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ABSTRACT

The Mikusinskl Operational Calculus is derived from a
cormutative ring of continuous funetions a, by ... in which

the addition and multiplication (convolution) operations are

a+b = {a(t) + ()}

t
ab = ﬂ a(t-T)b(Mar}.
o
By the Theorem of Titcamarsh, this ring has no divisors
of zero——if ab = O, then a = 0 or b = 0. Thus the ring may
be extended to a field of convolution quotients a/b, b # O.
Here a/b is of an equivalence class such that

(1) a _ a' 1if and only if ab' = ba'.
b~ b

The operations on this equivalence class are defined by

(2) a4 & o adtbe,
! bd
(3) a.8& = ac,
b d " bd

where the right hand mexber is equivalent in the sense of (1)
when a/b is replaced by another nember of the class a'/b!t.
Thus we have the one-to-many correspondence
a = ak/k for all k # 0.

Originally, there was no multiplicative element, but by
the introduction of the Dirac Delta Operator 3(t) = {1%/{1},
the convolution of & with any function f gives

3¢ = S:b’(’f)f(t-ﬂd’r’ = £,



The convolution quotient a/b may represent either contin-
uous or discontinuous functions, but it is not necessarily
either. The reciprocal of the unit function € = {fx, a con=-
tinuous function, is the differential operator s = 1/{13 which
is not a function at all,

By considering polynomials in s as rational operators, a
system of operators similar to the Laplace Transformations is
obtained. Consideration of convergence is not necessary. By
means of these operators, there is a convenient nmethod not
only to evaluate in terms of {f(tj} the polynomials in s, but
by the same methods, to solve ordinary differential equations
with constant coefficients. These methods may be extended to
the finding of general solutions, and to the solving of boun-
dary condition problems of two or more points,

Discontinuous functions (of class K) are those functions
defined in the interval O£ t<o such that

i) {f(t)} has at most a finite number of discontinuities in
every finite interval, and .

ii) the Riemannian integral S;lfé?)’dv has a finite value for
all £t 20,

Therefore if f is of class K, it may be represented as

the quotient of two continuous functions (f = a/f) such that
t
C{rt = ey = {fof('r)cr.}: a.
Thus operations on operators defined previously still

hold although the solution of differential equations involving



discontinuous functions or those with discontinuous derivatives
require that other methods be developed.

A discussion of the jump function (Heaviside's function)
gives the last operator, h*, for the expression of jump and
translated functions., Lastly, a method is given for repre-
senting a function a with jumps [ at the points t = t, as
the sum of two functions, a continuous part b, and a jump

part such thats
\ v
a=b+§iﬂuh .
V=)

We then find that
St
sa=a'+a()+ ) fhn".

Vel
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CHAPTER 1
OPERATIONAL CALCULUS

General Definition. The Mikusinski Operational Calculus

ray be defined as a commutative ring of continuous (of class
. ) functions, f(t), in the interval t20, which satisfy the
following definitions:
(1.1) a +b={a®)} +{pt)} = {alt) + vt}

t
(1.2) ab = {a(®}{ ()] = [ at-Mn(Mar.

This calculus differentiates between a function, the
value of a function at a point, and a constant function. A
function f of a variable t, the entire function, will be de-
noted by {£(t)}. The symbol £(t) will denote the value of
the function f at the point t. The symbol fe} will imply a
constant function which equals the value ¢ for all values of
t. Here the braclkets become important since in ordinary
arithmetic

(2)(3) = 6
while in operational cal:ulus
{2}{3} = [ @@ar = {et].

Comrautative Ring. A commutative ring 1s defined by means

of the following six postulates:
(1) a+b=>b+a (conmutativity of addition)
(i1) (a+b) + ¢ = a + (b+c) (associativity of addition)

(1ii) For any palr of elements a,b there is a third
element x satisfying the equation a + x = b,



(iv)

(v)
(vi)

With

ab = ba (commutativity of multiplication)

(ab)e = a(be) (associativity of multiplication)

a(b+c) = ab + ac (distributivity of multiplica-
tion with respect to addition).

the definitions (1.1) and (1.2), these postulates

may be easily verified. Postulates (i) and (ii) are obvious

from (101)-

elements,

Postulate (ili) says that for every pair of

a,b there exists a unique element x which is the

difference of a and b and is written b=a. This postulate is

sonetines

called the feasibility of subtraction.

Verification of Postulate (iv):

T

gaa(t-“f)b("‘)d"“

With the change of variables @ = t=T,
[ a()b(t-5) (~as)
t

t
&;a(o')b(t-:r)dﬁ"

which is the same as the original convolution.

Verification of Postulate (v):

If
t t
£8) = [aGoblt-xax; g(t) = | bwelt-way
o
then (v) states fc = ag and
t try
fe(t) = g f(y)e(t-yldy = S g a(x)b(y-x)c(t-y)dxdy
[}
is the double integral over the triangle O¢xsy<t,
ag(t) = g a(t-v)g(v)dv = S~S-a(t-v)b(u)c(v-u)dudv
is over the triangle O<usgsvst,
With the substitution x = t-v, y-x = u, (y = t+u-v,

t-y = v-u) whose Jacobian 5(x,y)/5(u,v) = 1, the



first integral is converted into the second,
Verification of Postulate (vi):

Givén: -
{a=D[ben + en] av

. 4
( [att-mme) + a(t-‘f‘)c(“r)] ax

24 T
,att-0pmar + {att-memar
Thus we have verified the postulates of a comrutative ring

for the operational calculus. With them we have for example:

leos® t}Ht} + {e}{s1n* ¢}

= {t}{eos® t] + (t}{stn’ t} P(iv)
= &thcosz t + sin® t] P(vi)
= \t}{1& trigonometry
- et}

definition

]

‘ —
wop
ct

™
PO
.

The Operator{ . For simplicity, let us denote the unit

function {1& by £ « Then by definition (1.1) and iteration,

it may be seen:



e¥={1}{t* /21 = {3 S:’I"dr}= {+°/31]

€= {1H e /3] ={ef.7"ar} = (]
etc. such that we obtain the general formula:

(1.3) "= g,
> : (n-151}

Cauchy's Formula for Integration. Using this notation,

let us consider the product of €" with gf(t)}. We thus have
Cauchy's forrula for reducing an n-tuple integral into a
simple integral:

t t

t n-l
(1.4%) (cdt cos gcf(t)dt = L%g:'{)}l f(r)ar.

e ——
kgl

Quotient Field. We may say a ring has no divisors of

zero (where a=-a = O for any a) if ab = {O} implies that either
a= {O} or b ='{O}.

If a commutative ring has no divisors of zero, it may
be extended to a quotient field, i.e., we have a set of frac-
tions (b/al), a # 0, with the following equivalence relation:
(1.5) (b/a) = (d/c) if and only if ad = be.

Let us also define

(1.6) a

a/1 = (ak)/k for any k # 0.

