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Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a
mathematical singularity. Born from chance, a violent and brief life ending in the union with the
~nearly! infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise,
sonoluminescence, boiling, and many others. Some recent results on a ‘‘blinking bubble’’
micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da
Vinci’s observation of the non-rectlinear ascent of buoyant bubbles and justifies the name
Leonardo’s paradoxrecently attributed to this phenomenon. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1695308#

I. INTRODUCTION

Vanitas vanitatum, et omnia vanitasor, as the King
James Bible has it, ‘‘Vanity of vanities, and all is vanity’’
~Eccles. 1:2!, continuing: ‘‘What profit hath a man of all his
labour which he taketh under the sun? . . . There is no re-
membrance of former things . . . and, behold, all is vanity
and vexation of spirit.’’

The connection between this quotation and the subject of
this paper is provided by the classical Greek proverb
Pomfolyj o anuropv§: Homo bullain Latin, or ‘‘Man
is a bubble,’’ was popular in antiquity, and resurfaced in the
culture of the Renaissance through Erasmus of Rotterdam’s
best-sellerAdagia ~1500!.1 With his customary wit, Lucian
of Samosata~ca. 117–180 AD! explains the meaning of the
dictum in this way: ‘‘I’ve thought of a simile to describe the
human life as a whole . . . . You know the bubbles that rise to
the surface below a waterfall—those little pockets of air that
combine to produce foam? . . . Well, that’s what human be-
ings are like. They’re more or less inflated pockets of air . . .
but sooner or later they’re bound to go pop.’’2 Many writers
embroidered on and enlarged the scope of the idea. For ex-
ample, Arthur Golding~ca. 1536–1605! says: ‘‘When man
seemeth to bee at his best, he is altogither nothing else but a
bubble blowen togither of vanitie.’’3 Several other examples
are given in Ref. 4.

It is through this association with the ultimate fleeting-
ness of human life that bubbles came to play an important
iconographic role in the Western figurative tradition. Figure 1
reproduces a painting by the Italian artist Dosso Dossi
~1486–1542! titled Allegory of Fortune~ca. 1535!, in which
the female figure, representing Fortune, unstably sits on a
large bubble. The allusion to the changing fortunes of man is
reinforced by the goddess’s billowing cloak~an allusion to
the tempestuous changes that Fortune brings about!, the
bundle of lottery tickets in the man’s hand, and the semi-
transparent band around the bubble~perhaps difficult to dis-

cern in the reproduction! carrying the signs of the zodiac.5

As far as I know, this early instance remained for a while
an isolated occurrence of the use of this symbol, which really
burst onto the scene only half a century later and in a differ-
ent cultural context—the Netherlands.6 In 1574 Cornelis Ke-
tel ~1548–1616! painted the portrait of a gentleman and, on
its back, surmounted by the Greek proverb mentioned at the
beginning, a boy blowing bubbles out of a mussel shell~Fig.
2!. This image is a moral exhortation: the bubbles are a meta-
phor for the frailty of human life and the boy also is, as he
will soon age and die. The sitter, though young and~presum-
ably! affluent, should meditate on the finiteness of his life
and ‘‘while living, learn to die’’~vivus nunc age disce mori!.
As attested by Pieter Bruegel~ca. 1520–1569! in his painting
Children’s games~Kunsthistorisches Museum, Vienna!, the
blowing of soap bubbles in this manner had become a popu-
lar pastime for children, who delighted in the varycolored
reflections of the mussel shells.8

A more striking example is the 1594 printAllegory of
Transience~Fig. 3! by Hendrik Goltzius~1558–1617!. Here,
the mussel shell and bubbles are accompanied by other re-
minders of the fleetingness of human life: the flowers which
will soon wither, the grass which will dry into hay, the smoke
quickly dissipated by the wind,9 the skull, a reminder of the
boy’s own skeleton temporarily hidden under a beautiful
flesh cover.10

Another early ~1603! example is theVanitas by De
Gheyn ~1565–1629! shown in Fig. 4. Here the two most
obvious symbols—a skull surmounted by a bubble~or a
glass globe?!—are surrounded by a veritable catalogue of
symbols of transience. The arch bears the inscriptionHu-
mana vana~‘‘human things are useless’’!. The two figures in
the upper corners are the Greek philosophers Democritus~ca.
460–370 BC! and Heraclitus~?–460 BC!, the former always
depicted laughing and the latter crying—both for the same
reason, namely the folly of humankind. They point to the
bubble, which is also a stand-in for the world.12 Fleeting
smoke issues from the urn on the right. The beauty of the
tulip will soon be gone.13 Money is useless in the other
world.14,15

a!Also at: Department of Applied Physics, Twente Institute of Mechanics,
and Burgerscentrum, University of Twente, AE 7500 Enschede,
The Netherlands.
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The images reproduced in Figs. 2–4 are early examples
of the so-calledVanitaspictorial genre, which encountered a
tremendous fortune in Dutch art in the 17th century and be-
yond. The viewer is invited to contemplate his/her own mor-
tality through the use of a series of symbols of transience
which, in addition to those encountered before, often include
musical instruments~the fading of sound!, time pieces~the
passage of time!, glass ~fragile, like human pleasures!,
candlesticks with a stump of a candle, dice and cards~games
of chance!, and others. ‘‘One of the most notable character-
istics of 17th-century Dutch culture was its relentless addic-
tion to taking everyday things and occurrences and either
searching out their inherent deeper meanings or, conversely,
using them as vehicles to be loaded with ready-made ideas16

. . . Dominating everything is the tendency to moralization,
as a rule resulting in the encouragement of virtue and in
reminders of transitoriness and death’’~Ref. 18, p. 27!.

