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ABSTRACT

The mathematical description of the transient tempera­

ture behavior in a homogeneous, isotropic heat conducting 

medium containing a cylindrical heat source is analogous to 

the mathematical description of transient pressure behavior 

in a homogeneous, isotropic petroleum reservoir.

A heat conduction analogue was developed to experi­

mentally verify ideal mathematical solutions for the transi­

ent reservoir pressure behavior of various geometrical 

systems.

The results obtained from this model provide quantita­

tive verification of the mathematical solutions.

&
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CHAPTER I

INTRODUCTION

. One of the major factors influencing the economics of 

the oil and. gas industry is the expense of developing new 

petroleum reserves which results primarily from the un­

certainty associated, with such parameters as bulk volume, 

porosity, and permeability of a particular reservoir. 

One of the analytical techniques applied by petroleum en­

gineers to accurately determine these parameters and. reduce 

risks associated, with developing new reserves is transient 

pressure analysis. The application of transient pressure 

analysis can result in the determination of reservoir 

boundaries, reservoir properties-such as permeability, and 

the evaluation of formation damage or stimulation.

The pressure tests conducted to measure transient 

pressure behavior are termed pressure buildup or pressure 

drawdown tests, corresponding to a buildup in pressure or 

a reduction in pressure. These flow tests can be visual­

ized as a step change in the producing rate from the as- 

sumed ideal steady-state reservoir conditions, i.e., either 

ho fluid flow from a reservoir or fluid, flow at a constant 

stabilized rate, which results in a period of transient 

fluid flow depending on several factors.
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The equations presented and used in this work for the 

analysis of transient pressure behavior were developed by 

the late Professor P. J. Jones. The purpose of this re­

search was to experimentally verify Professor Jones1 mathe­

matical solutions for specific idealized cases as derived 

for transient fluid, flow with a transient heat conduction 

modelo



CHAPTER II

THEORETICAL BACKGROUND

Transient Fluid Flow in Homogeneous, Isotropic Porous Media.

Governing Differential Equation. A mathematical de­

scription of fluid flow in porous media can be obtained by 
combining the following physical principles: (1) law of 

conservation of mass (2) Darcy's law and (3) an equation of 

state.

Consider fluid flow only in the x-y plane as shown in

A mass balance around the volume element results in 

the continuity equation for the flow of fluids in porous 

media.
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2 (pq;)+ ± (^q;) .--.5 (^) 

dx dy dt
(II-1)

The flow law applicable to porous media is Darcy’s

Law and this law for flow in the x-directlon yields

(II-2)
q' x 1L s U27 ,_dj_
MX - - Kx V

a p. dx

Assuming isothermal flow of a single-phase fluid, of small 

and constant compressibility results in the following equa­

tion of state:

P = A>e C(P Pl) z />oec(‘j) = /’o(l-cj) (H-3)
•5'5^ for cj « 1.0

Substitution of Darcy’s Law and the equation of state into

the continuity equation results in the following differen­

tial equation
2 2

di + di  i dj 
dx2 dy2 ijdt (H-4)

assuming that the permeability is constant and Isotropic, 

that the porosity is constant and that the resulting flow 
is laminar or viscous. Converting equation (II-4) to 
radial form using the substitution r^ - -u y2 yields

-.2 .
dj । di । dj
dr2 r dr ‘ -T) d’ k

This is the diffusivity equation in radial form which 

governs the flow of slightly compressible fluids in homo­

geneous, isotropic porous media.
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Solution. During the early producing time of practical 

interest, the pressure behavior is essentially that of a 

radially infinite fluid reservoir. Therefore, the transi­
ent solution of equation (II-5) corresponds to the solution 

for a reservoir of infinite extent.

Consider a well completed in an infinitely extended 

homogeneous, isotropic reservoir producing at a constant 

reservoir volumetric flov; rate, q. Carslaw and Jaeger 
(2:261) have shown that the solution to the diffusivity 

equation for a line source is

‘ : IT / "T dv "Tq ["E‘("u)] (TI-6)
u

where

2
u and E-i(-u) - is the exponential integral.

47)t •L

Defining the well function, W(u), as being Identically

equal to the negative of the exponential integral.

W(u) = -E.i-u)

and expanding the exponential integral in an infinite 

series results in

W(u) = -8 - lnu+u - — + ....... + U1 u. + 
4 n-n!

where 8 is Euler's constant.
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It is convenient for practical use to reduce the well 

function to the logarithimic form. Except for the first 
two terms, all the terms of the series expansion of W(u) 

can be neglected, for values of the argument, u, less than 

.01. This yields
W(u) - ln(l) - 0.5772 , u 0.01

Converting the logarithm to the base 10 and substituting 

the well function for the exponential Integral yields

j =IJ5Dqlog—=— , — < 0.01 (II~7 )rd 477! viz

For the drawdown at the well, J , called the self-drawdovm, 
equation (II-7) becomes

2.25i7t
jw = 1.15 Dq log ---- (lI-8)

r w

Equation (II-8) represents the pressure drawdown for 

a well producing at a constant reservoir flow rate, q, 

from an infinitely extended homogeneous, isotropic reser­

voir.
It is evident from examination of equation (II-7) that 

a plot of j vs logt v/ill result in a straight line of con­

stant slope, m, equal to 1.15 Dq*
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Application to Physical Systems.

The physical systems of Interest in this thesis are 

those systems Involving no-flow boundaries of varying 

geometry. These systems that are not infinite in extent 

can be solved by using the method of Images and the Theorem 

of Superposition.
180° Fault. Consider a system of one producing well 

located near a linear sealing fault as shown in Figure 2. 

The fault is a no-flow boundary and. Its physical presence 

can be replaced by the Image system shown In Fig. 3. In 

Fig* 3# an image well, producing at the same rate as the 

producing well, is-’■'located by reflection across the posi­

tion of the fault line. This creates a no-flow boundary at 

the position of the fault. The flowing pressure difference 

in the producing well will now be the sum of the self­
drawdown (or buildup), jw, and the Interference drawdown, 

jj_, from the image well located at a distance of r - 2d 

feet away. This expression is 
2

2.25i7t m /(2d) \ .
i = iw+ii - m i°g —5— + — w -1—) ' (II-9)

r2 r* 2.3 \A^)

for — < o.oi . When — o.oi , the equation can
477! Tyt

be rewritten as 
/ 2.25-nt 2.25-nt \

j - m log ------ — + log ------ —
\ rw2 (2d)2 /

which simplifies to
2.25-nt . .j=2mlog -------(II-10)
2drw
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From equation (II-IO) it can be seen that a sealing fault 

located a distance d from the producing well causes the 

slope of the drawdown curve to double for large enough 

values of time.

A typical plot of J vs. logt for the linear sealing 

fault system is shown in Fig. 4. From Fig. 4, it is pos­

sible to calculate the distance to the fault. This can be 

done by noting the value of time, to , at the intersection 

of the two straight line portions of the drawdown curve. 
At this point, the drawdown predicted by equation (II-9) is 

equal to the drawdown8predicted by equation (II-IO). Equat­

ing these two equations and solving for d yields

<1=0.757^77 (ll-ll)

If the value of is unknown, it can be determined 

from Figure 4. Extrapolation of the first straight line 

portion of the drawdown curve to j - o yields the value of 
time, 6, at which equation (II-9) equals zero. Equating 

equation (II-9) to zero and solving for "n yields

90° Fault. Consider the case where a producing well 

is located inside a 90° fault block as shown in Figure 5» 

The image well system which creates the no-flow boundaries 

identical to those of the 90° fault block system is shown
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in Figure 6, with the image wells denoted by 1^, i2 and ig 

When these image wells are placed, on production at the same 

time and rate as the producing well, this system yields the 

same results as the original faulted system. The drawdown 

in the producing well is the sum of the self-drawdown, Jw, 

plus the three interference dravfdovms of the image wells.