The latter gives a one-to-many correspondence of the
elements of a ring to the elements of a quotient field, namely
an equivalence class in the sense of (1.5). In this field,

we define addition and multiplication by the equations:

(1.7) b,od_betad
a c ac



(1.8) b 4 _ bd.
ac

Here a/b denotes the class of all ordered pairs equivalent

to a/be. Thus if

a _ a' (ab' = ba'), ¢ _c' (cd® = dec')
b~ BT - U

it may be shown that
a' v el _a,¢g btda' _bd.
pYa=p¥3d’ aveTTae

As long as there are no divisors of zero, the elerents
of the quotient field with the above definitions obviously
fulfill Postulates (i)-(vi) for a commutative ring. In fact
any set of arbitrary elements which form a commutative ring
without any divisors of zero may be extended into a quotient
field although only those fields whose elements are construc-
ted as above are quotient fields.

The commutative ring definition by Mikusinski with the
operations (1.1) and (1.2) above has no divisors of zero.
This theorem was first proved by E. Titchmarsh in 1924, We
shall give a more restricted proof for one portion based on
the Laplace Transformations and shall then sketch a simplified
general proof due to C. Ryll-Nardzewski which was first pre-
sented in 1952,



CHAPTER II
THEOREM OF TITCHMARSH

Theorem of Iitchmarsh. In the previous chapter, we have
considered the transitivity, associativity, and distributivity
of the convolution product with respect to addition. A much
more important property is given by the following

' Theorem. If two functions f and g of class(a are

not identically equal to O, then nelther is their

convolution identically equal to O.

This theorem was first presented and proved by E., Titchmarsh
in 1924%. A rigorous proof based exclusively on the methods

of functions of real variables was given by C. Ryll-Nardzewski
in 1952.1 However, in this chapter, we shall not give this
general proof. We shall instead present a more restricted
proof based on a different method.

First we need to consider several theorems and some im-
portant properties of the Laplace Transformation.

Product of Transformations. If F(s) and G(s) are the

transformations of two functions f£(t) and g(t), which are

sectionally continuous (a finite number of discontinuities)
in each finite interval 0 ¢t< T and are of the order e** as
t approaches c, then the transformation of the convolution

f(t)xg(t) exists when s >x and is given by F(s)G(s). Then

IMikusinski, Operational Calculus, pp. 15-22.
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the inverse thansformation of the product F(s)G(s) is given
by the equation
-
Lr)60] = £tme).?

Convergence of Improper Integrals. Let us now consider

two thieorems, written as one. For the proofs, see Brand,

Advanced gglculg§.3
' Theorem. If F(s) =4ﬁ,{f(t)% converges for s =o,
then the improper integral S;f“f(t)dt will con-
verge uniforrly when s2o, and will define a con-
tinuous function there.
Theoren on homents. In the later discussion we shall make
use of the following theorem on moments.
Theorem. If f(t) is continuous in the interval
O¢tga, and if
g:;“f(t)dt =0, n=0,1,2, ees
then £(t) = O in the interval.'t
Proof, The proof is based on the fact that any
continuous function f£(t) in the interval a<t<bd
can be uniformly approximated by a polynomial P(t)
to any desired degree of accuracy, i.e.j; by the

5

Approximation Theorem of Weilerstrass

2Churchill, Overational Mathematics, p. 37.

3Brand, Advanced Calculus, pp. 427-430.

*Ford, Differential Equations, p, 10k4.
5Brand, Op. Cit., p. 529.



,f(t) - P(t)l <€, aztzo.
Since P(t) is a polynomial in powers of t, we have
[Cecorrcerat = o
from the equation of the hypothesis. Hence

fa
L T(®)E()at = ff(t)[f(t) - P(t)]dt
and thus
3 ' d
’ ( OO P(t)]dt}g Uf(t)]\ £(t) - p(t)]at
a
<€ galf(t)l dt;
hence
S
, £ (t) dt = 05
Since f£(t) is continuous, £(t) = 0 in the interval 0¢t€a.

Titchmarsh's Theorem When f = g. When f = g and f is a

continuous function of exponential order, the convolution faf = 0O
implies £ = O,
Proof: Let
F(s) = L{f(t)}
F(s)6(s) = L{ttte(n)].
Tnen when £ = g
£ {f(t)*f(t)} = '{F(s)}a.
But by the hypothesis
HOCIONESEY
and f(t) is of exponential order « so that
\f(t)\ < re*h
Since

Liremewml={ra}, s>e



and therefore
S\F(s)}z = {O}, Sya

hence

F(s) = fje"“r(t)dt = {0},
and consequently, by Lerch's Theorem*

£(t) ={o}.
Thus 1f the convolution of equal functions is zero, then

the function itself 1s zero under the conditions above.

General Proof. C. Ryll-Nardzewski has shown that the

above case may be easily generalized for any arbitrary func-
tions f and g. By hypothesis, we are given that the convolu-
tion fg = O, that is
[:fct-'ng(v)dw =0, 0$t<o,
We also have
tS:f(t-T)g("r’)d't' =0
and by adding and subtracting
j:f(t—’r)‘rg('r)d’r
and then combining the terms, we obtain
g:(t-’a“)f(t-”l’)g(T)d’r' + (re-mremar = o.
Introducing tne notation
£,(8) = t£(t); g, (t) = tg(t), Ost<™,
we may write the last equality as
f:f.(t-’f)g(w')d‘t‘ + Ltg(t-‘!‘)g. (Mar =0

or in convolution notation

*Ford, Op. Cit., pp. 103~105.
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f,g + fg, = 0.
Now multiplying by fg, we also have
fg, (f,8 + fg,) = O.
Since the convolution is distributive with respect to
addition, comnutative and associative,
fg-f, g, + (£g,)* = o.
Since fg = O by hypothesis, (fg‘)z =0or fg, = ftg = 0
that is

5

(“tt-rrrgerrar =0, oct<am,
By repeating this process, we have
g:f(t-”l’)’fzg(".’)d'r‘ =0,
and in general after n repetitions,
g:f(t-T)T"g(’l’)dT =0, O¢t<o®
for every natural n. Now by the Theorem on Moments proved
previously
£(t-Mg(%) = 0.
If g(¥) = 0, there is nothing to prove. If g(7,) # O, then
£(t=-Y)g(1,) = O which implies f(t=-7v,) = O when t 2 7o or
t-To2 0. Then putting T = t-7, we have f£(v¥) = O when T 2 O.
We have thus proved that if a convolution fg is identi-
cally equal to zero, then at least one of the functions f or
g is identically equal to zero, This 1is merely another way
of stating Titchmarsh's Theorem as given at the start of the

chapter.



CHAPTER III
OPERATORS

Ordered Pairs. We have seen that in the operational

calculus, just as in algebra, fractions of the type

a/b
can be introduced. This is not to be considered as in ordi-
nary division, but as an inverse operation to convolutior.,

The construction is done by means of ordered pairs (a,b)
of continuous functions where it is to be assumed that b#{0};
this ordered pair will correspond to the solution of a = bc,
We now make the following definition:

(a,b) and (c,d) are equivalent if and only
if ad = bec; a/b is the class of all ordered
pairs equivalent to (a,b). Each class is
called an equivalence class or convolution
quotient and each ordered pair corgesponding
to a/b is a representative of a/b.

