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ABSTRACT

The mathematical description of the transient tempera-
ture behavior in a homogeneous, isotropic heat conducting
medium containing a cylindrical heat source is analogous to
the mathematical description of transient pressufe behavior
in a homogeneous, isotropic petroleum reservoir.

A heat conduction analogue was developed to experi-
mentally verify ideal mathematical solutions for the transi-
ent reservolr pressure behavior of various geometrical
systems,

The results obtained from this model provide quantita-

tive verification of the mathematical solutions.
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CHAPTER I
INTRODUCTION

One of the major factors influencing the economics of
the 0il and gas industry is fhe expense of developing new
petroleum reserves which results primarily from the un-
certainty associated with such parameters as bulk volume,
"porosity, and permeabilify of a particular reservoir,

One of the analytical technigues applied by petroleum en-
gineers to accurately determine these parametefs and reduce
risks associated with developing new reserves is transient
pressure analysis. The application of transient pressure
analysis can result in the 'determination of reservoir
boundaries, reservoir properties. such as permeability, and
the evaluation of formation damage or stimulation.

The pressure tests conducted to measure transient
pressure behavior are termed pressure buildup or pressure
drawdown tests, corresponding to a bulldup in pressure or
a reduction in pressure. These flow tests can be visual-
ized as a step change in the producing raté from the as-
su%ed.ideai stead&-state reservoir conditions, i.e., either
no fluid flow from a reservoir or fluid flow at a constant
stabilized rate, which results in a period of transient

fluid flow depending on several factors.



The equations presented and used in this work for the
analysis of transient pressure behavior were developed by
the late Professor P. J. Jones. The purpose of this re-
search was to experimentally verify Professor Jones' mathe-
matical solutions for specific ldeallzed cases as derived
for transient fluld flow with a transient heat conduction

model.,



CHAPTER II

THEORETICAL BACKGROUND

Transient Fluld Flow in Homogeneous, Isotropic Porous Media.

Governing Differential Eduation. A mathematical de-

scription of fluid flow in porous media can be oﬂtained by
combining the following physlcal principles: (1) law of
‘conservation of mass (2) Darcy's law and (3) an equation of
state.

Consider fluid flow only 1in the x-y plane as shown in

the volume element in Figure 1,
Z
(Pax) 1////[///:;, : (PA5 + ax)

L

(Pay)

~~

k

{(pay +dy)

P X

Ficure 1. Volume Element

A mass balance around the volume element results in
the continuity equation for the flow of fluids 1n porous



O i D, e D g oa
= (P3)t+ = (pay) === (p®) -
dx o o (11-1)

The flow law applicable to porous media is Darcy's

Law and this law for flow in the x-direction yields
dy = —A— = T Ky (-a : (II"'2)

Assuming isothermal flow of a single-phase fluid of small
and constant compressibility results in the following equa-

tion of state:

c(P~-Pi) . Pec(fj)

P = P = Po(l-cj) (11—3)

for cj<< I.O

2,
Peie 3
3

Substitution of Darcy's Law and the equation of state into
the continuity equation results in the following differen-
tial equation '

2 2
di i _ 10i -
o< * 0y 70t (11 4)

assuming that the permeability is constant and isotropic,
that the porosity is constant and that the resulting flow

is laminar or viscous. Converting equation (II-4) to

2 2

radial form using the substitution rc- x“ +« y2 yields

35 L9
gt t T o (11-5)

L
7
This is the diffusivity eaquation in radial form which

governé the flow of slightly compressible fluids in homo-

geneous, lsotropic porous media.



Solution. During the early producing time of practical
interest, the pressure behavior is essentially that of a
radlally infinite fluid resgrvoir. Therefore, the transi-
ent solution of equation (II-5) corresponds to the solution
for a reservoir of infinite extent.

Consider a.well completed in an infinitely extended
homogeneous, isotropic reservolr producing at a constant
reservoir volumetric flow rate, g. Carslaw and Jaeger
(2:261) have shown that the solution to the diffusivity

equation for a line source is

. Dg O e . D
Y ~ dv = - 9 [—Ei(-u)] (I-I-6)
u

where

. .
u :iﬁ and Ej(-u) - is the exponential integral.
Defining the well function, W(u), as being identically

equal to the negative of the exponential integral,
W(u) = -E;l-u)

and expanding the exponential integral in an infinite

series results in

2 n-i n
W(u)=—8—lnu+u—-l;—+ ......... + — + .

where § 1is Euler's constant.



It is convenient for practical use to reduce the well
function to the logarithimic form. Except for the first
two terms, all the terms of the series expansion of w(u)
can be neglected for values of the argument, u, less than
.01, This yields

W(u) = In(lu) - 0.5772 , ug 0.0

Converting the logarithm to the base 10 and substituting

the well function for the exponential integral yields

2.25nt r2 -
=R SR L (II-7)

j =115Dq log

For the drawdown at the well, jw’ called the self-drawdown,

equation (II-7) becomes

jw = 115 Dq log "%’i (I1-8)
Equation (II-8) represents the pressure drawdown for
a well producing at a constant reservoir flow rate, d,
from an infinitely extended homogeneous, isotropic reser-
voir.
It is evident from examination of equation (II-7) that
a plot of j vs logt will result in a straight line of con-

stant slope, m, equal to 1.15 Dg.



Application to Phvsical Systems,

The physical systems of interest in this thesis are
those systems involving no-flow boundaries of varying
geometry. These systems that are not infinite in extent
can be solved by using the method of images and the Theorem
of Superposition.

180° Fault. Consider a system of one producing well

located near a linear sealing fault as shown in Figure 2,
The fault 1s & no-~flow boundary and its physical presence
can be replaced by the image system shown in Fig. 3. In
Fig. 3, an image well, producimr at the same rate as the
produc1ng well, is- 1ocated by reflectlon across the posi-
tion of the fault line. Thils creates a no-flow boundary at
the position of the fault. The flowing pressure difference
in the producing well will now be the sum of the self-

drawdown (or buildup), Jws and the Interference drawdown,

Jis from the image well located at a distance of r = 24

feet away. This expression 1is

L 2.25nt m (de )
) =iyt = mlog > + — W (—> (II-Q)
2 w 2.32 41}"
. d
for ™_ < 0.0 . When — <o.0l , the equation can
4nt 7t
be rewritten as '
( 225n1 225nf>
0g
(2d?
which simplifi=s to
2.25nt
j= 2mlog —1 (1I-10)

2dr,,
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From equation (II-10) it can be seen that a sealing fault
located a distance d from the producing well causes the
slope of the drawdown curve to double for large enough
values of time.

A typical plot of J vs. logt for the linear sealing
fault system is shown in Fig. 4. From Fig. 4, it is pos=-
sible to calculate the distance to the fault. Thils can be
done by noting the value of time, t, , at the Intersection
of the two straight line portions of the drawdown curve,

At this point, the drawdown predlcted by equation (11-9) is
equal to the drawdown predicted by equation (II-10). Equat-

ing these two equations and solving for d ylelds

d= 0.75./71, (II-11)

If the value of % 1is unknown, it can be determihed
from Figure 4. Extrapolation of the first straight line
portion of the drawdown curve to J = o ylelds the value of
time, &6, at which equation (II-9) equals zero. Equating

equation (II-9) to zero and solving for 7 yields

e

2258

; (I1-12)

90° Fault, Consider the case where a producing well
is located inside a 90° fault block as shown in Figure 5.
The image well system which creates the no-flow boundaries

identical to those of the 90° fault block system is shown
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in Figure 6, with the image wells denoted by il,.ig and i3
Wnen these image wells are'placed on production at the same
time and rate as the producing well, this system ylelds the
same results as the original faulted system. The drawdowﬁ
in the producing well 1s tuc sum of the self-drawdown, Juws

plus the three interference drawdowns of the image wells.

