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Abstract

The central objective of this dissertation is to develop predictive mathematical and

numerical tools for modeling flow and transport in porous media. Specifically, the

dissertation presents mathematical models for coupling flow and transport in porous

media at the continuum scale; develops associated predictive numerical formulations

to solve the resulting governing equations; derives mechanics-based verification meth-

ods to assess numerical accuracy; obtains scaling laws pertaining to mixing, misci-

ble displacement and viscous fingering; and highlights the pitfalls of several popular

stabilized finite element formulations in simulating physical instabilities like viscous

fingering. Success of several important technological endeavors (e.g., hydraulic frac-

turing, geological carbon-dioxide sequestration) requires a fundamental understand-

ing of coupled processes at multiple scales. Although tremendous progress has been

made in the areas of flow and transport (and, of course, in the areas of mechanics,

geochemistry, digital imaging, experimental techniques), time has come for another

wave of intense research to model coupled processes. Future advancements certainly

depend on predictive numerical simulations and careful experiments. The current

modeling tools are good at providing qualitative trends, however they are not neces-

sarily accurate to provide predictive quantitative results, which are required for the

success of the aforementioned technological endeavors. The main motivation of this

dissertation is to improve the predictive capabilities of the continuum modeling tools

for flow and transport in porous media. First, a novel mechanics-based accuracy as-

sessment methodology is developed for porous media models and is used to investigate

the performance of finite element stabilized formulations with respect to accuracy and

convergence. Second, a mathematical model is presented to study the combined effect

of temperature and concentration on miscible displacement and viscous fingering. It

is also shown that the popular numerical stabilized formulations, which are primarily
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developed to avoid numerical instabilities, may also eliminate physical instabilities.

Hence, care should be exercised in using these formulations to study physical in-

stabilities like viscous fingering. Third, scaling laws and reduced-order models are

derived for double-diffusive miscible viscous fingering. One of the main findings is

that the evolution of the variances of the concentration and temperature fields scales

with the norm of the gradient of the velocity. Fourth, a theoretical and numerical

study is performed on viscous fingering in a porous medium which has two dominant

pore-networks with possible mass transfer across them. A linear stability analysis

is also performed to understand the effects of various parameters (e.g., log-mobility

ratio, permeabilities of micro- and macro-pore networks, mass transfer between the

pore-networks) on the physical instability.
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Chapter 1

INTRODUCTION AND MOTIVATION

The true sign of intelligence is not knowledge but imagination.

Albert Einstein

Porous media models are widely employed to make predictions in many subsur-

face problems which typically involves complex geometries, coupled processes, and

heterogeneous material properties. For a problem with no known analytical or ref-

erence solution (which is generally the case in realistic porous media problems), it

therefore is necessary to rely on numerical simulations to solve problems and to make

critical decisions. Moreover, it is a major task for scientists to ensure that the em-

ployed numerical formulations and obtained solutions are sufficiently accurate. On the

other hand, due to advancements in digital imaging in porous media, high-resolution

numerical methods, and high performance computing methods, the accuracy and

verification of numerical results are still highly challenging.

To answer the questions about solution verification of porous media models,

herein, we address several mathematical properties include the total minimum me-

chanical power, minimum dissipation theorem, reciprocal relation, and maximum

principle for the vorticity. All the developed theorems have firm mechanical bases
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and are independent of numerical methods. So, these can be utilized for solution ver-

ification of finite element, finite volume, finite difference, lattice Boltzmann methods

and so forth. Using several numerical examples, we will demonstrate the predictive

capabilities of the proposed a posteriori techniques to assess the accuracy of numer-

ical solutions for a general class of problems, which could involve complex domains

and general computational grids.

In coupled, multi-process porous media problems, there is also observed a physi-

cal instability so-called miscible displacement and viscous fingering. This phenomena

is found at the interface of two miscible flows with different viscosities while each flow

conveys a different transport. It should be noted that the viscosity of a fluid can be

influenced by altering physical properties and parameters like thermal and transport

mobility ratios, chemical reaction, Péclet number, and Lewis number. A number of

experimental, theoretical and numerical works have been done to understand various

aspects of the viscous fingering instability [Bacri et al., 1992, de Bruyn, 1995, Petit-

jeans and Maxworthy, 1996, Wit et al., 2005, Islam and Azaiez, 2007, Maes et al.,

2010, Nagatsu and Wit, 2011, Nicolaides et al., 2015]. The simplified model to cap-

ture viscous fingering numerically, is a coupled Darcy flow and advection-dominated

advection-diffusion (AD) equations. If the chemical reaction affects the viscosity,

then solution of advection-diffusion-reaction (ADR) model is necessary. It is, in gen-

eral, not possible to obtain analytical solutions under this system of partial differen-

tial equations (PDEs) and one commonly seeks numerical solutions for the problem.

Herein, the influence of temperature on viscous fingering, which is interpreted as

double diffusive effects, is studied. To consider temperature effects, the model shall

include thermal equations by adding the balance of energy. Some of the studies which

take into account the impact of temperature in their experimental, theoretical and

numerical works are [Pritchard, 2004, Nagatsu et al., 2009, Islam and Azaiez, 2010b,

Mishra et al., 2010]. We also characterize mixing for double diffusive viscous fingering
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by proposing a reduced order model (ROM) and constructing two scaling expressions.

The mixing in viscous fingering is studied before by [Jha et al., 2011]. Herein, we

shows drawbacks of previous hypothesis and its assumptions. Employing finite ele-

ment formulation to numerically solve strongly nonlinear coupled porous media flow,

transport, and thermal problem, motivate us to study the effects of numerical stabi-

lization on viscous fingering. By investigating the impact of violation of non-negative

constraint on the development of viscous fingering instabilities, we show that the pop-

ular numerical stabilized formulations including Streamline Upwind Petrov-Galerkin

(SUPG) and its modification, Spurious Oscillation at Layers Diminishing (SOLD),

can not eliminate the violation of the non-negative constraint for the concentration.

Moreover, these stabilized formulations may also suppress the physical viscous fin-

gering instabilities, which raise the question of their utility for simulating physical

instabilities.

The linear stability analysis and numerical simulations of coupled flow and trans-

port in porous media with double permeability is also conducted in current study. The

motivation to analyze stability of viscous fingering phenomena in double permeabil-

ity model is to understand the effect of micro and macro-network in coupled porous

media flow and advective-diffusive transport which is more realistic model than the

single permeability assumption. We show that the parameters like permeability of

micro and macro-structure and mass transfer between micro and macro-network have

significant effect on the dynamics of fingers. To performed a linear stability analysis

we utilize a quasi-steady state method, in which the base state change is slow com-

pared to the perturbation growth rate. A generalized Fourier series expansion is used

for the perturbed equations to validate the results of the quasi-steady state method.

It have been found that the both solutions are in good agreement at small time [Pra-

manik and Mishra, 2013]. Linear stability analysis for the growth rate of instabilities
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in single permeability problems for anisotropic, heterogeneous, and chemical reac-

tive cases have been performed before (see [Tan and Homsy, 1986, Zimmerman and

Homsy, 1991, Norouzi and Shoghi, 2014, Hejazi et al., 2010] and references therein).

The linear stability of double diffusive viscous fingering have been also studied in

some researches including [Pritchard, 2004, 2009, Islam and Azaiez, 2010a]. To the

bets of our knowledge, there is not a prior work for the stability analysis and numer-

ical solutions of double permeability/porosity models. In this dissertation, we use

the mathematical framework recently developed by [Nakshatrala et al., 2016a] and

perform the analysis. Then, we provide the numerical solutions of coupled anisotropic

double permeability porous media flow and advection-diffusion models by employing

finite element formulation.

The rest of the dissertation is organized as follows. Chapter 2 presents the

mechanics-based solution verification for porous media models. In Chapter 3, we

study effect of double diffusion and impact of finite element stabilized formulations

on viscous fingering and mixing in porous media. Chapter 4 provides linear stability

analysis and numerical solutions for viscous fingering in porous media with double

permeability. Conclusions of this dissertation are drawn in Chapter 5.
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Chapter 2

MECHANICS-BASED SOLUTION VERIFICATION

FOR POROUS MEDIA MODELS

Errors are not in the art but in the artificers.

Isaac Newton

2.1 Introduction

The simplest and yet the most popular model that subsurface modelers use is

the Darcy model [Darcy, 1856], which describes the flow of an incompressible fluid

in a rigid porous media. The Darcy model has been employed in several branches

of engineering and in several important technological applications. Some specific ex-

amples include groundwater hydrology [Raats, 1984, Munaf et al., 1993], enhanced

oil recovery [Minkoff et al., 2003], and simulation of flow of resin in composite man-

ufacturing [Turner et al., 2006, Lee et al., 2009]. The Darcy model has also been a

cornerstone for the theoretical development of mixture theories [Bowen, 1976, de Boer,

2000]. However, the Darcy equations posed several challenges to the finite element

community but played a crucial role in the development of mixed and stabilized for-

mulations [Brezzi and Fortin, 1991, Masud and Hughes, 2002, Nakshatrala et al.,
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2006]. These equations have received considerable attention even from the mathe-

matical community, especially in the area of mathematical homogenization [Hornung,

1996]. Brinkman [Brinkman, 1947a,b] proposed a popular extension to the Darcy

model which is commonly referred to as the Darcy-Brinkman model. In addition to

drag between the fluid and porous solid, Darcy-Brinkman model accounts for friction

between fluid layers.

The Darcy and Darcy-Brinkman models are adequate for most of the civil en-

gineering and geotechnical applications in which the velocities and its gradient are

small. It is, however, not possible to obtain analytical solutions under these models,

and one commonly seeks numerical solutions for realistic problems. Some notable

numerical formulations for Darcy and Darcy-Brinkman equations are [Chavent et al.,

1984, Ewing and Heinemann, 1984, Durlofsky, 1994, Arbogast et al., 1997, Masud

and Hughes, 2002, Brezzi et al., 2005a, Nakshatrala et al., 2006, Burman and Hansbo,

2007, Nakshatrala and Rajagopal, 2011, Srinivasan and Nakshatrala, 2012]. Below are

some specific challenges that a computational scientist may face in using numerical

simulators:

1. How much mesh refinement is required to obtain solutions with desired degree

of accuracy for a problem that does not have an analytical or reference solution?

2. Will the chosen mesh be able to resolve singularities in the solution and avoid

pollution errors? That is, can we identify whether a particular type of mesh

suffers from pollution errors for a problem with singularities?

3. Has the computer implementation been done properly?

4. Is the chosen numerical formulation accurate/appropriate for the chosen prob-

lem?

In the literature, one finds the usual approach of employing tools from functional
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analysis to obtain a priori estimates and assess stability. For example, see [Brezzi

and Fortin, 1991, Babuška and Strouboulis, 2001].

This study aims to address the aforementioned challenges for popular porous

media models by providing various a posteriori techniques with firm mechanics un-

derpinning. It needs to be emphasized that the techniques presented in this paper

will not be able to completely address all the aforementioned challenges. For example,

there is currently no methodology that can judge with certainty the correctness of a

computer implementation. The proposed techniques are no exception. However, the

proposed a posteriori techniques can be judiciously utilized to increase the confidence

or detect shortcomings of a computer implementation and to assess the accuracy of

numerical solutions.

2.1.1 Validation and Verification (V&V)

Errors can arise in both physical modeling and numerical simulation. The study

of errors due to physical modeling is referred to as validation, and the study of error

in a numerical simulation is referred to as verification. As Blottner [Blottner, 1990]

nicely puts it, validation is to solve “right governing equations” and verification is to

solve “governing equation right”.

Validation errors arise when a model is used out of its application range. Bound-

ary conditions are also an important source of validation errors. The validation is

beyond the scope of this study, and the reader can consult [Roache, 1998] and the

references therein. The errors in the verification can arise from three broad sources

including numerical errors, round-off errors (due to the finite precision arithmetic),

and programming mistakes [Oberkampf et al., 2004]. Basically, the verification is to

ensure that the code produces a solution to the model with some degree of accuracy,

and the numerical solution is consistent. Verification itself can be divided into two

categories: verification of code and verification of calculation [Roache, 1998].
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2.1.1.1 Verification of code

Verification of code addresses the question of whether the numerical algorithms

have been programmed and implemented correctly in the code. The two currently

popular approaches to verify a code are the method of exact solutions (MES) and the

method of manufactured solutions (MMS). In the MES, one first seeks exact solutions

often with simplifications to the equations and/or the boundary conditions. The

numerical results with corresponding inputs are then compared to the exact solutions.

In the MMS, an analytical solution is manufactured a priori and a source term is then

calculated that satisfies the governing equations. Steinberg and Roache [Steinberg and

Roache, 1985] advocate the combined use of the MMS and grid convergence for the

verification of code. If the code passes a desired number of test problems constructed

by MES and/or MMS, then the code is certified to be verified adequately. This by

no means implies that the code is completely bug free. More thorough discussions on

MES and MMS can be found in [Knupp and Salari, 2003, Roy et al., 2004, Roache,

1998].

2.1.1.2 Verification of calculation

Verification of calculation (which is also referred to as solution verification) es-

timates the overall magnitude (not just the order) of the numerical errors in a calcu-

lation, and the procedure invariably involves a posteriori error estimation [Salari and

Knupp, 2000]. The numerical errors in the solution verification can arise from two

different sources including discretization errors and solution errors. The discretization

errors refer to all the errors caused by conversion of the governing equations (PDEs

and boundary conditions) into discrete algebraic equations whereas the solution errors

refer to the errors in approximate solution of the discrete equations. The numerical

errors may arise from insufficient mesh resolution, improper selection of time-step,

and incomplete iterative convergence. For more details on verification of calculation,
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see [Roy et al., 2004, Salari and Knupp, 2000, Roache, 1997, 1998, Babuška and Oden,

2004, Oberkampf and Blottner, 1998, Oberkampf et al., 2004].

2.1.2 A posteriori techniques

The aim of a posteriori error estimation is to assess the accuracy of the numer-

ical approximation in the terms of known quantities such as geometrical properties

of computational grid, the input data, and the numerical solution. A posteriori er-

ror techniques monitor various forms of the error in the numerical solution such as

velocity, stress, mean fluxes, and drag and lift coefficients [Becker and Rannacher,

2001]. Such error estimation differ from a priori error estimates in that the error

controlling parameters depend on unknown quantities. A priori error estimation in-

vestigates the stability and convergence of a solver and can give rough information on

the asymptotic behavior of errors in calculations when grid parameters are changed

appropriately [Ainsworth and Oden, 1997].

In the current study, we propose new mechanics-based criteria that can be used

to verify the accuracy and convergence of numerical solutions to Darcy and Darcy

Brinkman equations. The solution verification requires confirmation of grid con-

vergence which is one of the most common and reliable error estimation methods

[Roache, 1997]. Similar to other grid convergence studies, we address only solution

verification. Since the aim of this paper is a posteriori error estimation, we assume

that the code has already been verified for the Darcy and Darcy-Brinkman class of

problems so that programming mistakes are not an issue. Likewise, we are not also

concerned with validation. It means that the Darcy and Darcy-Brinkman models are

physically adequate to model the problems.
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2.1.3 An outline of the chapter

Section 2.2 presents the governing equations arising from the Darcy and Darcy-

Brinkman models. In Section 2.3, we propose various mathematical properties that

the solutions to these governing equations satisfy. We also discuss how these proper-

ties can be utilized as robust a posteriori criteria to assess the accuracy of numerical

solutions. Section 2.4 presents several steady-state numerical results to illustrate the

predictive capabilities of the proposed a posteriori criteria with respect to singulari-

ties, pollution errors, and discretization errors in the implementation of (Neumann)

boundary conditions. We also utilize synthetic reservoir data to demonstrate the

usefulness of the proposed a posteriori techniques, especially for problems involving

spatially heterogeneous permeability properties. Section 2.5 discusses a posteriori cri-

teria for transient problems, and presents representative numerical results in support

of the theoretical predictions. Finally, conclusions are drawn in Section 2.6.

2.2 Darcy and Darcy-Brinkman models

Let Ω ⊂ Rnd be an open and bounded domain, where “nd” denotes the number

of spatial dimensions. We shall denote the set closure of Ω by Ω. Let ∂Ω := Ω − Ω

denote the boundary, which is assumed to be piecewise smooth. A spatial point in

Ω is denoted by x. The spatial gradient and divergence operators are, respectively,

denoted as grad[·] and div[·]. Let v : Ω→ Rnd denote the velocity field and p : Ω→ R

denote the pressure field. The symmetric part of the gradient of velocity is denoted

by D(x) = 1
2

(
grad[v] + grad[v]T

)
. The unit outward normal to the boundary is

denoted as n̂(x). The boundary is divided into two parts: Γv and Γt. Γv is the

part of the boundary on which the velocity is prescribed, and Γt is that part of the

boundary on which the traction is prescribed. For mathematical well-posedness, we

have Γv ∩ Γt = ∅ and Γv ∪ Γt = ∂Ω.
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The porous media models that will be considered in this paper are the Darcy and

Darcy-Brinkman models. Both these models describe the flow of an incompressible

fluid through rigid porous media. We completely neglect the motion of the porous

solid. The Cauchy stress in the Darcy and Darcy-Brinkman models, respectively, take

the following form:

T(x) = −p(x)I and (2.2.1a)

T(x) = −p(x)I + 2µD(x), (2.2.1b)

where I denotes the second-order identity tensor, and µ is the dynamic coefficient

of viscosity. The steady-state governing equations based on the Darcy model can be

written as follows:

α(x)v(x) + grad[p(x)] = ρb(x) in Ω, (2.2.2a)

div[v(x)] = 0 in Ω, (2.2.2b)

v(x) · n̂(x) = vn(x) on Γv, and (2.2.2c)

p(x) = p0(x) on Γt, (2.2.2d)

where α(x) is the drag coefficient, ρ is the density of the fluid, b(x) is the specific

body force, vn(x) is the prescribed normal component of the velocity, and p0(x) is

the prescribed pressure. The steady-state governing equations based on the Darcy-

Brinkman model take the following form:

α(x)v(x) + grad[p(x)]− div [2µD] = ρb(x) in Ω, (2.2.3a)

div[v(x)] = 0 in Ω, (2.2.3b)

v(x) = vp(x) on Γv, and (2.2.3c)

Tn̂(x) = tp(x) on Γt, (2.2.3d)
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where vp(x) is the prescribed velocity vector, and tp(x) is the prescribed traction.

We shall call a vector-field to be Darcy velocity if satisfies equations (2.2.2a)–(2.2.2d).

We shall call a vector field to be Darcy-Brinkman velocity if it satisfies equations

(2.2.3a)–(2.2.3d).

Equations (2.2.2a) and (2.2.3a) can be obtained from the balance of linear mo-

mentum under the mathematical framework offered by the theory of interacting con-

tinua [Nakshatrala and Rajagopal, 2011]. The drag term α(x)v(x) models the fric-

tional force between the fluid and the porous solid. The term div[2µD] in the Darcy-

Brinkman model arises due to the internal friction between the layers of the fluid.

The pressure p(x) is an undetermined multiplier that arises due to the enforcement

of the incompressibility constraint given by equations (2.2.2b) and (2.2.3b). The drag

coefficient is related to the coefficient of viscosity of the fluid and the permeability

k(x) as

α(x) = µ

k(x) . (2.2.4)

In general, it is not possible to obtain analytical solutions to the systems of

equations given by either (2.2.2a)–(2.2.2d) or (2.2.3a)–(2.2.3d). Hence, one needs

to resort to numerical solutions. This paper does not concern with developing new

numerical formulations to solve the aforementioned mathematical models. The paper

instead focuses on deriving mathematical properties with firm mechanics underpinning

that the solutions to these mathematical models satisfy. We shall then illustrate how

these mathematical properties can serve as robust “a posteriori” criteria to assess the

accuracy of numerical solutions.
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2.3 Mathematical properties: Statements and derivations

In the remainder of this paper, we shall refer to a vector field ṽ : Ω → Rnd as

kinematically admissible if it satisfies the following conditions:

(i) ṽ(x) is solenoidal (i.e., div[ṽ(x)] = 0 in Ω), and

(ii) ṽ(x) satisfies the boundary conditions.