The relation defined above is a true equivalence rela-
tion--it is reflexive since (a,b) is equivalent to (a,b);
symmetric because if (a,b) is equivalent to (c,d) then (c,d)
is equivalent to (a,b); and transitive since if (a,b) is
equivalent to (c,d) whicn is equivalent to (e,f), then (a,b)
is equivalent to (e,f).

We also have that for any non-zero integer, y,

(a,b) = (ay,by).

QErdelyi, Operational Calculus, p. 21,
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The fractions of foru (ay,y) are isomorphic to the integers,
a, such that we have the many-to-one correspondence
(ay,y) <> a.
Also, the unicity of ¢ in the equation a = bc is insured
by the Theorem of Titchmarsh proved in the previous chapter.
For example, let us verify:
{£- 6t}/{t = 1y = {6t + 6}
17 6t} = 6ft - 1}{t + 1}
{1 - e f}(r}

6 f:(t-’r TdT - 6 (:df

I
o
&t
e
|
“R
|
il
o o

]
"
ct

“
|
(0)
ct
[
.

Inverse to Qonvolution. 1t may occur that for given

functions a and b # {O}, that there exists no functions ¢
satisfying a = be. Take for example a = b = {1}. But there
exists no ¢ = {c(t)} such t&?t
1=.LdTMT

for any tizo)which is not true even if t = O.

Operators. The non-performability of the inverse oper-
ation leads to a new concept, one of operators. The fraction
i1}/{f} represents an operator., No longer is it a funection.

In this paper however, we shall admit all fractions a/b as

operators whether or not a {?(t% exists. In other words, all
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functions, ¢, defined above are operators, but not all oper-

ators are functions.

For operators, we adopt the same definitions as for a
quotient field, (1.5) through (1.8). Due to the analogy be-
tween operators and fractions in arithmetic, operations on
operators are performed identically as those on ordinary
fractions.

Numerical Operators. We shall now consider operators

of the form
(3.1) [a] = {a}/{1§
where-{a% is any arbitrary constant function with a value of

a everywhere. Then the formulas:

(3.2) {a]l + [p] = [a + D]
(3.3) [2][r] = [av]
may be easily verified.
For (3.2):
[a]+ [b] = fal , {b} = fal + {b}

and for (3.3):

5

[a]L%]

t t £*
= €f€b3 = ii?} = [ab].

It may be seen by these formulas that the braces are now

superfluous. Operators of type [a] are termed numerical op-
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erators in contrast to constant function operators of type
fa}.

Products and suns. We also have that for any numerical
operator a (henceforth to be called simply numbers due to
the operational analogy) and an arbitrary constant function
{b}:

afp} = {an}
or in general
(3.1) a{t ()} = ja-z (6},
Compare, for example, the formulas
(2)(3) = 65 2{3} = {6}; {2}{3} = f6t.

There exists no formula with respect to addition how-
ever, analogous to (3.%). The sum of the number a and the
function {f(t)} can be written only in the form a +-{f(t)}.
In consideration of commutativity and associativity, the
following is very important:

a +{r®H o + {s®)]) =
ab +{ b£(8) + ag(t) + [ 2(e-Mg(mar].
For example, verify:
+{thHa - {sin t}) =1
=1+{t-sint- g:({:-f)sim' ar}
=1 +{t - sin t - t{sinvar + { veinv ary

£
1 *“&t - sin t + tcos t = t - tcos t + j;cosf<f?}
=1 + {-sin t + sin t}
=1+{of=1+0=1.
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Numbers O and 1. Using formulas (3.1) through (3.4),
it is easily seen by substitutlon that if ¢ is an arbitrary

operator, we may make the following definitions:

(3.5) 1c = ¢; Oc = 05 ¢+0 = c,
and
(306) {Q} = Q.

Differential Operator s. Operators may be divided by

one another. For example, if g = a/b and h = c¢/d, then

g=_a__o_0_= -a-g"-'
h b-d be

The fraction 1/h is called the inverse of operator h.
It may be seen that if h is a function, then 1/h cannot be a
function. A particularly important operator is the inverse
of the integral operator € = {1} which is denoted by
s =1/€
such that we have
s = st = 1.
Now consider the following important
Theorem. If a function a = {a(t)} has a de-
rivative a' = {a'(t)}, continuous for 0 < t< o,
we have
sa = a' + a(0)
where a(0) is a number,
Proof.
‘\a(’c))] = {S:a'(”()d't‘} + {a(o)}
e e} + aco)
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and multiplying both sides by s
s{a(t)y st{a'(tj& + sfa(o)
(3.7) sa = al + a(o).

If the function Ja(t)] equals zero at t = 0, then
sa = a'
such that multiplication of the function by s gives the de-
rivative of the function. Therefore s is called the differ-
ential operator. The restriction that a(0) = 0 is important
since the value of the function at t = 0 must otherwise be
added.

Powers of s. If a function a = {a(t)% has a second
derivative a" = {a"(t)}, continuous in tae interval 0% t<w,
then by multiplying (3.7) by s, we obtain

s“a = sa' + sa(0)
and applying (3.7) to a!
s*a = a" + a'{0) + sa(0).
3y induction then, we may obtain the general theorem:
Theorem, If a function a = {a(t)} has an
n-th derivative of a = {éw(t)}, continuous
on the interval O ft<e«, then
(3.8) s™ = 2™+ a™0) + 5a"X0) + ... + s"a(0).

Equation (3.8) may be written for convenience as

a= s - §7a(0) - ... - sa (0) - a™0).

Polynomials in s. A polynomial operator in s

‘

-
a,s” +a,s" + ... ta;s’ +a,



where a,y «ee 4 a, are

in this discussion.

formed as in ordinary algebra.

17

arbitrary nuwbers is very important

Operations on these polynomials are per-

We thus have: If two poly=-

norials in s are equal, then their coefficients are respec-

tively equalj i.e.:

n nw-i
a,s™ + a,,s" +

n

implies the equality a

Exvponential Functions.

e ta =Dbs"+b_ 5"+ ,,. + b,

(o} n

'Y\=b1\; (n=0, 1, LI ,n)-

we have that:

Applying equation (3.7) to {elt}

s eu)] =1+ a&e“&
or
(3.9) {6 = 1/(s-a).
Then with the definition of convolution,
1 - {eaﬂf-—_ gjtea(tﬁﬂewd“f—%= {eqt(t TY= {_t__ eat}
(s-a)* ° ° 11
and

s - e e

or in general,

e tat-v) av
s §e Te
[+

vl
%eut£ird7§ ) gg} eatf

- t
(3.10) 1 (™ e } (m=1,2, vou )
s=a)" | (n=1)1! »
Trigonometric Functions., Using Euler's equations:
sinx=¢ - e, cos x = &%+ ¢
21 2

we obtain
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1 ie

ib -ibt
{eo.t sin bt} { @ti )t_ e(a. i }
i

[\V

and

A -ib)t
{eat cos bt} %{e‘“"h)t-t- & }
Now using (3.9), we may write

(3.11)‘{% e* sin bt} = 1 ( 1 1 ): 1 .