S e . Dq ' )
JE et gyt digt dis e > [ W) + Wiy ) + Wiy + W(ui3)]

or .
2 2 2 /a2 2 2
j = D—q[w (r“' ) + w(‘zm) +W (——(Zb) ) +w<(_____._40+4b )) ] (Ir-13)
2 ant 4qt ant ant

As the arguments of the well functions successively
become less than 0.0l, the slope of the drawdown curve will
change progressively from m to 2m to 3m to U4m. The final
equatlon in logarithm form is

2.25qt
(8abry)? (a%+ b )]'/4

j= 4m log [ (I1-14)

Figure 7 illustrates the drawdown curve from the 90°
fault case, From Fig. 7, the value of % and the distances
to the faults can be determined as in the linear fault case.

Closed System., A closed or volumetric reservolir is a

reservolir that is completely bounded on all sides by no-
flow boundaries. An example of this type of reservoir
would be a fault block bounded by three intersecting seal-

ing faults, as in Figure 8.
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The drawdown curve for this system is illustrated in
Figure 9., As the interference from the successive faults
arrives at the producing well the slope_of the drawdown
curve changes from m to 2m to 3m. When the interference
from the last fault arrives, the reservoir 1s now complete-
1y bounded and begins production by steady stgte. The
drawdown curve starts falling off rapidly and approaches a
vertical line asymptotically. The drive mechanism of the
reservoir is now steady state by expansion.

The appearance of the drawdown curve in Filgure 9 is
representative of a cloéed reservolr in which all boundaries
are not reached simulftaneously. If all boundaries are
reached simultaneously, the drawdown curve would go direct-
ly from a slope of m to a constantly increasing slope.

The image system for a closed system would require an
infinite number of image wells to account for the constant-

ly increasing slope of the drawdown curve,

Transient Heat Conduction in Homogeneous, Isotropic Solids.

Governing Differential Equation. The differential

equation governing the - conduction of heat 1n homogeneous,
isotropic solids can be obtained in a manner analogous to
that for fluid flow. In heat conduction, the physical
principles invcolved are conservation of energy and Fourler's

law of heat conduction.
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Consider a volume element such as shown in Figure 1
which 1s subjected to heat conduction in the x-y plane only.
An energy balance around the volume element results in the

following differential equation

oT <an Ofy )
— ¢ =
pee ot dx * ay ©

This equation corresponds to the continulty equation in
fluid flow. Fourier's law of heat conduction for conduction

in the x-~direction yields

For a homogeneous,ﬂgsotropic solid whose thermal conductive-
ity is independent of temperature, the substitution of

Fourier's law into the energy balance equation results in

’r . a9t
32 o« ot (1r-15)

Converting equation (Ii-15) to radial form yields

2
9T
92

—_— e — — 2 —
o r or < o (11-16)
which is the differential equation'governing heat conduc-

tion in a homogeneous, isotropic solid.

Soluvicn. For the heat conduction problem, consider
the volume element in Figure 1 with a continuous line
source of constant strength, Q, parallel to the z-axils.

Carslaw and Jaeger (2:261) have shown the solution to
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equation (II-16) for the continuous line source (or sink)

to be

Q eV _ Q et
AT 4mrhk G[ v v = 4rhk [ il U)] (II-l?)

where
u = Ti_ and E;(-u) is the exponential integral.
t

It is evident from examination of equation (II-17)
that this solution corrésponds to that for the fluild flow
problem. Using the same development as was used for the
fluld flow solution on page 3, the temperature drawdown

solution can be converted to logarithmic form to yield

2.3Q 2.250Ct r?
?‘n‘Tk Iog r2 N { 0.0l (II"lS)

AT
4t

For the temperature drawdown at the well, ATy, (self=-

drawdown) equation (II-18) becomes

AT, = 183 - 10g 225! (11-19)

Fw

A plot of AT, vs logt results in a straight line of

Q
constant slope, n , equal to -183 3¢

Application to Physical Systems.

The method of application of the transient solution of
the diffusivity equation for heat conduction 1is identical

to the method used for the fluid flow case. The method
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of images and the Theorem of Superposition are used except
that instead of sealing faults, adiabatic surfaces represent
the no-flow bpoundaries.

Since the heat conduction solutions for the various
physical systems are the same as for the fluid flpw casé,
the following paragraphs present only the resulting equa-
tions with a minimum of explanation. Explanation and com=-
parison of the solutions can be made by referring to the
solutions for these physical systems in the fluid flow sec-

tion of this chapter.

180° Adiabaticugoundary. The temperature drawdown

(or buildup) in a heat source (or well) located a distance

d from a linear adiabatic boundary is given by

2.250Ct 2d)?
AT = ATyt AT = nlog 22X 4 Dy [ 220 (11-20)
r 2.3 4nt
r2 dz
for > < 0.0! . When — < 0.0l the
qqt ot
equation can be rewritten as
2250t 2251
T = ! + 1 -
A n ( og Y og (2d)2> (11-21)

which can be simplified to yield

2.25qt
AT = 2n log >

(I1-22)

Fw
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The distance to the adiabatic boundary is given by

d = 075/t (11-23)

and the value of the thermal diffusivity is given by
r 2 |
TS (II~24)
The values of Tty and 8 can be determined from the tempera-

ture drawdown curve as indicated in the fluld flow solution

for the linear fault case,

900 Adiabatic’Boundary. The temperature drawdown in a

well located on the inside of a’90° intersection of two

linear adiabatic boundaries is gilven by

AT = AT+ AT+ AT+ AT

or
2 2 2 2 2
AT=4:hk [w(i§)+w(é%)+w(57)+w(o£f )] (11-25)

where (a) and (b) are the perpendicular distances from the
well to the no-flow boundaries.
For large enough values of time, the final logarithmic

form of equation (II-25) is

2.250Ct (II-26)

T = 4n log
[(8abr,)? (a®+ b*) ]
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Closed System. For the closed system heat conduction

problem, consider a conducting solid bounded on all sides
by adiabatic surfaces. An example of such a system would
be a heat conduction system analogous to the closed reser-
voir case in fluid flow shown in Figure 8.

The character of the temperature drawdown curve for a
closed system corresponds exactly to the character of the
pressure drawdown curve as described in the fluid flow

section.




CHAPTER III

TRANSIENT HEAT CONDUCTION MODEL

Design Considerations

Conducting Material., One of the first decisions to be

made 1in designing a heat conduction model is that~of select-
ing the conducting material. The major factors to be con-
sidered are (1) the thermal diffusivity of the material, (2)
the ease of fabrication of models from the material and (3)
the availability of the material in the deslred size and‘

shape at a reasonabl¥cost.

et
s

The thermal diffusivity of the heat ftransfer medium is
important in several respects. First, it is of major im-
portance in determining the size of the model., The lower
the diffusivity of the heat conducting medium, the smaller
is the size of the model required for a glven experiment.