It needs to emphasized that a kinematically admissible vector field need not satisfy

the balance of linear momentum given by equation (2.2.2a) or (2.2.3a). Clearly, the

Darcy velocity and the Darcy-Brinkman velocity are kinematically admissible vector

fields. For some of the results presented in this paper, we will need the body force to

be conservative, which is a common terminology in potential theory [Kellogg, 2010].

The body force ρb(x) is said to be conservative if there exists a scalar potential ψ(x)

such that ρb(x) = −grad[ψ]. We shall define the dissipation functional as

Φ[v] :=


∫
Ω α(x)v(x) · v(x) dΩ Darcy model∫
Ω α(x)v(x) · v(x) dΩ +

∫
Ω 2µD(x) ·D(x) dΩ Darcy-Brinkman model.

(2.3.1)

Since α > 0 and µ > 0, it is straightforward to check that Φ[v] is a norm. In fact, it

can be shown that Φ[v] under the Darcy model is equivalent to the natural norm in

(L2(Ω))nd, where (L2(Ω))nd is a space of square integrable vector fields defined from

Ω to Rnd. Similarly, it can be shown that Φ[v] under the Darcy-Brinkman model is

equivalent to the natural norm in (H1(Ω))nd, which is a Sobolev space. For further

details on function spaces and norms, refer to [Evans, 1998].

In this section, we shall present four important mathematical properties that the

solutions to Darcy equations and Darcy-Brinkman equations satisfy. These properties
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will be referred to as (i) the minimum total mechanical power theorem, (ii) the min-

imum dissipation theorem, (iii) reciprocal relation, and (iv) maximum principle for

vorticity. As a passing comment, we will employ the minimum dissipation theorem to

show the uniqueness of solution for Darcy equations and Darcy-Brinkman equations.

In the porous media literature, these results have neither been discussed nor utilized

to solve problems. More importantly, these results have not been used to assess the

accuracy and convergence of numerical solutions of porous media models. For ex-

ample, it will be shown that the minimum total mechanical power theorem can be

utilized to assess the accuracy of the implementation of both Dirichlet and Neumann

boundary conditions. On the other hand, the minimum dissipation theorem can be

utilized to identify pollution errors in the numerical solution. Herein, we give detailed

mathematical proofs for Darcy-Brinkman equations. We however provide comments

on the corresponding proofs for Darcy equations.

Theorem 2.3.1 (Minimum total mechanical power theorem). Let v(x) be the Darcy-

Brinkman velocity vector field. Then, any kinematically admissible vector field ṽ(x)

satisfies the following inequality:

εTMP[v] ≤ εTMP[ṽ], (2.3.2)

where

εTMP[z] := 1
2Φ[z]−

∫
Ω
ρb(x) · z(x) dΩ−

∫
Γt

tp(x) · z(x) dΓ. (2.3.3)

That is, for given boundary conditions, body force and tractions; the Darcy-Brinkman

velocity will have the minimum total mechanical power among all the possible kine-

matically admissible vector fields.
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Proof. Let

δv(x) := ṽ(x)− v(x) and (2.3.4a)

δD(x) := D̃(x)−D(x). (2.3.4b)

From the hypothesis of the theorem, δv(x) satisfies the following relations:

δv(x) = 0 ∀x ∈ ∂Ω and (2.3.5a)

div[δv] = 0 ∀x ∈ Ω. (2.3.5b)

Let us start with the dissipation due to the vector field ṽ(x):

Φ[ṽ(x)] :=
∫

Ω
α(x)ṽ(x) · ṽ(x) dΩ +

∫
Ω

2µD̃(x) · D̃(x) dΩ

=
∫

Ω
α(x) (δv(x) + v(x)) · (δv(x) + v(x)) dΩ

+
∫

Ω
2µ (δD(x) + D(x)) · (δD(x) + Dx)) dΩ

≥ 2
∫

Ω
α(x)δv(x) · v(x) dΩ + 2

∫
Ω

2µδD(x) ·D(x) dΩ + Φ[v(x)]. (2.3.6)

Using equations (2.2.3a) and (2.2.1b) the first integral in the above equation can be

written as

∫
Ω
α(x)δv(x) · v(x) dΩ =

∫
Ω
δv(x) · (ρb(x) + div [T(x)]) dΩ. (2.3.7)

The symmetry of D(x) allows the second integral to be written as

∫
Ω

2µδD(x) ·D(x) dΩ =
∫

Ω
2µ grad[δv(x)] ·D(x) dΩ

=
∫

Ω
grad[δv(x)] · (T(x) + p(x)I) dΩ

=
∫

Ω
grad[δv(x)] ·T(x) dΩ +

∫
Ω

div[δv(x)] · p(x) dΩ.
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Noting that div[δv] = 0 in Ω and by employing Green’s identity, we have

∫
Ω

2µδD(x) ·D(x) dΩ =
∫

Ω
div[TT(x) δv(x)] dΩ−

∫
Ω
δv(x) · div[T(x)] dΩ

=
∫

Γt
δv(x) · tp(x) dΓ−

∫
Ω
δv(x) · div[T(x)] dΩ. (2.3.8)

From equations (2.3.7) and (2.3.8), inequality (2.3.6) can be written as

Φ[ṽ(x)] ≥ Φ[v(x)] + 2
∫

Ω
δv(x) · ρb(x) dΩ + 2

∫
Γt
δv(x) · tp(x) dΓ. (2.3.9)

This completes the proof.

Remark 2.3.2. For Darcy equations (2.2.2a)–(2.2.2d), one can state the minimum

total mechanical power theorem as follows: For given boundary conditions, and body

force; the Darcy velocity, v(x), has the minimum total mechanical power among all

the kinematically admissible vector fields as

1
2Φ[v]−

∫
Ω

v(x) · ρb(x) dΩ +
∫

Γt
p0(x)v(x) · n̂(x) dΓ ≤ 1

2Φ[ṽ]

−
∫

Ω
ṽ(x) · ρb(x) dΩ +

∫
Γt
p0(x)ṽ(x) · n̂(x) dΓ ∀ṽ(x). (2.3.10)

Theorem 2.3.3 (Minimum dissipation inequality). Let v(x) be the Darcy-Brinkman

velocity vector field, and let Γv = ∂Ω. Then, any kinematically admissible vector field

ṽ(x) satisfies the following inequality:

Φ[v] ≤ Φ[ṽ]. (2.3.11)

That is, for given velocity boundary conditions and conservative body force, the Darcy-

Brinkman velocity has the minimum total dissipation due to drag and internal friction

of all the possible kinematically admissible vector fields.

Proof. We shall employ the notation introduced in equation (2.3.4). Recall that the
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mechanical dissipation under the Darcy-Brinkman model is

Φ[v] =
∫

Ω
αδv(x) · v(x) dΩ +

∫
Ω

2µδD(x) ·D(x) dΩ. (2.3.12)

Let us start with the difference in total dissipation, and from inequality (2.3.6) we

have:

Φ[ṽ(x)]− Φ[v(x)] ≥ 2
∫

Ω
αδv(x) · v(x) dΩ + 2

∫
Ω

2µδD(x) ·D(x) dΩ. (2.3.13)

Using Green’s identity, the first integral can be simplified as

∫
Ω
αδv(x) · v(x) dΩ =

∫
Ω
δv(x) · grad[ψ(x)− p(x)] dΩ +

∫
Ω
δv(x) · div[2µD(x)] dΩ

=
∫
∂Ω
δv(x) · n̂(x) (ψ(x)− p(x)) dΓ

−
∫

Ω
div[δv(x)] (ψ(x)− p(x)) dΩ +

∫
Ω
δv(x) · div[2µD(x)] dΩ.

(2.3.14)

Noting the symmetry of D(x) and using Green’s identity, the total dissipation due

to internal friction can be simplified as

∫
Ω

2µδD(x) ·D(x) dΩ =
∫

Ω
2µ grad[δv(x)] ·D(x) dΩ

=
∫
∂Ω

2µδv(x) ·D(x)n̂(x) dΓ−
∫

Ω
δv(x) · div[2µD(x)] dΩ.

(2.3.15)

From equations (2.3.7)–(2.3.8), the total dissipation due to drag and friction satisfies:

Φ[ṽ(x)]− Φ[v(x)] ≥ 2
∫
∂Ω
δv(x) · n̂(x) (ψ(x)− p(x)) dΓ

− 2
∫

Ω
div[δv(x)] (ψ(x)− p(x)) dΩ

+ 2
∫
∂Ω

2µδv(x) ·D(x)n̂(x) dΓ = 0. (2.3.16)
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This completes the proof.

We now show that the uniqueness of solution under Darcy-Brinkman equations

is a direct consequence of the minimum dissipation inequality.

Theorem 2.3.4 (Uniqueness theorem). The solution to Darcy-Brinkman equations

(2.2.3a)–(2.2.3d) is unique up to an arbitrary constant for the pressure given b(x),

vp(x) and tp(x).

Proof. On the contrary assume that {v1(x), p1(x)} and {v2(x), p2(x)} are two so-

lutions to Darcy-Brinkman equations for the prescribed data. Let us consider the

following quantity:

I :=
∫

Ω
α(x) (v1(x)− v2(x)) · (v1(x)− v2(x)) dΩ

+
∫

Ω
2µ (D1(x)−D2(x)) · (D1(x)−D2(x)) dΩ.

Noting that div[v1] = 0 and div[v2] = 0, the second integral can be simplified as

∫
Ω

2µ (D1(x)−D2(x)) · (D1(x)−D2(x)) dΩ

=
∫

Ω
(D1(x)−D2(x)) · (T1(x)−T2(x)) dΩ

=
∫

Ω
grad [v1(x)− v2(x)] · (T1(x)−T2(x)) dΩ.

In obtaining the above equation, we have used the fact that T1(x) and T2(x) are

symmetric. Using Green’s identity, the above equation can be written as

∫
Ω

2µ (D1(x)−D2(x)) · (D1(x)−D2(x)) dΩ

=
∫
∂Ω

(v1(x)− v2(x)) · (T1(x)−T2(x))n̂(x) dΓ

−
∫

Ω
(v1(x)− v2(x)) · (div[T1]− div[T2]) dΩ.
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Using boundary conditions and the balance of linear momentum, we get

∫
Ω

2µ (D1(x)−D2(x)) · (D1(x)−D2(x)) dΩ

= −
∫

Ω
α(x) (v1(x)− v2(x)) · (v1(x)− v2(x)) dΩ.

This implies that I = 0. Since α(x) > 0 ∀x ∈ Ω and µ > 0 in Ω, one can conclude

that

v1(x) = v2(x) ∀x ∈ Ω and (2.3.17a)

D1(x) = D2(x) ∀x ∈ Ω. (2.3.17b)

That is, the velocity and symmetric part of velocity vector field are unique. Using the

equation for the balance of linear momentum (2.2.3a) and the fact that the velocity

vector field is unique, one can obtain the following equation:

grad [p1(x)− p2(x)] = 0 ∀x ∈ Ω. (2.3.18)

This further implies that

p1(x)− p2(x) = p0 ∀x ∈ Ω, (2.3.19)

where p0 is an arbitrary constant. This completes the proof.

The solutions to Darcy and Darcy-Brinkman equations posses reciprocal rela-

tions similar to the famous Betti’s reciprocal relation in the theory of linear elasticity

[Truesdell and Noll, 2004, Sadd, 2009] and to a classical reciprocal relation in the

area of creeping flows [Guazzelli and Morris, 2012]. The Betti’s reciprocal relation is

often employed to solve a class of problems in linear elasticity, which otherwise may

be difficult to solve. Mathematically, the Betti’s reciprocal relation is equivalent to
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the existence and symmetry of Green’s function. We now precisely state a reciprocal

relation that the solutions of Darcy-Brinkman equations satisfy, and then provide a

mathematical proof.

Theorem 2.3.5 (Reciprocal relation). Assume that vp(x) = 0 on Γv. Let {v1(x), p1(x)}

and {v2(x), p2(x)} be the solutions of equations (2.2.3a)–(2.2.3d) for the prescribed

data {b1(x), tp
1(x)} and {b2(x), tp

2(x)}, respectively. Then, these fields satisfy the

following relation:

∫
Ω
ρb1(x) · v2(x) dΩ +

∫
Γt

tp
1(x) · v2(x) dΓ =

∫
Ω
ρb2(x) · v1(x) dΩ

+
∫

Γt
tp

2(x) · v1(x) dΓ. (2.3.20)

Proof. Let us start with the left side of equation (2.3.20). Noting that vp(x) = 0 on

Γv and Γv ∪ Γt = ∂Ω, one can proceed as

∫
Ω
ρb1(x) · v2(x) dΩ +

∫
Γt

tp
1(x) · v2(x) dΓ

=
∫

Ω
ρb1(x) · v2(x) dΩ +

∫
Γt

(T1n̂(x)) · v2(x) dΓ

=
∫

Ω
ρb1(x) · v2(x) dΩ +

∫
∂Ω

(T1n̂(x)) · v2(x) dΓ

=
∫

Ω
ρb1(x) · v2(x) dΩ +

∫
Ω

div
[
TT

1 (x)v2(x)
]

dΩ

=
∫

Ω
(ρb1(x) + div[T1]) · v2(x) dΩ +

∫
Ω

T1(x) · grad [v2] dΩ

=
∫

Ω
(α(x)v1(x) · v2(x) + (−p1(x)I + 2µD1(x)) · grad [v2]) dΩ

=
∫

Ω
α(x)v1(x) · v2(x) dΩ−

∫
Ω
p1(x)div [v2] dΩ

+
∫

Ω
2µD1(x) ·D2(x) dΩ.

In the above step, we have used the fact that D1(x) is a symmetric second-order
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tensor. Since div [v2] = 0 we have

∫
Ω
ρb1(x) · v2(x) dΩ +

∫
Γt

tp
1(x) · v2(x) dΓ =

∫
Ω
α(x)v1(x) · v2(x) dΩ

+
∫

Ω
2µD1(x) ·D2(x) dΩ.

Similarly, it can be shown that the right side of equation (2.3.20) is also equal to

∫
Ω
α(x)v1(x) · v2(x) dΩ +

∫
Ω

2µD1(x) ·D2(x) dΩ.

This completes the proof.

The following notation will be used later to verify the reciprocal relation:

εreciprocal := left integral− right integral
left integral . (2.3.21)

where the left and right integrals are, respectively, defined as

left integral :=
∫

Ω
ρb1(x) · v2(x) dΩ +

∫
Γt

tp
1(x) · v2(x) dΓ and (2.3.22a)

right integral :=
∫

Ω
ρb2(x) · v1(x) dΩ +

∫
Γt

tp
2(x) · v1(x) dΓ. (2.3.22b)

Remark 2.3.6. The corresponding reciprocal relation for Darcy equations can be writ-

ten as follows: Assume that vn(x) = 0 on Γv. Let {v1(x), p1(x)} and {v2(x), p2(x)}

be the solutions of equations (2.2.3a)–(2.2.3d) for the prescribed data {b1(x), p01(x)}

and {b2(x), p02(x)}, respectively. Then, these fields satisfy the following relation:

∫
Ω
ρb1(x) · v2(x) dΩ−

∫
Γt
p01(x)n̂(x) · v2(x) dΓ

=
∫

Ω
ρb2(x) · v1(x) dΩ−

∫
Γt
p02(x)n̂(x) · v1(x) dΓ. (2.3.23)

Remark 2.3.7. It needs to be emphasized that the reciprocal relation will not directly
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be able to assess the accuracy of the pressure field in the computational domain. The

reciprocal relation is ideal for assessing the accuracy of the velocity vector field in

the domain and the accuracy of the implementation of prescribed traction boundary

conditions. This reciprocal relation will not be able to provide information about the

accuracy of the implementation of non-zero velocity boundary conditions.

Next, we discuss in the form of a theorem on the nature of the vorticity under

the Darcy and Darcy-Brinkman models. To this end,

ω(x) ≡ curl[v(x)]. (2.3.24)

In a Cartesian coordinate system, the components of vorticity take the following form:

ωx = ∂vz
∂y
− ∂vy

∂z
, ωy = ∂vx

∂z
− ∂vz
∂x

, ωz = ∂vy
∂x
− ∂vx

∂y
. (2.3.25)

It should be emphasized that curl[·] operator is defined only in R3 (i.e., the three-

dimensional Euclidean space). However, for two-dimensional problems, one can con-

sider the vorticity as

ω(x, y) = ωz(x, y)êz, (2.3.26)

where z denotes the axis perpendicular to the two-dimensional plane in which the

problem is defined, and êz is the unit vector along the z-direction.

Theorem 2.3.8 (On the nature of vorticity under Darcy and Darcy-Brinkman mod-

els). Assume that the medium is isotropic and homogeneous (i.e., α(x) is a constant

scalar), the body force is a conservative vector field (i.e., ρb(x) = −grad[ψ(x)]), and

the response is steady-state. Then the vorticity vanishes under Darcy equations. Un-

der Darcy-Brinkman equations, the vorticity is an eigenvector of the Laplacian with

1/k as the eigenvalue. Moreover, the vorticity satisfies a maximum principle in which
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the non-negative maximum and the non-positive minimum occur on the boundary.

Proof. By taking the curl on both sides of the balance of linear momentum under

Darcy equations (2.2.2a) we obtain

curl[αv] = −curl[grad[ψ + p]] = 0. (2.3.27)

Since α is spatially homogeneous scalar, one can conclude that the vorticity vanishes

under the Darcy model.

The incompressibility constraint implies that the balance of linear momentum

under the Darcy-Brinkman model can be written as

αv(x) + grad[p(x)]− µdiv[grad[v]] = −grad[ψ]. (2.3.28)

By taking curl on both sides of the above equation, we get

∆ω(x) = 1
k

ω(x), (2.3.29)

where ∆ denotes the Laplacian operator and k is the permeability. The above equa-

tion is a vector eigenvalue problem in which the vorticity vector is the eigenvector,

and 1/k is the corresponding eigenvalue. For two-dimensional problems, we have

∆2Dωz(x, y) = 1
k
ωz(x, y), (2.3.30)

where ∆2D denotes the two-dimensional Laplacian operator. The above equation

is a scalar eigenvalue problem in which ωz(x, y) is the eigenvector and 1/k is the

corresponding eigenvalue.

Since 1/k > 0, this equation is commonly referred to as diffusion with decay,

which is a linear self-adjoint elliptic partial differential equation. It is well-known
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that such a partial differential equation satisfies a maximum principle [Gilbarg and

Trudinger, 2001]. Mathematically, the maximum principle for the vorticity under the

Darcy-Brinkman model takes the following form: If wz(x) ∈ C2(Ω)∩C0(Ω), then the

non-negative maximum and the non-positive minimum occur on the boundary. That

is,

max
x∈Ω

[ωz(x)] ≤ max
[
0,max

x∈∂Ω
ωz(x)

]
and (2.3.31a)

min
x∈Ω

[ωz(x)] ≥ min
[
0, min

x∈∂Ω
ωz(x)

]
, (2.3.31b)

where C2(Ω) denotes the set of twice differentiable functions defined on Ω, and C0(Ω)

is the set of functions that are continuous to the boundary.

The maximum principle can be utilized to verify the accuracy of numerical so-

lutions by plotting vorticity and checking whether the non-negative maximum and

non-positive minimum of the vorticity occur on the boundary. For the Darcy model

with isotropic and homogeneous medium properties and conservative body force, it

can be shown that the vorticity vanishes (i.e., ω(x) = 0). However, it should be noted

that heterogeneity, pressure-dependent viscosity, or non-conservative body force can

introduce vorticity under the Darcy model. All the above results can serve as invalu-

able tools to assess the performance of a numerical formulation to verify a computer

implementation, and to provide metrics for numerical convergence.

2.4 Steady-state numerical results

We shall first non-dimensionalize the governing equations by choosing primary

variables that seem appropriate for problems arising in modeling of flows through
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porous media. This non-dimensional procedure is different from the standard non-

dimensionalization procedure for incompressible Navier-Stokes in the choice of pri-

mary variables. In the standard non-dimensionalization of Navier-Stokes equations,

one employs characteristic velocity v, characteristic length L and density of the fluid

ρ as primary variables. We shall choose L (reference length in the problem), g (accel-

eration due to gravity) and patm (atmospheric pressure) as the reference quantities.

