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ABSTRACT

The Mikusinski Operational Calculus is derived from a 

commutative ring of continuous functions a, b, ... in which 
the addition and multiplication (convolution) operations are

a + b = |a(t) + b(t)^

ab = j j^aCt-nbWdT^.

By the Theorem of Titchmarsh, this ring has no divisors 

of zero—if ab = 0, then a = 0 or b = 0, Thus the ring may 

be extended to a field of convolution quotients a/b, b / 0. 

Here a/b is of an equivalence class such that

(1) a  a1 if and only if ab* = ba*.
b ' b‘

The operations on this equivalence class are defined by

(2) a , £  ad + be.
b T d bd

(3) . c. ac,
b d bd 

where the right hand member is equivalent in the sense of (1) 

when a/b is replaced by another member of the class a’/b‘. 

Thus we have the one-to-many correspondence

a = ak/k for all k # 0.

Originally, there was no multiplicative element, but by 
the introduction of the Dirac Delta Operator 3(t) = {l^/{l}, 

the convolution of 5 with any function f gives

3f = \ 5(T)f(t-T)dT = f.
-,6



The convolution quotient a/b may represent either contin­

uous or discontinuous functions, but it is not necessarily 
either. The reciprocal of the unit function ( = {l\, a con­

tinuous function, is the differential operator s = which 

is not a function at all.

By considering polynomials in s as rational operators, a 

system of operators similar to the Laplace Transformations is 

obtained. Consideration of convergence is not necessary. By 

means of these operators, there is a convenient method not 
only to evaluate in terms of £f(tj^ the polynomials in s, but 

by the same methods, to solve ordinary differential equations 

with constant coefficients. These methods may be extended to 

the finding of general solutions, and to the solving of boun­

dary condition problems of two or more points.
Discontinuous functions (of class K) are those functions 

defined in the interval O£t<oD such that
i) ^Ht)| has at most a finite number of discontinuities in 

every finite interval, and
ii) the Riemannian integral \ If(t) dT has a finite value for

Jo I I 
all t^O.

Therefore if f is of class K, it may be represented as 

the quotient of two continuous functions (f = a/C) such that
c{f(t)} = {l}{f(t)] = {{fmdT} = a.

Thus operations on operators defined previously still 

hold although the solution of differential equations involving 



discontinuous functions or those with discontinuous derivatives 

require that other methods be developed.
A discussion of the jump function (Heaviside’s function) 

gives the last operator, h'x, for the expression of jump and 

translated functions. Lastly, a method is given for repre­

senting a function a with jumps at the points t = t^ as 

the sum of two functions, a continuous part b, and a jump 

part such that:

a = b + ^h^ .
v=i

We then find that
sa = a’ + a(0) + .

V. I
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CHAPTER 1

OPERATIONAL CALCULUS

General Definition. The Kikusinski Operational Calculus 
may be defined as a commutative ring of continuous (of class 

) functions, f(t), in the interval t^O, which satisfy the 

following definitions:
(1.1) a + b = ^a(t)^ + {b(t)J = [a(t) + b(t)J
(1.2) ab = ja(t)}jb(t)j = £ a(t-‘T)b(r)dr.

This calculus differentiates between a function, the 

value of a function at a point, and a constant function. A 

function f of a variable t, the entire function, will be de­
noted by |f (t)^ . The symbol f (t) will denote the value of 

the function f at the point t. The symbol {c] will imply a 

constant function which equals the value c for all values of 

t. Here the brackets become important since in ordinary 

arithmetic

(2)(3) = 6 

while in operational calculus
t2l{3} = £‘z)(3)dT = {6t}.

Commutative Ring. A commutative ring is defined by means 

of the following six postulates:
(1) a + b = b + a (commutativity of addition)

(ii) (a+b) + c = a + (b+c) (associativity of addition)

(ill) For any pair of elements a,b there is a third 
element x satisfying the equation a + x = b.
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(iv) ab = ba (commutativity of multiplication)

(v) (ab)c = a(be) (associativity of multiplication)

(vi) a(b+c) = ab + ac (distributivity of multiplica­
tion with respect to addition).

With the definitions (1,1) and (1.2), these postulates 

may be easily verified. Postulates (i) and (it) are obvious 

from (1.1). Postulate (iii) says that for every pair of 

elements, a,b there exists a unique element x which is the 

difference of a and b and is written b-a. This postulate is 

sometimes called the feasibility of subtraction.

Verification of Postulate (iv):

With the change of variables (T = t-V 
rr ,o
I a(t-T)b('t')dT = \a(r)b(t-r)(-dr)
Jo ■’t

= C a(o-)b(t-T)d<r 
Jo 

which is the same as the original convolution.
Verification of Postulate (v):

If
t pt

f(t) = I a(x)b(t-x)dx; g(t) = \ b(u)c(t-u)du 
Jo ‘o

then (v) states fc = ag and 
ft rtrM

fc(t) = j^f(y)c(t-y)dy = J J a(x)b(y-x)c(t-y)dxdy 

is the double Integral over the triangle 0<x*y«t, 
ag(t) = C a(t-v)g(v)dv = 1 ( a(t-v)b(u)c(v-u)dudv 

J o o Jo
is over the triangle 0<u$v^t.

With the substitution x = t-v, y-x = u, (y = t+u-v, 
t-y = v-u) whose Jacobian S(x,y)/5(u,v) = 1, the 
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first integral is converted into the second

Verification of Postulate (vi)

Given:

have for example:

P(lv)

P(vi)

trigonometry 

definition

cos2 sm

sin2

2 Pcos t + sin

for the operational calculus. With them we

,t- -i
= \ aCt-iObCr) + a(t-T)c('T) dv Jc L J

✓ t z-r
= \ a(t-T)b(/r)dr + a(t-'r)c(~)dr.

Thus we have verified the postulates of a commutative ring

a(t-T) b(T') + c(t') d'l* o L

The Operatort . For simplicity, let us denote the unit 

function by t . Then by definition (1.1) and iteration, 

it may be seen:

t2‘= MM = t(M= 

Lit1 I 1D I V 1

* 3 ") ( ")
i = V j b j= v d7j= r/21 j



C*= {i]{tz/2i^ = {4 S/rar}=

c5= iiHtVsij ={»£.t'r,dT] = {t4Ai}
etc. such that we obtain the general formila:

Ifr

Cauchy1s Formula for Integration. Using this notation, 
let us consider the product of with |f(t)j. We thus have 

Cauchy’s formula for reducing an n-tuple integral into a 

simple integral:
f4 Tl-I

(1A) I dt ... \f(t)dt = (t-T) f(nr)dr.
c_---- v--- :c Jo (n-1) I

Quotient Field. We may say a ring has no divisors of 
zero (where a-a = 0 for any a) if ab = ^0^ implies that either 
a = or b = (o^.

If a commutative ring has no divisors of zero, it may 

be extended to a quotient field, i.e., we have a set of frac­

tions (b/a), a # 0, with the following equivalence relation:

(1.5) (b/a) = (d/c) if and only if ad = be.