Figure 5 shows a later~ca. 1650!, more complex ex-

ample by David Bailly~1584–1657!. In addition to many of
the symbols of transience mentioned before, the miniature
portrait held by the black figure and the painter’s palette
allude to the immortality of Art, as opposed to the transience
of life, a theme also stressed in another well-known painting
by the same artist.19 An ambiguous master/servant role rever-
sal has also been seen in this work.20

There is such a large number of paintings containing
references to theHomo bulla theme that many more ex-
amples could be easily given. As a final one, in Fig. 6 we see
a female figure, personifying the world, who turns away
from the earthly pursuits signified by the objects strewn at
her feet: military prowess, wealth, games, music, knowledge.
The figure’s eyes look up to heaven and show that she has
chosen to devote herself to God. As always, the putto blow-
ing bubbles recalls the brevity of human life and also hints at
the childishness of earthly concerns.21

FIG. 1. ~Color! Dosso Dossi~1486–1542!, Allegory of Fortune~about 1530, oil on canvas, 179.13217.2 cm2!, The J. Paul Getty Museum, Los Angeles.
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Very many occurrences of the same bubble theme can
also be found in emblems—images accompanied by a short,
usually moralizing text—which flourished in the 17th and
18th centuries. An example, from the collectionEmblemata

by Hadrianus Iunius~1511–1575! published in 1565 by the
famous Antwerp publisher Plantin, is shown in Fig. 7. The
image shows children busily blowing and chasing bubbles.
The Latin motto at the top says ‘‘it’s foolish to desire to
embrace everything’’~Cuncta complecti velle, stultum!, and
the Italian motto below, from Petrarch~1304–1374!, ‘‘And
everything I embrace and nothing I clasp’’~Et tutto abbrac-
cio et nulla stringo!, followed by a quatrain elaborating the
same theme~‘‘ . . . he who handles diverse studies or hunts
for dubious honors, seems to me sillier than children’’!. This
example is typical of many others which can be found in
analogous collections by Quarles, Alciati, Heinsius, Hoh-
berg, to name but a few.

It is now time to turn to fluid mechanics.

II. THE RADIAL MOTION OF A LIQUID SHELL

Consider a centrally symmetric shell of incompressible
liquid extending betweenr 5R(t) and r 5S(t).R(t). As-
sume that the region 0<r ,R(t), the bubble, is occupied by
a mixture of gas and vapor, and that, atr 5S, the pressure is
specified to beP` , which may be time dependent. This
quantity may be used, for example, to represent the ambient
pressure, or the pressure of a sound field with a wavelength
much larger than the bubble size.

Let N be the number of space dimensions, which can be
left unspecified for the moment. It is easy to derive the fol-
lowing equation of motion for the bubble interface:

1

N22 F12S R

SD N22G@RR̈1~N21!Ṙ2#

2
1

2 F12S R

SD 2N22GṘ25
pB2P`

r
, ~1!

where dots denote time derivatives andpB , the pressure on
the liquid side of the bubble surface, will equal the pressure
of the gas–vapor mixture in the bubble, corrected for the
effects of surface tensions and viscositym:

pB5pGV2
~N21!s

R
22~N21!m

Ṙ

R
. ~2!

In the following, the last two terms will be often neglected
for simplicity.

By settingN521e and taking the limite→0, one finds
the equation for a cylindrical bubble while, forN51, one has
the motion of a liquid slug of lengthS2R. WhenN.2, it
makes physical sense to take the limitS→` to find

RR̈1
N

2
Ṙ25

pB2P`

r
. ~3!

In particular, with N53, this is just the well-known
Rayleigh–Plesset equation describing the radial motion of a
spherical bubble in an unbounded liquid.

There are situations in which the bubble internal pres-
surepGV may approximately be regarded as constant. Con-
sider for example a bubble containing mostly vapor—so that
pGV.pV—collapsing due to an increase of the ambient pres-
sure. If the liquid is sufficiently cold that vapor can condense
with negligible latent heat effects, its pressurepV may be

FIG. 2. Verso of a portrait by Cornelis Ketel~1548–1616!; courtesy of the
Rijksmuseum, Amsterdam.

