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ABSTRACT 

Near-surface model building is critical in exploration geophysics studies. Among various 

methods, first-arrival traveltime (FAT) tomography is among the most popular solutions, especially 

in land surveys over complex geologic structures in highly noisy environments. Though this is a 

relatively mature method, there are still many practical challenges that have motivated my study.  

The first part of my study focuses at finding a way to significantly improve the computational 

efficiency of FAT tomography, which has limited its usage for the increasingly massive data 

volumes in high density seismic surveys nowadays. Often, hundreds of millions of seismic picks 

are beyond the limit of standard FAT tomography methods in terms of computation memory and 

turnaround time, both are critical in practice. I have adopted an adjoint-state solution, which 

reduces the memory cost regardless of the quantity of input data. I have also devised a highly 

efficient FAT tomographic inversion scheme by combining the dimensionality reduction and the 

sparsity-promoting techniques based on a compressive sensing approach. The computation time 

cost is significantly reduced by taking randomly subsampled data for computation. The model 

update is regularized and many imaging artefacts induced by random subsampling are mitigated 

through exploiting its sparsity within learned dictionaries. My new inversion scheme enables to 

use just a small portion of a dataset to achieve results practically identical to those from standard 

FAT tomography methods using the full dataset.  

The second part of my study is an attempt to reconstruct an Q distribution model, in order to 

compensate for the near-surface loss in the amplitude of seismic data. This is a significant factor 

for seismic image quality. My approach is based on the impact of path attenuation factor (t*) to 

the amount of amplitude attenuation on seismic first arrival waveforms. To accurately estimate t*, 
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I use a high-quality tomographic velocity model to guide the identification of the relevant first 

arrival waveforms. Then each t* is estimated through an adaptive correction method based on 

linear regression of the logarithmic spectral ratio. Based on t*, my adjoint-state Q tomographic 

inversion is able to reconstruct Q distribution model for the near-surface.  
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CHAPTER 1 INTRODUCTION 

The earliest seismic tomography was suggested by seismologist serving for the global 

scale studies of solid earth several decades ago (Aki and Lee, 1976; Aki et al., 1977; 

Dziewonski et al., 1977). Similar to medical computerized tomography (CT) technique, seismic 

tomography will generate a cross-sectional picture using observed data outside the geological 

target of interest. This data inference technique generally aims for generating a heterogenous 

seismic model that is consistent with observations by solving for a substantial inverse problem 

(Rawlinson et al., 2010). Following the similar manners of physics and mathematics, it has 

been adopted and extensively used for investigating on regional scale problems of hydrocarbon 

exploration and production from oil industry.  From the perspective of the research area, most 

of industrial seismic tomography application could be classified as “local” tomography, which 

is using temporary deployments of receiver and artificial source (e.g., explosions, vibroseis and 

airguns) to investigate the targets within a certain geographical region ranged from crust to 

upper mantle. One possible earliest industrial application of seismic tomography is by Boris 

(1977), from which a traveltime tomography method developed for imaging 2D velocity 

structure in between a cross-hole. In the following three decades, a series of developments for 

industrial seismic tomography was soon caught up. Developments of seismic tomography were 

pondered in all details of forward modeling method, inversion algorithm and assessing solution 

non-uniqueness. 
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1.1 Development of industrial seismic tomography   

At an early stage, various of the cross-hole tomography techniques using ray tracing and 

inversion scheme was proposed (McMechan, 1983, 1987; Bregman et al., 1989). In these 

applications, the back-projection inversion techniques were more prevailed than the gradient-

based one due to its specific acquisition geometry. Reflection and wide-angle (or refraction) 

tomography (Pratt and Worthington, 1988; Song et al., 1995; Pratt and Shipp, 1999) are also 

widely used in the industrial seismic exploration. Bishop et al. (1985) parameterized a 2D 

subsurface model into constant velocity blocks cubic separated by spline interfaces, which 

allow to constrain both of velocity and interface variation during tomographic inversion. Later 

on, series of similar studies (e.g., Farra and Madariaga, 1987; Williamson, 1990) were 

conducted under similar framework. Similar to reflection tomography, wide-angel (or 

refraction) tomography adopted. Wide-angle (or refraction) tomography could adopt with 

much longer offset survey to preserve refraction signal at significant depth. The development 

of tomographic inversion is inseparable from the continuous updating of forward modeling 

method. The early work of forward modeling method is focusing on the two-point ray tracing 

algorithm to generate synthetic refraction traveltimes (White, 1989) and solve for both 

velocities and refractor depths. It earns success for many cases with a relatively smooth velocity 

structure (Červený, 1987), but often fails in refraction travel time calculation for some complex 

geological area as much wave effect involved in. An alternative forward modelling method is 

wavefront ray tracing method, which is characterizing local ray and minimum-traveltime 
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wavefront were developed to improve the accuracy and efficiency of travel time calculation in 

some complex velocity medium (Vidale, 1988; Fischer and Lees, 1993; Weber, 1995), 

especially in the rapid velocity variation or shadow zone. Many wavefront expansion methods 

were developed in this time of period, such as finite-difference (FD) method to solve the 

eikonal equation (Vidale, 1990; Qin et al., 1992; Hole and Zelt, 1995), wavefront expansion 

based on analytical solution (Vinje et al., 1993) or minimum-traveltime paths from graph theory 

(Saito, 1990; Moser, 1991; Zhang, 1998).  

Into the 21st century, the grid-based solvers of eikonal equation method have been 

dramatically improved by many authors regarding to accurate and efficient traveltime 

calculation. There are currently two competing algorithms used to solve the eikonal equation: 

Fast Marching Method (FMM) (Rawlinson and Sambridge, 2004) and Fast Sweeping Method 

(FSM) (Tsai et al., 2003; Zhao, 2004; Taillander et al., 2009). One common improvement of 

two methods is that they could expand the wavefront in a monotonic manner to ensure the 

causality, other than evolving a non-physical square wavefront expansion as original FD 

eikonal equation solver (Aldridge and Oldenburg, 1992; Schneider et al., 1992). 

Either raytracing or wavefront expansion forward calculation method is founded on the 

geometric ray theory. Under high frequency assumption, a robust traveltime approximation 

requires that the seismic wavelength is much smaller than the scale length of heterogenous 

target body, which is not always the case. It is an unphysical assumption since that the seismic 

signal possesses a certain frequency bandwidth. Eventually, the finite frequency effect will 

degrade the final image resolution. An intermediate method to solve this issue is to calculate 
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the travel time using wave-equation without high frequency assumption, while keeping the 

robust convergence of quasi-linear traveltime inversion. Based on this, wave-equation 

tomography (WET) (Luo and Schuster,1991; Wang et al., 2012) was developed to bridge the 

gap between the extremes of traveltime inversion and full-wave inversion. WET utilizing both 

reflection and refraction data could offer a correct kinematics initial model to improve the 

convergency of FWI (Wang et al., 2013). For near surface application, early arrival WET (Zhou 

and Greenhalgh, 2003; Sheng et al., 2006) was proposed to include more general wave effects 

for better image while preserving robust convergence succeeded by early arrival misfit function.  

Finite frequency tomography employs Born scattering theory to the frequency dependence 

of traveltime (Dahlen et al., 2000), and improves the image quality in general heterogeneous 

media. Unlike ray-based method, its “banana doughnut” kernel (de Hoop and van der Hilst, 

2005a, b; Marquering et al., 1999; Montelli et al., 2006) could depict the responses throughout 

the model space but not only along ray trajectories. It could make better use of both phase 

(Nolet, 2008) amplitude information (Sigloch et al., 2008) from seismic data. Literature and 

different specific subject areas in seismic tomography are monumental and such short review 

cannot cover every aspect of such large and diverse field. Especially, development in 

seismological field is not covered in this short section, from which mass related techniques 

were proposed. A few excellent review articles and books include Stewart (1991), Lehmann 

(2007), Nolet (2008), Vensnaver (2010, 2013) and Rawlinson et al. (2008, 2010). 
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1.2 Challenges from near surface modeling using first arrival tomographic inversion   

As summarized in the previous section, generally, there are two kinds of tomography 

depending on projection data: traveltime and waveform tomography. Both ray and waveform 

modeling could describe seismic wave phenomenon. In areas with strong lateral variations in 

topography and near-surface velocities, FAT tomography is one of the most popular method 

adopted. Generally speaking, FAT information is extracted from refraction data or diving waves. 

One significant advantage of utilizing FAT, especially for land survey, it might be the most 

feasible information to access, since that other secondary events (e.g., reflection) are often 

contaminated by noise to detect. In some poor-quality data, FAT is even only available data to 

be identified clearly to reconstruct near-surface model.  

It is a well-established inverse modeling technique for determining shallow velocity 

structures, and a common approach to investigate deep structures. Good near-surface velocity 

models would also provide static corrections of reflection seismic data in complex media, and 

as initial velocity models for pre-stack depth migration and full waveform inversion. Though 

a solid theory background has already been built up for FAT, there are still some on-going 

challenges needed to be resolved. In my dissertation, we mainly focusing on solving two 

common issues existed in near-surface modeling using FAT tomographic inversion: 1.) an 

efficient FAT tomographic inversion scheme for large dataset of current industrial problem size 

and 2.) attenuation distribution model building using first arrival tomographic inversion.  
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1.1 Computation efficiency for large dataset 

From 1960s, digital computing and microprocessor technology started a rapid advance 

following the Moore’s law (Moore, 1965), in which the number of transistors in microprocessor 

will approximately double every two years. This stunning development is still continuing as 

cluster and multiple core processors becoming more popular recently. Correspondingly, high-

density seismic acquisition is becoming mainstream in seismic exploration technology 

(Matheny et al., 2009). The high density is realized by reducing the bin size and increasing 

spatial sample rate. It brings significant help on identifying finer geological structures (e.g., a 

small fault block, thin sand body and reservoir) and improving image resolution.  

Generally, a high-density acquisition involves with vast quantities of seismic data recorded 

and archived. Figure 1-1 shows the noticeable growth of both seismic data size and the total 

number of pre-stack traces during past 20 years in land survey. As over 10 thousand channels 

seismograph popularization, a typical number of acquired trace could be simply over thousands 

of millions. It consequently results in millions of travel time picks and any type of 

parameterizations from a velocity model (Vesnaver, 2008; Noble et al., 2010; Sun and Zhang, 

2017).  
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(a) 

 

(b) 

Figure 1.1: (a) Increase in the number of pre-stack traces (109) and (b) data size (GB) of 

a typical land seismic survey during last 20 years. 

Additionally, in some complex geological structure area, the near surface will exhibit 

strong variation in both lateral and vertical directions, which are usually giving rise to a short 

wavelength seismic wave propagation requesting a finer discretization of both datasets and 

model parameters. As a consequence, even though such large volume data will bring many 

benefits in image solution, such as wide aperture and more dense spatial sampling to improve 

imaging quality etc., the computation cost of tomographic method which is proportional to the 
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number of source and receiver deployments, will dramatically increase as burdens coming from 

both large memory occupations and long computation time respectively. Intuitively, one could 

subsample the seismic data and model parameters to relief such computational burdens. 

However, direct dimensionality reduction implementation to this problem would lead to either 

a loss of salient information or a poor resolution.   

1.2 Near-surface Q model reconstruction  

Another issue that commonly involved with near-surface imaging is the appearance of 

attenuation effect quantified as the quality factor (Q) during propagation of seismic waves 

inside the subsurface medium. It is often caused by overlying unconsolidated soil or the 

overburden gas clouds, by which the seismic energy will be severely dissipated leading to the 

image solutions with degraded illumination and resolution. Since then, this Q factor should be 

compensated in order to improve image resolution and obtain correct amplitude and phase 

information to make their identification and interpretation more feasible.  

A reliable estimation of the Q model is one of essential steps for a successful application 

of Q compensation imaging. The early attempt of using inverse Q filter using deconvolution 

method (Hargreaves & Calvert 1991; Varela et al. 1993; Wang 2002, 2006; Zhang & Ulrych 

2007) could be incorporated into process flow to restore the resolution to some extent; however, 

it failed to handle with high geological complexity of targe area in practical. A reflection-based 

attenuation tomography (Xin et al., 2008; Shen et al., 2016; He et al., 2016) is another common 

approach for estimating near-surface Q model, but it is often happened to be an issue for fully 
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utilizing reflection seismic data due to available offset information of shallow depth is limited. 

Since then, a first arrival Q tomography would be feasible, in considering of availability and 

stability of the first arrival wave in seismic record, especially for far offset data.  

To apply the first arrival Q tomography, one major issue needed to be solved is how to 

accurately extract path attenuation factor t* from first arrival field data, which is related to the 

amount of attenuation along the ray path. Q update amount could be obtained by minimizing 

the discrepancy between observed t* of field data and synthetic t* of model. A common 

approach of t* extraction is the spectral ratio method (Brzostowki and McMechan, 1992; 

Calvaca and Fletcher, 2013). However, in a practical application, different waveforms (e.g., 

direct wave, turning wave or refraction) normally blend in the first arrival wave train, hence 

the accuracy of t*estimation will be impacted leading to bias in retrieved Q distribution. A 

countermeasure for eliminating such influence is well-worth consideration in order to 

guarantee the accuracy and stability of the first arrival attenuation tomography. Additionally, 

its computation efficiency should be taken into account for a large seismic dataset as 

aforementioned.  

1.3 Dissertation themes  

Based on two issues described above, there are two main research themes in this 

dissertation as briefly described in the following sections.  
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1.3.1 Mapping velocity model: efficient first-arrival traveltime tomography using large 

datasets 

The main objective of the first topic is to develop an efficient FAT tomographic inversion 

scheme solving for near-surface velocity model with large dataset as input, while preserving 

robustness and accuracy of retrieved velocity model. 

To accomplish it, a grid-based eikonal solver combined with the adjoint-state formulation 

was adopted at first to improve the computing efficiency. It allows to implicitly evaluation of 

the gradient of misfit function, by which the computation cost is only proportional to the model 

size. Additionally, this eikonal solver utilized for conducting forward modeling by Fast Sweep 

Method (FSM) could also potentially circumvent the non-linearity of conventional ray-tracing 

based method in complex media. 

Then the whole framework was developed underlying compressive sensing (CS) theory 

with a series of sparse-promoting based on online dictionary learning. With this sparse 

promoting scheme, the original L-2 norm misfit function of tomographic inversion problem 

will be reformed into a classical LASSO problem with a compressive sparsity constraint. A 

modified Gauss-Newton method is implemented to solve this hybrid norm problem. The 

sparsity level is in-situ adapting with residual data space and sparse domain for each iteration. 

It could ensure the sparsest representation of model update while dynamically adapting to 

variations of misfit between data and model space，hence guarantee the inversion convergency. 

One significant benefit of such approach is that the problem dimensionality could be 

substantially reduced by random subsampling a small portion of input data as guided by 
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Stochastic process. In this way, the memory occupation could be further reduced and eventually 

the overall computational efficiency has been remarkably promoted. This efficient FAT 

tomography is also feasible to implement with parallel computing.  

1.3.2 Mapping Q distribution model: first arrival attenuation tomography based on An 

Adjoint-state Method  

The main objective of the second topic is to develop a first arrival Q tomographic inversion 

to map the near-surface Q distribution model for compensating attenuation effects and 

improving the quality of the seismic image. To accomplish this objective, one crucial issue 

needed to be handled with caution is to guarantee the accuracy of t* estimation. Under the 

assumption of invariant ray path in weakly dissipative subsurface medium, the proposed 

method was organized as two cascading applications including velocity and Q model 

tomographic inversion. FAT tomography will be performed at first to provide velocity model 

and synthetic FAT as guidance for estimating t*. In the second stage, the t* will be estimated 

by a logarithmic spectral ratio linear regression method. 

In the second stage, a time window with the proper length centered around synthetic FAT 

will be used for including complete first arrival waveforms related to t*. In practice, such 

implementation is beneficial for obtaining stable synthetic FAT without introducing manual 

picking errors. This is also one aspect of proposed first arrival attenuation tomography superior 

to those of using seismic reflection data or other types of data. Given two categories of 

frequency-dependent propagation response from different wave types (direct, turning and 
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refraction wave), the t* will be estimated twice through a logarithmic spectral ratio linear 

regression, respectively. Correspondingly, two synthetic attenuated seismic traces will be 

generated, and will be evaluated with the reference attenuated signal from field data by 

similarity coefficients. Through such process, an optimal t* could be selected as input for 

following attenuation tomographic inversion.  

As for attenuation tomographic inversion, A reformulated governing equation related to t* 

is derived for implementation. The adjoint-state technique and grid-based eikonal equation 

solver using FSW is also adopted to address the computation efficiency issue of large-scale 

problem.  

1.4 Outline of dissertation 

My dissertation consists of five chapters: 

⚫ Chapter 1: Introduction 

Introduction of research background on FAT tomography, current challenges and 

dissertation objectives. 

⚫ Chapter 2:  

A comparative study of grid-based eikonal equation FAT tomography using adjoint state 

technique and conventional ray-tracing based FAT tomography is conducted in this chapter. 

Their imaging results and computation efficiency are compared and discussed in both 

theoretical formulations and numerical test. The proposed CS framework in Chapter 3 and Q 

tomographic inversion scheme in Chapter 4 will take this implementation as one of the essential 
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components. 

⚫ Chapter 3:t 

This chapter presents a highly efficient FAT tomographic inversion framework based on a 

sparse-promoting CS approach. At first, the original FAT tomographic inversion problem will 

be visited, and the original misfit function is reformulated to evaluate the discrepancy between 

residual data space and model perturbation by a linearized eikonal equation. Then the sparse 

representation of a dictionary learning method will be described and modified into an online 

adaptive learning approach for FAT tomography. Following that, a sparse-promoting 

framework will be formulated with a combination of two previous topics. Three typical steps 

involve with CS approach, including data randomization, subsampling and sparsity promotion 

will be investigated respectively in the context of FAT tomography application. Eventually, a 

complete framework based on CS is formulated. A realistic 2D synthetic model and real field 

data are tested in this chapter to reveal the potential of the proposed method. 

⚫ Chapter 4:  

A first arrival attenuation tomography based on adjoint-state method is proposed in this 

chapters. The methodology contains two cascading applications including velocity and Q 

model tomographic inversion. An adaptive correction method based on frequency-dependent 

propagation responses of different wave types is proposed to ensure the accuracy of t* 

estimation. A new governing equation of the adjoint-state method allows to calculate the 

gradient of the misfit function for attenuation tomographic inversion will be introduced. The 

related numerical examples will demonstrate the robustness of this algorithm by comparison 
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with ray-tracing based algorithm. The theoretical basis in detail will be discussed and its 

performances on both synthetic and field data reveal the feasibility and potential of this method. 

⚫ Chapter 5 

This is a conclusive chapter to summarize up previous chapters and provide potential directions 

of future work.  
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CHAPTER 2 FIRSTARRIVAL TRAVELTIME TOMOGRAPHY BASED 

ON ADJOINT-STATE METHOD 

2.1 Introduction 

The first arrival traveltime (FAT) tomography is a well-established methodology can be 

used for investigating interior of subsurface ranged from near-surface scale to global scale (Aki 

and Lee 1976; Zelt and Smith 1992), using either active or passive sources. In the field of oil 

and gas seismic exploration, it is necessary to establish a more accurate near surface model to 

eliminate the influence on reflection signal, resulted from surface topography reliefs or near 

surface velocity anomalies. Especially for complex exploration areas such as mountains or 

deserts with varied near surface weathering zones, the quality of near surface model directly 

determines the final imaging quality. Due to the robustness of FAT and the high efficiency of 

traveltime tomography, near surface modeling by FAT tomographic inversion is one of mostly 

used method. The resulted near surface model provides macro-features of near surface seismic 

velocity, and it is usually used in tomography static correction (Zhu et al., 1992; Zhou et al., 

2009), depth domain migration (Brooke, 2000), full-waveform inversion and other processing.  

The classical traveltime tomography inversion is based on raytracing-based algorithm, and 

most of them belong to kinematic approaches only requiring for analysis of the process of the 

motion in terms of time and space only (Červený, 2001). Normally, it is necessary to explicitly 

calculate the raypath and related traveltimes from source to receiver positions. Currently, two 
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categories of kinematic raytracing approaches are proposed: two-point method and wavefront 

tracking method. The two-point raytracing is a traditional way of tracing the corresponding ray 

path method, and its mainly includes shooting and bending methods. Raytracing by shooting 

method is an initial value problem of pursuing for an approximation solution of ray differential 

equation through an iterative process. Normally, a shooting method strategy will fix an initial 

incident point (source point) at first, and then an optimal take-off angle will be obtained through 

scanning until the desired end point is emerged through raypath. However, the strategy of 

choosing new take-off angle will sometimes become difficult due to the divergence of ill-

positioned receiver locations (ending point). Such problem is happened more frequently in 

complex 3D case (Bishop et al., 1985). As for bending methods, it is a boundary problem of 

perturbating an initial guess path until it is satisfying the ray equations or Fermat’s principle 

(Bulant, 1996). Though a raypath connecting between source and receiver location will always 

be obtained by bending method, the multipath propagation might be overlooked in some 

complicated structure due to the unproper initial raypath guess. Both classical raytracing 

method are designed either for calculating the minimum traveltime or shortest raypath between 

source and receiver points, and some complex subsurface medium might lead to multivalued 

solution. Such convergence problem could result in low computation efficiency and local 

minimum trapping solution (Zhang et al., 2011).  

Subsequently, the wavefront tracking method were proposed to overcome these issues 

happened in traditional raytracing method. It could be mainly categorized into two approaches: 

the shortest path method (SPM) (Klimes & Kvasnicka, 1994) and eikonal equation solution 
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method. The SPM algorithm was originated in network theory (Dijkstra 1959) in which the 

“starting” grids are selected with a shortest distance from all neighbors continuously until 

connecting source and receiver locations. Unlike the traditional raytracing method, one 

superior advantage of SPM method is that it can always obtaining a raypath meeting the 

requirement of minimum traveltime principle (Moser, 1991). However, in spite of some efforts 

made to improve the computation efficiency of SPM, such as schemes proposed by Klimes and 

Kvasnicka (1994) and Zhao et al. (2004), the potential higher computational cost is still an 

issue, comparing to the eikonal equation solution method.  