Using these reference quantities, we define the following non-dimensional quantities:

x = x
L
, v = v√

gL
, vp = vp

√
gL
, T = T

patm
, b = b

g
, p = p

patm
,

p0 = p0

patm
, ρ = ρgL

patm
, α = α

√
gL3

patm
, µ =

µ
√
g/L

patm
, k = k

L2 , (2.4.1)

where the non-dimensional quantities are denoted by superposed bars. The gradi-

ent and divergence operators with respect to x are denoted as grad[·] and div[·],

respectively. The scaled domain Ωscaled is defined as follows: A point in space with

position vector x ∈ Ωscaled corresponds to the same point with position vector given

by x = xL ∈ Ω. Similarly, one can define the scaled boundaries: ∂Ωscaled, Γvscaled, and

Γpscaled. Using the above non-dimensionalization procedure, Darcy-Brinkman equa-

tions can be written as

α(x)v(x) + grad[p(x)]− div[2µD(x)] = ρb(x) in Ωscaled, (2.4.2a)

div[v(x)] = 0 in Ωscaled, (2.4.2b)

v(x) = vp(x) on Γvscaled, and (2.4.2c)

t(x) = tp(x) on Γtscaled. (2.4.2d)

Similarly, one could write the corresponding non-dimensional form of Darcy equations.

For simplicity, the “over-lines" will be dropped in the remainder of the paper.
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© Location of pressure unknown

(a) Q2P1 interpolation for nine-node
quadrilateral (Q9) element

• Location of velocity unknown

(b) P2P1 interpolation for six-node
triangular (T6) element

Figure 2.1: This figure shows the typical employed structured finite element. We use Q2P1
and P2P1 mixed interpolations for unknowns (i.e., second-order interpolation
for the velocity field, and first-order for the pressure field).

We shall use several flow through porous media problems with different bound-

ary conditions to illustrate that the proposed a posteriori techniques can be used

as good measures for the accuracy and convergence of numerical results. We have

employed P2P1 (which is based on six-node triangle element T6) and Q2P1 (which

is based on nine-node quadrilateral element Q9) interpolations available in COMSOL

[COMSOL Multiphysics, 2013]. Consistent SUPG stabilization has been employed if

the interpolations (i.e., Q2P1 and P2P1) violate the LBB inf-sup stability condition

[Hughes et al., 1986a, COMSOL Multiphysics, 2013]. Typical structured finite ele-

ments utilized in this paper are shown in Figure 2.1. Unless mentioned otherwise, all

the elements in a quadrilateral mesh are squares and all the elements in a triangular

mesh are right-angled isosceles triangles. In this numerical solution study, we have

taken h (the maximum element size) to be equal to the length of the side for square

elements, and to the length of the base (or height) for right-angled isosceles triangles.
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Table 2.1: Body force problem: Non-dimensional parameters used in the problem.

Parameter Value
α 1
µ 1 and 0.001
ρ 1
L 1

b(x) a[sin(πx), cos(πy)]

L

ρb(x)

L

y

x

vp(x) = 0 or vn(x) = 0

Γv

Γv

Γv

Γv

Figure 2.2: Body force problem: The computational domain is a square with L = 1. The
prescribed conservative body force is ρb(x) = 10× [sin(πx), cos(πy)]. Homo-
geneous velocity is enforced on the entire boundary (i.e., Γv = ∂Ω).

2.4.1 Body force problem

The test problem is pictorially described in Figure 2.2. The non-dimensional

parameters used in the numerical simulation are provided in Table 2.1. The conser-

vative body force is taken as ρb(x) = 10[sin(πx), cos(πy)] (i.e., a = 10). Velocity

boundary condition is prescribed on the entire boundary (i.e., Γv = ∂Ω). For the

Darcy-Brinkman model, we assume vp(x) = 0; and for the Darcy model, we as-

sume vn(x) = 0. Figure 2.3 shows the minimum total mechanical power and the

minimum dissipation with mesh refinement. The numerical results for the reciprocal

relation with mesh refinement are shown in Figure 2.4. All the numerical results are

in accordance with the theoretical predictions for this test problem.
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4 6 8 10 12 14
1/h

-0.5

0

0.5

1

1.5

2

2.5 Dissipation, triangular element
Dissipation, quadrilateral element
Total mechanical power, quadrilateral element
Total mechanical power, triangular element

(a) Darcy model with µ = 1.

4 6 8 10 12 14
1/h

0

0.1

0.2

0.3

0.4 Dissipation, quadrilateral element
Dissipation, triangular element
Total mechanical power, quadrilateral element
Total mechanical power, triangular element

(b) Darcy-Brinkman model with µ = 0.001.

Figure 2.3: Body force problem: This figure shows the variation of dissipation and total
mechanical power with mesh refinement under the Darcy and Darcy-Brinkman
models using quadrilateral and triangular elements for parameters provided
in Table 2.1.

Table 2.2: Lid-driven cavity problem: Non-dimensional parameters used in the problem.

Parameter Value
α 1
µ 1
ρ 1
L 1

2.4.2 Lid-driven cavity problem

The two-dimensional lid-driven cavity problem is a benchmark study widely

used to investigate the accuracy of numerical formulations for various fluid models

[Burggraf, 1966, Erturk, 2009]. Figure 2.5 provides a pictorial description of the

problem. The domain of the problem is a bi-unit square. Velocity boundary condition

is prescribed on the entire boundary (i.e., Γv = ∂Ω) which implies that the minimum

dissipation theorem is also applicable to this problem. It should be noted that lid-

driven cavity problem is not compatible with Darcy equations which need only the

normal component of the velocity to be prescribed on the boundary. However, the

lid-driven cavity problem demands the prescription of the entire velocity vector field

on the boundary. We shall therefore employ Darcy-Brinkman model in our numerical
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(a) Darcy model with µ = 1.
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Triangular element

(b) Darcy-Brinkman model with µ =
0.001.

Figure 2.4: Body force problem: This figure shows the variation of εreciprocal with mesh
refinement for the Darcy and Darcy-Brinkman models using quadrilateral and
triangular elements for parameters provided in Table 2.1.

simulations.

It is crucial to note that the solution to the lid-driven cavity problem has singu-

larities at the top corners which arise due to velocity discontinuity on the boundary

[Botella and Peyret, 1998, Batchelor, 2000]. Discontinuities and singularities com-

monly occur in fluid dynamics, solid mechanics, and structural dynamics and it is a

subject of intense research and grave concern in error estimation [Oberkampf et al.,

2004]. Some representative works on pollution errors due to singularities and discon-

tinuities are [Babuška and Oh, 1987, Babuška et al., 1995, 1997, Oden et al., 1998,

Roache, 1998, Botella and Peyret, 2001]. However, none of these studies utilized the

minimum dissipation theorem to detect pollution errors in porous media models.

Herein, we use an adaptive mesh to resolve the singularities in the solution.

The non-dimensional parameters used in the lid-driven cavity problem are presented

in Table 2.2. Figures 2.6(a) and 2.6(b) show the uniform structured mesh and the

adaptive mesh, respectively. For the adaptive mesh, we generate fine grid in the region

close to top lid (see Figure 2.6(b)). Figures 2.6(c) and 2.6(d) show variation of the

minimum dissipation with mesh refinement for respective grids. Under the adaptive

mesh, the dissipation decreased uniformly and converged to a constant value with
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L

L

y

x

vx = 1, vy = 0

v(x) = 0

Γv

ΓvΓv

Γv

Ω

Figure 2.5: Lid-driven cavity problem: The computational domain is a unit square. Velocity
is prescribed on the entire boundary (i.e., Γv = ∂Ω). The prescribed velocity
on the top side is vx = 1 and vy = 0 and on the remaining sides is zero.

mesh refinement. On the other hand, the dissipation increased monotonically with

mesh refinement under the structured mesh. More importantly, due to the presence

of singularities and pollution error, the dissipation did not hit a plateau even for very

fine meshes (i.e., 1/h ≥ 220). The dissipation reached a plateau relatively quickly

under the adaptive mesh (say 1/h = 10). This problem clearly illustrates that the

minimum dissipation theorem can be used to identify pollution errors in numerical

solutions which is one of the main findings of this paper.

2.4.3 Pipe bend problem

As another application of the proposed techniques, we consider an engineering

problem commonly found in the fluid mechanics literature, which is called the pipe

bend problem (for example, see References [Borrvall and Petersson, 2003, Hansen

et al., 2005, Aage et al., 2008, Pingen et al., 2009, Challis and Guest, 2009, Hassine,

2012]). In the pipe bend problem, the computational domain Ω is a square with

L = 1.
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(a) Uniform structured mesh
with 1/h = 12.
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(b) Adaptive mesh near the top left corner
with 1/h = 12 elsewhere.
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(c) Dissipation vs. h under a hierarchy of
uniform structured meshes.
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(d) Dissipation vs. h under a hierarchy of
adaptive meshes.

Figure 2.6: Lid-driven cavity problem: The top figures show a uniform structured mesh,
and an adaptive mesh near the top corners. The bottom figures show the
variation of total dissipation with mesh refinement.

2.4.3.1 Velocity boundary condition

The problem is pictorially described in Figure 2.7. An inflow parabolic velocity

is enforced on a part of the left boundary and an outflow parabolic velocity on a

segment of the bottom. Each parabolic velocity profile has a unit maximum value

(i.e., vxmax = 1 or vymax = 1). Elsewhere, the homogeneous velocity is prescribed

(i.e., vp(x) = 0 for the Darcy-Brinkman model and vn(x) = 0 for the Darcy model).

The velocity boundary condition makes the problem compatible with the total me-

chanical power and the dissipation theorems. The non-dimensional parameters used
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Table 2.3: Pipe bend problem: Non-dimensional parameters of the parabolic velocity
boundary condition problem.

Parameter Value
α 1 and 10
µ 1 and 0.001
ρ 1

b(x) [1, 1]
L 1

L

0.2L

0.2L

0.2L

0.2L

Lv x
m
a
x

=
1

vymax = 1

y

x

v(x) = 0

Γv

Γv

Γv

Γv

Figure 2.7: Pipe bend problem (velocity boundary condition): A pictorial description of the
problem. The computational domain Ω is a unit square. The velocity bound-
ary condition is prescribed on the entire boundary (i.e., Γv = ∂Ω).
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(a) Dissipation for α = 10.
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(b) Total mechanical power for α = 1.

Figure 2.8: Pipe bend problem (velocity boundary condition): The figure shows that the dis-
sipation and total mechanical power decrease uniformly with mesh refinement
for the Darcy and Darcy-Brinkman models.

32



L

0.2L

0.2L

0.2L
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x
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v(x) = 0

tp(x) = −patmn̂(x)

Γv Γv

Γv

Γt

Figure 2.9: Pipe bend problem (velocity-pressure boundary condition): The computational
domain Ω is a square with L = 1. The traction boundary condition is tp(x) =
−patmn̂(x) on Γt.

Table 2.4: Pipe bend problem: Non-dimensional parameters of the zero velocity (wall)-
pressure boundary conditions.

Parameter Value
α 1
µ 0.001
ρ 1
pinj 5 and 7.5
patm 1
L 1

in the problem are presented in Table 2.3. Figure 2.8 shows the variation of mini-

mum total mechanical power and minimum dissipation with mesh refinement for the

quadrilateral and triangular elements. The result of the numerical solutions verifica-

tion are presented in Figure 2.8(a) and 2.8(b) for the minimum dissipation and the

total mechanical power, respectively. The numerical error decreases and converges

uniformly.

2.4.3.2 Parabolic velocity-pressure boundary condition

A pictorial description of the problem is given by Figure 2.9). The traction is

prescribed on a part of the bottom boundary (i.e., tp(x) = −patmn̂(x) on Γt). The
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(a) Uniform structured mesh
with 1/h = 15.

(b) Adaptive mesh near the out-
let with 1/h = 15 elsewhere.
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(c) Darcy-Brinkman model under the
uniform structured mesh, µ = 0.001.
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(d) Darcy-Brinkman model under the
adaptive mesh, µ = 0.001.

Figure 2.10: Pipe bend problem (velocity-pressure boundary condition): The top figures show
the uniform structured mesh and the adaptive mesh near the corners of the
outlet. The bottom figures show the variation of the total mechanical power
with mesh refinement.

velocity has parabolic profile with unit maximum value (i.e., vxmax = 1) prescribed on

a segment of the left boundary. Elsewhere, the homogeneous velocity is enforced. On

account of the traction and parabolic velocity boundary conditions, current problem

is not compatible with the minimum dissipation and reciprocal theorems. It is only

compatible with the total mechanical power theorem. It should be noted that the

solution to the problem has the singularity at near corners of the outlet (i.e., Γt).

Hence, we again use an adaptive mesh to resolve the pollution in the solution. The

non-dimensional parameters using in the problem are provided in Table 2.3. Figure

2.10 depicts the variation of the minimum total mechanical power with mesh refine-

ment for the quadrilateral and triangular elements. The top figures show the uniform

structured and adaptive meshes. Under the structured mesh, the total mechanical
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Figure 2.11: Pressure pipe bend problem (pressure-pressure boundary condition): The com-
putational domain Ω is a unit square. The traction is prescribed on a part
on the left side and on a part on the bottom side.

power increased uniformly with mesh refinement due to the polluted area in the com-

putational domain. The error decreased uniformly and converged to a constant value

with mesh refinement using the adaptive mesh. So, in addition to error estimation

capability, the total mechanical power theorem can be used to identify the pollution

errors in the numerical solutions.

2.4.3.3 Velocity-pressure boundary condition

The pictorial description of the problem is shown in Figure 2.11. The traction

is prescribed on a segment of the left boundary (i.e., tp(x) = −pinjn̂(x) on Γt1) and

bottom boundary (i.e., tp(x) = −patmn̂(x) on Γt2). Elsewhere, the homogeneous ve-

locity is enforced. The non-dimensional parameters used in the problem are presented

in Table 2.4. Current problem is compatible for the reciprocal relation, due to the

prescription of the traction and homogeneous velocity on the boundary. The varia-

tion of the error in the reciprocal relation with mesh refinement using the triangular

and quadrilateral elements is shown in Figure 2.12. Due to the singularity near the

corners of the outlet (i.e., Γt2) the results for the regular structured mesh is uniform

but increasing. However, the error decreases uniformly under the adaptive mesh.
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(c) Darcy model under the adaptive
mesh.
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Figure 2.12: Pressure pipe bend problem (pressure-pressure boundary condition): The figure
shows the variation of εreciprocal with mesh refinement for the Darcy and
Darcy-Brinkman models using quadrilateral and triangular finite elements.

2.4.4 Pressure slab problem

Figure 2.13 provides a pictorial description of the problem. The non-dimensional

parameters used in the numerical simulation are provided in Table 2.5. The domain

is a W × L rectangle. The homogeneous velocity boundary condition is enforced on

the top and bottom sides of the boundary. The traction is prescribed on the left

side (i.e., tp(x) = −pinjn̂(x) on Γt1) and on the right side (i.e., tp(x) = −patmn̂(x) on

Γt2). We shall use this test problem to assess the accuracy of numerical solutions with

respect to the reciprocal relation. Figure 2.14 depicts the variation of the error in the

reciprocal relation with mesh refinement for the triangular and quadrilateral grids.

The error in the reciprocal relations under Darcy equations is very close to zero for
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Table 2.5: Pressure slab problem: Non-dimensional parameters used in the problem.

Parameter Value
α 1
µ 0.001
ρ 1
pinj 5 and 7.5
patm 1
L 1
W 0.2
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Figure 2.13: Pressure slab problem: The computational domain is aW ×L rectangle. The
traction is prescribed on the left side of the boundary and on the right side.
Elsewhere, homogeneous velocity is enforced.

all the meshes. The error under Darcy-Brinkman equations decrease uniformly with

mesh refinement. All the numerical results are in accordance with the theoretical

predictions.

2.4.5 Pressure driven problem

The domain is a square with L = 1. A pictorial description of the problem is

given in Figure 2.15. The traction is prescribed on the left boundary (i.e., tp(x) =

−pinjn̂(x) on Γt1) and on the middle of the right boundary (i.e., tp(x) = −patmn̂(x)

on Γt2). Elsewhere, homogeneous velocity boundary condition is enforced. Due to the

prescription of the traction on a part of the boundary, this problem is incompatible
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Figure 2.14: Pressure slab problem: The figure shows the variation of εreciprocal with mesh
refinement for Darcy and Darcy-Brinkman equations using quadrilateral and
triangular grids. The parameters in this problem are provided in Table 2.5.

Table 2.6: Pressure driven problem: Non-dimensional parameters used in the problem.

Parameter Value
α 1
µ 1 and 0.001
ρ 1
pinj 5 and 7.5
patm 1
L 1

with the minimum dissipation theorem but is compatible with the reciprocal relation

and the total mechanical power theorem. Herein, we present the results for the

reciprocal relation. The non-dimensional parameters used in the numerical simulation

are provided in Table 2.6. Figure 2.16 show the variation of the error in the reciprocal

relation with mesh refinement for triangular and quadrilateral meshes. Since the

problem has a singularity near the corners of the outlet (i.e., Γt2), the convergence

under uniform structured meshes is slow which improved by employing an adaptive

mesh.
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Figure 2.15: Pressure-driven problem: computational domain Ω is a square with L = 1.
The traction is prescribed on the left side of the boundary and on the middle
of right side.

2.4.6 Vorticity results

The maximum principle given by Theorem 2.3.8 can be used to assess the ac-

curacy of numerical solutions to the Darcy-Brinkman equations by checking whether

the non-negative maximum and non-positive minimum of the vorticity occur on the

boundary. Figure 2.17 shows that the maximum principle is satisfied for various

problems under the steady-state Darcy-Brinkman equations.

2.4.7 Synthetic reservoir data: Marmousi dataset

We will now solve an idealized reservoir problem using a popular synthetic

dataset – the so-called (smooth) Marmousi dataset [Versteeg and Grau, 1990, Ver-

steeg and Lailly, 1991, Versteeg, 1993, Klimes, 2014, Benamou, 2014]. The dataset

provides spatially varying speed of sound on a 384× 122 grid. We have assumed that

the permeability scales linearly with the values provided by the dataset. This is just

an arbitrary choice to generate a heterogeneous dataset for permeability. However,

it should be noted that the conclusions that will be drawn here will be valid even

if one uses another dataset for the permeability. Figure 2.18 shows the contours of

Marmousi dataset.
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(a) Uniform structured mesh with
1/h = 15.

(b) Adaptive mesh near the outlet with
1/h = 15 elsewhere.
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(c) Uniform structured mesh, µ = 1.
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(d) Adaptive mesh, µ = 0.001.

Figure 2.16: Pressure-driven problem: The top figures show the uniform structured mesh
and the adaptive mesh near the corners of the outlet (i.e., Γt2). The bottom
figures show the variation of εreciprocal with mesh refinement.

The boundary value problem of the reservoir is pictorially described in Figure

2.19. This computational domain has been employed in some recent works (e.g.,

[Nakshatrala and Rajagopal, 2011]). All these works have assumed homogeneous

medium properties, and did not use a reservoir data like the Marmousi dataset.

Moreover, these studies did not address the use of a posteriori techniques to access

numerical accuracy which is the main focus of the current paper. The parameters

used in this problem are provided in Table 2.7. Figure 2.20 shows that the errors

in the reciprocal relation are larger under uniform structured meshes than under

adaptive meshes. This is due to the fact that uniform structured meshes suffer from

pollution errors due to the singularity near the production well. The variation of
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(a) Lid-driven cavity, regular mesh.
ωmax = 35.641 and ωmin = 0.

(b) Lid-driven cavity, adaptive mesh.
ωmax = 778 and ωmin = 0.

(c) Body force problem. ωmax = 0.1923 and
ωmin = 4.8073× 10−9.

(d) Slab problem. ωmax = 561.52
and ωmin = 3.1957× 10−5.

Figure 2.17: The figure verifies the maximum principle for the vorticity for various two-
dimensional problems under the Darcy-Brinkman model. The numerical
results corroborate the theoretical predictions given in Theorem 2.3.8.