Let us also define
(1.6) a = a/1 = (ak)/k for any k # 0.

The latter gives a one-to-many correspondence of the 

elements of a ring to the elements of a quotient field, namely 
an equivalence class in the sense of (1.5). In this field, 

we define addition and multiplication by the equations:

(1.7) b , d  be + ad
a T c “ ac
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(1.8) b.d _ M.
a c ac

Here a/b denotes the class of all ordered pairs equivalent 

to a/b. Thus if
a a* (ab‘ = ba1), c  c1 (cd* = de1)
b " b1 d " d*

it may be shown that
a1 i c1 _ a i £ , bJ-.dJL b.d .
b* d1 b * d a’ c1 a c

As long as there are no divisors of zero, the elements 

of the quotient field with the above definitions obviously 
fulfill Postulates (i)-(vi) for a commutative ring. In fact 

any set of arbitrary elements which form a commutative ring 

without any divisors of zero may be extended into a quotient 

field although only those fields whose elements are construc­

ted as above are quotient fields.

The commutative ring definition by Milmsinski with the 
operations (1.1) and (1.2) above has no divisors of zero. 

This theorem was first proved by E. Tltchmarsh in 192b-. We 

shall give a more restricted proof for one portion based on 

the Laplace Transformations and shall then sketch a simplified 

general proof due to C. Ryll-Nardzewskl which was first pre­

sented in 1952.



CHAPTER II

THEOREM OF TITCH1-1AREH

Theorem of Titchmarsh. In the previous chapter, we have 

considered the transitivity, associativity, and distributivity 

of the convolution product with respect to addition. A much 

more important property is given by the following
Theorem. If two functions f and g of class Ci are 

not identically equal to 0, then neither is their 

convolution identically equal to 0.

This theorem was first presented and proved by E. Titchmarsh 
in 192^. A rigorous proof based exclusively on the methods 

of functions of real variables was given by C. Ryll-Nardzewski 
in 1952.1 However, in this chapter, we shall not give this 

general proof. We shall instead present a more restricted 

proof based on a different method.

First we need to consider several theorems and some im­

portant properties of the Laplace Transformation.
Product of Transformations. If F(s) and G(s) are the 

transformations of two functions f(t) and g(t), which are 

sectionally continuous (a finite number of discontinuities) 
in each finite interval 0 t £ T and are of the order e*^ as 

t approaches <x>, then the transformation of the convolution 

f(t)*g(t) exists when s >« and is given by F(s)G(s). Then

iMikusinski, Operational Calculus, pp. 15-22.
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the inverse thansformation of the product F(s)G(s) is given 

by the equation
Z.'I|f(s)G(s)} = f(t)*g(t).2

Convergence of Improper Integrals. Let us now consider 

two theorems, written as one. For the proofs, see Brand, 
Advanced Calculus.3

Theorem. If F(s) =J^{f(t)^ converges for s = ot ,
f 6C 

then the improper integral I e-s f(t)dt will con-
Jo 

verge uniformly when s?a. , and will define a con­

tinuous function there.

Theorem on Loments. In the later discussion we shall make 

use of the following theorem on moments.
Theorem. If f(t) is continuous in the interval

0 $ t a, and if
ra)otT‘f(t)dt = 0, n = 0, 1, 2, ...

then f(t) = 0 in the interval.

Proof. The proof is based on the fact that any 
continuous function f(t) in the interval a<t^b 

can be uniformly approximated by a polynomial P(t) 

to any desired degree of accuracy, i.e.; by the 

Approximation Theorem of Weierstrass

pChurchill, Operational Mathematics, p. 37.
3Brand, Advanced Calculus, pp.
^Ford, Differential Equations, p, lOM-.

^Brand, Op. Cit.. p. 529.
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|f(t) - P(t)| <£, a?t^O.

Since P(t) is a polynomial in powers of t, we have
| f(t)P(t)dt = o 
Jo

from the equation of the hypothesis. Hence 
ra r1 r i)of(t)f(t)dt = j f(t)lf(t) - p(t)Jdt

and thus
I .. i r**

( f(t) f(t) - P(t)]dt < f(t)l| f(t) - P(t)|dt 
I *O L I 11 I,a

£ £ \ If (t)l dt; 
Jol I

hence
I f (t) dt = 0;
•o •

Since f(t) is continuous, f(t) = 0 in the interval OStSa.

Titchmarsh^ Theorem When f = g. When f - g and f is a 

continuous function of exponential order, the convolution f*f = 0 

implies f = 0.

Proof: Let
F(s) =

F(s)G(s) =

Then when f = g
X |f(t)*f (t) j = -[F(s) j .

But by the hypothesis
jf (t>f (t)} = {o^

and f(t) is of exponential order cc so that 
|f(t)|< Ke*1.

Since
X U(t)*f(t) J = jF(s)| , s>«.
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and therefore

^F(s)] ~ s><*1

hence 
st. c "xF(s) = j^e f(t)dt = jo], 

and consequently, by Lerch’s Theorem* 
f(t) ={o}.

Thus if the convolution of equal functions is zero, then 

the function itself is zero under the conditions above.

General Proof. 0. Hyll-Nardzewski has shown that the 

above case may be easily generalized for any arbitrary func­

tions f and g. By hypothesis, we are given that the convolu­

tion fg = 0, that is
f (t-'r)g(r)d'r = o, o ^t<oo. Jo

We also have 
rt

t )of (t-T)g(r)dT = 0 

and by adding and subtracting 
f-t
Jcf (t-T)Tg(T)dT

and then combining the terms, we obtain
rt.

)0(t-T)f (t-T)g(T)dT + )cf(t-T)Tg(T)dT = 0.

Introducing the notation
f,(t) = tf(t); g,(t) = tg(t), O^t*00, 

we may write the last equality as 
z"C. /-t,
jflf .(t-^gCtOdT + j^gCt-iOg, (T)dT = 0 

or in convolution notation

♦Ford, 0£. Pit., pp. 103-10?.
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ffg + fg( 0.

Now multiplying by fg( we also have
fg, (f,g + fg,) = 0.

Since the convolution is distributive with respect to 

addition, commutative and associative,
fg*f|g, + (fg. = 0.

Since fg = 0 by hypothesis, (fg| )2 = 0 or fg, = ftg = 0; 

that is
rfc
\ f(t-'r)Tg(T)dY = 0, 0$t<0O.«JO *

By repeating this process, we have
( f (t-W^gCiOdT = o,
•10

and in general after n repetitions,
ft: _^f(t-T)T gCDdT = 0, 0 4t<oo

for every natural n. Now by the Theorem on Moments proved 

previously
ftt-DgCr) = o.

If g(T) = 0, there is nothing to prove. If g('T<>) 0, then

f (t-XDgCYo) = 0 which implies f(t-Y,) = 0 when t 3 To or

t- To2- 0. Then putting T = t-T0 we have f(r) = 0 when T > 0.

