
Linear Parameter Varying Control of Uncertain Time-Delay Systems

with Application to Automated Blood Pressure Regulation

by

Shahin Tasoujian

A dissertation submitted to the Department of Mechanical Engineering,

Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mechanical Engineering

Chair of Committee: Karolos M. Grigoriadis, Professor

Co-Chair of Committee: Matthew A. Franchek, Professor

Committee Member: Rose T. Faghih, Assistant Professor

Committee Member: Gangbing Song, Professor

Committee Member: Zheng Chen, Assistant Professor

University of Houston

December 2020



Copyright 2020, Shahin Tasoujian



ACKNOWLEDGMENTS

This dissertation and Ph.D. degree become a reality with many individuals’ support, without

whom I would not have been able to complete this research. I would like to take this opportunity

to extend my sincere thanks to all of them.

First and foremost, I would like to thank my advisors, Professor Karolos Grigoriadis and Professor

Matthew Francheck, for their consistent encouragement, helpful advice, immense knowledge, and

supporting me during my studies at the University of Houston. Both Dr. Grigoriadis and Dr.

Franchek are certainly among the smartest and most knowledgeable people I know. I feel extremely

lucky and grateful to have this amazing opportunity to perform research and complete several

projects under the supervision of such distinguished scholars.

I want to gratefully acknowledge the financial support provided by the National Science Founda-

tion (NSF) during the project and also the collaboration of the Resuscitation Research Laboratory

(Dr. G. Kramer) at the University of Texas Medical Branch, Galveston, Texas, in providing ex-

periment data. Many thanks to the committee members, Dr. Gangbing Song, Dr. Rose Faghih,

and Dr. Zheng Chen, for providing valuable comments that helped to improve the contents of the

dissertation.

I also would like to mention my friend and colleague, Dr. Saeed Salavati, and all my friends,

who have been my second family here in the United States, and this journey would not have been

possible without them.

Finally, I express my deepest and warmest gratitude to my greatest treasure, my mother, father,

and brother, for their continuous and unconditional love. I am forever indebted to them for their

unparalleled support and sacrifices. I dedicate this milestone and all my achievements to my lovely

family for all they have done for me throughout my life.

iii



ABSTRACT

This dissertation examines the problem of real-time estimation and automated control of mean

arterial blood pressure (MAP) response of a critical patient subject to the vasoactive drug infusion

in emergency resuscitation scenarios. The proposed methodologies rely on the wealth of the system

identification and feedback control theory and can provide reliable and efficient patient resuscita-

tion tools via computerized drug administration. Therefore, such advanced resuscitation methods

can reduce emergency care costs and significantly increase the survival chances by improving the

patient’s MAP regulation in an intensive care unit. In order to derive an appropriate mathematical

description, a dynamic first-order linear time-varying model structure with varying parameters and

time delay is employed to characterize the patient’s complex physiological MAP response dynamics.

In the first part of the dissertation, real-time estimation of the varying model parameters and delay

is performed via a Bayesian-based multiple-model square-root cubature Kalman filtering (MMSR-

CKF) approach. The estimation results substantiate the effectiveness of the utilized identification

method using experimental data. Next, two classical frequency-domain control design methods,

namely, IMC-PID and parameter-varying loop-shaping approaches, are proposed and implemented

to achieve desired MAP regulation in various simulation scenarios.

The second part of the dissertation is devoted to the analysis and control synthesis of time-

delayed linear parameter-varying (LPV) systems with norm-bounded parametric and/or time-delay

uncertainties. LPV time-delay systems are linear dynamical systems whose dynamic characteristics

rely on a measurable scheduling parameter vector, where the scheduling parameter vector is used

systematically to capture the dynamics of time-varying and nonlinear systems. In order to reduce

the design conservatism and handle the varying delay uncertainties, a Lyapunov-Krasovskii based

approach is exercised, and by utilizing an improved parameter-dependent Lyapunov Krasovskii func-

tional (LKF) candidate and applying an efficient cross-term bounding technique, the affine Jensen’s

inequality, sufficient stability and performance conditions are derived and formulated in terms of con-

vex linear matrix inequality (LMI) framework. The final relaxed synthesis conditions are obtained

to design a robust delay-dependent gain-scheduled controller which guarantees closed-loop stability

and minimizes disturbance amplification in terms of the induced L2-norm performance specification.