Dq r
J -- Jw + ii; + ii2+ ji3 -- — [ w (UW) + W(Ui|) + W(ui2) + W(ui3)

or
2

Dq r Zrw2\ /^2aA /(2b>2\ /fV4a2+4b2 )
i - — W H-J + W |------- + W -------- +W \L____

2 L \47)t/ \4-?jt / \ 4i;f / \ 47;t
(H-13)

As the arguments of the well functions successively 

become less than 0.01, the slope of the drawdown curve will 
change progressively from m to 2m to 3m to 4m. The final 

equation in logarithm form is
2.25 -qX

j - 4m log |-(8abrw)2(a2+ b2 j]*/* (11-14)

Figure 7 illustrates the drawdown curve from the 90° 

fault case. From Fig. 7i the value of 17 and. the distances 

to the faults can be determined as in the linear fault case.

Closed System. A closed, or volumetric reservoir is a 

reservoir that is completely bounded, on all sides by no­

flow boundaries. An example of this type of reservoir 

would be a fault block bounded by three intersecting seal­

ing faults, as in Figure 8.



2
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The drawdown curve for this system is illustrated in 

Figure 9» As the interference from the successive faults 

arrives at the producing well the slope of the drawdown 

curve changes from m to 2m to 3m. Mien the interference 

from the last fault arrives, the reservoir is now complete­

ly bounded and begins production by steady state. The 

drawdown curve starts falling off rapidly and approaches a 

vertical line asymptotically. The drive mechanism of the 

reservoir is now steady state by expansion.

The appearance of the drawdown curve in Figure 9 is 

representative of a closed, reservoir in which all boundaries 

are not reached simultaneously. If all boundaries are 

reached simultaneously, the drawdown curve would go direct­

ly from a slope of m to a constantly increasing slope.

The image system for a closed system would, require an 

infinite number of image wells to account for the constant­

ly increasing slope of the drawdown curve.

Transient Heat Conduction in Homogeneous, Isotropic Solids.

Governing Differential Equation. The differential 

equation governing the-conduction of heat in homogeneous, 

isotropic solids can be obtained in a manner analogous to 

that for fluid flow. In heat conduction, the physical 

principles involved are conservation of energy and Fourier's 

law of heat conduction.
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Consider a volume element such as shown in Figure 1 

which is subjected to heat conduction in the x-y plane only. 

An energy balance around the volume element results in the 

following differential equation
di , /dfx dfy \

/>cp — + I — + ------  1 =o
dt \ dx <3y '

This equation corresponds to the continuity equation in 

fluid flow. Fourier's law of heat conduction for conduction 

in the x-direction yields

For a homogeneous, isotropic solid whose thermal conductiv­

ity is independent of temperature, the substitution of 

Fourier's law into the energy balance equation results in 
2 2

(h-is)Ox dy CC dt

Converting equation (11-15) to radial form yields 

d2r i di i dr
7 57'Tjr Z11-16)

which is the differential equation governing heat conduc­

tion in a homogeneous, isotropic solid.

Solution. For the heat conduction problem, consider 

the volume element in Figure 1 with a continuous line 

source,of constant strength, Q, parallel to the z-axis.

Carslaw and Jaeger (2:261) have shown the solution to 
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equation (11-16) for the continuous line source (or sink) 

to be co
AT = ---- - ---- f — dv = —-— F—Ej ( —u)l rTT

47rhk V v 47rhk L J (II—If)
u

where

r2 , xu = — and E-i^-u) is the exponential integral. 
4CCt

It is evident from examination of equation (II-17) 

that this solution corresponds to that for the fluid, flow 

problem. Using the same development as v/as used for the 

fluid, flow solution on page 3» the temperature drawdown 

solution can be converted to logarithmic form to yield

At = ^5- . -5- < o.o, (H-18)
47rhk 4CCt ' '

For the temperature drawdown at the well, A. Tw, (self- 

drawdown) equation (II-18) becomes

Atw = •183 77 lo9 (H-19)

A plot.of ATW vs logt results in a straight line of
Q

constant slope, n , equal to -183 ~hk .

Application to Physical Systems.

The method of application of the transient solution of 

the diffusivity equation for heat conduction is identical 

to the method used for the fluid, flow case. The method 
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of images and the Theorem of Superposition are used except 

that instead of sealing faults, adiabatic surfaces represent 

the no-flow boundaries.

Since the heat conduction solutions for the various

physical systems are the same as for the fluid flow case, 

the following paragraphs present only the resulting equa­

tions with a minimum of explanation. Explanation and com­

parison of the solutions can be made by referring to the 

solutions for these physical systems in the fluid, flow sec­

tion of this chapter.

180° Adiabatic Boundary. The temperature drawdown 

(or buildup) in a heat source (or well) located a distance

d from a linear adiabatic boundary is given by

A A A 2AT - ATW + Ah = n log —
.25CCt n r
—— + — w

rw2 2.3 I
' (2d)2l
• 477! J (11-20

for ——40Ct

equation

o.oi . When

can be rewritten as

d2 
----- < 0.01 
oct

the

which can

( , 2.25cct X ,
= n 1 log -----------  + log

\ . rw

be simplified to yield

2.25 gt \
(2d)2 /

(11-21

At = 2n log 2.25cCt 
2drw

(11-22)



22

The distance to the adiabatic boundary is given by

d -- 0.75 VcCt? (11-23)

and the value of the thermal diffusivity is given by

r 2
I11-21*)

The values of t0 and 9 can be determined from the tempera­
ture drawdown curve as indicated in the fluid flow solution 

for the linear fault case.

90° Adiabatic "Boundary. The temperature drawdown in a 

well located on the inside of a 90° intersection of two 

linear adiabatic boundaries is given by

At -- Atw+ Ath + ATi2+ ATi3

or

At -------- wl-^l+wl — ) + w(—)+w(--------  
47rhk L v4(Xt (X t ' K GC t * ' CC t (IT-25)

where (a) and (b) are the perpendicular distances from the 

well to the no-flow boundaries.

For large enough values of time, the final logarithmic 
form of equation (11-25) is

2.250Ct
T - 4n log _ ■ ■■ ■

[(8 abrw)2 (a2+ b2)J /4
(11-26)
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Closed System. For the closed system heat conduction 

problem, consider a conducting solid bounded on all sides 

by adiabatic surfaces. An example of such a system would 

be a heat conduction system analogous to the closed reser­

voir case in fluid flow shown in Figure 8.

The character of the temperature drawdown curve for a 

closed system corresponds exactly to the character of the 

pressure drawdovm curve as described in the fluid flow 

section.



CHAPTER III

TRANSIENT HEAT CONDUCTION MODEL

Design Considerations

Conducting Material. One of the first decisions to be 

made in designing a heat conduction model is that of select­

ing the conducting material. The major factors to be con­
sidered are (1) the thermal diffusivity of the material, (2) 

the ease of fabrication of models from the material and (3) 

the availability of the material in the desired size and 
shape at a reasonabl'S'^ost.

The thermal diffusivity of the heat transfer medium is 

important in several respects. First, it is of major im­

portance in determining the size of the model. The lower 

the diffusivity of the heat conducting medium, the smaller 

is the size of the model required for a given experiment. 

As model size decreases, problems of handling and insulation 

decrease.