As model size decreases, problems of handling and insulation
decrease, 4

Secondly, the thermal diffusi&ity of the conducting

, medium directly affects the amount and type of insulation

reqgulred. Tranzsient response of materials of high thermal

[§)]

diffusivity is sufficiently rapid so that a minimum of in-
sulation 1s required for most cases, Materials of low ther-

mal diffusivity, prarticularly those wnhose diffusivity is of
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the same order of magnitude as common insulating materials,
may have significant heat losses that are all but impossible
to prevent.

Thirdly, the variation of thermal diffusivity with tem-
perature must be minimal; and the physical properties of the
conducting medium must be homogeneous and isotropic.

The ease of fabrication factor involves two areas. One
area of consideration is the ease of shaping the model into
the required geometrles. This consideration also involves
the size and weight of the model since these factors would
influence the ease qgfghaping tﬁe model.

Another ease o%‘fabrication factor involves the method
of placement of the heat "well" (source or sink) and the
thermocouples. This leads directly to the problem of bond-
ing the heating (cooling) medium to the model without intro-
ducing appreciable unwanted resistance at thilis interface, A
similar problem exists in the placement of the thermocouples
so that an intimate bond exlists between the thermocouple
Junction and.the conducting materiél.

The third factor in selecting the conducting material,
that of cost and availabiiity, dépends to a large exteht on
the size of the mocdel and is a function of the use that the
material has in iﬁdustrial applications. For the single-

layer radial model studied in this thesls, this factor is of
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less importance than the other two factors in material se-
lection.

Heat Losses, The primary factors to consider in reduc-

ing the effects of heat losses are (1) the type of insulation,
(2) the duration of the test and (3) the heating (cooling)
rate, | |

In order to prevent heat losses so serious as to in-
validate the experimental work, the insulation selected
should have a thermal diffusivity that 1s at least one order
of magnitude less than the thermal diffusivity of the con-
ducting material. Qgﬁ?insulation should be easy to install
and provide an inti;ate contact at the interface between the
conducting medium and the insulation.

The duration of the experiment affects the heat losses
in two ways. First, as the time required for a given experi-
ment increases, the size of the model also lncreases. For a
long time test, this can Introduce a significant problem
since the sﬁrface area available for heat loss is a function
of the radius squared. |

Secondly, short operating time allows for a maximum
benefit from the contrast'in traﬁsient fesponse times-be-
tween the insulation and the conducting material. This re-
sults in a minimum of the insulation being influenced by

the temperature changes in the conducting material and a
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minimum of heat lost to heating of the insulation.

The heating rate is important in controlling heat
losses from the standpoint of the temperatures involved.
The higher the average temperature of the conducting medium,
the greater the temperature driving force present across the
insulation. An increase in the temperature driving force
increases the heat losses for a given thickness of insula-
tion.

Heatling System. The heat conduction model under con-

sideration 1is designed to siﬁukate the "constant terminal
rate" case of fluid.flow. For heat conduction models, this
case corresponds tawintroducing a step change in heat in-
flow or outflow in the heat "well" of the initially iso-
thermal conducting medium.

One consideration of heating system design 1s size,
The diameter of the heat well must be small in comparison
to the overall dimensions of the conducting material. Such
a requirement simulates actual petroleum reservoir condi-
tions and reduces the effect of tﬁe inhomogeneities intro-
duced into the system by the presence of the well, |

A second factor iﬁ héating éystem'design is the‘bonding
in the well of thsz heater to the conducting medium. This
involves the method of heater use, that is, will the heater

be placed permanently or temporarily in the well, In
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either case, the bonding material must maintain efficient
heat transfer from the heater to the conducting medium and
the resistance to heat transfer of the bonding material
should be small and temperature independent over the temper-
ature range used.

A third consideration in heater design 1is the thermal
response of the heater. For ideal conditions the heater
should be able to provide instantaneously the required heat-
ing rate for a given experiment.

Two possible methods of'heating (cooling) the model that
fit the above constgg;pts are electrical resistance heating
and the use of a tﬁi;ﬁoelectric cooler, Electrical resist-
ance heating would be the simplest from the standpoint of
the related electronic equipment required, since the thermo-
electric cooler would require a feedback control system in
order to provide a constant cooling rate.

Thermocouvle System. The most satisfactory temperature

sensing device in models of the type under consideration is
the thermocouple. The type of thefmocouple material which
will be most satisfactory can be determined from conéidera-
tion of the temperaturé level and the temperature chénge
expected when the model 1s operating.

The major problem in this area is the means of using
the thermocouple to obtaln accurate temperature difference

measurements. This problem involves the position of the
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thermocouple with reference to the heat well so as not to
introduce a significant inhomogeneity in the system at the
position of the thermocouple.

Size of the thermocouple Junction‘is also 1lmportant as
it relates to the position problem and as it affects thermo-

couple response.

Description of Heat Conduction Model and Related Equipment.

The model developed for this investigation uses alumil-
ﬁum as the conducting medium. The aluminum being used is
aluminum alloy #5052 which has a thermal conductivity of

80 E—gljm and a thermal diffusivity of 2.08 ft2/hr. The
conducting medium is 4'xl4rx1 /4",

The insulatioﬁ used on the model is a rigid polyure-
thane foam which has a thermal conductivity of 1.15x107° Pod
and a thermal diffusivity of .029 ftg/hr at 1 atm and TOOF.
Two sheets of the foam measuring 4'4"x4'4"x3" are used to
insulate the upper and lower surfaces of the conducting
material. This allows for a 2" overhand of insulation com=-
pletely around the conducting material. The edges of the
aluminum plate are insulated by 2" wide strips of polyure-"'
thane foam pressed into the 1/4" crevice between the upper
and lower sheets of the foam.

The entire model rests on #4"x4"xl /4" plywood blocks

placed to brovide pressure points for compressing the rigid
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foam closely against the aluminum plate. Plywood blocks are
placed on the upper side of the model directly opposite the
blocks on which the model rests. The insulation is compress-
ed around the conducting plate using 15 1b. lead bricks at
the pressure points. Several cotton strings are wrapped
around the model to secure the insulation before the lead
bricks are placed on the model.,

Electrical resistance heating 1s the method used to
heat the model. The heater uses a cylindrical teflon core
around which resistance wire ishwrapped. The one~piece

heater core has two‘%%gtions. The small diameter section is

machined to a diameter which provides a tight fit in the
heater well drilled in the aluminum plate. This section is
1/2" long. The large diameter section has a dlameter twlce
that of the small diameter section and is 1/2" long. The
1/4" length of the small diameter section adjacent to the
large diameter section 1is the heater section and it is
threaded with 72-88 threads per inch that are .002" to. ,003"
deep. Karma (Driver-Harris Co.) resistance wire i1s wrapped
- in the threads of the 1/4" heater section. This wire has a
diameter of ,0008" and a resistaﬁce of i320 ohms per foot.
The resistance wire is glued in place using Eastman 910 glue
and so%dered at each end of the heater section to small lead

wires. The lead wires are glued in place in insets machined
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in the feflon core on both ends of the heater section.