FIG. 3. Allegory of Transience~1594!, by Hendrik Goltzius~1558–1617!;
courtesy of the Boijmans Museum, Rotterdam, The Netherlands.
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assumed to remain equal to the saturation pressure at the
liquid temperature. If, conversely, the bubble expands upon a
decrease of the ambient pressure, the contribution of the gas
to pGV quickly decreases and becomes negligible compared
with the vapor pressure. A time-dependent ambient pressure
P` may be approximated as a sequence of steps. In these
cases, with the neglect of surface tension and viscosity,pB

2P` may be assumed to be~at least piecewise! constant and
~3! integrated to find

Ṙ25
2

N

pB2P`

r
1S Ri

R D NF Ṙi
22

2

N

pB2P`

r G , ~4!

where the subscripti denotes initial values. Of particular
interest is the case in whichpB,P` , so that the bubble
implodes, or collapses. When the collapse has proceeded far
enough, withRi50 the previous relation gives

Ṙ.2A2

N

P`2pB

r S Ri

R D N

, ~5!

which exhibits one aspect of the mathematical singularity
alluded to in the abstract of this paper. In practice, as the
collapse proceeds, the singularity is removed by several ef-

fects, the most important of which are the increase of the gas
pressure, the failure of the vapor to condense at a sufficient
rate to keep up with the decrease of the bubble volume, and
the possible fragmentation of the bubble. For an adiabatic
compression, the gas pressurepG is proportional to the
R2Ng, where g is the ratio of the gas specific heats, and

FIG. 4. ~Color! Jacques De Gheyn the Elder~1565–1629!, Vanitas~1603,
oil on wood!. The Metropolitan Museum of Art, Charles B. Curtis, Mar-
quand, Victor Wilbour Memorial, and Alfred N. Punnett Endowment Funds,
1974.~1974.1! Photograph © 1984 The Metropolitan Museum of Art.

FIG. 5. ~Color! Vanitas ~ca. 1650!, by the Dutch painter David Bailly
~1584–1657!. Gift of Louis V. Keeler, Class of 1911, and Mrs. Keeler.
Courtesy of the Herbert F. Johnson Museum of Art, Cornell University.

FIG. 6. ~Color! Allegory of Transienceby Jan van den Hoecke~1611–ca.
1651!, and Ambrosius Francken II~died 1632, who added the still life!;
formerly attributed to Pieter van Mol. Courtesy of the Kunsthandel/Art Gal-
lery Hoogsteder & Hoogsteder, The Hague, The Netherlands.
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therefore its rise with decreasingR is abrupt. Before the
inward bubble wall motion stops and reverses under the ac-
tion of this increasing pressure, therefore, the bubble con-
tents have undergone a very significant compressional heat-
ing, which is responsible for major effects such as
sonoluminescence and sonochemistry.23–25 The shock wave
radiated into the liquid as the bubble wall slows down and,
eventually, reverses its motion, strongly contributes to cavi-
tation noise.~Of course, the appearance of a shock wave in
the liquid has absolutely no implication on the presence or
absence of a shock in the gas.! Both the order of the singu-
larity and the abruptness of the rise ofpG increase withN,
which implies increasingly dramatic phenomena as the di-
mensionality of the space increases.

III. BLINKING BUBBLE PUMP

The device shown in Fig. 8 is a first, rather crude imple-
mentation of a surprisingly powerful ‘‘blinking bubble’’ mi-
cropump. The thin line traversing horizontally the transpar-

ent rectangle is a 200-mm-wide groove formed in a plastic
plate bonded to an equal one by baking in an oven. Short
metal needles attached to either end of the groove permit one
to connect the pump to a hydraulic line. The two vertical
wires, spaced by 760mm, are embedded in the plastic in
such a way that they are exposed to the saturated sodium
chloride–water solution filling the channel. With this ar-
rangement, a current pulse through the wires heats up the
liquid and generates a bubble, which condenses and disap-
pears when the current stops. A sequence depicting this pro-
cess is shown in Fig. 9, in which the time interval between
successive images is 100ms. In this example the current is
applied for 200ms, the rms voltage is 92 V, and the resis-
tance 500V, so that each current pulse carries an energy of
approximately 3.4 mJ. The current-carrying wires appear as
vertical dark bars. It is apparent here that, since the bubble is
nucleated to the left of the place where it ultimately con-
denses, the liquid contained in the channel between these
two positions is pushed to the right every time the bubble
‘‘blinks.’’

It is somewhat surprising that this periodic process re-
sults in a dc effect. The key to the phenomenon is the asym-
metric position of the bubble with respect to the midpoint of
the channel. A simple explanation is the following. The
bubble divides the liquid occupying the channel into two
columns, a shorter one on the left and a longer one on the
right. Let us apply to this latter longer column the one-
dimensional version (N51) of Eq. ~1!:

~S2R!R̈5
pB2Po

r
. ~6!

Since the channel empties into the outlet needle, which has a
diameter more than five times as large, we can takeS to be
the end of the channel and the corresponding pressureP` to
be the pressure in the outlet needlePo . Furthermore,Ṙ is
just the velocityU, of the longer liquid column. Let us now

FIG. 7. An example of the many emblems in which the bubble theme
recurs. This is No. 16 fromEmblemataby Hadrianus Iunius~1511–1575!.
The Latin motto at the top says ‘‘It’s foolish to desire to embrace every-
thing’’ ~Cuncta complecti velle, stultum!. Reproduced from Ref. 22, courtesy
of Georg Olms Verlag AG.