Secondly, the thermal diffusivity of the conducting 

medium directl;/ affects the amount and type of insulation 

required. Transient response of"materials of high thermal 

diffusivity is sufficiently rapid so that a minimum of in­

sulation is required for most cases. Materials of low ther­

mal diffusivity, particularly those whose diffusivity is of
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the same order of magnitude as common insulating materials, 

may have significant heat losses that are all but impossible 

to prevent.

Thirdly, the variation of thermal diffusivity with tem­

perature must be minimal, and the physical properties of the 

conducting medium must be homogeneous and isotropic.

The ease of fabrication factor involves two areas. One 

area of consideration is the ease of shaping the model into 

the required geometries. This consideration also involves 

the size and weight of the model since these factors would 

influence the ease ofpjshaping the model.

Another ease of fabrication factor Involves the method 
of placement of the heat "well1’ (source or sink) and the 

thermocouples. This leads directly to the problem of bond­
ing the heating (cooling) medium to the model without intro­

ducing appreciable unwanted resistance at this Interface. A 

similar problem exists in the placement of the thermocouples 

so that an intimate bond exists between the thermocouple 

junction and the conducting material.

The third factor in selecting the conducting material, 

that of cost and availability, depends to a large extent on 

the size of the model and is a function of the use that the 

material has in industrial applications. For the single­

layer radial model studied in this thesis, this factor is of 
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less importance than the other two factors in material se­

lection .

Heat Losses. The primary factors to consider in reduc­
ing the effects of heat losses are (1) the type of insulation, 

(2) the duration of the test and (3) the heating (cooling) 

rate.

In order to prevent heat losses so serious as to in­

validate the experimental work, the insulation selected 

should have a thermal diffusivity that is at least one order 

of magnitude less than the thermal diffusivity of the con­
ducting material. Th^1 insulation should be easy to install 

and provide an intimate contact at the interface between the 

conducting medium and the insulation.

The duration of the experiment affects the heat losses 

in two ways. First, as the time required for a given experi­

ment increases, the size of the model also increases. For a 

long time test, this can Introduce a significant problem 

since the surface area available for heat loss is a function 

of the radius squared.

Secondly, short operating time allows for a maximum 

benefit from the contrast in transient response times be­

tween the insulation and the conducting material. This re­

sults in a minimum of the insulation being influenced by 

the temperature changes in the conducting material and a 
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minimum of heat lost to heating of the insulation.

The heating rate is important in controlling heat 

losses from the standpoint of the temperatures involved. 

The higher the average temperature of the conducting medium, 

the greater the temperature driving force present across the 

insulation. An Increase in the temperature driving force 

increases the heat losses for a given thickness of insula­

tion.

Heating System. The heat conduction model under con­

sideration is designed to simulate the "constant terminal 

rate" case of fluldjifXbw. For heat conduction models, this 

case corresponds to Introducing a step change in heat In­
flow or outflow In the heat "well" of the Initially iso­

thermal conducting medium.

One consideration of heating system design Is size. 

The diameter of the heat well must be small in comparison 

to the overall dimensions of the conducting material. Such 

a requirement simulates actual petroleum reservoir condi­

tions and reduces the effect of the inhomogeneities intro­

duced into the system by the presence of the well.

A second factor in heating system design is the bonding 

in the well of the heater to the conducting medium. This 

involves the method of heater use, that is, will the heater 

be placed permanently or temporarily in the vjell. In 
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either case, the bonding material must maintain efficient 

heat transfer from the heater to the conducting medium and 

the resistance to heat transfer of the bonding material 

should be small and temperature independent over the temper­

ature range used.

A third consideration in heater design is the thermal 

response of the heater. For ideal conditions the heater 

should be able to provide instantaneously the required heat­

ing rate for a given experiment.
Two possible methods of heating (cooling) the model that 

fit the above constraints are electrical resistance heating 

and the use of a thermoelectric cooler. Electrical resist­

ance heating would be the simplest from the standpoint of 

the related electronic equipment required, since the thermo­

electric cooler would require a feedback control system in 

order to provide a constant cooling rate.

Thermocouple System. The most satisfactory temperature 

sensing device in models of the type under consideration is 

the thermocouple. The type of thermocouple material which 

will be most satisfactory can be determined from considera­

tion of the temperature level and the temperature change 

expected when the model is operating.

The major problem in this area is the means of using 

the thermocouple to obtain accurate temperature difference 

measurements. This problem involves the position of the 
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thermocouple with reference to the heat well so as not to 

introduce a significant inhomogeneity in the system at the 

position of the thermocouple.

Size of the thermocouple Junction is also important as 

it relates to the position problem and as it affects thermo­

couple response.

Description of Heat Conduction Model and Related Equipment.

The model developed for this investigation uses alumi­

num as the conducting medium. The aluminum being' used is 

aluminum alloy #5052 which has a thermal conductivity of 

8o ar)d a thermal diffusivity of 2.08 ft2/hr. The
conducting medium is 4,x4’xl/4".

The insulation used on the model is a rigid polyure-
•*2 Btu thane foam which has a thermal conductivity of 1.15x10” hr-ftop 

and a thermal diffusivity of .029 ft2/hr at 1 atm and 70°F.

Two sheets of the foam measuring 4’4"x4’4"x3" are used to 

Insulate the upper and lower surfaces of the conducting 

material. This allows for a 2" overhand, of insulation com­

pletely around the conducting material. The edges of the 
aluminum plate are insulated by 2" wide strips of polyure-* 

thane foam pressed into the 1/4" crevice between the upper 

and lower sheets of the foam.

The entire model rests on 4"x4"xl/4" plywood blocks 

placed to provide pressure points for compressing the rigid 
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foam closely against the aluminum plate. Plywood, blocks are 

placed on the upper side of the model directly opposite the 

blocks on which the model rests. The insulation is compress­

ed around the conducting plate using 15 lb. lead bricks at 

the pressure points. Several cotton strings are wrapped 

around the model to secure the insulation before the lead 

bricks are placed on the model.

Electrical resistance heating is the method used to 

heat the model. The heater uses a cylindrical teflon core 

around which resistance wire is wrapped. The one-piece 
heater core has two 'Sections. The small diameter section is 

machined to a diameter which provides a tight fit in the 

heater well drilled in the aluminum plate. This section is 

1/2" long. The large diameter section has a diameter twice 

that of the small diameter section and is 1/2" long. The 

1/4" length of the small diameter section adjacent to the 

large diameter section is the heater section and it is 

threaded with 72-88 threads per inch that are .002" to..003" 

deep. Karma (Driver-Harris Co.) resistance wire is wrapped

• in the threads of the 1/4" heater section. This wire has a 

diameter of .0008" and a resistance of 1320 ohms per foot. 

The resistance wire is glued in place using Eastman 910 glue 

and soldered at each end of the heater section to small lead 

wires. The lead wires are glued in place in insets machined 
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in the teflon core on both ends of the heater section.

This heater is designed to have a resistance of 650-700 

ohms in the heater section for a diameter of 3/32" to 1/8" 

and. to provide a heat output of 30 Btu/hr or less. The de­

sign of the heater allows the heater to be inserted in the 

aluminum plate like a shear pin for easy installation and 
removal. A non-setting silicon compound (G.C. Electronics 

#8101-5) is used to provide efficient heat transfer from the 

heater to the aluminum and to ensure electrical isolation of 

the heater from the aluminum plate. The heater was driven 

by AC or DC power supplies.