We have thus proved that if a convolution fg is identi­

cally equal to zero, then at least one of the functions f or

g is identically equal to zero. This is merely another way 

of stating Titclimarsh’s Theorem as given at the start of the 

chapter.



CHAPTER III

OPERATORS

Ordered Pairs. We have seen that in the operational 

calculus, just as in algebra, fractions of the type

a/b

can be introduced. This is not to be considered as in ordi­

nary division, but as an inverse operation to convolution.
The construction is done by means of ordered pairs (a,b) 

of continuous functions where it is to be assumed that b^O}; 

this ordered pair will correspond to the solution of a = be.

We now make the following definition:
(a,b) and (c,d) are equivalent if and only 
if ad = be; a/b is the class of all ordered 
pairs equivalent to (a,b). Each class is 
called an equivalence class or convolution 
quotient and each ordered pair corresponding 
to a/b is a representative of a/b.°

The relation defined above is a true equivalence rela­
tion—it is reflexive since (a,b) is equivalent to (a,b);

symmetric because if (a,b) is equivalent to (c,d) then (c,d)

is equivalent to (a,b); and transitive since if (a,b) is 

equivalent to (c,d) which is equivalent to (e,f), then (a,b) 

is equivalent to (e,f).

We also have that for any non-zero integer, y,
(a,b) = (ay,by).

6-Erdelyi, Operational Calculus. p. 21.
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The fractions of form (ay,y) are isomorphic to the integers, 

a, such that we have the many-to-one correspondence

(ay,y) -*-#• a.

Also, the unicity of c in the equation a = be is insured 

by the Theorem of Titchmarsh proved in the previous chapter.

For example, let us verify:
jt3- 6t}/^t — 1 } = ^6t + 6^
■ft’- 6t5 = 6(t - l](t + ij

= 6 J (t-T)TdT - 6 dT
O J 0

= 6 ft 11 _ Zl _'r]t
I 2 3

J o 
= ^t3 - 6t|.

Inverse to Convolution. It may occur that for given 
functions a and b # ^O^j, that there exists no functions c 

satisfying a = be. Take for example a=b=^lj. But there 
exists no c = [c(t)| such that

1 = f c(T)dT 
Jo

for any t £0^ which is not true even if t = 0.

Operators. The non-performability of the inverse oper­

ation leads to a new concept, one of operators. The fraction

represents an operator. No longer is it a function.

In this paper however, we shall admit all fractions a/b as 
operators whether or not a ]c(t)l exists. In other words, all
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functions, c, defined above are operators, but not all oper­

ators are functions.

For operators, we adopt the same definitions as for a 
quotient field, (1.5) through (1.8). Due to the analogy be­

tween operators and fractions in arithmetic, operations on 

operators are performed identically as those on ordinary 

fractions.

Numerical Operators. We shall now consider operators 

of the form
(3.1) [a] = la}/[l\
wherej a^ is any arbitrary constant function with a value of 

a everywhere. Then the formulas:

(3.2) [a] + [b] = [a + b]

(3.3) [a][b] = [ab] 

may be easily verified.
For (3.2):

[a] * [b] = IaL + M = iaL+dti

= ^a + bl = [a + b] ;
t 

and for (3*3)s
[a][b] = laL Abl = jabtl
L t t v-

= £ labl = ^ab} = [ ab] .
V t L

It may be seen by these formulas that the braces are now 
superfluous. Operators of type fa] are termed numerical op­



erators in contrast to constant function operators of type 
{ab

Products and tiims. We also have that for any numerical 
operator a (henceforth to be called simply numbers due to 

the operational analogy) and an arbitrary constant function 
{bl:

a{b^ = {ab^ 

or in general
O.M a{f(t)} = {a-f(t)}.

Compare, for example, the formulas
(2) (3) = 6; 2^31 = {6}; {2}{3{ = {6t|.

There exists no formula with respect to addition how­

ever, analogous to The sum of the number a and the
function ^f(t)^ can be written only in the form a + |f(t)j, 

In consideration of commutativity and associativity, the 

following is very important:
(a +{f(t)})(b + {g(t)}) = 

ab +{bf(t) + ag(t) + ^f(t-T)g(T)drj.

For example, verify: 

(1

= 1 + t - sin

= 1 + t - sin

= 1 + t - sin

= 1 + i - sin t

o

sin t^) = 1 
t - (^(t-T)

t - t \ smT dT + \ T sinY dT Y
JO Jo J

t + tcos t - t — tcos t + | cost1 dT* 
Jo
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Numbers 0 and 1. Using formulas (3*1) through (3.M-), 

it is easily seen by substitution that if c is an arbitrary 

operator, we may make the following definitions: 
(3»5) 1c - c; Oc = 0; c+0 = c,

and
(3.6) {o} = 0.

Differential Operator .s. Operators may be divided by 

one another. For example, if g - a/b and h = c/d, then

g,  a c  ad. 
h bT d be

The fraction 1/h is called the inverse of operator h.

It may be seen that if h is a function, then 1/h cannot be a 

function. A particularly important operator is the inverse 
of the integral operator t = {l^ which is denoted by

s = 1/C 

such that we have
C s = st = 1.

Now consider the following important
Theorem. If a function a = {aCt)} has a de­
rivative a* si^a’Ct)!, continuous for O^t<oo, 

we have

sa = a’ + a(0) 

where a(0) is a number. 

Proof.
^aCt)^ = {$ota'(T)dr'i + ^a(0)l

= + Cato)
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and multiplying both sides by s 
s|a(t)} = sf^a'Ct)^ + sta(O)

(3.7) sa = a1 + a(O).
If the function ^a(t)^ equals zero at t = 0, then

sa = a1

such that multiplication of the function by s gives the de­

rivative of the function. Therefore s is called the differ­
ential operator. The restriction that a(0) = 0 is important 

since the value of the function at t = 0 must otherwise be 

added.
Powers of s. If a function a = ^a(t)^ has a second 

derivative a” = |an(t)j , continuous in the interval 0^t<«’, 

then by multiplying (3.7) by s, we obtain 
sza = sa1 + sa(0)

and applying (3-7) to a1
s^a = a” + a*(0) + sa(0).

By induction then, we may obtain the general theorem: 
Theorem. If a function a = {a(t)} has an 
n-th derivative of atn)= |ah)(t)], continuous 

on the interval 0 t <«, then
(3.8) s^a = aCn)+ a^(0) + sa^'^O) + ... + s^aCO).

Equation (3.8) may be written for convenience as 
aCn)= s^a - s^aCO) - ... - sah’J\o) - atn,1(0).

Polynomials in .s. A polynomial operator in s 
a^s71 + a s™4- ... + a, s' + a„ Tn n-i 1 * o 
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where an, ... , ao are arbitrary muLbers is very important 

in this discussion. Operations on these polynomials are per­

formed as in ordinary algebra. We thus have: If two poly­

nomials in s are equal, then their coefficients are respec­

tively equal; i.e.:
+ a^.s*'* + ... + a0 = bnsn + bn_, s^ + ... + bo 

implies the equality a.n= b*; (n = 0, 1, ... , n).
Exponential Functions. Applying equation (3.7) to ^e6-1 

we have that:

sle J = 1 + aie 1

or
(3.9) = 1/(s-a).