2ib|s~a=-ib  s=a+ib (s-a)? + b2

and
(3.12) {eatcos bt} f_ 1 + 1 = s-a .
2| s=a=ib ' s-a+ib (s=a)z + b*

Powers of the operators of the above two formulas may

be calculated by repeated convolution but become very com-
plex. Of wore interest is the case where a = O such that
we obtain:

(3.13) {sin bt}
(3.1%4) feos bt}

Rational Operators. By the expression rational operator,

b/(s? + b?)
s/(s* + b?).

we mean a fraction of the form

(3.15) Bps™+ .. + As + 3 (m<n)
BaST F eee * 5,5 T3,

where Zpy oo 5 ¥p3 Spy ees 5 & are complex and Jp# O.

From algebra we know that if m<n and if ¥; and &, are
real, the above expression may be resolved by the methods of
partial fractlons and undeterwined coefficients into simple
fractions of the types: |

1__5s b 3 s
(s=-a)? [(s-a)? + b2]¢ [(s=a)Z + bz]P

where p = 1, 2, 3, eses The first type is given by (3.10).
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To obtain the second type, convolute the function (3.11) with
itself; thus

(3.16) e ={§%t(% sin bt - t cos bt)}.
See 272 2

Apply s to this formula to obtain the third type using

(3.7) and noting trhat the function vanishes when t = 0O; thus

(3417) s _ d fe®™ (1 sin bt - t cos bt)}
[(s-a)2 + bZ]Z - dt|2b°|D
. e*® g&bat sin bt - at cos bt}
262 ) b

so that we now have a specific example of the third type of
the above fractions.

Table of Operators. The use of the above series of
equations to resolve rational fractions or to solve differ-
ential equations is very similar to the methods of the La-
place Transforr.ations as may be seen in the following table
(p. 20) of functions {f(t)} and their respective operators,
F(s). In all of the cases, the operators F(s) equivalent
to the functions {f(tﬁ are also the Laplace Transformations
of the functions, i.e.:

Lz} = 7).
The equations of convolution theory, however, have been de-
veloped without consideration of convergence being necessary.
It must be remenbered however, that these formulas, although
they are general, have been given for £(0) = 0. Otherwise
initial conditions must be considered, as discussed in Chap-

ter ]V,



TABLE OF OPERATORS
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Function Operator
t
P D L
s-a
2. {te*q 1
s-a
ot
3. :cl‘.e_} 1
% nl Ts=a)nel
%, {sin bt} b
T5Z+02)
5. {cos bt‘ S
Ts5+62)
6. &eu sin bt} b
[(s-a)Z + bZ%]
7. &e“’ cos bt} s-a
[(s=a)2 + b?]
1
8. ifn,(t)} Snf - S‘n-.f(O) - eee =
9. gof_ 1 sin bt - t cos bt 1
2% b [(s-a)? + B
10, &% {gjb"t sin bt - at cos bt S _
2b% b - [(s-a)* + bZ]2

(n

£ o)
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If in the rational operator being considered, the expo-
nent of the numerator equals or exceeds that of the denomi-
nator, i.e., m2n, then the expression (3.13) will be given
as the sum of a polynomial in s and a fraction of degree
such that m <n. Then the methods of partial fractions with
undeternmined coefficients are acceptable. These nmethods
will be used in the following four examples.

Exarvples.

Ebcample '1 y to evaluate

Ss + 3 = A, B(stt) + C
(s=1)(s + 2s + 5) s=-1 (s+1)* + &

1 - s+1 4 3
s=1  (s+1)2 + 4 ' (s+1)~ + L

= ‘S‘et - e Fcos 2t +26° sin 2’c}.

—

Example 2, to evaluate

25 + 65* + 35 + 5  2s% + 65 + 3s% + 5
s+ 256 - 252 =1 % (s=1)(s+1)(s2+ 1)°

A B Cs +D BEs+F Gs+H

s 1tz T (s*+1) + (s2+1 )Z+ (s2+1)3

= {et - e - 3(3-t*)sin t + %t cos t}.

Example 3, to evaluate

S _ _As+3 Cs+D
(s*+a?)(s2+br) ~ s*+a® = s*+b*

_ 1 1 1
- a% =b* sZ+b% s t+g*

=[ 1 cos bt - cos at))l.

az*=hph>
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Example %, to evaluate
3 2

S  =8s8"+s+ 1+ 1
s-1 s=1
=s2+s+1+{'e"‘§.
Thus we have seen the ease with which this method will
evaluate rational polynomial operators in s, and the simi-
larity of the convolution equations with those of the Laplace
Transformations. In the next chapter, we shall discuss the
ways in which the convolution operators may be extended to
give a general method by which to solve ordinary differential
equations with constant coefficients with initial conditions
imposed at t = O, In Chapter V, we shall impose conditions

at to # O.



CHAPTER 1V
ORDINARY DIFFERENTIAL EQUATIONS

General Mmethod. Operational calculus now provides a

conver.ient method of solving ordinary linear differential
equations with constant coefficients. The previous discus-
sion of polynomials in s and the development of the equa-
tions given in the table in the previous chapter prove
sufficient for the reduction of horogeneuus and non-homo-
geneous equations to ordinary algebraic ones.

Consider the equation

} n-t¢) +

(4o1) £(x) = a,x"+ a, x eee +a,x' + a_x
where the coefficients a are constantsand f(x) is an arbi-
trary function continuous for all t >0, We wish a solution
of x(t) such that
x(0) =X.3 x'(0) =¥,3 een 3 XUO) =V,sy.

In view of equation (3.7), equation (4.1) may be written
in the form

ap,s™X +a,,S X+ .ee ta,=Db_ S +* ...+ Db+ £(x)
where

by = Qe + 8 8 F eee + a8 s (X =0, 1, eee , n=1),

<t n

So we now find that

oimilar methods may be used for a system of n equationé

in n unknowns:
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/ -
X, tax +...%a,x,=f (x)

/

X"

+ an‘x' + e t aﬂl‘l}s" = fn(x)o
Assuming that x (0) = %, ... , x,.(0) =, we may now
change the form of this system using #8 of the table, to

(a, +s) x, + .00 +a

nxﬂ = x‘ + f‘(X)

qax: *eee t+ (a + s) X, = 3, + %n(x)
and then use matrices, determinants, or some other classical
method to solve this system of algebraic equations for all X; .
Examples. We now give the following three examples.
Example 1, to find x(t) given
x" - x' - 6x =2, x(0) =1, x'(0) = 0.
b0} - {x1 (e} - s{x(t)} = {2}
s®x(t) = sx'(0) - x(0) - sx(t)
+ x'(0) - 6x(t) = 2/s
?X - sx - 6x=5s =1+ (2/s)
x(s® - s = 6) = (s? - s+ 2)/s
x = (s? - s + 2)/s5(s=3) (s+2)
= =1 + 8 1