The thermocouple wire used is 30 gauge iron-constantan 

which has a diameter of .010". All thermocouples used, in the 

model are placed as observation points away from the heater 

well. The method of installation is to drill a .015" o.d. 

hole completely through the aluminum plate. One wire of the 

thermocouple is threaded through the thermocouple hole and 

a small thermocouple junction is made by very careful sol­

dering. The thermocouple bead formed is a tight fit in the 

.015" hole and. is pulled to a position one-half way through 

the plate. The thermocouple wire is glued to the surface 

of the aluminum plate using Tester’s cement.

The thermocouples used during.the buildup tests used 

32°F reference junctions. Two types of reference junctions 
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were used; (1) ice bath and (2) electrical equivalent re­

ference junction (Consolidated Ohmic Devices, Inc., model 

JR99D, reference temperature 32°F).

This model is designed to operate at low heat rates 

which create a small temperature buildup near the heat well 
of approximately IS0? maximum. A 15°F temperature change, 

measured by the iron-constantan, causes a change in the emf 

output of the thermocouple of approximately .45 millivolts. 

In order to accurately measure such a small change in thermo­

couple output several pieces of electronic equipment were 
used. '

The output of the thermocouple was connected to a Dana 
amplifier (model 3520) where a gain of 100 was used. The 

amplifier output was connected to a Wavetek Dialamatic null 
voltmeter (model 207). The output of the voltmeter provided 

a gain of 28 or 280 to one for any change from null depend­

ing on which meter sensitivity was used. A Sanborne Dual 

Channel DC amplifier recorder was used, to record the output 

of the voltmeter.

The electronic equipment used provided the capability 

of amplifying the change in thermocouple output by a factor 

of 28000 to one for most experimental runs. In some cases, 

an amplification of 2800 to one was used because of the rapid 

response of the thermocouple due to the relationship of the 

thermocouple to the heater well.
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Operating Procedure.

Initially, the conducting medium is at room temperature. 

The voltage to be applied to the heater is set on the power 

supply and the output of the thermocouple is nulled on the 

differential voltmeter. The recorder is zeroed and the ap­

propriate recording scale is selected. The sensitivity is 
selected for the voltmeter as 1^ or .1^ of full scale, 1 volt. 

The recorder paper speed is set at 20 mm/sec and the recorder 

is started. At the same time that the switch is thrown to 

apply the voltage to the heater, the marker button on the 

recorder is pushed marking the start of the test on the re­

corder strip chart.

As the temperature rises at the recording thermocouple, 

the thermal emf output rises causing the voltmeter to be in­

creasing out of null. The voltmeter is successively return­

ed to near the null position by increasing the nulling volt­

age in steps of Imv or 10 mv depending on the meter sensi­

tivity used. This process is repeated throughout the entire 

test.

After approximately two minutes the paper speed on the 

recorder is reduced to 1 mm/sec and. left at this speed for 

the remainder of the test. Test times vary with the maxi­

mum being about two hours.



CHAPTER IV

DISCUSSION OF EXPERIMENTAL RESULTS

In this chapter the geometry for each of the model cases 

investigated is described along with a discussion of the ex­

perimental results obtained.

Although all tests conducted were buildup tests, i.e., 

temperature increasing tests, these tests are plotted as 

drawdown tests are normally plotted as a matter of conveni­

ence. This point is made strictly to explain the method of 
plotting, because thfe^/eharacter of both types of plots is 

exactly the same since both drawdown and buildup are de­
scribed analytically by the same equation (II-19).

All the equations derived in Chapter II, apply speci­

fically to the arrangement where the observation point is 

located at the interface of the wellbore and. the radius of 

the wellbore is small in relation to the other distances 

involved.. This is the case for a petroleum reservoir,. but 

as noted in Chapter III, the heat conduction models used in 

this work placed the observation point some distance away 

from the wellbore. This changes slightly the form of the 

equations and the required, input values for rw and the other 

distances involved. The exact equations used to calculate 

expected ideal curves for each of the geometries investigat­
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ed along with the experimental and calculated data are shown 

in Appendix B.

Closed System,,

A planer view of the closed system model used in this 

experimental work is illustrated in Figure 10. As described 
in Chapter III, the conducting medium is an aluminum (alloy 

#5052) plate one-quarter of an inch thick and four feet 

square. For the closed system case, the distance from the 

thermocouple well to the heater well is one inch measured 

center-to-center and the heater, well is approximately one- 

eighth of an inch in^diameter.

The experimental data plotted in Figure 11 along with 

the expected ideal curve result from a test conducted with 

the closed system model using the electrical thermocouple 

reference Junction and an AC power supply to drive the one- 

eighth inch diameter heater. The heat rate utilized was 

15.7 Btu/hr.

The experimental results illustrated compare quite 

favorably with the ideal curve for most values of time with 

the maximum deviation occurring in the early time data, that 
is before 3xlO'*3 hours. The early time data follow closely 

the trend of the ideal curve, but are displaced yielding 

values ,of temperature buildup ranging from fifty percent to 

ten percent less than the expected values. The data after
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_o
3x10 J hours are generally within ±4% of the expected ideal 

values and this is definitely within the experimental ac­

curacy expected.
In the vicinity of SxlO"1 hours, the data make a dis­

tinct jump of unusual magnitude after the data appear to 

have settled on a definite trend slightly below the ideal 

curve. After this jump the data follow closely the trend 

of the ideal curve eventually getting slightly above this 

curve. A jump similar to the one Illustrated, occurred in 
the vicinity of 8xl0~^ hours every time a test was run with 

this model. Since thi.^ phenomenon was not reproduced in 

any of the other experiments using the 90° or 180° adiabatic 

boundary cases where the tests were run for a sufficient 

length of time, a reasonable explanation for this behavior 

would be that it was caused, by a geometry effect unique to 

the system that was used.

The behavior of the early time data as described, above 

could be affected by several factors. One of these factors 

would be heater well geometrical irregularities that cause 

deviations in the lines of heat flux from the ideal case. 

An example of such an irregularity would be the case where 

the geometry of the heater well was approximated more near­

ly by an ellipse than a circle. The resulting lines of heat 

flux for a uniform heat output would have a configuration 
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unaccounted for by the mathematical model, thus causing a 

deviation from the assumed, ideal case that would depend upon 

the relative positions of the heater and thermocouple wells. 

The effect of the relative positions of the two well's on the 

experimental results where wellbore irregularities existed 

would be two fold. First, using the ellipse example, the 

closer the thermocouple well is to the heater well the more 

the heater well appears to be an ellipse, while at larger 

distances the lines of heat flux would appear to be more 

like those of a circle. Secondly, the position of the ther­
mocouple well with reference to the heater well irregulari­

ties would, be important, since being exactly opposite an 

irregularity would have more effect on the lines of heat 

flux at the thermocouple than the same irregularity on the 

opposite side of the heater wellbore.

While the above discussion centered primarily on two 

idealized geometries, an ellipse and a circle, the geometry 

of any given heater well could have an irregular shape, or 

simply have microscopic Irregularities in the wellbore sur­

face that affect the lines of heat flux to varying degrees 

depending on several factors to cause deviations from the 

ideal case. The distortions caused by this geometry effect 

would be particularly important in the early time data 

since the magnitude of the temperature change is small and 
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there would be no other effects to reduce their importance» 

For later time data, this effect should be minimized due to 

the greater magnitude of the temperature change and in the 

case where adiabatic boundary reflections of heat flux lines 

occur, these reflections should tend to reduce any distor­

tions in the lines of heat flux.

Another factor affecting early time data will be the 

response of the thermocouple which is a function of the 

contact between the conducting medium and. the thermocouple 

Junction. The lack of intimate contact would cause a skin 

effect which would delay the response of the thermocouple 

to any temperature change within the conducting medium. 

