
STATIC ANALYSIS TOOL FOR SYNCHRONIZATION

ANALYSIS, REPRESENTATION, AND OPTIMIZATIONS

FOR APPLICATIONS USING OPENSHMEM

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Swaroop Suhas Pophale

May 2014



STATIC ANALYSIS TOOL FOR SYNCHRONIZATION

ANALYSIS, REPRESENTATION, AND OPTIMIZATIONS

FOR APPLICATIONS USING OPENSHMEM

Swaroop Suhas Pophale

APPROVED:

Dr. Barbara Chapman, Chairman
Dept. of Computer Science

Dr. Jaspal Subhlok
Dept. of Computer Science

Dr. Edgar Gabriel
Dept. of Computer Science

Dr. Shishir Shah
Dept. of Computer Science

Dr. Eric Bittner
Dept. of Chemistry

Dean, College of Natural Sciences and Mathematics

ii



STATIC ANALYSIS TOOL FOR SYNCHRONIZATION

ANALYSIS, REPRESENTATION, AND OPTIMIZATIONS

FOR APPLICATIONS USING OPENSHMEM

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Swaroop Suhas Pophale

May 2014

iii



Abstract

Programming models provide application developers abstraction from the underly-

ing hardware. OpenSHMEM library follows the Partitioned Global Address Space

programming model, which is characterized by local and global views of data. The

OpenSHMEM library API provides synchronization primitives that require partici-

pation of some or all OpenSHMEM processes executing the application (collective).

Since most distributed parallel applications spend 30-40% of their execution time per-

forming synchronization, it is a constant struggle for most application programmers

to relax the memory consistency constraints while guaranteeing reproducible and

correct results. From our experience, we have seen that generally programmers tend

to over-synchronize when in doubt, and the best approach towards creating correct,

scalable, and performance driven applications is to help programmers leverage opti-

mizations based on the semantics of the OpenSHMEM library. Unfortunately, most

application developers are not well acquainted with all the nuances of the targeted

programming libraries and spend most of their development time focused on the cor-

rectness aspect alone. This leads to a need for a framework to provide programmers

better understanding of the applications and provide useful feed back making it easier

for the application developer to incorporate basic and advanced optimizations into

their applications with ease. For this we collaborated with the Oak Ridge National

Laboratory (ORNL) to build a compiler-based tool called the OpenSHMEM ana-

lyzer (OSA), which makes the OpenUH compiler aware of the OpenSHMEM library

semantics. Along with basic semantic checks, the analyzer provides useful feedback

at compile time, leading to faster turn around time and lesser wastage of resources

in terms of debugging time or failed execution runs.

iv



Contents

1 Introduction 1

1.1 Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Shared Memory Model . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Distributed Memory Model . . . . . . . . . . . . . . . . . . . 3

1.2 Parallel Programming Models . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Message Passing Interface (MPI) . . . . . . . . . . . . . . . . 5

1.2.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Partitioned Global Address Space (PGAS) . . . . . . . . . . . 8

1.3 Factors affecting PGAS Applications . . . . . . . . . . . . . . . . . . 10

1.3.1 Collective Operations . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Language or Library Specifics . . . . . . . . . . . . . . . . . . 22

1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Partitioned Global Address Space (PGAS) 25

2.1 PGAS Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Unified Parallel C . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Co-Array Fortran . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Chapel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 PGAS Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



2.2.1 Global Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 OpenSHMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Related Work 39

3.1 Translation of PGAS Languages . . . . . . . . . . . . . . . . . . . . . 39

3.2 Compiler-based Tools and Synchronization
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Compiler and Runtime Optimizations . . . . . . . . . . . . . . . . . 45

4 OpenSMEM Analyzer 47

4.1 OSA Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Semantic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Synchronization Analysis Framework 53

5.1 Common Programming Mistakes using
OpenSHMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Concurrency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Identification of Multivalued Seeds . . . . . . . . . . . . . . . 58

5.2.2 Construction of the System Dependence Graph . . . . . . . . 59

5.3 Discovering Synchronization Phases . . . . . . . . . . . . . . . . . . . 63

5.3.1 Synchronization Semantics . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Textually Unaligned Barriers . . . . . . . . . . . . . . . . . . 64

5.3.3 Barrier Detection and Generating Barrier Trees . . . . . . . . 65

5.3.4 Matching Synchronization Structures . . . . . . . . . . . . . . 69

5.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Excessive Synchronization and Growing Synchronization Phases 73

5.4.2 Collective Call Decomposition . . . . . . . . . . . . . . . . . . 73

5.4.3 Improving Communication-Computation Overlap . . . . . . . 74

vi



6 Results 75

7 Conclusion 84

Bibliography 86

vii



List of Figures

1.1 Uniform Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Non-uniform Memory Access configuration of Shared Memory System. 3

1.3 Distributed Memory System. . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 MPI 1 Send - Receive Semantics . . . . . . . . . . . . . . . . . . . . . 6

1.5 OpenMP’s Fork-Join Model . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Partitioned Global Address Space Logical Memory Model. . . . . . . 9

1.7 Performance of MPI 1, MPI 2, and OpenSHMEM implementations of
the BT benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Performance of MPI-1, MPI 2, and OpenSHMEM implementations of
the SP benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Two most time-consuming library calls in BT benchmark’s implemen-
tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Two most time-consuming calls in SP benchmark’s implementations . 16

1.11 Performance of MPI 1, MPI 2, and OpenSHMEM implementations of
the IS benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.12 Performance of MPI 1 and OpenSHMEM implementations of the MG
benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.13 Two most time-consuming library calls in IS benchmark’s implemen-
tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.14 Two most time-consuming calls in MG benchmark’s implementations 20

2.1 UPC Memory Model [38]. . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.2 OpenSHMEM’s Logical Memory Model. . . . . . . . . . . . . . . . . 31

3.1 Berkeley’s UPC Compiler [38] . . . . . . . . . . . . . . . . . . . . . . 40

3.2 OpenUH CAF Framework [25] . . . . . . . . . . . . . . . . . . . . . . 42

4.1 OSA analysis (shaded blocks) within the OpenUH compiler. . . . . . 52

5.1 Control Flow Graph for code listing 5.5. . . . . . . . . . . . . . . . . 61

5.2 System Dependence Graph for code listing 5.5. . . . . . . . . . . . . . 62

5.3 Barrier trees generated by OSA for code Listing 5.8 . . . . . . . . . . 68

5.4 Barrier Tree for Listing 5.9. . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Control flow representation with OpenSHMEM calls for Matrix Mul-
tiplication application. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 System dependence graph as generated by OSA for Matrix Multipli-
cation application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Slicing of the System dependence graph on PE 0 indicating statements
executed by PE 0 only. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Barrier tree as generated by OSA for Matrix Multiplication application
(Listing 6.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



List of Tables

5.1 Effect of OpenSHMEM library calls on program variables . . 58

5.2 Rules for annotating nodes in the Barrier Tree . . . . . . . . . 66

6.1 Benchmarks/ applications used to assess OSA tool . . . . . . 76

6.2 Results for Benchmarks used to evaluate OSA tool . . . . . . 76

x



Chapter 1

Introduction

Until recently, all software has been written for serial computation where a problem

is broken down to a series of instructions which are executed, one instruction at a

time, on a single CPU. Parallel computation uses multiple compute resources to ex-

ecute different parts of a problem simultaneously on different processing units, while

obtaining the same correct result as obtained with serial execution. The popularity of

parallel programming stems from its capacity to save time and resources. Computer

systems based on their capability of handling data and instructions simultaneously

are classified by M. J. Flynn [27] into four possible combinations: Single Instruc-

tion Stream Single Data Stream (SISD), Single Instruction Stream Multiple Data

Stream (SIMD), Multiple Instruction Stream Single Data Stream (MISD), and Mul-

tiple Instruction Stream Multiple Data Stream (MIMD). Single Program Multiple

Data (SPMD) is a special case of MIMD wherein a number of processing elements

execute the same set of instructions on different sets of data. In parallel computing

1



environment certain assumptions are made about the data layout and the manner

in which the processes communicate; these are usually defined by a programming

model. With different programming models facilitating applications utilize the mod-

ern hardware architecture, getting maximal performance for applications is a very

important concern. Our work aims to provide scientific application developers with

a compiler-based tool to be more productive in their development process while giv-

ing critical information about their application that may have significant impact on

its performance characteristics. The added benefit of providing this information at

compile time is that the programmer does not have to execute the application to

encounter potential bugs and bottlenecks. This saves valuable billable computing

resources that can be put to better use.

1.1 Memory Models

Two distinct and widely used memory models are shared and distributed. These

models are an abstraction over the hardware and the memory architecture.

1.1.1 Shared Memory Model

All shared memory parallel computers generally have the ability for all processors

to access the entire system memory as global address space. The same memory

resources are shared by all the processing elements. Depending upon their memory

access, shared memory machines can either be uniform memory access (UMA) or

2



non-uniform memory access (NUMA). OpenMP [19] and pthreads [47] are the two

most prominent application programming interfaces (API) used to implement multi-

threaded applications on a shared memory systems.

MEMORY	  

CPU	   CPU	  

CPU	   CPU	  

Figure 1.1: Uniform Memory Access

CPU	  

CPU	  
MEMORY 

CPU	  

CPU	  
MEMORY 

CPU	  

CPU	  
MEMORY 

CPU	  

CPU	  
MEMORY 

Figure 1.2: Non-uniform Memory Access configuration of Shared Memory System.

1.1.2 Distributed Memory Model

The distributed memory programming model is ideally suited for a memory systems

where each processor maintains its own local memory and has no direct access to

3



another processor’s memory. Data has to be shared explicitly via some form of com-

munication. Due to the distributed nature of the memory the access time for data

on the local memory of a processor is much less than accessing data that resides on

another processor. The Message Passing Interface (MPI) has become a de facto stan-

dard for communication among processes running on a distributed memory systems.

CPU	   MEMORY 

CPU	   MEMORY 

CPU	   MEMORY 

CPU	   MEMORY 

Figure 1.3: Distributed Memory System.

1.2 Parallel Programming Models

In this section we go over the most popular programming models used for scientific

computing today. MPI has become the de facto standard for communication among

processes executing over distributed memory systems, while OpenMP provides di-

rective driven approach for shared memory systems.

4



1.2.1 Message Passing Interface (MPI)

MPI is a specification for all implementations of message passing library. Although

primarily developed for communication over distributed memory systems, it sup-

ports shared memory multiprocessors, and networks of workstations. MPI provides

seamless abstraction to the application, making it independent of network speed

or memory architecture [10, 66]. In the message passing model, data are copied

from the address space of one process to that of another process through coopera-

tive operations on each process [73]. MPI library’s popularity stems from the fact

that it addressed the drawbacks of its predecessor, PVM (Parallel Virtual Machine),

is portable, and provides many useful library routines for the distributed memory

communication environment that facilitate development of High Performance Com-

puting (HPC) applications. With many high quality open [28] and vendor specific

implementations available it has become one of the most used parallel programming

library.

Starting with MPI 1, the MPI standard has gone through a number of revisions,

with the most recent version being MPI 3. As depicted in Figure 1.4, in MPI 1.0,

during execution, if a process requires data from another process, it must request the

data by sending a message to the destination process through the interconnecting

network. When the data become available on the destination process, it is sent within

a message to the process that requested the data. MPI programs generally follow a

SPMD programming style.

5



MPI Process A MPI Process B 

MPI send(datax) 

MPI recv(datax) 

Figure 1.4: MPI 1 Send - Receive Semantics

MPI 2 introduced dynamic processes, one-sided communications, extended collec-

tive operations, external interfaces for debuggers and profilers, additional language

bindings and an interface for parallel I/O. MPI 3, adopted in 2012, adds non-blocking

functionality, improves on the one-sided communication semantics introduced in MPI

2, extends the collective API to provide neighborhood collectives, and provides For-

tran 2008 bindings along with an improved tools interface.

1.2.2 OpenMP

OpenMP [19] is a specification, defined by the OpenMP Architecture Review Board

(ARB), for a set of compiler directives along with library routines and environment

variables for shared memory programming. These directives can be used to specify

high-level parallelism in Fortran and C/C++ programs to efficiently leverage the par-

allelism possible on a shared memory platform through the use of threads. Threads

are the smallest unit of processing that can be scheduled by an operating system and

6



they exist within the resources of a single process and cannot have independent ex-

istence. For parallelization, programmers look for regions of code whose instructions

can be distributed amongst threads. When the different iterations may be executed

independent of each other, programmers use special constructs so that these portions

of the code are executed asynchronously.

OpenMP’s execution model has one dedicated master thread, and the master

thread executes the program sequentially until the first parallel region construct is

encountered. At this point the master thread forks a team of concurrent threads. The

statements enclosed by the parallel region construct are then executed concurrently

among the threads belonging to the team. On completion of the statements in the

parallel region construct, the threads in the team synchronize and terminate, leaving

only the master thread as before the parallel construct. This is best described as a

fork-join model as depicted in 1.5.