The eikonal equation solution method is solved by finite-difference scheme while wave 

front expansion is evolving (Vidale, 199). The wavefront could be advanced by Fast marching 

method (FMM) using narrow band technique and sorting the solution path at each iteration 

(Sethian et al. 1999, 2001). Kim and Seongjai (2002) proposed an optimal variant of FMM by 

introducing group marching method (GMM) to update a group of wavefront points at once, 

instead of single point updates from original FMM. Hence, the computation efficiency is 

dramatically improved while maintaining the condition of wavefront expanding causality. 

Besides, a fast-sweeping method (FSM) originally proposed by Zhao (2005 and 2007) used 

WENO scheme for calculating wavefront based on eikonal equation. It evolves wavefront 

iteratively through sweeping and updates traveltime at each grid point simultaneously to 

guarantee the causality. Unlike FMM, the FSM does not require the update of wavefront 

conducted in a sequential order in a monotonic manner to maintain the causality. Since then, 

the implementation of FSM is more simplified and higher computational efficiency superior to 
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FMM even with appearance of rapid velocity changing in subsurface medium (Bak et al., 2010). 

Additionally, the causality of the partial differential equation in FSM is highly feasible to 

implement with efficient parallel computation in large number of FAT picks scenario. Since 

then, we will choose FSM as algorithm applied in our forward modeling and inversion strategy 

for our eikonal equation solver-based FAT tomography. 

As for inversion algorithms, back projection (Humphreys and Clayton, 1988; Hole, 1992), 

LSQR (Zelt and Barton, 1998), SIRT and other methods are commonly used. Raytracing-based 

tomography has already been widely used in practical application. At present, the main interest 

of research on traveltime tomographic inversion is to combine it with other types of higher 

accuracy inversion method with additional information. Raytracing method provides a natural 

approach for traveltime calculation but can suffer from nonuniform ray sampling in presence 

of complex subsurface geology structure or long-offset acquisitions. Besides, most 

implementation of conventional traveltime tomography often require to explicitly estimation 

of Fréchet matrix, which is high computation cost for large-scale dataset.  

In addition to the above classical raytracing-based methods, there is another tomographic 

inversion method utilizing grid-based eikonal equation solver to circumvent the nonlinearity 

of raytracing approaches in complex media. Instead of calculating traveltime along raypath, 

this type of method only needs to compute the first arrival time field. Moreover, with help of 

adjoint-state technique, it could obtain the model update for each iteration during inversion, 

without explicitly calculating Fréchet matrix. This method was developed based on control-
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theory frame work (Lions, 1971) and was first adopted by Sei et al. (1994) with eikonal 

equation solver; and then Leung and Qian (2006) applied it in traveltime tomography problem. 

In recent years, the adjoint state technique is well known in field of geophysics study, due to 

large amount researches on waveform inversion (Brenders and Pratt, 2007; Brossier et al., 

2009), and then extended into series of traveltime inversion related works (Leung and Qian, 

2006). Taillandier et al. (2009) and Xie et al. (2014) carried out related research works based 

on fast sweeping method (FSM); Huang et al. (2012) proposed a joint transmission and 

reflection traveltime tomography using FSM and adjoint-state technique to improve both 

computation efficiency and image quality; Waheed et al. (2016) extended the grid-based 

isotropic eikonal solver into anisotropic case to conduct FAT tomographic inversion in 

anisotropic media.  

In this chapter, we will review the theory background of both raytracing-based FAT 

tomography and a nonlinear FAT tomography based on adjoint-state method. A comparative 

study between these two types of FAT tomography will be conducted. In this study, the 

inversion accuracy, computation efficiency and memory occupations of these two methods will 

be quantitatively compared and analyzed through a 2D synthetic data test. 

2.2 Theory 

2.2.1 Misfit function and its gradient   

If the regularization term is not considered, tomographic inversion is pursuing the best 
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fitting model between synthetic traveltime  and observed FAT  picked from observed 

data, and its L2 (least squares) norm of misfit function 

 ,              (2.1) 

where   is model parameter vectors of size  , corresponding to different model 

parameterizations based on its physical meaning. As for FAT tomographic inversion, it will be 

parameterized as slowness, where  is the number of medium parameters of model after 

grid discretization. It involves the squared error summed over  total source number. The 

synthetic traveltime  is a vector of size  corresponding to all receivers, where 

 is the total receiver number corresponding to the source . Expanding the misfit function 

(2.1) about 𝒎0 in Taylor expansion, and keep the term only up to second order 

.          (2.2) 

The gradient of misfit function  is the first derivative of the misfit relative to the medium 

parameter, written as 

 ,                                (2.3) 

and its second derivative is , called Hessian matrix, and defined as 

.                                (2.4) 

To obtain the minimum data residual, it is necessary to find out the stationary points of misfit 

function, where . By deriving equation (2.2) and setting it to , we have  
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 ,                           （2.5） 

.                           （2.6） 

Equation (2.6) is an explicit expression of the model update at current inversion iteration. 

The nonlinear inversion can be conducted by iteratively updating model parameters in equation 

(2.6). Eventually, the final inverted model will be obtained when the data residual less than a 

certain preset small threshold. Since it is difficult to compute the inversed Hessian matrix 

directly, the linear equation (2.5) is usually solved by iterative inversion, and such type of 

method is called Gauss Newton method. For large-scale dataset problem, obtaining inversed 

Hessian matrix is very time consuming and infeasible to manage memory storage (e.g., the 

dimension size of  is ), hence an approximation approach is usually considered. 

For a large data acquisition aperture,  sometimes could be approximated to be close to a 

unitary matrix, then  can be reduced to a weighing vectors scaling the steepest-descent 

directions (Pratt et al., 1998; Jang et al., 2009), and solved by steepest-descent method. If  

is approximated to a diagonal or band-limited matrix (Plessix, and Mulder, 2004; Pan et al., 

2015), then it will be altered to a preconditioned steepest gradient method. 

2.2.2 FAT tomographic inversion based on raytracing method 

For FAT tomographic inversion based on raytracing, the raypath connecting each pair of 

source and receiver should be calculated. Then the first break time can be expressed as 

 ,                               (2.7) 
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where 𝑖  is number of the grid; 𝑚𝑖  is the slowness in the 𝑖 th grid; 𝑙𝑠,𝑟
𝑖   is the arc length of 

raypath in 𝑖th grid. It can be written in matrix form as 

 .                           (2.8) 

Here  is a forward operator, and it is containing the length of raypath corresponding to 

different receivers in the grid. Together,   is a function related with both medium 

parameters and raypath, that is to say, the synthetic traveltime  has a nonlinear relationship 

with slowness in our case. 

Assuming that the model update in each iteration is not large enough to result in a dramatic 

change of raypath, meaning that . Based on such assumption, Equation (2.8) can 

be substituted into Equation (2.1), then combine with Equation (2.3), the misfit function 

gradient can be expressed as 

 ,                           (2.9) 

From Equation (2.4), we will have Hessian matrix  as 

 .                              (2.10) 

If Hessian matrix is approximated by diagonal elements and substituted into Equation 

(2.5) and (2.6), then the basic formulation of back projection algorithm can be obtained 

                       (2.11) 
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Substituting equation (2.9) and (2.10) into equation (2.5), we have 

 .                             (2.12) 

In above formulation,  is the traveltime residual corresponding to the  -th source, 

denoted by . Equation (2.12) is linear, which is also equivalent to equation 

(2.5) and (2.6). A raytracing-based FAT tomography normally solves Equation (2.12) within 

each nonlinear iteration during inversion, to realize a similar effect as using Gauss-Newton 

(GN) method. According to different nonlinear approaches of solving for Equation (2.12), a 

series of algorithms have been developed, such as least square QR-factorization (LSQR) 

method (Zelt and Barton, 1998) and simultaneous iterative reconstruction technique (SIRT) 

method. 

2.2.3 FAT tomographic inversion based on eikonal equation solver 

Different from raytracing-based FAT tomography, the FAT tomography based on eikonal 

equation solver directly solve for the eikonal equation instead of ray tracing as forward 

modeling method during inversion. The propagation of the first arrival (or wavefront) and its 

traveltime in isotropic media satisfies the eikonal equation, which can be discretized by finite 

difference method using upwind scheme 

,      (2.13) 

and its initial condition is 
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 .                                (2.14) 

Here,  represents FAT at all grids corresponding to each source , which is a vector in 

size of . Same as discussed in previous section 2.2.1,  is the total number of model 

parameters. The source location at certain grid point is . At source position , traveltime  

is equal to zero.  ,   and   is upwind finite difference matrix along  ,   and  

directions, respectively.   is slowness vector in size of  , and   is diagonal 

matrix that all slowness elements located along diagonal direction. Our forward modeling is 

conducted by fast sweeping method (FSM), and the related algorithm and practical 

implementation details referred to literatures from Zhao (2007). 

Assuming operator can extract a synthetic first arrival traveltime  from , such as  

.                                   (2.15) 

In our case, term  represents the FAT for each receiver at the acquisition surface. 

Substituting equation (1.15) into (1.1), and utilize equation (1.3) to obtain misfit function 

gradient   

                    (2.16) 

The Fréchet matrix   can be obtained by differentiating   on both side of 

equation (2.13), expressed as 
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  .                      (2.17) 

The size of  is the number of observed traveltimes multiplied by the number of model 

parameters. Substituting Equation (2.17) into (2.16), we have 

 .           (2.18) 

A direct solving for the invert term in Equation (2.18) is almost computational prohibitive. 

Then an iterative gradient for single source  could be obtained by 

 .          (2.19) 

Equation (2.19) is equivalent to the Equation (2.12) from Taillandier et al. (2009), and this 

adjoint state system could be solved by the same strategy as used in forward modeling of 

eikonal equation solver. The adjoint state technique allows to directly compute misfit function 

gradient   without introducing explicit computation of  . Detailed mathematical 

developments and practical implementations can be found in Sei and Symes (1994), and Leung 

and Qian (2006). From Equation (2.4), the associated Hessian matrix can be expressed as 

                         (2.20) 

Due to the existence of a large inversed matrix in equation (2.18), a direct method solving 
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for it is infeasible. Instead, we could obtain an equivalent form by substituting Equation (2.20) 

into (2.5)  

                 (2.21) 

Similarly, a nonlinear iterative solving for above equation leads to type of GN method. If 

keep the diagonal elements dominated in Hessian matrix, it turns to be a Steepest descent 

method with pre-conditioning.  

2.3 Comparative study 

Based on the same misfit function, the basic formulas of tomographic iterative inversion of 

FAT based on ray tracing equation and eikonal equation are derived under the unified inversion 

framework. Comparing the theoretical derivations of the two methods in detail, they have the 

following similarities in theory: 

1) It has the same theoretical basis. The ray theory based on high frequency approximation is 

used to calculate the theoretical first break travel time; the unified misfit function is used 

for the FAT traveltime inversion, and the basic formula of iterative inversion can be derived 

under the unified inversion framework. 

2) The specific inversion algorithms are equivalent. The back-projection algorithm in 

raytracing equation method is equivalent to the preconditioned steepest descent method 

based on eikonal equation method; LSQR, SIRT and so on in ray tracing equation method 

are equivalent to Gauss Newton algorithm in path function equation method. 
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Due to the similarity in theory, both of them have similar resolution and ability to deal with 

complex problems, such as velocity anomalies and other complex exploration problems that 

cannot be solved by them. 

In theory, the two methods have the following main differences: 

1) They are based on different forward operators. The former is based on the ray tracing 

equation, and the traveltime is obtained by the integral of slowness along the ray path, 

while the latter is based on the eikonal equation solving for grid-based finite difference.  

2) The two methods are different in calculating the gradient of misfit function and Hessian 

matrix. The raytracing-based one will explicitly solve them (equation 2.9 and 2.10), which 

is intuitive and has clear physical meaning; As for eikonal equation based one, the gradient 

corresponding to a single source can be obtained by solving for the PDE (equation 2.19) 

implicitly, and the related physical meaning is not clear. 

2.3.1 2D synthetic model test  

In order to compare the difference between the two methods in inversion accuracy, 

calculation efficiency and memory occupation, the Amoco static correction benchmark test 

model 1994 is selected for numerical test, as shown in Figure 2-1. The model is originated from 

Amoco Tulsa Research Lab in 1994, which is firstly used by Mike O’Brien as one part of a 

project to investigate the static correction in land data. The model includes most of the common 

near surface geological structures, such as high-speed layer exposure, local high-speed, low-

speed abnormal body, shallow low-speed layer, near-surface complex structure and extremely 
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shallow low-speed body, which can be used for comprehensive comparative analysis. Since the 

inversion depth of conventional near surface modeling is about 1km, the model shown in Figure 

2-1 is the result of compression of the original model in the depth direction, which keeps the 

complexity of the original model and makes its depth consistent with the conventional near 

surface problem. 

1. Comparison on inversion accuracy  

The accuracy of two types of tomographic inversions was compared by Amoco 94’ 

synthetic model, in terms of image quality and model fitting. The forward operators from both 

of two inversion methods are realized by solving the eikonal equation numerically. For eikonal 

equation grid-based tomographic inversion method, the upwind finite difference algorithm 

based on FSW is adopted. For raytracing-based tomographic inversion, the raypath well be 

traced along the negative gradient direction of the first arrival timefield from the receiver 

position, then forward operator in Equation (2.8) will be constructed.  

For the inversion scheme, the tomographic inversion based on eikonal equation adopts the 

preconditioned steepest gradient method. The tomography inversion method based on the 

raytracing equation adopts the back-projection algorithm corresponding to the steepest gradient 

method. Other than these differences, the two inversion methods adopted exactly the same 

processing and parameters settings are used in the numerical test. 

The synthetic observed FAT is simulated from this model with eikonal equation solver on 

1998 sources. Each source is recorded up to 2500 receivers on either side to simulate a high-
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density survey. The nearest offset is 10m and maximum offset is 7500m, where receiver 

interval is 20m. Numerical forward modeling is conducted to generate synthetic data for 

tomographic inversion. A linear increase model was shown in Figure 2-2, and it will be used 

for both two aforementioned methods as initial model. The velocity at the surface of the linear 

increasing model is 450 m/s, the gradient of velocity with depth is 0.5, and the velocity at the 

bottom of the model is about 5500 m/s. 

 

Figure 2-1: True velocity model. 

 

Figure 2-2: Linear smooth initial velocity model. The velocity is increasing from 450m/s at 

surface to 5500 m/s at bottom with gradient of 0.5. 
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Figure 2-3 shows the tomographic inversion result generated by conventional raytracing-

based tomography, and Figure 2-4 shows the results from method based on eikonal equation. 

For both methods, their reconstructed velocity models have good agreement with true model 

in near surface region (~500 to 700m), depending on location and corresponding ray coverage. 

The near surface geological structures such as high velocity layer outcrop, local high velocity 

and low velocity abnormal bodies, shallow low velocity layer and extremely shallow low 

velocity body have relatively good image quality. Due to the limitation of resolution of ray-

based tomography, the complex structural area on the right side of the model has not achieved 

ideal results from both of two methods. In terms of results details, since the kernel function of 

tomographic inversion based on the eikonal equation is band limited similar to finite frequency 

characteristics, the inversion result is more stable, especially in the complex structural area, as 

labelled by the white dash line box in Figure 2-3 and 2-4. Unlike some significant smearing 

artifacts appeared in raytracing-based method result of Figure 2-3, the eikonal equation solver-

based method tends to present smoother in Figure 2-4. It indicates that a high velocity anomaly 

existed in ray-based method result, while it is not happening in eikonal equation-based one 

leads to a more stable result. Since then, in terms of inversion accuracy, the two methods are 

very close, and the eikonal equation based one is slightly superior in some local details. 
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Figure 2-3: Inversion results from raytracing-based FAT tomographic inversion. 

 

Figure 2-4: Inversion results from FAT tomographic inversion based on raytracing. 

 

Figure 2-5: Ray density distribution at last iteration of tomographic inversion based on ray tracing 

method. It could bring helps on understanding the reliability of velocity inversion results in different 
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regions. However, in eikonal equation-based method, there is no such concept related to ray density, 

hence it is lack of effective tools for image quality control. 

2. Comparison on computation efficiency and memory occupation 

In order to make a more comprehensive comparison between the two methods in terms of 

memory occupation and computation efficiency, four different survey systems are designed for 

this comparison. As discussed in section 2.1, we know that the computation cost from eikonal 

equation-based method only relates to the size of model, while its proportional to the number 

of receivers by raytracing-based method. Based on this main difference, our test survey systems 

are set by different receiver interval with fixed total source number and maximum offset. The 

receiver intervals are set at 5m, 10m, 20m and 40m respectively.  

 

(a) 
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(b) 

Figure 2-6: Comparison of (a) memory occupation and (b) computation time of two methods: 

receiver intervals of 5m, 10m, 20m and 40m. 

The test environment is Linux cluster with the CPU is Intel (R) Xeon (R) CPU e5-2670 

(2.60GHz), MPI is used for parallel computation. The test conducted on 7 nodes in total, and 

each node uses 30 threads for 30 times inversion iteration of both two methods. The comparison 

of memory occupations for a single process and running time under different survey systems 

is shown in Figure 2-6a and Figure 2-6b, respectively. Since the memory occupation of 

raytracing-based method depends on the specific raypath of each source, the histogram only 

shows an average running time of several intermediate iterations. Noted that the memory 

occupation is an average value of intermediate iterations.  

By comparing the items in Figure 2-6, it indicates that: 1) the memory occupation and 

computation time of eikonal equation-based method are independent of the number of receivers, 

but only related to the size of the current model; 2) the memory occupation and time cost of 
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raytracing-based method are proportional to the number of receivers. With a greater number of 

receivers involved in, both of memory occupation and computation time will increase; 

3）when the receiver array is dense as for some wide azimuth, high dense seismic data, the 

tomographic inversion method based on the functional equation has great advantages in 

memory consumption and computational efficiency. When the arrangement of receiver array 

is sparse (or large receiver interval), the tomography inversion method based on ray tracing 

equation has greater advantages. 

2.3.2 3D synthetic model test  

A 3D synthetic model test is conducted in this section, to further investigate the 

computation efficiency and image capability of FAT tomographic inversion based on adjoint 

state technique in 3D case. The model is a realistic overthrust 3D model as shown in Figure 2-

7a, in which the near-surface region appears complex geological structures containing 

overthrust and channels. The velocity model has 801×801 cells at horizontal surface, and 

vertical direction has 60 cells, where the cell interval is 10m. The corresponding acquisition 

system has 6400 synthetic shots in total, and the shot and receiver interval in both x and y 

direction is 90 and 10m, respectively. The maximum offset for a single shot is 2000m. 
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(a) 

 

(b) 

Figure 2-7: (a) Overthrust 3D velocity model and (b) Initial velocity model used for inversion.  

The inverted models are first compared at depth of 40m as shown in Figure 2-8b and c. At 

this shallow depth, two method results are mostly identical, and their results all have good 

agreements with true velocity model from Figure 2-8a. In some specific areas, indicated by 

black arrows, the result of eikonal equation solver-based method have better image resolution 

than raytracing-based one. 

 

(a) 

 

(b)  



 

36 

 

 

(c) 

Figure 2-8: Estimated 3D velocity model at depth of 40m. (a) True velocity model, (b) Raytracing 

based method, (c) Eikonal equation solver-based method using adjoint-state technique. 

As depth increase to 100m as shown in Figure 2-9, both of two methods results in Figure 

2-9b and c are identical and have good agreement with true model of Figure 2-9a. It indicates 

that these two methods all have capability of accommodating strong lateral variation.  

 

(a) 

 

(b) 
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(c) 

Figure 2-9: Estimated 3D velocity model at depth of 100m. (a) True velocity model, (b) 

Raytracing based method and (c) Eikonal equation solver-based method using adjoint-state 

technique. 

Eventually, at depth of 150m, where the reversed-velocity interfaces appear as indicated 

by black arrows in Figure 2-10b of true velocity, both of two methods in Figure 2-10b and c 

cannot reconstruct this structure, due to the low ray coverage.  

 

(a)  

 

(b)  
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(c) 

Figure 2-10: Estimated 3D velocity model at depth of 150m. Reversed-velocity interfaces is 

indicated by black arrows. (a) True velocity model, (b) Raytracing based method and (c) Eikonal 

equation solver-based method using adjoint-state technique. 

Overall, in near-surface of this 3D model, both of two methods could obtain satisfied result 

in both resolution and fidelity. However, for one iteration, the computation time cost by eikonal 

equation solver-based method is around 2 mins in average, which is only 1/2 of conventional 

raytracing-based method. The memory cost for a single thread is also around 1/2 of raytracing-

based one at 1.2GB. Note that we only use 2000m as maximum offset for this test. If the offset 

used in inversion was further increased, the advantage of computation efficiency from the 

eikonal solver-based method would be more apparent.  

2.4 Summary and conclusions 

In this chapter, the performance of FAT tomography based on adjoint-state technique and 

conventional ray-tracing is compared in terms of their inversion accuracy and computational 

efficiency. The numerical test result shows that they could obtain almost identical results, 
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somehow the adjoint state method has better resolution in some geological complex area of 

near surface. The main reason for this is that gradient for one single source-receiver pair is 

slightly fatter than a ray, which is more sensitive for complicated velocity variation. The 

adjoint-state substantially has the same behavior as any classical raytracing-based tomography 

algorithm; hence their result will have no significant difference.  

The major advantages of adjoint-state method tomography are high computational 

efficiency in terms of memory occupation and time cost. Its computation cost only related with 

the corresponding model size for each single source. Hence, FAT tomography based on adjoint-

state method is very suitable for large-scale dataset scenario. Besides, it is feasible for parallel 

computing implementation, by which the computational efficiency could be further improved.  

