
USRP2 IMPLEMENTATION OF COMPRESSIVE SENSING

BASED CHANNEL ESTIMATION IN OFDM

A Thesis

Presented to

the Faculty of the Electrical and Computer Engineering Department

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Tina Jayce Mathews

December 2012

c⃝ Copyright by Tina Jayce Mathews 2012

All Rights Reserved

USRP2 IMPLEMENTATION OF COMPRESSIVE SENSING

BASED CHANNEL ESTIMATION IN OFDM

Tina Jayce Mathews

Approved:
Chair of the Committee
Dr. Zhu Han, Associate Professor
Electrical and Computer Engineering

Committee Members:
Dr. Rong Zheng, Associate Professor
Electrical and Computer Engineering

Dr. E. Joe Charlson, Professor
Electrical and Computer Engineering

Dr. Suresh K. Khator, Associate Dean, Dr. Badrinath Roysam, Professor and Chairman,
Cullen College of Engineering Electrical and Computer Engineering

Acknowledgements

I am grateful to God, who always has better plans for me than anyone else. I have to thank

Mummy for giving me the confidence to get back into academia and supported me everyday. I have

to thank Daddy for instilling the love of science and the light of knowledge as a child and showing

me the importance of being sincere in all your endeavours, however small or big it may be. Most

importantly, I have to thank my husband, Jayce Mathews who held me through thick and thin, fall

and spring, ups and downs, and who reiterated the importance of a good education. I also would

like to thank my sisters and my in-laws for praying for me and believing in me.

I owe the deepest gratitude to my advisor, Dr. Zhu Han who accepted me as his student

and supported me all throughout the thesis with his patience and knowledge. I am thankful for

his constant efforts to keep me focussed and also allowing me to think on my own and approach

the problem in different directions. I cherish the opportunity to have done research under him and

learning from him.

I would also like to thank Dr. E. J. Charlson and Dr. Rong Zheng for being a part of my

thesis committee. I have to thank Dr. Zheng for accommodating me in the Wiser Lab. I have to

mention the faculty in COT for supporting me financially during my research semesters. I would

like to thank my friends, my colleagues in the Wireless Networking Lab in the ECE department

and also Wiser Lab in the Computer Science department, especially Mr. Guanbo Zheng with whom

I had numerous discussions about the wireless platform and accelerated my learning curve to get

familiarized with the USRP2 platform. This was a time when being in a research group provided

me with a platform to interact with various researchers and learn from them.

In every big and small way that everyone has touched me in the past two years, I am grateful

for everything you have given me.

v

USRP2 IMPLEMENTATION OF COMPRESSIVE SENSING

BASED CHANNEL ESTIMATION IN OFDM

An Abstract

of a

Thesis

Presented to

the Faculty of the Electrical and Computer Engineering Department

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Tina Jayce Mathews

December 2012

vi

Abstract

Radio channel impairment is a major concern in any wireless system. Channel estimation is

performed at the receiver to obtain the channel response in order to calculate the multipath channel

effects. However, the traditional way of using pilots for channel estimation has a tradeoff between

spectral efficiency and estimation accuracy. An increasing amount of research is being done on a

novel signal processing technique called compressive sensing and its applications in the modern day

wireless systems for channel estimation. In this thesis, we can exploit the sparsity of the time domain

channel by choosing the pilots randomly and building a random projection measurement matrix.

This approach improves the channel estimation accuracy by conserving the bandwidth. This thesis

investigates various modulation schemes in an open source software based radio development kit,

GNU Radio for a wireless system and build a compressed sensing based channel estimator for the

OFDM module on a Universal Software Radio Peripheral 2 (USRP2). Simulations for compressed

channel sensing are conducted to prove the effectiveness over traditional channel estimation. The

time domain based compressed channel estimator is implemented as a signal processing package in

GNU Radio, and performance studies are done in the real-time system.

vii

Table of Contents

Acknowledgements v

Abstract vii

Table of Contents viii

List of Figures xi

List of Algorithms xiv

1 Introduction 1

1.1 Channel Estimation in Wireless Channels . 2

1.2 Contributions of This Thesis . 4

1.3 Organization of This Thesis . 5

2 USRP2 and GNU Radio 7

2.1 Hardware Platform: Universal Software Radio (USRP) 7

2.2 Software Platform: GNU Radio . 8

2.3 The ‘Hello World’ in the Experimental Setup . 10

3 Preliminary Work: OFDM Architecture on USRP2 14

3.1 Introduction to OFDM . 14

3.2 Existing OFDM Architecture And Implementation On USRP2 15

3.2.1 OFDM Tx Baseband Model . 16

3.2.2 OFDM RX Baseband Model . 17

viii

3.2.3 Receiver Synchronization . 19

3.2.4 Classic Channel Estimation . 23

4 CS-OFDM Architecture And Implementation 25

4.1 Compressive Sensing . 25

4.2 Proposed Architecture . 26

4.2.1 How CS Fits In? . 26

4.2.2 CS System Model . 28

4.2.3 Bandwidth Utilization . 30

4.3 Soft Radio Implementation . 32

4.3.1 Approach Used for Implementing CS . 32

4.3.2 Proposed System Design . 33

4.3.3 YALL1 for ℓ1 Optimization . 36

4.3.4 ℓ2 Optimization . 37

4.3.5 CS OFDM Receiver Design . 39

4.3.6 Software Stack . 40

5 Simulations and Discussions 43

5.1 Simulations . 43

5.2 System Characterization . 45

5.3 Experimental Setup . 47

6 Conclusions and Future Work 51

6.1 Challenges . 51

6.2 Future Work on CS-OFDM . 52

ix

6.2.1 OFDM SNR Estimators . 52

6.2.2 FPGA Implementations . 53

6.3 Summary and Conclusions . 54

Bibliography 56

x

List of Figures

1.1 Wireless Channel Model . 4

2.1 USRP2 Motherboard . 8

2.2 USRP MotherBoard Architecture . 9

2.3 USRP Tx Flow . 9

2.4 USRP Rx Flow . 9

2.5 GNU Radio Architecture . 10

2.6 System Model of FM Receiver using GRC in GNU Radio 11

2.7 Python code snippet in GNU Radio . 12

3.1 OFDM System . 15

3.2 Effects From Deep Fading . 15

3.3 Effects From Delay Spread . 16

3.4 OFDM TX Flow Diagram . 16

3.5 OFDM TX Flowgraph ofdm tx.py . 17

3.6 OFDM RX . 18

3.7 OFDM RX Flowgraph ofdm rx.py . 19

3.8 S & C Model . 20

3.9 Receiver Synchronizer . 20

3.10 Timing Metric from Received Samples . 21

3.11 Detection of Preambles by Matched Filter . 22

3.12 Arrangement of Pilots . 23

xi

3.13 Channel Estimation . 24

4.1 Compressive Sensing . 25

4.2 MSE vs SNR for CS Algorithm . 29

4.3 Compressive Sensing Flowchart . 31

4.4 Bandwidth Analysis . 32

4.5 Ideal FFT Bins and Shifted FFT Bins due to Frequency Offset 33

4.6 Top View for CS Time Equalizer . 34

4.7 Comparison of FFTW3 and GSL Libraries . 35

4.8 Block Diagram for CS Time Equalizer . 36

4.9 Complex SVD Solution in GSL . 39

4.10 OFDM Rx with CS Estimation Flowgraph ofdm receiver cs.py 40

4.11 Software Stack of the CS Receiver in GNU Radio 42

5.1 USRP2 Setup . 44

5.2 Simulations for Symmetrical CS Setup . 44

5.3 Simulations for Asymmetrical CS Setup . 45

5.4 Simulations for CS Setup with Custom ℓ1 Optimization 46

5.5 Images Obtained with the Setup at Different Tx Gains 46

5.6 USRP2 Receiver Packet Dump . 48

5.7 Sparse Channel Estimates With Symbol Numbers 48

5.8 Sparse Channel Estimates for Preamble Symbols with Transfer Functions from

USRP2 . 49

5.9 Symbol Output from cs cpp sigmix Block . 49

xii

5.10 CS Estimated BER vs SNR plot . 50

xiii

List of Algorithms

4.1 Theoretical CS OFDM . 30

4.2 Implemented CS OFDM . 39

xiv

Chapter 1

Introduction

Wireless communication has been ubiquitous and continues to be a rapidly growing form of

communication. Although optical networks and wired networks can reach higher rates, the ease

of adding any portable device in a network has increased the popularity of wireless communica-

tion. This has definitely paved way to develop technologies to obtain higher data rates and secure

information channels for better information quality. New standards and technologies have helped

wireless networks to be a replacement in home, work and in industries. There are various appli-

cations that make use of the wireless channel like cell phone voice communication, data transfer

including high-speed video transfer, sensor networks etc. Moreover wireless technology is used for

a wide variety of applications ranging from a gate opener or a cordless telephone to a sophisticated

GPS based tracking system or satellite television. Moreover with the increasing use of the inter-

net, Wi-Fi is used to connect to the internet using 802.11a/b/g/n bridging the gap between wireless

networks and the information backbone. In fact, diversity techniques in both time and space have

helped us to improve the wireless link at a low cost. However, there are many technical challenges

involved in using wireless channels. Apart from the fundamental capacity limits of wireless chan-

nels and designing specific circuitry and systems for a wireless platform, we need to characterize

the channel. Wireless channels are time varying and undergo path loss for different environments.

Wireless channels can exhibit flat channel or frequency-selective properties of multipath fad-

ing. Similarly the signal undergoes doppler spread along with deep fading if it is in motion. These

are channel impairments which must be taken into account at the receiver while retrieving a signal.

The fading can be large-scale fading or small-scale fading. Large-scale fading occurs due to large

buildings or topological changes. Small-scale changes happen due to the constructive and destruc-

tive interference of the signals from the transmitter and the receiver [1]. We use certain physical or

statistic models of the channel variation over time and over frequency which are used in [2,3]. There

are two major parameters that interests us while estimating a wireless channel. They are doppler

1

spread which gives the coherence time and the delay spread which gives the coherence bandwidth.

Depending on how a channel changes with respect to the coherence time, it is categorized as a slow

fading and a fast fading channel. The coherence bandwidth is the reciprocal of the multipath delay

spread. If the bandwidth of the input signal is less than the coherence bandwidth of the channel,

it becomes a flat fading channel. This means the channel only has a single tap. If the bandwidth

is much larger, it becomes a frequency selective channel and needs multiple taps to represent it.

Similarly the channel can also undergo slow fading or log normal fading which is caused by the

blockages on the ground. This is independent of path loss. Hence the wireless channel is most

commonly modeled as a linear time varying system and it is known as the channel impulse response

(CIR). This tells us about the path attenuation as well the delay that each of the multipaths undergo

in a channel. In every receiver, these parameters are estimated to equalize the channel.

This gives us an insight into the importance of obtaining the characteristics of a wireless

channel in real time time. In a fixed network, the channel is studied in the beginning with a train-

ing sequence and this does not change in the rest of the transmission. Since the channel changes

in wireless network, a good channel estimation algorithm decides the quality and the quantity of

information transmitted in a network.