41



0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1480 1920 2360 2800 3240 3680 4120 4560 5000 5440

Figure 2.18: Synthetic reservoir problem: This figure shows the contours of (smooth) Mar-
mousi dataset [Benamou, 2014]. It provides values on a 384×122 grid which
scaled to our rectangular computational domain of L = 2 and H = 1.

Table 2.7: Synthetic reservoir problem: Non-dimensional parameters used in the problem.

Parameter Value
µ 0.001
ρ 1
pinj 5 and 7.5
patm 1
L 384
H 384/2
W 384×0.1
k Marmousi dataset/L2

the error in the reciprocal relation with mesh refinement provides guidelines on how

much refinement is required to obtain solution of some desired accuracy especially in

those cases where there are no analytical solutions. Figure 2.21 shows the magnitude

of the vorticity, and one can see from the figure that the maximum principle for the

vorticity is satisfied.
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Figure 2.19: Synthetic reservoir problem: The domain of the problem is a rectangle of size
H ×L. The injection pressure is prescribed on the left and right boundaries
and the atmosphere pressure is prescribed on the middle of top side.

2.5 Transient case

2.5.1 Governing equations

Let us denote the time interval of interest by I, and the time by t ∈ I. The

unsteady governing equations under the Darcy model take the following form:

ρ
∂v
∂t

+ αv + grad[p] = ρb(x, t) in Ω× I, (2.5.1a)

div[v] = 0 in Ω× I, (2.5.1b)

v(x, t) · n̂(x) = vn(x, t) on Γv × I, (2.5.1c)

p(x, t) = p0(x, t) on Γt × I, and (2.5.1d)

v(x, t = 0) = v0(x) in Ω. (2.5.1e)
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(a) Uniform structured mesh with
1/h = 20.

(b) Adaptive mesh near the production
well with 1/h = 20 elsewhere.
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(c) Variation of εreciprocal under a hierar-
chy of uniform structured meshes.
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Figure 2.20: Synthetic reservoir problem: The figures show the variation of εreciprocal with
h for the Darcy and Darcy-Brinkman models using structured and adaptive
meshes. The parameters in this problem are provided in Table 2.7.

Figure 2.21: Synthetic reservoir problem: The figure shows the magnitude of vorticity for
two-dimensional Darcy-Brinkman equations using quadrilateral elements.
The parameters used in this problem are provided in Table 2.7.
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Of course, the convective term grad[v]v is neglected. We assume that the coefficient

of viscosity of the fluid and the permeability of the porous solid to be constants,

and hence the drag coefficient is constant. We further assume that the density is

homogeneous, and the body force is assumed to be conservative. The unsteady Darcy-

Brinkman equations can be written as

ρ
∂v
∂t

+ αv + grad[p]− div[2µD] = ρb(x, t) in Ω× I, (2.5.2a)

div[v] = 0 in Ω× I, (2.5.2b)

v(x, t) = vp(x, t) on Γv × I, (2.5.2c)

Tn̂(x) = tp(x, t) on Γt × I, and (2.5.2d)

v(x, t = 0) = v0(x) in Ω, (2.5.2e)

where vp(x, t) is the prescribed velocity vector, and tp(x, t) is the prescribed traction.

2.5.2 Mathematical properties

Under unsteady Darcy equations, the vorticity satisfies the following equation:

ρ
∂ω

∂t
+ αω = 0, (2.5.3)

which is an ordinary differential equation at each spatial point. The solution takes

the following form:

ω(x, t) = ω0(x) exp
[
−αt
ρ

]
. (2.5.4)

This means that the decay of vorticity should be exponential. One can check whether

the numerical solutions exhibit this trend by plotting in log scale the each component

of the vorticity with respect to time should, and this should be a straight line with

slope −α/ρ. If this trend is not satisfied for a given mesh and given time-step, does
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Table 2.8: Pressure slab problem: Initial condition used in the problem.

Parameter Value
p patm

vx = vy sin(πx/W ) sin(πy/L)

refining the grid spacing and the time-step improve the trend? Of course, one can

check whether the vorticity goes to zero for large times. The vorticity under unsteady

Darcy-Brinkman equations satisfies the following equation:

ρ
∂ω

∂t
+ αω − µ∆ω = 0 in Ω× I, (2.5.5)

where ∆ is the Laplacian operator. The above equation is a homogeneous linear

parabolic partial differential equation, which is known to satisfy a maximum princi-

ple [Pao, 1993]. This implies that both the maximum and the minimum will occur

either in the initial condition or on the boundary. One can check whether numerical

solutions satisfy the aforementioned maximum principle. Also, whether refining the

grid spacing and time-steps affect the performance of numerical solutions with respect

to this metric. One can devise any test problem as long as the following assumptions

are met: (i) µ is constant, (ii) permeability is homogeneous, and (iii) the body force

is conservative.

2.5.3 Representative numerical results

The theoretical results presented in this section are corroborated numerically

in Figures 2.22–2.23. The vorticity results for the pressure slab problem under the

transient Darcy model are provided in Figures 2.22. (Recall that Figure 2.13 provided

a pictorial description of the pressure slab problem.) The non-dimensional parameters

used in the numerical simulation are presented in Table 2.5, and the initial condition

is provided in Table 2.8. Figure 2.22 shows that log( ω
ω0

) is a straight line with slope
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(a) Initial vorticity for quadrilat-
eral element size of 1/h = 20.
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(b) Quadrilateral element size of 1/h = 20 for
dt = 0.01.
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(c) Mesh refinement for quadrilateral elements,
at x = (0.05, 0.95) and dt = 0.01.
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(d) Time refinement for 1/h = 20 at x =
(0.15, 0.35).

Figure 2.22: Pressure slab problem: The figure verifies the theoretical results for the vor-
ticity under transient Darcy equations. The results show that the slope of
log( ωω0

) for various spatial points in the domain are close to −α
ρ = −1.

equal to α
ρ
under the mesh and time refinements for various spatial points in the

solution of the transient Darcy equations (for the current problem α
ρ

= −1). Figure

2.23 verifies the maximum principle for vorticity for various test problems under

transient Darcy-Brinkman equations. In all the cases, the non-negative maximum

and non-positive minimum of the vorticity occur on the boundary, which agree with

the mathematical theory presented above.
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(a) Lid-driven cavity, structured
mesh.

(b) Lid-driven cavity, adaptive mesh.

(c) Body force problem. (d) Pressure slab prob-
lem.

Figure 2.23: The figure verifies the maximum principle for the vorticity under transient
Darcy-Brinkman equations for various two-dimensional problems. The nu-
merical results satisfy the maximum principle for all the test problems.

2.6 Concluding remarks

We presented various test problems that can serve as benchmark problems for

verifying numerical implementation of solvers for the Darcy and Darcy-Brinkman

models. We also presented four important properties (minimum dissipation theorem,

minimum total mechanical power, reciprocal relation, and maximum principle for

vorticity) that the solutions under the Darcy and the Darcy-Brinkman models satisfy.

These properties can be effectively used to assess the accuracy of numerical solutions.

An attractive feature is that these properties can be verified for any given problem
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(i.e., needed not be one of the benchmark problems), and for any computational

domain. For example, if the problem involves prescribing velocity boundary condition

on the entire boundary, then one plots the dissipation with respect to mesh refinement.

Some of the main conclusions are:

(a) If the numerical formulation is converging, the dissipation, total mechanical

power, and reciprocal relation should decrease with mesh refinement. If this

does not occur, one needs to suspect that there are singularities in the solutions

or that the numerical formulation does not perform well with respect to the local

mass balance property.

(b) It has been shown that the minimum dissipation theorem can be utilized to

identify pollution errors in numerical solutions. The theorem can also be used

to assess whether a given type of mesh will be able to resolve singularities in the

solution. This can be assessed by creating a series of hierarchical meshes and

plotting the dissipation with respect to characteristic mesh size. A given type of

mesh will resolve singularities in the solution and will not be affected by pollution

errors if the total dissipation decreases uniformly and reaches a plateau with a

hierarchical mesh refinement.

(c) The non-negative maximum vorticity and the non-positive minimum vorticity

under Darcy-Brinkman equations with homogeneous isotropic medium properties

should occur on the boundary.

The proposed a posteriori techniques can be invaluable additions to the usual reper-

toire of methods for verification of code – the method of exact solutions (MES) and

the method of manufactured solutions (MMS).
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Chapter 3

VISCOUS FINGERING ANDMIXING FORDOU-

BLE DIFFUSION MODEL: EFFECT OF TEM-

PERATURE ANDNUMERICAL STABILIZATION

Reason has always existed, but not always in a reasonable form.

Karl Marx

3.1 Introduction to viscous fingering phenomena

Hydrodynamical instabilities may occur in flows if there is a change in mobility

ratios of the fluids. Adverse mobility ratio is commonly related to variation in physi-

cal properties such as viscosity or/and density of at least two fluids. Viscous fingering

(VF) instability, so-called Saffman-Taylor instability [Saffman and Taylor, 1958], can

be observed when the viscosity of fluids alter. Viscosity contrast ratio [Homsy, 1987]

and chemical reaction [Hejazi et al., 2010] can influence the viscosity and form the

VF. Instability in two miscible fluids, introduces disorder in the flow field and velocity

gradient dictates the fingering dynamics and mechanisms. Particularly, the VF occurs

in porous media or Hele-Shaw cell, when a high viscous fluid is displaced by a lower
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viscous fluid [Saffman and Taylor, 1958]. It is known as classical stable VF [Mishra

et al., 2010, 2012]. Due to faster movement of low viscous fluid, any small distur-

bance or perturbation to the interface of miscible fluids generates finger structures.

The perturbation can be induced by heterogeneity in the material properties such as

permeability and diffusivity/dispersion or due to non-linearity in the problem param-

eters like concentration of transports and chemical reactions. When the instability is

induced to the interface of the fluids, the less viscous flow penetrates into the more

viscous one and grows in the form of fingering. This is a viscosity difference driven

mechanism that occurs during diffusive mixing between the miscible fluids [Homsy,

1987].

Immiscible systems are also affected by fingering instabilities. For immiscible

fluids, variation of surface tension at the fluids interface can cause the fingering pat-

terns. So, in this case, the instability is governed by the capillary number [Fernandez

and Homsy, 2003]. Similarly, instability on the interface of fluids with different den-

sities maybe observed when the fluid with higher density is located on top of the

lighter fluid in the gravity field. This has been referred to Rayleigh-Taylor instability

[Taylor, 1950, Lewis, 1950] or density fingering [Almarcha et al., 2013]. In this case,

the density difference across the interface is the driving mechanism of the instability.

VF and miscible displacement in porous media have been found in wide variety

range of industrial, environmental, chemical, and biological applications. Enhanced

oil recovery (EOR) and geological carbon-dioxide sequestration [Chen and Meiburg,

1998], combustion [Zik et al., 1998], electrochemical process [de Bruyn, 1995], and

aquifers and chromatography [Maes et al., 2010] are some studied examples. The

idea of VF phenomena is for [Hill, 1952]. So, the theoretical investigation dates back

to more than half-century ago (see [Saffman and Taylor, 1958, Heller, 1966, Ragha-

van and Marsden, 1971, Saffman, 1986, Riaz and Tchelepi, 2004], and [Hejazi et al.,
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2010] and references therein). Numerical simulation has been also utilized to gain in-

sight into the impact of material and physical properties including viscosity, density,

permeability, and diffusivity/dispersion [Tan and Homsy, 1988, 1992, Zimmerman

and Homsy, 1992a,b, Chen and Meiburg, 1998, Riaz and Tchelepi, 2006]. Moreover,

several numerical methods are developed to get deeper qualitative and quantitative

understanding of the phenomena (see [Scovazzi et al., 2013] and references therein).

In addition to composition changes, viscosity in fluids can alter due to temper-

ature contrast, which is interpreted as double diffusive (DD) effects. In this case,

VF should be studied by considering miscible displacement between fluids in non-

isothermal condition [Chan and Liang, 1997, Pritchard, 2004, 2009, Nagatsu et al.,

2009, Islam and Azaiez, 2010a,b]. In practical cases like enhanced oil recovery, vis-

cosity changes in displacement between oil and hot water are observed due to coupled

thermal and species effects [Sheorey and Muralidhar, 2003]. Moreover, as mentioned

before, the classical stable situation for VF is when a low viscous fluid displacing a

high viscous one. However, as heat diffuses faster than mass, DD effects can also

influence the stability characteristics of VF. It should be noted that the DD effects

are not restricted to temperature influences. It may occur due to different solutes

or mass components which diffuse at different rates [Mishra et al., 2010]. References

[Trevelyan et al., 2011, C-Landeira et al., 2013, Almarcha et al., 2013] studied DD

effects in Rayleigh-Taylor instability. Also, investigation of VF and DD effects for

incompressible Navier-Stokes flow (not Darcy or porous media flows) is performed by

[Mishra et al., 2012].

The rest of this chapter is organized as follows. Section 3.2 presents the governing

equations, which are coupled flow, transport, and thermal equations. Section 3.3

reviews finite element method, stabilized formulations, and mathematical properties

for numerical simulation. A reduced order model for mixing is presented in Section

3.4. In Section 3.5, we present several qualitative and quantitative numerical results
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to illustrate the effect of temperature on VF and mixing. Section 3.6 provides results

regarding numerical stabilization. Finally, conclusions are drawn in Section 3.7.

3.2 Governing equations: Coupled flow, transport, and ther-

mal processes

In this section, we present the governing equations to model the dynamics of

the VF phenomenon. A mathematical model for VF will be a system of coupled

partial differential equations, which are either elliptic or parabolic. Herein, we con-

sider an incompressible single-phase miscible flow with two components. The flow is

governed by Darcy equations, which describe the flow of an incompressible fluid in a

rigid porous media. We consider temperature effects and include thermal equations,

which stem from the balance of energy. The governing equations for transport and

thermal subproblems are transient in nature, while the governing equations for the

flow subproblem are quasi-static. There is a two-way coupling in the current model.

The viscosity of fluid is a nonlinear function of the concentrations ci and temperature

θ. That is, µ = µ(ci, θ)) where µ is viscosity. The transport and thermal equations

will in turn involve the velocity of fluid. Due to the complexity of the governing

equations, one need to solve them numerically.

Let Ω ⊂ Rd be an open bounded domain, where “d” is the number of spatial

dimensions. Let ∂Ω := Ω− Ω denote the boundary of the domain, where Ω denotes

the set closure of Ω. A spatial point is denoted by x ∈ Ω. The time is denoted by

t ∈]0, I[, where I denotes the total time of interest. The gradient and divergence

operators with respect to x are, respectively, denoted by grad[·] and div[·]. The

governing equations for the flow subproblem, which is governed by Darcy equations,

are written as
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µ(ci, θ)K−1(x)v(x, t) + grad[p(x, t)] = ρb(x, t) in Ω×]0, I[, (3.2.1a)
∂ρ

∂t
+ div[ρv(x, t)] = ϕ(x, t) in Ω×]0, I[, (3.2.1b)

p(x, t) = p0(x, t) on Γp×]0, I[, and (3.2.1c)

v(x, t) • n̂(x) = vn(x, t) on Γv×]0, I[, (3.2.1d)

where ρ is the density of the fluid, which is assumed to be constant. v(x, t) is the

velocity vector field. The pressure field is denoted by p(x, t), and the body force

denoted by b(x, t). K(x) is the permeability tensor and, ϕ(x, t) denotes the mass

production. p0(x, t) is the prescribed pressure on the boundary, and vn(x, t) is the

prescribed normal component of the velocity vector field on the boundary. Γp and

Γv are, respectively, the boundaries of the domain on which the pressure and normal

component of the velocity are prescribed. It is assumed that the velocity and its

gradient are small so that the inertial effects and consequently the convective term

can be neglected in the balance of linear momentum.

The transport of chemical species is modeled using advection-diffusion-reaction

(ADR) equations, which can be written as

∂ci
∂t

+ div[vci −Di(x) grad[ci]] = fi + ri(x, t, c1, . . . , cn) in Ω×]0, I[, (3.2.2a)

ci(x, t) = cp
i (x, t) on Γci×]0, I[, (3.2.2b)

(v(x, t)ci(x, t)−Di(x)grad[ci(x, t)]) • n̂(x) = hp
i (x, t) on Γhi×]0, I[, and

(3.2.2c)

ci(x, t = 0) = c0
i (x) in Ω, (3.2.2d)

where ci(x, t) is the molar concentration of the i-th chemical species (i = 1, · · · , n),

and Di(x) is the corresponding diffusivity tensor. fi(x, t) and ri(x, t, c1, . . . , cn) are,

respectively, the non-reactive and reactive components of the volumetric source. c0
i (x)
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is the initial condition, cp
i (x, t) is the prescribed concentration on the boundary and

hp
i (x, t) is the prescribed flux on the boundary for the i-th constituent. Γci and Γhi , re-

spectively, denote the Dirichlet and Neumann parts of the boundaries for the transport

subproblem. As we mentioned before, the model contains two components (n = 2).

Since, our ADR equations are in mass fraction form, we will have c1 + c2 = 1. So, in

the remaining of the paper we only solve the ADR model for the solvent c and one

simply can derive the solute value which is 1− c.

The governing equations for the thermal subproblem can be written as

∂θ

∂t
+ div[v(x, t)θ(x, t)− κ(x) grad[θ]] = g + q(x, t, θ) in Ω×]0, I[, (3.2.3a)

θ(x, t) = θp(x, t) on Γθ×]0, I[, (3.2.3b)

(vθ − κgrad[θ]) • n̂(x) = sp(x, t) on Γs×]0, I[, and

(3.2.3c)

θ(x, t = 0) = θ0(x) in Ω, (3.2.3d)

where θ(x, t) is the temperature and κ(x) is the thermal diffusivity tensor. g(x, t)

and q(x, t, θ) are, respectively, the non-thermal and thermal volumetric source. θ0(x)

is the temperature initial condition. θp(x, t) and sp(x, t) are, respectively, the pre-

scribed temperature and the prescribed heat flux on the boundary. Γθ and Γs denote,

respectively, the Dirichlet and Neumann parts of the boundary for the thermal sub-

problem.

We assume that the permeability Ki(x), mass diffusivity Di(x, t), and thermal

diffusivity κ(x, t) tensors to be isotropic, unless mentioned otherwise. Thus, we can

write K = kI, D = dmI and κ = κθI.
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3.3 Computational framework: Mixed and stabilized finite

element formulations

The simplest model to solve VF numerically is coupled flow and advection-

dominated AD equations. The classical formulations for numerical simulation of VF,

such as high order finite difference and Fourier spectral methods, for high value of

mobility ratio and Péclet number are numerically unstable [Islam and Azaiez, 2007,

Jha et al., 2011]. Hence, we resort to finite element method (FEM) to simulate

coupled flow-transport-thermal model.

3.3.1 Mixed two-field weak formulation for Darcy equations

The following function spaces will be used for the Darcy model:

P :=
{
p(x, t) ∈ H1(Ω)

∣∣∣ p(x, t) = p0(x, t) on Γp×]0, I[
}
, (3.3.1a)

Q :=
{
q(x) ∈ H1(Ω)

∣∣∣ q(x) = 0 on Γp
}
, (3.3.1b)

V :=
{
v(x, t) ∈ (L2(Ω))nd

∣∣∣ div[v] ∈ L2(Ω), v(x, t) • n̂(x) = vn(x, t) on Γv×]0, I[
}
, and

(3.3.1c)

U :=
{
u(x) ∈ (L2(Ω))nd

∣∣∣ div[u] ∈ L2(Ω), u(x) • n̂(x) = 0 on Γv
}
, (3.3.1d)

where H1(Ω) is a standard Sobolev space [Evans, 1998]. Also, the standard L2 inner-

product for given two fields a(x, t) and b(x, t) over a set B is defined as

(a; b)B =
∫
B

a(x) • b(x) dB. (3.3.2)

The subscript on the inner-product will be dropped if B = Ω. The resulting mixed
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weak form for the equations (3.2.1a)–(3.2.1d) can be written as

(u;µK−1v)− (div[u]; p)− (q; div[v]) = (u; ρb) + (u • n̂; p0)Γp . (3.3.3)

3.3.2 Stabilized formulations for ADR equations

In standard single-field Galerkin finite element formulation for ADR equations,

in order to obtain accurate numerical solutions and avoid spurious node-to-node oscil-

lations, element Péclet number has to be smaller than unity [Gresho and Sani, 2000].