To further improve the computation efficiency, a stochastic process allowing to reduce 

problem dimensionality might be a good choice. Unfortunately, it somehow will induce in 

“noisy” artifacts caused by severe subsampling to degrade the image quality. Since then, we 

are looking forward to a gradient optimization method could suppress these artefacts. And this 

will be our main interest to investigate in next chapter. 
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CHAPTER 3 EFFICIENT FIRST ARRIVAL TRAVELTIME 

TOMOGARPHIC INVERSION IN LARGE DATASET 

3.1 Introduction 

In this chapter, we establish an efficient FAT tomographic inversion scheme named SA+, 

while maintaining reasonable accuracy comparing to those from standard FAT tomographic 

inversion.  

The basic workflow of SA+ method is illustrated in figure 3.1, offering a full picture as 

guidelines for the following discussions. It is well known that FAT tomographic inversion 

problem can be solved by a standard Gauss-Newton method of exploiting the convex-

composite structure of Equation (2.1) using a linearized eikonal solver. Instead, we used a 

modified GN under compressive sensing framework combining stochastic process and gradient 

optimization to improve the computation efficiency while preserving the image quality. The 

stochastic process helps to reduce the problem dimensionality by using only a small subset of 

full dataset to conduct tomographic inversion. This gradient optimization allows to suppress 

the “noise” induced by random subsampling from stochastic process. It is realized by using a 

sparsity-promoting technique based on online orthonormal dictionary learning, which allows 

to exploit descent direction of misfit function in a sparse domain. Eventually, a modified GN 

method was proposed for a reduced misfit function regularized by the sparsity of model update. 
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Figure 3- 1: Schematic sparsity promoting FAT tomography workflow. 

3.2 FAT tomographic inversion 

3.2.1 Observation on misfit function 

As discussed in chapter 2, a typical first-arrival traveltime tomographic inversion is a data 

fitting procedure depending on the collection of series of first-arrival traveltime picks and 

numerous computations to estimate the near-surface velocity model. The related nonlinear 

least-squares optimization problem is in the form  

.                   (2.1) 

Again, the   is the number of sources (batch size), and  composing as vectors 

represents the observed data of FAT picks corresponding to the source; and  is the 

forward operator for the source. The unknown medium parameter (slowness for this case) 

is also organized as vectors and denoted by . The forward operator  acts linearly for 
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each source through the whole model space. And the receiver array geometry assumes for each 

source gather.  

The observed data can be further organized as vectors:  , and the 

Equation (2.1) could be written as 

                   (2.2) 

Where  is the Frobenius norm. Here are several important observations on Equation 

(3.1), and it be utilized for our algorithm design guidance: 

⚫ First, the forward operator  is used for solving for a PDE with multiple right-hand-

sides, and its work load is directly proportional to the data batch size . Practically, the 

size of the data space and of the model space can be quite large (up to 106 FAT picks and 

105 unknowns). Additionally, the batch size normally involves with millions of 

deployments of source and receiver pairs. Since then, it is necessary to consider 

dimensionality reduction technique implements at first place when we are working on this 

optimization problem. 

⚫ Second, it poses a convex-composite structure, though it is nonlinear and non-convex. 

Therefore, we can write the objective function as  

                      (3.3) 

where  is convex, and  is differentiable (smooth). Such convex-

composite structure allows for a natural design and analysis of iterative inversion 
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algorithms. To efficiently minimize a function with such structure, it is highly desirable to 

have its gradient available. However, a pure Newton method based on pursing for second 

derivatives to solve for Equation (3.1) is often computationally infeasible. To address this 

issue, either a quasi-Newton (QN) method or a Gauss-Newton method taking advantage 

of the first-order derivatives can be used.  

3.2.2 Linearized misfit function and Gauss Newton (GN) approach 

The whole optimization process can be conducted by approaching the final 

optimized model iteratively (a 2-D case) 

,                  (3.4) 

where  is the perturbation of the slowness at iteration , and it will give rise to 

perturbation of the traveltime. Such perturbation technique is also applied in acoustic 

anisotropic media to derive the linearized eikonal equation revealing the relationships of 

perturbation of anisotropic model parameters and arrival times. The total time field 

 can be deposed into two constituent parts: the reference time field  from 

background velocity model of current iteration; and the perturbated time field  

from   

                  (3.5)  

To obtain the relationship of the perturbated slowness  and corresponding 

variations in traveltime  of 2D case, in which direction of  is and , we have 
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the eikonal equation involving with perturbated time field expressed as 

        ,      (3.6) 

subtracting above equation by the unperturbed eikonal equation, we have 

       (3.7) 

then dropping the high order term 

         .            (3.8) 

Here   as a dimensionless unit vector tangent to the raypath through subsurface 

model at certain position, thus we have . Now we define the directional 

derivative along   is  , which is only determined by the distribution of 

background velocity field, then Equation (3.8) could be simplified to 

.                            (3.9) 

After rearrangement, we have Fréchet derivative related to slowness variation  

.                          (3.10) 

The Fréchet derivative is also called sensitivity kernel used for evaluating the 

sensitivity of the data to the corresponding slowness changes. For Equation (3.11), 

multiplying with ray-path integral from source point to receiver point located at , 

then the formula could be expressed as 
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.                      (3.11) 

The above equation indicates that the variation of traveltime induced by slowness 

change could be derived from integral of the slowness perturbation along the original 

raypath without calculating the new one. The raypath is determined by the implicit function 

of source point connecting to receiver point location.  

Equation (3.11) is the basic formula of tomographic imaging using residual traveltime 

based on ray-tracing algorithm. It is an efficient computation since that we only need the 

original raypath generated at initial stage during the whole inversion process.  

On the premise of guaranteeing the image quality, our main interest of developing 

such methodology is to improve the computation efficiency, since then we prefer to use 

finite-difference-based method to solve eikonal equation (forward modeling), and 

manipulate with adjoint-state technique as our inversion algorithm basics for calculating 

gradient of misfit function. The related computation efficiency analysis was already 

investigated in the first chapter.  

For conciseness, assuming  , in which   is defined as slowness-

squared, Equation (3.8) could be expressed as   

                (3.12) 

and boundary condition satisfies 
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         (3.13) 

From Equation (3.12), we could build up a linearized relationship between the 

velocity perturbation  and change of arrival time  as follow 

                (3.14) 

We define linear operator  as perturbated eikonal equation 

operator, and this linear operator  acts as a “Jacobian tensor” to produce a matrix 

output, known as Jacobian matrix. It exhibits the sensitivity of perturbation of slowness giving 

rise to the change of arrival. Inserting Equation (3.14) to Equation (3.22), the misfit function 

reformulated to a Gauss-Newton (GN) subproblem (Li and Herman et al., 2011) involving with 

iterative linearization of  and solution of obtaining the optimum model update for each 

iteration of least-squares problems of the form 

,              (3.15) 

where  is the time residual at each iteration . Specially, 

for tomographic inversion problem, the time residual is normally small and would not vary 

rapidly through the whole survey system, meaning that it will not perform strongly nonlinear 

at the solution. Hence, the GN methods can exhibits fast convergence (Courtier & Talagrand, 

1987).  
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3.2.3 Adjoint PDE and gradient of misfit function 

Minimization of   can obtain the optimal slowness perturbation  . In our 

approach, we use the adjoint-state technique to formulate a new adjoint PDE to obtain the 

gradient of the misfit function   without explicitly computing Fréchet derivatives 

. It will turn the inverse modeling problem into another forward modelling problem. In 

this section, we will derive the adjoint PDE of perturbated Eikonal equation through a Lagrange 

augmented functional technique and the model update can be efficiently calculated. 

Now we introduce a Dirac masses  by multiplying with misfit function  

to derive its gradient more feasibly as follow 

,        (3.16) 

where denotes the position where the numerical sensors deploy at surface . In practical, 

the above equation should be regarded as a summation, because that the residual time (or 

observed time) is only defined at the position where the receiver deploys.  

Now we introduce a small amount change of slowness perturbation   and its 

corresponding perturbation of perturbated arrival as , by which the change of the misfit 

function is then given by 

.              (3.17) 
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From Equation (3.14), the perturbation in slowness is related to the perturbation of arrival 

time, and can be extended as following 

,              (3.18) 

by multiplying Equation (3.18) by Lagrange multiplier  and adding it to Equation (3.17), we 

obtain a new expression for the change of energy (gradient of misfit function) 

.     (3.19) 

This arbitrary function   will help to eliminate  , whose evaluation is usually 

computationally infeasible for large scale problems Then we apply integration by parts of 

second term over domain  on the right-hand sides, and it yields 

       (3.20) 

From above equation, we could obtain following two PDE equations as   satisfying 

boundary condition as adjoint equation below 

        (3.21) 

where  is the unit vector perpendicular to the surface of numerical sensors . And within 
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the subsurface , is the solution of  

        (3.22) 

By combining two adjoint PDE equations as described above, we can calculate adjoint 

variable   throughout the whole subsurface space   by following procedure: Firstly, the 

arrival residual at the  -th iteration can be obtained by solving forward modeling through 

of -th iteration ; Secondly, solving  as 

its propagated back the residual along the ray-tube in to the source position of current model 

(Taillandier et al., 2009). The local scheme in algorithm of second step is adapted from the one 

proposed by Leung and Qian (2006), and its global scheme is identical to the FSW method 

originated from Zhao (2006). Eventually, the gradient of the misfit function could be obtained 

according to the last term on the right-hand side of Equation (3.20) 

                      (3.23) 

For a gradient-based iterative optimization such as GN approach, once we obtained the 

gradient of misfit function  , the model update at each iteration could be performed 

following  

,                          (3.24) 

where   is step length computed by line-search method to guarantee a sufficient update 

towards decent direction of misfit function at each iteration. 

In this chapter, our main purpose of adopting such adjoint-state technique is to obtain an 
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analytical solution of linearized adjoint operator  at -th, and it can 

be expressed as 

.       (3.25) 

In fact, the term of  also represents the time residual for next iteration 

-th, by which the misfit function gradient  is derived from adjoint-state 

technique. Therefore, the Equation (3.25) can also be expressed as 

             (3.26) 

Now we have an analytical solution of misfit gradient  equivalent to , 

which is obtained in an efficient way by adjoint-state technique. Correspondingly,   is 

Hessian matrix of  with respect to  and   

 .    (3.27) 

As utilized in standard GN or quasi-Newton method, the second term in summation (3.27) 

is normally negligible and dropped, and the resulting approximated Hessian is  

 ,                        (3.28) 

And the model update is approximated by  

         (3.29) 

The class of GN method approximating the inversed Hessian matrix   usually 
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involves the pseudo-inverse of the reduced Hessian as shown in Equation (3.28). This pseudo 

inverse of the reduced Hessian is given by the Jacobian operator  and its adjoint. 

One benefit brought by GN method is that an explicit computation of the Hessian could be 

avoided, hence the computation efficiency could be guaranteed. However, the amount of 

solution of PDE’s required in such GN subproblem at each iteration are still massive. Even 

though the manipulation of adjoint-state technique in tomographic inversion significantly 

improves the computation efficiency in large dataset application scenario, dimensionality 

reduction of problem scale still has its own practical significance. The main computational cost 

will now be brought up by solving eikonal equation for each source. 

On the other hand, GN method assumes that the pseudo inverse Hessian matrix  is 

diagonally dominant and semidefinite with ignoring the contributions from other off-diagonal 

elements, which only can be satisfied in some ideal case such that the acquisition aperture is 

wide enough. In practical, the acquisition aperture is often limited and ray coverage could vary 

dramatically leading to non-negligible contributions from off-diagonal elements. Since then, a 

standard GN method sometimes will not guarantee an optimal reconstruction of .  

These two deficiencies will be two main concerns while we design a FAT tomographic 

inversion workflow using a GN method. To improve the computation efficiency on the premise 

of guaranteeing image quality, here are two major aspects of modifications we work on: 

1.) Dimensionality reduction of least-square problem scale to relief computation burdens of 

forward calculation, meaning that a reduced GN subproblems; 
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2.) Adopting sparsity regularization and compressive sensing technique to guarantee the 

sparsity-promoting and recoverability of reduced GN subproblems. 

In the following sections, we will present attempts to solve above issues respectively, and 

eventually combine them together to present an online dictionary learning based sparsity 

promoting FAT tomography to achieve an optimize update of  at each iteration. 

3.4 Stochastic process  

To deduce the number of required PDE to be solved in each inversion iteration, we utilize 

the idea from stochastic optimization to reduce input source. Such subsampling would 

introduce noise-like artifacts and cause the energy leakage due to the source interference. Since 

then, the weighed factor normally applied on the random source selection normally will be 

redrew to suppressing artifacts. The related two types of stochastic optimization adjusted for 

FAT tomography will be introduced in this section.  

The idea of stochastic process is to define a batch size  of sub-dataset from full 

dataset, and solve the following inverse problem 

,                  (3.30) 

where  is a matrix with i.i.d. random entries with  columns. I will refer it to random 

batch encoding matrix, since it will randomly choose subset  out of full data collections. If 

is chose with unit covariance (i.e., ), we have 

.                          (3.31) 
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Instead of pursuing full misfit function and gradient,  and , this approach intends to 

access to a “noisy” realization of reduced misfit function and its sub-gradient,  and . 

The Equation (3.30) can be interpreted as a sample average process, by which an approximation 

of expectation with an error is depending on the batch size of . In FWI application, such 

error often leads to source crosstalk, and it will decrease with larger  . In tomographic 

inversion, the artefact of ray tracing residual caused by sparse source sampling often 

contaminates the total gradient, and eventually will degrade the image quality. The energy from 

each single source cannot be balanced due to the uneven source sampling, especially in the 

vicinities of source position. Sample Average Approximation (SAA) and Stochastic Average 

(SA) are two main approaches to reduce problem dimensionality while suppressing the “noise” 

induced by subsampling.  

3.4.1 Sample average approximation (SAA)  

An intuitive approach is to pick a suitable batch size   that is large enough for 

equivalently replacing the expectation in Equation (3.31) by sample average, which is referred 

to Sample average approximation (SAA) (Nemirovski et al.,2009). In tomographic inversion 

application, the random batch encoding matrix  will actually turn to be a source number 

index vector, representing the selected sources that will be used in such stochastic optimization. 

The SAA approach will fix the batch selection after it was drawn for all iteration. When 

some additional assumptions are satisfied, the optimal value of reduced misfit function will 

converge to the full one in most ideal case (Shapiro, 2003; Shapiro and Nemirovsky, 2005). 



 

54 

 

This approach is quite feasible and can be implemented with GN method to minimize the 

reduced misfit. However, the SAA approach is known to decay slowly while increasing . 

And a proper batch size  that “large enough” to get rid of the noise is somehow hard to 

judge accurately.  

3.4.2 Stochastic approximation (SA) 

Another specialized stochastic optimization method to solve problem (3.31) directly, 

which is referring to the Stochastic Approximation (SA). It is an approach reminiscent of SA 

with independent weights   will be redrawn for each misfit function gradient update at 

every iteration  (Krebs et al. 2009; van Leeuwen et al., 2011a). The iterative update yielded 

by this approach is  

                            (3.32) 

where the search direction is a realization of the gradient: . The batch size 

is typically very small ( ) and  are series of step length varied for each iteration. 

The step length here is a deterministic value that will be picked ahead of time. There are several 

conditions required to be hold for maintaining the convergency of SA algorithms to realize a 

“noisy” descent direction of  , as   is a random noise term caused by stochastic 

process. These conditions were provided and proved by Betrsekas and Tsitsiklis (2000) in 

proposition 3, and was further reorganized by (Herrmannn and Li et.al, 2012) as follows: 

1.  is differentiable with  Lipchitz continuous. It limits the misfit function gradient  
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to the upper bound, by which the  owns global extreme value.   

2. The expectation of random noise , meaning that random noise is incoherent. 

3. The expectations of the search directions are descent for  , i.e., 

 . It will guarantee the reduced misfit function  will 

decrease during iterative update. 

4. There exist three positive deterministic constants ,  and , such that 

i. , 

ii. , and  

iii. .  

5. . It will guarantee the step length will decrease during iterative 

optimization. A commonly used deterministic step size is .    

Similar to the FWI application research indicates by (Herrmann and Li, et al., 2011), the 

modified GN algorithm is lacking rigorous convergence theory (above condition 3 cannot be 

guaranteed for each model update  for our efficient FAT tomographic inversion. However, 

the SA method actually has better performance than SAA in terms of computational efficiency 

for many classical mathematical problem (Kim et al., 2015). We will combine SAA and our 

proposed gradient optimization, named as SAA+ method, while combing SA and gradient 

optimization and named as SA+ method. These two methods will be compared to decide which 

one is more appropriate for FAT tomography problem in the synthetic data test. 
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Sun and Zhang (2017) proposed a so called Fast Stochastic Approximation (FSAT) 

method to improve the computation efficiency by introducing SA theory. In their practical 

implementation, they managed to employ only a small percentage of data in inversion, by 

which a sub dataset of  was established through randomly extracting  observations (FAT 

picks) from full dataset. Hence the stochastic optimization will be reformulated to  

.              (3.33) 

Here  is the  vector of FAT picks randomly extracted from full dataset. They 

set the random extraction obeying the uniform random number integer distribution with no 

repetition of picks in  iteration. Furthermore, they follow the same fashion of stochastic 

approximation to redraw a new vector for each iteration. The averaging over previous model 

iterates is needed in practical implementation of FAST, by which the optimal estimator of 

tomographic model can be calculated as 

.                              (3.34) 

is the model update estimated from each iteration . They find that the  could be 

equal to 1, if an appropriate batch size of subset could be obtained. In this way, the reduced 

“noisy” realization of model update  could replace the realization of from full dataset 

approximation, i.e., such that . However, they did not illustrate in detail that how 

to pre-define an “appropriate size” ahead of time of inversion. Despite the lack of rigorous 

mathematical proof, such argument is still reasonable as following the conclusion of literature 
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from Nemirovski et al. (2009). Besides, in a sense of practical application, they already showed 

the feasibility of redrawing random vectors  to improve the FAT tomographic inversion 

efficiency. However, the sole stochastic process will induce the artefacts that degrade the final 

image quality. Therefore, to improve image quality, we will further extend our work to 

incorporate sparsity promoting property as a remedy for modifying such dimensionality-

reduced GN subproblems. In our proposed method, we will follow the same fashion of SA 

applied to our modified GN method imposing with sparsity promotion technique under the CS 

framework, to reduce the artefacts induced by random source encoding. However, we will use 

different random encoding vector  to meet the requirement of CS framework.  

3.4.3 Reduced GN problem based on stochastic approximation  

At this point, we could directly bring ideas from stochastic optimization with our original 

GN problem to formulate a reduced GN problem into a modified misfit function, given by  

.                 (3.35) 

In the following section, an efficient sparse representation technique based on online 

orthonormal dictionary learning (ODL) will be introduced into model update , to further 

imposing sparsity promoting for this reduced GN problem.  

3.5 Sparsity-promoting by sparse orthonormal transformation (SOT) 

For seismic tomography. the traditional way of representation of model normally expanded 
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on an either directional or geometric wavelets, such as curvelet, shearlets and coutourlets, to 

provide a multigrid description of the model in different scales based on the properties of 

orthogonal or bi-orthogonal of their fixed dictionary basis. However, most of these methods 

are samples in regular spaced with predefined, nonadaptive and highly redundant function 

frames as imposing piecewise smoothness representation of smooth and discontinuous features 

of subsurface velocity structure. In contrast, the dictionary learning (DL) has advantages of 

offering to learn a set of atoms with sparser representation of model as a training set while 

adapting the transform to nonintuitive signal regularities.  

In our proposed method, we will adopt a s SOT method based on DL following series 

works from Sezer et al. (2011 and 2015) and Zhu and Liu et al. (2015), to exploit the sparsity 

of  with highly computation efficiency and feasibility beyond some other extensively used 

K-SVD DL algorithm (Chen et al., 1998; Mallat and Zhang, 1993; Tropp and Gilbert, 2007). 

The orthonormality imposing on dictionary could provide a natural approach for solving the 

L0 or L1 norm regularized optimization problem while reducing computation complexity. The 

whole sparse transform method composed of two parts: online orthonormal dictionary learning 

(ODL) and dictionary-based blockwise transformation. 

3.5.1 Online orthonormal dictionary learning 

The main idea of realizing such online ODL algorithm is to introduce an orthonormal 

dictionary  such that  , and solving two sub-problems (L0 norm and L2 norm 

optimization) alternatively with an initial generic dictionary. In our implementation, we use an 
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initial arbitrary dictionary obtained by discretized cosine transformation (DCT). Imposing 

orthogonality on  could void repeated columns operations appeared in K-SVD algorithms 

(Aharon et al., 2006; Rubinstein et al., 2013), resulting in high computational demanding. It 

only involves with three matrix multiplications and one SVD operation to generate both the 

sparse coefficients and the learned dictionary at a single learning iteration. To adapt ODL with 

stochastic process, we use online learning technique proposed by Bousquet and Bottou (2007) 

to minimize an expected misfit function instead of empirical one. The workflow of online ODL 

is shown in box 4.1. The minimization of expected misfit function does not depend on the 

number of patches, but instead on the stochastic characteristics of the training patches (Zhu and 

Liu, et al., 2015). In each learning iteration, a batch of training patches will be extracted from 

either a full dataset (initial iteration) or a snapshot of a dynamic dataset. Meanwhile, the 

updated dictionary from previous learning iteration will anticipate in updating both sparse 

coefficients and dictionary learning at current iteration, which is referred to “online” 

manipulation. In this way, it will always maintain the sparse representation of dynamic data 

and add up the historical information to adaptively conduct our DL iterative process. Intuitively, 

online ODL is time efficiency since that it not requires a completely new dictionary to be 

generated at each learning iteration. Besides, the learning speed will dramatically increase 

along with progression of inversion. 
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INITIALIZATION: 

1. Initializing overcomplete dictionary  generated by DCT. 

2. Initializing sparse coefficients matrix . 

[OUTER LOOP:  <t times iteration (t=1, 2, ..., T)> 

Stochastic approximation by drawing mini-batch from training dataset pool and 

obtain DBT of  as training sample matrix  

[INNER LOOP:  <Repeat until convergence meeting stopping rule> 

Sparse coding stage:  

a. Optimizing  with hard-thresholding L1 norm optimization (sparse 

coding stage): 

    

- Sparse coefficients from less than a certain thresholding value will 

be eliminated.   