1.1 Channel Estimation in Wireless Channels

In any wireless system, a transmitted signal undergoes reflection, diffraction or scattering,

and reaches the receiver as an attenuated and delayed version of the original signal. In order to

estimate these nonlinear effects, channel estimation is done at the receiver of the wireless system.

Orthogonal Frequency Division Multiplexing (OFDM) is widely used in most modern day wire-

less systems making it attractive in applications like 802.11a (WLAN), IEEE 802.16 (WiMAX)

and LTE. Channel estimation becomes a complex two dimensional problem in OFDM. However,

increasing complexity of the existing systems and the demand for higher transmission rates have

pushed the requirements of estimating the channel to a higher accuracy. This thesis aims at bridg-

ing an existing signal processing technique, compressive sensing to estimate the channel impulse

2

response in a practical OFDM system.

Compressive Sensing [4] has gained increasing transparency in many diverse signal process-

ing applications. Since we are always looking to get more out of the less in a communication

system, CS is a promising technique. We aim at using CS in estimating the channel in an OFDM

wireless system where the channel state information is noisy and time-varying. Various approaches

have been made in obtaining the channel response owing to the increased requirement for more

accuracy within a shorter time. Channel estimation is done either using a combination of pilots or

a training sequence [5] or by blind estimation [6]. Here the arrangement of the pilots are known

to both the transmitter and the receiver. The design of a block type estimator has low complexity

however it does not track the channel as good as a cob-type estimator. This also works which aim at

design error reducing pilots like in [33]. However, using pilots can bring a tradeoff between spectral

efficiency and estimation accuracy. So an increasing use of data-aided channel estimation is found

in [10, 11] with joint data and channel recovery techniques. However, [7] has shown how CS can

improve the spectral efficiency in the training based method [29] shows how compressive sensing

can be used in wideband systems. However, there has been a lot of research on using compressive

in practical systems. The increased use of CS in wireless systems is seen in [8,9] , which motivates

us to use CS models in a real time system. Moreover [12, 13] works have motivated us to use CS in

a real time system and prove the architecture. So any wireless channel can be modeled as Rayleigh

or a Rician channel. The Rician model is a more closer model since it takes the Line-of-Sight into

account. Fig. 1.1 shows how a rayleigh channel looks into across various frequency bins that is

varying with time. Our main aim is to estimate such a channel in a practical wireless system.

Apart from using compressive sensing in our model, we also look into the importance of

shifting estimation from the frequency domain to the time domain. Most of the wireless standards

use pilots for tracking the OFDM system where the estimation is done in the frequency domain.

Since there are variations in the time and the frequency domain, the ideal channel estimator filter

would be a 2-D Wiener filter. The papers [30, 34] looks at how time domain channel estimation

can be done using the traditional zero forcing estimators, unbiased Least Squares(LS) or Minimum

3

0

5

10

0
100

200
300

400
500

600

Frequency bins
Time

Figure 1.1: Wireless Channel Model

Mean Squares(MMSE) estimators. It also cites the improvements in performance when estimation

is done in time domain. However, this is at the cost of complexity.

1.2 Contributions of This Thesis

We have investigated the existing Orthogonal Frequency Division Multiplexing (OFDM) im-

plementation in the current hardware setup and implemented a compressed sensing based chan-

nel estimation model. There are several hardware platforms like WARP, HPSDR, FLEX3000,

LYRTECH and wireless chipsets which helps us in bridging the gap between the simulations and

the hardware prototype. Rather than using traditional chipsets, the Software Defined Radio (SDR)

has become increasingly popular due to its cost effectiveness, capability and versatility. The Indus-

trial, Scientific and Medical (ISM) band at 2.4GHz can be used for developing many protocols as

well as physical layer architectures in a real-time environment. We chose Universal Software Radio

Peripheral (USRP2) platform for our experiments which is available with an open source software

package named GNU Radio. Using GNU Radio is far more economical than building an expensive

dedicated hardware.

• In this thesis, we have tried to bridge the gap between simulations and a hardware prototype by

4

proving a concept in software radio which is more resource intensive. CS systems introduce

a tradeoff between complexity and accuracy. Moreover, we also had to use the resources that

were available on the chosen platform. We have performed our studies on the RF daughter

board XCVR2450 with the USRP2.

• This work has adopted CS based algorithms in a realistic OFDM framework and significantly

improved the OFDM channel estimation technique. The use of CS in OFDM is cited in

[15, 17], however this work has implemented CS directly on a hardware platform.

• We have also made compressive sensing and other related modules more accessible as a plug

in module for software radio implementations for other implementations outside OFDM for

various applications where GNU Radio can be used. ℓ1 and ℓ2 models have been built which

can be reused.

1.3 Organization of This Thesis

In this thesis, the problem of effective channel estimation is practical OFDM systems are an-

alyzed and a solution based on CS is formulated. We designed a stable and physically recognizable

CS structure and obtained the CS estimates to prove the sparsity of the channel.

In Chapter 2, we discuss about the experimental platform used in the thesis. The growing

emergence of software radio systems and the ease of implementing practical systems have motivated

us to use such a platform. We look into the specifications that the hardware platform, USRP2 has to

offer and the the radio software development kit, GNU Radio.

In Chapter 3, orthogonal frequency based multiplexing is discussed and literature review is

done on the transmitter and the receiver design. We also look into the receiver synchronizer model

used in the current hardware setup in Section 3.2.3. Various models for channel estimation are

discussed in Section 3.2.4 and the specifications of this model is discussed.

In Chapter 4, a brief overview of CS is provided along with how CS can be used in current

setup. Section 4.2.1 explains how the sparsity of a channel can be exploited in the current scenario

5

and estimation can be done with fewer measurements. We define a system model in Section 4.2.2

and look into the detailed design and implementation in the following sections. This chapter talks

about the entire implementation done in the USRP2 platform.

In Chapter 5, we discuss the preliminary studies and the simulations done for an OFDM

system with compressive sensing channel estimation in MATLAB. Section 5.2 describes the system

characterization done for the experimental setup to check the feasibility of the platform and finally

we explain the results gathered from the implemented CS setup.

In Chapter 6, we discuss the challenges that this thesis offered and how they were curbed. We

finally make valuable pointers in Section 6.3 to conclude the thesis.

6

Chapter 2

USRP2 and GNU Radio

We chose a software radio to build the CS based channel estimation in OFDM. While choos-

ing a platform to built a practical system, we considered two paths. The first path was to build

a digital design system where compressive sensing can be used as an analog to information pro-

cessing block. However, we would only be limited to proving the algorithm and not extending its

application to a communication system. Otherwise, we would have to look for traditional chipsets

with supported daughtercards which would be expensive and application specific. We were looking

for something more flexible with a general purpose processor and basic hardware where reusability

and reconfigurability were the required traits. So the software radio fitted our requirement well.

The work in [44] clearly states how the resulting software-defined radio (or software radio) extends

the evolution of programmable hardware, increasing flexibility via increased programmability. This

would help us prove our algorithm in the most closest practical system. An early version of the

software defined radio system is seen in [45] which gives an overview of the prototype.

2.1 Hardware Platform: Universal Software Radio (USRP)

In order to prove CS estimation in a real time system, we use a software defined radio. The

hardware platform to implement software radio is the USRP2 that is provided by Ettus Research

[19]. The software defined radio used is a GNU Radio [20]. There are two versions of USRP:

USRP1 and USRP2. These line of products helps the academic, scientific, and industrial community

to perform experiments on RF from DC to 6GHz.

The USRP2 helps to communicate between the host computer and the analog intermediate

frequency signal. It has a general purpose processor along with a FPGA. The FPGA is used for up-

conversion and downconversion. The FPGA includes digital down converters (DDC) implemented

with cascaded integrator-comb (CIC) filters (for receivers) and interpolators for transmitters. Digi-

7

Figure 2.1: USRP2 Motherboard

tal up converters (DUCs) on the transmit side are actually contained in the AD9862 CODEC chips.

The USRP2 has a 100 MSs, 14 bit, ADC for RX and 400 MSs, 16 bit, DAC for TX. It has slots

to place interchangeable RF cards. The main daughter boards used in the current setup are Dual

band Transceiver XCVR 2450 with ranges 2.3 - 2.9 GHz & 5GHz & RFX2400 with 2.3 - 2.9 GHz.

The setup is shown in Fig. 2.1 and uses Gigabit Ethernet to communicate to the host. All the basic

tasks like interpolation, decimation, upconversion, and downconverion are done in the FPGA of the

USRP2 board.

2.2 Software Platform: GNU Radio

The software defined radio used is GNU Radio, which is a free and open-source software

development toolkit and is highly compatible with the USRP2 peripheral. The GNU Radio has

signal processing blocks area available to implement software radios. So typically all the baseband

processing is done in the GNU Radio. We currently use GNU Radio 3.3.0 for our setup. The flow

graph for reception and transmission is shown in Fig. 2.4 and Fig. 2.3. The reception path consists

8

Figure 2.2: USRP MotherBoard Architecture

Figure 2.3: USRP Tx Flow

of the antenna, an RF Down converter and then the ADC which digitizes the signal. From the ADC

to goes to the USRP2 motherboard which has an FPGA, this is responsible for data rate conversion

and timing. The gigabit ethernet (GbE) interface is from the USRP2 motherboard and connects the

USRP2 to the host. The transmission flow is in the reverse manner, except that it uses the DAC

instead of the ADC.

Figure 2.4: USRP Rx Flow

GNU Radio is an open source and has a Python based architecture for building SDR projects.

Performance-critical modules are written in C++ and Python is used to glue the modules and also

noncritical blocks. SWIG is used for patching all of them in the software defined radio. In Python,

we can describe the signal flow from the source to the sink as shown in Fig. 2.5. All the signal

processing functions like filtering, modulation, demodulation, encoding are done in the host.GNU

Radio gives us a platform to build these functions are C++ routines which can be called by a

9

Figure 2.5: GNU Radio Architecture

python script. The intermediate wrapper for the C++ modules is done in SWIG which creates a

MAGIC BLOCK to link the python script to the C++ modules. This is possible due to the smart

pointer from the boost libraries that encapsulates the C++ modules. There is also a drag and drop

model which helps in simulating the system. This is a open-source Visual programming language

for signal processing using the GNU Radio libraries called GNU Radio Companion (GRC) [21].

GRC can also generate the source codes for theses blocks and this can help us in tweaking the

setup. The structure of the GNU Radio has a hierarchical approach. However we might only see the

signal processing modules as black boxes and need to customize for our requirements. The GRC

blocks are described in XML format and can be build with much ease. Fig. 2.6 shows us the system

model of a narrow band FM receiver done using USRP2. We can configure a source file and add

blocks of interest for our system. We need to setup the interpolation or decimation rate, gain and

also the center frequency depending on the type of system we have while connecting to a USRP2

sink or source.

