vivo as 

well as the in vitro system (64). The previously described rat portal vein and 

jugular vein intubation model might be used for our future studies (78, 79). The 

simultaneous dialysate samples could be taken with the blood samples, and 

quantified by LC-MS/MS. This approach could eliminate the differences between 

in vitro and in vivo systems, and provide more accurate results.  

The exposure-response relationship of minocycline for A. baumannii has been 

demonstrated in our studies, and the resistant mutants of AB BAA 747 have 

been isolated from mouse lung tissue sample. The stability of susceptibility and 

clonal relatedness for the six mutants have been confirmed. In future, these 

mutants could be used for studying the mechanisms of minocycline resistance 

development. The whole genome sequencing (WGS) technology will be applied 

to identify the mutant genes. Briefly, genomic DNA of selected resistant mutants 

and AB BAA 747 will be extracted. Genomic DNA of all strains will be fragmented 

and sequenced as paired-end reads on the HiSeq sequencing system (Illumina, 
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San Diego, CA, USA). Contigs will be determined by analyzing the raw genome 

sequence, and the reads will be aligned to the reference genome using Seqman 

by DNAStar. The SNPs (single nucleotide polymorphisms) and gene deletions 

will be identified by comparing the sequences. 

As discussed in section 1.1, the elevated MIC of minocycline for A. baumannii 

might be caused by up-regulation of efflux pumps (tetA, tetB, adeABC and 

adeIJK, etc.) or ribosomal protection (tetM). The collected isolates may contain 

the mutant genes above, or other unknown mechanisms. The WGS results will 

reveal the genomic alternations of the mutants. If the functions of mutant gene(s) 

have been reported previously, it could be identified using BLAST (basic local 

alignment search tool) algorithm. Therefore, the gene(s) could be linked to 

reported resistance mechanism(s), and the gene(s) could be further confirmed by 

quantitative PCR. If the function of the identified gene(s) is unknown, editing the 

target gene (e.g. knocking in or out the gene) in mutants could help us 

understand the mechanisms. It is also possible that the development of 

resistance cannot be identified by mutational changes in DNA, but rather in the 

transcriptional changes of the derivatives (80). Comparative transcriptome 

analysis (by RNA sequencing) may be necessary.  

The information obtained could guide modification of treatment strategy (dose 

adjustment or combination therapy). Although the typical regimen of minocycline 

in adults is 200 mg/day, up to 800 mg/day has been given intravenously in a 
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clinical trial for acute spinal cord injury (21). Therefore, a higher dose of 

minocycline might be used to improve therapeutic outcomes. Current treatment 

strategies for MDR A. baumannii include a combination of tigecycline, 

minocycline, carbapenems, polymyxins, and daptomycin (81-84). However, the 

rationales of selecting certain antibiotics for combination therapy were not well 

established. According to our previous study, compared to monotherapy, 

combination of minocycline and polymyxin B could improve therapeutic outcomes 

of pneumonia caused by A. baumannii (35). In that study, we hypothesized that 

polymyxin B could disrupt the cell membrane and the proper functioning of the 

efflux pumps, thereby enhancing the activity of minocycline. Increased 

intracellular minocycline concentrations were also observed when A. baumannii 

was exposed to polymyxin B. This study is an example of designing combination 

therapy based on the resistance mechanism. In future, with more information 

provided by WGS, we may discover more relevant mechanisms, and more 

treatment strategies could be considered for improving therapeutic outcomes of 

infections caused by A. baumannii. 

The antibiotics from the same family share similar chemical, structural and 

antimicrobial mechanisms. Cross-resistance is usually observed for antibiotics 

from the same family. Therefore, we expect that the knowledge of minocycline 

could also be extended to other tetracyclines, and we will have more choices 

when treating infections caused by A. baumannii. 
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CHAPTER 9: CONTRIBUTION TO SCIENCE 

In this project, we characterized the pharmacokinetics of minocycline in 

neutropenic murine pneumonia model, and then explored the in vivo exposure-

response relationship of minocycline for infections caused by A. baumannii. One 

resistant mutant was selected for future resistance development mechanisms 

study. 

The LC-MS/MS method developed for various antibiotics in our study was rapid, 

robust and sensitive. The run time for each sample was 5 minutes, including 

enough equilibration time between injections.  The standard curve showed very 

good linearity within the clinical relevant serum concentration range, and only 10 

µL of serum was needed for each sample. This method could be applied to 

clinical PK samples too, and it will considerably reduce the required amount of 

blood samples from patients. In addition, more antibiotics from various classes 

could be analyzed by the same method, and some of them have been validated 

(85). 

The atypical nonlinear plasma protein binding of tigecycline and eravacycline has 

been reported before. Our studies confirmed that minocycline and doxycycline 

had the same trend of protein binding, which suggested that it could be a class 

effect of tetracyclines. In that case, we need to be cautious when using 

tetracyclines for septicemia caused by intermediate susceptible bacteria, as 
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increased doses may not result higher systemic free drug exposure. Meanwhile, 

we found that different perfusion media in the microdialysis system could give us 

different results. This property may not be important to the drugs with low serum 

protein binding. However, it is critical to drugs like minocycline, because the free 

portion could be around 6 folds different when using different perfusion media 

(typical Cmax of minocycline in humans is 4 mg/L after 200mg IV bolus injection). 

It will remarkably increase the difficulty of projecting effective dosing regimens for 

humans. Therefore, standardized method is needed in future to make results 

from different protein binding studies comparable.  

Because of promising in vitro efficacy, minocycline became a choice for patients 

infected with MDR A. baumannii. However, the in vivo efficacy has not been well 

established. The PK/PD model developed in our studies delineated the in vivo 

exposure-response relationship of minocycline for infection caused by A. 

baumannii. Usually, systemic drug exposure is used in PK/PD modeling for 

antibiotics. However, we used a modified PK model to describe drug exposure in 

the site of infection instead, which was more relevant to the treatment of 

pneumonia. This approach also circumvented the complexity of minocycline 

serum protein binding. We expected that the findings could be translated 

clinically, and then be used to optimize dosing regimen of minocycline. In future, 

this PK/PD model could provide rationale of minocycline dosing regimen design 
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for MDR A. baumannii. Using antibiotics correctly will considerably improve the 

success rate of treatment, and then reduce mortality of infections. 

Although the minocycline resistance mechanisms in A. baumannii have been well 

studied, the information about how the resistance developed in vivo is 

unavailable. The resistant mutant of A. baumannii collected in our study could be 

a good tool for studying in vivo resistance development. It was derived from the 

wild type isolate (AB BAA 747), which exposed to minocycline in a neutropenic 

murine pneumonia model. The clonal relatedness between the mutants and AB 

BAA 747 has been confirmed. In future, the mutant gene(s) could be identified by 

whole genome sequencing. In addition to the currently known resistance 

mechanisms, this approach could also help discovering the potential unknown 

mechanism(s). Such information is expected to provide solutions for suppressing 

minocycline resistance development in A. baumannii.  
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