-  is gradually accumulating newer 

information from previous iteration by a certain learning rate ; 

Dictionary update stage:  

Optimizing   by solving an orthogonal Procrustes problem using 

SVD: 

    

- Applying SVD on  to compute   

INNER LOOP ENDS] 

OUTER LOOP ENDS] 
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Box 3.1 Workflow of online ODL. 

3.5.2 Dictionary-based blockwise transformation 

Assuming that the length of dictionary atoms (learned from ODL) is , which is same as 

localized patches (pixelized groups) length  divided from original image (model 

update ). These patches will be directly used for dictionary training and later processing. 

For simplicity, we also assume that the image could be exactly divided into 

 patches. For the case that image size cannot be divided patch size, a zero 

or wrapping extended boundary will be applied to original image. The combination of 

extracting operator  and its adjoint , can perform an invertible process, either to recover 

the model update  from local sparse coefficients  by 

,               (3.36) 

or to mapping  into by   

.              (3.37) 

where SOT synthesis operator  , and SOT analysis operator 

. This is so called dictionary-based block-wise transform that have been 

widely used in different DL algorithms at present. Essentially, it is a patch processing technique 

for dictionary learning, and the extracting operator   anticipating into the algorithm will 

have no influence on the algorithm convergency.  
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3.5.3 Practical implementation of online blockwise ODL   

From box 4.1, there are several parameters needed to be selected cautiously to achieve 

good performance of online ODL coming into practical implementation. 

1. Learning rate β in online ODL 

The algorithm will gradually rescale the older information from previous iterations during 

iterative learning. This scale factor is so called a “learning rate” parameter, playing a role as 

weight to amplify the contribution of older information as iteration carrying on. In practical 

application, its often relates with batch size that we used in stochastic optimization, and we 

normally set  

, 

where  is iteration number. In this way, the learning rate will eventually increase to 1, so that 

the large portion of accumulated old information will be dominant.  

2. Trained dictionary and sparse coefficients 

Like other DL method, the ODL method is capable of adapting to nonintuitive signal 

regularities beyond piecewise smoothness (Zhu and Liu, et al., 2015).  Here is a simple test 

shows the capability of ODL method capturing the specific signal patterns in sparse domain 

for given signals with gradient angle at (a) 0-degrees, (b) 45 degrees and (c) 90 degrees in 

Figure 3-2. The image of original signals has been transformed into blocks follow the 

dictionary-based block transform as described in section 3.5.2. Each block in Figure 3-2 

represents an atom learned by ODL, and we could see that all of them maintain directional 

features of original signals with different gradient angles. 
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(a) 

 

(b) 

 

(c) 

Figure 3-2: Learned dictionaries by ODL for signals with different gradient angle features 

at (a) 0-degree, (b) 45-degree and (c) 90-degree. 

Similarly, all different signal patterns will be recognized and classified based on the 

oriented gradient in our implementation. The model update   for each tomographic 

inversion iteration will be evaluated after divided into localized patches. Normalization is 

necessary step to balance the energy of model updates from each iteration. After that, two 

directional derivatives will be applied on all patches, to obtain both vertical and horizontal 

direction gradients for every single patch pixel  respectively, noted by  . 
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Then the gradient energy of these pixels will be computed by . 

Correspondingly, the gradient angle can be derived from 

 , where  is a small number to 

avoid zero in denominator. The gradient angle ranges from -90o to 90o, where angle of 0o 

represents downward vertical direction point to subsurface model. In each localized patch, the 

gradient energy corresponding to all possible directional structures will be scanned and 

extracted. This structural or geometrical information are sparse in the model space, and it could 

be properly represented by a combination of dictionary and sparse coefficients. For those 

subsampling artifacts with no structural features, most of them represented by sparse 

coefficients in small values and eventually will be suppressed through ODL by certain sparse 

level. More details about the benefits brought by sparsity promotion will be discussed in later 

section.  

3. Choice of λ: sparsity level of learned dictionary  

During iterative update for both dictionary  and sparse coefficients  by ODL, the 

Lagrange multiplier  in Box 3.1 controls the tradeoff between speed of convergence and 

capability of sparse representations.   with absolute values smaller than   will be hard 

threshold to zero. 
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Figure 3-3: Simple two-layer velocity model consist of smoothly varied velocity 

anomalies without sharp boundaries. 

To illustrate the content of learned dictionaries, the trained dictionaries by ODL are shown 

for our simple toy model. As shown in Figure 3-3, this model is quite simple with only two 

smoothly varied velocity anomalies without sharp boundaries. Since then, one could only 

expect energy concentrated in a few atoms, and it is confirmed by Figure 3-4. The atoms with 

energy concentrations are mostly dominated by smooth-continuous features. Since learned 

dictionaries are adapted to specific data, they could more properly model data with sparsest 

coefficients than pre-determined dictionaries, such as wavelet or curvelet with prescribed frame. 

As value of  increased, the number of active sparse coefficients is decreasing. Noting that 

for an extreme case of , the learned dictionary will degrade to a unit matrix. 
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(a) 

 

(b) 

 

(c) 

Figure 3-4: Learned dictionaries by ODL with different values of (a) λ= 0.8, λ= 0.06 

and λ= 0.02. 

A nonlinear approximation (NLA) evaluation method could be performed to testify the 

recoverability of the learned orthonormal dictionary   for a model update  . This 

evaluation can be performed using only small portion of coefficients , and the mean square 

error (MSE) will be evaluated between the original and reconstructed signal as: 

. 

We conduct the similar NLA test to evaluate the performance of a learned orthonormal 

dictionary  from a typical misfit function gradient for traveltime tomography. We choose 

one gradient (perturbation) update from tomographic inversion used as training model shown 

in Figure 3-6a. The initial dictionary is trained based on this training model. Then another 

gradient from Figure 3-6b is the test model for reconstruction using different  values. The 
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NLA curves in Figure 3-6c indicates the relationship between MSE and  value for different 

number of sparse coefficients (5%, 10% and 15%) involved in DL reconstruction. All three 

curves show similar trends and optimal reconstructions delivered within range of 

. In practical, the sparsity level varied with different dataset, and it is always 

meaningful to conduct such NLA test for selecting ideal  to balance the trade-off between 

computation efficiency and capability of sparse representation by learned dictionary.  

 

(a) 

 

(b) 
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(c) 

Figure 3-5: NLA test results from two model updates. (a)Training Model. (b) Testing 

Model. (c) NLA curves for different number of sparse coefficients (5% in red, 10% in blue 

and 15% in magnet) used in ODL. 

3.6 SA+ Method: a modified GN method with gradient optimization 

At this point, we can reformulate the reduced GN subproblem into L1-norm sparsity 

constrained GN subproblem after imposing the orthonormal dictionary representation 

    (3.38) 

and the optimized model update could be obtained by  

                          (3.39) 

The sparsity level  provides L1-norm constraints on sparse coefficients  to enforce 

them to be smaller or equal to constant  . Then we impose SA method with  , the 

dimensionality reduced linearized time residual   and operator   allows 

forward modeling on batches of reduced sources with much less PDE’s solving to relief total 

computation cost. Now the sparsity-promotion misfit function reformulates into dimensionality 



 

69 

 

reduction one as following 

.    (3.40) 

The renewals of subsampling matrix allows to realize the dimensionality reduction 

applied on both land and marine data, since that the receiver positions corresponding to a 

certain source is not required to be fixed during inversion. The stochastic process  presented 

here does not strictly meet all conditions requested by convergency theory as presented in 

Proposition 3 from Betrsekas and Tsitsiklis (2000). However, the practical implementation 

results of FAT problem imply a significant convergency rate improvement as we resample the 

matrix   for each iteration.  Additionally, the recovery is improved since that the bias 

introduced by fixed random sampling has been removed by different combinations of random 

subsampling. 

One possible effort to suppress noise raised from SA or SAA relies on averaging model 

updates over previous iterations. Especially, in our case, the eikonal equation solver as forward 

modeling method sometimes will give rise the spikes in boundary values caused by an irregular 

topography, and the source or ray tracing signatures due to low dense sampling in filed survey. 

These unsmooth gradient spots may cause inversion unstable or render the model updates 

trapped in local minima (Huang et al., 2012). To guarantee the well-posedness of the inversion 

problem, one usually would apply some gradient preconditioner, e.g., a Gaussian filter applied 

on the gradient of each iteration to smooth out these artifacts (Leung and Qian, 2006). However, 

simple averaging process will also impair the salient information contained in gradient, leading 
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to unstable convergency and poor resolution in final inverted results. Hence, we are looking 

forward for preserving structural information from gradient in sparse domain. With aid of 

sparsity domain promotion on gradient, its main features from wavefront arrivals will be 

preserved and interferences caused by subsampling will be suppressed.  

In the next section, we will make effort on giving some insight of connection between our 

sparsity regularization (or sparsity promotion) and compressive sensing theory.  

3.6.1 Compressive sensing and signal reconstruction problem 

The compressive sensing (CS) provides theory basis that one can recover a signal with 

compressibility in some sparse domain, from severe subsampling by solving a sparsity-

promoting program (Candes,2006; Donoho,2006). The core problem is to solve an 

underdetermined linear system  

,                                 (3.41) 

where  is measurement matrix and  is signal that could be sparsely represented in some 

transform domain, such as . In our case, signal (or model updates) could be expressed 

by a global SOT synthesis operator   acting on sparse coefficients  , such that  . 

Hence, we have 

.                              (3.42) 

Denoting , the problem alternated to the sparsest solution of , or  

,                         (3.43) 
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where  is the L0 norm given by the number of nonzero elements from all possible subset 

columns of . The solution of equation (3.43) tends to have the fewest nonzero elements, or 

the sparsest solution while maintaining the recoverability. It is typically an “NP-hard” situation 

with almost prohibitive computation for large scale problem. The development of CS theory 

sheds light on solving this problem by proving that:   and   should satisfies some 

condition, then the solution can be recovered by convex optimization 

,                            (3.44) 

And it is known as Basis Pursuit (BP). The success of solving this problem is depending 

on the sparsity level of , proper subsampling and low mutual coherence of . The mutual 

coherence is the maximum off-diagonal entry of  . Low mutual coherence could 

guarantee the capability of sparse signal recovery, since that it allows to separate two different 

signals with same sparsity level after random sampling. Low mutual coherence is equivalent 

to the well-known Restricted Isometry Property (RIP). 

The original BP problem will alter to Basis Pursuit Denoise (BPDN) problem with noise 

add in  

                      (3.45) 

where  is expected noise level in data. To solve it efficiently, it can be reformulated into 

two equivalent formulates: QP problem 

 ,                         (3.46) 
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and least absolute shrinkage and selection operator (LASSO) problem 

                     (3.47) 

The solution of above three types of problems will be the same if every owned its unique 

 and . Somehow it is unrealistic to determine these values ahead of time. Since then, many 

algorithms for solving problem of BPDN type is to gradually adjust or  in each iteration.  

3.6.2 LASSO-based approach and modified GN method 

Among all these reconstruction methods, the LASSO-based approach has some 

advantages superior than other ones (Herrmann and Li et al., 2011). The formulation (3.47) 

could be efficiently solved by a Spectral Projected Gradient (SPG) method for a large-scale CS 

problem in seismic exploration (Hennenfent et al., 2008). The corresponding sparsity level 

could be adaptively obtained follow its value function continuation analysis results from 

“Pareto trade-off curve” (van den Berg and Friedlander, 2008). It gives a systematic way to 

determine sparsity level  for each iteration. The practical implementation details on choice 

of in our approach will be discussed in later sections.  

Now we will make comparison in several aspects of modified GN subproblem with the 

LASSO problem to see the similarities among them, and eventually established the connection 

between sparsity promotion and CS technique. Recall the reduced GN subproblem based on 

stochastic optimization (3.35) 

.               (3.48) 



 

73 

 

It preserves the same convex composite structure as the problem of full misfit. Hence, we 

could solve it following an original GN method by updating model iteratively 

 ,                             (3.49) 

where  is step length solved by line search method. Here are two important aspects we need 

to look into: 

1. Mutual coherence of  :  To follow the guidelines from CS theory, this 

dimensionality reduced eikonal equation Jacobian should be mutual coherence. The 

important difference between CS and our problem settings is that we need to solve for a tall 

system of equations to invert for GN updates. Since then, one could expect a low mutual 

coherence of  , if it was near unitary with incoherent off-diagonals. For 

, there were massive successful research works related with steepest gradient or 

steepest descent method by assuming  is either nearly unitary or diagonal matrix 

applied in tomographic inversion. Since then, though lacking of rigorous proof indicating 

the low mutual coherence of this term, we could still expect this CS-type of argument to be 

hold. As for random sampling matrix  and SOT operator  , they all possessed 

presumptions of  and , respectively. Hence, the low mutual coherence 

property would also hold for and . 

2. Sparsity of modified GN search direction in orthonormal dictionary: As already noted, 

the gradient of misfit function  , could be optimally represented in a sparse space 

supported by the orthonormal dictionary. The solution or model update of a standard GN 
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method is given by 

                    (3.50) 

The approximated Hessian represented by  could be treated as a scale factor, 

which also can be sparsely represented by orthonormal dictionary. Since then,  also 

could be sparsely represented by orthonormal dictionary, no matter how far the current 

model from true solution.  

Based on the observations above, we could argue that the LASSO problem is well-tailored 

to ideas related to sparsity promotion and CS as our modified GN subproblem based on 

stochastic optimization, expressed as:  

. （3.51） 

Our approach now could be thought as pursuing for a sparse direction from a reduced 

dataset of severe subsampling. Consequently, the linearization of reduced misfit function, 

subsampling measurements and sparse signal recovery will rise a certain noise level for each 

subproblems. This unique noise level in each subproblem is corresponding to a sparsity level 

. Therefore, the remain question is how to choose the right sparsity level for approaching 

to an optimal solution of (3.40). The global convergency theory for this modified GN algorithm 

refers to literature from Herrmann and Li (2015). In their proof, each LASSO subproblem at 

-th yields a descent direction for full nonlinear SAA problem for any . Nonetheless, a 

systematic way to select proper  in practical implementation. This issue will be addressed 
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in section 3.7.2. 

3.6.3 Practical implementation 

1. Two-layer inversion strategy 

Obviously, a basic GN method could not fulfill the requirement of problem (3.51) even 

the dimensionality was dramatically reduced by SA or SAA. In order to minimize the modified 

misfit function with sparsity promotion based on online ODL, one need to trace the optimal 

trade-off between the L2-norm residual and L1-norm solution   simultaneously. We will 

follow a limited-memory projected quasi-Newton (l-PQN) of two-layer inversion strategy 

proposed by Schmidt et al. (2009) and Zhu and Liu (2015).  

a. Outer layer problem 

The outer layer is aiming to solve a global minimization problem using the gradients and 

approximated Hessian, following Equation (3.25)  

.      （3.52） 

Imposing sparse promoting and stochastic process, the above equation reformulates to  

.（3.53） 

The gradient and approximated Hessian matrix could be used for a limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algorithm (Nocedal, 1980) to construct a 
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sequence of subproblems. The global problem in out layer is basically a GN problem that a l-

BFGS algorithm allows to derive a constrained quadratic approximation around the evaluation 

points.  

b. Inner layer problem 

The inner layer is aiming to constrained sparse coefficients  within the range of sparsity 

level  for each subproblem, to guarantee the optimal descent direction for solving the outer 

layer problem. We need to make sure that the solution  is optimally constrained within an 

L1-norm ball with radius , solving for: 

 ,               （3.54） 

where  is the projection operator on to the L1-norm ball with radius and  is qualified 

sparse parameter after projection. The flowing box shows a simple procedure of solving for 

Equation (3.54). 

 

Box 3.2: Projection of α onto L1 norm ball 

Input: ,  

Sorting  in descending order: ; 

Find ; 

Define ; 

Output:  
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2. Choice of sparsity level τ 

The solution of the LASSO problem (3.51) relies on our choice of the sparsity level  

for each modified GN subproblem. Theoretically, any bounded positive sequence  could 

guarantee a descent direction for minimizing a reduced misfit function at  (Hermann 

and Li et al., 2015). In practice, a systematic choice of  is necessary for optimally solving 

each subproblem. We could use a value function for the k-th subproblem, denoting as  

, （3.55） 

to evaluate  selection. Such type of value function mixing both L1 and L2-norm have been 

thoroughly studied in van den Berg and Friedlander (2008) by a “Pareto trade-off curve”. The 

 could set to be approximately equal to  as  is a very small positive 

value close to zero. By linear approximation of  at , we have 

.                     (3.56) 

Note that taking   will force  , which means that 

 . As suggested by van den Berg and Friedlander (2008) in 

Theorem 2.1, we could use closed expression form of  to write (3.56) as 

,                        (3.57) 

taking adjoint operator from (3.26) and applied it on time residual from (3.57), we could obtain 
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.                            (3.58) 

3.7 Numerical test and real data application 

3.7.1 Synthetic data test  

In the following sections, for simplicity, two stochastic process (SAA and SA) 

implemented with FAT tomography based on adjoint-stated method will be referred to SAA 

method and SA method, respectively. Furthermore, these two methods adopted with our 

proposed gradient optimization method will named as SAA+ and SA+, respectively. 

1.Two-layer model test 

Apparently, either SAA method or SA method cannot significantly reduce computation 

cost, especially when batch size K is large. However, for a too small K, the stability and 

accuracy of inversion cannot be guaranteed. Therefore, in this case, our gradient optimization 

scheme is implemented with them to reduce time cost (small K) while maintaining the 

inversion stability and accuracy of retrieved result.  

This numerical test is divided into two stages. At first stage, we mainly focus on evaluating 

the applicability of SAA+ and SA+ for tomographic inversion, from which the optimal 

combinations of stochastic process and gradient optimization will be selected. At second stage, 

the performance of this optimal combination will be further evaluated regarding to both of time 

cost and robustness. It could provide important guiding significance for practice.  

We designed a velocity model with topographic surface as shown in Figure 3-6 a. The 
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velocity above surface is equal to air velocity (330 m/s). This model is 7500 m in horizontal 

distance and 1280 m in deep, in which the grid cell size is 12.5 × 8 m. The seismic survey in 

this model is following a fixed-spread acquisition system. The total receiver number is 600 in 

12.5 m interval and 8 m depth spreading along the whole topographic surface. The total shot 

number is 100 in 62.5 m spacing and deployed in 8 m depth, as indicated by magenta stars in 

Figure 3-6a. The synthetic traveltime data is generated using FSW (Quan, 2004) method. The 

exact same forward modeling method was also used in the four tomographic inversion methods. 

For the tomography, we use a linearly increased velocity with depth as initial model as shown 

in Figure 3-6b. As seen in Figure 3-6a, the true velocity model contains two elliptical shaped 

velocity anomalous bodies (high and low for left and right, respectively) near surface, and the 

background velocity trend is quite smooth. The perturbation from difference between true and 

initial velocity model is shown in Figure 3-6c, which is the target to be recovered by 

tomographic inversion. 

 

(a) 
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(b) 

 

(c) 

Figure 3-6: Numerical test model: (a) true velocity model, (b) initial velocity and (c) velocity 

perturbation. 

Applicability test of SA+ method  

The performance of SAA, SA, SAA+ and SA+ is evaluated by this synthetic model test. 

In this test, the number of iterations for all methods are 30 to ensure that their inversions can 

achieve convergence, so as to obtain the optimal inverted results. Additionally, the K value for 

all methods is set to be 50, meaning that each inversion iteration will have 50 intermediate 

solutions. At first, we will use 10 different decimation percentages to conduct the test. Since 

all four inversion methods are based on adjoint-state technique, the data decimation percentage 

is only determined by the number of used shots out of the full dataset. For example, when the 
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decimation percentage is 10%, the number of used shots is 100 X 10%, 10 shots, while the 

corresponding number of receivers is 600 for all different decimation percentages. Especially, 

our interest is the inversion performance on small data decimation percentage (< 15%), so we 

conducted four tests with decimation percentage of 2%, 5%, 8% and 15%. Similarly, the other 

six tests are also performed on decimation percentage of 25%, 35%, 55%, 65%, 75% and 90%. 

For inversion results, we calculate their root mean square error (RMSE) for each test by 

equation below and show them in Table 3-1 

. 

Where  represents four different methods: SAA, SA, SAA+ and SA+. Correspondingly, 

the RMSE of the inversion results derived by these four methods are  , 

, and .  is the total number of model cells. 

Vector  is the inversion results using full dataset, which is the standard FAT tomographic 

inversion based on adjoint state method. Since then, the RMSE value represents the error of 

results retrieved by four methods relative to those of standard method. 

From Table 3-1, we observe that in case of small amount of data-decimation (e.g., 2%, 5% 

and 8%), the SA method gives a better accuracy than SAA as indicated by the RMSE value, 

while in the case of a relatively large amount of data-decimation (≥15%), the accuracies of 

their results are similar. After implemented with gradient optimization method, the accuracies 

of both SAA+ and SA+ are improved. Similarly, the accuracy of SA+ is still better than that of 

SAA+. Such improvement is more significant in the case of a small amount of data-decimation 



 

82 

 

percentage. This result proves that our gradient optimization method is helpful for improving 

the accuracy of inversion results retrieved by either SA or SAA. In addition, the combined 

method SA+ approach has more advantages than SAA+.  