2.3 The ‘Hello World’ in the Experimental Setup

Before we proceed with USRP2 platform, we need to make sure that the necessary hardware

is available and the required softwares are installed. The following specifications are used in the

experimental setup:

• Host Platform: Ubuntu 10.04 LTS (Lucid Lynx)

• Hardware Peripheral: USRP2 with daughter board, XCVR2450

10

Figure 2.6: System Model of FM Receiver using GRC in GNU Radio

• SDR Version: GNU Radio 3.3.0

The USRP2 is connected to the host platform with a gigabit ethernet cable. To check if the

USRP2 is detected by the computer after plugging it in, use the following command by starting a

new terminal: sudo find usrps. This will provide us the MAC address of the sensor node connected

to the host. To start the GNU radio companion, a GUI for building projects, use the following

command in the terminal: gnuradio-companion.

Executing your project requires the use of Python, which can be invoked via the GUI or the

terminal. It is recommended to execute any Python file from the terminal with the sudo command

because general errors can result from lack of admin permission. For example, to execute a file,

the following command will enable you to run the python file ‘myfile.py’: sudo python myfile.py.

Many of the example files provided by GNU Radio also have options that can be specified with

the execution command. To see if there are any options, use the following command: sudo python

myfile.py -help.

11

Figure 2.7: Python code snippet in GNU Radio

Once both the USRPs are connected to the host, we can check the transmission and reception

paths. This will ensure the sanity of the daughter boards, the antennas and the SDR version we

are using.We use the usrp2 fft.py from gr utils folder and tune for a known signal. We send it at a

known center frequency from the transmitter USRP2 and tune the receiver USRP2 with this script.

Once we obtain the required signal at the correct center frequency, we can use the platform. We

can also track any offset related issues in the two nodes due to ppm differences and take in into

consideration for the rest of the experiment. There are some useful tools available in the setup too.

usrp2 fft.py can also be used as a spectrum analyzer and usrp2 rx cfile.py can be used as a recorder.

The dial tone example is the commonly used program for checking the USRP2 platform and

the GNU Radio. Here the GNU radio is used to produce a tone that is similar to the dial tone one

would hear from a landline telephone. In this example, the python code and the GUI interface of

GNU radio will both be used. We will look into the python code given in Fig. 2.7 to understand how

a script is constructed with class dial tone. Function gr.sig source f is used to create a float type

sine wave with the same amplitude and sampling rate but with different frequencies, one at 440Hz

12

and the other at 640Hz. The first signal source output is connected to the input at the first port (Port

0) of the sound sink and the second is connected to Port 1. We also define a sink or destination,

which writes the input into a sound card.

13

Chapter 3

Preliminary Work: OFDM Architecture on USRP2

In this chapter, we look into how OFDM is used in modern wireless system and study the

existing setup on the USRP2. Section 3.2 discusses the transmitter and receiver flowgraphs in GNU

Radio along with the signal processing blocks used in the platform. We also look into receiver

synchronization and channel estimation.

3.1 Introduction to OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a combination of modulation and

multiplication. It provides large data rates and highly robust to radio channel impairments. In the

OFDM scheme, a large number of orthogonal, narrow band sub channels or subcarriers, transmitted

in parallel, divide the available bandwidth. There is minimal separation between the carriers; hence

there is very compact spectral utilization. Since the carriers are orthogonal, there is no crosstalk

between the sub channels. The OFDM signal generated by taking the IFFT over N sub-carriers can

be written as,

x(t) =

N∑
k=1

cke
j2πfkt, 0 ≤ t ≤ T, (3.1)

where ck is the data symbol, fk = k/T is the subcarrier, and T is the length of the OFDM interval.

The OFDM symbol duration Ts is added to the guard interval Tg which gives T = Ts+Tg, which is

the total OFDM duration. This makes adjacent subcarriers separated by 1/T . The OFDM system is

implemented with the IFFT/FFT pair along with a DAC/ADC pair. At the transmitter, the signal is

defined in the frequency domain. The frequency is discrete and such that each carrier corresponds to

each element of the discrete Fourier spectrum. The amplitude and phases of the carriers correspond

to the data to be transmitted. A serial data stream is parallelized. The IFFT helps to serialize this

parallel data, and hence obtain a time domain signal. Then at the receiver, FFT is done to obtain the

subcarriers and the data on each on these carriers.

14

Figure 3.1: OFDM System

Figure 3.2: Effects From Deep Fading

In any wireless channel due to multipath effects, a signal undergoes fading and delay [22].

The fading in Fig. 3.2 changes the amplitude of the signal whereas the delay phase brings about a

change in the phase and hence a frequency offset. The frequency offset leads to loss of orthogonality.

The advantage of using OFDM is that in spite of having deep fading only some subcarriers are

affected. We can overcome the information lost using good channel coding techniques. Similarly

the delay spread brings about a timing offset and loss of information which can be overcome by

using a Cyclic Prefix, as shown in Fig. 3.3. This helps in solving intersymbol interference(ISI)

issues and provides the receiver with some guard time. A section of the composite OFDM symbol

is copied so that even if there is a delay we do not lose information although it is redundant. Due

to its advantages, OFDM is prevaent in WiFi 802.11a/g/n, MIMO, ADSL, UWB and many more

wireless systems.

3.2 Existing OFDM Architecture And Implementation On USRP2

In this section we discuss about the most common implementation of an OFDM with a

IFFT/FFT pair. We investigate the current implementation in GNU Radio and look into the de-

tails of the specifications. We used the benchmark codes for all our initial studies.

15

Figure 3.3: Effects From Delay Spread

Figure 3.4: OFDM TX Flow Diagram

3.2.1 OFDM Tx Baseband Model

The binary information which is the form of serial data is grouped, modulated and coded. The

serial data is parallelized depending on the number of available subcarriers or occupied tones. A

known PN sequence is inserted before the data followed by serializing it with IFFT block. Then the

N-point IDFT is done to change the data sequence from frequency domain to time domain. Once

the composite signal is framed, the cyclic prefix is added. The scaling is done so that the data is

normalized while streaming to the USRP2. This goes to the upconvertor and then goes to the DAC

for transmission. Fig. 3.4 has a flow diagram on which ofdm tx.py is built. The USRP2 implements

the blocks with C++ modules are defined in Fig. 3.5. This is implemented in benchmark ofdm tx.py

16

Figure 3.5: OFDM TX Flowgraph ofdm tx.py

which calls the ofdm.py where class ofdm mod defines the flow of the OFDM transmission. The

architecture is hierarchical rather than flat. If X̄ denotes the input data to the IFFT block such that

X̄ = [Xk]
T , k = 0, 1, ..N − 1, (3.2)

then the output of the IFFT block can be written as

x(n) = IDFTN (X̄) =

N−1∑
k=0

Xke
(i2πnk/N). (3.3)

The ofdm mapper bcv packs the data into the subcarriers, followed by insertion of preambles.

ofdm insert preambles checks for the preamble length and appends the modulated payload to the

preambles. Once the preambles are inserted in ofdm insert preambles, we use the FFTW C library

to calculate the N-point backward DFT. The function gr fft vcc handles this. Then the cyclic prefix

length and symbol is send to the gr ofdm cyclic prefix to construct the final signal. We need to scale

the signal before transmitting it.

3.2.2 OFDM RX Baseband Model

At the receiver, after USRP2 ADC, it is windowed using a Hamming Window. The symbol

needs to be synchronized since it undergoes fading and delay spread in the channel. So it goes to

17

Figure 3.6: OFDM RX

the synchronization block which provides the timing and frequency information while sampling the

received signal. Once the cyclic prefix is removed, the N-point DFT is used to convert from time

domain to frequency domain. Then it is corrected for fine frequency and estimation. If Ȳ denotes

the output data of the FFT block

Ȳ = [Yk]
T , k = 0, 1, ..N − 1, (3.4)

we can derive it’s relationship with the input data symbols X̄ as,

Ȳ = DFTN (IDFTN (X̄)⊗ hn + wn), Ȳ = diag(X̄)H +W, (3.5)

where hn and wn are the sampled channel impulse response and the AWGN (Additive White Gaus-

sian Noise) and H and W denote the N-point DFT of hn and wn. Here ofdm rx.py calls classes

ofdm receiver and ofdm demod. The module ofdm receiver takes care of the time and frequency

synchronization with ofdm sync. This gives the timing and frequency correction information to the

ofdm sampler, which samples the received signal. The ofdm sampler looks for the preamble and

removes the cyclic prefix to give the OFDM symbol to ofdm frame acq. The block ofdm frame acq

18

Figure 3.7: OFDM RX Flowgraph ofdm rx.py

takes care of the fine frequency tuning by preamble correlation method and does the channel es-

timation. The ofdm occupied tones along with the preamble information is given to ofdm demod.

ofdm demod does the demodulation followed by ofdm frame sink which captures the packets in a

target queue. The sub modules of ofdm receiver are given in Fig. 3.7.

3.2.3 Receiver Synchronization

In any wireless system, the multipath effects add to timing and frequency offsets. So it is

important to find the start of every symbol correctly. It becomes necessary to get the right time

delay and the phase offset that the symbol undergoes. In this section, we discuss how the preambles

or known symbols are used to identify the start of the symbol and various synchronization models

available in GNU Radio.

The Schmidl & Cox (S&C) model [23] is used to create the preambles or the pilot symbols

in the current USRP2 implementation. Here the preambles are known symbols used for used for

synchronization and initial channel estimation in the current setup. Complex models have pilots for

19

Figure 3.8: S & C Model

Figure 3.9: Receiver Synchronizer

tracking channel and fine tuning the estimates [24]. However the receiver can be chosen between

PN synchronization [23], ML Estimation [26,27] and PN Sequences with Acknowledgements [25].

Both PN synchronization and ML estimation were tried in the existing setup. Here we discuss

the Symbol Timing and Carrier Frequency Offset Estimation algorithm. In the S & C model, the

receiver tries to find start of frame/symbol by looking for a symbol whose first half is identical to

the second half in time domain. Both the halves will remain the same while travelling through the

channel except that there will be a phase difference between them due to the carrier frequency offset.

Here they are made identical in time by sending a PN sequence on the even subcarriers and zero

on the odd subcarriers. In Fig. 3.8, a symbol with two identical halves [1, 2, 3, 4] is set is time

domain. While taking the FFT, we can observe that the odd carriers are nulled. Since FFT/IFFT are

20

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Symbols

T
im

in
g

M
et

ric

Figure 3.10: Timing Metric from Received Samples

commutative, the inverse frequency to time is what happens with the preambles. Correlation btw

identical halves used to calculate timing metric. This helps determine the start of frame. Assuming

that we have L samples in the first one-half of the training symbol (avoiding the cyclic prefix), we

can calculate the moving average sum of cross correlation P (d) as

P (d) =
L−1∑
m=0

r(d+m) · r(d+m+L), (3.6)

where r is the sampled complex sample and d is the time index of the first sample in a window of

2L samples. The moving average sum of received energy of the second half of the training symbol

is given as,

R(d) =
L−1∑
m=0

|r(d+m+L)|2. (3.7)

From the above we can calculate timing metric as,

M(d) = |P (d)|2/(R(d))2. (3.8)

The timing metric is like a plateau and the start of the symbol can be taken anywhere on this plateau.