FIG. 8. A crude implementation of the ‘‘blinking bubble’’ pump. The groove
has a diameter of 200mm; the plastic plates~dimensions 26312.5 mm2,
thickness 1.59 mm!, are bonded together by baking in an oven. The inlet and
outlets are 1.19-i.d. metal needles. The two vertical wires~platinum, 100mm
diameter, spacing 760mm! are baked in the plastic so as to be exposed to the
liquid in the channel. By using an electrically conducting liquid~a saturated
sodium chloride–water solution!, a short pulse of current periodically ap-
plied to the wires heats up the liquid and generates a bubble, which con-
denses and disappears when the current stops.
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assume periodic operating conditions with no net flow in the
device. Upon averaging the previous equation over a period
we then find

rU,
25 p̄B2 P̄o , ~7!

where the overline denotes the time average. A similar argu-
ment applied to the shorter liquid column gives

rUs
25 p̄B2 P̄i , ~8!

wherePi is the pressure in the inlet needle and, in view of
the low vapor density which causes the pressure in the

bubble to be spatially uniform, we may use the samep̄B in
both Eqs.~7! and~8!. Upon subtracting~7! from ~8!, we then
find

P̄o2 P̄i5r~Us
22U,

2!. ~9!

Since the shorter column has a smaller inertia, its average
velocity is larger and therefore the difference in the right-
hand side is positive. From this argument we conclude that,
in order to maintain the hypothesized periodic conditions
with no net flow, the pressure at the pump outlet must exceed
that at the inlet. When this pressure excess is insufficient,
therefore, a flow will be established in the direction of the
longer column.

A numerical simulation of this effect, obtained by solv-
ing the Navier–Stokes equations, is described in Ref. 26 and
some additional theoretical considerations along the previous
line in Refs. 27–29. The measured pressure difference across
the pump versus flow rate for a few cases is shown in Fig.
10. It is remarkable that, extrapolated to zero flow rate, the
data for the 200mm channel give a pressure difference of
about 25 kPa. It may also be noted that, of the two sets of
data for the 127-mm-diam channel~circles and triangles!, the
bigger pressure difference is obtained when the difference
between the lengths of the two liquid columns is greater, i.e.,
when the asymmetry in the location of the heater is more
pronounced.

A more sophisticated implementation of this principle is
shown in Fig. 11. The elongated rectangle in the center of the
upper image is a silicon chip on which a row of heaters has
been vacuum-deposited. The lower image is the complete
pump, with a transparent plastic cover in which the channel
has been etched, and the inlet and outlet tubing which, in this
case, is perpendicular to the channel. The row of heaters
permits a study of the dependence of the pumping efficiency
on the heater position along the channel.

FIG. 9. An example of the bubble evolution in the pump of Fig. 8. The
current pulse~92 V rms, 200 kHz ac! is applied for 200ms with a total
energy expenditure of about 3.4 mJ. The two vertical dark bars are the
current-carrying wires. Note that the bubble appears near the left wire, while
it condenses near the right one. Thus, an amount of liquid approximately
equal to the volume between the wires is pushed to the right. The time
between successive frames is 100ms.

FIG. 10. Pressure difference~kPa! vs flow rate~ml/min! measured on three
different pumps similar to the one shown in Fig. 8.~s! Channel diameter
127 mm, lengths of short and long liquid columns 6.60 and 19.8 mm;~n!
channel diameter 127mm, lengths of short and long liquid columns 5.30 and
21.1 mm;~h! channel diameter 203mm, lengths of short and long liquid
columns 6.60 and 19.8 mm. In all cases the bubble generation frequency
was 200 Hz.
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IV. BUBBLE OSCILLATIONS IN A SOUND FIELD

The action of an acoustic field on a bubble can be speci-
fied by prescribing a time-dependent ambient pressure in the
relations of Sec. II,P`5p`2pA sinvt, where p` is the
static pressure,pA the amplitude of the acoustic wave, and
v/2p the sound frequency.

Consider small-amplitude oscillations and setR5Re@1

1X(t)#, whereRe is the equilibrium radius. Upon lineariza-
tion, ~1! gives then

Ẍ1
N22

12~Re /S!N22

1

rRe
2 F2

]pB

]Ẋ
Ẋ2

]pB

]X
XG

5
N22

12~Re /S!N22

pA

rRe
2

sinvt, ~10!

where we have set

pB5p`1
]pB

]Ẋ
Ẋ1

]pB

]X
X; ~11!

the second term allows for the presence of dissipative effects
due, e.g., to heat exchange between the bubble and the liq-
uid. Equation~10! has the standard form of a linear oscillator
with damping parameterb and natural frequencyv0/2p
given by

2b5
N22

12~Re /S!N22

1

rRe
2 S 2

]pB

]Ẋ
D ,

~12!

v0
25

N22

12~Re /S!N22

1

rRe
2 S 2

]pB

]X D .