=1 R
s T 15 s=3 u 5 s+2
3t -2t
={_ 1,8 % &2,
AL AR |

Example 2, to find x(t) given

x“ﬂ - ox® Lox" L x = 0, x(0) = x"(0) = xgko)

= 2%0) = 0, x(0) = x%0) = 2, x™0) = -1, ¥%0) = 11.
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Sx + 2% -25%°x -~ x=25%+65%+3s*+ 5

x=2s" + 65+ 3s*+ 35
S¥ + 25¢ = 25~ « 1

which by exawmple 2 in chapter three
t

x:{et - e -8_(3-1:)2 sint+_§tcos‘t§.—
Example 3, to find x(t)
: t
Given X' = ax - by = be"

y'+bx -ay =0

where x(0) = 0, and y(0) = 1.
sX - ax - by = b/(s=-a)
Sy + bx = ay = 1
X = 2b y = (s-a)z - b~
(s=a)* + b? (s-a)[(s=a)* + b*]
= {26-“’“c sin bt = ____s(s-a) 1

(s-a)? + b* ~ s=-a
= {Ze<ZI cos bt - ee't}
S ot
= ie (2 cos bt - 1)}.
We have now shown the methods employed for the solution

of both single equations and a simple system of equations,



CHAPTER V
GENERAL SOLUTIONS
AND BOUNDARY PROBLENMS

General Solutions. S0 far we have considered differ-

ential equations where we were given initial conditions for
t = 0, a situation for which the operational calculus is well
suited., However, it may also be used in other problems such
as finding a general solution or in boundary condition prob-
lems involving two points, etc.

First we shall consider the problem of the general
solution., We have seen that

ax”+a x"™+ .. +a, =1

may be written as

-t

(5¢1) X = by S +* ess * b
ansn +.l‘ +a

1 f.
A,8" T see T a,

+

[

where the values of b, are dependent on conditions at t = 0.
If these conditions are not given beforehand, the b's are
arbitrary constants and equation (5.1) provides the general
solution. It may most easily be reached by decomposition
into fractions of the types below where it may be seen that
it would not be necessary to find the coefficlents 4, B, C,
Dy .ee in

A__ 3 Bs + C
(s=a)f T(s=aj)2 + b*7¢

which arise in the decomposition., In this way the calcula-

tions are made considerably easier,
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The general methods will be shown in the following two

examples,.

Examples.

Example 1, to find the general solution of the differ-
ential equation

x® - 2x”+ 2x" - 2x' + x = f.
oince the initial conditions are arbitrary, an application
of the operator transformations gives
fx-2x+2x-2sx +x=W+T?

where W = b,s’ + b,s* + b,s + b,, Therefore we have

X

= W ‘ + f H
(s=1)>(s*+1) (s=1)*(s*+1)
the first part of which may be written

A B Cs + D
51 T (s=1)* t (s*+1)

considering A, B, C, and D without regard to their connec-
tion with W. The coefficients of the second part are uniquely
determined to be

o141 s .
(s=1)*(s*+1) =  2(s=1) " 2(s=1)% ' 2(s*+1)

S50 we now have the general solution

x(t) = Ae® + Bte® + Csin t + D cos ¢
t
+ %(f(t-ﬁ’)(-eq + 6™ + cosT)at.
[a] .
Example 2, to find the general solution of the system

of equations

x! X -2y

y! X -y +f,.
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We shall now introduce the initial (arbitrary) conditions
x(0) = a
y(0) = b,
such that by tane transformations, we have
SX =X -2y t a
Sy =X=-y+b+f
or

x = (a=-2b) + as _ _sf
s4+1 sé+1

(a=b) + bs ;| s=1_Tf£.
s*+1 s*+1

y

Then the general solution is
- x(t)
y(t)

Boundary Problems. In a two point boundary problem we

It

t
(a=2b) sint + a cost - ZS.f(tdf)(sin?)dY
< o

(a=b) sint + b cost + (of(t-f)(-sinT + cosT)dv.

are given the values of the required functions, and possibly
those of fheir derivatives, at the two ends of a fixed in-
terval. For instance, let us require a function satisfying
the equations

(5.2) x P 2 oox™ + ox" - 2xt + x

cos 2%

and

x(0) = 1/25, x() = 1/25, x'(0) = 2/15, x'(w) = 2/25,
We find a general solution

x(t) = 4e® + Bte® + Csint + Dcost + 4 sin2t + 1 _cos2t.
75 25

To deternine the coefficients A, B, C, and D, we first need
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to find x'(t):

x'(t) = Aet + Btet -4+ - Bet + Ccos t

- Dsint +8 cos 2t -2 sin 2%
75 25

so we may then substitute the values of zero andAaf to obtain
a system of four equations in A, B, C, and D to be solved by

any convenient method.

x(0) = A+ D+ 1/25 = 1/25

x(¥) = A6¥ + Bwe® - D + 1/25 = 1/25
x'(0) = A+ B+ C + 8/75 = 2/15

x'@) = ae” + Bre™ + &") - C + 8/75 = 2/25.

Solving this system, we obtain
A-=B=D=0, C=2/75
and substituting into (5.2)

x(t) =2 sint+ 4 sin 2t + 33 cos 2t.
75 75 7

Similarly, we might have been given values of x(t) for
four different values of t. The solution would have been
quite similar--differing only in the values assigned for t
in obtaining the four equations for determining A, ... , D.

Initial Conditions at teo Z O. The methods just given
may of course be used in the solving of problems of this sort
but we must take into consideratlon the necessary translation
of coordinates as i1f the given conditions were for t, = O.

Given to find the solution of

xw) -2x 4 ox" - 2x' + x = £(t)
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such that at te # 0
x(ta) = x'(to) = x"(to) = x"(to) = O.
First find the solution of the equation
x® - ox" + 2xn - 2xt + x = {£(t+ta)],

such that

x(0) = x'(0) = x"(0) = x"(0) = O.
We taen have
s*x - 25%x + 25%x - 2sx + x = {f(t + to)},
then using partial fractions

feet + £}

X =

(_ . M. b2 )
s=1) * 2(s=1) T 2(s +1)
and now using the transformations and the definition of
multiplication
t ¥ ~
X = {%gof(t +t, =7T)(-e + Te + cos*c‘)d"c‘}.
Now to obtain the actual desired solution, replace t by t-t.
everywhere such thattta
x(t) = % Xo £(t-T) (-e™ + Te" + cos ¥)dT.
Thus far we have considered only functions of class Q,
that is functions continuous everywhere on the interval t 20.

In the next chapter, we shall conslider functions which have

a finite number of discontinuities in any finite interval.



CHAPTER VI
DISCONTINUOUS FUNCTIONS

Functions of Class K. Thus far we have considered only
those functions which were continuous for all t 2 0, Now we
shall introduce a discussion of some aspects of selected dis-
continuous functions on the field of operational calculus.