The timing metric ofdm sync pntheta f.dat is spiky and this could be because of the presence of the

cyclic prefix. Fig. 3.10 shows the timing metric from the received samples in the USRP2 calculated

21

Figure 3.11: Detection of Preambles by Matched Filter

in ofdm sync.py using Equation 3.8. This information goes to the matched filter which detects the

presence of a known symbol and received signal. We regenerate the peaks with which we sample

the received signal. Fig. 3.11 shows the output of the matched filter ofdm sync pn-mf f.dat from the

USRP2. The phase difference ϕ between the identical halves gives the frequency offset estimation

as in,

ϕ = πTδf, (3.9)

ϕ̄ = angle(P (d)). (3.10)

Hence, the carrier frequency offset δf is calculated as,

δf = ϕ̄/πT. (3.11)

Then the two halves are corrected by multiplying the two samples with exp-2j/T. This angle is used

by the ofdm sampler to sample the signal that comes directly from the channel. Once the phase

difference between the subcarriers of the known symbols or the preambles is known, it is applied

to all the symbols till the next preamble comes. This gives us the coarse frequency and timing

synchronization. The fine tuning and estimation is addressed in the next section.

22

Figure 3.12: Arrangement of Pilots

3.2.4 Classic Channel Estimation

Once the OFDM symbols are synchronized, they need to be corrected for channel impair-

ments. Channel estimation is a complex two dimensional interpolation problem. Since it is time

varying, a 2D Wiener filter should be the ideal way to estimate a channel. However since building

such an estimator is highly complex, most implementations have a 1D equalizer.

The most common type of channel estimation is pilot-aided estimation. Known symbols

called as preambles are used for getting the initial channel estimates and pilots are inserted in

between to track the channel. These are mainly categorized as block type pilots and comb type

pilots [36]. Fig. 3.12 shows how pilots are arranged in the time and frequency domain in both

these mthods. As cited in [35], this work discusses various estimation methods, LS, MMSE and

also the importance of estimating channels in OFDM. Again in all these methods, it is limited to

the frequency domain and only half the interpolation issue is solved. We get an insight of how

frequency domain pilots can be used to obtained the channel impulse response (CIR) by cyclic cor-

relation method in [38]. Another way to improve the channel estimation is improve the accuracy

of the interpolation itself. The paper [39] gives an overview of good interpolation techniques like

second order or spline interpolation can improve the channel estimate accuracy and the lays down

the importance of time domain interpolation also.

23

Figure 3.13: Channel Estimation

In the current OFDM implementation in USRP2, the channel estimation is done after tak-

ing the FFT. The ofdm sampler feeds the sampled signal to the fft vcc block for taking the FFT.

So the channel estimates are taken in the frequency domain. The channel estimation is done in

the ofdm frame acq module. Here they use one of the known symbols to estimate the channel re-

sponse and apply a single tap equalization to all the carriers. The symbol to be used for the channel

estimates is known by doing a cross correlation over a shifted FFT length or bins (default = 10).

This helps in estimating the taps of the odd subcarriers. The taps on the even subcarriers are then

obtained by simple linear interpolation. The received signal after FFT modulation can be given as,

Ri(n) = Hi(n)Ci(n) +Wi(n), 0 ≤ n ≤ N − 1, (3.12)

Pi(n) = 1/(Hi(n)), (3.13)

where Ri(n) is the received sample, Hi(n) is the channel gain in the frequency domain, Ci(n)is the

original transmitted data and Wi(n) is the AWGN at the nth sample

Yi(n) = (Ri(n))/(Hi(n)) = Ci(n) +Wi(n)/Hi(n), 0 ≤ n ≤ N − 1, (3.14)

H(n) = (Rp(n))/(Cp(n)) = Hp(n) +Wp(n)/Cp(n), 0 ≤ n ≤ N − 1, (3.15)

where Rp(n) is the received known symbol, H(n) is the channel estimate in the frequency domain,

Cp(n) is the preamble or known symbol transmitted at the nth sample.

24

Chapter 4

CS-OFDM Architecture And Implementation

In this chapter, we present the scheme that will be used to change the channel estimation in

the existing setup. An overview of compressive sensing (CS) is given in Section 4.1 and we look

into how CS can be applied to our model in Section 4.2.1 This is followed by the receiver design

and the transmitter design.

4.1 Compressive Sensing

Compressive sensing uses less information to retrieve the required signal. Unlike Shannon’s

Nyquist sampling, compressive sensing uses subNyquist sampling to reconstruct the entire sig-

nal [4]. However the reconstructed signal must be sparse in nature which enables fewer linear mea-

surements to reconstruct it. Since the channel estimates hn is sparse in nature, we can reconstruct it

by constructing a carefully designed measurement matrix ϕ, and using optimization techniques like

ℓ1 minimization a.k.a Basis pursuit algorithms [40, 42], matching pursuit algorithms [41] et al. to

obtain the channel estimates hn.

y = ϕhn. (4.1)

This helps us overcome over-parameterization that occur with traditional techniques like least squares

and which results in the poor performance of the estimator.

Figure 4.1: Compressive Sensing

25

The measurement matrix ϕ must be designed in such a way that it adheres to a few properties

so that we can obtain h from this under determined set of equations. Any information in h must not

be damaged by a dimensionality reduction of ϕ. So ϕ must obey the Restricted Isometry Property

(RIP) [20], or the uniform uncertainty principle after scaling in Equation 4.2 which is given as,

(1− δs)||h||22 ≤ ||ϕh||22 ≤ (1 + δs)||h||22, (4.2)

where δs is the RIP parameter and ||.||22 is the ℓ2 norm of the vector. ϕ obeys RIP for

K ≤M ≤ logN, (4.3)

where

ϕm = random Gaussian,

ϕm = random Binary or

ϕm = randomly selected Fourier samples.

We could solve for h, using the ℓ2-norm, however the solution is never sparse. Since we know a

priori that our signal is sparse, we could use ℓ0-norm. However, this is computationally exhaustive,

and hence not a feasible solution. Hence, we can solve for hn by

min||h||ℓ1 (4.4)

s.t. y = ϕhn.

4.2 Proposed Architecture

4.2.1 How CS Fits In?

Calculating radio impairments in a wireless system is what makes the baseband receiver dif-

ferent from other pass band receivers. For an OFDM system, the channel impulse response can be

modeled as

h(t) =

L∑
l=1

alδ(t− τl), (4.5)

26

where al is the complex multipath component, L is the total number of multipaths, δ is the Dirac

delta function and τl is the multipath delay. A cyclic extension of length Tg is chosen greater than

τl to avoid intersymbol interference [14]. We can see that hn is sparse in time domain, since the

number of multipath components l is small. This is because wireless channels are highly suscep-

tible to noise and time. Hence we can incorporate compressive sensing in estimating the channel

impulse response in time domain. The paper [15] gives a method which helps in using compressive

sensing for channel estimation in the frequency domain. This system model for this proposal is

based on [16], which uses random convolution and the asymmetric structure of a DAC/ADC pair to

estimation. This is a novel approach compared to existing CS based channel estimation structure.

The work in [17] points to an interesting model to use frequency based channel estimation, however

the asymmetric nature of the DAC/ADC pair cannot be used in this model.

We will discuss the system model discussed in [16], and then demonstrate how it can be fitted

in the existing system. The sampled received signal z(n) in a wireless node can be written as,

z = x⊗ hn + w, (4.6)

where ⊗ denotes convolution, hn is the sampled channel response, and w is the sampled AWGN

noise. At the ADC, z will be sampled at rate M to obtain ym. However, we have to note that this is

convolution and not multiplication. So we need to rewrite Equation 4.6 as,

z = Chn + w, (4.7)

y = PΩz = PΩ(Chn + w), (4.8)

y = (PΩC)hn + wΩ, (4.9)

where C is the full circulant matrix determined by x, PΩC denotes the down sampled points and wΩ

is the down sampled AWGN noise. Here we need to design PΩC, such that we can still reconstruct

h.

Equation 4.10 shows the multiplicative property of a time based convoluted signal, which

helps us in designing the pilots in Equation 4.11,

x⊗ h = F−1(F (x) · F (h)), (4.10)

27

x⊗ h = F−1(F (F−1(X)) · F (h)), (4.11)

where X is the pilots in frequency domain. On simplifying the Equation 4.11 we get,

x⊗ h = [F−1diag(X)F]h. (4.12)

X is designed such that discrete value X(k), k=1,2,..N, have independent random phases and uni-

form amplitude. This is random convolution [43], where a random waveform is convoluted with h,

followed by random time domain subsampling. So here the channel estimates are done in the time

domain. In order to obtain higher resolution, [16] also implements a down sampling at the receiver.

Hence the RX will be down sampled by about 8 to 16 times. The asymmetric DAC/DAC pair helps

in a attaining the high resolution and also takes advantage of the high speeds a DAC can take. Hence

the equation for the final system model becomes

y = Ω[F−1(F (F−1(X)) · F (h))] + Ωw. (4.13)

This makes the sensing matrix take the form of Equation 4.14 as,

A = M−1/2PΩC. (4.14)

We compare the MSE vs. SNR for the existing model for the maximum down sampling, 8

possible in the existing USRP2 setup (Max TX = 512 DFT/Min RX = 64 DFT). The MSE converges

for high SNR values hence we can rely on this model to estimate the channel impulse response.

The algorithm used in [16] for estimating the channel gains in time domain using compressive

sensing is given in Table 4.2. ℓ1-norm on the h is done followed by minimum mean square.

4.2.2 CS System Model

We modeled the OFDM model as a basis pursuit model in the YALL solver [18] as,

min
hnϵCn

|Whn|w,1 (4.17)

s.t. Chn = ym,

28

Figure 4.2: MSE vs SNR for CS Algorithm

to solve the undetermined equation to get hn where ||.||w,1 is the weighted ℓ1 norm. The algorithm

in Fig. 4.3 uses iterative support detection for solving the ℓ1 equation in noisy environments. Here

basis pursuit denoising is done followed by the updation of weights which is used in the next itera-

tion. The tolerance margin can be reduced at various steps of the iteration to improve the solution.

Finally the least squares solution is used as a final denoising step. The complexity and the com-

putation time in the least square step are reduced due to the sparsity of the h. We used YALL1

solver [18] since it has an accelerated convergence compared to other solvers. BP helps in attaining

high resolution and speed [18] by dividing a signal into smallest number of ℓ1 coefficients. More-

over it was easier to implement a custom portion of the YALL1 on the embedded platform after it

was available as a open source module.