The effectiveness of the proposed control design algorithms is assessed through the automated MAP
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regulation task, and the results are compared with the conventional control approaches in the liter-

ature. The final closed-loop simulation results confirm the potential and superiority of the adopted

LPV methodologies.
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1 Introduction

1.1 Automated Blood Pressure Regulation in Critical Patient Resuscita-

tion

The human body has inherent feedback loops to maintain homeostasis, including the blood

pressure regulation that may fail to perform properly under severe trauma, disease, or due to the

administration of certain drugs. For this purpose, mean arterial blood pressure (MAP) regula-

tion to the desired target value via administration of vasopressor drugs is essential in hypotensive

critical emergency-care situations, such as resuscitation of patients with severe hemorrhage, septic

shock, maternal cesarean hypotension treatment, and traumatic brain injury. The precise dosage of

the administered vasopressor drug is essential to accomplish fast resuscitation and reliable manual

MAP recovery, and therefore, sustain perfusions of vital organs without overdosing. Typically, in

clinical care, MAP control and regulation procedures are carried out manually using a syringe or

an infusion pump with a manual titration by the medical personnel. In these cases, drug delivery

and adjustment may not be precisely managed, leading to undesirable or potentially fatal conse-

quences, such as increased cardiac workload and cardiac arrest. Moreover, such drug administration

methods are time-consuming and labor-intensive. Furthermore, inaccurate operator monitoring can

lead to under-or over-resuscitation with potentially dangerous outcomes [39, 53]. Accordingly, the

automation of the vasoactive drug infusion via feedback control has been proposed as a potential

remedy to tackle the mentioned challenges of the manual drug administration [8]. To address the

automated MAP regulation problem, several control design approaches including fractional-order

proportional-integral (PI) and proportional-integral-derivative (PID) controls [86,95], nonlinear PID

digital control [83], adaptive predictive control [31,38], robust multiple-model adaptive control [57],

switching robust control [1], reinforcement learning [75], and more recently PID and loop-shaping

control methods [91] have been considered.

In the first part of the dissertation, we address the computational modeling and online parame-

ter estimation of the blood pressure response characteristics under vasoactive drug administration.
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The second part will focus on the controller design methods for regulating MAP in hypotensive

emergency-care situations.

1.1.1 MAP Response Dynamics

Mainly, two types of vasoactive drugs are being used to attain a target MAP in emergency

resuscitation: (1) vasodilator drugs which decrease the MAP to a target value, like sodium nitro-

prusside (SNP) that reduces the tension in the blood vessel walls [33], and (2) vasopressor drugs

which increase the MAP to a target value, like phenylephrine (PHP) that stimulates the depressed

cardiovascular system and causes vasoconstriction [63]. In this dissertation, in line with the previous

work in the literature (see [17, 53, 75, 91, 92]), a first-order model with a time delay is considered to

characterize the patient’s MAP response to the infusion of a vasoactive drug, such as PHP:

T (t) · ˙∆MAP (t) + ∆MAP (t) = K(t) · u(t− τ(t)), (1)

where ∆MAP (t) stands for the MAP changes in mmHg from its baseline value, i.e., ∆MAP (t) =

MAP (t)−MAPb(t), u(t) is the drug injection rate in ml/h, K(t) denotes the patient’s sensitivity to

the administered drug, T (t) is the lag time describing the uptake, distribution and bio-transformation

of the drug [35], and τ(t) is the time delay for the drug to reach the circulatory system from the

injection site. The selected model structure seems to adequately describe a patient’s physiological

response to the PHP drug injection. Figure 1 presents a typical MAP response due to a step PHP

infusion versus a matched response of (1). This figure also illustrates the interpretation of the model

parameters K(t), T (t), τ(t), MAPb(t) which have been obtained to fit the MAP response using a

least-squares optimization method. Data is collected from experiments on swine performed at the

Resuscitation Research Laboratory at the University of Texas Medical Branch (UTMB), Galveston,

Texas [53].

2



Figure 1: Typical MAP response to a step vasopressor drug infusion

Although the model (1) is qualitatively able to represent the characteristics of the MAP response,

model parameters vary considerably over time due to the variability of patients’ pharmacological

state under the vasoactive drug infusion. That is, the model parameters and delay could vary

significantly from patient-to-patient (inter-patient variability), as well as, for a patient over time

(intra-patient variability) [35,70].

For simulation purposes and in order to validate the proposed parameter estimation and control

design algorithms in the dissertation, a patient simulation model is developed, where the instanta-

neous values of model parameters can be approximated as nonlinear functions of the drug injection

rate. Model dynamics (1) with time-varying model parameters will address the patient’s varying

physiological response. Based on clinical observations, the model parameters are modeled as follows:

• Sensitivity, K(t): In order to describe the time variation of the patient’s sensitivity to the

injected PHP drug, a simplified nonlinear model has been considered, which represent the

dose response characteristic of PHP [21,26]. Moreover, experiments have confirmed a regressive

nonlinear relationship between the vasoactive drug injection and the MAP response through
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which the patient’s sensitivity will decrease while having an ongoing vasoactive drug injection.