This heater 1s designed to have a resistance of 650-700
ohms in the heater section for a diameter of 3/32" to 1/8"
and to provide a heat output of 30 Btu/hr or less. The de-
sign of the heater allows the heater to be inserted in the
aluminum plate like a shear pin for easy installétion and
removal. A non-setting silicon compound (G.C. Electronics
#8101-5) is used to provide efficient heat transfer from the
heater to the aluminum and tg ensure electrical isolation of
the heater from the aluminum plate. The heater was driven
by AC or DC power §€§§11es. ‘

The thermocouﬁie wire used 1s 30 gauge iron-constantan
which has a diameter of .010". All thermocouples used in the
model are placed as observation points away from the heater
well. The method of installation is to drill a .015" o.d.
hole completely through the aluminum plate. One wire of the
thermocouple is threaded through the thermocouple hole and
a small thermocouple Junction is made by very careful sol-
dering. The thermocouple bead fofmed is a tight fit in the
.015" hole and is pulled to a position one-half way through
the plate. The thermocouple wife is giued to the surface
of the aluminum plate using Testor's cement.

The thermocouples used during. the bulldup tests used

32CF reference Jjunctions. Two types of reference Jjunctions
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were used; (1) ice bath and (2) electrical equivalent re-
ference junction (Consolidated Ohmic Devices, Inc., model
JRI9D, reference temperature 320F),

This model is designed to operate at low heat rates
which create a small temperature buildup near the heat well
of approximately 15°F maximum. A 15°F temperatufe change,
measured by the iron-constantan, causes a change in the emf
output of the thermocouple of approximately .45 millivolts.
In order to accurately measure such a small change in thermo-
couple output several pieces.of electronic equipment were

used,

The output of the thermocouple was connected to a Dana
amplifier (model 3520) where a gain of 100 was used. The
amplifier output was connected to a Wavetek Dialamatic null
voltmeter (model 207). The output of the voltmeter provided
a gain of 28 or 280 to one for any change from null depend-
ing on which meter sensitivity was used. A Sanborne Dual
Channel DC amplifler recorder was used to record the Qutput
of the voltmeter, .

The electronic equipment used provided the capability
of amplifying the chanée'in therﬁocouple output by a'factor
of 28000 to one for most éxperimental runs. In some cases,
an-amplification of 2800 to one was used because of the rapid
responée of the thermocouple due to the relationship of the

thermocouple To the heater well.
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Operating Procedure.

Initlally, the conducting medium 1s at room temperature.
The voltage to be applied to the heater is set on the power
supply and the output of the thermocouple is nulled on the
differential voltmeter. The recorder is zeroed and the ap=-
propriate recording scale is selected. The sensitivity is
selected for the voltmeter as 1% or .1% of full scale, 1 volt.
The recorder paper speed is set at 20 mm/sec and the recorder
1s started. At the same time that the switch 1s thrown to
apply the voltage to the heater; the marker button on the
recorder 1is pushed gggﬁing the start of the test on the re-~
corder strip chart.

As the temperature rises at the recording thermocouple,
the thermal emf output rises causing the voltmeter to be in-
creasing out of null. The voltmeter 1s successively return-
ed to near the null position by increasing the nulling volt-
age in steps of 1lmv or 10 mv depending on the meter sensi-
tivity used. This process is repeated throughout the entire
test.

After approximately two minutes the paper speed on the
recorder 1s reduced to 1 hm/sec and leff at this speed for
the remaindér of the test, Test times vary with the maxi-

mum being about two hours.



CHAPTER IV
DISCUSSION OF EXPERIMENTAL RESULTS

In this chapter the geometry for each of the model cases
investigated is described along with a discussion of the ex-
perimental results obtained. |

Although all tests conducted were buildup tests, l.e.,
temperature increasing tests, these tests are plotted as
drawdown tests are normally plotted as a matter of conveni-
ence, This point is made stfictly to explain the method of
plotting, because tﬁgigharactef of both types of plots is
exactly the same siﬁce both drawdown and bulldup are de-
scribed analytically by the same equation (II-19).

All the equations derived in Chapter II, apply speci-
fically to the arrangemeﬁt where the observation point is
located at the interface of the wellbore and the radius of
the wellbore is small in relation to the other distances
involved. This is the case for a petroleum reservoir, but
as nbted in Chapter III, the heat éonduction models used in
this work placed the observation point some distance away
from the wellbore., This cﬁanges‘slightiy the form of the
equations and the required input values for ry and the other
distances involved. The exact equations used to calculate

expected ideal curves for each of the geometries investigat-
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ed along with the experimental and calculated data are shown

in Appendix B.

Closed Systemo.

A planer view of the closed system model used in this
experimental work is illustrated in Figure 10, As described
in Chapter III, the conducting medium is an aluminum (alloy
#5052) plate one-quarter of an inch thick and four feet
square. For the closed system case, the distance from the
thermocouple well to the heater well is one inch measured
center~to-center and'tge heater well is approximately one-
eighth of an inch inFdiameter.

The experimental data plotted in Figure 11 along with
the expected ideal curve result from a test conducted with
the closed system model using the electrical thermocouple
reference junction and an AC power supply to drive the one-
eighth inch diameter heater. The heat rate utilized was
15.7 Btu/hr,

The experimental results illustrated compare quite
favorably with the 1ideal curve for most values of time with
the maximum deviation occurring in the early time data, that
is before 3x10’3 hours. The early time data follow closely
the trend of the ideal curve, but are displaced ylelding
values of temperature buildup ranging from fifty percent to

ten percent less than the expected values. The data after
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3x10-3 hours are generally within tU% of the expected ideal
values and this is definitely within the experimental ac-
curacy expected.

In the vicinity of 8x10-1 hours, the data make a dis-
tinet jump of unusual magnitude after the data appear to
have settled on a definite trend slightly below the ideal
curve, After this Jjump the data follow closely the trend
of the ideal curve eventually getting slightly above this
curve, A Jjump similar to the one illustrated occurred in
the vicinity of 8x10~-1 hours'every time a test was run with
this model. Since ggﬁ% phenoménon was not reproduced in
any 6f the other ex;;riments using the 90° or 180° adiabatic
boundary cases where the tests were run for a sufficlent
length of time, a reasonable explanation for this behavior
would be that it was caused by a geometry effect unique to
the system that was used.

The behavior of the early time data as described above
could be affected by several factors. One of these factors
would be hegter well geometrical ifregularities that cause
deviations in the lines of heat flux from the ideal éase.
An example of such an ifregulariﬁy would be the case where
the geometry of the heater well was approximated more near-
1y by an ellipse than a circle., The resulting lines of heat

flux for a uniform heat output would have a configuration
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unaccounted for by the mathematical model, thus causing a
deviation from the assumed ideal case that would depend upon
the relative positions of the heater and thermocouple wells.
The effect of the relative positions of the two wells on the
experimental results where wellbore irregularities existed
would be two fold. First, using the ellipse exaﬁple, the
closer the thermocouple well 1s to the heater well the more
the heater well appears to be an ellipse, while at larger
distances the lines of heat flux would appear to be more
like those of a circle. Secéndly, the position of the ther-
mocouple well with g@ﬁ%rence té the heater well irregulari-
ties would be 1mpor§;nt, since belng exactly opposite an
irregularity would have more effect on the lines of heat
flux at the thermocouple than the same irregularity on the
opposite side of the heater wellbore.