There are two possible models for compressive sensing based estimation namely symmetric

and asymmetric model. In the symmetric model, the transmitter and the receiver are maintained

at the identical IFFT/FFT. At the receiver, the preambles are subsampled and compressive sensing

estimation is done. However since we need to extract the data from the entire sample set, this

method is just a proof of concept. A better approach would be to model in an asymmetrical method

for channel estimation by using a higher bin FFT for just the preamble at the transmitter. Since the

channel impulse response is sparse in nature, we can use CS to obtain a high resolution response

29

Algorithm 4.1 Theoretical CS OFDM
Input: ϕ, y;
Initalize:
ϕ̃ as the first Ñ columns of ϕ.
I0 ← ∅ and w0

i = 1, ∀i ∈ {1, 2, . . . , Ñ}
while the stopping condition is not met, do

Subproblem:
h̃← argmin

∑
i̸∈Ij
|h̃i|, s.t. ϕ̃h̃ = y. (4.15)

Support detection:Ij+1 ← {i : |h̃ji | ≥ 2−j∥h̃j∥∞}, where ∥h̃j∥∞ = maxi{|h̃ji |}.
Weights update:
wj+1
i ← 0, ∀i ∈ Ij+1; otherwise wj+1

i ← 1.
j ← j + 1

end while
Final least-squares:
let T = {i : |h̃i| > threshold}, then:

h̃T ← argmin
h̃
∥ϕ̃T h̃− y∥22, and h̃T c ← 0. (4.16)

Return h̃

from smaller number of samples at the receiver. Based on the work in [16], a high speed DAC at

the transmitter and a regular speed ADC at the receiver will help us attain a higher dimensionality

for hn. So instead of using a higher bandwidth or a longer preamble [37], we can slice the same

bandwidth at a higher rate to obtain finer channel estimates. This also gets translated to shorter

probing times.

4.2.3 Bandwidth Utilization

Inorder to estimate the bandwidth that the OFDM signal spans over, we analyze the FFT of

the received samples in the experimental setup. Fig. 4.4 shows the fourier transform of the received

OFDM signal. We see that from the figure the bandwidth is about 400KHz. The bandwidth should

be maintained during the estimation and the data reception. The same bandwidth needs to be utilized

for both the preamble and the data. If we consider FFT size N = 512, occupied tones, occ = 128

with an interpolation rate i of 64, an ADC clock rate ADCclk and a sample size of 1024 bytes, we

can obtain a maximum transmission rate T of 1.562500 MS/s

T = ADCclk/i, (4.18)

30

Figure 4.3: Compressive Sensing Flowchart

where 100MS/s is the maximum ADC rate. However we are limited by the occupied tones, so the

bandwidth bw gets limited to

bw = T ∗ occ/N, (4.19)

which makes our bandwidth 390.625KHz. So the subcarrier spacing in our case turns out to be

762.9395Hz which is given by

δf = bw/N. (4.20)

The symbol time Ts can be calculated considering the cyclic prefix length of CP = 192 samples.

Therefore the total number of samples transmitted turn out to be 512 + 192 = 704 samples. We get

a symbol time of 180.224 µs while applying the equation,

Ts = (1 + occ/N) ∗ (1/δf). (4.21)

The symbol time period Ts is small compared to the average computation time for CS to converge.

In other words, we see that CS convergence takes ms which might be a huge hit against the symbol

period.

31

Figure 4.4: Bandwidth Analysis

4.3 Soft Radio Implementation

In this section, we look into different ways to implement the CS model in the embedded

platform. The proposed system design is discussed along with the details in each block.

4.3.1 Approach Used for Implementing CS

A Soft Radio can implement most of the signal processing blocks defined in a theoretical

model. However, practical systems need a lot of leverage than the theoretical ones to take care

of processing time and rounding errors. So implementation of an existing algorithm to a practical

systems has a lot of limitations. GNU Radio uses a mixture of Python and C++ and many believe

that using both these platforms hinders the performance. The best approach is to lay down the signal

flow in Python and the performance critical modules in C++. Although performance of the module

might be a bottleneck, the reconfigurability trait in the software radio makes it attractive to use.

Another approach was whether to use a hierarchical model using gr hier2.block with the GNU

Radio. This was not pursued due to the iterative nature of the algorithm and the current constraints

in the GNU Radio. Moreover developing each block on its own would give better observability and

easier testability with the qa tests.

32

Figure 4.5: Ideal FFT Bins and Shifted FFT Bins due to Frequency Offset

The existing setup in the OFDM for GNU Radio uses frequency domain based channel es-

timation where the received known symbols was compared with the known symbols (preambles).

Frequency compensation is done along with channel estimation in the ofdm frame acq block. The

OFDM frequency bins can shift due to the multipath effect introduced by the channel and auto-

correlation is done to find the number of bins shifted. The shifted index is used to calculate the

weights on the odd carriers and the weights on the even carriers are then interpolated. This is a

coarse method of channel estimation [28].

Currently both the frequency compensation and the channel estimation are done together

in the ofdm frame acq block in the GNU Radio. For implementing CS, the channel estimation

needs to be shifted and made into a separate block called the CS Estimator. The samples from the

sampler block called ofdm sampler are used since the estimation needs to be in the time domain.

Once the channel estimates are obtained by the CS Algorithm, they need to be corrected for the

frequency compensation. One of the major architecture related changes was shifting the channel

estimation from the frequency domain to time domain. While shifting the channel estimation to

time domain, the estimation error decreases owing to the decrease in the number of parameters to

be estimated [30], although it is with the cost of complexity.

4.3.2 Proposed System Design

The top level view of the CS integration with the existing system is given in Fig. 4.6. In

the symmetric model for Fig. 4.6, we need to downsample the time domain signal before the CS

33

Figure 4.6: Top View for CS Time Equalizer

estimation in the existing setup. This held good for higher FFT models however we are throwing

away known data in this case. In the asymmetric model, we use CS on the preamble which has been

transmitted at a higher FFT while preserving the bandwidth. The CS model is explained extensively

later. Apart from data, we also use a control signal, to indicate the end of a complete CS estimation

cycle.

We built an initial measurement matrix (MM) based on the pilots and the received signal and

update it to a new MM based on the estimated hn. The measurement matrix A is defined by two

function handles in Matlab which are defined as,

A.times = defA, (4.22)

A.trans = defAt, (4.23)

= IFFT (FFT (y) ∗ conj(pilots)).

We used FFT3W over GSL libraries for all the FFTs since this was computationally more

efficient [32] as see in Fig. 4.7. Once the measurement matrix was available A, it was used in

the YALL block to solve for the ℓ1 model. A stopping condition(SC) was implemented based on

the algorithm and the limit on the symbol numbers so that convergence happen. Many supporting

functions used in Matlab like abs, nnz, find had to be built in the MISC block. We could also

use patches like Armadillo for the translating Matlab functions into C++ plug ins. Then the final

denoising step was done using least-square block L2. Since this has an infinite number of solutions,

we can use the pseudo inverse which is given in Equation 4.31. The ℓ2 block implements the Moore-

34

Figure 4.7: Comparison of FFTW3 and GSL Libraries

Penrose inverse using SVD. For any matrix, there exists U and V orthogonal matrices, and also a

diagonal matrix S which contains the singular values. Since the input vector is sparse in nature, the

final step is not computationally taxing. The GSL libraries are used for SVD. However, this could

only be done in real number domain. This is rewritten to use the available functions since Anew is

complex.

One of the major constraints in building a real-time system from simulations is the parallelism

in the system. GNU Radio has a TPB (thread-per-block) scheduler by default. So when a system

gets complex with increase in the number of blocks, it slows down the CPU. Since the CS algorithm

takes more time to process due to its inherent complexity, we have to take a hit on the throughput.

This pushes us to add one more parameter to converge the optimization. The CS block will converge

on the number of symbols, the number of iterations and also a timestamp. Whenever the estimation

takes longer than expected, we will converge with the existing results and to that we do not stall

the whole system and packets can be captured. Similarly we had a lower bound for the time stamp

too since we did not want samples that were less accurate. So this was a tradeoff between speed

and accuracy. We also compared the data before and after the mix block in Fig. 4.6 to check what

percent of the data is affected by incomplete in convergence, which comes to only 1.5% which is

small portion of the total data set.

35

Figure 4.8: Block Diagram for CS Time Equalizer

4.3.3 YALL1 for ℓ1 Optimization

In simulations YALL1 was used to solve the ℓ1 scenario. The major task was to write an

equivalent of the

h = yall1(A, y, opts), (4.24)

in the real time system. Here y is the m-vector downsampled received time domain sample and h is

the n-vector channel estimate in time domain where m is less than n. A is the measurement matrix

which can be constructed as a matrix directly or as a combination of two handles. We chose the

same approach as the simulations since it was easy to implements. The two function handles f and

g are

A.times = f(A ∗ y), (4.25)

A.trans = g(A′h). (4.26)

which is defined in our algorithm. The opts helps us to set various parameters like opts.tol stopping

tolerance, opts.maxit maximum iterations, opts.mu the penalty parameter etc.

The BP model was chosen out of the six models that YALL1 can solve. Basis Pursuit is a

principle for decomposing a signal into an “optimal” superposition of dictionary elements, where

optimal means having smallest number of ℓ1 coefficients among all such decompositions [47]. Basis

36

Pursuit approach utilizes the sparse nature of the object. It attains super resolution and speed com-

pared to the traditional approaches. Method of Frames (MOF) and Orthogonal Matching Pursuit

(OMP) are other methods that can be adopted. However in method of frames, the ℓ2 norm is done

instead of ℓ1 norm. MOF leads to quadratic optimization with linear equality constraints whereas

BP is nonquadratic problem with a convex solution. Linear programming is a kind of optimal basis

problem. However YALL1 is based on a classical approach of Alternate Direction Method Mul-

tipliers (ADMM) [48] which uses augmented Lagragian functions. The ADMM problem seeks

to

min f(x) + g(z) (4.27)

s.t. Ax+Bz = c,

where f and g are convex functions. Two separate variables x and z was identified from the Equation

4.27 for YALL1 and solved in this method.

The stopping condition or the condition to converge for this algorithm was based on the

penalty parameter µ and residue rd. The penalty paramater µ is calculated as,

µ = mean(abs(y)). (4.28)

A residue rd was calculated from z and using the residue calculate a relative gap and a dual residual.

A comparison is made based on how quickly the relative gap grows based on the dual residual and µ

is updated based on this step. However this was done after a certain number of iterations in YALL1.

4.3.4 ℓ2 Optimization

The pseudo inverse is then used for find the least squares for Equation 4.29. A least squares

problem can be approached in many ways on an embedded Linux platform. There are various

packages available like MINPACK, ceres-solver from Google project [31] for solving least squares

directly. We solved the least squares problem using the most common approach, the Moore-Penrose

pseudo inverse due to its robustness and ease to use. We need to solve the equation,

b = Ay, (4.29)

37

which can be re-written as,

y = Atb, (4.30)

where At is the Moore-Penrose “pseudo inverse” of the matrix A. The pseudo inverse is best com-

puted using the Singular Value Decomposition (SVD). For every matrix A, there exists orthogonal

matrices U and V, such that A can be decomposed. In our flowchart, we obtain Anew from A.

The new measurement matrix Anew obtained after post processing, is decomposed into U, S and

V using,

Anew = USVt, (4.31)

A−1
new = VSiU

t, (4.32)

and A−1
new was obtained.