The function {f(t)] defined in the interval O t<es ,
belongs to class K if and only if:

I) it has at most a finite number of discontinuities in
every finite interval,
II) the Riemannian integral I:Wf(f)!&? has a finite value

for all t 2 0O,

One example of a discontinuous function is the square
wave function f£(t) = h(t) - 2h(t-a) + 2h(t-2a) - ... which
has amplitude one and period 2a as shown in Figure 1 below.
This funetion fulfills both requirements of the above defi-

nition of a discontinuous function. A second example is the

function
t
1 dr = 2Vt
o VT
shown in Figure 2.
T o -
I
& ] 2a 3a; CEY — z
4 i
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Therefore with the above definition, if f = {f(t)i is a

function of class K,
£f={1{£)} = i(tf(«”)d’r%,
where the integral always represents ; continuous function
such that if we denote the integral by a, we have_ff = a or
£f=a/.

Thus all functions of class K may now be represented as oper-
ators since they may be expressed as the quotient of two éon-
tinuous functions. ©Since we may now consider functions of
class K as operators, all operations which have been previously
defined for operators are applicable to discontinuous functions,

Equality of Functions of Class K. Two functions f and g

of class K are defined as equal when the continuous functions

given by the integrals

a = H:f('f)dr%, b = %fg(r)dv},

are equal, i.e., (f = a=b = (g.

Now a' = f and b! = g at all points where f and g are
both continuous; hence when a = by, f = g at all points t at
which both f and g are continuous and only at those points,

Sums and Products. I1f f and g are functions of class K,

then the sum of f and g is given by the equation

f+g= ?4‘_% = %_U Cf(*r)d-r} + ﬁfg(?’)drﬂ

which beconmes
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= %{f HRE g(q‘adﬂ,

and thus

fr} + ey

cimilarly we have that

if(t)} - {g(t)}

« {f(t)} = {a£(®)].

It is obvious then that a sum or a difference of any two

{f(t) + g(t)} .

{f(t) - g(t)}

and

functions of class K, as well as the product of a number and
a function of class I remains a function of elass ¥, It may
also be shown tiat the convolution of any two functions of
class K 1s still a function of class K./

Using this as a basis, it is easy to deduce the qualities
of associativity, coumutativity, and distributivity of convo-
lution for functions of class K., The net::ods are the sane
as those used before,

Buler's Gamma Function. In the first chapter, we de-

veloped the formula

(6.1) c=&%ﬁ>{

for all natural values of n. In this calculus, it is also
necessary to consider the non-integer powers of C. We shall

now consider Buler's Gamna Function:

7Mikusinski, Operational Calculus, p, 109.
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T oy e
@A) = S t e dt,

o

which is equal to (A-1)! for all positive integers A, Here
it will be sufficient to consider the integral ("(A) for 120,

We will utilize the following necessary properties in the

discussions e
(1) o+ = X0, 5
(I1) as a deduction from (I) N
(tr) = (n-1)1, n an integer,
(111) () =ﬁ",l ‘
(IV) B(Xw) = g;t“(‘l-t)“"dt e N A
Figure 3
= COU (Y wiere B(A,u) is Euler's Beta Function.
M (A+u

From forrula (I) we may evaluate [(A) for every X\ if we know
the values assumed in any interval of length one. Property

(III) irplies the important formula:

5
(6.2) ge dw = w2,
]
We have that
w 1]

@) = So £ Fat

and by reans of the substitution t = &*

o Y
-
= 2ge dq
0
and forrula (6.2) follows.

Fon-integer Powers of € and s-«. Since formula (6.1)

nay be written as:
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(”:{ £ i,

r ()

We may generalize it to

(6.3) Eh'—'{ t;\-l \
> o)

for all positive A, With this definition, the property of
powers is retained:
(6.1) . (" . 0N (umoro)

We shall now define, and prove, the forrumla for a more

general operator

(6.5) (3=0)" = { g eat§
g TCay

where A is a positive nuwber and & is arbitrary. If o« = O,
(6.5) is reduced to (6.3) and if A is natural, it is then
identical to the formula developed in chapter three for oper-
ators. With the definition of convolution, we may obtain

" Y- t - €Y U=b
(S-d) (S-'x)M = 1 f(t_T)A eﬂ-( v em?d‘r
at c TR ST
= _& (t=T)" 7" ar
o

= g‘“\t;’”“ §1(1-<r)}‘"'o- 4 du
zl 5 z ’Ai B

due to making the change of variable

3
o

T=te, dr=tde,

Now the last integral is

B(a,m) = (‘)«T‘/A
R )

so that when a,u > 0,
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(6.6) (s-d)‘a(s-d.)"“= eatt?”‘u_' = (S—d)-)_#

S

as in (6.5). When 4= 0, (6.6) reduces to (6.4).

We may extend this definition to all real X by writing
(6.7) (s=4) =1 and (s=)' = 1/(s=aJ" (2>0).

If @ =0, then (6.7) becomes €= 1 and { = 1/€* (a>0).
If Ax1, taen the operator (s-#) is a continuous function;
if 0<»< 1, then the function is discontinuous at t = 05 if
M< 0, it is not a function.

Error Function erf t. From formula (6.5) we have in

particular that

1. (1 e,

such that we obtain by the substitution «av=¢* ; adv = 25d6

Wit

T - Y _Tx
U d*f} 2 dr}mm.
sFa - (|Tr ), 7 e |,
Now introducing the notation
t ) P ———
erf t= 2 ( eVav
Lg [+
we write
. 1 Z
1__ _ J1erf %;E} . ° erf t
STS = | « Figure 4

It may easily be seen that {erf t} is a continuous func-
tion increasing from O to 1 in the interval O €t<ow, This
function occurs in the theory of probability and is called

the error function, hence the "erf'",
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Derivatives of Class K. A function {a} will have a

-] —

derivative of class K if it has a derivative in the interval
0& t<w except for a finite number of points in every finite
interval. For example, consider the function shown in the
graph in Figure 5. The function is continuous everywhere;
it is differentiable for all t except for t wheﬁ t is an in-
teger, but the derivative is discontinuous at those points

as shown in Figure 6.

2 2, 3, 4 -
-1 PR ———
F(t) F'(t)
Figure § Figure 6

We have proved in chapter three that if a function a has
a derivative of class fk, then a is also continuous, and that
sa = a' + a(0).
With the preceding definition of equality, we now may prove
the more general
Theorem. If the continuous function a has
a derivative a' of class K, then
(6.8) sa = a' + a(0).

Proof: 1If a' is of class K, then we have

(6.9) la(e)y = H}I-(w)dr} + a0}

since a' has only a finite number of discontinuities in the
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interval O¢rs t and the integral, if improper, has a finite
value., We may write the equation as
a = Ca' + {a(0).
Multiply by s = 1/ ; then because
s€at = a!
at all points where a' is continuous, the definition of equal=-

ity enables us to write

sa = a' + {agé)fr = a' + a(0)

where a(0) is a number (ef. 3.1).