F	  
O	  
R	  
K	  

J	  
O	  
I	  
N	  

F	  
O	  
R	  
K	  

J	  
O	  
I	  
N	  

THREADS THREADS MASTER 
THREAD 

MASTER 
THREAD 

MASTER 
THREAD 

PARALLEL REGION  PARALLEL REGION  

Figure 1.5: OpenMP’s Fork-Join Model

Both shared and distributed programming models have their advantages and

7



disadvantages, but the ideal combination is the data locality features of distributed

memory model, with the simplistic data referencing of a shared memory model. The

want for this mixed features lead to the Partitioned Global Address Space (PGAS)

model. The PGAS programming model provides a local-view programming style

which differentiates between local and remote data, while also providing a logical

global address space which is directly accessible by all executing process.

1.2.3 Partitioned Global Address Space (PGAS)

The PGAS programming model provides a local-view programming style which dif-

ferentiates between local and global data. The local data are not directly accessible

to all executing processes but the global data can be accessed by all without going

through an elaborate acknowledgement-based communication pattern. Figure 1.6

shows the logical view of the memory model provided by the PGAS programming

model. Because of its simple data accesses, PGAS languages like Unified Parallel C

(UPC) [4], Co-Array Fortran (CAF) [51], and libraries such as Global Arrays (GA)

Toolkit [49] and OpenSHMEM [18] are becoming increasingly popular. A slightly

different category of PGAS model, termed Asynchronous Partitioned Global Address

Space (APGAS) model, has recently emerged with additional capabilities such as re-

mote method invocations, which enable nodes to invoke work on other nodes, and

allows each node to execute multiple tasks from a task pool. IBM’s X10 language

[21] and Chapel [16] follow the APGAS programming model. They are a part of

the DARPA HPCS [24] project and aim to improve programmer productivity on

next-generation computing architectures by providing a richer execution framework

8



GLOBAL	  MEMORY	  

PGAS	  PROCESS	  
(THREAD,	  PE,	  IMAGE)	  

LOCAL	  
MEMORY	  

PGAS	  PROCESS	  
(THREAD,	  PE,	  IMAGE)	  

LOCAL	  
MEMORY	  

PGAS	  PROCESS	  
(THREAD,	  PE,	  IMAGE)	  

LOCAL	  
MEMORY	  

Figure 1.6: Partitioned Global Address Space Logical Memory Model.

than the SPMD style generally used by the traditional PGAS languages.

All the above mentioned PGAS languages and libraries either use the services

of an underlying GAS runtime for their communication needs or communicate us-

ing the specialized hardware support where possible. Aggregated Remote Memory

Copy Interface (ARMCI) [50] and Global Address Space Network (GASNet) [12]

are two such low level GAS libraries that the PGAS languages can use at runtime

as a compilation target to perform data transfers on distributed memory architec-

tures. These GAS libraries have a translation layer that converts a memory access to

corresponding data transfer calls that are specific to the underlying system hardware.

9



1.3 Factors affecting PGAS Applications

1.3.1 Collective Operations

To better understand the problems faced by application programmers while using the

PGAS programming model we undertook a study to port the NAS parallel bench-

marks [8] from their MPI 1 based implementations to those that use the Open-

SHMEM library API. We test the same OpenSHMEM NAS kernels on three plat-

forms with three different OpenSHMEM implementations; an SGI UV cc-NUMA

shared memory system (with SGI’s OpenSHMEM library), a Cray XT5 system (with

Cray’s OpenSHMEM compliant impelmentation) and an InfiniBand interconnect

based Opteron cluster (with the OpenSHMEM Reference Implementation [61]).

We analyze their execution times to identify the categories of function calls that

have the most impact on the performance of the benchmarks and identify productiv-

ity issues while programming with the OpenSHMEM library [60]. For completeness

we also compare performance and scalability of these OpenSHMEM NAS bench-

marks with their MPI 1, and in some cases, MPI 2 counter parts to analyze the

strengths and weaknesses of the OpenSHMEM library implementations. To collect

the OpenSHMEM performance profiles, we used Tuning and Analysis Utilities (TAU)

[65] that collects relevant information through event-based sampling, on the SGI and

Cray platforms. On the Cluster, we integrated the collector interface [30] into the

OpenSHMEM reference library to collect the profiling information. We considered

the following NAS benchmarks;

10



• Block Tridiagonal (BT)

BT is a simulated computational fluid dynamics (CFD) applications that solves

3-dimensional compressible Naiver-Stokes equations. BT uses Alternating Di-

rection Implicit (ADI) to find the finite difference solution to the problem.

ADI involves solving three sets of uncoupled systems of equations in x, y, and

z direction [8]. These equations are block tridiagonal in BT.

• Scalar Pentadiagonal (SP)

Like BT, SP is also a simulated CFD application benchmark that solves 3-

dimensional compressible Naiver-Stokes equations. The difference is that SP

uses the Beam-Warming approximate factorization. The three sets of uncou-

pled systems of equations in the x, y and z direction are scalar penta-diagonal

in SP. SP and BT are similar in many respects, but there is a fundamental

difference is in their communication to computation ratio [9]. SP has higher

communication to computation ratio, which allows for a better overlapping of

communication with computation. The computation kernel in SP is different.

However the communication kernel remains same for BT and SP.

• Integer Sort (IS)

IS is the bucket sort based integer sorting kernel where each process sorts the

numbers whose keys fall in its key range.

• Multi Grid (MG)

MG uses a V-cycle Multi Grid method to compute the solution of a 3D scalar

poisson equation. Each process uses a sequence of calls to routines ready,

11



give, and take. In the original MPI 1 version, the ready routine posts fake

MPI requests so that the take routine can do a asynchronous wait on the

corresponding send .

1.3.1.1 Performance Analysis

Figures 1.7 and 1.8 show the timings of the BT and SP benchmark implementations

on the three different platforms. We have chosen class B as a common representative

of the performance pattern, as the performance characteristics are consistent across

different classes of input data. On SGI, all the versions show competitive perfor-

mance and linear scaling from 16 to 1024 processes. On the maximum number of

processes (1024), the performances of MPI 1 implementation of the BT benchmark

and the OpenSHMEM version of the SP benchmark are the best. On the Cray plat-

form, we see that the scaling is not so promising for both MPI 2 and OpenSHMEM

implementations. On the Cluster, a similar performance trend is seen except, on

maximum number of processes (256), the MPI 2 and OpenSHMEM versions perform

better than MPI 1.

Figures 1.9 and 1.10 shows the top two time-consuming library calls for the BT

and SP benchmarks. We see that the MPI 2 fence, and the OpenSHMEM barrier on

the Cray platform causes degradation of performance on higher numbers of processes.

Figures 1.11 and 1.12 show the timing of the IS and MG benchmarks on the

different platforms. We have chosen class C as a common representative of the

performance pattern. On SGI the MPI 1 version of IS performs very slightly better

12



than the OpenSHMEM version, whereas the MPI 2 version fails to do well. A

similar pattern is seen for the IS benchmark on the Cray platform where MPI 1

performs slightly better than the OpenSHMEM version, and the MPI 2 version does

not do well. Figure 1.13 summarizes the top time-consuming calls of IS at the highest

numbers of processes (256). Clearly the performance of MPI-IS is strongly dependent

on having efficient alltoall and alltoallv implementations. The execution time of

OpenSHMEM-IS is significantly affected by shmem put which is used to simulate

the alltoall communication pattern. As seen in Figure 1.11 (c) the OpenSHMEM

library implementation on the Cluster is not optimized for performance but on the

other two platforms the OpenSHMEM benchmarks obtain performance as good as

MPI 1.

On SGI, the best performance is shown by the MG benchmark using OpenSH-

MEM, whereas on the other platforms, MPI 1 does slightly better. Figure 1.14 shows

the impact of mpi wait on the performances of the MPI 1 version of the MG bench-

mark. It also shows the effect of the barrier implementation on the performance

of the OpenSHMEM-MG on the Cray platform. We observe that the reduction

operation is the most time-consuming on the Cluster, which is in part due to the

network latency of the underlying hardware. OpenSHMEM also uses more of the

group synchronization calls (shmem barrier all) because the completion semantics of

the one-sided put operation which are guaranteed only at synchronization. For the

MG benchmark, the shmem barrier call has a significant effect on the performance

although the OpenSHMEM version performs as well as the MPI 1 version.

13



(a) BT using SGI OpenSHMEM

(b) BT using Cray OpenSHMEM

(c) BT using OSH Ref Imp

Figure 1.7: Performance of MPI 1, MPI 2, and OpenSHMEM implementations of
the BT benchmark

14



(a) SP using SGI OpenSHMEM

(b) SP using Cray OpenSHMEM

(c) SP using OSH Ref Imp

Figure 1.8: Performance of MPI-1, MPI 2, and OpenSHMEM implementations of
the SP benchmark

15



Figure 1.9: Two most time-consuming library calls in BT benchmark’s implementa-
tions

Figure 1.10: Two most time-consuming calls in SP benchmark’s implementations

16



(a) IS using SGI OpenSHMEM

(b) IS using Cray OpenSHMEM

(c) IS using OSH Ref Imp

Figure 1.11: Performance of MPI 1, MPI 2, and OpenSHMEM implementations of
the IS benchmark

17



(a) MG using SGI OpenSHMEM

(b) MG using Cray OpenSHMEM

(c) MG using OSH Ref Imp

Figure 1.12: Performance of MPI 1 and OpenSHMEM implementations of the MG
benchmark

18



Figure 1.13: Two most time-consuming library calls in IS benchmark’s implementa-
tions

We looked at performance of OpenSHMEM applications on three distinct plat-

forms, ranging from specialized (SGI and Cray) to general purpose (Cluster) with

varying degree of hardware support for OpenSHMEM functionalities to remove any

bias introduced by any specific OpenSHMEM library implementation. The perfor-

mance of the benchmarks using OpenSHMEM observed during this study is non-

uniform, but results collected over all platforms indicate that OpenSHMEM applica-

tions are greatly impacted by the collective operations, especially group synchroniza-

tion calls, such as shmem barrier and shmem barrier all (refer to graphs in figures

1.9, 1.14, and 1.13). We use this information as a starting point for our compiler

analysis.

19



Figure 1.14: Two most time-consuming calls in MG benchmark’s implementations

1.3.2 Locality

Topology mapping is a popular field of research and there are many contributions

with respect to the optimal process placement. Most of these studies involve specific

hardware platforms, and/or are limited to the distributed message passing paradigm

[31]. For example, several vendor-distributed MPI implementations use graph theory

algorithms to formulate a near optimum placement of resources. But these solutions

are implementation specific. As the number of cores per node increase and the

nodes per system increase, the PGAS programming model will have to cope with

communication latency associated with physically distant processes communicating

over underlying interconnect. A good library or language extension will have to

find innovative solutions to hide the communication latency when communicating

processes are on physically distant nodes.

20



To understand the effect of locality on OpenSHMEM applications we developed

a portable scheme which works in conjunction with our OpenSHMEM reference

library implementation. This methodology can be extended to all other PGAS li-

braries and language extensions. The methodology consists of profiling application

with its production time parameters with TAU performance tool [65] and collect-

ing communication information. This information is then fed at start-up to the

OpenSHMEM library during the actual run or production run, thus ensuring that

processing elements with the maximal communication are as proximally located as

possible, given the capacity and limitations of the underlying hardware. This scheme

is calibrated depending on the communication pattern amongst processes executing

the application. The relative communication volume between processes as measured

during the preliminary run and process re-naming is based on this information, since

the pattern of communication does not change with change in the amount of data to

be processed. As long as the ratio of the individual point-to-point communication is

the same, the mapping will be optimum for all future runs using the same numbers

of processes.

We experimented with the 2D heat transfer benchmark application adapted from

the parallel MPI implementation of 2D heat conduction [1] on an InfiniBand cluster

(called Crill [2]) with 16 nodes, with each node containing four twelve-core Opteron

processors running the Linux operating system. The benchmark calculates finite dif-

ference over a regular domain using the Jacobi, Gauss-Siedel and SOR [63] methods.

We observed that with prior knowledge of the communication pattern, the appli-

cation executed 1.62 times faster, with 64 processing elements, using our process

21



remapping scheme. The drawback of such software approaches is that at least one

execution of the application is required for collection of communication pattern. Also

the scheme is applicable only for applications that have predictable and unchanging

patterns of the communication over time and size of the input, hence this is not a

general purpose solution.

1.3.3 Language or Library Specifics

All languages and libraries provide a substantial API to accomplish a large number

of operations. These functions have a unique signature and very specific comple-

tion semantics. There are two aspects to using these functions, one is syntactic

correctness and the other is optimization. Syntactic correctness involves using the

correct parameters for a given API as directed by the governing Specification. But

using the API optimally is a non-trivial challenge. The functions other than ad-

dressing common application needs are also designed specifically to leverage certain

features provided by the programming model or the underlying hardware that they

are designed for. But not all application developers are aware of the best ways to

completely exploit the semantics of the API. For example, the OpenSHMEM library

provides implicit synchronization at the end of every reduction operation, thus elim-

inating the need for explicit synchronization after these calls. As it is often observed,

application programmers are not very well acquainted with these nuances, leading

to missed opportunities for possible optimizations.

22



1.4 Goals

This dissertation aims at approaching the problem of development and performance

of applications using OpenSHMEM in a holistic manner. We present a solution in the

form of a compiler analysis tool in the form of the OpenSHMEM Analyzer. While it is

not possible to address all problems through static analysis, the framework provided

by the OpenSHMEM Analyzer (OSA) tool provides a robust, extensible and scalable

prototype for aiding application development in the OpenSHMEM environment.