Then with the definition of convolution,

, f at-)2- C rt f at 7 r at"1 _xe ( - j e e d't ( = 1 e dv(= J t e 
Cs-aF ' 1 3 1 ° 1 1 ° 1 ITT

and
. 0 1 ( j. ^t") ( ft ci(t- ar ~71 _ e H te • = H e Te d-Y \" I J ( J Ho )

or in general,
(3.W) 1 ...

(s-a)1' Cn-1) I
a*t 

e (n = 1, 2, ... ).

Trigonometric Functions. Using Euler’s equations:
. I* -LX ix -ixsm x = e - e ; cos x = e + e

2i 2
we obtain
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at . , e sm bt

(atlbyt (a-ib)t
- e

and
■[e cos btj = ije + e ]

Now using (3*9), we may write

C3.11) H 
b
eatsin bt] = 1 / 1 1

J 2ib|s-a-ib s-a+ib
1 .

(s-a)2 + b2

and
(3.12) at e cos bt] = if 1

1 2[s-a-ib
1 )

s-a+ib j (s-a)2- + b2

Powers of the operators of the above two formulas may 

be calculated by repeated convolution but become very com­

plex. Of more interest is the case where a = 0 such that 

we obtain:
(3.13) {sin btj = b/Cs"2 + b2)
(3«114-) |cos bt] = s/Cs2, + b21).

Rational Operators. By the expression rational operator, 

we mean a fraction of the form
(3.15) ^ms m + ... + s + (m < n)

SnS71 + ... + 5,s +5'c
where ... , yo; ... , 3O are complex and 0.

From algebra we know that if m<n and if and &-u are 

real, the above expression may be resolved by the methods of 

partial fractions and undetermined coefficients into simple 

fractions of the types:

1 : b ; s
(s-a)? t(s-a)2 + baJP [.(s-a)2 + b*JP

where p = 1, 2, 3? •••• The first type is given by (3.10).
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To obtain the second type, convolute the function (3.11) with 

itself; thus
/ \‘e II sin bt - t cos bt)-.

2b2 (b /)

Apply s to this formula to obtain the third type using 

(3.7) and noting that the function vanishes when t = 0; thus 
(3*17) s  d Ve^ /1 sin bt - t cos btU

[(s-a)* + b^1 " dt(2b2 (b /j
e0^ fa+b2t sin bt - at cos bt1 
2b2 [ b J

so that we now have a specific example of the third type of 

the above fractions.

Table of Operators. The use of the above series of 

equations to resolve rational fractions or to solve differ­

ential equations is very similar to the methods of the La­

place Transformations as may be seen in the following table 
(p. 20) of functions ^f(t)^ and their respective operators, 

F(s). In all of the cases, the operators F(s) equivalent 
to the functions |f (t)j are also the Laplace Transformations 

of the functions, i.e.:
J^{f(t)] = FCs).

The equations of convolution theory, however, have been de­

veloped without consideration of convergence being necessary. 

It must be remembered however, that these formulas, although 
they are general, have been given for f(0) = 0. Otherwise 

initial conditions must be considered, as discussed in Chap­

ter IV.
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TABLE OF OPERATORS

Function Operator

< at.?i- b J 1 
s-a

2. 1 
(s-a)2-

3. It^e^ I
I nl J (s-a)At-1
| sin bt ] b 

(s^+b2-)
5. j cos bt^ s

6. b<Ct sin b______
[.(s-a)2 + bzJ

7. ^ee't’ cos bt^ s-a_____
[(s-a)2 + b2j

8. s«f _ 5^(0) - ... - f"^o)

9, e0"1* 11 sin bt - t cos btl
2b2}b J r4 +

 cd 1U
)

10. I a+bat sin bt - at cos btl
2baL b j S____________

[(s-a)2 + b2J2
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If in the rational operator being considered, the expo­

nent of the numerator equals or exceeds that of the denomi­
nator, i.e., m£n, then the expression (3»13) will be given 

as the sum of a polynomial in s and a fraction of degree 

such that m < n. Then the methods of partial fractions with 

undetermined coefficients are acceptable. These methods 

will be used in the following four examples.

Examples.

Example 1, to evaluate
5s + 3  A . B(s+1) + C

(s-1) (s + 2s + 5) *" s-1 (s+1 )A + 4

cos bt - cos at

 1 s+1 . 3
s-1 — (s+1 )& + ' (s+l)'2, +

= ‘^et - e^ cos 2t + ge^ sin 2t^.

Example 2, to evaluate
2sfr + 6s4 + 3s2, + 5  2.si, + 6s 4 + 3s2' + 5 
s» + 2s‘,-2s-4-1 = (s-1) (s+1) (s^- + 1 )3

- _l, B , Cs +D , Es+F . Gs+Hs-i s+i "T t^+tt(s^+i )z-‘r (s2+i )3

_ _1_____ 1_______ 3
- s-1 s+1 (s2+1 )3
= ^e*- - e-c - §(3-t2)sin t + 5-t cos tl.

I 8 J
Example 3> to evaluate

 s_____   As+B । Cs+D
(s^+a2) (s^+b2-)' " sz+a2 s^+b2

_ 1 ( 1________ 1 \
" a2-b2 t s2-+bz- s 2+a1 /

1
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Example to evaluate
s3 — sz + s + 1 + 1 

s-1 s-1
=. sa + s + 1 + {e**^.

Thus we have seen the ease with which this method will 

evaluate rational polynomial operators in s, and the simi­

larity of the convolution equations with those of the Laplace 

Transformations. In the next chapter, we shall discuss the 

ways in which the convolution operators may be extended to 

give a general method by which to solve ordinary differential 

equations with constant coefficients with initial conditions 

imposed at t = 0. In Chapter V, we shall impose conditions 

at t0 # 0.



CHAPTER IV

ORDINARY DIFFEREIJTIAL EQUATIONS

General Method. Operational calculus now provides a 

convenient method of solving ordinary linear differential 

equations with constant coefficients. The previous discus­

sion of polynomials in s and the development of the equa­

tions given in the table in the previous chapter prove 

sufficient for the reduction of homogeneous and non-homo- 

geneous equations to ordinary algebraic ones.

Consider the equation
(^.1) f(x) = anX00 + a1t.lx<'1',) + ... + a,x'+ aox

where the coefficients a^are constantsand f(x) is an arbi­

trary function continuous for all t>0. We wish a solution 
of x(t) such that

x(0) =)?o ; x'(0) = ?Jt ; ... ; xln'l)(0) =Vn_l.

In view of equation (3.7) ? equation may be written 

in the form
a^s^x + a^s^^x + ... + ao = bn-l s”"1 + ... + b o + f (x) 

where

bk = + aK+/, + ... + (k = 0, 1, ... ,0-1).