SVD is easily available in numerical linear algebra packages like LAPACK, GSL. A Matlab-

C++ cross compatible tool called Armadillo can also be used instead. GSL (GNU Scientific library)

was chosen due to the quick availability and easiness in debugging. The ability to use GSL in high

computing applications has been often overlooked in the GNU Radio platform. This is inspired

from the gr-wavelet block that uses gsl for its wavelet applications. The final denoising step which

gives us the channel estimate is

hout = y ∗ pinv(Anew), (4.33)

where Anew, the updated measurement matrix is used to solve the the least squares problem. GSL

provides a function gsl linalg SV decomp for real number SVD decomposition.

However the current algorithm has to be extended owing to the complex nature of Anew.

An NxN complex matrix is extended into a 2Nx 2N matrix by separating the real and imaginary

portions. Ur and Ui are the real and the imaginary parts of Matrix U whereas Vr and Vi are the

real and the imaginary portions of matrix V. The only tradeoff with this approach is the speed. Fig.

4.9 shows the how SVD decomposition of a complex matrix is done using the available functions in

GSL library. The decomposition is done on the larger matrix and the results are concatenated to get

38

Figure 4.9: Complex SVD Solution in GSL

the complex numbers. GSL function gsl blas dgemm is a part of the CBLAS library which is used

in matrix multiplication. The function lu invert is used in the inversion of sigma S to get Sinv.

4.3.5 CS OFDM Receiver Design

Finally the CS receiver was constructed using the blocks built. Fig. 4.10 shows the flowgraph

ofdm receiver cs with the existing USRP2 OFDM implementation. The channel estimation(CE) is

taken out of the ofdm frame acq block and is implemented by the cs cpp csest block. Then finally

the estimates and the symbols are combined in the cs cpp sigmix block which is ofdm mixer in the

given Fig. 4.10.

Algorithm 4.2 Implemented CS OFDM
Input: y;
Downsample in cs cpp ds:
ℓ1 in cs cpp csest:
Initalize:
ϕ̃ as the first Ñ columns of ϕ.
I0 ← ∅ and w0

i = 1, ∀i ∈ {1, 2, . . . , Ñ}
while the stopping condition is not met, do

h̃← Y ALL1(y, ϕ) (4.34)

end while
ℓ2 in cs cpp pinv

h̃← pinv(y, ϕ) (4.35)

Obtain the Transfer Function:
Use the estimates in cs cpp sigmix
Return ỹ

39

Figure 4.10: OFDM Rx with CS Estimation Flowgraph ofdm receiver cs.py

4.3.6 Software Stack

The compressed sensing module was built on gnuradio-3.3.0 version and followed all the

guidelines mentioned in the version. A block was built based on how-to-built-a-new-block called

cs cpp and each of the code snippets was developed.The algorithm was divided into smaller stan-

dalone modules in C++ which were populated in the /lib directory. Each C++ modules had a work

function which served as a block which took the inputs and gave the outputs. Each module also had

an associated Simplified Wrapper and Interface Generator (SWIG) file which connected the python

to the C++ modules. The top level SWIG files cs cpp.i called all the intermediate SWIG files. A

SWIG binary ‘name’ was generated based on the cs cpp.i file and this was used by the python to

generate cs cpp swig.py. These are all available in the /swig module. Inorder to check the validity

of the C++ modules, QA tests can be written and these can be incorporated as a part of the Makefile,

so that we check the C++ module every time we compile the cs cpp module. Python files are pop-

ulated in the /python folder and these files call the associated C++ modules for their use. Each of

these modules can be written in a xml format which can be used for the gnuradio-companion tool.

The XML files are populated in the /grc folder.

40

gri fftw MatrixA ccc

This class was derived from the base class gri fft ccc which defines forward and backward

Fourier Transforms.We use the FFTW3 libraries to built the 2 components for define the

measurement matrix for the ℓ1 solver. The measurement matrix A was built from the two

function handles,

A.times= IFFT (FFT (y) ∗ (pilots)),

A.trans= IFFT (FFT (y) ∗ conj(pilots)).

cs cpp yall fftw

This routine is used for L1 optimization. It solves the primary basis and then adds the weights

from previous iteration to solve the current iteration thereby converging the results when the

relative gap is significantly reduced.

cs cpp misc

All the misc functions available in Matlab like nnz, find, abs, norm is implemented on

cs cpp misc.cc.

cs cpp pinv

This is a gsl based routine which uses SVD to solve the pseudo inverse of the finally con-

structed measurement matrix.

cs cpp ds

This routine was used for downsampling the received samples from ofdm sampler.

cs cpp csest

This is the core block of the CS based channel estimator. In this case the input is the down-

sampled receiver input from cs cpp ds and the output is channel estimate. It uses the functions

from cs cpp yall fftw and cs cpp misc to get the sparse channel estimate, h. Hence this block

acts like an interpolator.

41

Figure 4.11: Software Stack of the CS Receiver in GNU Radio

cs cpp sigmix

The cs cpp sigmix was built to join the frequency compensated received samples from the

ofdm frame acq block and the estimates from the cs cpp csest block. The output of the

cs cpp sigmix is the final output from ofdm receiver cs.py

All the C++ blocks have a work method, which has output streams and input streams. The data

from the input streams is taken and does the signal processing on this data. This is generally a child

class of gr sync block or gr block. The gr sync block is a derivative of the gr block. Depending

on the type of the input-output relationship, the blocks can be Sync, Decimator or Interpolator in

nature. This defines a ninput items, noutput items and nitems. Each of the C++ block has a .i swig

file which uses the shared pointer from the C++ class using the boost libraries. This is used by the

Python script to reference the signal processing package. Quality assurance tests were built to test

each block as a standalone routine. Test vectors were generated from MATLAB and these were used

to check the integrity and the correctness of the routines. This helped in solving a lot of algorithm

related issues as well as memory leaks which would get trickled to upper layers.

42

Chapter 5

Simulations and Discussions

In this chapter, we present the numerical simulations of the improvement in using CS in

channel estimation over the traditional frequency domain channel estimation used in USRP2 in

Section5.1 and also explore the practical results from the USRP2 Setup. Before moving to the

experimental setup we also characterize the system in Section 5.2 to understand the upper bounds

of the system.

5.1 Simulations

In this section we simulate the CS sparse recovery algorithm for channel estimation in the

OFDM system and calculate the error rate performance in MATLAB. Random pilots are assigned

as required in the algorithm and this is compared against the channel estimation used in the current

setup. A few assumptions were taken into consideration for the simulations. The power in pilots

or the preamble must be same as power in data. The number of taps in channel impulse response h

was assumed to the lesser than cyclic prefix length. We are also aware that moving to time domain

helps in decreasing the estimation error, although it increases the complexity. A comparison is made

against the theoretical BER performance of a BPSK modulated system for the channel used.

Fig. 5.2 shows the symmetrical CS demonstration where N = 256 subcarriers with 128

occupied tones have been considered in the transmitter and the receiver. Here, the down sampling

is done at the receiver to make use of CS, and shows a significant improvement over the traditional

256 FFT. However, this does not achieve good BER performances for the low bin FFT case. In the

experimental setup, we used N = 512 subcarriers with 256 occupied tones.

In Fig. 5.3, we have the asymmetrical model where the transmitter send the preambles at a

higher FFT(512/1024) and the receiver behaves like a normal 64 FFT. Here the receiver only looks

at the downsampled samples. The Asymmetrical OFDM system has considered N = 64 subcarriers

43

Figure 5.1: USRP2 Setup

Figure 5.2: Simulations for Symmetrical CS Setup

of which 32 are the occupied tones. The preamble uses N = 512 subcarriers at a higher bin FFT

in the same bandwidth as the data. This is attained by maintaining the occupied number of tones

as 256 and following Fig. 4.4 the same bandwidth can be obtained. Hence this establishes the

asymmetry during the training sequence when CS is done. There is a significant improvement with

higher FFT on the transmitter since this helps to build better resolution at the receiver. However

since we are downsampling a higher FFT preamble, this can introduce aliasing. This can be avoided

using a different subcarrier allocation, yet conserving the bandwidth in the practical system.

Since the YALL1 package had to be customized for a real time system, simulations were

also run with a custom YALL1 based ℓ1 optimizer in Fig. 5.4. The OFDM parameters used were

44

5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

B
it

E
rr

or
 R

at
e

Pilots Recovered Transfer Function for 64FFT
CS Recovered Transfer Function for 512/64 FFT
CS Recovered Transfer Function for 1024/64 FFT
AWGN Theory Bound

Figure 5.3: Simulations for Asymmetrical CS Setup

the same as the symmetrical model and this too shows a significant improvement over the usual

channel estimation model. The tolerance for the YALL1 convergence were varied to see if there

was a significant dip in performance. Even if we used a tolerance for 1e-4, the convergence was

good and this could be used for the software radio implementation.

5.2 System Characterization

We had to conduct a feasability study of the experimental setup with our scenario before

carrying out the experiment. This would reinstate the reliability of the system and if performance

studies can be done in this system. Although the USRP2 is not intended for performance studies, it

can definitely be used as a platform to prototype a new algorithm in a wireless system.

We transmitted an image and checked if changes in the TX Gain of the transmitter USRP2

would improve the SNR at the receiver and observed there was an improvement in the image quality.

We used N = 64 subcarriers, 16 subcarriers are occupied and with a CP length of 24 subcarriers.

The best way to analyze an image is check if its PSNR increases with the SNR. The PSNR was also

45

Figure 5.4: Simulations for CS Setup with Custom ℓ1 Optimization

Figure 5.5: Images Obtained with the Setup at Different Tx Gains

calculated from the image using,

MSE = 1/m ∗ n
m−1∑
i=0

n−1∑
j=0

|I(i, j)−K(i, j)|2, (5.1)

PSNR = 10 ∗ log(MAXI
2/MSE). (5.2)

As in Fig. 5.5 it is evident that a higher gain helps in getting better images. Hence PSNR improves

with the iamge quality and was proved to be better in the latter case.

We studied the receiver synchronization and the preamble pattern used which have been men-

tioned in Section .The preambles were changed to the random pilot structure that we needed for

our model and the experiments were done. Once they were through, we characterized our setup

using a wired channel to simulate an AWGN scenario. The wired channel was setup with a SMA to

46

SMA cable. Fig. 5.1 shows the setup used for the experiments. We also tested the platform with a

standard AWGN channel to prove the setup. We transmitted 1000 packets of size 1024 bytes from

one USRP2 node and received it from another host. There was also a question of using Packet Error

Rate versus the Bit Error Rate. However BER was found to be more reliable than PER.