1. Relaxing Memory Consistency without Impacting Correctness

As we saw from our experiments with the NAS Parallel benchmarks suite, the

collectives are a necessary evil. From the graphs in Figures 1.9, 1.10, 1.13, and

1.14, we see that as much as 72-85 % of the time spent in OpenSHMEM calls

is for shmem barrier all operation. Since this operation has both completion

as well synchronization aspects it is sought out as a go to solution for all

situations, even when less expensive correct options are available. We look

at these operations as a starting point on which to build our synchronization

analysis and optimization framework.

2. No Common Intermediate Representation

All PGAS languages and libraries have similar functionality and are trans-

lated to some intermediate representation which in turn is lowered to a set

of equivalent runtime library calls (discussed in detail in Chapter 2). We can

view OpenSHMEM as a common intermediate representation to represent all

23



such language extensions as well as libraries. By having a common represen-

tation, all optimizations can be applied across all function calls with the same

functional and completion semantics.

3. Providing PGAS Specific Feedback for Correctness and Optimiza-

tions

Building a compiler-based static analysis tool provides a more comprehensive

solution to developing applications using the PGAS programming model. We

developed an OpenUH compiler-based tool which makes the compiler aware

of the PGAS semantics of the OpenSHMEM library and gives feedback in the

form of compile time messages, visual representation of the program synchro-

nization structure, and the system dependence graph that better explains the

control flow and data flow within the application.

24



Chapter 2

Partitioned Global Address Space

(PGAS)

2.1 PGAS Languages

2.1.1 Unified Parallel C

UPC [4] is an extension to the C language to enable parallelism [70]. Extensions

include global pointers, data distribution declarations for shared data, and work-

sharing constructs. The first version of UPC, known as version 0.9, was published

in May of 1999 as technical report at the Institute for Defense Analyses Center for

Computing Sciences [70]. A UPC program is executed by a set of processes, referred

to as threads by the UPC execution model, which may allocate both shared and

private data objects. Except at declaration time there is no syntactic difference in the

25



access to local and global data objects. UPC follows the SPMD style of programming

where a number of threads work independently and communicate through reads or

writes to shared data in the global memory. Private objects belonging to a thread

cannot be accessed by any other thread. The local data items reside in the private

memory of the thread while the globally shared data values are placed in the global

memory. Also, the shared data in the global memory are logically partitioned among

the threads; i.e. there are sections of the global data which are closer to a thread, this

leads to memory regions in the global address space to which threads have affinity.

Figure 2.1 depicts the memory model in UPC.

Figure 2.1: UPC Memory Model [38].

The UPC memory model supports three different kinds of pointers: private point-

ers pointing to the shared address space, pointers living in shared space that also

point to shared data, and private pointers pointing to data in the thread’s own pri-

vate space. The access times depend on whether the data are local or remote and

the UPC performance largely depends on the number of threads and how they access

the shared space. UPC also provides synchronization mechanisms such as barriers,

split-phase barriers, and other memory consistency controls. Better performance is

26



observed when a process accesses data which are held locally or data in the partition

of the global address space to which the thread has affinity. This fact is exploited by

the UPC work-sharing construct upc forall which distributes iterations across threads

in a way such that each thread operates on the local portion of shared arrays.

2.1.2 Co-Array Fortran

Co-Array Fortran (CAF) [52] was introduced as a small language extension to Fortran

95 which facilitates data decomposition by providing explicit notations. The syntax

is independent of architecture and was finalized to be added to the Fortran standard

by the ISO Fortran Committee in May 2005. CAF also follows the SPMD execution

pattern where a copy of the same program is executed asynchronously by multiple

images. Images are indexed starting from one to the total number of images executing

the application. Inside a CAF program an image can retrieve their index through

the intrinsic function this image(). To access objects residing on another image CAF

introduces the concept of co-subscript which is indicated between square braces. Like

other PGAS languages (and libraries), all accesses to remote objects are one-sided,

thus requiring no involvement of the image whose object is being accessed.

2.1.3 Chapel

Chapel is a parallel programming language that has been developed by Cray Inc. un-

der the DARPA High Productivity Computing Systems (HPCS) program [16]. Initial

goal for Chapel when it emerged from Cray’s entry in the HPCS was to provide a

27



portable interface to improve programmer productivity on high-end parallel systems

and provide a programming model that is attractive for commodity clusters, as well

as desktop computing. Chapel is also being developed in an open-source manner at

SourceForge. Chapel supports the PGAS programming model by providing global-

view data aggregates with user-defined implementations. This allows for operations

on distributed data structures. Chapel’s parallel features are most directly influenced

by ZPL [17], High-Performance Fortran (HPF) [62], and the Cray MTA/XMT [11]

extensions to C and Fortran [23]. The latest version of Chapel, version 1.7.01, was

released on April 18th, 2013.

Chapel supports a multithreaded execution model. For this purpose Chapel sup-

ports high-level abstractions for data parallelism, task parallelism, concurrency, and

nested parallelism. To enable locality and affinity, Chapel introduces the concepts

of locales, which enables users to specify the placement of data and tasks on a target

architecture. Chapel upholds all object-oriented concepts by supporting code reuse,

rapid prototyping, and type inference.

2.2 PGAS Libraries

2.2.1 Global Arrays

The Global Arrays (GA) Toolkit is a PGAS library for C and Fortran languages [48].

GA is implemented using the ARMCI runtime library. The runtime library is re-

sponsible for allocating global memory and accessing remote memory locations while

28



the Memory Allocator interface allows for allocating local memory, and providing

memory availability and utilization information statistics. The Distributed Arrays

(DA) layer detects the location of the data that an operation is accessing (physi-

cal shared memory or remote memory) and accordingly invokes the corresponding

ARMCI functions.

GA allows for creation of global arrays with irregular distribution. This enables

different processes to have different number of array elements. Like other PGAS

languages and libraries, GA provides synchronization, environment query functions,

remote read/write, non-contiguous data transfers, collective operations, and atomic

operations. Functions and features unique to GA include; duplicating arrays, setting

data, support for locality, scaling of array elements, and array copy features.

2.2.2 Titanium

Titanium is a dialect of Java [41] and follows the SPMD execution model, so all

threads execute the same code image. Titanium does not use the Java Virtual Ma-

chine model, but instead, is first translated into C that is then lowered by the com-

piler to assembly code. The compiler generates calls to the runtime which is based

on the lower level communications library GASNet. Titanium merges the PGAS

programming model concepts and enriches Java’s features by providing checked syn-

chronization, support for complex data structures, and the use of object-oriented

class mechanism along with the global address space to support large shared struc-

tures. Titanium provides a global memory space abstraction and the lightweight

29



communication layer exploits hardware support for direct remote reads and writes

[53]. Titanium upholds the PGAS programming model by providing user-controllable

processor affinity, when at the same time all parallel processes may directly reference

each other’s memory to read or write values or perform bulk data transfers.

Titanium runs on a wide range of platforms including uniprocessors, shared mem-

ory machines and distributed memory machines and a host of other specialized ar-

chitectures including Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC

SX6.

2.2.3 OpenSHMEM

An OpenSHMEM [18] library is based on the OpenSHMEM Specification [5], which

is an open standard for all SHMEM library implementations. The OpenSHMEM

standard is formulated with SGI’s SHMEM library specification and implementation

as the inception point. The OpenSHMEM Specification 1.0 was finalized by the

OpenSHMEM community in early 2012. Existing OpenSHMEM libraries include

those developed by SGI [3], Portals SHMEM [13], Scalable SHMEM developed by

Mellanox and the OpenSHMEM Reference Library [61] (developed at the University

of Houston in collaboration with Oak Ridge National Laboratory). The OpenSH-

MEM API [54] provides concise and powerful library calls for communicating and

processing data. All OpenSHMEM read and write calls are one-sided, i.e. they do

not require the involvement of the target processing element (PE) for completion

and when the underlying hardware allows Remote Direct Memory Access (RDMA),

30



it can provide excellent opportunities for hiding communication latency by overlap-

ping communication with computation. The OpenSHMEM API provides calls for

data communication, point-to-point and group synchronizations, data collection and

reduction operations, distributed locks, and process and data accessibility checking.

Figure 2.2 depicts the logical memory model in OpenSHMEM.

Figure 2.2: OpenSHMEM’s Logical Memory Model.

The OpenSHMEM programming library allows a programmer to write parallel

applications using a PGAS programming model, where all the processes operate on

a globally accessible address space while allowing local data objects for individual

computations. In order to support this programming model, OpenSHMEM has the

concept of remotely accessible memory or symmetric memory.

OpenSHMEM library implementations are available for C, C++, and Fortran pro-

grams. OpenSHMEM is a library of choice for programs that perform computations

31



in separate address spaces and explicitly communicate data to and from different

PEs in the program. Typically, target (data object to be written to) or source (data

object to be copied from) data that reside on remote PEs are identified by passing

the address of the corresponding data object on the local PE. With an evolving API

that aims to provide user-friendly operations required by real world applications,

OpenSHMEM has the potential to provide efficient solution to a multitude of HPC

problems.

2.2.3.1 Key Concepts and Definitions

1. Processing Element

Each executing process is called a processing element and is referred to as PE

X, where

X ∈ {0, 1, , N − 1}

and N is the total number of parallel processes executing the application.

In the OpenSHMEM library environment the PE is an execution unit with

associated memory, which is a combination of local memory and remotely ac-

cessible memory. The remotely accessible regions are the ones that the library

uses for most operations. PEs do not have access to other PE’s local memory,

which is in congruence with the fundamental concepts of the PGAS program-

ming model.

2. Symmetric Memory

The key concept of OpenSHMEM is the use of symmetric data. Typically, one

or more of the parameters of the OpenSHMEM data communicating/processing

32



calls is required to be symmetric. Symmetric or remotely accessible data can be

allocated by a OpenSHMEM library (using special memory allocation calls) or

is defined as global or static in C/C++ or in common or save blocks in Fortran.

Symmetric variables have the same name, size, type, storage allocation, and

relative address on all PEs.

Library allocation of symmetric data allocation is a collective process and has

to appear at the same point in the code with the same size value. Additionally

a dynamic memory allocation call cannot request more space than the size of

the symmetric heap, which is the remotely accessible heap memory available to

a PE and its value is implementation specific. Every PE in OpenSHMEM has

symmetric memory associated with it. This area can be visualized as an area in

memory which has identical structure on all processing elements. The location

may or may not be identical, but the placement of the symmetric variables,

allocated and managed by the library, is identical on each PE. Hence, address

calculation for symmetric variables on other PEs becomes a trivial task. This

enables OpenSHMEM to do one-sided communication, where the transfer of

data between symmetric variables can be achieved without the involvement of

the remote PE.

33



Listing 2.1: A C program to illustrate different symmetric variable categories

in OpenSHMEM.

1 int aglobal; /* symmetric variable */

2 void main( ){

3 ...

4 int me, npes; /* local variables */

5 static int astatic; /* symmetric variable */

6 int *x;

7 int y; /* local variable */

8 ...

9 start_pes (0);

10 ...

11 x = (int *) shmalloc(sizeof(int)); /* dynamic symmetric allocation */

12 ...

13 shmem_int_put (&astatic , x, 1, (me+1)%npes);

14 ...

15 shmem_int_get (&y, &aglobal , 1, (me+1)%npes);

16 shmem_barrier_all ();

17 ...

18 shfree(x);

19 ...

20 return 0;

21 }

In code Listing 2.1, at line 1, the variable aglobal is a global variable and hence

symmetric. At line 9 the OpenSHMEM library is initialized and all subsequent

OpenSHMEM library calls must follow this call. The variable astatic declared

in line 5 is also symmetric as per the OpenSHMEM Specification 1.0. A sym-

metric variable x is allocated in line 11 using the dynamic memory allocation

call shmalloc. The symmetric variable ‘x’ is allotted the requested amount of

memory at the same memory off-set on the symmetric heap on each PE.

34



This mechanism facilitates fast remote address calculation at the source PE

as the remote symmetric variable’s address is computed by adding the base

address of the symmetric heap on the target and the local offset corresponding

to the same symmetric variable. This is managed internally by the OpenSH-

MEM library. An OpenSHMEM library implementation may choose to have

symmetric variables at the same address (versus same off-set) to speedup tar-

get destination address calculation. Symmetric variables may contain different

values on all PEs.

3. Active Set

Some routines in OpenSHMEM involve participation of a sub-set of PEs. An

active set is a logical grouping of PEs [54].

OpenSHMEM implementations expect that the programmer abides by these se-

mantics. Any deviation from these results in undefined behavior which is implemen-

tation specific.

2.2.3.2 Functionality provided by OpenSHMEM library API

An overview of the OpenSHMEM operations is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized. No

OpenSHMEM library calls may precede this call.

35



(b) Query: The local PE may get number of PE running the same application

code and its unique integer identifier (starting at 0).

(c) Accessibility: Provides PE and data accessibility information.

2. Symmetric Data Object Management

(a) Allocation: Collective allocation of symmetric data by library provided

routines.

(b) Deallocation: Collective deallocation of symmetric data by library pro-

vided routines.

(c) Reallocation: Collective reallocation of symmetric data by library pro-

vided routines.

3. Remote Memory Access

(a) Put: Write operation to the symmetric data object on a remote PE.

(b) Get: Read operation of symmetric data object on a remote PE to a data

object (local or symmetric) on a local PE.