We notice t.at if a were discontinuous, equation (6.9),
upon which the proof rests, would be false because when a is
of class K, the right member is necessarily continuous and
could not equal the discontinuous function a on the left,

For example, the discontinuous function

0 for 0¢t<1
a=&1 for1\<t<aoz’
which has a derivative of class K, a' = {Oi except when t = 1
where a' is undefined. Then we have that a' = O with our
definition of equality and thus equation (6.9) becomes
a = ({o} + {o} = {o}
which is false.

Differential Equations with Discontinuous Right :ide.

Let us now consider a differential equation of the form

i ta-1)
axV+ax "+ .0 t+taxc=rt
) Nt (-4
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where f is any arbitrary discontinuous function., A function
x is the solution of the equation if
1) it has n-1 continuous derivatives, and
2) it has the n-th defivative xUﬂ at all points where f is
continuous, and
3) the equation is satisfied at all points where f is a con-
tinuous function,
If we give initial or boundary conditions at noints at
wiich £ is continuous, then the entire theory is applicable.
Examples. Let uc now consider two different examples,
the first ir which the input function has no Laplace trans-
form; tihe second having an input function with a discontinuous
derivative.

Example 1, given:

x' - x = f {(2t - 1) et”], x(0) = 2.

We thus have

X = 2 - X = %(2t - 1) e#}
(s = 1)x =2+ {(2t -1) e€§
x= 2 _1_7_{(21:-1)@"1}

+

)
= {Zet§ + {et§{(2t - 1) et.s.
Considering the second part of the right side

%etﬁ {(Zt - etz} N {g:e#-ﬂ(”-‘l)e'f d7'75

iet g:e'r‘-'r (2T-1)ar ‘j
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so that we now have
X = 2et‘k + {etz'ﬂx
x:= 18 + e (.
For the second example, let us consider an integro-dif-
ferential equation of a square wave input function:

— _

a | 2n 2n¢ei 2ned .

“ e

t
x' + 4x + 3 Sx dt = £(t), =x(0) = 0.
o
liow applying (6.8)

sx + Ux + 3(x=f
(s + 4 o+ 3]x =f
5
x(s+1)(s+3)/s = £
X = sf .
(s+1)(s+3)

Now using the operators developed in chapter three:

[372(s+3) = 1/2(s+1)] ¢

ﬁe—“ -1e Hf(t)} )

where £ = (=1)" in nr <t < (n+1)w.

X

X
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When t lies in the interval n< t< n+1, x has the value

-t

3L( 1) jJ 3(&#) _ ZZ( 1) f -(t,u)

x(t) =
t
=3(tw) = (t-ud

+ 3¢(- 1) ( au - %(-1)‘(”9 " au

tn-( n-! J. .

-3 -t J
= Ze Z:( 1) e’ -12e ~ 5° (-1) (e=1)e’

3 jze 1

-3t . -t
+ 3 =1) e (€ =") = F(~1) e (et -e™)

M)y (1) 6 - de (e-nz (1)’ &’
j=6
+(-;,-<-1 TS ST M- “”’&).

Now evaluat:.nv thie above summations

3
E 1) e =1 - (1)
1 +e?

E (-1)ed =1 = ()"
J:O
Hence when t lies in the interval n <t< n+1, x(t) equals

xy=de =11 - 1] -3t et [1 - (17 e"1+ 31 (=)
e"‘fi e+

where Y= t-n, We see that

Tr. x =1 e -1 e =1 el et
2 e*+] 2 e+
E(m) = (1) [_ e =167 _e-16"+6 - e"”]
2 e’ +1 e+
n 3
= (-1) 1 +e-1)e e -1 -37
2 [( e+1\ - (e3+1 + 1) © ]
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Thus when we consider x(t) in the form
x(t) = Tr x(t) + B (T)
where Tr x is the transient state and E(v) is the steady

state of the input, then we have

-3t -
Tr x(t) %—(tanh g\)e . %:(tanh {,—)e t

and

E(v)

where ¥ = t-n. A(?) is a wave of period two and is contin-

(-1)“(_9_6‘1‘- e’ e'w)

e+l es+1

uous over the interval 04 t<w,. This may be verified by

showing

£.(0) = £Q1)
(-1 )°(e-e°_ e3e°) = (-1)‘(e~e"' _e%e® )
e+l  e3+] (e+1)  (e¥3+1)

et v+ e et = (D3 +1 e 1)
(e+1)(e3+1) (e+1)(e¥+1)

e-ez=e—cs.

The graphs on the following two pages show the transient
state (Figure 8) and the steady state (Figure 9). The mini-
nur point of Tr x(t) is at t = 1.11+ which may be verified by
rmeans of the derivative

-1&922 coshz-;jz - cosh? %zTe’t
(cosh? £2%) (cosh? $z)

L

where z = e—t, and substituting t = 1.1y the numerator of

the fraction in braces is equal to zero. The value for t is

ruch closer to 1.11 than to 1.12.
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Jurp Function and Translation Operator. Let us denote

by {H;(t)} a function which is equal to zero in the interval
0<£t<x and is equal to one for all t?}. The function has
only the one jump at t = A and is continuous thereafter. This
funection is called the Jump Function or Heaviside's Function.
Actually, it is the operator
(6.10) p* = s}, >0
associated with it (the translation operator) which is so
important to this calculus. This is shown by the following

Theorem. If f£f(t) is an arbitrary function

of class K, then

e} ={ 0 for o<t<,ll.

f(t-A) for O X< t i

s{H,(6)xe ()]

Proof. h'{£(t)]

t
T, (=
sgof(T) A(t=-T)aT
where
0 for t=-T< x}

H., (t=T) =
” {1 for t-T2X

0 for 0¢t sA
s RN N
{f(v)av for osa<t
[}

0 for O st& )
£(t=-7) for Ogx< t]

Thus we may write:

such that

n’{f(t)’;



2 i+ — >
h- = Hy(t) __, ;
S ! >
o A
-3 t 4 —
S S 5 = 5 >

As a direct result of this theorem, the multiplication
of any given function {f(t)} by h* yields a translation of

the graph a distance A in the positive direction as seen in

Figure 10.

f

{£(6)} r* £ ()Y
Figure 10
The theorem implies that
X At

(6.11) h*h* = ™,
and
(6.12) h*h¥f = h™ £ (,u>0).

Therefore we ray write the translation operator as a
power, Instead of h', we shall write simply h. Thus we also
have that

h® =1 and h™ = 1/h* (2 >0).
We should now consider the more general
Theorem. If a function a has jumps ﬁ., ""F“
at the points t,, «.. tn, 1s elsewhere

continuous and has a derivative of class

K, then
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n
(6.13) sa = a' + a(0) + Z‘;‘s,ht"
where a(0) is the value ofh%he function at
the point t = O,
Proof. Let b be the continuous part of the function a,

then we have

o, Lt
- 4 v
a-b+sz;‘e,h .
Since b is continuous, frow (6.8)
sb = b' + b(0),

Then

n
sa = sb + 2: B,n™
va

"
bt o+ b(0) + X fh

vai

and since b(0) = a(0) and b' = a' by the definition of equal-

ity, we thus obtain equation (6.13).