When advection process is predominant and the element Péclet number is greater than

unity the steep gradients due to the presence of characteristic layers such as interior

and/or boundary layers in the solution may not be resolved by computational grid.

One way to come up with this numerical problem and achieve smaller Péclet number

for elements is mesh refinement. However, in some cases, employing such a fine mesh

make the cases computationally so expensive. Hence, we utilize numerical stabiliz-

ers which are alternative methods of Galerkin formulation for advection-dominated

problems [Augustin et al., 2011].

Remark 3.3.1. For completeness and future reference, it should be noted that nu-

merical instabilities or spurious node-to-node oscillations in the solution based on a

certain numerical formulation should not be confused with the (physically meaningful)

instability behaviors which are induced mathematically or physically. These two are

entirely different.

Herein, we shall utilize Streamline Upwind Petrov-Galerkin (SUPG) formulation

[Brooks and Hughes, 1982] and its modifications called SOLD (Spurious Oscillations

at Layers Diminishing) [John and Knobloch, 2007], which are common stabilized

numerical formulations for ADR model given by equations (3.2.2a)–(3.2.2d). Before

we present these stabilized weak formulations, we will introduce the following function
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spaces:

Cti :=
{
ci(x, t) ∈ H1(Ω)

∣∣∣ ci(x, t) = cp
i (x, t) on Γci×]0, I[

}
and (3.3.4a)

Wi :=
{
wi(x) ∈ H1(Ω)

∣∣∣ wi(x) = 0 on Γci
}
. (3.3.4b)

3.3.2.1 SUPG formulation

Find ci(x, t) ∈ Cti such that

(wi;
∂ci
∂t

) + (grad[wi] • v; ci) + (grad[wi]; D(x, t)grad[ci])

+
Nele∑
e=1

(
τ v • grad[wi];

∂ci
∂t

+ div [vci −D(x, t)grad[ci]]− fi − ri
)

Ωe

= (wi; fi) + (wi;hp
i )Γh

i
∀wi(x) ∈ Wi , (3.3.5)

where Nele is the total number of mesh elements and Ω̄ = ⋃Nele
e=1 Ω̄e. The superposed

bar denotes the set closure. The boundary of Ωe is denoted as ∂Ωe := Ω̄e − Ωe. τ

is the stabilization parameter under the SUPG formulation. Herein, we shall use the

stabilization parameter proposed by [John and Knobloch, 2007] as

τ(v) = hΩe
2‖v‖ξ0 (Peh) and ξ0 (χ) = coth (χ)− 1

χ
, (3.3.6)

where hΩe is the maximum element length, ξ0 is known as the upwind function,

Peh = hΩe‖v‖
2λmin

is the local (element) Péclet number, and λmin denotes the isotropic

diffusion (dm) or minimum eigenvalue of the anisotropic diffusivity.

3.3.2.2 SOLD isotropic artificial diffusion formulation

To diminish the oscillations arising in the solution of SUPG formulation, [Hughes

et al., 1986b] proposed a modification to change the upwind direction in SUPG. They
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added the following term to the left hand side of equation (3.3.5)

Nele∑
e=1

(
τ1 v‖ • grad[wi];

∂ci
∂t

+ div [vci −D(x, t)grad[ci]]− fi − ri
)

Ωe
, (3.3.7)

where v‖ corresponds to the direction in which oscillations in SUPG solutions are

observed [John and Knobloch, 2007]

v‖ =


(v•grad[ci])grad[ci]
‖grad[ci]‖2 for grad[ci] 6= 0

0 for grad[ci] = 0,

and the stabilization parameter proposed by [Hughes et al., 1986b] is as

τ1 = max{0, τ(v‖)− τ(v)}.

3.3.2.3 SOLD crosswind artificial diffusion formulation

An alternative modification for SUPG is proposed by [Johnson et al., 1987], in

which they added artificial diffusion in the crosswind direction by considering v⊥ as

the projection onto the line or plane orthogonal to v

v⊥ =


I− v⊗v

‖v‖2 for v 6= 0

0 for v = 0.

I is the identity tensor. This leads to the additional term

Nele∑
e=1

(
τ2 v⊥ grad[wi]; grad[ci]

)
Ωe
, (3.3.8)

to the left hand side of equation (3.3.5), where

τ2 = max{0, ‖v‖ h2/3
Ωe − λmin}.
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For these stabilized finite element formulations, we shall present the stabilized solution

to suppress node-to-node spurious oscillations and to satisfy maximum principle (and

non-negative constraint).

It should be noted that for thermal subproblem, because of its advective-diffusive

characteristic, we also employ SUPG stabilized formulation (equation (3.3.5)).

3.3.3 Violation of maximum principle and non-negative constraint

The initial boundary value problem given by equations (3.2.2a)–(3.2.2d) are

parabolic type partial differential equations. It should be noted that such a model

possesses several important mathematical properties including the maximum principle

and non-negative constraint [Gilbarg and Trudinger, 2001, Protter and Weinberger,

2012]. These properties have been employed to assess numerical solution verification

[Shabouei and Nakshatrala, 2016] and to propose non-negative numerical formulation

[Mudunuru and Nakshatrala, 2016]. For example, physical quantities such as concen-

tration and temperature naturally attain non-negative values. It has been shown that

many popular numerical methods like finite element, finite volume, finite difference,

and lattice Boltzmann violate the non-negative constraint for diffusion-type equa-

tions [Brezzi et al., 2005b, Potier, 2005, Liska and Shashkov, 2008, Pal et al., 2016,

Nakshatrala et al., 2013, 2016b, Mudunuru et al., 2015, Karimi and Nakshatrala,

2016]. Obtaining physically meaningless solutions can make the solution inappropri-

ate for scientific and engineering applications (See [Mudunuru and Nakshatrala, 2016]

and references therein).

Mathematically, the maximum principle for the concentration under ADR model

takes the following form: If c(x, t) ∈ C2(Ω)∩C0(Ω), then the non-negative maximum

and the non-positive minimum concentration at each time step occur on the boundary.

That is,
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max
x∈Ω

[c(x, t)] ≤ max
[
0,max

x∈∂Ω
c(x, t)

]
and (3.3.9a)

min
x∈Ω

[c(x, t)] ≥ min
[
0, min

x∈∂Ω
c(x, t)

]
, (3.3.9b)

where C2(Ω) denotes the set of twice differentiable functions defined on Ω, and C0(Ω)

is the set of functions that are continuous to the boundary.

As mentioned before, herein, concentrations (c1 and c2) are in the form of mass

fractions and always c ≤ 1. The maximum principle on the other hand, implies that

c(x, t) ≥ 0 in the entire domain, which is the non-negativity of the concentration

field. So, herein, physical value for concentration is always 0 ≤ c ≤ 1.

3.4 A reduced order model for mixing

Mixing enhancement in the absence of inertial effects and the lack of turbulence

is limited. Moreover, for flow with low Reynolds numbers which occur in Hele-Shaw

cells, porous media, and microfluidic devices, mixing efficiency can be altered by

changing Pe, Le, Rc, and Rθ. Herein, we shall proposed a reduced order model

(ROM) for mixing in the coupled porous media flow, transport, and temperature

problem. It should be noted that the proposed ROM in current study has some

advantageous over other models like which defined in [Jha et al., 2011]. First of

all, current model is more general than the previous ones. It is applicable for double

diffusion and multi-diffusion problems. Where, the previous models only proposed for

single diffusion case. In addition, the model in [Jha et al., 2011] derived after several

unnecessary assumptions including homogeneity of the VF process, neglecting the

cos(λ)2 in which λ is angle between v and gc at the interface, and taking the mean

flow speed as a constant.
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In a periodic field, it is easy to show that

d〈c〉
dt = 0 and d〈θ〉

dt = 0, (3.4.1)

in which 〈·〉 is the spatial averaging operator over the domain volume. For instance,

〈c〉 is the spatial mean concentration in the domain. For convenience, let us define

the following quantities:

gc := grad[c] and gθ := grad[θ]. (3.4.2)

We shall introduce the following scalar dissipation functions:

εc = 1
Pe〈‖gc‖

2〉 and εθ = Le
Pe 〈‖gθ‖

2〉. (3.4.3)

The variances of the concentration and temperature fields are, respectively, defined

as

σ2
c = 〈c2〉 − 〈c〉2 and σ2

θ = 〈θ2〉 − 〈θ〉2. (3.4.4)

Using the above notation, one can write the evolution equations for the variances as

dσ2
c

dt = −2εc and (3.4.5)

dσ2
θ

dt = −2εθ. (3.4.6)

Let us define the following two scalar functionals:

εv :=
〈

grad[v] · grad[v]
‖v‖2

〉
and (3.4.7)

εcθ :=
〈
‖Rcgc +Rθgθ‖2

〉
. (3.4.8)
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(a) Pe = 2× 103 & Rθ = 2 (b) Pe = 104 & Le = 10

Figure 3.1: Mixing evolution: Time evolution for the equation (3.4.11) using numerical
simulation for different Pe, Le, and Rθ. For all we keep Rc = 2. For each
value of Rθ, the evolution in time for left hand side and right hand side of the
equation (3.4.11) is very similar.

The first scalar pertains to the flow and the second scalar captures the combined

effects of thermal and transport processes. From Darcy equations, we establish

grad[v] ∼ −µ−1 (Rcgc ⊗ grad[p] +Rθgθ ⊗ grad[p] + grad[grad[p]]) . (3.4.9)

By taking trace on the both sides of the above equation, and noting that div[v] = 0,

we obtain:

trace [Rcgc ⊗ grad[p] +Rθgθ ⊗ grad[p]] = −∆p. (3.4.10)

This motivates us to conjecture that

Rcgc ⊗ grad[p] +Rθgθ ⊗ grad[p] ∼ −grad[grad[p]], (3.4.11)

which has been verified using numerical simulations on the Hele-Shaw problem. These

results are provided in Figure 3.1. One can then obtain the following similarity:

grad[v] ∼ −µ−1 (Rcgc +Rθgθ)⊗ grad[p] = (Rcgc +Rθgθ)⊗ v. (3.4.12)
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(a) Pe = 2× 103 & Rθ = 2 (b) Pe = 104 & Le = 10

Figure 3.2: Mixing evolution: Evolution of εv and εcθ in time using numerical simulation
for different Pe, Le, and Rθ. For all we keep Rc = 2. For each value of Rθ, the
two variables evolve similarly which completely satisfies the equation (3.4.14).

Noting the property of the tensor product, one can obtain

grad[v] · grad[v] ∼ ‖Rcgc +Rθgθ‖2‖v‖2. (3.4.13)

Using the definitions introduced in equations (3.4.7)–(3.4.8), one can obtain the sim-

ilarity between the two scalar functions:

εv ∼ εcθ. (3.4.14)

If the viscosity does not depend on the temperature (i.e., Rθ = 0) then one can obtain

the similarity relation given in [Jha et al., 2011] as a special case. That is,

εv ∼ R2
cPeεc when Rθ = 0. (3.4.15)

Note that, there is a difference between the definition of εv employed in this paper

versus the one defined in [Jha et al., 2011]. One can also obtain

εv ∼ R2
cPeLe−1εθ when Rc = 0. (3.4.16)
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Figure 3.2 shows the evolution of εv and εcθ in time using numerical simulation for

Pe = 104, Le = 10, andRc = 2. For each value ofRθ, the two variables evolve similarly

which completely satisfies the equation (3.4.14). It also conforms the proposed scaling

in equation (3.4.8) and in consequence, the scaling in equations (3.4.15) and (3.4.16).

In the general case, the scalar functionals, εc and εθ, are not sufficient to describe

the viscous mixing due to the combined effects of temperature and concentration, as

temperature and concentration fields are statistically correlated.

3.4.0.1 Concentration and temperature correlation

It should be noted that the concentration and temperature fields are correlated.

This should be evident from the fact that the evolutions of both these fields (i.e.,

equations (3.2.2a) and (3.2.3a)) depends on the velocity v. To systematically study

the behavior of this correlation, we shall introduce the following field, which is a linear

combination of temperature and concentration fields as

χ :=
√
Pe
(

2
√
LeRc

Le + 1 c+ Rθ√
Le
θ

)
. (3.4.17)

It is again easy to check that

d〈χ〉
dt = 0. (3.4.18)

The evolution of variance of χ satisfies:

dσ2
χ

dt = d〈χ2〉
dt = −2εcθ + 2PeR2

c

(
Le− 1
Le + 1

)2

εc. (3.4.19)

This shows that the evolution of the variance of χ changes its behavior depending

on the Péclet number and Lewis number. εcθ is denied in equation (3.4.8). Figure

3.3 shows time evolution for the equation (3.4.19) using numerical simulation for
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(a) Pe = 2× 103 & Rθ = 2 (b) Pe = 104 & Le = 10

Figure 3.3: Mixing evolution: Time evolution for the equation (3.4.19) using numerical
simulation for different Pe, Le, and Rθ. For all we keep Rc = 2. The scaling
expressions 〈χ2〉 ∼ t2 and −2εcθ + 2PeR2

c

(
Le−1
Le+1

)2
εc ∼ t are identified which

satisfy the equation (3.4.19). Note that λ = 2PeR2
c

(
Le−1
Le+1

)2
, in the plot.

different Pe, Le, and Rθ for Hele-Shaw problem (non-periodic field). For all cases we

keep Rc = 2. The scaling expression 〈χ2〉 ∼ t2 is identified for correlation of c and θ.

3.4.0.2 Extension to the Hele-Shaw problem

We shall now show both mathematically and numerically that the above results

are valid even for the Hele-Shaw problem even though the fields are not periodic. If

nondimensional form of equation (3.2.2a) is multiplied by c we can derive evolution

equation for εc as

1
2

〈
∂c2

∂t
+ div

[
vc2

]〉
− 1

Pe

〈
div [c grad[c]]− ‖grad[c]‖2

〉
= 0, (3.4.20)

in which

〈
div

[
vc2

] 〉
=
∫

Γleft
c2 v · n̂ dΓ = −c2

inj vinj and (3.4.21)〈
div [c grad[c]]

〉
=
∫

Γleft
c grad[c] · n̂ dΓ = 0. (3.4.22)
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Figure 3.4: Mixing evolution: These figures show mixing parameters 〈c2〉, εc, 〈θ2〉, and εθ
vs. time for Pe = 104, Le = 10 and Rc = 2. The scaling expression 〈c2〉 ∼ t2

and 〈θ2〉 ∼ t2 are found. Moreover, scaling statement εc ∼ t and εθ ∼ t are
identified which satisfy equations (3.4.24) and (3.4.25).

Hence, we will have the following for equation (3.4.20):

1
2

d
dt
〈
c2
〉
− 1

2c
2
inj vinj + εc = 0. (3.4.23)

For the constant value of cinj and vinj, the concentration variance evolution for Hele-

Shaw problem becomes

d
dt
〈
c2
〉
∼ −2εc. (3.4.24)

Note that, in Hele-Shaw problem, 〈c〉 is not constant and has a non-zero time evolution

value.

Similarly, it is easy to derive temperature evolution for Hele-Shaw cell:

d
dt
〈
θ2
〉
∼ −2εθ. (3.4.25)

Figure 3.4 shows mixing parameters 〈c2〉, εc, 〈θ2〉, and εθ vs. time for Pe = 104,

Le = 10 and Rc = 2. The scaling expression 〈c2〉 ∼ t2 and 〈θ2〉 ∼ t2 are found.

Moreover, scaling statements εc ∼ t and εθ ∼ t are identified which satisfy equations

(3.4.24) and (3.4.25).
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3.5 Effect of temperature on viscous fingering

In this section we shall illustrate the results for coupled flow-transport-temperature

system given by equations (3.2.1a)–(3.2.3d). Darcy flow model, equations (3.2.1a)–

(3.2.1d), is an elliptic type equation that only needs appropriate Neumann or Dirichlet

boundary conditions. Herein, normal velocity is the Neumann (flux) type bound-

ary condition and pressure is the Dirichlet type. However, both boundary and ini-

tial conditions have to be forced for transport equations, (3.2.2a)–(3.2.2d), and heat

equations, (3.2.3a)–(3.2.3d). In these two equations of parabolic character, concen-

tration and temperature are enforced on the Dirichlet boundary and fluxes on the

Neumann boundary. [Zimmerman and Homsy, 1992a] found that the mechanisms in

two-dimensional (2-D) simulations of viscous fingering persist to those in three di-

mensions. They concluded that the 2-D simulations are sufficient to capture essential

features of viscous fingering instability. Hence, herein we will solve a 2-D problem in

horizontal porous media or Hele-Shaw cell (that is, two parallel plates separated by

a thin gap) in which mass production in Darcy equation and volumetric sources in

ADR and heat equations are zero. So, ADR equations reduce to AD equations. Study

of Hele-Shaw cell can be useful for investigation of VF in micro-channel [Jha et al.,

2013]. Pictorial description of the problem including boundary and initial conditions

is provided in Figure 3.5. The computational domain is a Lx × Ly rectangle. On

the left boundary the normal velocity vx (in x-direction), concentration cp, and tem-

perature θp are enforced as the injected inflow. There is a small w × Ly rectangular

region in the left to generate instabilities and to inject (µ1(c, θ), c, θ). The disturbed

fluid (µ1) flows into the domain which contains the second fluid at rest (µ2, c
0, θ0).

The zero fluxes are prescribed on the top and bottom boundaries for the flow model

(i.e., vn(x, t) = 0 on Γv×]0, I[), AD equations (i.e., hp(x, t) = 0 on Γh×]0, I[), and

heat equations (i.e., sp(x, t) = 0 on Γs×]0, I[). The no flux boundary conditions
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Figure 3.5: Hele-Shaw cell: Pictorial description of the problem including boundary and
initial conditions. The computational domain is a Lx × Ly rectangle. The
disturbed fluid (µ1(c, θ), c, θ) flows into the domain which contains second
flow at rest (µ2, c

0, θ0).

are also enforced for AD and heat equations on the right boundary, where the atmo-

sphere pressure is employed for flow model (i.e., p0(x, t) = patm on Γp×]0, I[). Initial

condition for concentration that distributes instability in the medium is as

c(x, t = 0) =


α γ(x) exp[−x2

β2 ] for 0 ≤ x ≤ w

0 for x > w ,

where the function γ(x) represents random function ranging from 0 to 1 and exhibits

transverse irregularities in concentration. α is the magnitude of the disturbance and

β can be interpreted as the penetration of disturbance from the front. Both α and β

have small values relative to unity. The value for w is provided in Tables 3.1.

To complete the coupled model, the viscosity is assumed to depend exponentially

on the values of concentration c and temperature θ [Pritchard, 2009, Islam and Azaiez,

2010b, Mishra et al., 2010]:

µ(c, θ) = exp [Rc(1− c) +Rθ(1− θ)], (3.5.1)

in which M = exp(Rc) is mobility ratio in an isothermal miscible displacement and
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M = µ2
µ1
. Rθ is log-mobility that considers temperature effect in flow. In this sec-

tion, to investigate impact of temperature we fix Rc = 2 and change the thermal

log-mobility Rθ in the interval [−3, 3]. Moreover, to further study the impact of

temperature, we alter Lewis number Le which is defined as

Le = κθ
λmin

, (3.5.2)

where κθ is thermal diffusivity and λmin denotes the isotropic diffusion (dm) or min-

imum eigenvalue of the anisotropic diffusivity. As diffusion of temperature is faster

than diffusion of mass, the Lewis number should be Le ≥ 1 [Mishra et al., 2010,

Almarcha et al., 2013], so Le = 10, 4 and 1 are used in this work. Very high Péclet

number of Pe = 104 and a moderate value of 2 × 103, are used herein. The Péclet

number is the ratio between the advection and diffusion in transport equation, which

is taken as

Pe = Lx‖v(x, t)‖
λmin

, (3.5.3)

where Lx is the characteristic length and ‖ · ‖ is the standard 2-norm. ‖v‖ here is

simply injection velocity vx.

Unless otherwise mentioned, all the results are obtained for parameters provided

in Table 3.1 in which aspect ratio of the computational domain is Lx
Ly
. The mesh used

for the problem is also 10, 000 structured quadrilateral finite (Q4) elements.