So we now find that
x = bn-is*'"'* + .+ bo + f(x) 

ansn + ... + ao

similar methods may be used for a system of n equations 

in n unknowns:



a1*

* a«Xl + ••• + a>nxn = fl (x)

x' + a x + ... + a 3L = f (x).
•I ni | no n n

Assuming that x((0) = ^ , ... , xn(O) = ^, we may now 

change the form of this system using #8 of the table, to

(at| + s) xJ + ... + a^ = + f.Cx)

ax + ... + (a + sj x = 2L + f,, (x) 
.0 i no vi *1 *1

and then use matrices, determinants, or some other classical 

method to solve this system of algebraic equations for all x^.

Examples. We now give the following three examples.
Example 1, to find x(t) given

x" - x‘ - 6x = 2, x(0) = 1, x’(0) = 0.
^xn(t)] --[x’Ct)^ - 6^x(t)J = ^2^ 

s2x(t) - sx'(0) - x(0) - sx(t)

+ x*(0) - 6x(t) = 2/s 
sax - sx - 6x = s - 1 + (2/s) 

x(s2 - s - 6) = (s2 - s + 2)/s 

x = (s2 - s + 2)/s(s-3)(s+2)

= -1 । 8 1 i _1_3s 13 s-3 + 1 s+2

Example 2, to find x(t) given
X16)  2x(,,) - 2x" - x = 0, x(0) = x"(0) = x^(0)

= xU)(0) = 0, x’(0) = xl3)(0) = 2, xff)(0) = -1, xh)(0) = 11
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s8 x + 2s<,x - 2s2x - x = 2s<, + 6s4 + 3s2 + 5

x = 2sfe +63^-1- 3s + 5
s9 + 2s k - 2s ~ - 1

which by example 2 in chapter three 

x = - ec - (3 - t)2 sin t + t cos t

Example 3, to find x(t)
O.T 

Given x‘ - ax - by = be

y* + bx - ay = 0

where x(0) = 0, and y(0) = 1.

sx - ax - by = b/(s-a)

sy + bx - ay = 1
2, x = 2b y = (s-a) - b

(s-a)2- + b2 (s'-a) [(s-a)2- + b1]
= ^e61 sin bt\ = s(s-a) 1

1 1 -(Tra’F + b - -

= i2e cos bt - e j

= [e (2 cos bt - 1 )V .

We have now shown the methods employed for the solution 

of both single equations and a simple system of equations.



CHAPTER V

GENERAL SOLUTIONS

AND BOUNDARY PROBLEMS

General Solutions. So far we have considered differ­

ential equations where we were given initial conditions for 

t = 0, a situation for which the operational calculus is well 

suited. However, it may also be used in other problems such 

as finding a general solution or in boundary condition prob­

lems involving two points, etc.

First we shall consider the problem of the general 

solution. We have seen that
a x00 + a x n',) + ... + a = f “a-i o

may be written as
(5.1) x = bn., s 11 ‘ + ... + b= , _______ 1________ f.

ans'’ + ... + ae T aos/1 + ... + ao

where the values of b^ are dependent on conditions at t = 0. 

If these conditions are not given beforehand, the b’s are 
arbitrary constants and equation (5*1) provides the general 

solution. It may most easily be reached by decomposition 

into fractions of the types below where it may be seen that 

it would not be necessary to find the coefficients A, B, C, 

D, ... in

A ; Bs * C
(s-a)f’ £(s-a)2 + bx]f

which arise in the decomposition. In this way the calcula­

tions are made considerably easier.
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The general methods will be shown in the following two 

examples.
Examples.
Example 1, to find the general solution of the differ­

ential equation
x^ - 2x//,+ 2xn - 2x* + x = f.

oince the initial conditions are arbitrary, an application 

of the operator transformations gives

s4x - 2s5 x + 2s3x - 2sx + x = W + f

where W = b3s3 + b.s1 + b/s + bo. Therefore we have 

x = W । _____ f_______i
(s-1(s^+l) (s-1(s^+l)

the first part of which may be written

A । B , 0 s D
s-1 r (s-1)1' T (s*+1)

considering A, B, C, and D without regard to their connec­

tion with W. The coefficients of the second part are uniquely 

determined to be

1 - 1 _L 1 1 S(s-l)J’(s’-+1) ' 2(s-1) 2(s-1 )2- r 2(s^+T7

So we now have the general solution
x(t) = Aet + Bte* + Csin t + D cos t

/x.+ ij f(t-1)(-e1 + Te3' + cosT)dT.

Example 2, to find the general solution of the system 

of equations

x* = x - 2y

y* = x - y + f.
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We shall now introduce the initial (arbitrary) conditions 

x(0) = a 

y(0) = b, 

such that by the transformations, we have

sx = x - 2y + a

sy = x- y + b + f 

or
x = (a-2b) + as  sf 

sx+l s*+1

y = (a-b) + bs < s-1 f. 
sx+1 T s^+l

Then the general solution is
rr

x(t) = (a-2b) sint + a cost - 2 \ f(t-r)(sinr)d^

y(t) = (a-b) sint + b cost + f (t-T) (-sin'T + cosTOdT.

Boundary Problems. In a two point boundary problem we 

are given the values of the required functions, and possibly 

those of their derivatives, at the two ends of a fixed in­

terval. For instance, let us require a function satisfying 

the equations
(5.2) x<4^ - 2x" + 2x" - 2x’ + x = cos 2t

and
x(0) = 1/25, x(if) = 1/25, x'(0) = 2/15, x'W = 2/25. 

We find a general solution
x(t) = Ae** + Bte* + Csint + Dcost + sin2t + 1 cos2t.

Td 25

To determine the coefficients A, B, C, and D, we first need 
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to find x1(t):

x’(t) = Ae* + Bte* ••+ -■ Be*1 + Ceos t

- D sin t + 8 cos 2t - 2 sin 2t 
7^ 2^

so we may then substitute the values of zero and of to obtain 

a system of four equations in A, B, C, and D to be solved by 

any convenient method.

x(0) = A + D + 1/29 = 1/29
xCif) = Ae'5’’ + Bire^ - D + 1/29 - 1/29

x‘(0) = A + B + C + 8/79 = 2/19
x’Cn7) - ke* + B(n'eTr+ er) - C + 8/79 = 2/29.

Solving this system, we obtain

A-= B = D = 0, C = 2/79

and substituting into (9.2)

x(t) = 2 sin t + h- sin 2t + 3 cos 2t. 
75 75 73

Similarly, we might have been given values of x(t) for 

four different values of t. The solution would have been 

quite similar—differing only in the values assigned for t 

in obtaining the four equations for determining A, ... , D.

Initial Conditions at to # 0. The methods just given 

may of course be used in the solving of problems of this sort 

but we must take into consideration the necessary translation 

of coordinates as if the given conditions were for te = 0.

Given to find the solution of
xt4) - 2x<,/ + 2x" - 2x‘ -i- x = f (t)
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such that at to 0

x(to) = X’Cto) - x”(to) - XW(to) = 0.

First find the solution of the equation
x1^ - 2x“ + 2x” - 2x« + x = {f (t+to)}, 

such that
x(0) = x'(0) = x"(0) = x"(0) = 0.