The SNR estimation was done in two ways. One was inserting a probe in the ofdm frame acq

block and calculate the SNR from the received samples after the FFT. This was not very accurate

and did not give us an average value for the SNR. So we reused the probe from the mpsk snr probe

class. This makes use of a moving average filter which helps us obtain an average signal amplitude

and average noise amplitude after the USRP2 Sink. The GRC flowgraph was used to built the

python script for the testability. The average filter value y is obtained from the input x for the ith

sample as,

yi = 1/M
M−1∑
j=0

xi+j . (5.3)

5.3 Experimental Setup

The first action was to check if the existing blocks can be integrated along with the GNU Ra-

dio tree. Once this was done, the block was tested with test vectors from MATLAB and checked for

functionality. The cs cpp csest gives out the time estimate for a downsampled signal along with the

teq done signal which increments when the CS is done completed entirely. Fig. 5.6 shows an entry

while the CS receiver is used and the teq done signal is asserted and incremented. This also shows

a Start time which indicates that the CS block has been entered and the clock has started ticking for

counting the amount of time taken for CS to converge. The Curr Time indicates the current time,

which when exceeded suspends the current CS routine. Once the iterations are converged in the time

required, we go ahead with the pseudo-inverse of Anew, which is the last step of the optimization.

The block cs cpp csest was integrated in ofdm receiver cs.py as shown in Fig. 4.10 in Chap-

ter 4. The estimated equalizer taps from the CS estimator block were collected from the GNU Radio

47

Figure 5.6: USRP2 Receiver Packet Dump

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Symbol Number: 1003
k: 53

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Tap number

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Symbol Number: 1382
k: 36

Figure 5.7: Sparse Channel Estimates With Symbol Numbers

and plotted in Fig. 5.7. We can see that the number of active taps versus the total number of mul-

tipaths in both the cases is less than 10%. This proves that the channel impulse response can be

sparsified and only some of the taps provide us with useful information.

The estimated equalizer taps from the CS Estimator block along with the transfer function for

the occupied frequency bins from the mixer block were collected from the GNU Radio and plotted

in Fig. 5.8. The original channel estimate for the occupied frequency bins were also collected

in Fig. 5.8. We can see that the number of active taps versus the total number of multipaths.

The original channel estimate in the setup was calculated by dividing the known symbol with the

frequency compensated received symbol in each occupied frequency bin. The absolute amplitude

of this estimate is much larger than the compressive sensing estimate however we can see that the

48

Figure 5.8: Sparse Channel Estimates for Preamble Symbols with Transfer Functions from USRP2

normalized amplitude of the CS estimated channel response follows the original channel estimate

response, which means it is reconstructed.

Figure 5.9: Symbol Output from cs cpp sigmix Block

Once the time estimates are obtained, we get the transfer function (TF) by taking the Fourier

transform of hn. This is applied to the frequency compensated symbols from ofdm frame acq block

in the cs cpp sigmix block. Fig. 5.9 shows the symbols from this block while we transmit 1000

packets of 1024 bytes each. We used 256 occupied tones in this setup, so that would give us 32

symbols for each packet.

Fig. 5.10 shows the BER rates of the CS setup for N = 512, with 128 occupied tones and a

cyclix prefix length CP = 192. Our primary aim of proving CS in a real time system was proved

49

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
10

−4

10
−3

10
−2

10
−1

10
0

SNR in dB

B
E

R

AWGN Bound
BER Rates with N = 512, Occ = 128, Cp = 192 in AWGN Channel
CS BER Rates with N = 512, Occ = 128, Cp = 192

Figure 5.10: CS Estimated BER vs SNR plot

and although the theoretical bound seems further away, this can be significantly improved with

higher sampling rates. The USRP2 platform is used for prototype testing and acting as a base for

performance measurement platform is limited. So due to throttling of the packets in the CPU, the

packet drops add to a limit in the performance. We also repeated the same setup with a wired SMA

to SMA cable to prove that the setup is feasible to be used to prove the effectiveness in an AWGN

channel.

50

Chapter 6

Conclusions and Future Work

6.1 Challenges

Every project has many obstacles and roadblocks. This research also saw some challenges

most of which were worked through. Simulations are easier to built whereas translating it to a real

environment needs a lot of redesign and re-engineering.

One of the major challenges was building the C++ modules in the GNU Radio framework

with Python-SWIG-C++ interfaces and memory leaks. We had never built a stand alone signal

processing block in our lab and we did not have the required knowledge base. So it took a lot

of time to ramp up on understanding the underlying issues while constructing a signal processing

package.

There were also many real time issues while running the USRP2 setup which we encountered

while running the new design. Moreover there was an upgrade in the GNU Radio platform from the

time we started our project and some of the new modules had to be rebuilt for the old version.

Currently the channel estimation is done in the frequency domain; however the channel es-

timates on all the used subcarriers should be moved to the time domain. Time domain estima-

tion is more complex however with good simulation results we were able to debug all most of

the points in the flow graph. Moreover the frequency compensation was not extended to the time

equalizer(cs cpp csest) block, which could affect our throughput. Similarly we also saw phase syn-

chronization issues emerging in the packets which curbed the BER rates. Throughput issues was

also a constraint for the SDR since we are depending on the host to converge the algorithm. SDR

was good for proving a concept, however there are better platforms for analyzing and comparing

performances.

51

6.2 Future Work on CS-OFDM

Apart from building a compressive sensing based channel estimation system, there are various

submodules which can be considerably improved. This section looks at an extended work from

this research thesis and also the next step after the SDR implementation. One of the submodules

which can be improved is the OFDM SNR estimation technique which is described in Section 6.2.1.

Section 6.2.2 describes how the transition can be made into a hardware platform.

6.2.1 OFDM SNR Estimators

One of the offshoots from this research is the requirement to built a better and sturdier un-

biased SNR measurement system in real time platforms. The SNR was measured using the bpsk

probe, however the need for a good quality OFDM estimator is required. Currently the probe is a

moving average filter and gets an estimate of the SNR based on the time domain received signal

after downsampling. Although there are estimators based on the second and the fourth moments

available in the GNU Radio platform, this did not show significant improvements. We would ex-

tend this work to built a SNR Estimator from the data in the ofdm frame acq which separates the

occupied data tones from the total number of allocated sub carriers. SNR estimation can also be

built from the FFT samples also by taking into account the samples in the frequency domain in the

occupied tones along with the noise in the unoccupied tones. The estimated SNR of the OFDM

platform is estimated between 6dB to 15dB. We were able to characterize our experiments in the

6dB to 8dB range. However this was not a fool proof method, so we need to significantly improve

the SNR estimation method, which could calculate SNR per packet, carrier and keep track of the

minor changes with time.

We stuck to the bpsk probe in our experiments, however [49] gives an account of how zero

point autocorrelation method can be used for estimating SNR. We can also try to estimate SNR dur-

ing the training sequence, however this will limit the use of the data symbols that we are using. As

cited in [50, 51], various SNR techniques were employed in modern day systems which can influ-

52

ence us to redesign a novel SNR estimation methodology in our current setup. The work [52] shows

the use of as simple LS estimator in frequency domain for SNR estimation in a short simulation

time. As cited in [53], we see the use of blind SNR estimation. In adaptive OFDM(AOFDM), the

SNR per sub carrier is calculated. However in our experiments we try to calculate the average SNR

per packet. This opens the scope for more accurate and easily implementable SNR estimators in

real time systems.

6.2.2 FPGA Implementations

One of the major constraints for the soft radio approach is the speed at which the data is

processed. Packets are received at a rate of µsec whereas the host computer takes msec to process

the packets. Instead if we analyzed the received samples in an FPGA and calculated the channel

estimates in the FPGA, it would avoid host computation congestion and also packet drops. Moreover

the transition from a soft radio to a hardware accelerator based estimation will increase accuracy.

We can also use the onboard FPGA to receive the samples and alter them for our requirements.

However this might need an integration of the timing synchronization block. The current algorithm

works on time synchronized received samples to make the CS estimate.

Another approach is to implement compressed sensing in FPGA using the same flow of the

algorithm. The matrix decomposition and multiplications can be done with the existing RAMs

and ROMs on the FPGA platform. Optimizing matrix operations on a hardware platform help in

accelerating the computation time. Memory switching technique [54] is used to route memory

traffic between a functional unit and the bus master and hence overlap the I/O computations. The

functional unit takes care of the basic matrix operations. This was done using a PowerPC processor

and the algorithm was based on sub-matrix blocking. The increasing use of intelligent memory

controller can help solve complex signal processing and mathematical problems. An insight into

a platform like WARP which has existing OFDM reference designs could help us achieve this.

Again better results are achieved using square matrices however this is at the cost of resources. The

papers [56] and [57] are recent additions in the research community to explore VLSI architectures

53

for compressive sensing. However if this could be used for channel estimation, it could change the

way channels are analyzed and in a more practical sense. Our next aim will be to incorporate such

an estimator in a CPLD or a FPGA and prove the algorithm so that it can be used in ASICs or sold

as an IP.

6.3 Summary and Conclusions

This thesis looks into how wireless channel estimation can be improved. Chapter 1 looks

into the impact the improvement of better estimation techniques bring in. The need for higher

data rate supplemented by higher quality of information pushes us to develop system that has very

little tolerance for channel estimation errors. The main contribution of this thesis are highlighted in

the Chapters 3, 4 and 5. Although it took a considerable amount of time to study the platform and

developing the theoretical simulations, building a real time working system was the major milestone

of this research. Simulations assume ideal behavior and in practical systems, we observe that there

is trade off between accuracy and complexity.

In Chapter 2, we surveyed the hardware platform that would be used in the experiments. The

USRP2 is a cost effective platform that can be used to prove a new algorithm. Although performance

measurements tend to be a disadvantage for this platform, this greatly help us to investigate the

practical problems in a communication system. We also look into GNU Radio and the way it is

structured in this chapter.

In Chapter 3 of this thesis, we surveyed the existing architecture of OFDM in a software radio

and did a feasability check to see if the CS model can be applied here. This also takes us a step

closer to implement more CS friendly algorithms on the wireless platforms. We also proved that as

far signal sparsity is maintained and linear and non-adaptive measurements are taken, an efficient

signal recovery algorithm can be used for extracting useful information.

In Chapter 4, we successfully implemented an OFDM channel estimation scheme using prob-

ing pilots with random phases, which preserves the information of channel response during the

54

convolution and uniformly down-sampling processes. The sparse recovery algorithm for channel

estimation was customized for a real time system to develop the simulations in Chapter 5. This gave

us the confidence to go forward with the practical implementation and hence prove our results.

The purpose of this thesis is to built a practical compressive sensing based channel estimator

in an OFDM system. We can also prove that CS can shower its advantages when higher resolu-

tion is required and also when hardware limitations affect the overall performance. This thesis also

shows the importance of using SDRs to bridge the gap to develop a prototype from a theoretical

model and gives us confidence to pursue various algorithms and understand their real-time advan-

tages and limitations. This also gives access to CS and ℓ1 implementations which can be used for

various applications in USRP2 and other platforms. This also marks an entry to extending practical

applications where ℓ1 optimization can be used.

55

Bibliography

[1] D. Tse and P. Viswanath, “Fundamentals of Wireless Communications,” Cambridge University

Press, May 2005.

[2] T. S. Rappaport, “Wireless Communications: Principles and Practice,” Pearson Education,

2009.