4. Synchronization and Ordering

(a) Fence: Ensures per-PE ordering of remote memory update operations.

(b) Quiet: Ensures completion of remote memory update operations.

(c) Barrier: Collective operation to synchronize and ensure completion of all

remote and local updates.

36



5. Collective Communication

(a) Broadcast: One to all copy from root PE to one or more remote PEs (not

including itself) using symmetric source and target data objects.

(b) Collection: Collective operation to achieve concatenated symmetric ob-

jects contributed by each of the PE, in another symmetric data object.

(c) Reduction: Collective operation to get the result of associative binary

operation over elements of the specified symmetric data object.

6. Atomics

(a) Swap: Local PE reads the old value of the symmetric data object on a

remote PE and copies a new value to it.

(b) Increment: Local PE adds 1 to the symmetric data object on the remote

PE.

(c) Add: Local PE adds specified value to the symmetric data object on the

remote PE.

(d) Compare and Swap: Local PE reads the old value of the symmetric data

object based on a value to be compared and copies a new value to the

symmetric data object on the remote PE.

(e) Fetch and Increment: Local PE reads the old value of the symmetric data

object on the remote PE and adds 1 to the symmetric data object on the

remote PE.

(f) Fetch and Add: Local PE adds specific value to the symmetric data object

on the remote PE and copies the old value.

37



7. Mutual Exclusion

(a) Set Lock: Allows exclusive access to the region bounded by the symmetric

lock variable.

(b) Test Lock: Any PE may test the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

8. Data Cache Control

(a) Mechanisms to exploit the capabilities of hardware cache if system has

non-coherent cache.

38



Chapter 3

Related Work

3.1 Translation of PGAS Languages

All PGAS languages and libraries are lowered by the compiler to some intermediate

representation for optimizations and finally replaced by a combination of runtime

calls that perform the required operation. Since all of them go through a simi-

lar process, optimizations implemented for OpenSHMEM are applicable for other

PGAS languages and libraries. These can be applied either by following the changes

to the compiler infrastructure as a prototype and implementing them for individual

language/library, or by targeting OpenSHMEM as a possible intermediate represen-

tation.

Figure 3.1 shows the overall structure of the Berkeley UPC Compiler, which

is divided into three main components: the UPC-to-C translator, the UPC runtime

39



Figure 3.1: Berkeley’s UPC Compiler [38]

system, and the GASNet communication system. The different phases of compilation

allow the translation of UPC program code to C code which is platform independent.

The UPC-related parallel constructs are converted into calls to the runtime library.

The C compiler on the target machine translates the C code and links it to the

runtime system. The runtime system handles the UPC specific tasks such as thread

generation, allocation and management of shared data, etc. The Berkeley UPC [38]

runtime relies on the GASNet communication library to perform its data allocation

and communication. Main advantages of such a scheme is that GASNet provides an

uniform interface for low-level communication primitives on a variety of networks,

by directly accessing the individual hardware reduces communication overhead, and

eliminates function call overhead (by using techniques such as inlining).

Berkeley UPC Compiler targets C as the intermediate representation and hence

is available on commonly used hardware platforms that have an ANSI-compliant C

compiler. The modular design of the compiler allows for aggressive optimization of

the intermediate C output by the backend C compiler. The UPC-to-C translator

40



uses UPC-specific knowledge about shared memory access patterns to perform com-

munication optimizations. This is helpful since application performance using UPC

depends upon the number of accesses to shared data and how they are handled.

A similar flow is observed for Titanium, where compiler translates Titanium

code into C that is then lowered by the compiler to assembly code [74]. We look at a

popular open source CAF implementation (OpenUH CAF [25]) as another example

of how PGAS languages are supported and translated by compilers.

The OpenUH compiler is based on the Open64 [15] compiler. Open64 is a high

performance compiler that can generate binary codes for a range of architectures like,

the Intel IA-64, Intel IA-32e, and AMD X8664. Open64 supports Fortran 77/95 and

C/C++, as well as the shared memory programming model OpenMP. The Open64

compiler infrastructure is most recognized for its ability to perform high quality inter-

procedural analysis, data-flow analysis, data dependence analysis, and array region

analysis [25].

To support CAF, OpenUH compiler’s front-end is modified to generate interme-

diate code (IR), and during the translation phase the compiler analyzes the IR and

translates it to produce appropriate communication code. The runtime library pro-

vides the actual implementation of the required communication primitives. Different

optimizations are possible on different IR representations. Figure 3.2 shows the

framework of the OpenUH CAF compiler and runtime system.

41



simple CAF code performing an all-reduce where each image gets
the global maximum of array u across all images.

real :: rmax, max_u[*], u(N,N)
...
max_u = maxval(u)
sync all
do i=1,num_images()

rmax = max_u[i]
if (max_u < rmax) max_u = rmax

end do
if (this_image() == 1) print *, max_u
...

The major benefit of CAF is that the application developer
simply uses the co syntax to mark non-local data (coarray element)
accesses and thus need not be concerned with the details of data
exchange between images. It is the task of the implementation to
ensure that this is performed efficiently. The language also includes
synchronization statements and intrinsic functions for providing the
programmer information about the images and coarrays.

3. Implementation
OpenUH [15] is a branch of the open source Open64 compiler
suite for C, C++, and Fortran 77/90/95, with support for the IA-
64, IA-32e, and Opteron Linux ABI. Its major functional parts are
the front-ends, the inter-language inter-procedural analyzer (IPA),
and the back-end which is further subdivided into the loop nest op-
timizer (LNO), and auto-parallelizer for OpenMP, global optimizer
(WOPT), and code generator (CG). OpenUH uses five levels of IR
in its back-end, called WHIRL, for facilitating the implementation
of different analysis and optimization phases. Most compiler opti-
mizations are implemented on a specific level of WHIRL. OpenUH
has also been enhanced to support the requirements of TAU, Ko-
jak, and PerfSuite by supporting an instrumentation API for source
code and OpenMP runtime library support [13, 12]. In related prior
work, we have used OpenUH to translate OpenMP for clusters, and
developed a supporting library based on global arrays and MPI [8].
CAF support in the OpenUH compiler/runtime system com-

prises three areas, illustrated in Figure 1.

Figure 1. Framework of OpenUHCAF Compiler/Runtime System

First, we extended the OpenUH Fortran front-end to accept
coarray syntax and generate intermediate code (IR). Next, we
added a translation phase in our compiler that can accept this
IR, analyze it, and translate the coarray references to correspond-
ing buffering and communication code. Third, we developed a
portable, extensible runtime library that provides the necessary
buffering and communication facilities.

3.1 Front-end Processing
We modified the Cray Fortran 95 front-end used by OpenUH to
support our coarrays implementation. Cray had provided some sup-
port for CAF syntax, but its approach was to perform the transla-
tion to the underlying runtime library in the front-end. It accepted
the [] syntax in the parser, recognized certain CAF intrinsics, and
it targeted a SHMEM-based runtime with a global address space.
Our implementation strategy, looking forward, is to eventually take
advantage of the robust static analysis and optimizing capabili-
ties in the OpenUH back-end, so we needed to preserve the coar-
ray semantics into the back-end. To accomplish this, we adopted
a similar approach to that used in Open64/SL Fortran front-end
from [6], where co-subscripts are preserved in the IR as extra ar-
ray subscripts. In the TYPE TBL generated by the front-end, we
mark arrays declared with the [] syntax as coarrays and distinguish
the coarray dimensions from the local array dimensions. We also
added support for CAF intrinsic functions such as this image,
num images, image index, and more as defined in [24].
In our implementation, all coarrays are allocated at runtime on

the heap, even if they are declared explicitly as allocatable. A coar-
ray that does not have the allocatable attribute exists from the
beginning of the program until then end, while an allocatable coar-
ray may be allocated and deallocated during runtime. By default, al-
locatable arrays are transformed into dope vectors by the front-end,
and runtime calls to dynamically allocate or deallocate data for the
array are generated based on the allocate and deallocate
statements. We disable this transformation for allocatable coarrays
in the front-end, and defer their translation into dope vectors until
the back-end where all coarrays are converted to this representation
in a single pass.
Special care needs to be taken when a call statement is encoun-

tered for a procedure with a coarray argument. We consider two
cases for the coarray argument: (1) it has an explicit shape declara-
tion, (2) it has an assumed shape declaration. For the first case, the
front-end will ordinarily assume that the compiler treats explicit
shape array argument as a contiguous array. Therefore, if a non-
contiguous array section is passed, the front-end uses a temporary
buffer and inserts copy-in, copy-out statements before and after the
subroutine call. This approach will not work for subroutines with
explicit shape coarray arguments, because the passed in argument
must also be a coarray. In our implementation, an explicit shape
coarray argument need not be contiguous, since all coarrays are
represented using a dope vector which allows for non-contiguous
shapes (see Section 3.2). We added support in the front-end for
generating call statements with non-contiguous actual arguments,
since ordinarily only a base address is used. In the second case, the
front-end will ordinarily represent all assumed shape arrays as dope
vectors. Therefore, it will create a dope vector in the calling func-
tion, initialize it to point to the section of data that is being passed,
and replace the actual argument in the call statement with it. But
since we defer the translation of coarrays into dope vectors until
the back-end translation, we disabled this transformation as well.

3.2 Coarray Lowering in Back-end
We have currently implemented a basic translation strategy for
coarrays in our back-end, with plans to add an analysis/optimiza-
tion phase prior to the lowering of the coarray representation. Fairly
early in the back-end processing, a F90 lowering phase is carried
out in which F90-supported elemental array operations are trans-
lated into loops. We make use of the higher-level F90 array opera-
tions for generating block communications in our translation, so we
perform Coarray Lowering prior to F90 lowering. The translation
strategy consists of four parts. (1) Each declared coarray is repre-
sented by corresponding “dope” and “codope” vectors. The coar-
rary’s dope vector points to and describes the local coarray data,

Figure 3.2: OpenUH CAF Framework [25]

3.2 Compiler-based Tools and Synchronization

Analysis

Static analysis tools like Broadway [29] (built on top of the C-Breeze compiler [39]),

aim at verifying programs by separating the code generation functionality of com-

pilers from the awareness of the semantics of libraries. This is facilitated using

annotations, which are used to convey the dependency relationships for code veri-

fication within the compiler. This means that the programmer needs to explicitly

translate into annotations, the semantics for every single library function used. An

incorrect representation of such dependencies may lead to excess false positives or

worse, false negatives. To overcome this drawback we set out to embed the awareness

of the OpenSHMEM library within the compiler infrastructure.

42



Concurrency analysis has a myriad of applications. Usually it is used as a stepping

stone to facilitate complex analysis for process-level parallelism [34] of a program.

This is done by identifying process segments (application code executed by a par-

ticular process) and then grouping the process segments into process phases that

contain concurrent regions [36]. Such analysis avoids the problem of having to iden-

tify textually unaligned barriers by assuming that barriers are identified via unique

barrier variables. Hence matching unaligned barriers and finding concurrent regions

becomes trivial.

One of the first works to verify program synchronization patterns and the rules

that govern the synchronization sequences was done in [6] for Split-C. Their work

analyzes the effects of single valued expression on the control flow and concurrency

characteristics of the program. Their methodology simplifies the identification of

unaligned barriers and single valued variables by using the single keywords for anno-

tating the named barriers (barriers statements that correspond to the same barrier).

An active testing framework called UPC-Thrille [56] was developed to find con-

currency bugs in distributed memory programs. This framework works in two phases

the race prediction phase and the race confirmation phase. In the first phase, an im-

precise dynamic analysis finds program statements that could potentially lead to a

race condition during the execution of the program. The next phase, called the race

confirmation phase, tries to assert that the race condition that was detected actually

exists for each pair of statements reported in the first phase. This involves executing

the application at least two times. When the second phase successfully manages to

get the individual threads to access the same memory location, and at least one of

43



the accesses is a write, data race is confirmed. For large scale applications requiring

huge computational and data resources, execution for testing and profiling purposes

may not be feasible.

Another concurrency analysis is proposed in [40] for shared memory programs us-

ing OpenMP programs based on phase partitioning. Their analysis is intra-procedural

and relies on the OpenMP constructs to compute non-concurrency relationship across

statements. The drawback of this method is that it does not account for multi-

value expressions and synchronization across textually unaligned barriers, which is

important to understand concurrency relationship in communication libraries like

OpenSHMEM.

A concurrency analysis method for PGAS languages, like Titanium [41], with tex-

tually aligned barriers is proposed in [36]. It discusses an inter-procedural algorithm

that efficiently computes the set of all concurrent statements by first modifying the

Control Flow Graph (CFG) and then performing a modified depth first search to

ascertain the pairs of concurrent expressions.

Work in [76] uses similar concepts as those used in [36] for concurrent analysis

for shared memory programs written in OpenMP. The primary difference is that for

MPI and OpenMP there is a need to match textually unaligned barriers first [76].

Consequently matching barriers that synchronize together are discovered and then a

partitioning based on global synchronization calls is performed. An improvement of

this work over [36] is that they consider the effects of unaligned as well as implicit

barriers implied by OpenMP constructs and use this information to extend the CFG.