3.5.1 A qualitative study

In this part, the time evolution of concentration, temperature, and viscosity in

broad range of parameters are presented for better understanding of coupled flow-

transport-temperature model in VF. We will discuss the influence of altering Lewis

number with the values Le = 1, 4 and 10, and the thermal log-mobility within the
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Table 3.1: Hele-Shaw cell: Parameters used in the problem.

Parameter Value
Lx
Ly

4
w 0.01Lx
cp 1
θp 1
θ0 0.1
patm 1

wide interval Rθ ∈ [−3, 3] for long-time sequences. Moreover, the presented results are

for moderate and very high Péclet numbers, that is Pe = 2×103 and 104, respectively.

These values are chosen for Pe to avoid occurrence of pure diffusion conditions. To

the best of our knowledge, there is not a reported research paper for finite element

simulation of VF in Hele-Shaw porous media cell for such a high Péclet number.

[Moissis et al., 1988, Coutinho and Alves, 1999, Castro et al., 2001, Riviere and

Wheeler, 2002, Dias and Coutinho, 2004, Scovazzi et al., 2013] employed FEM and

used Pe ≤ 2× 103. Recently, [Li and Riviere, 2015] utilized a discontinuous Galerkin

method in miscible flooding of quarter five-spot problem for very high Péclet number.

Also, [Meng and Guo, 2015] proposed a multiple-relaxation-time lattice Boltzmann

method for high Péclet numbers in miscible displacement for incompressible Navier-

Stokes flow. We use terminologies and mechanisms presented in previous research

works including [Tan and Homsy, 1986, 1987, 1988, Zimmerman and Homsy, 1991,

Azaiez and Singh, 2002, Islam and Azaiez, 2005] to describe the nonlinear dynamics

of VF on formation and development of finger structures, and on interactions of

neighboring fingers. By numerical simulations of nonlinear VF, [Tan and Homsy,

1986, 1987, 1988] showed that there are a few dominant finger structures that spread

and grow significantly. In consequence, the gradient between the shielded finger and

the surrounding becomes steep and the neighboring finger-like patterns grow, too.

In addition to shielding, they also characterized mechanism like tip splitting. Then
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Figure 3.6: Concentration: These figures show concentration profile for Pe = 104, Le = 10
and Rc = 2. Thermal log-mobility is also (a) Rθ = −3, (b) Rθ = 0, and (c)
Rθ = 3. The frame numbers indicate the time. Note that 0 ≤ c(x, t) ≤ 1.

they extended the mechanisms in VF instabilities and found new mechanisms like

side merging or coalescence and channeling [Zimmerman and Homsy, 1991]. There

are some other research papers such as [Azaiez and Singh, 2002, Islam and Azaiez,

2005] in which they developed the previous works and observed new mechanisms.

Figure 3.6 depicts concentration profile for Pe = 104, Le = 10, Rc = 2, and

thermal log-mobility Rθ = −3, 0 and 3. The frame numbers in the top left indicate

time. For Rθ = −3 (Figure 3.6(a)) channeling is the dominant mechanism. Side

branching is also observed. Moreover, trailing lobe detachment occurs at t = 200.

Leading lobe detachments that are observed at t = 100 in several parts, remain in

the domain for a while. It is also produced at next time sequences for Rθ = −3.

Tip splitting is identified for Rθ = 0 at frame number t = 300 (Figure 3.6(b)).

Also, side merging (coalescence) occurs in different parts of the domain. Leading

lobe detachment is also identified at t = 100 and next time sequences. Alternative

side branching which identified by [Islam and Azaiez, 2005] for high log-mobility, is

observed at t = 400. For both cases (Rθ = −3 and 0) there are clearly shielding

mechanism. For Rθ = 3 (Figure 3.6(c)) a coalescence is observed at t = 300 and this

merging becomes such powerful that starts to change the total pattern of fingers. The
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Figure 3.7: Temperature: These figures show temperature θ(x, t) for Pe = 104, Le = 10,
and Rc = 2. Thermal log-mobility is also (a) Rθ = −3 and (b) Rθ = 3. The
frame numbers indicate the time.

trailing lobe detachment is also found at t = 400. In terms of the number of initial

fingers, by increasing the thermal log-mobility, it decreases. On the other hand, the

fingers width decrease from Rθ = 3 to −3. In addition, if Rθ ≥ 0, for Rθ = 0 there

are more finger stretching and front advancement compared to Rθ = 3.

Figures 3.7 and 3.8 show temperature and viscosity for Pe = 104, Le = 10, Rc = 2

(exactly the same as Figure 3.6). The temperature in DD can also be interpreted as

the specie profile which has 10 times faster diffusion (Le = 10) in this case. Hence, it

should be very useful to investigate the treatment of temperature. The temperature

profiles are shown for Rθ = −3 and 3. For Rθ = −3 (Figure 3.7(a)) channeling is again

dominant. Side branching is also observed. The pattern for Rθ = 3 (Figure 3.7(b)) is

almost the same as concentration profile (Figure 3.6(c)) and side merging is identified

in frame numbers t = 200, 300 and 400. The viscosity is depicted for Rθ = 0 and 3

in Figures 3.8(a) and 3.8(b), respectively. Study of the viscosity is important due to

its coupling role in VF and miscible displacement models. In viscosity contours, tip

splitting is found for Rθ = 0 at frame number t = 300, and side merging and shielding

in different parts of the domain. The side merging is the dominant mechanism for
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Figure 3.8: Viscosity: These figures show viscosity µ1(c, θ) for Pe = 104, Le = 10, and
Rc = 2. Thermal log-mobility is also (a) Rθ = 0 and (b) Rθ = 3. The frame
numbers indicate the time.

Rθ = 3 similar to concentration profile in Figure 3.6(c).

The concentration for Pe = 104, Rc = 2, and Rθ = 2 and two different Lewis

numbers (i.e., Le = 10 and 4) is shown in Figure 3.9. For Le = 10 which means

faster temperature diffusion (Figure 3.9(a)), coalescence begins sooner (at t = 100)

compared to Le = 4 (Figure 3.9(b)) where at t = 200 side merging is found. For

Le = 10 at t = 200, in addition to side merging, there is a trailing lobe detachment.

In both cases, although the number and width of initial fingers are almost the same,

the fingers for Le = 4 are more stretching and have more front advancement. Figure

3.10 shows temperature and viscosity for the same parameters in Figure 3.9. The

100

200

(a)

200

(b)

Figure 3.9: Concentration: These figures show concentration c(x, t) for Pe = 104 , Rc = 2,
and Rθ = 2. Lewis number is also (a) Le = 10 and (b) Le = 4. The frame
numbers indicate the time.
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(a)
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(b)

Figure 3.10: Temperature and viscosity: These figures show temperature θ and viscosity
µ for Pe = 104 , Rc = 2, and Rθ = 2. Lewis number is also (a) Le = 10 and
(b) Le = 4. Upper figures depict temperature and lower viscosity profiles.

upper figure depicts temperature and the lower one represents viscosity profiles. The

number of initial fingers in temperature and viscosity contours for Le = 4 is higher.

However, the fingers width are thicker for Le = 10. Similar to concentration profile

for Le = 4 (Figure 3.9(b)), in temperature and viscosity contours there are more

finger stretching and front advancement compared to Le = 10.

By decreasing Péclet number to a moderate value, still large numbers of mecha-

nisms are found. Figure 3.11 depicts concentration profile for Pe = 2× 103, Le = 10,

Rc = 2 and Rθ = −3, 0, and 3. There are similarities in number and width of initial

fingers in current case and high Péclet number (Pe = 104 in Figure 3.6). Also, finger

shielding, stretching and front advancement decrease by increasing the value of Rθ

(similar to Figure 3.6). For example, for Rθ = −3 (Figure 3.11(a)) channeling occurs.

50 150 150

250

250

(a)

350

(b)

350

(c)

Figure 3.11: Concentration: These figures show concentration c(x, t) for Pe = 2 × 103,
Le = 10, and Rc = 2. Thermal log-mobility is also (a) Rθ = −3, (b) Rθ = 0,
and (c) Rθ = 3. The frame numbers indicate time.

75



200 200

400

(a)

400

(b)

Figure 3.12: Viscosity: These figures show viscosity µ1(c, θ) for Pe = 2 × 103, Le = 10,
and Rc = 2. Thermal log-mobility is also (a) Rθ = 0 and (b) Rθ = 3. The
frame numbers indicate time.

Double coalescence as observed by [Islam and Azaiez, 2005] for high log-mobility, are

identified for Rθ = −3 and 0 at t = 150 and t = 250 (Figures 3.11(a) and 3.11(b),

respectively). For Rθ = 3, side merging occurs at t = 350 (Figure 3.11(c)). Trans-

formation from VF to miscible displacement by altering the thermal log-mobility is

clearly shown for viscosity profile in Figure 3.12. In this figure, for Pe = 2 × 103,

Le = 10, and Rc = 2, increasing the thermal log-mobility from Rθ = 0 (Figure

3.12(a)) to Rθ = 3 (Figure 3.12(b)) diminishes the finger-structures.

In Figure 3.13, we can investigate the effect of Péclet and Lewis numbers for

Rc = 2 and Rθ = 2 in DD situation. It is identified that for Pe = 104 the initial fingers

are formed much more sooner, also with high numbers (Figure 3.13(a)) compared to

Pe = 2 × 103 (Figure 3.13(b)). For Pe = 104, side merging is observed at t ≥ 150,

while for Pe = 2× 103 it is identified at t = 350. For Pe = 104, there are also trailing

lobe detachment at t ≥ 150 and leading lobe detachment at t = 250 and 350. There

are also identified mechanisms for high log-mobility introduced in [Islam and Azaiez,

2005] for Pe = 104 such as skewering at t = 150 and alternating side branching at

t = 200. Moreover, by comparing Figures 3.13(b) and 3.13(c), we can investigate

influence of Lewis number for a specific Péclet number (here Pe = 2× 103). It can be

observed that for Le = 1 (which is the lowest possible Lewis number), as temperature

diffuses faster, the fingers not only formed faster, but also advanced faster. There

are also trailing lobe detachment and coalescence at t ≥ 200 in Figure 3.13(c). For
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(a) Pe = 104 and Le = 10

350

(b) Pe = 2× 103 and Le = 10 (c) Pe = 2× 103 and Le = 1

Figure 3.13: Concentration: These figures show concentration c(x, t) for Rc = 2 and
Rθ = 2. The frame numbers indicate time. Mechanisms for high log-mobility
introduced in [Islam and Azaiez, 2005] such as skewering and alternating side
branching are observed.

Le = 1 at t = 350 the skewing mechanism is also identified which is not observed for

Le = 10 (Figure 3.13(b)).

3.5.2 A quantitative study

In order to monitor effect of temperature in dynamics of VF and miscible dis-

placement, in addition to qualitative observation, a parametric studies are performed.

We address mixing time and mixing length quantities to characterize the interplay

of mixing and fingering phenomenon. For the following presented results, parameters

provided in Table 3.1 are used.

3.5.2.1 Mixing time

First, we study the spatial distribution of concentration as a quantitative anal-

ysis. Let us define the temporal evolution of transverse concentration for quantity C

as
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C(t) =
∫ Ly

0
c(x, t) dy. (3.5.4)

This is a mixing parameter by which we evaluate mixing time in VF phenomenon.

Mixing time is also defined as

tmix = t
∣∣∣
C=1−δ

− t
∣∣∣
C=δ

, (3.5.5)

where δ is a small positive number. Time evolution of transverse concentration C(t) is

plotted in Figure 3.14 for Rc = 2 and different thermal log-mobility, Péclet, and Lewis

numbers at Lx/2. The results show that mixing time is shorter for smaller value of

|Rc − Rθ| and minimum mixing time occurs for Rθ = 2. For Rθ = −3, it is observed

that the finger channeling retards mixing by increasing mixing time [Jha et al., 2013].

For a specific Lewis number (Le = 10, in Figure 3.14(d)), increasing Péclet number

increases the mixing time. Also, for a fixed Péclet number (Pe = 2 × 103 in Figure

3.14(e)) higher Lewis numbers have longer mixing time.

3.5.2.2 Mixing length

References [Norouzi and Shoghi, 2014, Zimmerman and Homsy, 1991] also plot-

ted variation of average transverse concentration c(x) vs. longitudinal length which

is given as

c(x) = 1
n

n∑
i=1

c(x, yi, t). (3.5.6)

Then they used these average quantity to evaluate mixing length in VF. Mixing length

is evaluated as follows:

lmix = x
∣∣∣
c=δ
− x

∣∣∣
c=1−δ

, (3.5.7)
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(a) Pe = 2× 103 and Le = 10 (b) Pe = 104 and Le = 10 (c) Pe = 2× 103 and Le = 1

(d) Le = 10 (e) Pe = 2× 103

Figure 3.14: Mixing time: These figures show average transverse concentration C(t) vs.
time Rc = 2 at Lx/2. ixing time is shorter for smaller values of |Rc − Rθ|
and minimum mixing time occurs for Rθ = 2. For Rθ = −3, it is observed
that the tip splitting and finger channeling increase mixing time.

in which δ is again a small positive number. Figure 3.15 shows average transverse

concentration c(x) vs. x for Rc = 2 and various thermal log-mobility, Péclet, and

Lewis numbers at t = 100, 200, and 300. The results show that mixing length is

also shorter for smaller value of |Rc − Rθ| and minimum mixing length occurs again

for Rθ = 2. For Rθ = −3, it is observed that the finger channeling increases mixing

length, as well as mixing time. For a fixed Lewis number (Le = 10, in Figure 3.15(e)),

increasing Péclet number increases the mixing length. Also, for a specific Péclet

number (Pe = 2 × 103 in Figure 3.15(f)) lower Lewis numbers have longer mixing

length. It should be noted that the mixing length for same set of parameters increases

by time evolution. It means, mixing length is longer for t = 300 than t = 200 and

100 for specific Pe, Le, and Rθ.
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(a) Pe = 104 and Le = 10 at
t = 300

(b) Pe = 104 and Le = 4 at
t = 300

(c) Pe = 104 and Le = 10 at
t = 100

(d) Pe = 2 × 103 and Le = 10
at t = 300

(e) Le = 10 at t = 200 (f) Pe = 2× 103 at t = 300

Figure 3.15: Mixing length: These figures show average transverse concentration c(x) vs.
x for Rc = 2. Mixing length is shorter for smaller values of |Rc − Rθ| and
minimum mixing length occurs again for Rθ = 2. For Rθ = −3, it is observed
that the tip splitting and finger channeling increase mixing length.

3.6 Numerical results: Impact of employing stabilized for-

mulations

To study effects of numerical stabilizers on VF, we will solve quarter five-square

problem in porous media. A pictorial description of the initial boundary value prob-

lem is shown in Figure 3.16. The reason to choose this problem is that quarter

five-square does not need any induced mathematical instabilities such as Hele-Shaw

cell to initiate VF instability. Due to chemical reaction that exists in ADR model

and DD effects, even in the case of homogeneous and isotropic permeability, VF

is expected. The computational domain is a square with length L = 1. There

are also two small squares with length W in bottom left (ΩI) and top right (ΩP )

corners. From the injection well of ΩI , displacing fluid mass (ϕI) is injected into
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hp(x, t) = 0
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ΩP
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vn(x, t) = 0

Γv

Γh

Γv
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sp(x, t) = 0

Γs

Γs

Figure 3.16: Quarter five-square: Pictorial description of the problem including initial and
boundary conditions. The computational domain includes a unit square and
two small squares with length W as injection and production wells.

Table 3.2: Quarter five-square: Parameters used in the problem.

Parameter Value
dm 10−7

f(x, t) ϕI in ΩI

r(x, t, c) −ϕP c in ΩP

g(x, t) ϕI in ΩI

q(x, t, θ) −ϕP θ in ΩP

the domain which is already filled by displaced fluid at rest. The top right square

(ΩP ) is production well that has mass sink (ϕP ). Elsewhere, ϕI = ϕP = 0. Ho-

mogeneous velocity is enforced on the entire boundary (i.e., Γv×]0, I[= ∂Ω). That

is, vn(x, t) = 0 for Darcy model. The zero fluxes are also prescribed on the en-

tire boundary for ADR equations (i.e., hp(x, t) = 0 on Γh×]0, I[= ∂Ω) and heat

equations (i.e., sp(x, t) = 0 on Γs×]0, I[= ∂Ω). As before, the viscosity is as-

sumed to depend exponentially on the concentration and temperature. That is,

µ = µ0 exp [Rc(1− c) +Rθ(1− θ)].

We have employed 100 × 100 quadrilateral finite elements to numerically solve

the coupled flow, reactive transport, and temperature model in quarter five-square

problem. Using parameters provided in Table 3.2, and utilizing SUPG formulation
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(a) SUPG at t = 100 (b) SUPG at t = 175 (c) SUPG at t = 250

(d) SUPG + isotopic
diffusion at t = 100

(e) SUPG + isotopic
diffusion at t = 175

(f) SUPG + isotopic
diffusion at t = 250

(g) SUPG + cross-
wind diffusion at t =
100.

(h) SUPG + cross-
wind diffusion at t =
175

(i) SUPG + cross-
wind diffusion at t =
250

Figure 3.17: Violation of maximum principle: The upper figures are concentrations for
SUPG formulation (eq. (3.3.5)). the middle figures are for modified SUPG in
which we added isotropic artificial diffusion (eq. (3.3.7)) and bottom figures
are for modified SUPG with crosswind artificial diffusion (eq. (3.3.8)).

and its modifications, results shown in Figure 3.17 are obtained. The plots depict

concentration c(x, t) at time t = 100, 175 and 250. The length of W in injection and

production well equals to L/10. The log-mobility are Rc = Rθ = 2, and the injection

source and production sink are ϕI = ϕP = 0.1, respectively. The concentration does

not remain in the range of [0, 1], so the numerical results have violated the maximum

principle (and in consequence the non-negative constraint). For instance, at t = 250

concentration under SUPG formulation is −2.75 ≤ c ≤ 6.21.
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(a) t = 100 (b) t = 175 (c) t = 250

Figure 3.18: Physical instability diminishing: These figures show concentration at different
time steps for quarter five-square with modified SUPG stabilized formulation
in which we added both isotropic and crosswind artificial diffusion.

To obtain accurate numerical solutions and avoid spurious oscillation, we have

employed modified SUPG formulation (SUPG plus both isotopic and crosswind ar-

tificial diffusion terms) provided in Section 3.3. Figure 3.18 shows the solution for

concentration. The parameters are exactly the same as Figure 3.17. The results

clearly show that the stabilized formulations diminish numerical oscillations and sat-

isfy maximum principle (and non-negative constraint) for the concentration which

is desired. However, stabilizers suppress hydrodynamic instabilities and we do not

observe VF.

Then using W = L/20, ϕI = ϕP = 0.2, and again similar parameters provided

in Table 3.2, to solve the problem. The results for SUPG stabilized formulations and

its modification even for very low values for Rc and Rθ (for instance, Rc = 1 and

Rθ = 0 ), violate maximum principle and non-negative constraint.

3.7 Concluding remarks

The effects of temperature in terms of Lewis number (Le), thermal log-mobility

ratio (Rθ), and Péclet number (Pe) are investigated on VF and miscible displacement.

For high value of Rθ, Rc, and Pe, the traditional numerical formulation for VF simu-

lation is not stable. So, we resort to finite element formulation to solve such a highly
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nonlinear coupled problem. The main contributions of the paper can be summarized

as follows:

(a) By considering effect of temperature (double diffusive effects), mechanisms like

double coalescence, skewering, and alternating side branching are identified. These

mechanisms are merely observed in single diffusivity case for very high log-

mobility [Islam and Azaiez, 2005].

(b) As Le ≥ 1, the results show that for values of Le close to one, finger patterns

are more stretching and channeling. The similar mechanisms happen when one

increases the Péclet number or uses negative thermal log-mobility.

(c) It is found that in presence of temperature (double diffusive instability), |Rc−Rθ|

can interpret mixing in VF phenomenon better than Rθ. Also, minimum mixing

time and length observed for |Rc − Rθ| ' 0. So, it can be concluded that for

|Rc − Rθ| ' 0 optimum mixing occurs. It should be noted that the Pe and Le

still have significant influence in VF.