Again this effect should cause its maximum deviation during 

the early time data when temperature change is small and 

delays in response by the thermocouple of the order of .1 

to .2 of a second would be quite significant.

The above described skin could also be temperature de­

pendent and affect temperature readings in a different way 

at different temperatures. Such an effect should, be small 

in the experimental work done here since temperature change/, 

are small in relation to the ambient temperature level and 

to the average temperature of any one point over the period 

of time that the test is run.

■The behavior of late time data, i,e., data taken after 

the first linear slope becomes apparent, can also be af­
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fected by several factors. One of these factors would be 

heater wire resistance which is some function of temperature. 

The average temperature of the wire is expected to vary from 
70°F to a maximum estimated, temperature of 300°F, and. any 

resulting change in resistance would affect the heat output 

of the heater to change it from the calculated value. This 

effect was minimized, by the use of Karma resistance wire. 
Karma has a temperature coefficient of resistance of ±5x10“^ 

over the temperature range of interest which results 
in a maximum change in resistance of less than ±.1%. Such 
a change is definitd^ within experimental accuracy and 

should pose no problem to early or late time data.

The output of the power supply which drives the heater 

can have variations in output which affect the heat output 

experienced by the heat conducting medium. It is believed, 

that the power supply used experienced, charges in output 

approaching ±2%. Although this is within experimental error 

it definitely could affect the recorded data as observed in 

Figure 11.

Other possible errors in model performance stem from 

manufacture of the heaters, since their manufacture was dif­

ficult at best. Although a general set of specifications 

was applied to all heaters, their manufacture was subject to 

a certain lack of uniformity. An example of such a non­
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uniformity would be the case where the one fourth inch 

heater section was threaded in such a manner that one wrap 

or less of the heater wire was actually outside the bound­

aries of the heat conducting medium. It would be expected 

that the major portion of heat generated by any heater wire 

outside the heater well would be transmitted by the plate 

since it is by far the most heat conductive medium present. 

Even so this situation is not considered by the mathematics 

and it would represent a departure from the ideal case 

causing a deviation in the expected output.

The above comments represent a discussion of the mech­

anical, electrical, and geometrical factors which would af­

fect the performance of the model to some degree, and it is 

seen that many of these effects are probably small and. with­

in experimental accuracy.

A second major area exists which can contribute signi­

ficant errors and this area is that of the electronic sys­

tem used to amplify and record the temperature changes ex­

perienced by the thermocouple. The maximum temperature 
change experienced, in the closed system case was 6.5^?

v;hich results in a change of .195 millivolts in the electri­

cal output of the thermocouple. This change represents a 

change, of 15^ above an approximate initial output of 1.30mv. 

Overall experimental accuracy of the order of four to five 
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percent would be a good estimate of that expected and the 

above temperature change represents only a change of three 

to four times that accuracyo This can be significant when 

the time factor is considered, since the fifteen percent 

change discussed, above occurs over a 2 hour period. What 

about changes of the order of 3.5/» which occur over thirty- 

six seconds? Definitely changes of this magnitude will be 

affe'cted by mechanical shocks, slight but perceptible 

changes in room temperature affecting electronic equipment, 

electrical transients introduced by poor grounding techniques 
(example: no earth ground existed in building) and common 

power variations.

Although primary discussion of possible errors affect­

ing the performance of the physical model occurs in this 

section on the closed system case, all the above comments 

apply to all the models used and the possible errors pre­

viously noted may be referred to in the discussions of the 

experimental results for the 90° and. 180° adiabatic boundary 

cases.

90° Adiabatic Boundary

The geometry of the first 90° adiabatic boundary case is 

illustrated in Figure 12. The two adiabatic boundaries 
(edges of the aluminum plate) are 1.375" from the center of 

the heater vzell with the thermocouple being one-eighth of an
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inch along the diagonal from the center of the heater well. 

The diameter of the heater well is approximately 3/32". 

This size heater was used in every case except the closed 

system case, where an one-eighth inch diameter heater was 

used as previously described.

The test results for this geometry using two different 

heat rates are presented in Figures 13 and. 12| along with the 

expected ideal curves. The two heat rates used were 15 Btu/hr. 

and 2 Btu/hr. for the data in Figures 13 and 14, respectively. 

Both of these test runs were made using an ice bath as the 

thermocouple reference and an AC power supply as the drive 

for the heater.

Referring to both Figures 13 and 14, the results of the 

tests definitely lack the clear verification of the analyti­

cal solution that was present in the closed, system case. 

For both heat rates, the early time data, i.e., before 
3x10“3 hours, falls on a line which has a slope that is 

greater than that predicted by the analytical solution. The 

breaking off of the experimental data from this slope occurs 
. at approximately the expected time, 3xlO”3 hours, in both 

rate cases and the experimental data from approximately 
5x10~2 hours falls on a line which has a slope almost ex­

actly that of the ideal expected curve.

The behavior exhibited by the late time data in both 

heat rate cases, that is a correct slope value but data
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points displaced a constant value above or below the ideal 

curve, is a relatively common occurrence in the petroleum 

reservoir. This behavior is caused by the presence of a 
"skin effect" around, the wellbore and can be described in 

equation form as:

2.25CCt so
AT = 4n log -------------------- — + ------

[(rwr, r2r3)2]/4 hk 

SO where the term -  is the skin effect and S is called thehk 
skin. The skin may be positive or negative indicating an 

increase or decrease, respectively, in the buildup. This 

simply means that around the thermocouple there is an in­

crease or decrease in the conductivity to allow for a larger 

or smaller temperature buildup.

In the heat conduction cases described, in Figures 13 

and. 14, there would appear to be a positive skin if the 

late time data alone are considered, but this is not con­

firmed. by the action of the early time data and. such a posi­

tive skin Is probably not physically possible under the de­

scribed mechanical set-up. It seems more probable that the 

experimental results obtained viere influenced by a geometry, 

effect related, to the relative distances Involved or as de­

scribed below, a geometry effect unique to a specific case. 

Regardless, a positive skin is not a probable explanation for 

the observed phenomenon.
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Another possible explanation could, be that a geometry 
effect Is present that is unique to the 90° adiabatic bound­

ary case. If this is the case, then the above described be­

havior of the experimental data should be at least qualita­

tively repeatable in any other 90° boundary case regardless 

of the specific geometry.

In Figure 15j the geometry of another 90° adiabatic 

boundary case is illustrated. In this case the two nearest 

boundaries are at 2.88", the thermocouple well is .430" from 

the heater and instead of placing the thermocouple between 
the boundaries and the^'heater well, it is placed, outside of 

that configuration. Although this represents a 90° adia­

batic boundary case like the one shown in Figure 12, the 

distances between the heat well, the thermocouple and. the 

adiabatic boundaries are changed and the thermocouple well 

was moved relative to the heat well.
The test results for the 90° case illustrated in Fig­

ure 15 using a 15 Btu/hr. heat rate, the electrical thermo­

couple reference and an AC power supply are plotted in Fig­
ure 16. These results compare quite favorably on a quali­

tative basis with the results presented for the 1.375"-9O° 

boundary case with the late time data approaching the pro­

per slope, data displaced below the ideal curve, and the 

early time data exhibiting a slope which is greater than the



Fric\u.r"e 15. ^iO0/t d i<^ brx"fcic- E)<DUvndAr-LA /i/l<?cj<si (^ecifictru-.

Case A/o. 2



K1UFFKL » ESSER CO., N. Y. NO. S59-»!
Seml-Logarlthmlo. 3 Cycled x 10 to the Inch, Sth lines accented. 

MADE IN U. S.A.