For the stability of the inversion process, we obtained the RMSE and its standard deviation 

to form the error bar curve of the 80 (as K = 80) intermediate solutions during the inversion for 

all four methods, as shown in Figure 3-8a. Similar to the results presented in Table 3-1, the 

intermediate solutions of SA is better than that of SAA, no matter how the accuracy or the 

stability of the 80 intermediate solutions is, especially when data-decimation percentage is 

small. The implementation of our proposed method improves intermediate solutions 

reconstructed by SA or SAA in terms of both stability and accuracy. Among them, the 

improvement of SA+ is the most significant, which further proves that the combination of SA 

and proposed gradient optimization is the optimal integrated method.  
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Rms error (m/s) 

Percentage of data SAA SA SAA+ SA+ 

2%  143.55 115.61 128.76 97.86 

5% 121.98 105.19 115.46 82.71 

8% 98.38 77.24 85.77 58.34 

15% 73.85 67.96 66.23 49.62 

25% 54.34 56.34 53.21 32.74 

35% 42.19 41.56 38.89 26.14 

55% 33.80 34.23 32.89 21.68 

65% 28.17 29.32 27.70 19.50 

75% 21.74 22.70 21.26 18.47 

90% 19.26 19.64 18.29 18.05 

Table 3-1: The rms error for SAA, SA, SAA+ and SA+ method (clean data). 

 

 Rms error (m/s) 

Percentage of data SAA SA SAA+ SA+ 

2%  139.42 119.70 127.13 102.56 

5% 124.08 107.31 111.29 91.24 

8% 101.05 78.05 87.64 63.39 

15% 71.53 71.38 64.93 52.38 

25% 55.69 57.14 55.29 35.42 

35% 43.07 43.61 40.17 28.74 

55% 35.44 33.85 34.30 20.52 

65% 28.14 30.24 28.55 21.17 

75% 22.63 21.65 22.05 19.51 

90% 19.18 20.02 17.31 18.65 

Table 3-2: The RMSE for SAA, SA, SAA+ and SA+ method (8% noise) 

 

To further analyze the influence of noises in the application of the four methods, we add 

in 8% random noises in average to the true synthetic first arrival picks, as shown in red dot line 

in figure 3-7. In order to better simulate the actual situation of reality, the magnitude of the 
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noise is set to be increasing with offset to mimic the offset-dependent signal-to-noise ratio or 

manual picking errors, which is often observed at large offset in practice. The exact same test 

on clean data was also performed on 8% noisy data, and its result is presented in Table 3-2. The 

results in clean (Table 3-1) and noisy (Table 3-2) data are basically consistent, indicating that 

such a noise level has no significant influence on the accuracy of all four methods. Besides, 

comparing to Figure 3-8a, the error bar curve from noisy data test in Figure 3-8b also does not 

change much. It implies that SA+ has best stability among all four methods. The above series 

of tests proves that SA+ is the best approach in terms of accuracy and stability. To avoid lengthy 

discussion, we will mainly focus our evaluation on the performance of SA and SA+ in the 

following tests. 

 

Figure 3-7: First arrival picks: 8% noise level data (red line) and clean data (black line). 

 



 

85 

 

 
(a) 

 

(b) 

Figure 3-8: Error bar curves of (a) clean data and (b) noisy data (8% noise level).  

We also show the inversion convergence history curve of SAA, SA, SAA+ and SA+ with 

either clean and noisy data, adopting with different data-decimation percentages as input. From 

Figure 3-9, we could see that their traveltime misfits stabilize at about 25 iterations, meaning 

that such comparative test was carried out on the premise of obtaining the best solution for each 

method. Comparing to standard method, their convergence rate is reduced to some extent due 

to randomness of data decimation. Among them, the SA+ appear to have better convergence 
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than SA in the early-to-middle stage of inversion. It is also one advantage of our proposed 

method in searching for the gradient for descent direction in sparse space, by which the 

convergence is stabilized.  

 

 (a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-9: Convergence history of (a) SAA, (b) SA and (c) SA+ with clean data, Same of (d) SAA, 

(e) SA and (f) SA+ with noisy data (8% noise level). 

We further investigate the velocity models inverted by SA and SA+ method in both clean 
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and noisy data cases, as displayed in Figure 3-9. Due to the limitation of ray coverage, we will 

mainly focus on observing trusted recovered region above white dash line, as indicated in 

Figure 3-9. The result of full dataset tomography (FDT) using standard method is shown in 

Figure 3-10a and 5b for the cases without and with noise in first arrival traveltime picks, 

respectively. Figure 3-9c and 3-9d displays SA results using 5% dataset for clean data test and 

10% dataset for noisy data test. Figure 3-9e and 3-9f show SA+ results using exact same data-

decimation percentage as SA for clean and noisy data test. By comparison, the two velocity 

anomalies are well depicted in both results of SA and SA+, and the main part of recovered 

velocity model looks identical to FDT. However, compared to SA+ in details, the SA results 

contain artificial residues similar to ray trajectories smearing in varying degrees from both 

clean and noisy data test. Such “smearing effect” is mainly caused by inversion gradient 

construction using a small data-decimation percentage as input. Apparently, to improve the 

performance of SA, one can further increase the K value to earn more average effect for final 

sampling average calculation of inverted model; or increase the smoothness of the gradient 

during inversion. However, these two approaches will bring negative effect on either 

computational efficiency or preserving accuracy of inverted velocity model. On contrary to SA, 

the SA+ can obtain smoother inversion results without gradient smoothing, and its result has 

more accurate depiction on both of two velocity anomalies. Such performance improvement 

comes from our gradient optimization method.  
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 3-10:: Inverted velocity models. The standard method results of (a) clean and (b) 8% noisy data 

The SA method results of (b) clean and (c) 8% noisy data. The SA+ method results of (e) clean and (f) 

8% noisy data. The region above white dash line is trusted recovered region. 

From Figure 3-10, it can be observed how our proposed gradient optimization improves 

the gradient from any one iteration of the SA inversion. Figure 3-10a displays the original 

gradient during SA, in which the interferences from ray trajectories residues are obvious, 
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especially in near surface areas. Figure 3-10b is the gradient after optimization, and Figure 3-

10c is the difference. One can see that the interferences existed in the original gradient is 

significantly suppressed through the optimization, hence the smoothness of gradient is 

improved. Besides, there is a large amount of artificial interference signals left in the difference, 

as shown in Figure 3-10c), meaning that such interference in the original gradient has been 

suppressed by optimization. Though gradient optimization is quite similar to the general 

smoothing process in ray-based tomographic inversion, it can better preserve salient 

information contained in gradient while removing noise raised from random subsampling of 

SA.  

 

(a) 
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(b) 

 

 

 

(c) 

Figure 3-11:Comparison of gradient (a) before and (b) after optimization by our proposed method, 

and their (c) difference. 

We further evaluate the performance of SA and SA+ by observing the vertical velocity 

functions at the center of the two velocity anomalous bodies. The exact horizontal positions are 

at 2500 m for high-velocity anomalous body, and 5500 m for low-velocity anomalous body. 

Here we only use noisy data with 8% noise level for different data-decimation percentage in 

this test. Figure 3-12a and c show the velocity functions at the high velocity anomaly for SA 

and SA+, respectively. Similarly, Figure 3-12d and e represents for low-velocity anomalies. 

We can see that the velocity function of SA+ is better focused around result of standard method 

full dataset than that of SA, especially for small data-decimation percentage. Again, this shows 

that the SA+ is superior to SA in terms of inversion accuracy. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 3-12: The velocity functions at the center of high velocity anomaly inverted by (a) SA and (b) 

SA+. The velocity functions at the center of low velocity anomaly inverted by (c) SA and (d) SA+. 

From the results of series of tests above, the combination of SA and our proposed gradient 

optimization method shows great advantages in preserving inversion accuracy and stability, 

hence the performance of SA+ is quite promising. In the next section, we will focus on 

investigating improvement of computational efficiency of the SA+ method. 

Computation efficiency test of SA+ method 

In this part, we will analyze the relationship between the accuracy and stability of SA+ 

method and other factors on the premise of improving the computational efficiency. These main 

factors mainly include two aspects: the data-decimation percentage and noise level of dataset. 

The same synthetic velocity model as first section will be used in this test. 

The improvement of computational efficiency mainly refers to saving the time cost of 

inversion. In previous test, K value is set to 50 for all methods. Obviously, SAA, SA, SAA+ 

and SA using this K value cannot achieve the objectives of reducing computational time cost. 

For example, in ideal cases, the time cost of either SAA or SA method using only 2% data is 
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close to that of standard method using full dataset, which is 2.67 min. If the convergence rate 

reduction (as shown in Figure 3-9) is further considered, the time cost will certainly exceed the 

standard one. Therefore, for SA+ method, an appropriate K value and data-decimation 

percentage setting is important.  

It should be noticed that the online dictionary learning involved in gradient optimization 

for SA+ will slightly increase the time cost for SA+ comparing to SA. However, only matrix 

multiplications and SVD operations are used and its time cost proportion will decrease rapidly 

as the inversion proceeds due to accumulation of past information in the updated dictionary. 

According to our practical experience, the ceiling of all the computational cost regarding the 

dictionary learning part is normally less than 15% of total time cost depending on data-

decimation percentage used in SA+.  

In this test, we obtained the RMSE of SA+ and SA using different data-decimation 

percentage as input under the time cost about 70%, 50%, 40%, 20% and 10% compared with 

the full dataset tomography (FDT), and list them in Table 3-3 and 3-4 for clean and noisy data 

test respectively. The K value meets the condition of K >1 for all cases, that is, the data is 

randomly selected at least twice to keep the basic idea of Stochastic process.  

Besides, we assume that result is acceptable when the RMSE of result derived by either 

SA+ or SA is less than 100m/s, by which the subsequent data processing will not be 

significantly influenced. According to this standard, the green shaded blocks in Tables 3-3 and 

3-4 are qualified results, while the red ones are unqualified. We can see that solutions retrieved 

from both of SA+ and SA cannot meet the qualification requirement (< 100 m/s), when the 
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data-decimation percentage is as small as 2% in clean and noisy data test. For input of 5% 

dataset, SA failed at all time cost levels, but SA+ could achieve the optimal performance of 

using only about 40% of FDT computation time, which means that its time cost is 1.06 min. 

When the data-decimation percentage reaches 10%, both SA and SA + only take 20% of the 

FDT time cost within the RMSE of 100 m/s, which is about 0.53 min. However, the accuracy 

of SA+ result is much higher than that of SA in terms of RMSE.  

In the case of higher data-decimation percentage (≥10%), results of both SA and SA+ are 

qualified, but the corresponding maximum time cost reducing is also more restricted (can only 

reduce as much as 20% of time cost). We performed the same test using 10% noisy data, and 

list its result in table 4. One can observe that the noise doesn’t have much impact on the results 

derived by relatively high data-decimation percentage for both SA and SA+. However, in case 

of low data-decimation percentage such as 10%, the result of SA is closer to standard RMSE 

of 100 m/s at low time cost ratio, while the performance of SA+ is more reliable.  

 

 

 

 

 

 

 

 



 

97 

 

Time cost 

(compare to FDT) 
~70% ~50% ~40% ~20% ~10% 

 Percentage of data RMSE (m/s) 

SA+ 

2%  101.58 109.08 115.56 123.17 135.31 

5% 95.43 98.45 101.12 108.69 116.03 

10% 62.19 68.16 67.32 72.24 __ 

15% 55.21 58.33 61.22 __ __ 

20% 33.26 36.91 __ __ __ 

SA 

2%  121.72 123.54 128.60 136.31 146.7 

5% 114.38 117.79 120.22 131.45 133.55 

10% 82.31 87.23 92.49 95.88 __ 

15% 67.05 73.35 75.30 __ __ 

20% 58.16 63.83 __ __ __ 

Table 3-3: The RMS error and time cost for SA with proposed method (clean data). The green shaded 

blocks represent that it is a qualified result, and RMSE is less than 100m/s. The red shaded blocks are 

unqualified result with RMSE more than 100m/s. 

 

Time cost 

(compare to FDT) 
~70% ~50% ~40% ~20% ~10% 

 Percentage of data RMSE (m/s) 

SA+ 

2%  108.33 112.41 121.29 134.25 142.15 

5% 97.65 101.52 107.30 112.06 121.29 

10% 64.52 70.27 73.82 75.45 __ 

15% 57.64 60.09 62.19 __ __ 

20% 34.16 35.82 __ __ __ 

SA 

2%  126.82 131.08 129.78 142.39 154.57 

5% 116.14 119.37 127.04 138.10 141.73 

10% 79.24 85.65 102.53 118.71 __ 

15% 66.25 74.83 82.66 __ __ 

20% 60.25 68.90 __ __ __ 

Table 3-4: The rms error and time cost for SA with proposed method (8% noise). The green and red 

shade block is same as table 3. 

Now we look into some details of the exact velocity model retrieved by SA and SA+ in 

this test. Here the results are obtained from 7% and 10% data decimation as input at 20% of 
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time cost of FDT for clean and 8% noisy data, respectively. Figure 3-13a and 7b display the 

clean data test results of SA and SA+ respectively, and Figure 3-13c and d are results from 

noisy data test. Similar to the observation from previous tests, the random sampling residues 

in SA result is suppressed in SA+ with more clean and smooth presentation. Comparing to 

results of FDT in Figure 3-13a, the SA+ obtains almost identical results, while the 

computational time cost is greatly reduced from 2.67 min to 0.53 min.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3-13. Inverted velocity models with 7% and 10% data decimation at 20%-time cost of standard 

method for clean and 10% noisy data test respectively. Clean data result: (a) SA and (c) SA+ method. 

10% noisy data: (b) SA and (d) SA+ method. The region above white dash line is trusted recovered 

region. 

To further understand the relationship between noise level and data-decimation percentage, 

we add 5%, 10%, 15%, 20% and 30% random noise into clean data to analyze the influence of 

different noise levels on data-decimation percentage for a fixed RMSE (100 m/s) in SA+ 

method. Each test is carried out on the premise of only using around 20% to 40% of FDT 

computation time cost, and corresponding data-decimation percentage is the minimum 

requirement under a certain noise level.  

As shown in Figure 3-14, for the case of low noise level (< 8%), the minimum required 

data-decimation percentage for obtaining a qualified result is relatively stable, which can be 
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less than 10%. However, when the noise level is higher than 15%, in order to reach the qualified 

RMSE value, it is necessary to increase the data-decimation percentage. Especially, when the 

noise level is larger than 8%, the amount of decimation percentage increases dramatically (from 

7% to 17%). This curve can be used as a guide for the application of SA + method in practice: 

1.) when the data is of good quality and high SNR, we can only use around 8% data, meaning 

that we could use a more flexible K value to balance the trade-off between the goal of reducing 

time cost and preserving the image quality; 2.) when the data quality is poor, our primary goal 

is to ensure the accuracy of inversion results by introducing larger data-decimation percentage 

or increasing K value, and then consider the appropriately reduce the time cost.  

 

Figure 3-14: The relationship between the noise level and the data-decimation percentage for a fixed 

RMSE at 100 m/s. All time cost in this test is around 20% to 40% of FDT. 

We also investigated the stability of SA+ using the recovered velocity at each cell in both clean 
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and 10% noisy data cases. This test is using a variation of the bootstrap method to estimate the 

standard deviation for each cell. The bootstrap was performed by repeating 80 times 

realizations of SA+ with different randomly selected data for each realization. Then we 

calculate the variance ratio of these 80 realization results in each cell , which is expressed as 

. We used 7% and 10% data-decimation percentages for clean data and 10% noisy data tests, 

and displayed the results in Figures 3-15b and c, respectively. The ray density corresponding 

to the velocity model of final iteration is shown in Figure 3-15a. We can observe that the large 

deviations are mainly distributed in areas with poor ray coverage, including the low-velocity 

and lower part of high-velocity anomalous body. Although the performance of inversion is 

slightly improved by adopting FSW method, the accuracy of this ray-based tomographic 

inversion is essentially restricted by ray density in the subsurface media. Moreover, for some 

regions with relatively sparse or mainly parallel ray paths, the velocity cells appeared to be 

some extent of instability, such as area below high-velocity anomalous body in Figure 3-15a. 

In practice, we need to have a basic understanding of subsurface geology, and then make 

corresponding adjustment for specific seismic data to ensure the accuracy and stability of the 

SA+ inversion. Overall, the noise does not have significantly influence on stability of recovered 

velocity model, which indicates that robustness of SA+.   
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(a) 

 

(b) 

 

(c) 

Figure 3-15: (a) Ray density distribution in velocity model of final iteration, the velocity variation of 

each cell in SA+ with (b) 7% of clean data and (c) 10% of noisy data. 
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2. Amoco 94’ model test 

To further test the performance of SA+ method in complex near-surface geological 

structure, we applied it on Amoco 94’ synthetic model. The exact same model and survey 

settings are referred to section 2.3.2 in chapter 2. Figure 3-16a is the true velocity model, and 

Figure 3-16b is simple gradient initial model. This is a high density 2D synthetic data with 

1998 sources and 2500 receivers, which is a large-scale dataset scenario favored by SA+ 

method. 

 

(a) 

 

(b) 

Figure 3-16: (a) True velocity model and (b) linear increasing initial velocity model. The velocity 
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is increasing from 450m/s at surface to 5500 m/s at bottom with gradient of 0.5. 

The standard tomography, referring to a FAT tomographic inversion based on adjoint state 

method adopted from Chapter 2, was conducted with full dataset and obtained the estimated 

velocity model as shown in Figure 3-17a. It will be used as a base criterion to evaluate image 

results of other methods presented in series of figures of Figure 3-17. From Figure 3-17b to c, 

we implemented only small fraction of full dataset (1998 sources) at 10% (200 sources) to 

conduct a series of tomographic inversion in different approaches.  

As shown in Figure 3-17b, the SA method owns the poorest image quality among all other 

results. In the shallow velocity zone ranged from ~10000m to ~34000m, there are some 

significant smearing artefacts remains in the image caused by the sparse shot coverage. 

Particularly, in the right region of complex geological area, the estimated velocity model shows 

a strong non-convergence indication.  The inverted velocity model by SAA+ method is shown 

in Figure 3-17c. Comparing to Figure 3-17b, the smearing artefact is suppressed substantially 

by imposing the sparsity promoting. However, the result is still unsatisfactory comparing with 

that of Figure 3-17a. When a fixed subset of shots is used during inversion, it will serve as a 

particular weighting matrix to induce noise and artefacts. Since then, such noise needed to be 

removed by some randomization process provided by SA technique. Figure 3-17d shows the 

result retrieved by SA+ method. The image quality is further improved comparing to that of 

Figure 3-17c. It approves that the random redrawing process (SA technique) clearly benefits 

the inversion to achieve better result in terms of final image resolution and quality. Additionally, 

the result from SA+ method obtained an almost identical estimated velocity model, comparing 
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to the result of standard method using full dataset presented in Figure 3-17a, but with much 

higher computation efficiency.  

We further increase our subsampling batch size from 10% to 50% (~1000 sources) and 

using SA+ method to obtain result, as presented in Figure 3-17e. Overall, the results shown in 

Figure 3-17a, d and e are almost identical, confirming the robustness of SA+ method in 

different sufficient batch size of subsampling. By comparing Figure 3-17d and 3-17e, one could 

see the flexibility of SA+ on batch size selection, which is relatively insensitive. This property 

is favored in real field data application due to its feasibility. Besides, it is also another main 

reason that SA is superior to SAA. As discussed in section 3.4.1 and 3.4.2, to select a “large 

enough” batch size for optimal performance of SAA is very often difficult to decide.  

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 3-17: Velocity model reconstructed by (a) standard tomographic inversion using 100% 

dataset, (b) SA with 10% dataset, (c) SAA+ with 10% dataset, (d) SA+ with 10% dataset, (e) SA+ 

with 50% dataset. 

The velocity profile curves at depth of 50m and 100m below topographical surface are 

presented in Figure 3-18a and b, respectively. The true velocity is indicated by black line. The 

blue and green lines represent velocity trends from 10% and 50% dataset by SA+, respectively. 

The red line indicates the velocity trend of 50% dataset by SAA. Noted that the velocity trend 

of red line indicates that the SAA still failed in recovering complex velocity structure in right 

region of subsurface velocity model, even with 50% dataset used. These two figures confirm 

the inverted tomographic model results from Figure 3-17 in details. In the shallow depth, our 

reduced tomographic inversion method could obtain resulted image with quality as good as 

standard tomography method, but much higher computation efficiency. It demonstrated the 

capability of SA+ to image near-surface velocities with strong vertical and lateral variation at 

very low computation cost.   
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(a) 

 

(b) 

Figure 3-18: Velocity profiles at depth of (a) 50m and (b) 100m. Line color indicates different 

method employed with 10% and 50% dataset as labeled in the legend of (a).   

The convergence history curve in terms of RMS variations was plotted in Figure 3-19 as 

function of number of iterations. The convergence reaches at RMS of 5.634ms, 7.862ms and 

15.241ms for standard method (100% dataset), the SA+ (10% dataset) and SAA+ (10% dataset) 

respectively. We could see our proposed method are clearly benefitted from the renewals to 

maintain a continuous convergence and eventually obtained an acceptable RMS, meaning that 

the proposed method has a good model fit. However, for the same method without renewals, 
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its convergence rate and final model fit is unsatisfactory. Again, it proves the validity of 

redrawing subsample at each iteration in our sparse promoting approach.  

 

Figure 3-19: The RMS traveltime residual for standard method (100% dataset), SA+ (10% dataset) 

and SAA+ (10% dataset) as labeled in figure legend.  