44



Since synchronization analysis is an essential step towards concurrency analysis

for OpenSHMEM programs, we also look at [75] and their methodology to match

unaligned barriers for MPI programs. They evaluate the different concurrent paths

the processes in the MPI program may take (using multi-value conditional and barrier

expression analysis) and check that each process encounters an equal number of

barriers. Our approach to barrier matching is similar but we have to account for two

different barrier calls provided by the OpenSHMEM library API, which makes the

problem more complex. Our approach not only confirms if the barriers are matched

but also can report to the user the exact location within the program where there is

a possible mismatch. We also extend this analysis to detect possible optimizations in

the parallel programs that are specific to the semantics of the OpenSHMEM library

API.

Concurrency analysis for other parallel programming languages, such as X10

[43, 46], Ada [35, 14], and Java [71, 42] are also relevant.

3.3 Compiler and Runtime Optimizations

Compiler-based optimizations to applications is a widely studied area for improving

application performance by relaxing memory consistency requirements and improv-

ing computation-communication overlap while maintaining program correctness. For

UPC, research for communication optimizations by compilers for fine-grained UPC

applications [22] and runtime system to search and exploit available overlap present

at execution time [33] are well researched areas. Compiler-based optimizations like

45



redundancy elimination for shared pointer arithmetic (by replacing repeated com-

putations of the same variable by temporaries), split-phase communication for reads

(data is communicated as early as possible and completion is checked before the

use of such data), and coalescing of communication calls (combining smaller data

transfers into one large transfer) have been looked into. But like all static analyzes,

there are inherent drawbacks, such as: data sizes may be available only at run-time,

non-deterministic communication pattern with change in number of processes, or

the compiler is unable to precisely determine the overlap due to multiple hardware

targets. Here runtime analyzes tools like HUNT [33] may be more effective. But

this would involve multiple runs of the application to collect information available

only at runtime, thus using computational resources that may not be appealing to

application programmers.

In the shared memory domain, compiler optimization techniques for explicit par-

allel programs using OpenMP [64] [45] have been researched. To enable optimization

across threads, data-flow analysis techniques to model interactions between threads

have been researched. Structured description of parallelism and relaxed memory

consistency in OpenMP make the analyses effective and efficient. Algorithms for

reaching definitions analysis, memory synchronization analysis, and cross-loop data

dependence analysis for parallel loops have been researched to be able to provide

aggressive compiler optimizations for software-implemented coherence schemes to

obtain good performance on shared memory platforms.

46



Chapter 4

OpenSMEM Analyzer

Compilers are not aware of the parallel semantics of the OpenSHMEM library and

they treat the library API like a black box, thus hindering optimizations. The

OpenSHMEM analyzer (OSA) [55] is the first effort to develop a compiler-based tool

aware of the parallel semantics of an OpenSHMEM library. OSA provides informa-

tion about the structure of the OpenSHMEM code and semantic checks to ensure

the correct use of the symmetric data in OpenSHMEM calls. The OpenSHMEM

Analyzer uses intra-procedural and inter-procedural analysis information to report

non-adherence to the semantics of the OpenSHMEM library specification, which can

be an indispensable assistant for verifying correctness of OpenSHMEM programs.

The OpenSHMEM Analyzer has been integrated to OpenUH [20], at the Univer-

sity of Houston; which supports most of OpenMP 3.0 and Co-Array Fortran (Fortran

2008 Model). The front-end of the compiler accepts Fortran 77/90 and C/C++.

OpenUH is a modular and robust research compiler with support for the IA-64,

47



IA-32e, and Opteron Linux ABI platforms. Major functional parts of OpenUH are

the front-ends, the inter-language inter-procedural analyzer (IPA), and the back-end.

The back-end is further sub-divided into the loop nest optimizer(LNO), global op-

timizer (WOPT), and code generator (CG). OpenUH, like Open64, uses five levels

of Intermediate Representations (IR) in its back-end, called WHIRL. Each phase

within the OpenUH compiler performs lowering of WHIRL (starting from Very High

WHIRL) to finally get the executable in machine instructions. This facilitates dif-

ferent analysis and optimization on different levels of WHIRL.

For OSA, our goal is to perform the analyses at program-scope, and not just

within procedure boundaries, the analyses are performed at two distinct stages; intra-

procedural (IPL phase) and inter-procedural (IPA-Analysis phase). All analyses are

performed at the High WHIRL IR level. The extension to the Data Flow Analysis

includes the verification of the initialization of symmetric pointers and the status

of the arguments. Checks are also performed after the IPA-Link stage following

optimizations such as constant propagation, array-section propagation and inlining

analysis. The intra-procedural Alias Analysis of symmetric buffers is performed using

context-insensitive and flow-insensitive Steensgard-Alias Classification [68].

We extend the existing OSA framework to provide an in-depth synchronization

analysis based on the control flow of the OpenSHMEM program. Since the semantics

of the OpenSHMEM library function calls are relevant between global synchroniza-

tion calls, the first step is to detect the possible concurrent execution paths of an

application based on the synchronization structure of the application. Concurrency

in an SPMD application results from distinct paths of execution which are effected

48



by providing conditions that evaluate to different values on different PEs. Such ex-

pressions within the conditionals are called multi-valued expressions [69, 40, 44, 7]

and the particular variable used within the expression that causes this phenomenon

is the multi-valued seed. Our framework uses the concepts of multivalued seeds and

multivalued expressions to build a multi-valued system dependence graph in the con-

text of OpenSHMEM. This graph is used to build a barrier-tree which represents the

synchronization structure of the entire application. We implement the critical parts

of the framework proposed in [59] and provide insights into the the practical aspects

of detection of multi-valued expressions by identification and tracing of multi-valued

seeds. Our analysis is performed within the IPA phase using the High WHIRL to

help us build inter-procedural control flow and data flow graphs while preserving the

high level constructs of a program, such as DO LOOP, DO WHILE, and IF, which

are critical for multi-valued analysis.

We merge information available from different phases of the compiler and present

the results of our analysis in the form of two graphs: a system dependence graph at

the statement level clearly marking the control and data dependences across state-

ments in the program, and the barrier-tree where the leaves of tree are OpenSH-

MEM collective synchronization calls (shmem barrier and shmem barrier all) and

the nodes are operators that represent the possible concurrent control flow within

the program. This visual aid provides the programmer with necessary information

to verify if there is congruence in the intent of the program with its actual execution

structure. The OSA is based on extending existing OpenUH compiler technology

to report errors and other useful feedback accurately in context of OpenSHMEM.

49



By providing other useful information at compile time the programmer can analyze

the program structure before execution, thus preventing resource wastage. Cur-

rently the tool is tested for C programs only, but with minor modifications it can be

extended to verify Fortran programs that use the OpenSHMEM library API.

4.1 OSA Infrastructure

Figure 4.1 shows the different stages within the compiler and the shaded region are

the phases where OSA tool performs most of its analysis. Since we need the data

flow information, alias analysis and the control flow information for each individual

procedure we build our analysis at the local inter-procedural phase. At this phase

all analyses is performed on the High WHIRL IR where variables and control flow

statements are preserved and can be easily mapped to the source code and the

control flow is fixed [15]. We used the DU-manager, alias manager, and control flow

analysis data structures to build our system dependence graph to perform multi-

valued analysis.

4.2 Semantic Checks

The current OpenSHMEM specification does not discuss detailed behavior of imple-

mentations of library calls that are used incorrectly. The individual OpenSHMEM

libraries could choose different ways of handling such situations. While resilient

implementations mask these, others may cause the application to crash or produce

50



incorrect results. Also, C, C++, and Fortran compilers cannot enforce the use of

the local and symmetric variables in specific arguments of OpenSHMEM calls. This

could lead to unintentional mixing of symmetric and automatic variables. To main-

tain reproducibility and portability of OpenSHMEM applications, the OpenSHMEM

Analyzer can discover instances of incorrect usage and report them back to the ap-

plication programmer through compile time static analyses. It keeps track of the

storage classes of symmetric variables to ensure that their data are stored in the

global or static sections of the code. It also performs type checks for symmetric vari-

ables used in 32-bit or 64-bit OpenSHMEM calls. The type-checks can also detect

out-of-bound array accesses (in cases where the length of the access can be computed

statically). These checks are performed after inter-procedural constant propagation.

Other common errors that OSA is capable of detecting are the absence of or multiple

calls to the initialization of the OpenSHMEM library using start pes().

51



Figure 4.1: OSA analysis (shaded blocks) within the OpenUH compiler.

52



Chapter 5

Synchronization Analysis

Framework

In this chapter we discuss the common programming mistakes that are encountered

during an application development using the OpenSHMEM library. The OSA can

help catch such conditions at compile time thus reducing development and debugging

times. We discuss the different steps within the Synchronization Analysis framework

of OSA here. The synchronization analysis takes place in two major steps; con-

currency analysis and discovering synchronization phases. Each step in turn has to

combine results from different analysis performed by the compiler to get meaningful

information relevant to OpenSHMEM’s synchronization model.

53



5.1 Common Programming Mistakes using

OpenSHMEM

Consider the code in Listing 5.1. In the code example between barrier b1 and b2,

(say) PE 1 executes an atomic statement (shmem int finc) and the data transfer

statement (shmem int put). The atomic statement on line 6 increments the symmet-

ric variable target on PE 2, while on line 5, PE 1 does a put on the same variable

on PE 2.

Listing 5.1: Violation of OpenSHMEM semantics

1 start_pes (0);

2 ...

3 shmem_barrier_all (); //b1

4 ....

5 shmem_int_put (&target , &source , 1, (me+1)% npes);

6 shmem_int_finc (&target ,(me+1)% npes);

7 ...

8 shmem_barrier_all (); //b2

9 ...

Since both these operations may happen simultaneously and the OpenSHMEM speci-

fication guarantees atomicity of atomic operations with respect to other atomics only,

this code leads to non-deterministic results depending on which operation is executed

first. The programmer may easily miss this class of errors leading to an application

with irreproducible results. However, if the put operation is used in another code

phase (after a barrier) with no atomics accessing the same variable in the code phase,

it is correct to do so.

54



Listing 5.2: Deadlock due to missing synchronization.

1 ...

2 if(my_pe %2 == 0){ // then

3 ..

4 shmem_barrier_all (); //b1

5 }

6 else{

7 ..

8 }

9 ...

10 shmem_barrier_all (); //b2

11 ...

Consider the code in Listing 5.2. In the code we see that due to the if statement on

line 2 all even numbered PEs will execute the then part and the odd numbered PEs

will execute the else part. In OpenSHMEM the shmem barrier all function call must

be executed by all PEs at the same point in their execution, so to be semantically

correct there must be a shmem barrier all in the else block as well. In the above

code the even PEs will wait at barrier b1 for all odd PEs while the odd PEs would

have reached b2 and be waiting for even PEs thus resulting in a deadlock.

Consider the code in Listing 5.3. At line 8, value of symmetric variable src on

PE 0 is updated and on line 12 PE 1 does a one-sided copy of the value of src

from PE 0. Since no synchronization exists between the two actions, OpenSHMEM

does not guarantee that PE 1 will get the latest value of src which may lead to the

propagation of the old value of src and result in wrong and/or inconsistent program

outcome.

55



Listing 5.3: Incorrect program behavior due to un-matched synchronization.

1 int src;

2 void main( ){

3 ....

4 start_pes (0);

5 ...

6 if(my_pe == 0){

7 ..

8 src = foo(src);

9 ..

10 }

11 if(my_pe == 1)

12 shmem_int_get (&target ,&src , 1, 0);

13 ...

14 shmem_barrier_all ();

15 ....

16 return 0;

17 }

18

19 int foo(int x){

20 x = x * 1.085 +10;

21 return (x);

22 }

In the code in Listing 5.4 the value of symmetric variable target is initialized to

10 on PE 1 at line 3. Later the value is updated by PE 0 (line 7) by the value in

src. At line 12, PE 1 waits on the value of target to change. Since the local and

remote updates have been affected by the shmem barrier on line 10, the point-to-

point synchronization call is not needed, and could be eliminated.

56



Listing 5.4: Potential performance degradation due to excessive synchronization.

1 ...

2 if(me == 1)

3 target = 10;

4 shmem_barrier_all ();

5 if(my_pe == 0){

6 ..

7 shmem_int_put (&target ,&src , 1, 1);

8 ..

9 }

10 shmem_barrier_all ();

11 if(my_pe == 1){

12 shmem_int_wait (&target , 10);

13 ..

14 }

5.2 Concurrency Analysis

In OpenSHMEM’s execution model, all PEs execute the same program but may take

different paths through the program based on some implicit or explicit conditions set

by the programmer. Understanding the concurrent paths possible during execution

is the first step for any advance analysis. In an SPMD application conditionals that

result in different values on different PEs lead to concurrency. Variables that cause

this phenomenon are called multi-valued seeds [76] . The first step for concurrency

analysis is the identification of multivalued seeds.

57



OpenSHMEM Library Variable Classification Reason

num pes npes Single-valued

my pe me Multi-valued

PUT (elemental, block, strided) target Multi-valued

GET (elemental, block, strided) target Multi-valued

ATOMICS (fetch and operate) target Multi-valued

BROADCAST target Multi-valued

COLLECTS (fixed and variable
length)

target array Single-valued if active
set = npes else Multi-
valued

Table 5.1: Effect of OpenSHMEM library calls on program variables

5.2.1 Identification of Multivalued Seeds

Based on the rules stated in [7] there exist generic rules governing the multi-valued

property of different variables used within an application. For example, uninitialized

data structures and variables referred via pointers are marked as multi-valued. We

extend certain assumptions about the expressions that generate from a known single-

valued or multi-valued seed based on the OpenSHMEM programming model. We

modify the classification scheme for multi-valued seed in presence of OpenSHMEM

calls and their treatment of different program variables as shown in Table 5.1.