52

expected slope value. This behavior lends some credence to 

the above stated, idea that the experimental results could, be 

effected, by some geometry effect unique to a- particular geo­

metrical case.

180° Adiabatic Boundary.

Figure 17 illustrates the geometry of an 180° adiabatic 
boundary case where the fault is 1.375" from the heater well 

and the thermocouple well is approximately .18" from the 

heater on a 45° diagonal away from the adiabatic boundary.

The experimetal results using this model are illus­

trated in Figure 18. The electrical thermocouple reference, 

the AC power supply and a heat rate of approximately 14.8 

Btu/hr. were used. The late time data approach the ex­

pected value of the slope with the data points being dis­

placed. above the ideal curve. Such behavior as described, 

previously could be explained by a skin effect, in this 

case a negative skin. A negative skin could be expected 

due to the problems associated with the placement of the 

thermocouple but this hypothesis is not verified by the 

behavior of the early time data.. Even so, the trend of the 
data after IxlO*"-5 hours is quite close to that of the ideal 

case vzith a skin effect.

Another explanation for the above described behavior, 

could be that the effect is unique to the 180° boundary
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geometry as described for the 90° boundary case. If this 

is the case, this behavior should be qualitatively repeat­
able on any other 180° boundary case.

A second 180° adiabatic boundary case is illustrated 
in Figure 19. For this case the boundary is 2.88" from the 

heater and the thermocouple is .430" away from the heater 

on a line parallel with the nearest adiabatic boundary.

The experimental results for the 2.88"-180° boundary 

model are illustrated in Figure 20 for the case where a 

heat flow rate of 17.4 Btu/hr. was used, in conjunction with 

the electrical thermacouple reference and. the AC power sup­

ply.

Although very early time data were not available, the 

test results seem to indicate the presence of a negative 

skin and this behavior compares quite favorably on a quali­
tative basis with the results obtained for the 1.375M-18O° 

boundary model. This behavior tends to reinforce the idea 
stated in the section on 90° models that a geometry effect 

exists that is unique to the qualitative geometrical ar­

rangement .
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CHAPTER V

CONCLUSIONS AND RECOMT4ENDATIONS

The heat conduction model developed to experimentally 

verify the equations developed, by the late Professor Park 

Jones in connection with transient pressure analysis in 

petroleum reservoirs has been partially successful. Speci­

fic positive results are noted. First, in all model cases 

the final expected slopes were approximated quite closely 

by the experimental results obtained. This would tend to 

indicate that the value of the slope calculated from the 

physical properties of the aluminum alloy and the calculated 

heat floxtf rate was correct.

Secondly, in all experimental cases the data underwent 

the expected changes in curve character at approximately 

the correct values of time. This behavior tends to indi­

cate that the lack of ideal performance is due to geometri­

cal effects.

In the third place, the experimental results first ob­

tained for the closed system case verified the expected , 

ideal solution within the limits of experimental accuracy. 

Similar results can be expected for the other geometrical 

cases studied once the pertinent parameters affecting the 

model performance for these cases are determined.
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In light of the above stated positive factors the fol­
lowing conclusions and recommendations are made:

(1) Deviations in early time data are probably caused 

by geometrical borehole irregularities which result in dis­

tortions in the lines of heat flux from the ideal case and 

by small but significant time delays in thermocouple re­

sponse because of the lack of intimate contact with the 

conducting material. The deviations should affect early 

time data more significantly than late time data due to
(1) the magnitude of the temperature change, (2) the lack 

of other temperature transients (reflections) to reduce 

the distortions in the lines of heat flux and (3) the re­

lative distance from the thermocouple to the wellbore.
(2) The overall lack of the heat conduction model 

performance to experimentally verify the expected ideal 
results in the 90° and 180° cases can be attributed pri­

marily to the physical model not ideally representing the 

assumed mathematical model upon which the governing differ­

ential equation is based. This apparently results from 

such factors as geometrical irregularities in the borehol<vs, 

and the fact that all the distances involved, i.e., to 

faults and thermocouple to heatwell, vzere of relatively the 

same order of magnitude.
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(3) It is suggested that in order to provide easier 

installation of heaters and thermocouples, in particular, 

that a granulated insulation be used. This should signi­

ficantly reduce the time required to install the delicate 

thermocouples and heaters, and reduce movement of the in­

sulation which can result in the breaking of the thermo­

couples and heaters.
(4) It is recommended that all electrical components 

be checked for accuracy and stability. Including the elec­

trical thermocouple reference, and that the grounding tech­

nique be refined to include a positive earth ground. Im­

provements in these areas could lead to reduced variations 

in recorded output due to mechanical shocks, stray electri­

cal transients, and room temperature variations.
(5) The following experimental procedure is recom­

mended as the starting point for defining the pertinent 

variables affecting model performance:

a. Using the closed system model, move the thermo­

couple from the 1" distance to a distance of 1/8" from the 

heatwell. Conduct the previously described experiment and, 

compare the results. This step should define the effect of 

this distance on the experimental results obtained and pos­
sibly help explain the behavior reported for the 90° and 

180° adiabatic boundary cases.
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b. In order to completely define the nature of the 

heat losses experienced by the model during a given experi­

ment and to determine the effectiveness of the insulation 

in reducing these losses, conduct temperature buildup tests 

using each of the three geometrical cases without the upper 

layer of insulation« Then, conduct these same tests with 

the upper insulation in place and compare the results.

c. As a verification of the performance of the 

electrical thermocouple reference, conduct buildup tests 

with at least two different geometrical cases using this 

reference and then, repeat these same tests using a triple 

point reference. This procedure is recommended since in 

past experimental runs, the electrical thermocouple refer­

ence has appeared to be overly sensitive to temperature 

variations and mechanical shocks.

d. . Sensitivity to mechanical shocks and temperature 

variations was also noted in the Sola Basic transformer 

that was used. It is recommended that a new one be ob­

tained and temperature buildup tests conducted with both 

transformers to determine if the currently used transformer 

is too sensitive to external changes to be used in this work.

Before the heat conduction model used in this work can 

be used to experimentally verify the ideal solutions for 

more complicated geometrical systems than those invest!- 
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gated, or such variations as concentric areas of different 

thermal diffusivities, the model must be refined to be able 

to consistently reproduce the ideal solution for all cases 

discussed in this work. Once this is accomplished, the 

model will have great experimental value.
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APPENDIX A

PHYSICAL PROPERTIES

The values for the various physical properties of 

aluminum alloy #5052 used in the calculation of the ideal 

curves for each of the model cases discussed in Chapter IV 

are presented in this section. Substitution of these values 

in any of the equations describing transient temperature 

behavior along with the appropriate distance, time, and 

heat flow variables in inches, hours, and Btu/hr, respec­

tively, results in temperature buildup in °F0

k = 6.6667 Btu/hr in °F 

cpz .23 Btu/#°P
P = 9.69x10~2 #/in3

cc = 299.13 in2/hr



APPENDIX B

EXPERIMENTAL AND CALCULATED DATA

Presented in this section for each of the experi­

mental cases discussed in Chapter IV are the experi­

mental data as taken from the strip chart record of 

each experiment and converted to temperature in °F. 

Also presented are the calculated values of tempera­

ture buildup which were used to plot the respective 

ideal curves.