We tnen have
s4x - 2s3x + 2s2‘x - 2sx + x = ^f (t + to)} > 

then using partial fractions
x = (  1 i 1 । 2 \ If (t + t0 )|

\ 2(s-1) * 2(s-l) 2(s +1) ) 1

and now using the transformations and the definition of 

multiplication

x = lit f(t + te - Y)(-e* + Te^ + cost)drj.

Now to obtain the actual desired solution, replace t by t-tc 

everywhere such that
x(t) = i \ f(t-'D(-er -t-'te* + cos T)dT.

Thus far we have considered only functions of class 

that is functions continuous everywhere on the interval t >0 

In the next chapter, we shall consider functions which have 

a finite number of discontinuities in any finite interval.



CHAPTER VI

DISCONTINUOUS FUNCTIONS

Functions of Class K. Thus far we have considered only 

those functions wliich were continuous for all t > 0. Now we 

shall introduce a discussion of some aspects of selected dis­

continuous functions on the field of operational calculus.
The function -[f(t)^ defined in the interval 0 £ t<<» , 

belongs to class K if and only if:

I) it has at most a finite number of discontinuities in 

every finite interval,
_ pt

II) the Riemannian integral | f(r) dr has a finite value 

for all t 0.

One example of a discontinuous function is the square 
wave function f(t) - h(t) - 2h(t-a) + 2h(t-2a) - ... which 

has amplitude one and period 2a as shown in Figure 1 below. 

This function fulfills both requirements of the above defi­

nition of a discontinuous function. A second example is the

function
dr - 2ft

shown in Figure 2.

Figure 2Figure 1
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Therefore with the above definition, if f = [f(t)^ is a 

function of class K,
cfb

[f = {l]{f(t)] = I f(T)dT ,
1 l jo 1

where the integral always represents a continuous function 
such that if we denote the integral by a, we have [f = a or

f = a/f .

Thus all functions of class K Kay now be represented as oper­

ators since they Kay be expressed as the quotient of two con­

tinuous functions. Since we Kay now consider functions of 

class K as operators, all operations which have been previously 

defined for operators are applicable to discontinuous functions.

Equality of Functions of Class K. Two functions f and g 

of class K are defined as equal when the continuous functions 

given by the integrals

a = [ Jof(r)drj, b = j [g(r)drj,

are equal, i.e., Cf = a = b = Cg.

Mow a1 = f and b’ = g at all points where f and g are 

both continuous; hence when a = b, f = g at all points t at 

which both f and g are continuous and only at those points.

Suks and Products, if f and g are functions of class K, 

then the sum of f and g is given by the equation

’ c f1* i < r t \'f + g= S4-b = l H f ('T')dr ( + 1 g(r)d'r}
c f eu 1 u<> U

which becoKes
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= + gCi'^dr],

and thus
(t)} + = |f(t) + g(t)^ .

similarly v/e have that
^f(t)j - ^g(t)] = |f(t) - g(t)j

and
ol ff(t)} = (t)} .

It is obvious then that a sum or a difference of any hro 

functions of class K, as well as the product of a number and 

a function of class Y. remains a function of class K. It may 

also be shown tliat the convolution of any two functions of 
class K is still a function of class Y..7

Using this as a basis, it is easy to deduce the qualities 

of associativity, commutativity, and distributivity of convo­

lution for functions of class K. The methods are the same 

as those used before.

Euler1s Gamma Function. In the first chapter, we de­

veloped the formula
(6.n Cn= f t

I (n-i)l |

for all natural values of n. In this calculus, it is also 
necessary to consider the non-integer powers of f. We shall 

now consider Euler’s Gamma Function:

^Mikusinski, Operational Calculus, p, 109.



„ ft >.-> -tr (A) = \ t e dt, 
Jo

which is equal to (X-1) 1 for all positive integers A-. Here 
it will be sufficient to consider the integral C(X) for

We will utilize the following necessary properties in the

discussion:

ci) ra+D = xRx),
(II) as a deduction from (I)

P(n) = (n-1) 1, n an integer, 

du) r(i)=^,i

(IV) B(7.,u) =

= f(>)r« wiiere B(X,/u) is Euler’s Beta Function.
r<Atw

From formula (I) we may evaluate r*(Aj for every X if we know

the values assumed in any interval of length one. Property 

(III) implies the important formula:

(6.2) fe"<rd<r= ^/2.

We have that
f co 

rn , , . \ "Au — tI (i) = )61 e dt
and by means of the substitution t = c31"

( 00 ™-x-g*.- 2 \ e dcr
J 0 

and formula (6.2) follows.
Mon-integer Powers of t and s-oc. Since formula (6.1)

may be written as
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>

We may generalize it 

(6.3)

to
tA" 1
rTTy )

for all positive X. With this definition, the property of 

povrers is retained:
(6.!+) C' >OV

vie shall now define, and prove, the formula for a more 

general operator
(6.5) (3-<\) = 4 t e I

ITTKy j

where A is a positive number and <x is arbitrary. If oc - 0,
(6.5) is reduced to (6.3) and if A is natural, it is then 

identical to the formula developed in chapter three for oper­

ators. With the definition of convolution, we may obtain

(s—at) (s-^)^ = 1 f (t-7')A-le* ^'T,rae^rd r
r(A)r(u)

= e'\ fC (t-T)X"^M"ldT

= e^t51^;' (t(l-<r)X‘V ^'dar
r(^)r(fA) L

due to making the change of variable

T = t<r , dr = t d(T ,

Now the last Integral is
b(a,a*) = r (A)r(M) 

ru+M)
so that when > 0,
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(6.6) (s-<x) = (s-<x)

r (x+>)
as in (6.5). Wlien c*.= 0, (6.6) reduces to (6.M.

We may extend this definition to all real > by writing
(6.7) (s-<x)° = 1 and (s-*/ = lAs-*)'* (>>0).

If at = 0, then (6.7) becomes C = 1 and (,>= 1/C (A>0).

If A?1, then the operator (s-<M is a continuous function; 

if then the function is discontinuous at t = 0; if

0, it is not a function.
Error Function erf t. From formula (6.5) we have in 

particular that

such that we obtain by the substitution o<'r'=a'x ; cx.d'Y = 2^9“

1 f_L fT_L e'0*^ d^A = J 2 ( e'T df] 0).
s'Xs+c* | fr j0 ir 1 ( «YiF J e J

It may easily be seen that ^erf t^ is a continuous func­

tion increasing from 0 to 1 in the interval 0 St<co. This 

function occurs in the theory of probability and is called 

the error function, hence the "erf11.
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Derivatives of Class K. A function ja^ will have a 

derivative of class K if it has a derivative in the interval

O^t^oo except for a finite number of points in every finite 

interval. For example, consider the function shown in the 
graph in Figure 5» The function is continuous everywhere; 

it is differentiable for all t except for t when t is an in­

teger, but the derivative is discontinuous at those points 
as shown in Figure 6.