By analyzing the type of a variable and how it is modified (for example, if it

is defined via a multi-valued OpenSHMEM call) we can then classify it as a single-

valued or multi-valued seed. For example, the return value for the OpenSHMEM call

my pe() is unique for every PE and hence is multi-valued. In contrast, num pes()

returns the same value throughout the program for all PEs and hence the return

58



value (and the variable associated with it) is considered single-valued. Likewise, other

OpenSHMEM library calls have an impact on the variable they modify. Generally,

all PE-to-PE operations that modify data cause the variable to become multi-valued,

while collective operations that modify target variables on all the PEs cause the

target to be single-valued.

For every definition of a program variable there is a use-list associated with it and

a set of statements that may directly or indirectly (via aliases) use the variable. The

subsequent use of a variable after its declaration is analyzed by the compiler and saved

in a specialized data structure called the Def-Use (D-U) chain within the compiler’s

back-end. A multi-valued seed may affect the value of other program variables or

may only alter the control flow. The detection of resulting multi-valued variables is

done by propagating the multi-valued seeds using the D-U chains generated by the

backend. We append this information along with the control dependencies extracted

from the control flow graph generated by the compiler . Combining the information

from the the control flow graph and data flow, gives the system dependence graph

[67].

5.2.2 Construction of the System Dependence Graph

We look at the example code listing in 5.5 to see how creating a logical system depen-

dence graph enables extraction of concurrent paths within an application. Within

the compiler control flow graph is a sequence of basic-blocks with dominator rela-

tionship. For example, if a basic-block BB5 cannot be reached without the control

59



passing through BB3, BB3 dominates BB5. Along with the dominator information

we also need to find the dominator frontier information, which essentially gives the

basic-block that immediately precedes the current basic-block.

Listing 5.5: Example OpenSHMEM C code with barrier synchronization

1 int main(int argc , char *argv []){

2 ...

3 if(me==0){

4 shmem_barrier_all ();

5 int temp = x+y;

6 shmem_barrier_all ();

7 }

8 else {

9 if(me==1){

10 shmem_barrier_all ();

11 old = shmem_int_finc (&y, 0);

12 shmem_int_sum_to_all (&y,&x,

13 1,1,0,npes -1,pWrk ,pSync);

14 x= x+10;

15 shmem_int_get (&y,&y,1,0);

16 shmem_barrier_all ();

17 }

18 else{

19 shmem_barrier_all ();

20 shmem_int_sum_to_all (&y,&x,

21 1,1,0,npes -1,pWrk ,pSync);

22 x=y*0.23

23 shmem_barrier_all ();

24 }

25 ...

26 }

27 return 0;

28 }

60



Figure 5.1: Control Flow Graph for code listing 5.5.

Figure 5.1 shows the CFG of the code listing in 5.5. Each basic-block has a

single point of entry and exit. We append data flow information by finding reaching

definitions of variables. From the compiler generated information for data flow for

individual variables, we find definitions that reach a specific point in a program

without being redefined at any intermediate point. We annotate the IR with this

information. Merging this information we get a system dependence graph [32] shown

in Figure 5.2 .

61



F
ig

u
re

5.
2:

S
y
st

em
D

ep
en

d
en

ce
G

ra
p
h

fo
r

co
d
e

li
st

in
g

5.
5.

62



Based on the CFG and the outcome of the conditional statements each control

edge is either marked true (T) or false (F). The data dependence edges are marked

with bold arrows. Programming slicing is defined as a decomposition based on data

flow and control flow analysis of the application [72] and can be viewed as a way

to identify the reach of these multi-valued seeds. If we take a forward slice of the

sample program based on the multi-valued PE number me at A6, then we get either

A6-B1-B2-B3-C or A6-C-D1-D2-D3-D4-D5-D6 or A6-C-E1-E2-E3-E4 depending on

the value of me. These slices help us identify the multi-valued conditionals in the

program by finding the points at which the execution paths diverge.

5.3 Discovering Synchronization Phases

A synchronization free path between consecutive synchronization calls on the same

execution path is defined as a synchronization phase. Identification of these phases is

critical as before and after them the programming model promises consistent view of

the memory to all executing PEs. Since we are focusing on synchronization analysis

we need to identify the different synchronization constructs within a given OpenSH-

MEM application that a PE may encounter. Since global synchronization primitives

in OpenSHMEM also provide a guarantee of memory consistency, detecting these

phases allows us to apply different optimizations; since some are relevant only within

a synchronization phase and some may be applied across synchronization phases.

By knowing the property of every conditional within the application (single-

valued or multi-valued) we use the system dependence graph to get a logical slice of

63



the program statements that a PE may encounter and then register the synchroniza-

tion structures on this path. OpenSHMEM specification defines two global synchro-

nization calls shmem barrier and shmem barrier all. These require participation of

more than one PEs, hence these operations are collective in nature.

5.3.1 Synchronization Semantics

Collective synchronization is provided by shmem barrier and shmem barrier all (over

a subset of PEs and all PEs respectively) in OpenSHMEM. A barrier call guarantees

synchronization as well as completion of all pending remote and local OpenSHMEM

data transfer operations and leaves the memory in a consistent state. A shmem

barrier is defined over an active set. An active set is a logical grouping of PEs

based on the triplet, namely, PE start, logPE stride, and the PE size [54].

5.3.2 Textually Unaligned Barriers

Listing 5.6: C code with unaligned

barriers

1 if(_my_pe () % 2 == 0){

2 ...

3 shmem_barrier_all ();

4 } else{

5 ...

6 shmem_barrier_all ();

7 }

Listing 5.7: C code with aligned bar-

rier

1 f(_my_pe () % 2 == 0){

2 ...

3 } else{

4 ...

5 ...

6 }

7 shmem_barrier_all ();

64



OpenSHMEM allows for unaligned barriers, both the code listings, Listing 5.6

and 5.7, are equivalent and valid as per OpenSHMEM Specification 1.0. This makes

it easy to miss synchronization errors and may lead to unintended execution patterns

or worse, dead lock. We now look into the details of discovering the synchronization

structures and analyses that helps define relationships between these synchronization

structures.

5.3.3 Barrier Detection and Generating Barrier Trees

We extract the synchronization structure in a tree structure by iterating over the

IR generated by the compiler. By recording the barriers (both shmem barrier all

and shmem barrier), their relative position, and the control flow between them we

generate a barrier tree for the entire program. The barriers are leaf nodes and

the operators are the nodes of the tree and the edges connect operators to other

operators or barrier synchronization calls. For simplicity both shmem barrier all

and shmem barrier are represented by b, and are appended by integers representing

the relative position of the barrier statement with respect to other barrier statements.

For example, if there are two barrier statements represented by bi and bj, such that

j > i, indicates that bi is encountered before bj when traversing the CFG generated

by the compiler’s backend.

Like regular expressions, barrier trees use three types of operators: concatenation

(·), alternation (|), and quantification (∗) [37]. Table 5.2 gives the rules that govern

the barrier expression generation. It is important to note that if the result of a

65



Placement of barriers Operator used Result

b1 followed by b2 · b1 · b2

if(single-valuedconditional) b1;
else b2;

| b1 | b2

if(multivalued-valuedconditional)
b1; else b2;

|c b1 |c b2

for(n times) b; · b1· b2 · ... bn

Table 5.2: Rules for annotating nodes in the Barrier Tree

quantification operation can, at times, be statically non-deterministic, and we may

not be able to compute the barrier-expression in terms of the exact number of barriers

encountered for such a program. Our analysis does not handle these cases and

leaves it to the user to verify program’s synchronization structure from the graphical

representation we provide for easy visual assessment. Additionally, we borrow the

operator |c from [75] to indicate the operator concurrent alternation. This operator

indicates that the different execution paths diverge from a multi-valued conditional.

We use the multi-value analysis saved in the system dependence graph to dis-

tinguish concurrent paths that may be present with a barrier tree. In our barrier

tree representation the main function entry is indicated by the concatenation (CON-

CAT) as root. All operators are appended by a number which indicates their relative

position of occurrence in the program’s control flow.

66



Listing 5.8: OpenSHMEM example to explain concurrent alternate paths of execu-

tion.

1 int main(){

2 if( ){

3 shmem_barrier_all (); //b1

4 ..

5 shmem_barrier_all (); //b2

6 }

7 else {

8 shmem_barrier_all (); //b3

9 ..

10 }

11 return 0;

12 }

All barriers (barrier all = BA, barrier=B) have independent numbering based on

breadth first traversal ordering. This means that barriers in the if-then branch will

have lower numeric labels than the if-else branch. Other operators are represented

as follows: quantification (QUANT), alternation (ALT), and alternate concurrent

(AltC). For example, the code in Listing 5.8 would evaluate to the barrier expression:

(b1.b2) | b3 and would be represented by our compiler analysis (without multi-value

information) by a barrier-tree in Figure 5.3(a). Purely based on Figure 5.3(a) the

programmer has no way of knowing the different paths of execution that may be

possible. Consider two possible scenarios, if the first if conditional in line 2 resulted

in the same value on all PEs, then all PEs would either encounter barriers b1-b2 or

b3. But if the same conditional resulted in different values on different PEs, then

some PEs would encounter barriers b1-b2 and others would encounter b3, which is a

obvious stall situation caused by un-matched synchronization calls. This is indicated

67



(a) Barrier-tree without multi-valued
analysis

(b) Barrier-tree with multi-valued anal-
ysis

Figure 5.3: Barrier trees generated by OSA for code Listing 5.8

68



by AltC (alternate concurrent) label in Figure 5.3(b). We augment the multi-value

analysis to this providing a more meaningful representation of the program structure.

Figure 5.3(b) depicts the barrier tree for the second scenario discussed above.

5.3.4 Matching Synchronization Structures

Since the synchronization primitives in OpenSHMEM are textually unaligned, we

need to match the different barrier statements to accurately determine the syn-

chronization phases. Correct barrier matching is possible only if the barriers are

well-matched [75]. We check the correctness of the synchronization structure of the

program by applying the semantics of the OpenSHMEM synchronization calls on

the barrier tree, starting with the smallest sub-tree. This is non-trivial for Open-

SHMEM as there are additional considerations for the shmem barrier call; since it

has additional parameters. So for our analysis, not only the number of barrier state-

ments encountered in concurrent alternating paths must match but the sequence of

occurrence of the shmem barrier and shmem barrier all calls must also match. Ad-

ditionally, after the first two requirements are met, we need to match the arguments

of the corresponding shmem barrier calls to positively state that no synchronization

imbalance exists. After verifying that all individual synchronization sub-trees are

well-matched, we can be sure that there is no imbalance due to missing or extra

synchronization call in the application [75].

We move to synchronization or barrier matching after verifying that all syn-

chronization statements encountered on concurrent alternate paths have matching

69



synchronization primitive. At this phase in the analysis, we also generate the syn-

chronization structure of the entire application and with the help of the Graphviz

tool [26], so that the programmer may visually review the application’s synchroniza-

tion structure. Barrier Matching is done by first generating the legal sequences of

barriers by a constraint driven pre-order depth-first-search of the barrier tree based

on the operators discussed above.

Claim 5.1. In the presence of a alternate concurrent path and an absence of

quantification sub-trees, there will be at least two barrier sequences with the same

sequence of barrier statements.

Proof: Since alternate concurrent paths imply that some PEs will execute dif-

ferent set of statements concurrently. For the application to be well matched the

number, sequence and ordering of the barrier statements has to be the same. Since

we have already ensured that the tree is well-balanced and does not have quantifi-

cation sub-trees, there will exist at least two barrier sequences that have the same

order of barrier statements and are of the same length.

We validate the barrier sequences that have at least one other barrier sequence

of the same length and find corresponding barrier statements that occur at the same

position within a sequence. This gives us the matching barriers in the presence

of unaligned barriers in an application. We discuss the algorithm via an example.

Consider the skeleton code in Listing 5.9 and its barrier tree representation depicted

in Figure 5.4.

70



Listing 5.9: Skeleton C code with barrier synchronization calls.

1 main(){

2 if(mv1){

3 b1;

4 b2;

5 }

6 else{

7 if(mv2){

8 b3;

9 b4;

10 }

11 else{

12 b5;

13 b6;

14 }

15 }

16 ...

17 }

Figure 5.4: Barrier Tree for Listing 5.9.

An operator-driven pre-order depth-first-search of the barrier tree will give {

b1.b2, b3.b4, b5.b6 } barrier sequences. By matching the sequences left to right

(increasing order of index), we get the matching barriers set for each barrier. Here b1

71



corresponds to b3 and b5, similarly, b2 corresponds to b4 and b6. For more complex

program flows an additional step for elimination of spurious barrier sequences is

required, which is trivial, since they will not have an exact match and by following

Claim 5.1 we can discard such barrier sequences. Hence the synchronization phases

b1-b2 correspond to b3-b4 and b5-b6. The time complexity of depth first search

without repetition is O(|E|), where E is the number of edges, our analyses adds

additional time based on the number of concurrent branches available. Since all

analyses is done on the data structures that already exist in the compiler’s back end,

we are not adding any extra space overhead.