While the above discussion céntered primarily on two
idealized geometries, an ellipse and a circle, the geometry
of any given heater well could have an irregular shape, or
simply have microscopic irregulariﬁies in the wellbore sur-
face that affect the lines of heat flux to varying degrees
depending on several faétofs to céuse deviations from fhe
ideal case. The distortions caused by thils geometry effect
would be particularly important in the early time data

since the magnitude of the temperature change 1s small and
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there would be no other effects to reduce their importance.
For later time data, this effect should be minimized due to
the greater magnitude of the temperature change and in the
case where adiabatic boundary reflectidns of heat flux lines
occur, these reflections should tend to reduce any distor-
tions in the lines of heat flux. .

Another factor affecting early time data will be the
response of the thermocouple which is a function of the
contact between the conducting medium and the thermocouple
Junction., The lack of intimate contact would cause a skin
effect which would delay the response of the thermocouple
to any temperature change within the conducting medlum.
Again this effect should cause its maximum deviation during
the early time data when temperature change 1s small and
delays in response by the thermocouple of the order of .1
to .2 of a second would be quite significant.

The above described skln could also be temperature de-
pendent and affect temperature readings in a different way
at different temperatures. Such an effect should be small
in the ekperimental work done here since temperature changes
are small in relaéion to the ambient temperature level and
to the average temperature of any one point over the period
of time that the test is run.

| . The behavior of late time data, il.e., data taken after

the first linear slope becomes apparent, can also be af-
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fected by several factors. One of these factors would be
heater wire resistance which is some function of temperature.
The average temperaturé of the wire is expected to vary from
TO°F to a maximum estimated temperature of 300°F, and any
resulting change in resistance would affect the heat output
of the heater to change it from the calculated value., This
effect was minimized by the use of Karma resistance wire.

Karma has a temperature coefficient of resistance of 15x10'6

%%%55 over the temperature range of 1interest which results

in a maximum change in resistance of less than .1%. Such
a change 1s definitéi?’within éxperimental accuracy and
should pose no progiem to early or late time data.

The output of the power supply which drives the heater
can have variations in output which affect the heat output
experienced by the heat conducting medium. It is believed
that the power supply used experlenced charges in output
approaching %2%. Although this is within experimental error
it definitely could affect the recorded data as observed in
Figure 11. |

| Other possible errors in model performance stem from
manufacture of the heaters, sincé theif manufactﬁre wés dif-
ficult at best, Although a general set of spécifications

was applied to all heaters, their manufacture was subject to

a cercain lack of uniformity. An example of such a non-
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uniformity would be the case where the one fourth inch
heater section was threaded in such a manner that one wrap
or less of the heater wire was actually outside the bound-
aries of the heat conducting medium. It would be exbected
that the major portion of heat generated by any heater wire
outside the heater well would be transmitted by the plate
since it is by far the most heat conductive medium present.
Even so this situation is not considered by the mathematics
and it would represent a departure from the ideal case

causing a deviation in the expected output.

R

The above comméh%é represént a discussion of the mech-
anical, electrical, and geometrical factors which would af-
fect the performance of the model to some degree, and 1t is
seen that many of these effects are probably small and with-
in experimental accuracy.

A second major area exlsts which can contribute signi-
ficant errors and this area 1s that of the electronic sys-
tem used to amplify and recbrd the temperature changes ex-
perienced by the thermocouple. The maximum temperature
Qhange experiénced in the closed.system case wasA6.50F
which resulté in a change of .195 millivolts in the electri-
cal output of the thermocouple. Thlis change represents a
change of 15% above an approximate initial output of 1.30mv.

Overall experimental accuracy of the order of four to five
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percent would be a good estimate of that expected and the
above temperature change represents only a change of three
to four times that accuracy. This can be significant when
the time factor is considered since theAfifteen percent
change discussed above occurs over a 2 hour period. What
about changes of the order of 3.5% which occur over thirty-
six seconds? Definitely changes of this magnitude will be
affected by mechanical shocks, slight but perceptible
changes in room temperature affecting electronic equipment,
electrical transients introduced by poor grounding technlques
(éxample: no earth ground existed in building) and common
power variations.

Although primary discussion of possible errors affect-
ing the performance of the physical model occurs in this
section on the closed system case, all the above comments
apply to all the models used and the possible errors pre-
viously noted may be referred to in the discussions of the
experimental results for the 90° and 180° adiabatic boundary

cases,

90° Adiabatic Boundary '

The geometry of the first 90° adiabatic boundary case is
illustrated in Figure 12. The two adlabatic boundaries
(edges of the aluminum plate) are 1.375" from the center of

the heater well with the thermocouple being one-eighth of an
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inch along the diagonal from the center of the heater well.
The diameter of the heater well is approximately 3/32".
This slze heater was used in every case except the closed
system case, where an one-eighth inch diameter heater was
used as previously described.

The test results for this geometry using twé different
heat rates are presented in Figures 13 and 14 along with the
expected ideal curves. The two heat rates used were 15 Btu/hn
and 2 Btu/hr. for the data in Figures 13 and 14, respectively.
Both of these test runs were made using an ice bath as the
thermocouple refergézg?and an AC power supply as the drive
for the heater.

Referring to both Figures 13 and 14, the results of the
tests definitely lack the clear verification of the analyti-
cal solution that was present in the closed system case.

For both heat rates, the early time data, i.e., before
3){10"3 hours, falls on a line which has a slope that is
greater than that predicted by the analytical solutilon. The
breaking off of the experimental data from this slope ocecurs
at approximately the expected time, 3x10'3 hours, in both
rate.cases and the experimental aata ffom approximateiy
5x10'2 hours falls on a line which has a slope almost ex-
actly that of the ideal expected curve.

The behavior exhibited by the late time data in both

heat rate cases, that is a correct slope value but data
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points displaced a constant value above or below the 1deal’
curve, 1s a relatively common occurrence in the petroleum
reservolr. This behavior is caused by the presence of a
"skin effect" around the wellbore and cén be described in

equation form as:

225t SQ
2 W
[(rwr, rp f3) ] 4 hk

SQ
hk

skin. The skin may be positive or negative indicating an

AT = 4n log

where the term is the skin effect and S is called the
increase or decrease, respectively, in the buildup. This
simply means that around the thermocouple there is an ine-
crease or decrease in the conductivity to allow for a larger
or smaller temperature buildup.