Following the image quality comparison as presented in Figure 3.10, the corresponding 

comparison of computation efficiency regarding to memory and time cost is shown in table 3-

5. Similar to the numerical test conducted in Chapter 2, all tomographic inversions are parallel 

computed in Linux Cluster with CPU of Intel Xeon at 2.60 GHz. For each inversion, there are 

7 nodes used and each node has 30 threads. It should be noted that the memory cost records in 

Table 3-1 is single-threaded in average. From Table 3-5, we could see a significant 

improvement of computation efficiency in time cost wises due to substantial reduction of input 

shots brought by adopting SA+. Reduction of time cost are approximately in the same 

proportion of dataset reduction. The reason for slightly increase of memory cost that the 

dictionary and atoms matrix is needed to be restored iteratively during inversion. Still, the 

memory cost will not vary as inversion progress due to adjoint state technique imposed. Taking 
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the case of 10% dataset as example, the computation efficiency will be significantly improved 

due to a single evaluation of the reduced misfit function is 5 times cheaper than a full misfit 

evaluation. Though operations from online DL and inner layer subproblem solved by SPG-L1 

as described in section 3.6.1 will slightly increase the computation cost, the improvement of 

computation efficiency is still impressive with at least 7~8 times faster than standard method. 

Method and used dataset Memory Cost [Mb] Time Cost [s] 

Standard method (100% dataset) 140 440 

SA (10% dataset) 146 89 

SAA (10% dataset) 146 84 

SA+ (10% dataset) 152 86 

SA+ (50% dataset) 158 242 

Table 3-5: Comparison of computation efficiency in memory and time cost corresponding  

One of the gradients used during sparsity-promoting FAT tomographic inversion in Figure 

3-18a perfectly explaining how the gradient was optimized through our sparsity promoting 

scheme by online ODL. The gradients in Figure 3-20a used 10% of dataset and had been 

optimized through our sparsity promoting technique. Same amounts of dataset were used in 

Figure 3-20b without sparsity promoting. The gradient in Figure 3-20c used full dataset to 

calculate from a standard tomographic inversion. The Figure 3-20a and c is similar and they all 

had relatively “smooth” perturbation in background. The sparsity promoting technique by 

online ODL from SA+ serves as “gradient preconditioning” via smoothing. However, it is 

different from those of deterministic approaches, since that we leverage ODL sparsity 

promotion, which preserves salient information from gradient update while removing other 

artifacts caused by subsampling. It can be clearly observed that the “smearing artefacts” in 
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Figure 3.10a caused by severe subsampling were significantly suppressed in our optimized 

gradient as shown in Figure 3.10b. With aid of sparsity promoting, it is still safe to guarantee 

an optimal descent search, or to say, have a “correct” model update to guide the inversion 

process reach the convergency. 

 

(a) 

 

(b) 
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(c) 

Figure 3-20: One of the gradients used for (a) standard method (100% dataset), (b) Standard 

method (10% dataset) and (c) after sparsity promoting (10% dataset).  

We also testified the robustness of our proposed method on noisy dataset. For each single 

synthetic source gather, we randomly selected 40% numerical receivers to add in random noises 

within the range of [-0.3s, 0.3s] to generate noisy FAT picks as one of example shown in Figure 

3-21a. In this case, we also only used 10% to implement with proposed method. The result is 

shown in Figure 3-21b, which is identical to the result from Figure 3.10c. And it proves the 

robustness of our proposed method in noisy data.   



 

113 

 

 

(a) 

 

(b) 

Figure 3-21: (a) The original synthetic FAT picks is blended with random noise ranged around [-

0.3s, 0.3s]. (b) The reconstructed velocity model generated by the noisy data using SA+ with 10% 

dataset. 

3.8.2 Real data test   

The SA+ method is further tested on a real 3D land survey dataset from northwest in China. 

The field data is collected in a mountain area, where the weathered layer is extensively 

developed. The exposed area of sand and mudstone is relatively thin, and its thickness is 
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generally ranged from 10 to 20m in the north-central region. The gravel mountain is mainly 

located at south-central region of whole survey area, and it is appearing to be more severely 

weathered, in which its thickness is normally ranged from 20 to 40m, or even more than 100m 

in some areas. A vast alluvial fan develops at south side, the thickness of it is ranged from 50 

to 170m at east-south region. The velocity change varies greatly, ranging from 1500m/s to 

4000m/s. It is a typical area in urgently need for accurate near-surface velocity model 

estimation, by which a convincing static correction could be applied for mitigating the near-

surface distortion effects and improving seismic image quality. A 2D test line is selected out 

for conducting this filed data experiment. In this 2D survey line, there are 523 shots and 1200 

unique receivers. The max receiver number collected for a shot is 452 and the max offset is 

7180m in this case. The seismic trace is recorded at 2ms sample rate.  

The standard tomographic inversion method same as previous section, is employed with 

100% dataset, and the reconstructed velocity model is shown in Figure 3-22a. The effective 

velocity range is in the dash line box. From the result, we could see the estimated velocity 

distribution, especially in the near surface, is basically correlated with observed geological 

characteristics Then our proposed method applied on 20% dataset and obtain the result as 

shown in Figure 3-22b. Except for the deeper part at south side of insufficient ray coverage, 

two results are almost identical. 
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(a) 

 

(b) 

Figure 3-22: Velocity model reconstructed by (a) standard method with 100% dataset and (b) SA+ 

with 20% dataset.  

To further evaluate the performance of our proposed method in real dataset, we used the 

estimated velocity model from Figure 3-22b for long wavelength static correction, with the 

standard method and proposed method result, as shown in Figure 3-23a and b. The average 

difference is small and within 2 sampling points and the subsequent data processing is not in 
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much difference. It is meaning that SA+ could generate an almost identical result as standard 

method with only small portion of full dataset at 20%.  

 

       (a) 

 

     (b) 

Figure 3-23: Stack image after long-wavelength static correction corresponding to the inverted 
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velocity model obtained from (a) Standard method with 100% dataset and (b) SA+ with 20% 

dataset. 

The field data test result proves that our proposed method could provide a satisfying and 

stable result, which is identical to standard method, but with much more higher computation 

efficiency. In this case, the computation cost of the standard method and our proposed method 

is 58s and 18s, respectively.  

3.8 Summary and discussions 

In this chapter, an efficient FAT tomography method of SA+ is proposed. Using 

periodically random source redrawing in each inversion iteration, the computational cost is 

dramatically reduced. The method is built up on a modified Gauss-Newton algorithm. To 

mitigate the noise introduced by random subsampling of shots and maintain the convergency 

of inversion, we imposing online ODL to exploit convex-composite structure of the problem 

in sparse domain. The sparse representation provided by such lean-based dictionaries generated 

by training through inversion have benefit on tuning into sparser representation of patterns 

beyond piecewise smoothness. With this sparsity-promoting scheme, a LASSO subproblem 

with a compressive sparsity constraint is formed to be solved within our modified Gauss-

Newton method using two-layer inversion strategy. SA+ method can dramatically reduce the 

computational complexity of the original tomographic inversion problem without degrading 

the image quality by regularizing the sparsity of model update over a predefined transform 

domain.  
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From synthetic data test, SA+ method obtained the optimal performance in terms of 

accuracy and robustness for different noise level. It also provides a practical guidance of 

selecting proper data decimation percentage with different noise level in first break picks. For 

instance, only ~10% dataset can provide a qualified result (RMSE within 100 m/s) at 10% noise 

level, and the computational cost is significantly reduced about 70%. Meanwhile, one should 

also be aware of geological complexity of target area. In practical, for an area with complicated 

near-surface or rapidly changed topography, larger data decimation percentage is necessary to 

ensure the accuracy and stability of SA+. For instance, when noise level rise above 10%, a data 

decimation percentage at least large than 15% should be a safe choice. As shown in real data 

example, though we directly use 20% dataset for SA+ to obtain a reasonable result, the 

computation cost is reduced around 70%. Overall, both of synthetic and field data test 

demonstrates that our proposed method could obtain an almost identical estimated velocity 

model as standard method but with much more higher computation efficiency during the 

inversion. 
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CHAPTER 4 FIRST ARRIVAL ATTENUATION TOMOGRAPHY 

BASED ON ADJOINT-STATE METHOD1 

4.1 Introduction 

The amplitude and the phase of a propagating seismic waves will be distorted due to the 

inelasticity and heterogeneities of the subsurface medium (Bremaecker and Jean-Claude 1977; 

Müller et al. 2010). The quality factor (Q) is designated to quantify the attenuation amount, and 

knowledge of the near-surface Q distribution will be help in improving image quality and 

correcting amplitude and phase information for accurately predicting reservoir properties (Best 

et al. 1994; Carcione et al. 2003). To derive Q distribution from surface seismic data, the 

frequency domain methods are mostly recommended, since that the time domain method often 

faces a challenge in separating intrinsic attenuation from spherical spread loss and 

transmission/reflection loss, etc. (Červený, 2001). Since then, amounts of tomographic 

generalization of the frequency-domain method (Rickett, 2006) are proposed for years, and 

they are often estimating Q distribution through inversion method from surface seismic data. 

One ultimate goal for such attenuation tomography method is to remove the elastic features, 

especially for the ones have contribution to amplitude attenuation (Calvaca and Fletcher, 2009). 

Besides, this is required to be done in certain type of attenuation model with the underlying 

 

1 A version of this chapter has been published. Xinwei Huang, Zhenbo Guo, Hua-Wei Zhou, Yubo Yue. First arrival Q 

tomography based on adjoint-state method. Journal of geophysics and engineering, 2020. 
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assumptions.  

For a typical seismic exploration, many researchers have proved the effectiveness of 

frequency independent Q model over a certain seismic bandwidth either by real data application 

(e.g., Hargreaves, 1991; Brzostowski and McMechan, 1992; Quan and Harris, 1997) or 

experiment study (e.g., Futterman, 1962; Kjartansson, 1979). Considering such a model, the 

intrinsic attenuation of an anelastic medium can be characterized in terms of path attenuation 

factor (t*), which is related to the amount of attenuation along the ray path. It is proportional 

to the travel time and integrating the effects of both elastic and anelastic features of velocity (v) 

and attenuation (Q), respectively. Based on this relationship, to calculate the Q distribution, 

one can first obtain intermediate solution t*, and then determine the Q distribution by inverting 

the linear system formed by t*, t and Q based on the assumption that ray paths are independent 

of Q for a given velocity model (Keers et al., 2012).  

In this chapter, we proposed a two-step spectral ratio attenuation tomography to derive for 

Q distribution model, in which we first estimates t* based on an adaptive correction method 

and then invert these path attenuation factor for the derivation of the attenuation (Q-1) 

distribution. Though many attempts made to extract t* from either reflection or transmission 

data (Nowack et al., 1997; Shen et al., 2016) it is still challenging to estimate Q model at near-

surface by reflection-based Q tomographic inversion due to available offset information of 

shallow depth is limited (He et al. 2016). Since then, our proposed method is built on first 

arrival to build near-surface attenuation for better-utilizing information from far offset dataset. 
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In practice, comparing to transmission or reflection seismic data, one benefit of adopting first 

arrival of pre-stack surface data is relatively stable regarding to less prone to contaminated by 

other arrivals such as reflections, converted waves or interval multiples. The estimation of t* 

in our proposed is done by exploiting amplitude variation at different arrivals using spectral 

ratio methods, which is quite similar to other previously proposed methods (Ganley et al. 1980; 

Brzostowski and McMechan, 1992; Cavalca and Fletcher, 2013 and 2015). However, unlike 

other t* estimation approaches establishing on the same frequency response regarding the 

seismic attenuation effects, the influences of different frequency response of waveform, such 

as direct wave, turning wave and refraction were considered in our proposed method. Such 

influences were blended in the first arrivals, especially in the area of direct wave and refraction 

interfered each other, will eventually degrade the accuracy of t* estimation. An adaptive 

correction method will be further adopted to evaluate the similarities of original first arrivals 

and synthetic waveforms generated by different estimated t* based on different wave types, 

from which the optimal estimated t* will be selected as observed t* response of field data. Then, 

following a generalized tomographic inversion scheme by minimizing the discrepancy between 

observed t* and synthetic t*, the Q distribution can be achieved. To maintain the efficiency and 

feasibility of practical application on large seismic dataset, we adopt the same methodology of 

adjoint-state technique (Leung and Qian, 2006; Taillandier et al., 2009) into our tomographic 

inversion scheme as discussed in Chapter 2. An attenuate path factor t* related governing 

equation is formulated to be implemented with adjoint-state technique, by which the explicit 

calculation of the gradient of misfit function could be avoided during tomographic inversion. 
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Our first arrival attenuation tomography algorithm is tested on synthetic and field data to 

demonstrate its feasibility and effectiveness of this method. A practical implementation about 

how to estimate t* through spectral ratio and adaptive correction method in detail is also 

discussed in this chapter, especially for the case of different wave types (e.g., direct wave and 

refraction) interfered each other.  

4.2 Theory Background 

As discussed in previous section, we assume the wave propagation in a dissipative 

homogeneous medium can be described by a linear system for linear frequency attenuation 

model (Aki & Richards 2002). If the quality factor 𝑄 is frequency-independent — a constant  

𝑄 model over the frequency band observed in seismic signal (Kjartansson 1979; Ganley and 

Kanasewich 1980). Ignoring velocity dispersion (i.e., 𝑐(𝑓) = 𝑐), for a particular frequency 𝑓, 

the corresponding wavefield solution after propagating for a certain time can be determined by 

𝑈̂(𝑓, 𝑡) = 𝑈̂𝑟𝑒𝑓(𝑓)𝐺𝑃(𝑓, 𝑡)𝑒
𝑖𝜙(𝑓,𝑡)𝑒−𝑓⋅𝑡

∗
，               (4.1) 

where 𝑈̂𝑟𝑒𝑓 is the wavefield frequency response at reference location, and the G   factor is 

assumed to be frequency-independent responsible for the effects of geometrical spreading, 

reflection/transmission coefficients, etc. Here𝑃(𝑓)is frequency-dependent amplitude term of 

wavefield response varied with different wave types propagating in the medium. The fourth 

and fifth terms in the fourth exponent are responsible for phase shift of wavefield response, 

and the fifth exponent is responsible for attenuation effects on amplitude decay (Ward and 

Toksöz, 1971). It is linearly proportional to frequency indicating that higher frequencies 
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contents suffer more attenuation than lower ones, and it can be characterized in terms of path 

attenuation factor 𝑡∗ ((Romero et al. 1997; Cavalca and Fletcher, 2015), defined by  

𝑡∗ = ∫
𝜋

𝑄(𝑙)𝑐(𝑙)
𝑑𝑙

𝑟𝑎𝑦
 .                              (4.2)                                                   

Where the integral is evaluated along the ray path l and two points source and receiver 

situated on it. 𝑄(𝑙)and 𝑐(𝑙)are the quality factor and seismic velocity respectively, defined 

along each point of the ray path.   

The first-arrival attenuation tomography requires estimation of attenuated traveltime 

based on Equation (4.1). Then the attenuated traveltime will be used to invert for Q factor 

model according to Equation (4.2) trough tomographic inversion Conventionally, the 

computation cost of ray-based tomography is almost linear with number of source-receiver 

pairs, whose ray path forward modeling is both time and memory consuming when coming for 

large seismic dataset. To improve the computation efficiency, we adopt our first arrival Q 

tomographic inversion with adjoint-state technique as introduce in Chapter 2. However, we 

first need to formulate a new governing (or Eikonal) equation to establish the relationship of Q 

distribution, velocity field and the corresponding time field. 

4.2.1 Forward modeling: governing equation for t* 

Converting Equation (4.2) from integral form to differential form, yields 

                    

*dt
dl Qc


=

,                                       (4.3)                                    



 

124 

 

where d
dl

is directional derivative along the direction of ray path. Keers et al. (2001) has 

proved that the attenuation only affects the waveform through the complex and frequency-

dependent traveltime when attenuation is small (𝑄-1 ≪ 1), other than changing of ray paths. In 

other words, the ray path will remain the same regardless of whether the media is viscosity or 

not. Therefore, it is feasible for us to separate the velocity and Q tomographic inversion into 

two cascading applications in our proposed method. 

In isotropic media, the propagation direction of ray is consistent with the gradient of the 

first arrival traveltime field. Once we obtained the inverted velocity model by travel-time 

tomography, we can calculate the first arrival by solving the Eikonal equation, which also 

provides the magnitude of the gradient of the first arrival traveltime field, 

            ( )
( )
1

t
c

 =x
x

 .                                  (4.4)                                                     

For the convenience of derivation, denoting   as ( )m x   to represent the 

parameterized attenuation model. The left side differential term
*dt

dl
 in Equation (4.3) yields 

( )*t x  as a Laplace operator applied on, and multiplied it with equation (4),  

             ( ) ( ) ( )
( )

*

2
t t m

c


  =x x x

x
.                              (4.5)                                   

 As we assumed that velocity field  and its corresponding travel time field  is 

already known, the Equation (4.5) is the governing equation of t* and establish the relationship 

between t* and Q distribution of  for each spatial point  throughout the whole model 
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space. Similar to Chapter 2, this governing equation could be solved by FSM algorithm, which 

is finite difference method performed in the model parametric space, but with different 

parameterization. For a more detailed numerical implementations of FSW, we refer to Leung 

& Qian (2006). In this case, the computational cost of Equation (4.5) is linear with the size of 

model, rather than the number of shot-receiver pairs. Besides, the ray-path storage required by 

ray-tracing based algorithm is not required, hence the memory occupation will be reduced 

thoroughly. From Equation (4.5), we could see that t* is linearized by the model parameter 

𝑚(𝒙), which indicates that the corresponding attenuation tomographic inversion will also be 

transferred into a linear process. 

The accuracy of governing equation 

In order to verify the accuracy of numerical solutions obtained from Equation (4.5), we 

conducted a synthetic test to compare the forward modeling results generated by both of 

conventional ray-tracing algorithm based on Equation (4.2) and FSW algorithm based on 

Equation (4.5). The synthetic test is performed in a 2D constant background velocity model as 

shown in Figure 4.1a. The model width is 2000m and depth is 800m. The value of rectangular 

attenuation anomaly Q is unitless of magnitude 20. The source located right beneath Q anomaly 

at depth of 700 m and lateral position of 1000m. The receivers are all located along the flat top 

surface of the model. From Figure 4.1b, we can see that two calculated t* are almost identical 

to each other, except the small misfit above the boundary corners of the Q anomalies. These 

errors are caused by the limited precision of finite difference method solving for Equation (4.5), 
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and they are acceptable without any significant impact on the final tomographic inversion result.  

 

(a) 

 

(b) 

Figure 4- 1: Comparison of t* calculated by two forward modeling method based on Eq.2 (ray-

tracing) and Eq.5 (Eikonal equation solved by FSM): a) True attenuation model (𝑄-1); b) t* calculated 

by equation 2 in solid blue line and t* calculated by equation 5 in dashed magenta line. 

4.2.2 Attenuation Tomography based on adjoint-state method  

Q tomography aims to obtain the estimated Q distribution model that minimizes the 
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difference between the observed and synthetic t*. Given the model  (  in this case), a 

least square misfit function ( )O m is chosen to quantify such difference and can be defined as 

 

( ) ( ) ( ) ( )

( ) ( ) ( )  ( )

2
* *

1 1

2
* *

1

1
, , ,

2

1
, ,

2

ns nr

cal obs

s r

ns

cal obs r

s

O m w s r t s r t s r

w t s t s d

= =


=

 = − 

 = − − 



 x x x x x x

,  (4.6) 

where s is shot number, r is receiver number, ns is the number of shots, nr is the number 

of receivers in each shot,   is the whole model space, ( ),w s r  and ( )w x  is weighting 

coefficient for each receiver, *

calt  is the calculated attenuated time and *

obst  is the observed 

attenuated time. rx is the set of all the receiver locations in one shot.  

 Here we simply use the conjugate gradient method to invert for the attenuation model 

iteratively. The Q factor at  iteration will be update by  

1

update

k k km m m+ = +
,                                  (4.7) 

where 
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0

0

update

k update
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g if k
m

g m if k −

− =
= 

− + 
.                          (4.8) 

To avoid intensive computational burden of Fréchet derivative matrix approximation, we 

adopted the adjoint-state technique to efficiently obtain the gradient  of misfit function (4.6) 

by solving for a new formulated adjoint Partial Differential Equation (PDE), and it turns 

original inverse modelling problem into a forward modelling problem. Here we derive the 

mathematical representation of  based on adjoint state technique (Plessix 2006; Huang & 
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Bellefleur 2012). 

Suppose a perturbation m  of the attenuation model m   induces a perturbation 𝛿𝑡∗ of 

attenuated time , and also induces a perturbation ( )O m of objective function ( )O m . By 

ignoring the higher order term of , ( )O m can be expressed by 

 ( ) ( ) ( ) ( )2 * * *

1

ns

cal obs r

s

O w t t t d  


=

= − −m x x x x .             (4.9) 

Since Equation (4.5) is a linear equation,   and   is also controlled by Equation 

(4.5). For expression convenience, we will only derive objective function perturbation for a 

single source as ( )sO m , and the total perturbation ( )O m would be a simple summation 

from all sources. Introducing the relationship between  and   into Equation (4.9) by 

augmented function yields 
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where  is adjoint state variable. Simplifying Equation (4.10) through integration by parts for 

the second term yields  
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The terms in Equation (4.11) associated with m should be kept and the other terms can 

be eliminated by choosing adjoint state variable  that satisfies 
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 ( )( ) ( ) ( ) ( )* * 2

cal obs rt t t w   = − −x x x x , (4.12) 

and boundary condition  

 ( )* 0t t 


  = x ds , (4.13) 

then Equation (4.11) can be further simplified to 

 ( ) ( ) ( )
( )

s 2
O m d

c


  


= −m x x x

x . (1) 

Now we build the relationship between m  and ( )O m  , and the gradient can be 

expressed as 

( )
( )

( )2
g

c


= −

x
x

x
.                               (4.15) 

Adjoint state variable  over the parametric space can be solved by Equation (4.12) and 

(4.13), and its physical meaning can be explained as the back propagation of the attenuated 

time residual from attenuation model to the source. Once we obtained the misfit function 

gradient ( )g x , the Q distribution in terms of  can be iteratively updated according to 

Equation (4.7), until the misfit ( )O m reduces to a given tolerance level. 