5.4 Optimizations

The final step in the synchronization analysis is to provide hints to the user about

possible optimizations that they can incorporate in their applications that may pos-

itively affect the performance. At this point potential optimizations are suggested

to the user as HINTS. The final goal is to effect safe transformations without user

intervention. The major optimization classes we see the potential for are; Remove ex-

cessive synchronization, growing synchronization phases, identifying program state-

ments that may be moved without side-effects, collective call decomposition, and

improving communication computation overlap.

72



5.4.1 Excessive Synchronization and Growing Synchroniza-

tion Phases

Often it is observed that completion semantics of one language or library call overlap

or are a subset of another call. For example, in OpenSHMEM the shmem quiet call

is used to guarantee completion of all remote operation and memory stores [54]. This

is a sub-set of the effect achieved by the barrier calls (barrier = quiet + synchronize),

which not only guarantee memory updates across all PEs but also ensure that all PEs

have reached the same point in execution. Hence, we may safely remove shmem quiet

if it is immediately followed by a barrier call as it would be equivalent to (quiet

+ quiet + synchronize), making the shmem quiet redundant. Another common

example of excessive synchronization would be if there is an absence of local or

remote memory update within a phase, here inter-phase optimization is possible.

The OSA tool indicates the trailing barrier and user may re-think the placement of

the trailing barrier to a more appropriate location (where updates are required to be

visible to all PEs). This grows the synchronization phase and eliminates the extra

barrier call.

5.4.2 Collective Call Decomposition

Within a synchronization phase if there are one to many communication calls like

shmem broadcast but the result is used only by one or fewer PEs than those par-

ticipating in the call, it is often a good strategy to replace the collective call by

individual communication calls. For this we also have to ensure that the other PEs

73



do not use the broadcasted value in any later phase without update to it.

5.4.3 Improving Communication-Computation Overlap

The OSA tool can help identify statements within the program that may be moved

without side effects. By initiating communication earlier within a phase and then

following it with local computations, PEs can minimize the effects of communication

latency. The goal of these category of optimizations is to perform communication

in the background while the PE is busy processing data, hence when the PEs are

ready to use the communicated data there is minimal waiting time. By simple

rearrangement of unrelated statements within a synchronization phase we can allow

for maximum communication-computation overlap.

74



Chapter 6

Results

We use the benchmarks/applications described in Table 6.1 to test the synchro-

nization analysis framework we developed with the OSA. The testing methodology

includes comparing the performance of the applications without the optimizations

suggested by the OSA tool and then with the optimizations suggested. We use an

InfiniBand cluster (called Crill [2]) with 16 nodes, with each node containing four

twelve-core Opteron processors with Linux operating system. We present our results

for execution over 128 PEs, keeping in mind the memory limitations imposed by the

hardware. Since the improvement is over the original execution time, similar results

will be realized if the platform or OpenSHMEM implementation is changed. As

expected, not all applications were un-optimized. Table 6.2 shows the performance

gain that was possible by implementing the hints provided by the OSA tool. We

hand verified the synchronization structure of the applications as generated by the

OSA tool. For all the applications tested our framework could positively indicate

75



that the barrier synchronization was well matched.

Benchmark Description

CPI Calculates value of PI

Matrix Multiplication Performs matrix multiplication of two 2-D arrays

2D HEAT 2D heat transfer modeling

DAXPY DAXPY like kernel

HEAT Solving heat conduction task and generate the image
file

SPING Ping-pong test

IS Integer Sort, part of NAS parallel benchmarks

Table 6.1: Benchmarks/ applications used to assess OSA tool

Benchmark OSA Correctly Detects
Synchronization Structure

Performance Gain

Matrix
Multiplication

Yes 33% (excessive
synchronization removal)

2D HEAT Yes 0%

DAXPY Yes 0%

HEAT Yes 20.2% (improving overlap)

SPING Yes 9% (extending
synchronization phase)

IS Yes 5.31% (excessive
synchronization removal)

Table 6.2: Results for Benchmarks used to evaluate OSA tool

We give detailed results for the the Matrix Multiplication application which is

part of the examples in the OpenSHMEM Validation and Verification Suite [58] as the

structures generated for all applications are of similar nature, and hence redundant.

76



The Matrix Multiplication application consists of three 2-D arrays (of doubles) A,

B, and C, where C is used to store the product of two matrices A and B. This program

performs matrix multiplication based on 1D block-column distribution where in every

iteration, every PE calculates the partial result of matrix-matrix multiplication and

communicates the current portion of matrix A to its right neighbor ( my pe() + 1)

and receives the next portion of matrix A from its left neighbor ( my pe() - 1) in a

circular fashion. The main body of the benchmark is as shown in the code Listing 6.1.

Figure 6.1 shows the control flow as captured by our analysis which clearly marks

out the OpenSHMEM calls and their placement. From the control flow analysis of

the compiler, we use the dominator frontier information to extract control dependen-

cies at the statement level. We merge this information with the data flow analysis

(captured by D-U chains) and present it as a system dependence graph in Fig-

ure 6.2.

Here, the control dependencies are represented by light/dashed arrows while the

data dependencies are represented by bold arrows. For conditionals, branches are

marked with either T or F indicating if the branch is taken. This makes understand-

ing the control and data dependence easier for the programmer.

We present the result of our multi-valued analysis by showing the logical slicing

on the system dependence graph based on the PE number (stored in variable rank)

for PE 0 (shown in Figure 6.3).

77



Listing 6.1: Matrix Multiplication application’s main body.

1

2 for (i = 0; i < rows; i++)

3 {

4 for (p = 1; p <= np; p++)

5 {

6 // compute the partial product of c[i][j]

7 ...

8 // send a block of matrix A to the adjacent PE

9 shmem_barrier_all ();

10 if (rank == np - 1){

11 shmem_double_put (& a_local[i][0], &tmp_local[i][0], blocksize , 0);

12 shmem_barrier_all ();

13 }

14 else{

15 shmem_double_put (& a_local[i][0], &tmp_local[i][0], blocksize ,

16 rank + 1);

17 shmem_barrier_all ();

18 }

19 ...

20 shmem_barrier_all ();

78



Figure 6.1: Control flow representation with OpenSHMEM calls for Matrix Multi-
plication application.

79



M
A

IN

sta
rt_

pe
s(

0)
ra

nk
=_

m
y_

pe
()

siz
e=

_n
um

_p
es

() np
=s

iz
ebl

oc
ks

iz
e=

CO
LU

M
N

S

B_
m

at
_d

isp
=r

an
k*

bl
oc

ks
iz

e

Sh
m

em
_b

ar
rie

r_
al

l()
fo

r(i
=0

;i<
RO

W
S;

i+
+)

fo
r (

i; 
i <

 R
O

W
S;

 i+
+)

...

if(
ra

nk
 =

= 
0)

re
tu

rn
 (0

)

if 
(ra

nk
 =

= 
np

 - 
1)

sh
m

em
_d

ou
bl

e_
pu

t (
...

)

a_
lo

ca
l[i

][j
]=

i+
1*

j+
1*

ra
nk

+1
b_

lo
ca

l[i
][j

]=
i+

2*
j+

2*
ra

nk
+1

fo
r (

p;
 p

 <
= 

np
; p

++
)

sh
m

em
_b

ar
rie

r(.
.,n

p,
..)

sh
m

em
_b

ar
rie

r(.
., 

np
, .

.)
B_

m
at

_d
isp

 =
 (n

p 
- 1

) *
 b

lo
ck

siz
e

fo
r(j

=0
;j<

bl
oc

ks
iz

e;
j+

+)

a_
lo

ca
l[i

][j
]=

...
b_

lo
ca

l[i
][j

]=
...

c_
lo

ca
l[i

][j
]=

0.
0

fo
r (

k;
 k

 <
 b

lo
ck

siz
e;

 k
++

)
sh

m
em

_B
ar

rie
r_

al
l()

if 
(B

_m
at

_d
isp

 =
= 

0)

fo
r (

j; 
j <

 b
lo

ck
siz

e;
 j+

+)

c_
lo

ca
l[i

][j
] =

 c
_l

oc
al

[i]
[j]

 +
 ..

]
*b

_l
oc

al
[k

 +
 B

_m
at

_d
isp

][j
]

sh
m

em
_d

ou
bl

e_
pu

t(.
..)

T

sh
m

em
_b

ar
rie

r_
al

l()

T
F

sh
m

em
_b

ar
rie

r_
al

l( 
)

F

B_
m

at
_d

isp
 =

 ..

T

B_
m

at
_d

isp
 =

 B
_m

at
_d

isp
 - 

bl
oc

ks
iz

e

F

pr
in

tf 
()

T
T

F

F
ig

u
re

6.
2:

S
y
st

em
d
ep

en
d
en

ce
gr

ap
h

as
ge

n
er

at
ed

b
y

O
S
A

fo
r

M
at

ri
x

M
u
lt

ip
li
ca

ti
on

ap
p
li
ca

ti
on

.

80



ra
nk

=_
m

y_
pe

()

if 
(ra

nk
 =

= 
np

 - 
1)

sh
m

em
_d

ou
bl

e_
pu

t (
...

)

B_
m

at
_d

isp
=r

an
k*

bl
oc

ks
iz

e
a_

lo
ca

l[i
][j

]=
i+

1*
j+

1*
ra

nk
+1

b_
lo

ca
l[i

][j
]=

i+
2*

j+
2*

ra
nk

+1

F

sh
m

em
_b

ar
rie

r_
al

l( 
)

F sh
m

em
_d

ou
bl

e_
pu

t(.
..)

T

sh
m

em
_b

ar
rie

r_
al

l()

T

pr
in

tf 
()

if(
ra

nk
 =

= 
0)

T

sh
m

em
_b

ar
rie

r(.
.,n

p,
..)

T

sh
m

em
_b

ar
rie

r(.
., 

np
, .

.)

F

M
A

IN

sta
rt_

pe
s(

0)
siz

e=
_n

um
_p

es
() np

=s
iz

e

bl
oc

ks
iz

e=
CO

LU
M

N
S

Sh
m

em
_b

ar
rie

r_
al

l()
fo

r(i
=0

;i<
RO

W
S;

i+
+)

fo
r (

i; 
i <

 R
O

W
S;

 i+
+)

...
re

tu
rn

 (0
)

fo
r (

p;
 p

 <
= 

np
; p

++
)

B_
m

at
_d

isp
 =

 (n
p 

- 1
) *

 b
lo

ck
siz

e

fo
r(j

=0
;j<

bl
oc

ks
iz

e;
j+

+)

fo
r (

k;
 k

 <
 b

lo
ck

siz
e;

 k
++

)
sh

m
em

_B
ar

rie
r_

al
l()

if 
(B

_m
at

_d
isp

 =
= 

0)

a_
lo

ca
l[i

][j
]=

...
b_

lo
ca

l[i
][j

]=
...

c_
lo

ca
l[i

][j
]=

0.
0

fo
r (

j; 
j <

 b
lo

ck
siz

e;
 j+

+)
B_

m
at

_d
isp

 =
 ..

T

B_
m

at
_d

isp
 =

 B
_m

at
_d

isp
 - 

bl
oc

ks
iz

e

F

c_
lo

ca
l[i

][j
] =

 c
_l

oc
al

[i]
[j]

 +
 ..

]
*b

_l
oc

al
[k

 +
 B

_m
at

_d
isp

][j
]

F
ig

u
re

6.
3:

S
li
ci

n
g

of
th

e
S
y
st

em
d
ep

en
d
en

ce
gr

ap
h

on
P

E
0

in
d
ic

at
in

g
st

at
em

en
ts

ex
ec

u
te

d
b
y

P
E

0
on

ly
.

81



Figure 6.4: Barrier tree as generated by OSA for Matrix Multiplication application
(Listing 6.1)

The program synchronization structure along with the multi-valued analysis is

captured by the barrier tree generated by OSA in Figure 6.4. The entry into main()

is indicated by operator CONCAT1. We follow the representation discussed in

Table 5.2. The alternate concurrent paths are indicated by the double-circles labeled

AltC4 and AltC5 and the two nested for-loops are represented by QUANT2 and

QUANT3. Since all loops run for the same number of times for all PEs, all PEs

will encounter either BA4 or BA5 an equal number of times. Thus, just by visual

inspection of the barrier tree generated by OSA tool, it is evident that the all PEs will

encounter the same number of barriers. Providing simplistic representation to the

82



application developer makes the process of debugging and verification a trivial task.

Providing useful feedback at compile time becomes more critical when applications

become more complex with numerous branching statements involving multi-valued

conditionals.

83



Chapter 7

Conclusion

The main contribution of this work is to provide an enhanced OpenSHMEM Ana-

lyzer that represents more complex analysis in an easy to understand visual manner

to an OpenSHMEM programmer. We provide a graphical representation of the ap-

plication’s control flow, explicit with the OpenSHMEM calls, for providing detailed

information about the usage and placement of all OpenSHMEM calls used by the

programmer. The barrier tree provides a simplistic representation of the synchro-

nization structure of the application along with information on the different concur-

rent execution paths that exist in the application. This makes discovering potential

errors due to mis-aligned or missing synchronization easier for the OpenSHMEM

programmer. We also pave the way for more complex analysis towards suggesting

optimizations, which needs information like the system dependence graph along with

the multivalued analysis and the synchronization analysis.