In the heat conduction cases described in Figures 13
and 14, there would appear to be a positive skin if the
late time data alone are considered, but this is not con-
firmed by the action of the early time data and such a posi-
tive skin is probably not physically possible under the de-
scribed mechanical set-up. I{ seems more probable that the
experimeﬁtal results obtained were influenced by a geometry.
effect related to fhe relative distances involved or as de-
scribed below, a geometry effect unique to a specific case.
Regardless, a positive skin is not a probavle explanation for

the observed phenomenon.
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Another possible explanation could be that a geometry
effect 1s present that is unique to the 90° adiabatic bound-
ary case, I this is the case, then the above described be-
havior of the experimental data should be at least qualita-
tively repeatable in any other 90° boundary case regardless
of the specific geometry. |

In Figure 15, the geometry of another 90° adiabatic
boundary case is illustrated. In this case the two nearest
boundaries are at 2.88", the thermocouple well is .430" from
the heater and instead of plécing the thermocouple between
the boundaries and @ﬁﬁ?heater ﬁell, it is placed outside of
that configuration.é Although this represents a 909 adia=-
batic boundary case like the one shown in Figure 12, the
distances between the heat well, the thermocouple and the
adiabatic boundaries are changed and the thermocouple well
was moved relative to the heat well.

The test results for the 90° case illustrated in Fig-
ure 15 using a 15 Btu/hr. heat rate, the electrical thermo-
couple reference and an AC power sﬁpply are plotted in Fig=-
ure 16, These results compare quite favorably on a quali-
tative basis with the results présented.for the 1.375"'-90O
boundary case with the late time data approaching the pro-
rer slope, data displaced below the ideal curve, and the

early éime deta exnhibiting a slope which i1s greater than the
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expected slope value. This behavior lends some credence to
the above stated idea that the experimental results could be
effected by some geometry effect unique to ar particular geo-

metrical case,

180° Adiabatic Boundary.

Figure 17 illustrates the geometry of an 180° adiabatic
boundary case where the fault is 1,375" from the heater well
and the thermocouple well is approximately .18" from the
heater on a 45° diagonal away from the adiabatic boundary.

The experimetalhfesults using this model are illus-
trated in Figure 18§idfhe elecfrical thermocouple reference,
the AC power supply and a heat rate of approximately 14.8
Btu/hr. were used. The late time data approach the ex-
pected value of the slope with the data points being dis-
placed above the ideal curve. Such behavior as described
previously could be explained by a skin effect, in this
case a negative skin. A negative skin could be expected
due to the problems associated with the placement of the
thermocouple but this hypothesis is not verified by the
behavior of the early time data. Even so, the trend of the
data after 1x10™3 hours is quite close to that of the ideal
case with a skin effect.

Another explanation for the above described behavior,

could be that the effect is unique to the 180° boundary
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geometry as described for the 90° boundary case. If this
is the case, this benhavior should be qualitatively repeat-
able on any other 180° boundary case.

A second 180° adiabatic boundary case is illustrated

in Figure 19. For this case the boundary is 2.88" from the
heater and the thermocouple is .430" away from the heater
on a line parallel with the nearest adiabatic boundary.

The experimental results for the 2.88"-180° boundary
model are illustrated in Figure 20 for the case where a
heat flow rate of 17.4 Btu/Hr. was used in conjunction with
the electrical thegmqsouple reference and the AC power sup-
b1y, s

Although very early time data were not available, the
test results seem to indicate the presence of a negative
skin and this behavior compares quite favorably on a quali-
tative basis with the results obtained for the 1.375"-180°
boundary model. This behavior tends to reinforce the ldea
stated in the section on 90° models that a geometry effect
exists that is unique to the qualitative geometrical ar-

rangement.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

The heat conduction model developéd to experimentally
verify the equations developed by the late Professor Park
Jones in connection with transient pressure anal&sis in
petroleum reservoirs has been partially successful. Speci-
fic positive results are noted. First, in all model cases
the final expected slopes were approximated quite closely
by the experimental results obtained. This would tend to
indicate that the valué of the slope calculated from the
physical properties of the aluminum alloy and the calculated
heat flow rate was correct.

Secondly, in all experimental cases the data underwent
the expected changes in curve character at approximately
the correct values of time. This behavior tends to indi-
cate that the lack of ldeal performance is due to geometri-
cal effects.

In the third place, the experimental results flrst ob-
tained for the closed system case verified the expected "
ideal solution wi£hin‘the limits of experimental accuracy.
Similar results can be expected for the other zeometrical
cases studled once the pertinent varameters affecting the

model performance for these cases are defterminesd.
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In light of the above stated positive factors the fol-
lowing conclusions and recommzndations are made:

(1) Deviations in early time data are probably caused
by geometrical borehole irregularities which result in dis-
tortions in the lines of heat flux from the ideal case and
by small but significant time delays in thermocouple re-
sponse because of the lack of intimate contact with the
conducting material. The deviatlons should affect early
‘time data more significantly than late time data due to
(1) the magnitude of the temperature change, (2) the lack
of other temperature tfansients (reflections) to reduce
the distortions in the lines of heat flux and (3) the re-
lative distance from the thermocouple to the wellbore,

(2) The overall lack of the heat conduction model
performance to experimentally verify the expected ideal
results in the 90° and 180° cases can be attributed pri-
marily to the physical model not ideally representing the
assumed mathematical model upon which the governing differ-
entlial equation 1s based. This apparently results from
such factors as geometrical irregularities in the borehol:s,
and the fact thaé allithe distances involved, i.e., to
faults and thermccouple to heatwell, were of relatively the

same order of magnitude.
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(3) It is suggested that in order to provide easier
installation of heaters and thermocouples, in particular,
that a granulated insulation be used. This should signi-
ficantly reduce the time required to iﬁstall the delicate
thermocouples and heaters, and reduce movement of the in-
sulation which can result in the breaking of the‘thermo-
couples and heaters.

(4) It is recommended that all electrical components
be checked for accuracy and stability, including the elec-
trical thermocouple reference, and that the grounding tech-
hique be refined to inélude a positive earth ground. Im-
provements in these areas could lead to reduced variations
in recorded output due to mechanical shocks, stray electri-
cal transients, and room temperature variations.

(5) The following experimental procedure is recom-
mended as the starting point for defining the pertinent
variables affecting model performance:

a. Using the closed system model, move the thermo-~
couple from the 1" distance to a distance of 1/8" from the
heatweli. Conduct the previously described experiment and,
compare the fesuits. ‘This step should define the effect of
this distance on the experimental results obtained and pos~
sibly help explain the behavior reported for the 90° and

1800 adiabatic boundary cases.
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b. In order to completely define the nature of the
heat losses experienced by the model during a given experi-
ment and to determine the effectiveness of the Insulation
In reducing these losses, conduct temperature bulildup tests
using each of the three geometrical cases without the upper
layer of insulation. Then, conduct these same tests with
the upper 1nsulation in place and compare the results.,

c. As a verification of the performance of the
electrical thermocouple reference, conduct bulldup tests
wlth at least two different geometrical cases using this
reference and then, repeat these same tests using a triple
point reference. This procedure is recommended since in
past experimental runs, the electrical thermocouple refer-
ence has appeared to be overly sensitive to temperature
variations and mechanical shocks.

d. 'Sensitivity to mechanical shocks and temperature
variations was also noted in the Sola Basic transformer
that was used., It is recommended that a new one be ob=-
tained and temperature buildup tests conducted with both
transformers to determine if the currently used transformer
ls too sensitive to eiternal changes to be used in this work.