We have proved in chapter three that if a function a has 

a derivative of class , then a is also continuous, and that 

sa = a* + a(0).

With the preceding definition of equality, we now may prove 

the more general

Theorem. If the continuous function a has 

a derivative a’ of class K, then
(6.8) sa = a* + a(0).

Proof: If a1 is of class K, then we have

(6.9) ^a(t)^ = ^ca,(T)dT^+ ^a(O)^

since a* has only a finite number of discontinuities in the
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interval t and the integral, if improper, has a finite 

value. We may write the equation as
a = ta* + {a(0)^ .

Multiply by s = 1/C ; then because
sCa1 = a*

at all points where a1 is continuous, the definition of equal­

ity enables us to write
sa = a’ + I a(O)i = a’ + a(0)

C
where a(0) is a number (cf. 3»1)»

We notice that if a were discontinuous, equation (6.9), 

upon which the proof rests, would be false because when a is 

of class K, the right member is necessarily continuous and 

could not equal the discontinuous function a on the left.

For example, the discontinuous function
(0 for 0$ t< 1

a = ) >
[1 for 1 t <oe

which has a derivative of class K, a* = except when t = 1 

where a* is undefined. Then we have that a* = 0 vri.th our 
definition of equality and thus equation (6.9) becomes

a = t{o] + {o} = {o^ 

which is false.
Differential Equations with Discontinuous Right hide.

Let us now consider a differential equation of the form
a xlt>) + a xt0 l) + ... + a x = f

-rx r>-i o
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where f is any arbitrary discontinuous function. A function 

x is the solution of the equation if
1) it has n-1 continuous derivatives, and

kn)2) it has the n-th derivative x at all points where f is 

continuous, and

3) the equation is satisfied at all points where f is a con­

tinuous function.

If we give initial or boundary conditions at points at 

wnich f is continuous, then the entire theory is applicable.

Examples. Let us now consider two different examples, 

the first in which the input function has no Laplace trans­

form; the second having an Input function with a discontinuous 

derivative.

Example 1, given:
x* - x = f = ^(2t - 1 ) efcl , x(0) = 2.

Vie thus have
( 4.1?sx - 2 - x = j(2t -De1)

(s - 1 )x = 2 + [(2t - 1) e£

x = 2 . 1 i (2t - 1) et j 
s-1 s-1 1

= ^26^ + {(2t - 1) e1

Considering the second part of the right side
^e1^(2t - 1) e1^ - ^Xtt'T)(2T-l )eT1dT^

= (2T-1)dT^
[ Jo J 



to 
^e‘H(2t - 1) e1)" {et[eY"^Ll

=

= P -

so that we now have
tl f r-tlx = j2e j + je

f tl ±1 
x-= ie + e [.

For the second example, let us consider an integro-dif- 

ferential equation of a square wave input function:

< ■' ■ 1 ■ ■

1 2n 2n*i

-I

1 2 3i
1-------

Figure 7
—

rt 
x* + to + 3 \x dt = f(t), x(0) = 0. 

Io
Now applying (6.8)

sx + to + 3(.x = f

/ s + if. + 3^x = f
I s J

x(s+1)(s+3)/s = f
TT — 

(s+1)(s+3)

Now using the operators developed in chapter three: 
x = [3/2(s+3) - 1/2(s+1)]f 

x=
where f = (-1 )n in nir < t < (n+1 )ir,



When t Iles in the interval n< t< n+1, x has the value
. (■W . z-jfl

x(t) - Z/_(-!) J e du - £Z_j(-1) e du 
° i-o Jo

•x , x71 f I v> (+ i(-1) | e du - ttC-I) e du
2 Jr, Jn

n-< . ’i-*
= (e3 -1 )e‘ <e-1 )e3

j-o 3 j-c 1

+ -g-(-l) e (e -e ) - i(-1) e (e1 -e )

n-< . n''= e'3t(e3-1 )£ (-1)' e’' " »e"t(e-1 (-1 )* e1

* (»(-1 )n [l-e ’K'")} - i(-1 ) .

Mow evaluating the above - 1 summations
, S' ^>n1 - (-1) e

1 + e3

1 + e

Hence when t lies in the interval n <t<n+1, x(t) equals

x — 3 r“ , . x 3 rtXx - te e -1 11 - (-1) e 
e3 +1 L

- e-1 fl - (~1 r e71] + i(-1 )h (e'r-e-3Y
e-H L •*

where -T= t-n. We see that
Tr. x - 1 e3-1 e'3* - 1. e-1 e-t 

2 e3+1 2 e+1
f(T) = e^_ e-1 e*T+ e^- e”  

2 L eJ +1 e+1
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Thus when we consider x(t) In the form
x(t) = Tr x(t) + ^(T)

where Tr x is the transient state and jSn(r) is the steady 

state of the Input, then v/e have
Tr x(t) = -g-^tanh $t - i^tanh

and
XAt) = (-1)n/ _e_ e*T- e3 , e'3T 

e+1 e4+1 /

where 'T = t-n. X„(T) is a wave of period two and is contin­

uous over the interval 0<t<oo. This may be verified by 

showing
^o(0) = ^,(1)

(-1 )6[ e-e® e3e°A = (-1) V e-e""1 _ e5e~5 \
| e+1 e‘^+1 ) | Ce+1)' (e^+1) J

e4 + e - e4 - e5 = (-1 )(e3 + 1 - e - 1) 
(e+l)(e»+l) (e+1)(e»+1)

e - e = e - e .

The graphs on the following two pages show the transient 
state (Figure 8) and the steady state (Figure $))• The mini­

mum point of Tr x(t) is at t = 1.11+ which may be verified by 

means of the derivative
-1(92 2 cosh2-5-2 - cosh2, |-251 e"* 

Tr * x = —I---------- -------------—
M-L (cosh2 ^z3)(cosh2 jz) 1 

where z = e-t, and substituting t = 1.1Ha the numerator of 

the fraction in braces is equal to zero. The value for t is 

much closer to 1.11 than to 1.12.
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Values
^n(T)

-.2215 
-.12M-5 
-.0W2 
+.O71+3 
.15^2 
.2031 
.2309 
.2M8 
.21+6l 
.2^20 
.2332 
.2215

.0096



JuHlD Function and Translation Operator. Let us denote 
by \H^(t)} a function which is equal to zero in the interval 

0<t<i and is equal to one for all t£X. The function has 

only the one jump at t = A. and is continuous thereafter. This 

function is called the Jump Function or Heaviside’s Function.

Actually, it is the operator
(6.10) hX = s{Hx(t)], (A>0)

associated with it (the translation operator) which is so 

important to this calculus. This is shown by the following

Theorem. If f(t) is an arbitrary function 

of class K, then
0 f or 0 $ t < X

f (t-A) for 0$ X< t
Proof. hX{f(t)] = s[Hx(t)*f (t)]

= s\ f (T)Hx(t-T)dT
Jo A

where

such that

H/t-T)
*0

1

for t-T< X

for t- T

0 for 0 $ tO

l f (T)dT for OSX< t

0
f(t-T)

for 0 ^t^x 

for 0^X< t
Thus we may write:



hX = Hx(t) t I **
s o4-i----------- -

hl _ „ * t ■------- 1
S S ---------------L------------- '--------->

51 a 0 T

As a direct result of this theorem, the multiplication 
of any given function jfCt)] by hx yields a translation of 

the graph a distance X in the positive direction as seen in 

Figure 10.