84



During the development of this analysis framework, tracking and evaluating pa-

rameters that define an active-set was challenging. From our experience we proposed

an explicit active set handle [57] to the OpenSHMEM community, and is currently

being considered as a valuable extension to the current OpenSHMEM specification.

Explicit active set handles will greatly simplify the analysis resulting in better ac-

curacy of predicting which PEs may take a particular concurrent path making it

possible to provide specialized optimization feedback based on a particular PE or a

group of PEs.

Our current implementation considers shmem barrier and shmem barrier all syn-

chronization calls but can be easily extended to account for other collective calls with

similar completion semantics. As future work, we would like to integrate support

for other OpenSHMEM API that require implicit synchronization and provide useful

optimization hints to the user based on their completion semantics. Another avenue

for research is to use user annotations as hints to the compiler for more accurate

and speedy analysis. User annotations could either be based on the knowledge of

the values of the variables (aiding multi-valued analysis) or of the synchronization

structure (matching barriers).

Currently all optimization possibilities are presented as hints to the programmer,

moving ahead we would like to automate the process such that the compiler performs

transformation of the code without changing the application’s behavior.

85



Bibliography

[1] 2D Heat Transfer using MPI.

[2] Crill cluster system description.

[3] SHMEM API Man Pages.

[4] UPC manual.

[5] OpenSHMEM specification.

[6] A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’98, pages 342–354, New York, NY, USA, 1998. ACM.

[7] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad.
Fast, effective dynamic compilation. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation, PLDI
’96, pages 149–159, New York, NY, USA, 1996. ACM.

[8] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. Technical report, NASA AMES Research
Center, 1995.

[9] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks. Technical report, The
International Journal of Supercomputer Applications, 1991.

[10] B. W. Barrett, J. M. Squyres, and A. Lumsdaine. Implementation of open
mpi on red storm. Technical Report LA-UR-05-8307, Los Alamos National
Laboratory, Los Alamos, New Mexico, USA, October 2005.

86



[11] S. H. Bokhari, B. H. Elton, and D. J. Mavriplis. The Cray MTA and Unstruc-
tured Meshes, 2000.

[12] D. Bonachea. Gasnet specification, v1.1. Technical report, Berkeley, CA, USA,
2002.

[13] R. Brightwell, B. Lawry, A. B. MacCabe, and R. Riesen. Portals 3.0: Protocol
Building Blocks for Low Overhead Communication. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium, IPDPS ’02, page
268, Washington, DC, USA, 2002. IEEE Computer Society.

[14] A. Burns and A. Wellings. Concurrency in Ada. Cambridge University Press,
New York, NY, USA, 1995.

[15] G. Chakrabarti, F. Chow, and P. Llc. Structure Layout Optimizations in the
Open64 Compiler: Design, Implementation, and Measurements, 2008.

[16] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the
Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–312, Aug.
2007.

[17] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D.
Weathersby. Zpl: A machine independent programming language for parallel
computers. IEEE Transactions on Software Engineering, 26:2000, 2000.

[18] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS community. In
Proceedings of the Fourth Conference on Partitioned Global Address Space Pro-
gramming Model, PGAS ’10, pages 2:1–2:3, New York, NY, USA, 2010. ACM.

[19] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Mem-
ory Parallel Programming (Scientific and Engineering Computation). The MIT
Press, 2007.

[20] B. M. Chapman, D. Eachempati, and O. Hernandez. Experiences Developing
the OpenUH Compiler and Runtime Infrastructure. volume 41, pages 825–854,
2013.

[21] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. SIGPLAN Not., 40(10):519–538, Oct. 2005.

87



[22] W.-Y. Chen, C. Iancu, and K. A. Yelick. Communication optimizations for
fine-grained upc applications. In IEEE PACT, pages 267–278. IEEE Computer
Society, 2005.

[23] Cray. Chapel language.

[24] J. Dongarra, R. Graybill, W. Harrod, R. Lucas, E. Lusk, P. Luszczek, J. Mcma-
hon, A. Snavely, J. Vetter, K. Yelick, S. Alam, R. Campbell, L. Carrington,
T.-Y. Chen, O. Khalili, J. Meredith, and M. Tikir. Darpa’s {HPCS} program:
History, models, tools, languages. In M. V. Zelkowitz, editor, Advances in COM-
PUTERS High Performance Computing, volume 72 of Advances in Computers,
pages 1 – 100. Elsevier, 2008.

[25] D. Eachempati, H. J. Jun, and B. Chapman. An open-source compiler and
runtime implementation for coarray fortran. In Proceedings of the Fourth Con-
ference on Partitioned Global Address Space Programming Model, PGAS ’10,
pages 13:1–13:8, New York, NY, USA, 2010. ACM.

[26] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. Description,
and L. Technologies. Graphviz: Open Source Graph Drawing Tools. In Lecture
Notes in Computer Science, pages 483–484. Springer-Verlag, 2001.

[27] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, Sept. 1972.

[28] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a
next generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[29] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting the domain-specific
semantics of software libraries, 2004.

[30] O. Hernandez, R. C. Nanjegowda, B. Chapman, V. Bui, and R. Kufrin. Open
source software support for the openmp runtime api for profiling. volume 0,
pages 130–137, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[31] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur, and
J. L. Traeff. The Scalable Process Topology Interface of MPI 2.2. Concurrency
and Computation: Practice and Experience, 23(4):293–310, Aug. 2010.

88



[32] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing using Dependence
Graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation, PLDI ’88, pages 35–46, New York,
NY, USA, 1988. ACM.

[33] C. Iancu, P. Husbands, and P. Hargrove. HUNTing the Overlap. In Proceedings
of the 22nd International Conference on Parallel Architectures and Compilation
Techniques, 0:279–290, 2005.

[34] T. E. Jeremiassen and S. J. Eggers. Static analysis of barrier synchronization
in explicitly parallel programs. In Proceedings of the IFIP WG10.3 Working
Conference on Parallel Architectures and Compilation Techniques, PACT ’94,
pages 171–180, Amsterdam, The Netherlands, The Netherlands, 1994. North-
Holland Publishing Co.

[35] C. Kaiser, C. Pajault, and J.-F. Pradat-Peyre. Modeling Remote Concurrency
with Ada: Case Study of Symmetric Non-deterministic Rendezvous. In Pro-
ceedings of the 12th International Conference on Reliable Software Technologies,
Ada-Europe’07, pages 192–207, Berlin, Heidelberg, 2007. Springer-Verlag.

[36] A. A. Kamil and K. A. Yelick. Concurrency analysis for parallel programs
with textually aligned barriers. Technical Report UCB/EECS-2006-41, EECS
Department, University of California, Berkeley, April 2006.

[37] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In
Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ, 1956.

[38] LBNL and U. Berkeley. Berkeley upc : Unified parallel c.

[39] C. Lin, S. Z. Guyer, and D. Jimenez, November 2001.

[40] Y. Lin. Static nonconcurrency analysis of openmp programs. In Proceedings of
the 2005 and 2006 International Conference on OpenMP Shared Memory Par-
allel Programming, IWOMP’05/IWOMP’06, pages 36–50, Berlin, Heidelberg,
2008. Springer-Verlag.

[41] K. Y. Luigi, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A High-
Performance Java Dialect. In Java for High Performance Network Computing,
Concurrency: Practice and Experience, pages 825–836. John Wiley & Sons Ltd.,
1998.

89



[42] J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

[43] S. A. Markstrum, R. M. Fuhrer, and T. D. Millstein. Towards concurrency
refactoring for x10. In Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’09, pages 303–304,
New York, NY, USA, 2009. ACM.

[44] S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP ’93, pages 129–138, New York, NY, USA, 1993. ACM.

[45] M. Müller. Some simple openmp optimization techniques. In Proceedings of the
International Workshop on OpenMP Applications and Tools: OpenMP Shared
Memory Parallel Programming, WOMPAT ’01, pages 31–39, London, UK, UK,
2001. Springer-Verlag.

[46] S. Muller and S. Chong. Towards a practical secure concurrent language. In
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’12, pages 57–74, New
York, NY, USA, 2012. ACM.

[47] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1996.

[48] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A Portable
”Shared-Memory” Programming Model for Distributed Memory Computers.
In Proceedings of Supercomputing ’94, pages 340–349. IEEE Computer Society
Press, 1994.

[49] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà.
Advances, applications and performance of the global arrays shared memory
programming toolkit. Int. J. High Perform. Comput. Appl., 20(2):203–231, May
2006.

[50] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda. High Performance
Remote Memory Access Communication: The ARMCI Approach. Int. J. High
Perform. Comput. Appl., 20(2):233–253, May 2006.

[51] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIG-
PLAN Fortran Forum, 17(2):1–31.

90



[52] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIG-
PLAN Fortran Forum, 17(2):1–31, Aug. 1998.

[53] U. of Berkeley. Titanium.

[54] OpenSHMEM.org. OpenSHMEM specification 1.0, 2011.

[55] H. Oscar, J. Siddhartha, S. Pophale, P. Stephen, J. Kuehn, and C. Barbara. The
OpenSHMEM Analyzer. In Proceedings of the Sixth Conference on Partitioned
Global Address Space Programming Model, PGAS ’12, 2012.

[56] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data race detection
for distributed memory parallel programs. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’11, pages 51:1–51:12, New York, NY, USA, 2011. ACM.

[57] S. W. Poole, O. Hernandez, and P. Shamis, editors. OpenSHMEM and Re-
lated Technologies. Experiences, Implementations, and Tools - First Workshop,
OpenSHMEM 2014, Annapolis, MD, USA, March 4-6, 2014. Proceedings, vol-
ume 8356 of Lecture Notes in Computer Science. Springer, 2014.

[58] S. Pophale, O. Hernandez, S. Poole, and B. Chapman. Poster: Validation and
Verification Suite for OpenSHMEM. In Proceedings of the Seventh Conference
on Partitioned Global Address Space Programming Model, PGAS ’13, 2013.

[59] S. Pophale, O. Hernandez, S. Poole, and B. Chapman. Static Analyses for Un-
aligned Collective Synchronization Matching for OpenSHMEM. In Proceedings
of the Seventh Conference on Partitioned Global Address Space Programming
Model, PGAS ’13, 2013.

[60] S. Pophale, R. Nanjegowda, T. Curtis, B. Chapman, H. Jin, S. Poole, and
J. Kuehn. OpenSHMEM Performance and Potential: A NPB Experimental
Study. 2012.

[61] S. S. Pophale. SRC: OpenSHMEM library development. In Proceedings of
the International Conference on Supercomputing, ICS ’11, pages 374–374, New
York, NY, USA, 2011. ACM.

[62] C. Rice University. High Performance Fortran Language Specification. SIG-
PLAN Fortran Forum, 12(4):1–86, Dec. 1993.

[63] Y. Saad. Iterative Methods for Sparse Linear Systems: Second Edition. Society
for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 2003.

91



[64] S. Satoh, K. Kusano, and M. Sato. Compiler Optimization Techniques for
OpenMP Programs. volume 9, pages 131–142, Amsterdam, The Netherlands,
The Netherlands, Aug. 2001. IOS Press.

[65] S. S. Shende and A. D. Malony. The tau parallel performance system. Int. J.
High Perform. Comput. Appl., 20(2):287–311, May 2006.

[66] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and P. G.
Bridges. Infiniband scalability in open mpi. In Proceedings of IEEE Parallel
and Distributed Processing Symposium, April 2006.

[67] S. Sinha, M. Harrold, and G. Rothermel. System-dependence-graph-based slic-
ing of programs with arbitrary interprocedural control flow. In Software En-
gineering, 1999. Proceedings of the 1999 International Conference on, pages
432–441, May 1999.

[68] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[69] R. N. Taylor. A general-purpose algorithm for analyzing concurrent programs.
Commun. ACM, 26(5):361–376, May 1983.

[70] UPC Consortium. Upc language specifications, v1.2. Tech Report LBNL-59208,
Lawrence Berkeley National Lab, 2005.

[71] M. Vakilian, S. Negara, S. Tasharofi, and R. E. Johnson. Keshmesh: A tool for
detecting and fixing java concurrency bug patterns. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’11, pages 39–40, New York,
NY, USA, 2011. ACM.

[72] M. Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[73] T. Woodall, R. Graham, R. Castain, D. Daniel, M. Sukalski, G. Fagg, E. Gabriel,
G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay, P. Kambadur,
B. Barrett, and A. Lumsdaine. Open MPI’s TEG point-to-point communi-
cations methodology: Comparison to existing implementations. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, pages 105–111, Budapest,
Hungary, September 2004.

92



[74] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su, A. Kamil, K. Datta,
P. Colella, and T. Wen. Parallel Languages and Compilers: Perspective from the
Titanium Experience. The International Journal of High Performance Comput-
ing Applications, 21:2007, 2007.

[75] Y. Zhang and E. Duesterwald. Barrier Matching for Programs with Textually
Unaligned Barriers. In Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’07, pages 194–204,
New York, NY, USA, 2007. ACM.

[76] Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency Analysis for Shared
Memory Programs with Textually Unaligned Barriers. In V. Adve, M. J.
Garzarán, and P. Petersen, editors, Languages and Compilers for Parallel Com-
puting, pages 95–109. Springer-Verlag, Berlin, Heidelberg, 2008.

93