[3] A. Goldsmith, “Wireless Communications,” Cambridge University Press, 2005.

[4] D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory, Volume:

52 , Issue: 4, pp. 1289 - 1306, Apr. 2006.

[5] L. Tong, B. M. Sadler, and M. Dong, “Pilot Assisted Wireless Transmissions,” IEEE Signal

Processing Magazine, vol. 21, no. 6, pp. 12-25, Nov. 2004.

[6] L. Tong and S. Perreau, “Multichannel Blind Identification: From Subspace to Maximum

Likelihood Methods,” Proceedings of the IEEE, vol. 86, no. 10, pp. 1951-1968, Oct. 1998.

[7] G. Taubock and F. Hlawatsch, “A Compressed Sensing techniqye for OFDM Channel Esti-

mation in Mobile Environments: Exploiting Channel Sparsity for Reducing Pilots,” IEEE

International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 2885 -

2888, Apr. 2008.

[8] C. R. Berger, S. Zhou, P. Willett, B. Demissie, and J. Heckenbach, “Compressed Sensing for

OFDM/MIMO Radar,” Asilomar Conference on Signals, Systems and Computers, pp. 213 -

217, Oct. 2008

[9] K. Yeo and S. Keat, “Time Domain Equalization for Underwater Acoustic OFDM Systems

with Insufficient Cyclic Prefix,” OCEANS, Sept. 2011.

[10] A. Dowler, A. Nix and J. McGeehan,“Data-derived Iterative Channel Estimation with Channel

Tracking for a Mobile fourth generation wide area OFDM system,” IEEE Global Telecommu-

nications Conference, vol.2, pp. 804 - 808, Dec. 2003.

56

[11] C. Komninakis, C. Fragouli, A. Sayed, and R. Wesel, “Multi-input Multi-output Fading Chan-

nel Tracking and Equalization using Kalman estimation,” IEEE Trans. Signal Proc., vol. 50,

no. 5, pp. 1065-1076, May 2002.

[12] N. D. Hemkumar and J.R. Cavallaro, “A Systolic VLSI Architecture for Complex SVD,” IEEE

International Symposium on Circuits and Systems(ISCAS), vol. 3, pp. 1061 - 1064, 1992.

[13] A. Divekar and O. Ersoy, “Theory and Applications of Compressive Sensing,” ECE Technical

Reports, Purdue University, 2010.

[14] B. Le Floch, R. Halbert-Lassalle, and D. Castelain, “Digital Sound Broadcasting to Mobile

Receivers,” IEEE Trans. Consumer Electron., vol. 35, pp. 493-503, Aug. 1989.

[15] N. Wang, G. Gui, Z. Zhang and P. Zhang, “Suboptimal Sparse Channel Estimation for Mul-

ticarrier Underwater Acoustic Communications,” International Journal of the Physical Sci-

ences, vol. 6, no. 25, pp. 5906-5911, Oct. 2011.

[16] J. Meng, W. Yin, Y. Li, N. T. Nguyen, and Z. Han, “Compressive Sensing Based High Reso-

lution Channel Estimation for OFDM System,” IEEE International Conference on Communi-

cations (ICC), June 2011.

[17] Y. Zhang, “On Theory of Compressive Sensing via l1 Minimization: Simple Derivations and

Extensions,” CAAM Technical Report, Sep 2008.

[18] Y. Zhang, J. Yangz and W. Yin, “User’s Guide for YALL1:Your ALgorithms for L1 Optimiza-

tion,” CAAM Technical Report TR09-17, ver. 1.0, June 2010.

[19] Ettus Research Product Brochure for USRP product family, www.ettus.com, Dec. 2012.

[20] GNU Radio Homepage, http://gnuradio.org/, Dec. 2012.

[21] S. Katz, “GNU Radio Companion Tutorial,” SDR Project Home Page, Aug. 2011.

[22] G. Acosta, “OFDM Simulation Using Matlab,” Georgia Tech University Smart Antenna Re-

search Laboratory Report, Aug. 2000.

57

[23] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,”

IEEE Trans. Communications, vol. 45, no. 12, 1997.

[24] M. S. Akram, “Pilot-based Channel Estimation in OFDM Systems,” Nokia Mobile Phones

white paper, 2007.

[25] F. Tufvesson, O. Edfors, and M. Faulkner, “Time and Frequency Synchronization for OFDM

using PN-Sequence Preambles,” IEEE Proc. VTC, pp. 2203-2207, 1999.

[26] J. Van de Beek, M. Sandell, and P. O. Borjesson, “ML Estimation of Time and Frequency

Offset in OFDM Systems,” IEEE Transactions on Signal Processing, vol. 45, no. 7, pp. 1800-

1805, 1997.

[27] B. Chen, “Maximum likelihood estimation of OFDM carrier frequency offset,” IEEE Signal

Processing Letters, Issue: 4, pp. 123 - 126, Apr 2002.

[28] M. Ettus, T. W. Rondeau, and R. McGwier, “OFDM Implementation in GNU Radio,” Wire-

less@VT Symposium, 2007.

[29] E. Lagunas and M. Najar, “Sparse Channel Estimation based on Compressed Sensing for Ul-

tra Wideband Systems,” International Conference on Acoustics, Speech and Signal Process-

ing(ICASSP), pp. 365 - 369, May 2011.

[30] Z. Cheng and D. Dahlhaus, “Time versus Frequency Domain Channel Estimation for OFDM

Systems with Antenna Arrays,” International Conference on Signal Processing, Beijing,

China, 2002.

[31] Google Project - Ceres Solver, http://code.google.com/p/ceres-solver/, ver. 1.4.0, Nov. 2012.

[32] J. Fix, “Efficient Convolution using the Fast Fourier Transform”, Application in C++, Finland,

2011.

58

[33] X. Cai and G. B. Giannakis, “Error Probability Minimizing Pilots for OFDM With M-PSK

Modulation Over Rayleigh-Fading Channels,” IEEE Transactions On Vehicular Technology,

vol. 53, no. 1, Jan 2004.

[34] Z. Taheri, M. Ardebilipour and M. A. Mohammadi,“Channel Estimation in Time and Fre-

quency Domain in OFDM Systems,” International Conference on Wireless Networks and

Information Systems, pp. 209-212, 2009.

[35] J. J. Van de Beek,O. Edfors, M. Sandell, S. K. Wilson and P. O. Borjesson, “On channel

estimation in OFDM systems,” IEEE Vehicular Technology Conference, vol.2 , pp. 815 - 819,

1995.

[36] M. Hsieh and C. Wei, “Channel Estimation for OFDM Systems Based on Comb-type Pilot

Arrengement in Frequency Selective Fading Channels,” IEEE Trans. Consumer Electron., vol.

44, no. 1, Feb 1998.

[37] T. Liang, W. Rave and G. Fettweis, “On Preamble Length of OFDM-WLAN,” IEEE Vehicular

Technology Conference, pp. 2291 - 2295, 2007.

[38] M. Li, J. Tan and W. Zhang, “A Channel Estimation Method Based on Frequency-Domain

Pilots and Time-Domain Processing for OFDM Systems,” IEEE Transactions on Consumer

Electronics, vol. 50 , no. 4, pp. 1049 - 1057, 2004.

[39] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel Estimation Techniques Based on Pilot

Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, vol. 48, no. 3, Sep

2002.

[40] Y. Zhang, “On Theory of Compressive Sensing via l1 Minimization: Simple Derivations and

Extensions,” Rice CAAM Report, Sept 2008.

[41] J. Tropp and A. Gilbert, “Signal recovery from random measurements via orthogonal matching

pursuit,” IEEE Trans. on Information Theory, vol. 53, no. 12, pp. 4655-4666, Dec 2007.

59

[42] J. Tropp, “Just relax: convex programming methods for identifying sparse signals in noise,”

IEEE Transactions on Information Theory, vol. 52 , no. 3, pp. 1030 - 1051, 2006.

[43] J. Romberg, “Compressive Sensing by Random Convolution,” IEEE International Workshop

on Computational Advances in Multi-Sensor Adaptive Processing, pp. 137 - 140, Dec. 2007.

[44] J. Mitola III, “The Software Radio Architecture,” IEEE Communications Magazine, vol. 33 ,

no. 5, pp. 26 - 38, May 1995.

[45] J. Mitola III, “Software radios-survey, critical evaluation and future directions,” IEEE

Aerospace and Electronic Systems Magazine, vol. 8, no. 4, pp. 25 - 36, 1992.

[46] Compressive GNU Radio Archive Network (CGRAN), https://www.cgran.org/wiki/, Nov.

2012.

[47] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by Basis Pursuit,”

SIAM Journal for Scientific Computing , vol. 20, pp. 33-61, 1998.

[48] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statis-

tical Learning via the Alternating Direction Method of Multipliers,” Foundations and Trends

in Machine Learning, vol. 3, no. 1, Nov 2010.

[49] Y. Bhavani Shankar, J.Chandrasekhar Rao and B. Anil Babu, “An Improved SNR Estimation

Approach for OFDM System,” International Journal of Engineering Research and Applica-

tions (IJERA), Vol. 2, Issue 3, pp. 2561-2563, May-Jun 2012.

[50] M. Turkboylari and G. L. Stuber, “An efficient algorithm for estimating the signal-to-

interference ratio in TDMA cellular systems,” IEEE Transactions on Communications, vol.

46, pp. 728-731, June 1998.

[51] D.-J. Shin, W. Sung, and I.-K. Kim, “Simple SNR estimation methods for QPSK modulated

short bursts,” Proceedings of IEEE Global Telecommunications Conference, vol. 6, pp. 3644-

3647, 2001.

60

[52] S. He and M. Torkelson, “Effective SNR Estimation in OFDM System Simulation,” IEEE

Global Telecommunications Conference, vol. 2, pp. 945 - 950, 1998.

[53] Y. Li, “Blind SNR Estimation in OFDM Systems,” International Conference on Microwave

and Millimeter Wave Technology, 2010.

[54] N. Dave, K. Fleming, M. King, M. Pellauer, M. Vijayaraghavan, “Hardware Acceleration of

Matrix Multiplication on a Xilinx FPGA,” IEEE/ACM International Conference on Formal

Methods and Models for Codesign, pp. 97 - 100, Jun 2007.

[55] Y. Dou, S. Vassiliadis, G. K. Kuzmanov and G. N. Gaydadjiev, “64-bit Floating-Point FPGA

Matrix Multiplication,” ACM Conference for SIGDA Field-Programmable Gate Arrays, pp.

86-95, 2005.

[56] P. Maechler, C. Studer, D. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, and Richard G.

Baraniuk, “VLSI Design of Approximate Message Passing for Signal Restoration and Com-

pressive Sensing,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

Vol. 2, No. 3, Oct 2012.

[57] J. Lu, H. Zhang, and H. Meng, “Novel Hardware Architecture of Sparse Recovery Based on

FPGAs,” International Conference on Signal Processing Systems (ICSPS), vol. 1, pp. 302 -

306, 2010.

61