The theorem implies that
(6.11) h^ = hXtA,

and
(6.12) hxhgf = hx^ f (x,u>0).

Therefore we may write the translation operator as a 

power. Instead of h’, we shall write simply h. Thus we also 

have that
hc = 1 and h'x = 1/hA (a >0).

We should now consider the more general

Theorem. If a function a has jumps . .ej 

at the points t,, ... th, is elsewhere 

continuous and has a derivative of class 
K, then
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tv(6.13) sa = a’ + a(0) + 2/

V»fc
where a(0) is the value of the function at

the point t = 0.

Proof. Let b be the continuous part of the function a, 

then we have
a = b + i E ^htv. 

!>*•
Since b is continuous, froit. (6.8)

sb = b* + b(0).

Then n 
sa = sb + E 

Vs I

= b’ + b(0) +

and since b(0) = a(0) and b' = a* by the definition of equal­

ity, we thus obtain equation (6.13)«
Examples. Example 1, the operator (hx - h|1)/s is equal 

to ^H*(t) - li/iCt)^ as shown in Figure 11.

Example 2, the operator of the function in Figure 12 is 

obtained by first considering the slope graph to get f’(t) 

and then integrating to obtain f(t). The process may be seen 

as: in considering the slope graph (Figure 13) we obtain
f '(t) = 1 - 2h + h2/s

and integrating
f(t) = (1 - 2h + h2')/s3’.

Example 3> the function in Figure 1M- is derived similarly, 

f’(t) is shown in Figure 15- The functions are as follows:



Ifr8

Figure lb- Figure 15
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5 3 .f'(t) =1 - 3h + 3h - hVs 

and
f (t) = (1 - 3h + 3h2 - h^/s-2.

Example h-, an example of the theorem expressed In (6.13) 

may be seen in Figures 16-18 showing how a function vzith mul­

tiple jux^ps may be given by a continuous part and a jump part. 

Figure 16 shows the original part; Figure 17} the continuous 

part of the function, and Figure 18, the jump-forming part of 

the function.

Figure 16

Figure 17

Figure 18

most easily seen
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by taking the limit of the function shown in Figure 19 as £ 

approaches 0. This gives the function shown in Figure 20 

which is equal to zero everywhere except at the point t = X 

at which value it tends to +co. This operator is called the 

Dirac Delta Operator. It is not a true jump function as it 

is sometimes considered to be.

Figure 19 Figure 20.

s 2 £

However, in this work, we need only consider the operator 
in the form 5(t) such that

d'Ct) = f/f = {ij/c

for any arbitrary continuous function f. This allows us to 
have an operator (it is not a function) such that for any £f^: 

f5}{f = I^Wf (t-r)dT} = {f}.

The Dirac Operator is therefore the multiplicative oper­

ator for operational calculus as the number 1 is for algebra. 

Thus we may now complete the extention of the commutative ring 
into a field of convolution quotients.^

®Brand, Differential and Difference Equations.



CHAPTER VII

SUl'2/iARY

Definition. The Mkusinskl Operational Calculus is de­

rived from a commutative ring of continuous functions, a, b, 

c, ... in which the operations of addition and multiplication 

(convolution) are
a + b = ^a(t) + b(t)] 

ab = j^a(t-T)b(r)dT^.

From Titcl'xarsh’s Theorem, this ring has no divisors of 

zero, l.e.s if ab = 0, then either a = 0, or b = 0. There­

fore the ring may be extended into a field of convolution 

quotients a/b where b / 0. Here a/b represents an equiva­

lence class of quotients such that

(7.1) s,  a * if and only if ab’ = ba’.
b " b’

The operations on these equivalence classes are defined 

by the relationships

(7.2) a, . c  ad + be , 
b d ' bd

(7-3) a c  ac ,
b d bd 

where the right hand members are equivalent m the sense of 

(7.1) when a/b is replaced by any other member of the equi­

valence class, a’/b’. Thus we have that

a = ak/k for all k 0.



In the original ring, there was no multiplicative iden­

tity element for convolution; that is there was no continuous 

function x such that the convolution

xa = j x(t-T)a(r)dT j = ^a^

holds for all functions a, for if a = the equation is 
x^l"| = ^1^ which does not hold when t = 0: the left hand 

member is zero and the right hand member is one.

But in the quotient field, the unit for convolution is 

f/f where f is any continuous function not equal to zero, 
and from (7*3)

s af = S
b f bf b

since convolution is associative and distributive. Thus the 

multiplicative element is

It may be identified with the Dirac symbol 5(t) for from the 

"sifting property" of the Dirac symbol, the convolution of 
5^ gives
(7.M ^^f(t)| 5(iJ)f(t-T)dT] = {f (t)j.

Operators. The convolution quotients a/b may represent 

continuous functions or discontinuous functions, but they are 

not necessarily either. In all cases, however, they are oper­
ators. An operator may be a function such as [ = j, but 

its reciprocal is the differential operator s = 1/C which is
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not a function. The reciprocal of any function cannot be a 

function, either continuous or discontinuous.

By considering polynomials in s in terms of a rational 

operator, a system of operators identical with those of the 

Laplace Transformations were obtained. Consideration of the 

convergence was not necessary.

Differential Equations. By means of these operators, 

there is a convenient method not only to evaluate, in terms 

of functions of t, the rational polynomials in s, but by the 

same methods, to solve ordinary differential equations with 

constant coefficients. These same methods were also extended 

to the solutions of problems involving the finding of general 

solutions, or in boundary condition problems involving two 

or more points.
Discontinuous Functions. Discontinuous functions (of 

class K) were said to be those functions ^f(t)^ defined in 

the interval O$t<co, such that

i) has at most a finite number of discontinuities

in every finite interval, and
r t

ii) the Riemannian integral 1 If O')! dr has a finite value
*0 ! I 

for all t3 0.
Therefore, if ^f(t)^ were of class K, it could be repre­

sented as f = a/C where a is a continuous function:

C{f(t)1j = {iKf(t)] = ^f6tf(7)drj = a.



Thus every function of class K may be considered as an 

operator since it may be expressed as the quotient of two 

continuous functions. Then although previously defined oper­

ations on operators held, the methods for solving differential 

equations did not, and new methods were developed.

With the consideration of the jump function (Heaviside’s 
function) the last operator, the translation operator hx, was 

developed for the expression of jump and translated functions. 

Lastly, a theorem was given whereby a function with jumps 

at t = tj could be expressed as the sum of two functions, a 

continuous part b, and a jump part:

a = b + p.h1" .

We then found that
n

sa = a* + a(0) + 2? S, bto.
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