In the particular case in which vapor and surface tension
effects are negligible and the bubble contents undergo a
polytropic process with polytropic indexk, with 1<k<g,
linearization of~2! gives

]pB

]X
52p`Nk,

]pB

]Ẋ
522~N21!m, ~13!

so that, from~12!,

v0
25

N~N22!

12~Re /S!N22

kp`

rRe
2 , ~14!

which, for N53, is

v0
25

3

12Re /S

kp`

rRe
2 , ~15!

for N52,

v0
25

2

log~S/Re!

kp`

rRe
2 , ~16!

and, forN51,

v0
25

kp`

rRe~S2Re!
. ~17!

While, for S@Re , ~17! and~16! tend to zero,~15! tends to a
well-defined limit which, for an air–water system, approxi-
mately reduces to the well-known approximate relation
Re(v0/2p).3 kHz3mm. When the liquid film has a thick-
ness much smaller than the bubble radius,~14! reduces to
~17!, as it should, except for a factorN which accounts for
the stronger dependence of the pressure on the volume in a
space of higher dimensionality. From~12! and ~13! the vis-
cous component of the damping parameter is found to be

FIG. 11. ~a! The elongated rectangle in the center is a silicon chip with a
row of vacuum-deposited heaters, each one with its own separate electrical
connections.~b! The complete pump; the channel is etched in the transparent
plastic cover placed over the heaters and the inlet and outlet tubes are visible
at the edges of the image. The use of many independent heaters permits the
study of the effect of the heater location along the channel.
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2bv5
2~N21!~N22!

12~Re /S!N22

m

rRe
2 . ~18!

It is only for very small bubbles that this is the dominant
dissipative mechanism; thermal losses are usually more im-
portant.

Let us now consider the opposite limit case of a pure
vapor bubble. Assume that, during a time of the order of
v21, the bubble is compressed so that its volume decreases
by DV. This volume decrease will tend to cause the conden-
sation of an amount of vaporrVDV and the consequent re-
lease of an amountLrVDV of latent heat at the bubble wall,
with L the latent heat per unit mass. This latent heat will
diffuse in a liquid shell of thicknessAD/ iv, whereD is the
liquid thermal diffusivity and the imaginary unit has been
introduced to account for the proper phase relationship. The
corresponding temperature riseDT can be estimated from

LrVDV.rcLAAD

iv
DT, ~19!

whereA is the bubble surface area andcL is the liquid spe-
cific heat. From the Clausius–Clapeyron relation we then
have a pressure increase of the order of

Dp.~11 i !
~LrV!2

TrcL
A v

2D

DV
A . ~20!

But DV/A5NDR5NReX so that we may write

Dp.
~LrV!2

TrcL
A v

2D
NReS X1

Ẋ

v
D . ~21!

By using this result in~12! with, for simplicity of writing,
N53 and S@Re , we have the following estimate for the
thermal damping of vapor bubble oscillations:

2bth.
~LrV!2

Tr2cLReA2Dv
, ~22!

while the effective natural frequency is of the order of

v0
25

~LrV!2

Tr2cLRe
Av

D
. ~23!

True resonance occurs forv5v0 , which results in a radius
dependencev0}Re

22/3 rather than the inverse proportionality
v0}Re

21 found for a gas bubble in~12!. From ~22! and~23!
one can calculate theQ factor of the resonance, which is
found to be of order 1: the phase change process which pro-
vides the stiffness of vapor bubbles is therefore also respon-
sible for a strong damping of their motion.

Figure 12 shows the linear resonance frequency of vapor
bubbles in water caculated on the basis of more precise
arguments30 for temperatures, in ascending order, of 50, 70,
100, and 110 °C. The lower branch of the curves~dashed! is
a stability limit. The dotted line is Eq.~23! with v5v0

multiplied by a constant of order 1 so as to fit theT
5100 °C exact result. The approximation~23! is seen to be
fairly accurate in spite of the simplicity of the argument.

It is very difficult in practice to observe the resonance
just described because a vapor bubble in a sound field
quickly grows even in a slightly subcooled liquid.30 This

phenomenon, termed rectified diffusion of heat, is due to a
net accumulation of vapor over each cycle caused by a com-
bination of nonlinear effects:~i! due to the geometry-induced
stretching forN.1, the thermal boundary layer is thinner
during expansion, and therefore the heat flux greater;~ii ! for
the same change in radius, the surface area is greater upon
expansion than contraction;~iii ! the saturation pressure–
temperature relation is strongly concave upward.31 Figure 13
shows three examples of this effect in the course of simu-
lated nonlinear forced vapor bubble oscillations at liquid
temperatures of 95, 100, and 110 °C.30 Traces of the under-
lying resonance structure are evident in the small-scale os-
cillations superimposed on the large-scale ones. This is a

FIG. 12. Resonance frequency of vapor bubbles in water according to linear
theory ~Ref. 30! for liquid temperatures of 50, 70, 100, and 110 °C, in
ascending order. The lower branch of the curves~dashed! is a stability limit.
The dotted line is Eq.~23! with v5v0 fitted to theT5100 °C exact result
by multiplying by a numerical constant of order 1. In all cases the ambient
pressure has the saturation value at the appropriate temperature.