4.2.3 Estimation of attenuated time and adaptive correction method 

To conduct first arrival attenuation tomography, two input of velocity model  and 

path attenuation t* are required. At the first stage of our first arrival attenuation tomography, 

an inverted velocity model  can be obtained by any general traveltime tomography. It will 
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be used as one of inputs for the following Q tomographic inversion to calculate the misfit 

function gradient, as indicated by Equation (4.15). The synthetic first arrival traveltime for each 

receiver will be calculated according to  . They will be utilized as guidance for 

constraining the estimation of attenuated traveltime within certain time windows from 

attenuated seismic traces. In practical, such implementation has benefit on obtaining stable 

synthetic first arrival traveltimes for all receivers without involving manual picking errors. This 

is also one aspect of our proposed first arrival attenuation tomography superior to those of 

using seismic reflection, refraction or other types of data. 

Now we could properly locate a time window at synthetic first arrival traveltime in a single 

seismic trace, in which the path attenuation factor is included. The following issue is the main 

challenge of estimating  from windowed seismic trace, where the  is implicitly blended 

in the first arrival wave trains. Obviously, it is impossible to manually pick   from 

seismogram as conventional traveltime tomography process. Since then, we developed a 

feasible approach to extract   from the first arrival by utilizing its amplitude spectrum 

variation. 

 According to the propagation properties described by Equation (4.1), to avoid the 

complex and wrapping issues caused by phase shifting term, we simply use its amplitude 

information to estimate attenuated time. From Equation (4.1), we have the amplitude spectrum 

of attenuated wavefield response propagating for a certain time expressed as  

 𝐴(𝑓) = 𝑃𝑔𝐴𝑟𝑒𝑓(𝑓)𝑃𝑝(𝑓)𝑒
−𝑓𝑡∗. (4.16) 



 

131 

 

( )refA f  is the amplitude spectrum of wavefield at reference location, 𝑃𝑔 is frequency-

independent geometric factor including the effects of geometrical spreading, 𝑃𝑝(𝑓)  is 

frequency-dependent propagation response for a certain wave type, and 𝑒−𝑓𝑡
∗
is the attenuation 

response. 

To estimate 𝑡∗, we need to remove the effects from other frequency-dependent terms of 

both 𝐴𝑟𝑒𝑓(𝑓)  and 𝑃𝑝(𝑓) . Then the left attenuation response term 𝑒−𝑓𝑡
∗
 can be used for 

estimating  𝑡∗.Now we will discuss the exact forms of 𝑃𝑝(𝑓) corresponding to different wave 

types. There are mainly three wave types existed in first arrival waveform: direct wave, turning 

wave and refraction. It is not easy to separate them directly in apparent way. Fortunately, the 

direct and turning wave have the same amplitude spectrum and waveform as source wavelet, 

while the waveform of refraction is the integral of source wavelet (Aki & Richards 2002). 

These frequency-dependent propagation responses can be expressed as 

( )

( )

1

1

2

p

p

P f for direct wave and turning wave

P f for refraction
f

=

=
.                   (4.17)              

Figure 4-2 illustrates that how frequency-dependent propagation responses varied with 

these three wave types. All these waveforms are modeled by a 3D acoustic equation finite 

difference solver and their waveforms of first arrival were windowed out manually. The source 

wavelet we used in this experiment is Ricker wavelet at main frequency of 15 Hz. In the left 

column of Figure 4-2, we could see that the direct and turning wave have the identical 

waveform as original Ricker wavelet, while the refraction is different. One should note that the 
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refraction preserves a low peak frequency even the attenuation effect is not considered in this 

acoustic modelling case. Such low peak frequency phenomenon is caused by the frequency-

dependent propagation responses as indicated by Equation (4.17). 

 

Figure 4-2：Waveform and Spectra of different type of waves. 

Inspired by the observation above, to identify and separate refraction from other wave 

types among first arrivals, we will calculate attenuated time twice by Equation (4.16) according 

to assumptions of direct/turning wave and refraction respectively. Here we use logarithmic 

spectral ratio method to estimate attenuated time. The natural logarithm applied to the both side 

of Equation (4.16) gives a linear function  

 
( )

( ) ( )
*ln - +ln g

ref p

A f
ft P

A f P f
= . (4.18) 
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Here   can be treated as a constant. Thus, within selected frequency band, the 

attenuated time can be estimated by applying the least-square linear regression which calculates 

the average slope of spectrum ratio  with frequency 𝑓. 

These two estimated attenuated times will be applied with reference signal 𝐴𝑟𝑒𝑓for all 

selected frequency bands based on Equation (4.16), to generate synthetic attenuated seismic 

data 𝑆𝑠𝑦𝑛 in time domain. Then we can evaluate the similarity between synthetic and real 

attenuated seismic data 𝑆𝑟𝑒𝑎𝑙  for each sample point ( 0,1,2,..., .i n=  ) in time domain. The 

similarity coefficient is defined as 

 .                   (4.19) 

Among two estimated attenuation time, the one with larger similarity coefficient will be 

selected as optimal attenuated time for further first arrival Q tomography. Furthermore, 

similarity coefficient can be served for quantifying the reliability of the attenuated time. In 

practice, many of traces in seismic data contaminated with noises severely, from which is 

unreliable to be used as attenuated time extraction. Based on our experiment, we prefer to 

remove those noisy traces whose similarity coefficients are less than 0.5 and using the 

similarity coefficients as weighting factors in tomographic inversion for the remaining traces. 
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4.3 Numerical test  

4.3.1 2-D synthetic data test: two-layer model 

1. Observation on direct wave and refraction  

A two-layer synthetic model test is presented here to illustrate the influence of different 

wave types on estimating t*. As shown in Figure 4.3, this half space velocity model consists of 

two constant velocity layers, the top layer is 2000m/s in velocity and 200 m in thickness, and 

the bottom layer is 4000 m/s in velocity. 

In this section, we will first examine the waveform behaviors and their amplitude spectra 

in the case of fully elastic assumption (without Q attenuation), and the difference of direct and 

refracted waves will be presented. The source wavelet is a Ricker wavelet with dominant 

frequency of 25 Hz. The original shot gather is shown in Figure 4.4. The first arrival waveform 

is dominated by direct wave from source location (at 500 m) to around 1300 m with an offset 

of 800 m. Then the refracted wave appeared to be recognizable first arrivals from distance of 

1300m. Two seismic traces were extracted at distance 600 m and 1800 m as shown in Figure 

4.5. In order to obtain accurate frequency spectrum of direct wave and refraction respectively, 

a time window from 0.0 s to 0.6 s is applied as indicated by rectangular box in magenta dash 

line of Figure 4.5, and the direct and refraction waveforms were extracted as shown in figure 

6a and aligned based on the emergent onset point in figure 6b.   
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Figure 4-3: Two-layer velocity model. 

 

Figure 4-4: Original shot gather. 
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Figure 4.5: Seismic records at 600 m (left) and 1800 m (right). 
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(a) 
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(b) 

Figure 4-6: Direct (left column) and refraction waveform (right column) were (a) 

extracted from time window of 0.0 to 0.6s, and (b) aligned by emergent onset point. 

As mentioned in Aki and Richards (2002) of box 6.4, the head wave possessed the same 

amplitude spectrum and waveform as original source wavelet, while the refraction waveform 

is time integral of source wavelet. In our case, the head wave consists of both of direct and 
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turning waves. In such fully acoustic synthetic model test, the waveform of direct wave and its 

amplitude spectrum should be identical to the original source wavelet, which is a 25 Hz Ricker 

wavelet. On the other hand, the waveform and amplitude spectrum of time domain integral of 

direct wave should be identical to those of refracted wave. Such conclusion is supported by the 

evidences observed from Figure 4.7 and 4.8.  

In figure 8, the original direct wave appeared to be less emergent onset and shorter tail 

than both of its time domain integral and refraction waveforms, as labeled by black and blue 

arrow respectively. The waveform of time integral of direct wave in the middle column is 

similar to the one from right column of refracted wave, excluding the artificial noise raised by 

forward modeling as indicated by red arrows. 
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Figure 4-7: The comparison of seismic waveforms of original direct wave (left), time 

domain integral of original direct wave (middle) and refracted wave (right). 
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Figure 4-8: The comparison of amplitude spectrums of original direct wave (top), time 

domain integral of original direct wave (middle) and refracted wave (bottom). 

Then their amplitude spectrums were compared in Figure 4.8 within a time window from 

0.0 to 0.2 s as indicated by magnet dash line box from Figure 4.7. From Figure 4.8, we could 

see the original direct wave preserves the amplitude spectrum of source wavelet with central 

frequency at 25 Hz. Meanwhile, both amplitude spectrum of its time domain integral and 

refraction appeared to have low peak central frequency shift toward around 18 Hz, and they 

were almost identical. The minor amplitude distortion of time domain integral around peak 

frequency was caused by the 0.2s time window truncation in time domain. 

One should note that such observation is from a fully elastic model without introducing Q 

attenuation, and difference between the amplitude spectrum of direct wave and refraction had 

already shown up. Such difference is becoming more significant in consideration of Q 

attenuation, and eventually could be utilized to help us on estimation for the attenuation time 
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t*, as presented in the following test. 

Here we use the same velocity model as shown in Figure 4.3, while introducing two 

attenuation anomalies as shown in Figure 4.9. The Q value of one attenuation anomaly is 20 

and located within 300 to 400 m distance along the surface, with thickness of 200m. Another 

one is Q value of 15 within 1500 to 1600 m distance along the surface with same thickness. 

The blue dash line box depicted the boundaries of these two anomalies. The forward modeling 

method we used in this test is based on frequency domain finite difference visco-acoustic 

equation. The source wavelet is exact same ricker wavelet as previous test at 25 Hz. 

Correspondingly, a synthetic shot gather (source at 500 m) obtained from this Q model is shown 

in the left column in Figure 4.10, and the right column is the forward modeling result without 

Q attenuation. Three seismic traces at 200, 600 and 1665 m are extracted from these two shot 

gathers and labeled as blue and red line to indicate with and without Q attenuation in Figure 

4.9. Some minor phase shift (delay) and amplitude distortion could be observed in blue seismic 

traces with Q attenuation.  
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Figure 4-9: True Q model. 

 

Figure 4-10: Comparison of shot gathers (source at 500 m) with Q attenuation (left) and 

without Q attenuation (right). 
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Figure 4-11: Comparison of seismic traces at 200 m (left), 600 m (middle) and 1665 m 

(right). The blue and red line indicate seismic trace without Q attenuation and without Q 

attenuation respectively. 
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Figure 4-12: First arrivals of seismic trace at 200 m (left), 600 m (middle) and 1665 m 

(right). The blue and red line indicate seismic trace without Q attenuation and without Q 

attenuation respectively. 

The corresponding first arrival is cut out from each seismic trace as shown in Figure 4.12. 

Then the spectral ratio method was applied to estimate t* in the following section. 

2. Modified logarithm spectral ratio method  

Firstly, the spectral ratio method was applied on direct wave with Q attenuation from red 

seismic trace in left column of Figure 4.12. Here we choose the dominant frequency contents 

between 15 Hz and 35 Hz for linear fit. The spectral ratio result was shown as blue line in right 

column of Figure 4.13, and the red line indicates the linear fit result, indicating the estimated 

t* from spectral ratio method is 0.007643 s. The true t* could be derived from equation (4.2), 
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and its value is 0.007853 s (Q = 20, velocity = 2000m/s and travel distance = 100 m). We could 

see the estimated t* obtained from spectral ratio method is very close to the true one, and the 

minor errors are caused by forward modeling, which is also acceptable. Instead of apparent Q 

value, the spectral ratio method was only implemented for obtaining the estimated t*, which is 

the cumulative effect of Q anomalous body on the whole propagation process of seismic wave 

through subsurface media. The following tomographic inversion was conducted for deriving 

out the spatial Q value along the raypath based on t*. 

 

Figure 4-13: Amplitude spectrum of direct wave with and without Q attenuation (left) and 

spectral ratio method result (right). 

The previous section is the case of only direct wave involved in the first arrival waveform 

trains, and the logarithm function for spectral ratio method without considering frequency-

dependent propagation response 𝑃𝑝(𝑓) can be expressed as:  

( )

( )
*ln - +ln g

ref

A f
ft P

A f
= .       (4.20) 

The equation (4.20) works well when its straightly applied in direct wave case, since that 
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the frequency response of original source wavelet will be preserved for direct wave as 

presented in section 4.1.3 (Figure 4-2). However, it will fail in the case of refraction without 

considering its wave type frequency response 𝑃𝑝(𝑓).  In the following part of test, refraction 

will be introduced and the performance of with or without taking 𝑃𝑝(𝑓)  into account for 

estimating t* will be compared. 

Similarly, the true t* could be calculated as shown in previous section with utilizing 

propagation mechanism of refraction, and is 0.01047 s. The spectral ratio method result is 

shown in the right column of Figure 4.14. The top right one is the result without considering 

𝑃𝑝(𝑓), and estimated t* is 0.007643 s, which is far from the true t*. The bottom right figure 

shows the result considering 𝑃𝑝(𝑓) using logarithm spectral ratio from Equation (4.18), and 

its estimated t* is equal to 0.009536 s, which is very close to the true t*. It is indicating that the 

accuracy of estimated t* by spectral ratio method will be improved after introducing correct 

𝑃𝑝(𝑓) for certain wave type. 
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Figure 4-14: Amplitude spectrum of direct wave with and without Q attenuation (left 

column) and spectral ratio method result without 𝑃𝑝(𝑓) (top right) and with 𝑃𝑝(𝑓) (bottom 

right). 

3. Adaptive correction method – determination of estimated t* 

Now the question is how to determine estimated t* derived from either direct or refracted 

wave for specific cases, since these two types of waveforms in the first arrival waveform trains 

cannot be distinguished automatically. To address this issue, we applied both estimated t* to 

the reference signal (source wavelet) to generate two synthetic seismic traces and calculated 

their similarities with original seismic traces. Eventually, the one with higher similarity value 

will be selected as final estimated t*.  

Figure 4.15 showed one example of how the adaptive correction method worked. The top 

left figure is the original reference signal and the top right one is refracted wave after 

attenuation of reference signal. The bottom left is synthetic seismic record generated based on 
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estimated t* assuming only direct wave containing in first arrival waveform trains. The bottom 

right one is result generated based on estimated t* accounting for 𝑃𝑝(𝑓) as refracted wave 

involved in first arrival waveform trains. Form their final similarity results, we could see that 

the refracted wave assumption will be better fit for this case (similarity = 0.959108), and its 

wave propagation factor 𝑃𝑝(𝑓) could increase the accuracy of t* estimation.   

 

Figure 4-15: Reference signals (top row) and similarity of their synthetic seismic trace 

(bottom row). 

4. Interference of different wave types  

Practically, the first arrival is mostly stable maintain relatively higher SNR than other 

secondary wave types of raw seismic data. Still, it is required a cautious pre-process to suppress 

the contaminated noise while properly preserving the salient amplitude information of signal. 

Apart from noise contamination, interference of different wave types would also have 

significant impact on t* estimation by spectral ratio method. To suppress the influence raised 



 

150 

 

from interference of different wave types or events, we will follow resolutions below in real 

data application: 

a. Noise removed by waveform similarity judgement: 

In the case of the energy level of the interference signal is quite close to that of the first 

arrivals (very low SNR), even the seismic waveform could be distorted severely. Such 

distortion could lead the original waveform to be much different from either direct wave or 

refracted wave. Then we could calculate its waveform similarity as described in section 4 to 

distinguish useful signal from noise.   

Here we assume that the similarity between recorded seismic trace and reference signal 

(statistical source wavelet) is a. And the similarity between recorded seismic trace and the time 

integral of reference signal (similar to direct wave) is b. The manual threshold c here is set to 

be small enough, and the threshold of similarity difference is d. Then the recorded seismic trace 

should satisfy the following condition to be further utilized for estimating t*: a > c ^ b > c ^ 

abs (a – b) > d. 

These series of conditions could guarantee that the noise contaminated signal is still 

available for estimating relatively reliable t*. Those who do not meet the conditions will be 

removed during the process due to the redundancy of seismic data, especially in first arrival 

tomographic inversion. 

Here is one example of how we handle with different wave types interference. The 



 

151 

 

velocity and Q model is exactly same as used in section 4.1.1 and 4.4.2. The original shot gather 

is presented in Figure 4.16, and the direct wave and refraction wave was interfered around the 

horizontal distance of 450m. The first arrival is cut out and flatten out with amplitude 

normalization of each channel, as shown in Figure 4.17. 

 

Figure 4-16: Original shot gather (interference of direct and refracted wave). 

 

Figure 4-17: Normalized first arrival fatten out.
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Figure 4-18: Estimated t* based on direct wave and refraction.

 From Figure 4.16, one can observed that the first arrival is only dominated by direct wave 

before interference area (around 550 m) and refracted wave after interference area. Since then, 

the wave propagation effect should come from direct wave and refracted wave before and after 

interference area, respectively. The results of estimated t* confirmed such observation as shown 

in Figure 4.18. We could see that the estimated t* based on direct wave (blue line) coincided 

quite well with true t* (blue line) before interference area, and then the one based refracted 

wave (red line) is becoming more fit after interference area. 
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Figure 4-19: Similarities calculated based on direct wave and refraction. 

This phenomenon could also be observed in similarity results as shown in Figure 4.19. 

Again, the low similarity area (similarity < 0.5) is within the zone of interference. The direct 

and refracted wave preserve good similarities (similarity > 0.5) before and after interference 

area, meaning that the corresponding estimated t* are reliable. 

 

Figure 4-20: Final estimated t*. 

Eventually, the final estimated t* is shown in Figure 4.20. The non-effective estimation 

area is corresponding to interference area, and the estimated t* in this area is negative, which 
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will be abandoned from this area to ensure the reliability of the results. Through this process, 

most of influence caused by waveform interference could be avoided.  

b. Re-check the misfit of true t* and forward modeling t* in late stage of tomographic 

inversion iteration: 

For other small amounts of waveform interference or noise cannot be removed by 

similarity judgement, we will re-check the t*cal obtained from forward modeling according to 

Q model of current iteration in the late stage of inversion, and compared it with estimated t*est. 

The estimated t*est leading to misfit larger than certain threshold (determined by current data 

residuals) will be treated as abnormal t*est and excluded in the following inversion process. It 

is quite intuitive to recognize that such abnormal value cannot be corrected through inversion 

process, since that it is not conformed with the principle of seismic wave propagation.    

Based on these two treatments to interference signal, we obtained the final Q model as 

shown in figure 19. Both of inverted attenuation anomalous bodies were slightly deflected 

along the main raypath direction due to the simplex raypath contents in this simple model, 

which is a normal phenomenon in such ray-based tomographic inversion. 
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Figure 4-21: Inverted 1/Q distribution model 

4.3.2 2-D synthetic data test: simple model with topographic 

A 2-D numerical seismic survey is simulated over a 10000m long by 1000m deep model 

comprising two layers (Figure 4-22). The velocity of top layer is linearly increasing with depth 

from 1500m/s to 3000m/s. The bottom layer becomes homogeneous with constant velocity of 

4500m/s. The corresponding attenuation model is shown in Figure 4-23. The background 

attenuation values are zero, and two attenuation anomalies located beneath the surface. The 

shapes of anomalies are both ellipse with semi-major length of 200m and semi-minor axis 

length of 150m. The attenuation value is 0.02 (𝑄 = 50) at the center of the anomaly and reduces 

linearly to zero from center. total of 490 sources and 2000 receivers are deployed along the 

topographic surfaces with source and receiver intervals of 20 and 5m, respectively. The 

synthetic data was generated by a visco-acoustic wave equation finite difference solver, which 

is based on standard linear solid method (Carcione et al. 1998). The source wavelet is a Ricker 
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wavelet with 15Hz dominant frequency. 

 

Figure 4-22: A 2-D synthetic data test: the true velocity model. 

 

Figure 4-23: The true attenuation model (1/Q). 

We compared the attenuated traveltime estimated by our proposed method with the 

theoretical attenuated traveltime generated by solving equation (4-5) as shown in Figure 4-24. 

The almost identical result indicates the capability and validity of estimating attenuated 

traveltime by our proposed method in such noise-free data. In practice, we will not use all 
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estimated attenuated traveltimes for following attenuation tomography. The amplitude 

spectrums of seismic traces will be affected by the superpositions of both turning waves and 

refraction. In such case, the corresponding similarity coefficients are quite small to lead zero 

weights in Q tomographic inversion. 

 

Figure 4-24: Comparison of estimated t* and theoretical t*. 

We first use the true velocity to perform Q tomography. The inverted Q model using true 

velocity is shown in Figure 4-25.  Compared with the true attenuation model (Figure 4-23), 

we can find the inverted Q model is almost same with true one except smearing “tails” below 

the anomalous bodies. Such artifacts are mainly caused by the limited acquisition and non-

uniform directions of ray path near the high velocity layer. 
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Figure 4-25: Inverted Q model using the true velocity model. 

 

Figure 4-26: Inverted velocity model using first arrival tomography.  

We then use the inverted velocity model generated by traveltime tomography (Figure 4-

26) to perform Q tomography.  The inverted velocity model is structurally consistent with true 

model but has a lower resolution. Velocities at the left and right boundaries is less reliable 

because of limited ray coverage. The attenuation model inverted by Q tomography using the 

inverted velocities is shown in Figure 4-27. The shape of the two attenuation anomalies is 

almost same as the one shown in Figure 4-25 except the appearance of insignificant “tails” 
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artifacts caused by the inaccurate velocity model. It is evident that the near-surface Q anomalies 

could be successfully reconstructed by our proposed two-steps first arrival Q tomography. 

 

Figure 4-27: Inverted Q model derived by Q tomographic inversion using inverted velocity model. 