Before the heat conduction model used in this work can
be used to experimentally verify the ideal solutions for

more complicated geometrical systems than those investi-



62

gated, or such variations as concentric areas of different
thermal diffusivities, the model must be refined to be able
to consistently reproduce the ideal solution for all cases
discussed in this work. Once this is aécomplished, the

model will have great experimental value.
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APPENDIX A
PHYSICAL PROPERTIES

The val ues for the various physical properties of
aluminum alloy #5052 used in the calculation of the 1deal
curves for each of the model cases discussed in Cﬁapter Iv
are presented 1In this section. Subsfiﬁution of these values
in any of the equations deseribing transient temperature
behavior along with the appropriate distance, time, and
heat flow variables in inches, hours, and Btu/hr, respec-

tively, results in temperature buildup in °F,

~
!

= 6.,6667 Btu/hr in OF

.23 Btu/#°F

p = 9.69x1072 #/in3

!
5

299.13 in2/hr



APPENDIX B

EXPERIMENTAL AND CALCULATED DATA

Presented in this section for each of the experi-
mental cascc discussed in Chavter IV are the experi-
mental data as taken from the strip chart record of
each experiment and converted to temperature in OF.
Also presented are the calculated values of tempera-
ture bulldup which were used to plot the respective
ideal curves,

Included with the above data for each model
case are the exact 1deal equations used to calculate
the expected values of temperature buildup and the
appropriate values of r which result from the image
system required to describe transient temperature
behavior over the period of time required for each

experiment.
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I. Closed System Model
Exact equation:
. o (5 il £ e’ e
At : ;12_?33 hk[w(4<xt)+zw(4cu)+ w(zmu)+ v (400)+ 2 (4<If)
2 . 2 2 2 2
Jts S0 F fia Jis
+2w(4qt)+zw(4at)+2W(4mJ'+2W(4at)+2w(4a1X]
Experimental time: 2 hours
Values of r:
Py :.9885" I’8 = 68.5"
- " _ 1
ry =48.01 rio =107.9
- 1 - 1"t
ry = 48.99 ryp =108.2
_ ] _ "
r), = h7.01 ryy =106.3
- n - "
re = 67.2 rig =107.0
Heat Flow rate: 15.7 Btu/hr
Da
AT AT
(hours) (measured) (calculated)
(oF) (oF)
3.OxlO‘-LL 0.C0602 R
2. " 0.01263
4,0 " 0.01684 -0.0346
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t AT AT

(hours) (mea(tsur)'ed ) (calc(:g.la)zted )
oF F
4.5x10-4 0.02250 —
5,0 " 0.03067 - —
6.0 " 0.05112 0.1197
7.0 " 0,07278 -
8.0 " 0.09985 0.1580
9.0 " 0.1239 .
1x10~3 0.1546 0.2250
1.5 " 0.3013
2.0 " 0.4668 0.513
2,5 " 0.5522 —
3.0 " 0.6574 —
b,o " 0.8553 0.8978
L,s " 0.9588 —
5.5 " 1.079 —_
6.0 " 1.134 1.238
g.o j 1.240 T35S

QO ' e ——— s

.0 " 1.4 -
:?.o;do'2 1°53% 1,494
1.5 1,774 .
1.9 f 1.942 1—555
2.0 ‘' — .

5 " 2.1 —_—
5% 2:183 —
h,o " 2.507 2,480
5 " 2,616 -
6.0 " 2.846 2.872
7.0 " 2.927 —
8.0 " 3,044 2.988
9.0 " 3.153 -
1.gx1g'1 g.ggg 3.152
1.5 ! .

2.0 " 3.725 3,664
2.5 " 3.859

3,0 " 4,017 -
k.o 1 1-4".216 i 11'-.182 ’
5.0 " 4,391 ~
6.0 " 4,571 L. 606
7.0 " h,713

7.8 " L, 845 —
8.0 " b,786 4,781
9.0 " 4,920 —
1.0x10° 5. 0}22 5.034
1.1 " 5,14 —_—



. t AT AT
(hours) (measured) (calculated)
(°F) (°F)

.237
. 318
421
.526
.665
.762
.859
.993
.082
.192
«335
416

L] [ 4 . L J L
.
—
@)
O

L
N O = O\O 0O~ OWJT =110

W

o
L]
N
W
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N e e
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II. 90° Adiabatic Boundary Models

Exact equation:

Experimental time: 2 hours

Values of r:

Case No, 1
r, =.125" r{ = 2.66" : ry = 3.76"
Case No, 2 |
— 1 _— " - 1
r =, 430 r, = 6.07 r3 = 8,57

Heat Flow rate:
Case No. 1-A - - 15 Btu/hr
Case No. 1-B - - 2 Btu/hr
Case No. 2 - - 15 Btu/hr

Data Case No., 1l=A:

t AT AT

(hours) (me?guged) , (calfglited)
. F F

e.omo‘4 0.484 1.581
3.0 " 0.895
Lo " 1.216 2,045
5.0 " 1,469
6.0 " 1.673 2.325
7.0 " 1.861
8,0 " ) 2,018 2.526
9.0 " 2.160 S



(hours)

xlO'3
1"

-

»

-

=0 = s 2= = === =
!
no

OFOOUVMOVIOUNOUNIO OO QCO0OO0OOOUVIOOO0O0OOOOONOWNMO

L] L - L) * ® L[] L) L] L L > * L ] L ] -] L] *

OO EEWWNONNHFHOOOITOWWI W FFWOO~OWT&EWND N - -

1.0x10-0
2,0

Data Case No,

2
]

(hours)

2.0x10~%4
1
2'8 "

AT

(measured)

(°F)

2.278
2.765
3.092
3.364
3.549

3.035

LR g

4,234

9.370

9.882
10.265
10,072
11.006
11.320
12.438
13.277
13.825
14,299

- 14,715

15.114
15.456

15.715
16.246
16,394

AT

(measured)

(°%)

0.089
0.151
0.196

AT

T2

(calculated)

(°F)
2.682
3.190

© 3,817

4,303
4,718

5.083
6.433
8.04k4

e e——

9.069
9.821
10.414

12.302

14,232

15.371

16.180
16.810
18.788

AT

(calcuiatcd)

(°F)
0.211

e )

0.273



(hours)

4=

5.0x10"

(o)
O

L J [ * [ ] [ )

L[] o . @ L L] [ ] [} » L] L] . [ ] L] [ ] L ] . L] - L] * L] L] - L ] L ] [ L]
oNeoloNolW:Xo V:FelV:FolV: FoNololodoNoNoNoNolV  FooloNoJoReNoRoNolW h VFo ol e

o H OO EHMOWNDNNFRFOONNONNTETWNOHFHOO~NOWJT WO - O

AT

(measured)
(°F)

0.222
0.269
0.273
0.314
0.389
0.417
0.473
0.541
0.602
0.636
0.680
0.705
0.751
0.781

- 0.804

0.920
1.036
1.170
1.302
1.353

PPN
L] L ] * * * L] L] L]
WMNNOHE O OO N
QWUITHN OW N O &
COND N WL YN N

AT
(meagured)
("F)
0.150
0.268
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AT
(calculated)
(°F)

O
.