FIG. 13. Growth of a vapor bubble by rectified diffusion in a 1 kHz sound
field with pA540 kPa,p`5101.3 kPa, and liquid temperatures of 95, 100,
and 110 °C in ascending order;Rres52.71 mm is the linear resonance radius
at 100 °C.
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nonlinear phenomenon which occurs when the resonance fre-
quency corresponding to the cycle-averaged radius is close
to a rational multiple of the driving frequency.

The same time variation of the bubble contents described
for vapor bubbles also occurs in the case of gas bubbles, and
for the same reasons. However, due to the fact that the dif-
fusion coefficient of dissolved gases in ordinary liquids is
much smaller than the coefficient of thermal diffusion~typi-
cally by two orders of magnitude!, the process of rectified
diffusion of gases is very much slower and the approxima-
tion of a constant gas content often justified, at least over a
limited number of acoustic cycles.

A bubble of volumeV subjected to a pressure gradient
“p experiences an effective buoyancy force2V“p. In a
sound field, this force is often referred to as Bjerknes force
and, if the oscillation amplitude is small, it has an average
value FB52^DV“p& where DV is the amplitude of the
volume oscillations. In this case, if the phase of the bubble
oscillations with respect to the sound is denoted byf, one
finds FB} cosf and, therefore,FB changes sign as the
bubble goes through resonance. A simple argument shows
that the force is toward the pressure antinode when the
bubble is driven below its resonance frequency and toward
the pressure node above resonance. This phenomenon is well
known in the case of gas bubbles~see, e.g., Refs. 32 and 33!,
but has not been studied much in the case of vapor bubbles.34

A simple demonstration of the effect can be given using the
resonant cell shown in Fig. 14, consisting of a glass cylinder

between two ring piezoelectric transducers. When the cell is
filled with water close to its boiling point, a pulse of current
applied to the vertical wire heater visible near the axis causes
a local superheat of the liquid which generates bubbles. Fig-
ure 15 demonstrates the downaward motion of one such
bubble under the action of the Bjerknes force. This phenom-
enon could be useful for the control of vapor bubbles in
microgravity. For example, in the absence of buoyancy, va-
por bubbles tend to linger in the vicinity of heating surfaces
thus promoting an early transition to the undesirable film
boiling regime. An acoustic field might be employed to pre-
vent this phenomenon by pushing the bubbles away.

V. LEONARDO’S PARADOX

It is well known that, in a still liquid, gas bubbles rise
along a rectilinear path only when they are sufficiently small
~see, e.g., Refs. 35 and 36!: larger bubbles follow either a
zig-zag or spiral trajectory. In a recent investigation of the
added mass of an expanding bubble,37 an air bubble was
released at the bottom of a pressurized water column, the
pressure of which was then brought back to atmospheric by a
fast-opening valve. An example of the bubble radius versus
time measured in this device is shown in Fig. 16; here the
initial and final radii are 0.435 and 0.695 mm, respectively.

Figure 17, in which the numbers are keyed to the photos
of the preceding figure, shows the projection of the bubble
trajectory onto a horizontal plane. Due to a very slight mis-
alignment of the optics~note the fine scale!, the initial
straight ascent between points 1 and 2 (t50 and 0.05 s!

FIG. 14. The resonant acoustic cell~height 150 mm! used for demonstrating
the action of Bjerknes forces on vapor bubbles. The two horizontal metal
rings are piezoelectric transducers which set up an acoustic standing wave.
The wire visible near the cell axis is a heater on which bubbles grow.

FIG. 15. Two frames separated by 1 ms showing the downward motion of a
vapor bubble along the heater wire~diameter 200mm! in the acoustic cell of
Fig. 14. The sound frequency is about 17 kHz, the amplitude 20–30 kPa,
and the liquid temperature close to 90 °C. The resonant radius in these
conditions is about 20mm. The bubble is nearly ten times as large and,
therefore, it is driven below its resonant frequency. Accordingly, the
Bjerknes force is toward the pressure antinode located near the center of the
frames.
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appears to be along an inclined, rather than vertical, path.
The more interesting part of the figure is the very rapid tran-
sition to a spiralling motion as the bubble expands and grows
to its final size.