Examples. Example 1, the operator (1 - h*)/s is equal
to &Hd(t) - Hﬁ(t)k as shown in Figure 11.

Exarmple 2, the operator of the function in Figure 12 is
obtained by first considering the slope graph to get f'(t)
and then integrating to obtain fkt). The process may be seen
as: in considering the slope graph (Figure 13) we obtain

£1(t) =1 - 2h + h¥s

and integrating

£(t)

(1 - 2n + h*)/s®,
Example 3, the function in Figure 1% is derived similarly.

f'(t) is snown in Figure 15. The functions are as follows:
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Figure 15

Figure 1k
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£1(t) = 1 - 3n + 3h% = n¥s
and
£(t) = (1 - 3h + 3n° - n’)/s*.

Example 4, an example of the theorem expressed in (6.13).
ray be seen in Figures 16-18 showing how a function with mul-
tiple jurps may be given by a continuous part and a Jjump part.
Figure 16 shows the original partj; Figure 17, the continuous
part of the function, and Figure 18, the jump-forwing part of

the function.

\ex
\\\ ///1:
o Figure 16
3o g
/65 /‘\76? N
° v ta T\ Tt  ts Te ty Figure 17
. E
oo ‘in SIS A ., -
0 €, ¢ 1 s ts = Figure 18
| . : v é{

Dirac Delta Operator. This operator is most easily seen
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by taking the limit of the function shown in Figure 19 as €
approaches O, This gives the function shown in Figure 20
which is equal to zero everywhere except at the point t = A
at which value it tends to +@, This operator is called the
Dirac Delta Operator. It is not a true jumwp function as it

is soretimes considered to be,

v A
2EI T \ .
§i 1 +©
N\
1~£\§{.7‘*5 R )
° 1 hﬁ@ o e i ¢ * n* i
s 2¢
Figure 19 Figure 20.

However, in this work, we need only consider the operator
in the form 3(t) such that
J) = /¢ = {1} /¢
for any arbitrary continuous function f. This allows us to

have an operator (it is not a function) such that for any {f%:

. t
{5} e} = {f smee-mar} = {z}.
The Dirac Operator is therefore the multiplicative oper-
ator for operational calculus as the number 1 is for algebra.
Thus we may now complete the extention of the commutative ring

into a field of convolution duotients.8

8Brand, Differential and Difference Equations.




CHAPTER VII
SUNMARY

Definition. The Mikusinski Operational Calculus is de-

rived from a commutative ring of continuous functions, a, b,
Cy see in which the operations of addition and multiplication
(convolution) are

a+b={alt) + b(t)]
ab = ig:a(t-T)b(T)di.

From Titchkmarsh's Theorem, this ring has no divisors of
zero, i.e.: if ab = O, then either a = 0, or b = 0. There-
fore the ring ray be extended into a field of convolution
quotients a/b where b # O. Here a/b represents an equiva-
lence class of quotients such that

(7.1) a _ a' if and only if ab' = ba'.
b b!

The operations on these equivalence classes are defined

by the relationships

(7.2) ayc_ad+ be
p ¥ 3 ba
(7.3) a,ec _ac,
b"d T bd

where the right hand members are equivalent in the csense of
(7.1) when a/b is replaced by any other member of the equi-
valence class, a'/b'. Thus we have that

a = ak/k for all k # 0.
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In the original ring, there was no multiplicative iden-

tity element for convolutionj; that is there was no continuous

function x such that the convolution
ﬂt Ya(r)

Xa = x(t=T)a(v)a7T${ = 4a

. ( ,} { }

holds for all functions a, for if a = {1}, the equation is
z{1} = {1} which does not hold when t = 0: the left hand
menber is zero and the right hand member is one.

But in the quotient field, the unit for convolution is
f/f where f is any continuous function not equal to zero,

and from (7.3)
a.,
b

HijHy

.‘:?‘i:é—
bf b

since convoluticn is associative and distributive. Thus the
multiplicative element is
\- 1T
[

It may be identified with the Dirac symbol 3(t) for from the
"gifting property" of the Dirac symbol, the convolution of
Sif} gives . |
(7.3) Stewif ={f, Imec-nar= {ewj.

Operators. The convolution quotients a/b may represent
continuous ?ﬁnctions or discontinuous functions, but they are
not necessarily either. In all cases, however, they are oper-
ators. An operator may be a function such as [ = {1}, but

its reciprocal is the differential operator s = 1A£ which is
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not a function. The reciprocal of any function camnot be a
function, either continuous or discontinuous.

By considering polynomials in s in terms of a rational
operator, a system of operators ldentical with those of the
Laplace Transformations were obtained. Consideration of the
convergence was not necessary.

Differential Equations. By means of these operators,

there is a convenient method not only to evaluate, in terms
of functions of t, the rational polynomials in s, but by the
same methods, to solve ordinary differential equations with
constant coefficients. These same retiiods were also extended
to the solutions-of problems involving the finding of general
solutions, or in boundary condition problems involving two

or more points.

Discontinuous Functions. Discontinuous functions (of

class K) were said to be those functhnns{f(t)} defined in
trhe interval O €t<e, such that
1) {£(t)} has at most a finite number of discontinuities
in every finite interval, and
i1i) +the Riemannian integral (:!fff)\df has a finite value
for all t20.
Therefore, if {f(tj‘ were of class K, it could be repre-

sented as £ = a/€ where a is a continuous function:

e = (e = {(rmarg = a.
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Thus every function of class K may be considered as an
operator since it may be expressed as the quotient of two
continuous functions. Then although previously defined oper-
ations on operators held, the methods for solving differential
equations did not, and new methods were developed.

With the consideration of the jump function (Heaviside's
function) the last operator, the translation operator h}, was
developed for the ékpression of juwp and translated functions.
Lastly, a theorem was given whereby a function with jumps P
at t = tg¢ could be expressed as the sum of two functions, a

continuous part b, and a jump part:

We then found that

n
sa = a' + a(0) + Z\tht“.
vt



BIBLICGRAPHY

Brand, Louis, Advanced Calculus; New York: John Wiley and
Sons, Inc., 1960.

Brand, Louis, Differential and Difference Equations; Yet to
be published by John Wiley and Sons, Inc.

Churchill, Ruel V,, Operational Mathematics; New York: Mc-
Graw=Hill Book Company, inc., 1958.

Erdelyi, Arthur, Operational Calculus and Generalized Func-
tions; New Yorks Holt, Rinehart, and Winston, 1962,

Ford, Lester R., Differential Egquations; New York: McGraw-
"Hill Book Company, ince, 1955, ’

Mikusinski, Jan, Operational Calculus; New York: The Mac-
Millan Company, 1959.

Wylie, C. R. Jr., Advanced Engineering Mathematics; New York:
MeGraw-Hill Book Company, Inc., 1960.