Included with the above data for each model 

case are the exact ideal equations used to calculate 

the expected values of temperature buildup and the 

appropriate values of r which result from the image 

system required to describe transient temperature 

behavior over the period of time required for each 

experiment.
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I. Closed System Model

Exact equation:

, Q
AT -- .183 —"273. hkL

w(-^— ) + 2w(-^-) + w ) + w (-^-)+ 2w(-^-
V4OCt/ X4CCt 4OCt 4CCt 4CCt

Experimental time: 2 hours

Values of r:

rw =.9885" rg - 68.5"

rl =48.01" rio-lo7.9"

r2 x48.99" r12 =108.2"

r4 - 47.01" r14 =106.3"

r6 r 67.2" r16 =107.0"

Heat Flow rate: 15«7 Btu/hr

Data:

t 
(hours)

3.0x10
3.5 "
4.0 "

AT 
(measured) 

(°B)

0.00602
0.01263
0.01684

AT 
(calculated) 

(°F)

0.0346
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t AT AT
(hours)

4.5xlO-4
5.0 "

(measured) 
(op)

0.02250
0.03067

(calculated) 
(Op)

6.0 "
7.0 "

0.05112 
0.07278

0.1197

8.0 ” 0.09985 0.1580
9.0 ” 0.1239 --
1x10“^
1.5 "

0.1546
0.3013

0.2250

2.0 "
2.5 "
3.0 "

0.4668
0.5522
0.6574

0.513

4.0 "
4.5 "
5.5 "

0.8553
0.9588
1.079

0.8978

6.0 "
7.0 ”
8.0 "
9.0 " Q

1.134 
,1.240
1.439

1.238
1.343

l.OxlO"2
1.5 "
1.9 "
2.0 "
2.5 ;;
3.0 ”

1.501
1.774
1.942

1.494

1.980

4.0 "
4.5 ”

2.507
2.616

2,480

6.0 "
7.0 ”

2.846
2.927

2.872

8.0 "
9.0 "

3.044
3.153

2.988

l.OxlO-1
1.5 "

3.206
3.559

3.152

2.0 "
2.5 "
3.0 "

3.725
3.859
4.017

3.664

4.0 ’’
F.O "

4.216
' 4.391

. 4.182 •

6.0 "
7.0 "
7.8 "

4.571
4.713
4.845

4.606

8.0 "
9.0 "

4.786
4.920

4.781

1.0x10°
1.1 "

5.023
5.143

5.034
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t AT
(hours) (measured) 

(°F)

1.2x10° 5.237
1.3 " 5.318
1.4 ” 5.421
1.5 " 5.526
1.6 " 5.665
1.7 " 5.762
1.8 " 5.859
1.9 ” 5.993
2.0 ” 6.082
2.1 ” 6.192
2.2 " 6.335
2.25 ” 6.416

AT 
(calculated) 

(°F)

6.237
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II. 90° Adiabatic Boundary Models

Exact equation:

AT = .183 — T w ) + 2w(-^—) + w(-^—
"23 hk L Mat7 x4QCt/ MCCt

Experimental time: 2 hours

Values of r:

Case No. 1
rw = .125” r*! = 2.66"

Case No. 2
r =.430” r. =6.07"

r3 = 3.76”

r3 = 8.57”
W 1

Heat Flow rate:

Case No. 1-A --- 15 Btu/hr

Case No. 1-B - - 2 Btu/hr

Case No. 2 - - 15 Btu/hr

Data Case No. 1-A:

t AT at
(hours) (measured) (calculated.)

• (°F) (°F)
-42.0x10 . 0.484 1.581

3.0 " 0.895 --- —
4.0 " 1.216 2.045
5.0 " 1.469 ...—
6.0 " 1.673 2.325
7.0 " 1.861
8.0 " 2.018 2.526
9.0 " 2.160
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t 
(hours)

AT 
(measured) 

(°F)
AT 

(calculated} 
(°F)

l.OxlO-3 2.278 2.682
1.5 " 2.765
2.0 " 3.092 3.190
2.6 " 3.364
3.0 " 3.549 ............ .............

4.0 " 3.935 ■ 3.817
5.0 " 4.234
6.0 " 4.555 4.303
7.0 " 4.811 ...
8.0 " 5.060 4.718
9.0 " 5.296 ■ .
1.0x10“^ 5.463 5.083
1.5 " 6.358 --  ■ ■
2.0 ” 6.942 6.433
3.0 " 8.027 —---
4.0 " 8.746 8.044
5.0 " 9.370 —
6.0 " 9.882 9.069
7.0 " 10.265 ...
8.0 " 10.672 9.821
9.0 " 11.006
l.OxlO-1 11.320 10.414
1.5 " 12.438 - — ....
2.0 " 13.277 12.302
2.5 " 13.825
3.0 " 14.299
3.5 • 14.715
4.0 " 15.114 14.232
4.5 ” 15.456 . ...
5.0 ” 15.715 ———
6.0 " 16.246 15.371
6.4 " 16.394 — -- ---
8.0 *' 16.180
1.0x10"° 16.810
2.0 " —— 18.788

Data Case No. 1-B:

t AT AT
(hours) (measured) (calculated)

(°F) (°F)
2.0x10“^ 0.089 0.211
3.0 " 0.151
4.0 " 0.196 0.273
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t 
(hours)

AT 
(measured) 

(°F)

AT 
(calculated) 

(°F)
-.2|5.0x10 0.222

6.0 " 0.269 0.310
7.0 11 0.273 ..
8.0 " o
1.0x10*3

0.314 0.337
. 0.358

1.2 " 0.389
1.5 " 0.417 .. ,
2.0 ” 0.473 0.425
3.0 "
4.0 "
5.0 "

0.541
0.602
0 6-6

0.509
6.0 ” 0.680 0.574
7.0 " 0.705 1
8.0 " 0.751 0.629
9.0 " o 0.781 __
l.OxlO*2 0.804 0.678
1.5 " 0.920
2.0 ” 1.036 0.858
3.0 " 1.170
4.0 " 1.302 1.073
5.0 " 1.353 ———.
6.0 ” 1.457 1.209
7.0 " 1.500 —. ..- -
8.0 " 1.580 1.309
9.0 ” . 1.627
l.OxlO"1 1.642 1.388
1.5 " 1.802 - ..
2.0 " 1.926 1.64o
2.5 ” 2.033 . ...
3.0 " 2.083 ....
3.5 " 2.128

1.8984.0 " 2.212
4.5 " - 2.259
5.0 " 2.308 .....
6.0 " 2.050
8.0 <' n 2.157
1.0xl0~u — 2.241

Data Case No. 2:

"v AT AT
(hours) (measured) (calculated) 

(°F)
3.OX1O"21 0.150
4.0 " 0.268 0.516
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t 
(hours)

AT 
(measured) 

(°F)
AT 

(calculated) 
(°F)

-45.0x10 0.375 . ...
6.0 " 0.^90 0.726
7.0 " 0.586
8.0 ” 0.656 0.889
9.0 " 0.734 —
1.0x10"^ 0.834 ■ 1.022
1.5 " 1.191 ■ - ■ -
2.0 " 1.365 1.463
2.5 " 1.561 ......
3.0 " 1.708 .  ... . ..
3.5 n 1.785 ......
4.0 " 1.901 1.928
5.0 ” 2.183 ......
6.0 " 2.209
8.0 ” 2.598 2.414
9.0 " o 2.749 _________
l.OxlO-2 2.695 2.581
1.5 " 3.128 -. - -.
1.6 " 3.188 _______
1.8 " 3.374 ....
2.0 " 3.417 3.193
2.1 ” 3.465 . ....
2.25 ” 3.579
2.50 " 3.729 ........
3.0 " 4.078
4.0 " 4.499 4.074
5.0 ” 4.896 ......
6.0 " 5.263 4.751
7.0 " 5.528 ——-
8.0 " 5.834 5.300
9.0 " n 6.111 ----
l.OxlO”1 6.340 5.749
1.5 " • 7.380 .. ....
2.0 " 8.108 7.362
3.0 " . 9.079 .......
4.0 " 9.865 9.131
5.0 " 10.478 . . -......
6.0 " 10.959 10.216
7.0 " 11.320 ■ ... ..
8.0 " 11.811 10.999
P.O " 12.162 - - - ■ -
1.0x10”° 12.403 11.610
1.1 " 12.668 —...—.
1.2 11 12.956 •
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t 
(hours)