W
—
O

OO
L

L]
ww
Vi

o~

0.425
0.509
0.574

0.629
0.67S
0.858

|

1.073

|

1.209
1.309

1.358
1.640

]
*

0¢]
\O
e

\

- L]

N =O
IO
A (@)

AT
(calculated)
(°F)

0.516



Th

. |
(hours) e

(measured) o

u s (calculated)

5,0x10 fi:i
6.0 " ol
29 0.490 '
1o o282 0.726
o0 0.556
1. Ox10‘3 oI5 "
R 0.824 )
e 0.6 1.022
o 1.365
2.5 1.561 125?3
3.0, 1.708 —
33 1.785 —
0. 1.901
o 1901 1.928
8.0 " .598
610 5 2.209
1.0x10-2 oLl g
1.0x10 2.695
1.5, 3.128 Eiméi
1.8 3.188 —
50 3.374 _—
2.0 3,417
21 o 3.193
553 3.579 —_—
5o 3.729 —_—
3-0 1, 4.078
20 4,499
8.0 " 4.896 pada
20 5.263
800 " 5.528 4.751
5.0 . 5,834
1.0x10-1 e e
1.0x10 6.340
15" 27380 5.749
2.0 8.108
3.0  9.079 [
2'9 9.865
2:0 10,478 9Li§i
2 . 10.959
2 10.959 10.216
0.0 . 11.811
2.0 ' o 12,152 10_222
1.0:10 12,403
L5 2.403 11.610

12.956
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AT . AT
(me:z;(s)uz;ed) (calculated)
F

13.125
13.281
13.486
13.600

-~

o]
]

g

=
w
L

(9
v
O



ITI. 180° Adiabatic Boundary Models

Exact equation:

Ar = gs3 2o

Z 3 hk

Experlimental time:

Values of

Case

Case

Heat Flow

Data Case

4
v

(hours)

4x10-%
4.5 1

2 hours
r:
No. 1
rw =,179" r3
ry - 2.88" r)y
r, = yr.87" P5
No. 2
r, = 430" ry
r, =5.77" Ty,
r, = 48, 43" ry
rate:
No,”1 - - 14.8 Btu/hr

No. 2 - - 17.4 Btu/hr
No. 1:
AT
(measured)
(°F)
1.546

1.588

= 48,13"

47.90"
L8, 24"

it

tl

1

hr.57"
L8, 70"
= 47.85"

76

AT
(calculated)
(°F)

1.535
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t ' AT AT
(hours) (measured) (calcglated)

(°F) (°F)

1.609
‘. o S
1.708 1.997
1.732
x10=3 1.780

L 1.813
" 1.844
" 1.901
" 1.930
" 1.961
L 2,027
" 2,045
" 2,075
! 2.144
L 2,171
" 2,370
" 2.502
" 2.610
" 2.680
" 2.767
" 2.845
| §.§§g 3.505
" giggﬁ 3.781
x10-2 3.40y7 %.008

1 3‘817
: ﬂ.i;? 4,787

1
=

5.0x10

L 4

[ AR
-
-

-—
-

|

L

Mo
ot
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‘e e e e
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t AT AT
(hours) (me%ggged) (cal%glited)
F
I, 0x10™1 7.765 8.772
28 :: 8.02LL ‘ _Z.
. .259 .
7.0 | 8.453 gl
8.0 | 8.631 9,810
9:0 ", §.812 S
l.OX19 8.944 10.193
1.1 | 9.065 ——e
1.2 y 9.179 ———
1.3 " g9.311 —
1.4 . 9,426 —_—
1.5 | 9.534 —
2.0 _— 11.673
Data Case No, 2:
t AT AT
(hours) (me?ggged) (calcglated)
¥
1.0x19"3 1.192 1.185
1.5 . 1.335
2.0 1.449 1.697
2.5 " 1.578 —_—
3.0 " 1.684 —
2.8 " 1.836 —
. 1.949 2.2
4,5 " 2.045 -—-%Z
5.0 " 2,147 ——
6.0 " 2,286 2.563
g.g T 2.402 —
. ! 2.52 2.
9,0 "_2 2.633 __7_?3
l.Ox19 2.731 2,988
1.5 3,086 —
2.0 " 3.344 3.633
2.5 " 3.573 —
3.0 | 3.771 —_—
3.5 3,930 —
L,o " L, o84 4,432
4,5 4,241 -
?.O 3 L,307 ———
5.0 4,539 4,933
g.o " L,764 R
.0 4,900 5.327
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£ NTT AT
(hours) (meazmred) (calculated)
(°7). (°F)
9.0 5007 —
1.0x1071 227" ' 5.628
1.5 " 53 6300 _—
2.0 " 630052 6.682
2.5 " 63 2707 S
3.0 " 6,554 —
33 g2 i o
LI-:S ". 7:.1_1}6’ 7.:17__
5.0 :: T 2667 —
'?*8 " ;52;;; 8,451
Y . . —
§.0 " 729867 8.980
9.0 " o 83182C —_—
%_..({xlg' g: i&%& - 9, l22
2.0 " T 11.161




APPENDIX C

HOMENCLATURE

For Fluid Flow

A = Cross-sectional area, square feet,

a = Distance to a fault, feet.

b = Distance to a fault, feet.

c = Fluid compressibility, psi™i

D = Reservoir resistivity, 1.127(g1r)h = psi/bbl/day.
d = Distance to a fault, feet

h = Formation thickness, feet.

= Pressure drawdown, psi.

k = Permeability, darcies.

m = Slope of drawdown vs. log time curve, psi/log
cycle.

P = Reservoir pressure, psia.

Pi = Initial reservoir pressure, psia.

q = Volumetric reservoir flow rate, bbl/day.

q" = Volumetric feservoir flow flux, bbl/day-ft.2

r = Radial distance from wellbore or image well,
feet.

rw = Radius of wellbore, feet.

t = Time, days.

to = Time intercept of the straizht line portions
of the drawdown vs. log time curve, days.

pd = Cartesian co-ordinate direction, feet,

y = Cartesian co-ordinate dirsction, feet.
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Greek Letters

7 = Formation diffusivity, —§i%f§—£ » Square feet/day

6 = Time intercept of first linear portion of
drawdown vs. lcg time curve at j= 0, days.

p = Fluid density, lb-mass/cubic foot.

Po = Initial density, lb-mass/cubic foot.

I = Fluid viscosity, centipoilse.

) = Formatlon porosity, draction.

For Heat Conduction

a = Distance to adiabatic boundary, l1nches.

b = Distance to adiabatic boundary, inches.

cy = Heat capacity, Btu/1b-°F

d = Distance to adiabatic boundary, inches.

i = Heat flux, Btu/hr-square inch.

h = Thickness of heat conducting medium, inches.

k = Thermal conductivity, Btu/hr-inchCF.

n = Slope of temperature drawdown vs. log time
curve, °F/log cycle.

Q = Heat flow rate, Btu/hr.

r = Radial distance from heat well or from image

well, inches.

T = Radius of heat well or from heat well to °
W observation point, inches.
T = Temperature, °F.
AT = Temperature drawdown (or buildup), OF.
T = Time, hours.
X = QCartesian co-ordinate directicn, inches.

Yy = Cartesian co-ordinate direction, inches.
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Thermal diffusivity, - s Square inches/hr.

PCp
Time intercept of first linear portion of
temperature drawdown curve at T = 0O, hours.

Density of heat conducting medium, lb-mass/
cublc foot.