(d) It is shown that among the mechanisms, finger channeling by retarding the cre-

ation of interfacial fluid-fluid area, reduces mixing. On the other hand, tip split-

ting mechanism, which leads to growth of adjacent fingers and creation of more

interface area, enhances mixing.

(e) To show the impact of flow disorder (velocity gradient) and concentration/temperature

gradient in mixing, the scaling parameters χ, εcθ and εv are defined for correla-

tion of temperature and concentration, and for flow. Then, by utilizing numerical

simulation the scaling expression 〈χ2〉 ∼ t2 and εv ∼ εcθ are identified.

(f) The numerical results violate the maximum principle and non-negative constraint

for the concentration. Also, the results obviously show that the utilized numeri-

cal stabilizers suppress physical instabilities and influence of temperature. Also,
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to avoid unphysical values for concentration, it is recommended to utilize non-

negative formulation proposed in [Mudunuru and Nakshatrala, 2016] or discon-

tinuous Galerkin method presented in [Li and Riviere, 2015].
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Chapter 4

VISCOUS FINGERING IN POROUSMEDIAWITH

DOUBLE PERMEABILITY: MODEL, STABILITY,

AND NUMERICAL SOLUTION

A theory that explains everything, explains nothing.

Karl Popper

4.1 Introduction and background

Most of the porous media models assume that the pore spaces have the same size

with single porosity and permeability. However, in real porous materials, pore size dis-

tribution with more than single porosity can be clearly distinguished. Herein, we con-

sider a geo-material with two dominant permeability for micro-scale and macro-scale

structures so-called double porosity/permeability. We will assume two pore-network

with different permeability in which the micro-structure represents the fracture net-

work and micro-structure is a network for matrix.

Various mathematical models have been proposed for double porosity/permeability

problems [Dykhuizen, 1990, Vogel et al., 2000, Balogun et al., 2007, Boutin and Royer,
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2015, Amaziane and Pankratov, 2016]. In current study we allow mass transfer be-

tween the micro- and macro-network. This assumption is based on mathematical

framework recently developed by [Nakshatrala et al., 2016a]. The main features of

the proposed model can be summarized as follows: (i) the medium has two differ-

ent pore-networks; (ii) the governing equations for each network is Darcy (iii) there

is a mass transfer between the micro- and macro-structure; (iv) pore-structures are

continuum, and the model allows mass and chemical species transports within each

pore-network.

Herein, the linear stability analysis and numerical solutions of viscous fingering

in porous media is conducted to study the effects of the main parameters on the

flow instability in double permeability medium. [Tan and Homsy, 1986] presented a

theoretical approach for stability analysis of miscible viscous fingering in porous media

under single permeability assumption. They used quasi-steady state approximation

(QSSA) and predicted the growth rate of instability. The QSSA is based on the

assumption that the growth rate of perturbations is asymptotically faster than the

rate of change of the background state. Then, the most dangerous wavelengths at any

point in time at which the base state was “frozen” is determined. The QSSA have

been widely used for linear stability analysis of miscible viscous fingering in porous

media [Tan and Homsy, 1987, Azaiez and Singh, 2002, Pramanik and Mishra, 2013].

For example [Wit and Homsy, 1997] conducted linear stability analysis of viscous

fingering in a heterogeneous porous medium with periodic permeability. [Ghesmat

and Azaiez, 2008] on the other hand, investigated the effect of anisotropic velocity

dependent dispersion on linear stability of viscous fingering in a porous medium. Also,

[Hejazi et al., 2010] performed a parametric study in terms of log-mobility ratios and

Domkohler number for linear stability of miscible reactive viscous fingering. Recently,

[Norouzi and Shoghi, 2014] analyzed linear stability of viscous fingering in porous

medium with anisotropic permeability and diffusivity. Moreover, [Pritchard, 2004,
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2009, Islam and Azaiez, 2010a] studied linear stability of double diffusive problems

in miscible viscous fingering in radial and rectilinear geometries.

To the best of our knowledge, there is not any stability analysis for double poros-

ity/permeability viscous fingering in porous medium. The only study in the literature

which can be relevant, is the work done by [Sajjadi and Azaiez, 2013]. In this study,

they performed numerical simulation of layered heterogeneous porous media with sin-

gle porosity assumption in which the values of permeability in layers are scalar and

varies between 0.7 to 1.6. Herein, the governing equations are derived for coupled dou-

ble permeable anisotropic porous media flow and advection-diffusion models. Then,

a parametric study for the influence of the anisotropic permeability of micro- and

macro-network, log-mobility, and mass transfer between micro- and macro-structure

on linear stability of viscous fingering will be conducted. Moreover, by employing

finite element formulations, the influence of parameters on the concentration profiles

is presented.

The rest of the chapter is organized as follows. The governing equations for

coupled flow and transport in porous media with double permeability along with

the linearization of the governing equations are presented in Section 4.2. The model

problem and its base-state solution are presented in Section 4.3. In Section 4.4 the

stability of the base-state solution is systematically analyzed. Moreover, numerical

solutions of the governing equations by utilizing finite element formulations is per-

formed. Conclusions for this Chapter are drawn in Section 4.5.

4.2 Governing equations and linearization

In this section, we outline the governing equations for coupled transport and

flow in porous media with double permeability. To this end, we denote a spatial

point by x, and the time by t. The gradient and divergence operators with respect

to x are, respectively, denoted by grad[·] and div[·]. We denote the concentration
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of the chemical species by c(x, t). We assume that the porous medium has two

pore-networks, which will be referred to as macro-pore and micro-pore networks. We

allow mass transfer across the two pore-networks. For assumptions and mathematical

properties of double porosity/permeability models, refer to [Nakshatrala et al., 2016a]

and references therein. We denote the permeabilities in the macro-pore and micro-

pore networks by KM and Km, respectively. The discharge velocities in the macro-

pore and micro-pore networks are, respectively, denoted by uM(x, t) and um(x, t).

The pressures in these two pore-networks are denoted by pM(x, t) and pm(x, t).

The fate of the chemical species is governed by the following advection-diffusion

equation:

∂c

∂t
+ div[uc]− div[Dgrad[c]] = f(x, t), (4.2.1)

where u is the advection velocity, D is the diffusivity coefficient, and f(x, t) is the

volumetric source/sink for the chemical species. The flow of an incompressible fluid

in a porous medium with double permeability is governed by the following equations:

µ(c)K−1
M uM + grad[pM ] = γb(x), (4.2.2a)

µ(c)K−1
m um + grad[pm] = γb(x), (4.2.2b)

div[uM ] = − β

µ(c)(pM − pm), and (4.2.2c)

div[um] = + β

µ(c)(pM − pm), (4.2.2d)

where γ is the true density of the fluid; b(x) is the specific body force; β is a scalar

parameter, which depends on the porous media; and µ is the viscosity of the fluid,

which depends on the concentration of the attendant chemical species. We employ

the standard expression for the dependence of viscosity on the concentration [Tan
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and Homsy, 1986]:

µ = µ0 exp[Rcc], (4.2.3)

where µ0, which in the context of miscible displacement and viscous fingering, is the

viscosity of the displacing fluid, and Rc is the mobility ratio. The advection velocity

is the sum of the discharge velocities in the macro-pore and micro-pore networks:

u(x, t) = uM(x, t) + um(x, t). (4.2.4)

The resulting governing equations are coupled nonlinear equations, and the coupling

is two-way. That is, the transport of the chemical species depends on the advection

velocity that is obtained from the flow problem, and the flow is affected by the

viscosity, which depends on the concentration of the chemical species.

4.2.1 Two-scale expansion and linearization

We linearize the governing equations by employing a two-scale expansion, which

provides the corresponding governing equations for the base-state solution and for

the perturbed solution. To this end, we decompose the field variables as

uM(x, t) = uM(x, t) + εũM(x, t), (4.2.5)

um(x, t) = um(x, t) + εũm(x, t), (4.2.6)

pM(x, t) = pM(x, t) + εp̃M(x, t), (4.2.7)

pm(x, t) = pm(x, t) + εp̃m(x, t), and (4.2.8)

c(x, t) = c(x, t) + εc̃(x, t), (4.2.9)

where ε� O(1) is a small parameter. The decomposition of the concentration field
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gives rise to the following decomposition of the viscosity:

µ(c) = µ(c) + εµ̃(c). (4.2.10)

Noting equation (4.2.3), we have

µ = µ0 exp[Rcc] and µ̃ = µ0Rcc̃. (4.2.11)

The governing equations for the base-state solution can be obtaining by collecting the

terms containing ε0:

µ(c)K−1
M uM + grad[pM ] = γb(x), (4.2.12a)

µ(c)K−1
m um + grad[pm] = γb(x), (4.2.12b)

div[uM ] = −β
µ

(pM − pm), (4.2.12c)

div[um] = +β
µ

(pM − pm), and (4.2.12d)

∂c

∂t
+ (uM + um) · grad[c]− div[Dgrad[c]] = 0. (4.2.12e)

The governing equations for the perturbations can be obtaining by collecting the

terms containing ε1:

µ̃(c)K−1
M uM + µ(c)K−1

M ũM + grad[p̃M ] = 0, (4.2.13a)

µ̃(c)K−1
m um + µ(c)K−1

m ũm + grad[p̃m] = 0, (4.2.13b)

div[ũM ] +Rcc̃ div[uM ] = −β
µ

(p̃M − p̃m), (4.2.13c)

div[ũm] +Rcc̃ div[um] = +β
µ

(p̃M − p̃m), and (4.2.13d)

∂c̃

∂t
+ (uM + um) · grad[c̃] + (ũM + ũm) · grad[c]− div[Dgrad[c̃]] = 0. (4.2.13e)
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4.3 Model problem: Rectilinear flow

4.3.1 Problem description

Study of [Zimmerman and Homsy, 1992a] identified that the mechanisms in two-

dimensional simulations of viscous fingering persist to those in three dimensions. They

concluded that the two-dimensional simulations are sufficient to capture essential

features of viscous fingering instability. Therefore, we consider the domain to be

an infinite two-dimensional porous media with dual permeability. Without loss of

generality, we assume that the domain to be x-y plane. The unit vectors along the

x and y directions are denoted by î and ĵ, respectively. The permeability tensors in

macro- and micro-pore networks are, respectively, taken as

KM =

 K1 0

0 K2

 and Km =

 k1 0

0 k2

 , (4.3.1)

where K1, K2, k1 and k2 are all positive constants. We shall denote the velocities in

the macro- and micro-pore networks as

uM = Vx î + Vy ĵ and um = vx î + vy ĵ. (4.3.2)

The initial conditions for the flow in the porous media is taken as

Vx(x, y, t = 0) = K1

K1 + k1
, Vy(x, y, t = 0) = 0, and (4.3.3)

vx(x, y, t = 0) = k1

K1 + k1
, vy(x, y, t = 0) = 0. (4.3.4)

The initial concentration is taken as

c(x, y, t = 0) = H(x), (4.3.5)
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where H(x) is the Heaviside function. The model problem is pictorially described in

Figure 4.1.

4.3.2 Non-dimensionalization

We shall take D [L2T−1] and U [LT−1] as the reference quantities. The length

scale will then be D/U , and the time scale will be D/U2. It is convenient to move

the coordinate system with velocity

vref = U î = î. (4.3.6)

Under the transformed coordinate system, the initial conditions for the flow in the

porous media become

Vx(x, y, t = 0) = −k1

K1 + k1
, Vy(x, y, t = 0) = 0, and (4.3.7)

vx(x, y, t = 0) = −K1

K1 + k1
, vy(x, y, t = 0) = 0. (4.3.8)

Under the new transformed coordinate system, the governing equations are:

K1
∂pM
∂x

= −µVx − µ, (4.3.9a)

K2
∂pM
∂y

= −µVy, (4.3.9b)

k1
∂pm
∂x

= −µvx − µ, (4.3.9c)

k2
∂pm
∂y

= −µvy, (4.3.9d)

µ

(
∂Vx
∂y

+ ∂Vy
∂y

)
= µ

(
∂Vx
∂x

+ ∂Vy
∂y

)
= −β(pM − pm), (4.3.9e)

µ

(
∂vx
∂y

+ ∂vy
∂y

)
= µ

(
∂vx
∂x

+ ∂vy
∂y

)
= +β(pM − pm), and (4.3.9f)

∂c

∂t
+ (Vx + vx + 1) ∂c

∂x
+ (Vy + vy)

∂c

∂y
= ∂2c

∂x2 + ∂2c

∂y2 . (4.3.9g)
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We decompose the solution for the model problem as a sum of the base-state

solution and a perturbation, which take the following mathematical form:

Vx(x, y, t) = V x(x, t) + εṼx(x, y, t), (4.3.10a)

Vy(x, y, t) = V y(x, t) + εṼy(x, y, t), (4.3.10b)

vx(x, y, t) = vx(x, t) + εṽx(x, y, t), (4.3.10c)

vy(x, y, t) = vy(x, t) + εṽy(x, y, t), (4.3.10d)

pM(x, y, t) = pM(x, t) + εp̃M(x, y, t), (4.3.10e)

pm(x, y, t) = pm(x, t) + εp̃m(x, y, t), (4.3.10f)

c(x, y, t) = c(x, t) + εc̃(x, y, t), and (4.3.10g)

µ(x, y, t) = µ(x, t) + εµ̃(x, y, t). (4.3.10h)

4.3.3 Base-state solution

The base-state solution for the model problem can be written as follows:

V x(x, t) = −k1

K1 + k1
, V y(x, t) = 0, (4.3.11a)

vx(x, t) = −K1

K1 + k1
, vy(x, t) = 0, (4.3.11b)

c(x, t) = c0√
4πt

∫ 0

−∞
exp

[
−(x− ζ)2

4t

]
dζ, and (4.3.11c)

pM(x, t) = pm(x, t) = − 1
K1 + k1

∫
µ(c)dx+ integration constant. (4.3.11d)

We now assess the stability of this base-state solution with respect to perturbations.
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4.4 Stability analysis

The evolution of the perturbations are governed by the following equations:

K1
∂p̃M
∂x

= −µṼx − µ̃V x − µ̃, (4.4.1a)

K2
∂p̃M
∂y

= −µṼy, (4.4.1b)

k1
∂p̃m
∂x

= −µṽx − µ̃vx − µ̃, (4.4.1c)

k2
∂p̃m
∂y

= −µṽy, (4.4.1d)

∂ṽx
∂x

+ ∂ṽy
∂y

+ ∂Ṽx
∂x

+ ∂Ṽy
∂y

= 0, and (4.4.1e)

∂c̃

∂t
+
(
Ṽx + ṽx

) ∂c
∂x

= ∂2c̃

∂x2 + ∂2c̃

∂y2 . (4.4.1f)

The concentration and the velocity components (Vx, Vy, vx and vy) are bounded as

‖x‖ → ∞. However, the pressures, pM and pm, can be unbounded as ‖x‖ → ∞, which

should be evident from equations (4.4.1a)–(4.4.1d). To handle the boundedness of

the pressures, we will obtain a reduced set of equations by eliminating the pressures,

which will then be employed in the stability analysis. The reduced set of equations

can be written as

∂µ

∂x

(
∂Ṽx
∂x

+ ∂ṽx
∂x

)
+ µ

(
∂2Ṽx
∂x2 + ∂2ṽx

∂x2

)
+
(
K2 + k2

K1 + k1

)
∂2µ̃

∂y2 + µ

(
K2

K1

∂2Ṽx
∂y2 + k2

k1

∂2ṽx
∂y2

)
= 0,

(4.4.2a)

∂µ

∂x

(
∂Ṽx
∂x
− ∂ṽx

∂x

)
+ µ

(
∂2Ṽx
∂x2 −

∂2ṽx
∂x2

)
+
(
K2 − k2

K1 + k1

)
∂2µ̃

∂y2 + µ

(
K2

K1

∂2Ṽx
∂y2 −

k2

k1

∂2ṽx
∂y2

)

= 2βµ
(
K−1

1 Ṽx − k−1
1 ṽx

)
, and (4.4.2b)

∂c̃

∂t
+
(
Ṽx + ṽx

) ∂c
∂x

= ∂2c̃

∂x2 + ∂2c̃

∂y2 . (4.4.2c)
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In order to perform the (linear) stability analysis, we decompose the perturba-

tions into Fourier modes:

(
Ṽx, ṽx, c̃

)
= (ψM(x), ψm(x), φ(x)) exp[iωy + σ(t0)t]. (4.4.3)

By substituting equation (4.4.3) into equations (4.4.2a)–(4.4.2c), we obtain the fol-

lowing equations:

[
d2

dx2 + 1
µ

dµ

dx

d

dx

]
(ψM + ψm)−

(
K2 + k2
K1 + k1

)
Rω2φ− ω2

(
K2
K1

ψM + k2
k1
ψm

)
= 0, (4.4.4a)[

d2

dx2 + 1
µ

dµ

dx

d

dx

]
(ψM − ψm)−

(
K2 − k2
K1 + k1

)
Rω2φ− ω2

(
K2
K1

ψM −
k2
k1
ψm

)
= 2β

(
ψM
K1
− ψm

k1

)
, and (4.4.4b)

d2φ

dx2 −
(
ω2 + σ(t0)

)
φ = ∂c

∂x
(ψM + ψm) . (4.4.4c)

The above equations can be rearranged to obtain the following convenient form:

[
d2

dx2 + 1
µ

dµ

dx

d

dx
− ω2K2 + β

K1

]
ψM =

(
K2

K1 + k1

)
Rω2φ− βψm

k1
, (4.4.5a)[

d2

dx2 + 1
µ

dµ

dx

d

dx
− ω2k2 + β

k1

]
ψm =

(
k2

K1 + k1

)
Rω2φ− βψM

K1
, and (4.4.5b)[

d2

dx2 − ω
2 − σ(t0)

]
φ = ∂c

∂x
(ψM + ψm) . (4.4.5c)

It is important to note that β ≥ 0.
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4.4.1 Special case: Isotropic double permeability (K1 = K2 = K and k1 =

k2 = k)

For this case, the governing equations can be written as:

[
d2

dx2 + 1
µ

dµ

dx

d

dx
−
(
ω2 + K + k

Kk
β

)](
ψM
K
− ψm

k

)
= 0, (4.4.6a)[

d2

dx2 + 1
µ

dµ

dx

d

dx
− ω2

]
(ψM + ψm) = Rω2φ, and (4.4.6b)[

d2

dx2 − ω
2 − σ(t0)

]
φ = ∂c

∂x
(ψM + ψm) . (4.4.6c)

From the equations, one can conclude that there are no additional instability modes

than what are present under the Darcy model. Specifically, β does not appear in the

dispersion relation, and hence β will not have any effect on the instability at least in

the context of linear stability analysis.

4.4.2 Special case: Isotropic single permeability (K1 = K2 = k1 = k2 = k)

The governing equations in this case reduces to:

(
d2

dx2 + 1
µ

dµ

dx

d

dx
− ω2k + 2β

k

)
(ψM − ψm) = 0, (4.4.7a)(

d2

dx2 + 1
µ

dµ

dx

d

dx
− ω2

)
(ψM + ψm) = Rω2φ, and (4.4.7b)(

d2

dx2 − ω
2 − σ(t0)

)
φ = ∂c

∂x
(ψM + ψm) . (4.4.7c)

4.4.3 Initial growth rate

We now assess the initial growth of the perturbations under quasi-steady-state

approximation. For convenience, we shall denote:

σ0 = σ(t0 = 0). (4.4.8)
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At t = 0, the following relations hold:

c(x) = H(x), dc

dx
= δ(x), and 1

µ

dµ

dx
= Rcδ(x), (4.4.9)

where δ(x) is the Dirac-delta distribution (i.e., a generalized function) [Lighthill,

1958]. The continuity conditions along x = 0 at t = 0 are:

ψM(0+) = ψM(0−),
[
µ
dψM
dx

]0+

0−
= 0, (4.4.10a)

ψm(0+) = ψm(0−),
[
µ
dψm
dx

]0+

0−
= 0, (4.4.10b)

φ(0+) = φ(0−), and
[
dφ

dx

]0+

0−
= ψM(0) + ψm(0). (4.4.10c)

The solution for φ(x) can be written as

φ(x) = A−1 exp[+
√
ω2 + σ0x] for x < 0 and (4.4.11a)

φ(x) = A+
1 exp[−

√
ω2 + σ0x] for x > 0. (4.4.11b)

The continuity conditions imply that:

A−1 = A+
1 = −ψM(0) + ψm(0)

2
√
ω2 + σ0

. (4.4.12)

To solve for ψM , first substitute ψm from equation (4.4.5b) into equation (4.4.5a):

(
d2

dx2 −
ω2K2 + β

K1

)(
d2

dx2 −
ω2k2 + β

k1

)
ψM = R

(
ω2K2 + β

K1

(
V x + 1

)
− β

k1
(vx + 1)

)
(
d2

dx2 −
ω2k2 + β

k1

)
φ− β

k1

{
R

(
ω2k2 + β

k1
(vx + 1)− β

K1

(
V x + 1

))
φ− β

K1
ψM

}
.