I have proposed to refer to the failure of bubbles to fol-
low a straight path asLeonardo’s paradox, as Leonardo da
Vinci’s annotations are possibly the first scientific references

to the phenomenon. There are already many ‘‘paradoxes’’ in
the normal lexicon of fluid mechanics—D’Alembert’s,
Stokes’s, Whitehead’s, and others~see, e.g., Ref. 38!. In all
these cases, the paradoxes’ namesakes and their fellow sci-
entists were puzzled by the mismatch between a theoretical
deduction based on the available knowledge and observation.
Leonardo’s paradox has a similar origin and, furthermore, it
has the distinction of having remained a puzzle longer than
any of the other ones: it is only now that its cause begins to
be understood in spite of many earlier attempts~see, e.g.,
Refs. 39–41!, starting with Leonardo’s own. According to
the current explanation,42–45 the transition to a non-
rectilinear path is caused by an instability of the axisymmet-
ric wake which becomes two-threaded when the bubble is
large enough to deform into a strongly oblate spheroid. The
two threads have opposite circulation and thus provide a lift
force, much like the trailing vortices of an airplane. This
view replaces earlier hypotheses which relied on the periodic
discharge of vorticity in analogy with the flow past bluff
bodies.

Leonardo’s attention to the phenomenon was motivated
by his lifelong interest in mechanics, a discipline to which he
devoted a great deal of thought and a large number of notes
in his extant manuscripts. At his time, the view prevailing in
the major Italian universities, such as Padua and Bologna,
was essentially that of Aristotle,46 according to whom veloc-
ity was proportional to force, so that the permanence of mo-
tion required the constant action of a force.48 To explain
phenomena like the motion of a stone thrown by the hand,
this theory postulated an active role of the medium through
which the body moved: the agent which originally set the
body in motion, also imparted movement to the surrounding
air, and it was this moving air which dragged the body along.

The obvious difficulties which this theory encountered
~e.g., a wheel spinning by inertia! had prompted the formu-
lation of other hypotheses, notably by John Philoponus~5th
century A.D.!, who postulated that the hand throwing the
stone imparts to it a ‘‘quality’’—which, after Galilei, we call
momentum—which carries its motion.50,51 It is ironic that
this correct explanation was dismissed for a millennium by
the majority of the most influential thinkers.52,53 Neverthe-
less, it was not forgotten, and it returned to flourish in the
Middle Ages, especially at the Universiy of Paris, and in
particular thanks to Jean Buridan~ca. 1300–ca. 1358!54 and
Albert of Saxony~ca. 1316–1390!, with whose works Le-
onardo was familiar as Duhem has demonstrated~Ref. 49,
Vol. 1, pp. 19–33!. Albert so definesimpetus, one of the
words used by Buridan: ‘‘It is a certain quality which is, by
its very nature, apt to cause motion in the same direction in
which the motor made its projection’’~Ref. 49, Vol. 2, p.
196!.55,56

Leonardo sometimes uses the wordimpeto and some-
times the wordforza ~force!. Impetushe defines as ‘‘a power
transmitted from the mover to the movable thing’’57,58 ~Cod.
Atl. 219 v. a, Ref. 59, Vol. 1, p. 529! and recognizes its role
by saying ‘‘Impetus is frequently the cause why movement
prolongs the desire of the thing moved’’~Cod. Atl. 123 r.a,
Ref. 59, Vol. 1, p. 526!.60,61

Whether one looked at the rising bubble from the point

FIG. 16. The radius vs time of an air bubble rising in a water column
undergoing a de-pressurization from 405.2 kPa~4 atm! to 101.3 kPa~1 atm!.
The thick line is the measured radius, while the thin line is the radius
predicted from the measured pressure by assuming an isothermal expansion.
The photos show the bubble at intervals of 50 ms starting fromt50, the
beginning of the pressure release.

FIG. 17. Horizontal projection of the trajectory of the rising bubble of Fig.
16; the numbers are keyed to the photos of Fig. 16. Note the rapid onset of
a spiral motion between 2 and 3. Due to a very slight misalignment of the
optics, the initial straight rise between points 1 and 2 (t50 and 0.05 s!
appears to be along an inclined path.
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of view of Aristotelian mechanics or the impetus theory, the
deviation from a straight path posed a puzzle because ‘‘Ev-
ery natural and continuous movement desires to preserve its
course on the line of its inception, that is, however its local-
ity varies, it proceeds according to its beginning’’~ms. I, 6820

r, Ref. 59, Vol. 1, p. 76!.62

Leonardo’s attempt at an explanation can be found in the
Codex Leicester~formerly Hammer; see Ref. 63!; Figure 18
shows fol. 25r of this manuscript. The sketch in the upper
right corner, enlarged in Fig. 19, shows the spiralling motion
of a bubble and is accompanied by the following text:

‘‘The air which is submerged together with the water
... returns to the air, penetrating the water in sinuous
movement . . . . And this occurs because the light
thing cannot remain under the heavy. . . ; and be-
cause the water that stands there perpendicular is
more powerful than the other in its descent, this wa-
ter is always driven away by the part of the water
that forms its coverings, and so moves continually
sideways where it is less heavy and in consequence
offers less resistance . . . . And because this has to
make its movement by the shortest way it never
spreads itself out from its path except to the extent
to which it avoids that water which covers it above’’
~Ref. 59, Vol. 1, p. 112!.64

A similar explanation is given in a passage in ms. F 37r ,
accompanied by a sketch reproduced, among others, in Fig.
14 of Ref. 37:

‘‘Whether the air escapes from beneath the water by
its nature or through its being pressed and driven by
the water. The reply is that since a heavy substance
cannot be supported by a light one this heavy sub-
stance will proceed to fall and seek what may sup-
port it, because every natural action seeks to be at
rest; consequently that water which surrounds this
air above, on the sides and below finds itself all
spread against the air enclosed by it, and all that
which is aboved e n m, @the reference is to the
sketch reproduced in Ref. 37# pushes this air down-
wards, and would keep it below itself if it were not
that the lateralsa b e f and a b c d which sur-
round this air and rest upon its sides came to be a
more preponderant weight than the water which is
above it; consequently this air escapes by the angles
n m either on one side or on the other, and goes
winding as it rises’’~Ref. 59, Vol. 1, p. 557!.