1.3x10"°
1.4 "
1.5 "
1.6 "
2.0 "

AT 
(measured) 

(°F)

13.125
13.281
13.486
13.600

AT 
(calculated) 

(°F)

■13.559
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III. 180° Adiabatic Boundary Models

Exact equation:

r 2 2 2 r2 r 2 r2At = .183-5- [ w(-^—)+ w(-^—)+ w(-^—) + w(—)+ w(-5—)+ w(—5—
*z73 hk L Mat1 Mat7 Mat7 Mat7 Mat7 Mat

Experimental time: 2 hours

Values of r:

Case No. 1

r .179" w r3 = 48.13"
r 22.88" r4 r_ 47.90"

r2 = 47.87" yv = 48.24" 
D

Case No. 2

r = .430'* w r3 = 47.57"

r1 ^5.77" r4 = 48.70"

r = 48.43"
2 47.85"5

Heat Flow rate:

Case No.' 1 - - 14.8 Btu/hr

Case No. 2 - - 17.4 Btu/hr

Data Case No. 1:

(hours) at (measured) 
(°F)

AT 
(calculated) 

(°F)
too"4
4.5 "

1.546
1.588

1.535
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t AT AT
(hours)

S.OxlO"4

(measured) 
(°F)

1.609

(calculated) 
(°F)

6.0 “
7^0 ii

1.663
1.684

1.803

8;0 i*
9.0 » o

1.708
1.732

1.997
i;oxio“3
1.1 "
1.2 "
1.3 "
1.4 ”
1.5 "
1.6 "
1.7 "
1.8 "
1.9 "

1.780
1.813
1.844
1.901
1.930
1.961
2.027
2.045
2.075
2.144

• 2.149

2.0 "
2.5 '*
3.0 "
3.5 ",

■ 2.171
2.370
2.502
2.610

2.629

4.0 "
4.5 "
5,0 "

2.680
2.767
2.845

3.155

6.0 ”
7.0 "

2.989
3.116

3.505
8.0 ”
8.5 "

3.224
3.254

3.781

l.OxlO”2
1.5 "

3.447
3.817

4.008

2.0 "
2.5 "
3.° ;;
3.5 "

4.174
4.427
4.652
4.784

4.787

4.0 ”
4.5 " •

4.998
■ 5.H5

5.650

5.0 " 5.256
6.0 "
7.0 "

. 5.474
5.630

6.179

8.0 "
9.0 "

5.774
5.925

6.563

l.OxlO**1
1.5 "

6.027
6.647

6.863

2.0 ,!
2.5 "
3.0 "

6.935
7.254
7.453

7.809

3.5 " 7.639
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t 
(hours)

AT 
(measured) 

(°F)

AT 
(calculated) 

(°F)
4.0X10-1 7.765 8.772
5.0 ” 8.024
6.0 " 8.259 9.357
7.0 " 8.453 . —....
8.0 " 8.631 9.810
9-0 " n 8.8121.0x10“° 8.944 10.193
1.1 " 9.065 .1 ■■ .w.
1.2 " 9.179 ■..——-
1.3 " 9.3H ——«—
1.4 "
1.5 "
2.0 "

9.426
9.534

11.673

Data Case No. 2:

t AT at
(hours) (measured) 

(°F)
(calculated) 

(°F)

l.OxlO”3 1.192 1.185
1.5 ” 1.335

1.6972.0 ” 1.449
2.5 " 1.578
3.0 " 1.684
3.5 " 1.826
4.0 " 1.949 2.237
4.5 " 2.045 ——-
5.0 " 2.147

2.5636.0 " 2.286
7.0 " 2.408
8.0 " 2.526 2.799
9.0 " o 2.633

2.988l.OxlO"2 2.731
1.5 " 3.086
2.0 " 3.344 3.633
2.5 " 3.573 ' ■■

3.0 " 3.771 ——-
3.5 " 3.934 . . ....
4.0 " 4.OS4 4.412
4.5 " 4.241 —
5.0 " 4.307 1 .
6.0 " 4.539 4.933
7-0 " 4.764

5.3278.0 " 4.900
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t 
(hours)

9.0 " _ 
leOxIO"1
1.5
2„0
2.5
3-0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

n
ii

it
I!
I!
If
II
If
It
II
n
it 

iLoxIO*0 
1.1 " 
2.0 "

(measured) 
(W.

5>077" 
5=. 227" 
5565OC 
6;0755 
6^ 37OC 
6.5^4- 
6.779" 
6^997^ 
F.1^6v 
T7.266-5 
F.5555 
F.7B55 
F.9465 
831322 
83337'” 
83 mi

AT 
(calculated) 

(°F)

5.628

6.682

7.774

8.451

8.980

9.422

11.161



APPENDIX C

IJONENCLATUBE

For Fluid Flow

A — Cross-sectional area, square feet.

a - Distance to a fault, feet.

b — Distance to a fault, feet.
c Fluid compressibility, psi-1

D = Reservoir resistivity, ----- —-----  , psi/bbl/day.1.127(2 7T )h k ' '
d •= Distance to a fault, feet

h = Formation thickness, feet.

j - Pressure drawdown, psi.

k = Permeability, darcies.

m ■= Slope of drawdown vs. log time curve, psi/log
cycle.

P - Reservoir pressure, psia.

P^ — Initial reservoir pressure, psia.

q = Volumetric reservoir flow rate, bbl/day.
q" — Volumetric reservoir flow flux, bbl/day-ft.^

r — Radial distance from wellbore or image well;
feet.

r  Radius of wellbore, feet,w
t - Time, days.

to = Time intercept of the straight line portions 
of the drawdown vs. log time curve, days.

x = Cartesian co-ordinate direction, feet.

y = Cartesian co-ordinate direction, feet.
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Greek Letters
77 = Formation diffusivity, 2a3^8 k RqUare feet/day

p.<pc

8 - Time intercept of first linear portion of
drawdown vs. log time curve at j = 0, days.

. p = Fluid density, Ib-mass/cubic foot.

Po = Initial density, Ib-mass/cubic foot.

p. - Fluid viscosity, centipoise.

</> - Formation porosity, draction.

For Heat Conduction

a = Distance to adiabatic boundary. Inches.

b - Distance to adiabatic boundary, inches.

Cp - Heat capacity, Btu/lb-°F

d. = Distance to adiabatic boundary, inches.

f = Heat flux, Btu/hr-square inch.

h - Thickness of heat conducting medium, inches.
к - Thermal conductivity, Btu/hr-inch°F.

л = Slope of temperature drawdown vs. log time
curve, °F/log cycle.

Q = Heat flow rate, Btu/hr.

r = Radial distance from heat well or from image
well, inches.

r = Radius of heat well or from heat well to
W i .observation poinu, incnes.

T = Temperature, °F.

AT - Temperature drawdown (or buildup), °F.

t - Time, hours.

x = Cartesian co-ordinate direction, inches.

y - Cartesian co-ordinate direction, inches.
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Greek Letters
) w

oc - Thermal diffusivity, —----  , square inches/hr.
/>Cp

6 - Time intercept of first linear portion of
temperature drawdown curve at T = 0, hours.

P - Density of heat conducting medium, lb-mass/
cubic foot.