4.3.3 2-D synthetic data test: Marmousi model 

The first arrival Q tomographic inversion based on adjoint-state method is tested on 

Marmousi model with strong heterogeneous presence (Figure 4-28a). The model is 4500m 

wide and 1000m deep, and we use a fix-spread acquisition geometry on the surface with 221 

sources and 884 receivers of intervals 20 and 5m, respectively. The source wavelet is same as 

in the previous simple 2-D model experiment, whose dominant frequency is 20Hz. The 

corresponding attenuation model is presented in Figure 4-28b, and it shows a relatively high 

attenuated trends in left-side region comparing to right-side.  

As shown in Figure 4-28d, the inverted attenuation model estimated by the true velocity 

model produces a good Q tomographic inversion result in near surface, ranged from top surface 
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down to around depth of 300m. It preserves a similar trend comparing to the true answer from 

Figure 4-28b, and even some detailed features of attenuated anomalies are slightly 

reconstructed, e.g., in between distance of 2400 and 3000m.  Relevantly, the result using 

inverted velocity model (Figure 4-28c) shows a similar near surface attenuation distribution as 

presented in Figure 4-28e. However, the result resolution is degraded as losing some edge and 

detailed feature depictions comparing to Figure 4-28d. It indicates that the accuracy of inverted 

model we used for Q tomography has impacts on the quality of inverted attenuation model by 

our proposed method. A precise velocity model could bring benefit to both of attenuated 

traveltime estimation and Q tomographic inversion.  

Have limited offset, we could only retrieve a reasonable near-surface attenuation structure 

based on first arrival Q tomography. The ray coverage on the edges of model is poor and 

becomes worse with increasing depth, leading to unreliable inverted results. This could be one 

limitation of our first arrival Q tomography. Other than that, there is good agreement true and 

inverted attenuation model trough the near surface profile. This figure indicates that our 

tomographic methods is capable of accommodating such strong heterogenous.  
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(a) 

 

(b) 
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(c) 
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(e) 

Figure 4-28: 2-D synthetic data test on Marmousi model. (a) True velocity model; (b) true 

attenuation model; (c) inverted velocity model by first arrival traveltime tomography; (d) 

inverted Q model derived by true velocity model of (a); (e) inverted Q model derived by 

inverted velocity model of (c). 

4.3.4 Field data test  

 

Figure 4-29: Survey geometry map: source (red) and receiver (blue) position. 
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Figure 4-30: Elevation map of survey area: the magnet line indicates the position of both velocity and 

Q model profile presented in figure 15 and 16 along y direction at 56385m. The blue line is same but 

along x direction at 39585m. 

This example is an application on 3D land field dataset acquired at a mountainous area in 

southern China, and the whole seismic survey area is around 350km2. We selected one part of 

the data to test the feasibility and effectiveness of our proposed method. The acquisition 

geometry is shown in Figure 4.29. The total source and trace number are 7,407 and 32,558,862, 

respectively. The maximum offset is approximately 8500 m. The seismic recording length is 

6s with sample rate of 2ms. The elevation map of our chosen survey area is shown in Figure 4-

30, in which the maximum elevation difference is 1040m, including different complex 

landforms such as river channel deposit, piedmont alluvial fan and others. Since then, the 

velocity lateral variation and attenuation effect in in near surface is expecting to be intensive. 

Additionally, the poor condition of seismic data acquisition leads to a poor quality of seismic 

records with low SNR, which is very challenging to obtain a satisfied tomographic solution.  
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Figure 4-31: Original shot gather. 

 

(a) 
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(b) 

Figure 4-32: Frequency division scanning of original shot gather: red arrows indicate locations 

of shallow reflections. (a) 10-25Hz frequency range shot gather; (b) 25-60Hzfrequency range shot 

gather. 

One shot gather is selected as shown in Figure 4.31 to further illustrate the details of this 

dataset. The seismic traces are contaminated by noise and shallow reflections can be barely 

identified from original sot gather. A division frequency scanning analysis is performed on the 

record to compare the low frequency (10-25Hz) and high frequency (25-60Hz) features in 

Figure 4.32a and b, respectively. The shallow reflections (marked by red arrows) appeared at 

the low frequency band range of Figure 4.32a, and vanished at higher frequency band range of 

Figure 4.32b.  It indicates the presence of some local attenuating absorption anomalies in the 

subsurface. The corresponding interferences caused by attenuation effects could also be 

observed in CMP stacking of Figure 4.33a, in which differences of both resolution and energy 
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levels appeared in left and right panels. The lacking of high frequency components in left panel 

is more apparent than right one as shown in Figure 4.33b and 4.33c. All these observations 

prove the existence of some strong attenuation anomalies in this area. More specifically, the 

attenuation effects in the left region are much stronger than right region as depth increasing. 

 

(a) 

 

(b) 

 

(c) 

Figure 4-33: Original CMP stacking image results. (a) Original CMP stacking; (b) amplitude 

spectrum of left panel in (a); (c) amplitude spectrum of right panel in (a). 
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A 3-D near-surface velocity model is estimated by first arrival traveltime tomography as 

presented in Figure 4.34. The most of recovered near-surface velocity structure of left region 

shows a low velocity anomaly, while high anomaly presenting on right. According to the 

relationship of strata velocity and medium Q factor, a low velocity rock has less compaction, 

and consequently, the attenuation effect will be stronger. This observation is consistent with 

the CMP stacking (figure 4.32a). 

 

Figure 4-34: Inverted velocity model derived by FAT tomography. 

The inverted velocity model is utilized for generating first arrivals, by which the 

attenuated first arrival waveforms will be estimated as described in section 4.2.3. The 

waveform length is determined by the dominant frequency from current seismic traces statistics. 

In this case of poor-quality (low SNR) data condition, to avoid unstable attenuated time 

estimation by single channel (trace), we employed a multi-channel weighted average function 



 

169 

 

to apply on several high-quality reference traces. We choose 50 shot gathers with largest 

dominant frequencies, and then apply a weighted averaging on those near offset channels 

within 100m to maintain high quality of data. The averaged reference trace will be eventually 

used in t* estimation through spectral ratio algorithm. However, the weighted averaging over 

multiple traces will diminish the local absorption anomaly features in a finer scale, which is 

leading to a global “smoothing effect” and degrade the resolution of inverted Q model. 

The inverted near-surface Q distribution model is shown in Figure 4-35. The abrupt 

subsurface velocity variation in near-surface (as shown in figure 4-34) and limited acquisition 

aperture, resulting in a shallow effective imaging depth of inverted Q model. Below the 

effective imaging region, we simply fill in the same maximum Q value of each trace to enhance 

the visibility of resulted image. In inverted Q model, the low Q anomalies are mainly 

distributed in the left region with large thickness, and the high Q anomalies are in right region 

with small thickness. It is consistent with the velocity anomalies distribution (Figure 4-34) as 

we discussed previously.  

To further assess the validity of inverted Q model, we perform the following procedures. 

Firstly, the elevation of high velocity top interface is determined by the inverted velocity model. 

Above this interface, we assume that the outgoing seismic ray is traveling vertically, and hence 

the exact time -spatial attenuation effect could be evaluated by equation (4.1) and (4.2) in a 

CMP stacking. Eventually these attenuation effects are removed from original stacking, and 

the corrected CMP stacking is presented in Figure 4-36a. The lateral continuity of seismic 
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events is enhanced respecting to both amplitude and geological structural in lateral direction. 

The resolution of whole stacking image was improved, and the frequency bandwidths of two 

panel regions have been broaden by recovering of both low and high frequency contents, as 

shown in Figure 4-36b and c. 

 

Figure 4-35: Inverted attenuation model (1/Q). 
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(a) 

 

(b) 

 

(c) 

Figure 4-36: CMP stacking after attenuation compensation. (a) Attenuation compensated CMP 

stacking; (b) amplitude spectrum of left panel in (a); (c) amplitude spectrum of right panel in (a). 

4.4 Summary and discussions 

In this chapter, we developed a first arrival attenuation tomography based on adjoint-state 

method, which is highly computational efficiency and its computation cost is proportional to 

the size of model parameterization. A specific governing equation of the adjoint state method 
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for t* is formulated to enable us to calculate the gradient of misfit function. It is feasible to 

handle with large dataset, especially for a common dense survey nowadays. The Q distribution 

model could be obtained from a tomographically inversion by minimizing the difference 

between observed t* and synthetic t* under a least-square framework.   

To achieve a relatively accurate observed t* from the first arrival of seismic data, we 

design a specific work flow with t* estimation and optimal selection in terms of the spectral 

ratio and adaptive correction method, respectively. The modified logarithm spectral ratio 

method can provide all possible t* estimation corresponding to the frequency response of 

different wave types in first arrival, such as direct wave, turning wave or refraction. An adaptive 

correction method can further select the optimal estimated t* by evaluating their similarities 

between synthetic and real attenuated seismic data for each possible t*. Hence, the one with 

correct frequency response of wave type will be screened out through these procedures and 

used as input for following tomographic inversion. 

The effectiveness of our t* estimation workflow is demonstrated in a synthetic test of a 

two-layer model from many perspectives in details. Besides, we design a standard process in 

practical implementation to handle with noise contamination and interferences of different 

wave types commonly existed in first arrival before and while conducting t* estimation. It is 

advisable to estimate t* from prestack seismic data that have not been processed by frequency 

filter methods (e.g., deconvolution), or more generally, any method that is possible to diminish 

the salient amplitude information related to source wavelet. Thanks to the redundancy of 
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seismic data, some non-effective t* estimation derived from interference region could be 

directly abandoned in the tomographic inversion to ensure the reliability of the results. Under 

the guidance of this workflow, two other synthetic data tests are deployed and achieve 

promising results. In synthetic data test of a simple model with topographic surface, both of 

shallow and deep attenuation anomalies are reconstructed in a reasonable way. Its success is 

partly attributed to an accurate t* estimation based on a good inverted velocity model. Results 

from Marmousi model demonstrate some benefits and robustness in recovering near surface 

attenuation anomalies in the presence of heterogeneous. 

Accuracy of proposed method mainly depends on the accuracy of input velocity model 

and t* estimation for attenuation tomographic inversion. The accuracy of inverted attenuation 

model is impacted by the precision of the velocity model we used in Q tomography. In practical, 

apart from following the workflow as presented in previous, we also use a statistic approach to 

obtain a reference signal to approximate source wavelet with different weight for multi-traces. 

The real data test results prove that this method works effectively in low SNR circumstance 

and brings benefit to stabilize tomographic solutions. Even though the quality of raw seismic 

record is poor and only partially offset data with limited acquisition were used, the inverted Q 

distribution in near-surface shows a reasonable consistency corresponding to the velocity 

model.  

In essence, our tomographic inversion is ray theory based (high frequency approximation 

assumption) and only use first arrival, hence the resolution of the Q distribution model is 
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limited by the ray coverage and high fidelity only preserved in near surface region. To improve 

deeper subsurface imaging, a joint inversion of both transmission and reflection could be an 

efficient way to enhance the final inversion result. A tomographic inversion based on a wave 

equation would be another way to further improve the resolution if one had enough computing 

resource to afford heavy computational cost in practical applications. Besides, a proper time 

window to enclose an entire seismic wavelet at each time location predicted from inverted 

velocity model is also urgent for effectively applying the spectral ratio method. Time-frequency 

analysis, such as windowed time-variant spectral analysis or the continuous wavelet transform 

might be a helpful tool to address this issue, and it is one direction of our future work. 

Other limitations of our method come from linear frequency attenuation model itself as 

the only intrinsic attenuation and non-dispersion velocity is assumed. The absorption property 

of the medium leading to attenuation effect on the amplitude of source wavelet is exactly what 

we concentrated on. However, any Q model can be viewed as effective mathematical tools 

rather than an ultimate self-explanation (Bourbié et al., 1987). The underlying assumption of 

our model will definitely introduce error to a certain extent varying from case to case. After all, 

the quality factor Q is a phenomenological quantity interpreted from real data or physical reality. 

For instance, there are many cells along raypath, and the absorption type could be different, 

such as pure intrinsic, media inhomogeneity or possibly some other unknown factors. 

Correspondingly, inverted types of Q would be intrinsic Q, effective Q, etc. Since then, a “Q 

distribution model” referring to apparent Q seems to be a proper nomination for our retrieved 
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model result. In practical, data should be the ultimate arbitrator (Morozov, 2009) and their 

analysis is useful for understanding the application scope of a certain method. Nevertheless, 

our research study on using first arrival to conduct attenuation tomographic inversion still has 

its practical significance, in considering of feasibility of the spectral ratio method and 

accessibility of first arrival from raw seismic data. 
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CHAPTER 5 CONCLUSION AND DISCUSSION 

Geometric ray theory related technique is a longstanding research area and has been 

playing an important role in exploration seismology for decades. Nowadays, traveltime-based 

tomography is still a prevailed choice considering its efficiency, robustness and feasibility in 

many application scenarios. Especially, when it comes to the near-surface modeling of land 

data. FAT tomography is still most commonly used inversion method from scratch. This 

dissertation aims to handle two challenges existed in the application of FAT tomography: 

improving its computational efficiency with large seismic dataset from densely sample survey 

and retrieving near-surface Q model from first arrival seismic data.  

5.1 Mapping near-surface velocities using efficient FAT tomography for large dataset 

To handle large dataset and improve the computational efficiency of FAT tomography for 

retrieving near-surface velocity model, a modified GN method named SA+ is proposed under 

a compressive sensing framework. I first adopted the adjoint-state technique with FAT using 

gradient-based approach, and compared its performance with conventional ray-tracing based 

FAT tomography in both 2D and 3D synthetic model. The numerical test result indicated that 

adjoint-state method could achieve the identical result while improving the computational 

efficiency in terms of memory occupation and time cost. It allows to make the memory 

occupation of inversion algorithm only few times proportional to the whole model size. Hence, 

the adjoint-state method has great advantages for the seismic data from dense receiver array 

deployment. 
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To further improve computational efficiency in time cost wise, a SA+ method composed 

by stochastic process and gradient optimization is proposed. Two typical realization of 

Stochastic process, SAA and SA, was implemented with the adjoint state method. The 

stochastic processes allow to significantly reduce the problem dimensionality by using a small 

part of dataset during inversion, meaning that fewer PDE was to be solved hence less time cost 

for a single iteration. However, both of SAA and SA required extra number of iterations to 

obtain identical results to standard FAT tomography using full dataset, which is high time cost. 

On the other hand, limiting the number of iterations will induce artifacts from random 

subsampling of sources.  

Since then, a gradient optimization method to mitigate artifacts by sparsity regularization 

is adopted. It is achieved by using an online ODL method to exploit the convex-composite 

structure of the model update in a sparse domain spanned by dictionary atmos. These atoms 

are formed in non-overlapping blocks through a sparse orthonormal transform, by which each 

block represents a localized featuring patches of model update learned over a dictionary from 

the previous iteration. There are two main advantages of adopting online ODL method: 1.) its 

low computational demanding due to orthogonal operation and 2.) its capability of adapting to 

non-intuitive signal regularities beyond piecewise smoothness, allowing to capture salient 

information from a “noisy” gradient of stochastic process. From synthetic test, we could see 

that such dynamic regularization on model updates eventually functioned as a “smoothing 

filtering” to suppress the subsampling artefacts and mildly smooth out gradient. However, 

different from commonly used filtering-based in FAT tomography, it allows to capture salient 
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information of a “noisy” gradient from a stochastic process based on data driven. Eventually, 

the original least-square problem reformulated into a LASSO problem and solved by a 

modified GN method that can trace the optimal trade-off between the L2-norm of residual and 

L1-norm of sparse coefficients simultaneously.  

Through synthetic data test, we found that SA and our proposed gradient optimization were 

the optimal method combination (SA+) with the best performance in terms of accuracy and 

stability. In general, the time cost could be reduced about 70% for a relatively clean data from 

our experience. For noisy data, a practical guidance of data decimation percentage is also 

provided through this test: if the noise level for first arrival picks less than 10%, a data 

decimation percentage round 10% would be a safe choice; when noise level rise above 10%, a 

data decimation percentage at least large than 15%. At the same time, one should also be aware 

of geological complexity of the target area to choose a proper data decimation percentage to 

ensure the accuracy and stability of SA+. Following this guidance, we applied SA+ in a field 

data with 20% dataset as input and obtained an almost identical retrieved velocity model 

comparing to standard FAT tomography using full dataset. The difference of their long-

wavelength statics is minor and acceptable for following process, by which further reveals the 

potential for SA+ method in practical application.  

5.2 Mapping near-surface Q values using First arrival attenuation tomography based on 

adjoint state method 

To retrieve near-surface Q distribution model using first arrival, a first arrival Q 
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tomography was proposed. Under the assumption invariant ray path in weakly dissipative (high 

quality factor Q) subsurface medium, this tomographic inversion approach can be integrated in 

two cascading processes consisting of FAT tomography and attenuation tomography. To ensure 

the computational efficiency, both of tomographic inversion were adopted with adjoint-state 

technique. To implement attenuation tomography with adjoint-state technique, a governing 

equation involved with path attenuation factor t* is formulated and adopted with FSW 

algorithm. With same velocity model and t* as input, the inverted Q distribution model from 

adjoint-state method is almost identical to that of raytracing-based tomography, confirming the 

accuracy of this algorithm.   

The FAT tomography will be conducted at first to provide velocity model as one of input 

for the following attenuation tomography. Besides, the synthetic FAT derived from the inverted 

velocity model can provide a stable guidance in selecting time window of first arrival from 

seismic trace, wherein the potential attenuation information related with t* is contained. For 

the following attenuation tomography, its success is heavily dependent on the accuracy of 

observed t* estimated from attenuated first arrival.  

The path attenuation factor t* is related to the amount of amplitude attenuation along the 

ray path. Therefore, a modified logarithmic spectral rate method was proposed to estimate t*. 

It improves the accuracy of t* estimation by removing the effects of frequency-dependent 

propagation responses of different wave types existed in the first arrival, e.g., direct wave, 

turning wave and refraction. From numerical experiment, we observed that the amplitude 

spectra of direct and turning wave had identical waveforms as source wavelet, while the 
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refraction appearing to be a low peak frequency shift. This property can be utilized for 

identifying and separating refraction from other wave types blended in first arrival, and an 

adaptive correction method is proposed. Two estimated t* will be obtained based on these two 

different frequency-dependent responses, and their synthetic attenuated seismic traces will be 

calculated. Then their similarities to observed attenuated seismic traces will be evaluated for 

selecting the optimal estimated t*, and used as observed t* for attenuation tomography. The Q 

distribution model could be retrieved from a by minimizing the discrepancy between observed 

t* and synthetic t* under a least-square inversion framework. 

In practical, though first arrival generally has a higher quality than other secondary waves 

such as reflection or refraction seismic data in term of SNR. Noise contamination and 

interference of different wave types will inevitably have impact on t* estimation. Since then, 

we also proposed a detailed practical implementation to handle with this issue. Redundancy of 

field data allows to directly reject some of unreliable estimated t* obtained from interference 

region without degrading too much of quality of inverted Q distribution model. It is verified 

by the real data test with relatively low SNR from mountain field. The inverted Q model 

confirmed the consistency for the near surface velocity structure and geological outcrop along 

the topographic surface. The improvements of resolution and frequency bandwidth recovery of 

corrected CMP stacking image further prove the validity of an inverted Q distribution model. 

5.3 Outlook on future work  

The work on highly efficient FAT tomographic inversion in large dataset is all tested in 2D 
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case. Nowadays, in reality, a 3D acquisition is the field of those classical algorithms might 

suffer from computational limitations, in terms of memory occupation, computation time, or 

implementation. In Chapter 2, the benefits brought by adjoint state technique adoption have 

previously been presented in the 3D synthetic overthrust model. It has great potential to extend 

our highly efficient FAT tomographic inversion into 3D case to further improve inversion 

computation efficiency. A 3D geometry could provide two more dimensions to subsample the 

data and the related dimensionality reduction problem should be more efficient than the 2D 

case. One important issue I should be focused on in this future work extension is that how to 

adapt 2D block-wise online ODL into 3D case. The patch selection should be rigorously 

manipulated along another two dimensions. Additionally, some other wave-equation based 

inversions also could be implemented with CS framework to further improve the computation 

efficiency. It should be a promising extension, since that dimensionality reduction could be 

more efficient in such sophisticated method. Besides, the update gradients used in these 

methods are mostly less “smooth” than ray-based one, from which the dictionary learning could 

capture more directional features in sparse space to have better constraint (or regularization) 

during inversion.  

Another promising direction is counting on improving dictionary learning algorithm to 

better exploit convex-composite structure of the problem. In real world, the appearance of 

geological structure in subsurface is actually appearing to have many nonlocal similarities, 

meaning that similar structural features are repeated. Capturing these features could effectively 

reduce the freedom degrees in model space, and eventually bring benefit to improving the 
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inversion convergency. It is quite analogous to the idea of training dataset and test dataset in 

machine learning. Some geological patterns of many classical models (e.g., Marmousi, Amoco 

94 or BP subsalt) at different places could be set up as external models to anticipate the 

dictionary training, serving as prior information to constrain the inversion.  

The resolution of retrieved Q distribution model is limited by the input of inverted velocity 

model derived from previous ray-based FAT tomography. Since then, an inverted velocity 

model with higher image quality can lift a favor in improving the resolution and fidelity of the 

reconstructed Q distribution model. A joint tomographic inversion of both transmission and 

refraction seismic data could be an efficient way to provide a better velocity model with more 

constraints. Besides, wave equation-based tomography would be another way to further 

improve the resolution by providing high quality velocity model, if one had enough computing 

resource to afford heavy computational cost in practical applications.  

To successfully apply the spectral ratio method for t* estimation, one important underlying 

assumption is that the wavelet before and after absorption is known, meaning that an entire 

seismic wavelet should be enclosed in the time window when selecting first arrival. Since then, 

using a time-frequency analysis technique, such as windowed time-variant spectral analysis or 

the continuous wavelet transforms might be a helpful tool to solve this issue. 
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