(4.4.13)

By more simplification, it becomes:
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{
d4

dx4 −
(
ω2K2 + β

K1
+ ω2k2 + β

k1

)
d2

dx2 + ω4K2k2 + ω2β(K2 + k2)
K1k1

}
ψM = Bφ φ,

(4.4.14)

in which

Bφ

R
=
(
ω2K2 + β

K1

(
V x + 1

)
− β

k1
(vx + 1)

)(
d2

dx2 −
ω2k2 + β

k1

)

− β

k1

(
ω2k2 + β

k1
(vx + 1)− β

K1

(
V x + 1

))
.

The complementary solution for ψM in homogeneous form of equation (4.4.14) (i.e.,

for Bφ = 0) is as

(ψM)c = A−2 exp[+√ν1x] + A−3 exp[+√ν2x] for x < 0 and (4.4.15a)

(ψM)c = A+
2 exp[−√ν1x] + A+

3 exp[−√ν2x] for x > 0, (4.4.15b)

where

2 ν1,2 = ω2K2 + β

K1
+ ω2k2 + β

k1
±

√√√√(ω2K2 + β

K1
− ω2k2 + β

k1

)2

+ 4β2

K1k1
. (4.4.16)

Because of the exponential form of φ, the particular solution of ψM in the equation

(4.4.14) can be written as

(ψM)p = B φ, (4.4.17)

in which B = Aφ
Aψ

, where
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Aφ
R

=
(
ω2K2 + β

K1

(
V x + 1

)
− β

k1
(vx + 1)

)(
ω2 + σ0 −

ω2k2 + β

k1

)

− β

k1

(
ω2k2 + β

k1
(vx + 1)− β

K1

(
V x + 1

))
and

Aψ =
(
ω2 + σ0

)2
−
(
ω2K2 + β

K1
+ ω2k2 + β

k1

)(
ω2 + σ0

)
+ ω4K2k2 + ω2β(K2 + k2)

K1k1
.

So, ψM = (ψM)c + (ψM)p and it is as

ψM =


BA−1 exp[+

√
ω2 + σ0x] + A−2 exp[+√ν1x] + A−3 exp[+√ν2x] for x < 0

BA+
1 exp[−

√
ω2 + σ0x] + A+

2 exp[−√ν1x] + A+
3 exp[−√ν2x] for x > 0.

(4.4.19)

The solution for ψm is straightforward by using equation (4.4.5a):

β

k1
ψm =



(Cφ +BC1 −B(ω2 + σ0))A−1 exp[
√
ω2 + σ0x] + (C1 − ν1)A−2 exp[+√ν1x]

+ (C1 − ν2)A−3 exp[+√ν2x] for x < 0

(Cφ +BC1 −B(ω2 + σ0))A+
1 exp[−

√
ω2 + σ0x] + (C1 − ν1)A+

2 exp[−√ν1x]

+ (C1 − ν2)A+
3 exp[−√ν2x] for x > 0,

where

Cφ = R

(
ω2K2 + β

K1

(
V x + 1

)
− β

k1
(vx + 1)

)
and (4.4.20)

C1 = ω2K2 + β

K1 . (4.4.21)

The continuity conditions for ψM can be written as
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A−2 + A−3 = A+
2 + A+

3 and (4.4.22)

B
√
ω2 + σ0(µ− + µ+)A−1 +√ν1(µ−A−2 + µ+A+

2 ) +√ν2(µ−A−3 + µ+A+
3 ) = 0.

(4.4.23)

The continuity conditions on ψm can be written as

ν1A
−
2 + ν2A

−
3 = ν1A

+
2 + ν2A

+
3 and (4.4.24)√

ω2 + σ0
(
Cφ +BC1 −B(ω2 + σ0)

)
(µ− + µ+)A−1 +√ν1(C1 − ν1)(µ−A−2 + µ+A+

2 )

+√ν2(C1 − ν2)(µ−A−3 + µ+A+
3 ) = 0. (4.4.25)

Equations (4.4.22) and (4.4.24) imply that:

A−2 = A+
2 and A−3 = A+

3 . (4.4.26)

Equations (4.4.23), (4.4.25) and (4.4.12) then reduce to:

B
√
ω2 + σ0A

−
1 +√ν1A

−
2 +√ν2A

−
3 = 0, (4.4.27)√

ω2 + σ0
(
Cφ +BC1 −B(ω2 + σ0)

)
A−1 +√ν1(C1 − ν1)A−2 +√ν2(C1 − ν2)A−3

= 0, and (4.4.28)(
B + 2

√
ω2 + σ0 + k1

β

(
Cφ +BC1 −B(ω2 + σ0)

))
A−1 +

(
1 + k1

β
(C1 − ν1)

)
A−2

+
(

1 + k1

β
(C1 − ν2)

)
A−3 = 0. (4.4.29)

Simplifies the most recent equations to the following form:
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

B
√
ω2 + σ0

√
ν1

√
ν2

√
ω2 + σ0 (Cφ + BC 1 −B (ω2 + σ0)) √

ν1 (C1 − ν1) √ν2 (C1 − ν2)

B + 2
√
ω2 + σ0 + k1 (Cφ+BC1−B(ω2+σ0))

β
1 + k1 (C1−ν1)

β
1 + k1 (C1−ν2)

β





A−1

A−2

A−3


=


0

0

0

 .

(4.4.30)

For a non-trivial solution, the determinant of the coefficient matrix should be zero.

This gives rise to a nonlinear equation in terms of σ0 and ω.

4.4.3.1 Special case: Isotropic single permeability

One can obtain the case of isotropic single permeability by taking K1 = K2 =

k1 = k2 = 1. Under this case, the coefficients become:

ν1 = ω2, ν2 = ω2 + 2β, C1 = ω2 + β, Cφ = Rω2

2 , B = Rω2

2σ0
, (4.4.31)

and the system of equations (4.4.30) become:



0 0 √
ν2

B
√
ω2 + σ0 ω 0

B +
√
ω2 + σ0 1 0





A−1

A−2

A−3


=


0

0

0

 . (4.4.32)

A non-trivial solution for the concentration in equation (4.4.32) reduces to

∣∣∣∣∣∣∣∣∣
Rω2

2σ0

√
ω2 + σ0 ω

Rω2

2σ0
+
√
ω2 + σ0 1

∣∣∣∣∣∣∣∣∣ = 0, (4.4.33)

which yields

σ2
0 − (Rω − ω2)σ0 + R2ω2

4 −Rω3 = 0. (4.4.34)
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Figure 4.1: Double permeability: Pictorial description of the problem for stability analysis
in which the domain is unbounded. The displacing fluid (µ1(c) and c1) flows
into the domain which contains displacing fluid (µ2, c2).

The solutions take the following form:

σ0 = ω

2

(
R− ω ±

√
ω(ω + 2R)

)
, (4.4.35)

which is the classical dispersion equation for miscible viscous fingering for Darcy

equations obtained by [Tan and Homsy, 1986]. An interesting fact to note is that β

does not appear in equation (4.4.35), which implies that β does not influence stability

under the isotropic single permeability case.

4.4.4 Parametric study for linear stability

In this part, a parametric study for the linear stability is conducted. To do so,

we will solve system of equations (4.4.30) to determine the growth rate of associated

wavenumbers and plot dispersion curve for ω vs σ0. The pictorial description of the

rectilinear domain is shown in figure 4.1. First, the effect of double permeability

on the stability of viscous fingering by changing K2 is studied. Then, influence of

mass transfer between micro- and macro-network (β) on the stability of system is

investigated. Finally, effect of log-mobility (R) on the stability is discussed.
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(a) R = 3, β = 0.01. (b) R = 3, β = 0.1.

(c) R = 4, β = 0.01. (d) R = 5, β = 0.1.

Figure 4.2: Effect ofK2: The figures show the effect ofK2 on dispersion curve for β = 0.001
and 0.01, K1 = k1 = k2 = 1, and R = 3, 4, and 5.

4.4.4.1 Effects of K2

To determine whether the double permeability system is less or more unstable

than its equivalent single permeability, the effect of K2 on the stability of the system

at t0 = 0 is necessary. Figure 4.2 shows the effects of K2 on the dispersion curve

at t0 = 0 for various values of β and R. In all cases, for K2 = 1 the results of

numerical experiment are right fitted to those from equation (4.4.35) which conform

that β does not affect under isotropic single permeability assumption. Instability

characteristics for R = 3, 4, and 5 when β = 0.01 and 0.1 show that by increasing

K2 flow becomes more unstable. Figure 4.2 also shows that for K2 ≤ k1, the system

is unstable. It means the K2 in double permeability models is a key parameters and
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(a) R = 2, K2 = 10. (b) R = 3, K2 = 0.1.

(c) R = 3, K2 = 10. (d) R = 4, K2 = 0.1.

Figure 4.3: Effect of β: The plots show the effect of β on dispersion curve for K1 = k1 =
k2 = 1, R = 2, 3, and 4, and K2 = 0.1 and 10.

play an important role in stability of the system.

4.4.4.2 Effects of β

The proposed model for the dual porosity/permeability, allowed mass transfer

across micro- and macro-structure. So, in the governing equations, we considered β

within the balance of mass equation for both micro- and macro-network which is not

a case under single permeability assumption. Figure 4.3 illustrates influence of β on

the stability of system at t0 = 0. Herein, an increase of β has a destabilizing effect

on the system. Also, for larger values of R and K2 system is more unstable.
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(a) β = 0.1, K2 = 1. (b) β = 0.1, K2 = 0.05.

(c) β = 0.01, K2 = 10. (d) β = 0.01, K2 = 100.

Figure 4.4: Effect of R: The figures show the effect of R on dispersion curve for β = 0.1
and 0.01, K1 = k1 = k2 = 1, and different K2.

4.4.4.3 Effects of R

The log-mobility is a key parameter for observing viscous fingering and miscible

displacement in porous medium. It clearly can change the stability conditions for

the viscous fingering in a dual porosity/permeability domain. The effect of R are

depicted in Figure 4.4. In this case, also by decreasing R the flow becomes less

unstable which occurs for single permeability and Darcy models. The significant

finding under double permeability assumption is that the flow is fully stabilized for

R < 0 and further decrease of R (i.e., −1 and −2) maintain a stable system.
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4.4.5 Concentration profiles

In this part, we shall illustrate the qualitative results by employing finite element

formulations for coupled double permeability porous media flow and transport system

given by equations (4.2.1) and (4.2.2a)–(4.2.2d). Pictorial description of the Hele-

Shaw problem including boundary and initial conditions is provided in Figure 4.5.

The computational domain is a Lx × Ly rectangle. On the left boundary the normal

velocity vxM (in x-direction for macro-network) and concentration cp are enforced as

the injected inflow. Zero velocity (i.e., vxm = 0) for micro-network is prescribed on

the left boundary. There is a small w × Ly rectangular region in the left to generate

instabilities as initial condition for concentration as

c(x, t = 0) =


α γ(x) exp[−x2

ζ2 ] for 0 ≤ x ≤ w

0 for x > w,

where the function γ(x) represents random function ranging from 0 to 1 and exhibits

transverse irregularities in concentration. α is the magnitude of the disturbance and

ζ can be interpreted as the penetration of disturbance from the front. Both α and

ζ have small values relative to unity. The zero fluxes are prescribed on the top and

bottom boundaries for the flow in both micro- and macro-structure. The no flux

boundary condition is also enforced for AD equations on the right boundary, where

the atmosphere pressure is employed for flow in macro-network and zero velocity (i.e.,

vxm = 0) for micro-network.

Now, the time evolution of concentration in broad range of parameters are pre-

sented for better understanding of viscous fingering instability in double permeability

porous media. We will discuss the effect of K2, R, and β on the stability of the system

to conform the obtained results for linear stability analysis.
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(a) Transport problem.
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(b) Flow subproblem.

Figure 4.5: Hele-Shaw cell - double permeability: Pictorial description of the problem in-
cluding boundary and initial conditions. The computational domain is a
Lx × Ly rectangle. The disturbed fluid (µ1(c) and c) flows into the domain
which contains second flow at rest (µ2, c

0).

4.4.5.1 Effects of K2

It has been shown that K2 has significant effects on the stability of system in

linear stability analysis section. Figure 4.6 shows the influence of K2 on the concen-

tration profiles at different times. We keep β and R to have possible small values

of 0.001 and R = 1.5, respectively, to investigate the effect of K2 on the stability of

system. Similar to linear stability analysis, by increasing the values of K2, the system

becomes more unstable.

4.4.5.2 Effects of β

One of the key parameters in double permeability porous media models is mass

transfer (β) between micro- and macro-network which is not exist in single perme-

ability models. Increasing the value of β also destabilize the system. Figure 4.7

shows that the concentration profile for β = 10 is more unstable than the system for

β = 0.001. These numerical simulations performed for K2 = 10 and R = 4.
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(a) K2 = 0.5, t = 75. (b) K2 = 0.5, t = 100.

(c) K2 = 1, t = 75. (d) K2 = 1, t = 100.

(e) K2 = 3, t = 75. (f) K2 = 3, t = 100.

(g) K2 = 10, t = 75. (h) K2 = 10, t = 100.

Figure 4.6: Effect of K2: The figures show the effect of K2 on concentration profiles for
β = 0.001, K1 = k1 = k2 = 1, and R = 1.5. Increasing the values of K2
destabilize the system.

4.4.5.3 Effects of R

Increasing the values of log-mobility R in both single and double permeability

systems have destabilize effects. Figure 4.8 conform the results obtained by linear

stability analysis in which larger the values of R make the system less stable. In

Figure 4.8 the concentration profiles for R = 2 is obviously more stable than the

profiles for R = 4. Moreover, the linear stability analysis reveals that the system for

R ≤ 0 is stable which is shown for R = −0.1. The presented results in this figure is

for K2 = 2 and β = 0.001.
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(a) β = 0.001, t = 75. (b) β = 0.001, t = 100.

(c) β = 10, t = 75. (d) β = 10, t = 100.

Figure 4.7: Effect of β: The figures show the effect of β on concentration profiles for R = 4,
K1 = k1 = k2 = 1, and K2 = 10. Increasing the values of β also destabilize
the system.

(a) R = −0.1, t = 50. (b) R = −0.1, t = 75.

(c) R = 2, t = 25. (d) R = 2, t = 50.

(e) R = 4, t = 25. (f) R = 4, t = 50.

Figure 4.8: Effect of R: The figures show the effect of R on concentration profiles for
β = 0.001, K1 = k1 = k2 = 1, and K2 = 2. In this case also, by increasing
the values of R the system becomes less stable.
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4.5 Concluding remarks

A linear stability analysis and numerical simulations for coupled porous media

flow with double permeability and advection-diffusion equations were conducted. The

permeability of porous medium is anisotropic for both micro- and macro-network and

there is a mass transfer across them. The characterized stability curves were presented

for growth rates σ0 and associated wave numbers ω. Also, from results of numerical

solutions, the concentration profiles are shown to study viscous fingering instabilities.

We investigated the effects of parameters such as anisotropic double permeability,

mass transfer, and log-mobility which play important roles on the stability of viscous

fingering. By plotting the dispersion curves and concentration contours, we shown

that:

(a) Larger values for K2 component of macro-structure permeability make the flow

more unstable. In addition, by decreasing the value of K2 to reach the value of

micro-pore permeability (k1) and even less than that (i.e., K2 ≤ k1), the system

is still unstable, but further decreasing makes it stable.

(b) In the case of K1 = K2 = k1 = k2, the system reduce to isotropic single perme-

ability model and there are no additional instability modes than the model under

Darcy equation.

(c) Increasing mass transfer (β) between micro- and macro-network has a destabiliz-

ing effect which is not the case in single permeability (Darcy) model.

(d) We also shown that for lager value of K2 and R, the system is more sensitive to

β. So, under this condition, by increasing the value of β system becomes more

unstable.

(e) Decreasing the log-mobility R in the system makes the flow more stable which

also occurs under the single permeability assumption.
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(f) An interesting result in the case of double permeability is that for R < 0 the

system is always stable and changing the values of β and K2 can not destabilize

the system.
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Chapter 5

CONCLUSION AND FUTURE RESEARCH DI-

RECTIONS

Nullius in verba.

(no man′s word is final)

Motto of the Royal Society of London

We studied numerical and theoretical aspects of the problems from porous media

models with applications on coupled multi-physics problems including viscous finger-

ing, miscible displacement, and mixing. We addressed the issues in verification of

the numerical solutions for Darcy and Darcy-Brinkman models by proposing a series

of new mechanics-based techniques. In addition to numerical solutions verification,

the developed methodology is used to identify numerical pollution and check the per-

formance of adaptive mesh. These properties can be effectively used to assess the

accuracy of numerical solutions. If the numerical formulation is not converging, one

needs to suspect that there are singularities in the solutions or that the numerical

formulation does not perform well with respect to the local mass balance property.

Another challenging multi-process phenomena in the porous media problems that

have been investigated theoretically and numerically, are viscous fingering and misci-

ble displacement. We shown that the double diffusion and double permeability have
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significant effects on the dynamics and stability of the coupled porous media flow,

transport, and temperature. We also shown that the proposed theoretical reduced

order model in current study, is able to comprehensively predict mixing enhancement,

mixing time and length. Moreover, we studied the effects of popular numerical stabi-

lized formulations such as SUPG and SOLD and shown that these stabilizers may not

resolve the non-negativity in the concentration fields. In addition, the finite element

stabilized formulations may suppress the physical viscous fingering instabilities. Also,

by developing a linear stability analysis framework for porous media in double per-

meability, we shown that the mass transfer between micro- and macro-network has

significant effects on stability of the double permeability problem, which is not the

case in single permeability models. Moreover, the influence of permeability and log-

mobility on the stability of the problem were investigated. In addition, by utilizing

finite element solutions, the effects of the aforementioned parameters on the stability

of flow were performed. We shown that the influence of parameters on concentration

profiles were similar to the results of linear stability analysis.

Based on the contributions and developments in current study, the following

extensions and research directions are suggested:

1. Extension of solution verification to other numerical methods: The mechanics-

based techniques can also be utilized for solution verification of finite volume,

finite difference, lattice Boltzmann methods and so forth. Herein, we employed

our novel theory for finite element formulations.

2. Verification of other physical models: One can extend this approach to other

physical problems such as double porosity/permeability porous media, Stokes or

Naveir-Stokes flows, deformation problems, and etc. In current study, our aim

was to develop and introduce this new verification methodology, so it employed

for problems from flow through porous media.
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3. Viscous fingering under modified Darcy model: Disorder in the flow (gradient of

velocity) and in the concentration/temperature fields play an important role in

hydrodynamic instabilities. On the other hand, the Darcy model neglects the

gradient of velocity. An extension to Darcy-Brinkman or Darcy-Forchheimer

equations could have better understanding of the instability.

4. Extension to anisotropic diffusivity: Further developments could be in consid-

ering more realistic material properties for advection-diffusion problem by using

velocity dependent diffusion and anisotropic diffusivity which are an important

factors in subsurface hydrology and geological problems.

5. Employment of non-negative formulations: It is possible to employ other forms

of finite element formulations to satisfy maximum principle and consequently

non-negative constraint for the advection-diffusion equation. This can be done

by using proposed methodology in [Mudunuru and Nakshatrala, 2016].
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