The ascending bubble was not the only phenomenon of
non-rectilinear propagation to attract Leonardo’s prodigious
observational powers. In ms. F 52r , he writes

‘‘If every movable thing pursues its movement along
the line of its commencement, what is that causes
the movement of the arrow or thunderbolt to swerve
and bend in so many directions whilst still in the air?
What has been said may spring from two causes,
one of which . . . is as in the third@section# of the
fifth @book# concerning water, where it is shown
how sometimes the air issuing out of the beds of

FIG. 18. ~Color! Fol. 25r of Leonardo’s manuscript known asCodex
Leicester. The small sketch in the upper right-hand corner, enlarged in Fig.
19, shows the spiralling motion of a rising bubble.~Reproduced from Ref.
63 with the kind permission of the Armand Hammer Foundation.!

FIG. 19. Detail of Fig. 18 showing Leonardo’s sketch of the spiralling
motion of a rising bubble.~Reproduced from Ref. 63 with the kind permis-
sion of the Armand Hammer Foundation.!
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swamps in the form of bubbles comes to the surface
of the water with sinuous curving movement’’~Ref.
59, Vol. 1, pp. 558, 559!.

In spite of the similarity with the bubble case, he thought
that, unlike water, motion in air involved compression of the
medium~see Ref. 60! and therefore the detailed mechanics
would be different. For example, concerning lightning, he
writes:

‘‘The movement of the thunderbolt which originates
in the cloud is curved, because it bends from thick-
ness to thinness, this thickness being occasioned by
the fury of the aforesaid movement. For this thun-
derbolt not being able to extend in the direction in
which it commenced, bends into the course that is
freest and proceeds by this until it has created a
second obstacle, and so following this rule it contin-
ues on to the end’’~C.A. 121 r. b, Ref. 59, Vol. 1, p.
396!.

Not satisfied with simply collecting and describing instrances
of this general phenomenon, Leonardo tried to formulate a
general law:

‘‘Every impetuous movement bends towards the less
resistance as it flies from the greater’’~Cod. Atl. 315
r b, Ref. 59, Vol. 1, p. 532!.

This article started with soap bubbles, and it is therefore
fitting to end it with an annotation by Leonardo on this topic.
The small bottle-shaped sketch under the spiraling bubble in
Fig. 18 depicts a soap bubble formed at the end of a straw.
The accompanying text says: ‘‘Water attracts other water to
itself when it touches it: this is proved from the bubble
formed by a reed with water and soap, because the hole,
through which the air enters there into the body and enlarges
it, immediately closes when the bubble is separated from the
reed, running one of the sides of its lip against its opposite
side, and joins itself with it and makes it firm’’~Cod. Leic. 25
r, Ref. 59, Vol. 2, pp. 114–115!. And ‘‘It may be shown with
a bubble of water how this water is of such uniform fineness
that it clothes an almost spherical body formed out of air
somewhat thiker than the other; and reason shows us this
because as it breaks it makes a certain amount of noise’’
~Cod. Leic. 23 v, Ref. 59, Vol. 2, p. 111!.

VI. CONCLUSIONS

As witnessed by the many thousands of papers devoted
to it, the subject of bubbles is vast. In this article, and in the
talk on which it is based, I have only included a few recent
results, mostly unpublished, obtained with my collaborators
to all of whom I express my sincere gratitude.

I have also taken the opportunity for a detour away from
science and into another context in which bubbles play a
prominent role. The number of occurrences of theHomo
bulla theme that one encounters visiting the world’s muse-
ums is quite remarkable, and not limited to the West. For
example, a beautifulStill Life with a Boy Blowing Soap
Bubblespainted in 1635/36 by Gerrit Dou~1613–1675!, one
of Rembrandt’s most gifted pupils, can be admired in the
National Museum of Western Art in Tokyo. Such paintings

continued to be produced until the late 19th century, long
after their original moral message had been forgotten. One of
the latest examples—Bubbles, depicting a beautiful dreamy
little boy ~the painter’s own grandson! painted in 1886 by J.
E. Millais ~1829–1896!—was sold by its first purchaser to
the proprietor of Pear’s soap, who used it in advertising for
many years with great scandal of the British academic com-
munity.

As for Leonardo, one of my colleagues observed that he
does not need us for his reputation. I could not agree
more—it is fluid mechanics which can benefit from the
association!
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