Such a trend can be captured by the following nonlinear model

akK̇(t) +K(t) = k0exp{−k1U (t)}, (2)

where U (t) denotes the injection rate in mm/h and ak, k0, and k1 are uniformly distributed

random coefficients based on Table 1 [21, 26]. For instance, a non-responsive patient to the

injected vasoactive drug can be characterized by a low k0 and a high k1.

Table 1: Probabilistic distribution of patient model coefficients

Parameter Distribution

ak U(500, 600)

k0 U(0.1, 1)

k1 U(0.002, 0.007)

bT U(10−4, 3× 10−4)

aτ,1 U(5, 15)

aτ,2 U(5, 15)

bτ,1 U(80, 120)

• Lag time, T (t): To characterize the variation of the drug distribution time, a saturation effect

is assumed as follows:

T (t) = sat [Tmin,Tmax] {bT
∫ t

0

U (t) dt}, (3)

where bT is a uniformly distributed random variable representing the inclination of the increase.

Based on experiments, lag time parameter typically increases gradually proportional to the

injected drug.

• Injection delay, τ(t): Based on the clinical observations, the delay value has a sharp peak

shortly after the drug injection starts but decreases with further injections. The following
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model is used to describe the time-varying behavior of delay parameter:


aτ,2

...
τ (t) + aτ,1τ̈(t) + τ̇(t) = bτ,1U̇ (t) + U (t), t ≥ t0,

τ(t) = 0, otherwise,

(4)

where the saturation should be imposed on the delay value, i.e., sat[τmin,τmax] τ and the uni-

formly distributed random variables aτ,2, aτ,1, and bτ,1 are listed in Table 1.

1.2 LPV Time-Delay Systems

Time-delay is ubiquitously encountered in numerous engineering systems due to measurement,

transmission, computational delays, or unmodeled inertias of system components. In the context

of feedback systems, time-delay or dead-time refers to the time that it takes for the closed-loop

system to receive the required information, to make and execute control decisions, and to generate

the control action [28]. Time delays can be constant or time-varying, point-wise or distributed,

deterministic or stochastic [60]. In control systems, delay systems represent a class of infinite-

dimensional systems, where the mathematical representation of such systems is given by infinite-

dimensional functional differential equations (FDEs), as opposed to finite-dimensional systems with

ordinary differential equations (ODEs). Moreover, time-delay is deemed as a source of instability

and performance degradation, which complicate the controller design process. Time-delay induces a

phase lag which generates oscillatory behavior, diminishes the stability margin of a control system,

and limits the achievable bandwidth [2]. Some examples of extensively examined time-delay systems

include automotive systems [89], communication systems [46], robotics [18], biomedical systems [91],

network control systems [99], smart materials [55], and manufacturing and chemical processes [13].

Stability analysis and control design for time-delay systems have been broadly investigated using

either frequency-domain or time-domain approaches. For instance, authors in [59, 66] used Smith

predictor as a delay compensator for systems with a constant time delay that can be measured

or estimated precisely. However, such predictors include additional unstable hidden modes, and

also the utilized frequency-domain method is not applicable to the time-varying delay case. Anther
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indirect approach confronting systems with delay is to utilize methods, such as Padé approximation

to approximate the infinite-dimensional time delay system by a rational finite-dimensional model to

be able to take the advantages of the rich linear control design methodologies [24,25].

Time delay systems cannot be treated properly and efficiently using conventional control design

methods, such as Laplace domain-based methods since the corresponding transfer function of the

time-delay system is not rational. In this regard, stability analysis and designing stabilizing con-

trollers for time-delay systems have been divided into two main directions, namely, delay-independent

and delay-dependent criteria [28]. The results obtained from delay-independent methods are very

conservative since they must provide guarantees for all non-negative and finite time-delay values.

Unlike the former direction, delay-dependent techniques take the size of delay into consideration and

result in less conservative results. Indeed, approaches based on delay-dependent criteria result in

less conservative conditions, ensuring the stability and the prescribed performance level of a delayed

system with delay values smaller than a considered bound. Generally, in delay-dependent meth-

ods, Lyapunov theory is extended to either the Krasovskii method of Lyapunov functionals [40] or

Razumnikhin theory of Lyapunov functions [36]. The former direction relies on using Lyapunov-

Krasovskii functionals (LKFs) for accounting for the infinite-dimensionality of the system state in

the time-delay systems and usually leads to less conservative results.

Linear parameter-varying (LPV) systems are linear dynamical systems whose dynamic charac-

teristics depend on a time-varying measurable scheduling parameter vector. In this context of the

LPV systems framework, the scheduling parameter vector captures the dynamics of nonlinear or

time-varying systems in a systematic fashion [15] and has found applications in flight control [52],

automotive systems [73,89], energy [11], electromechanical [45], and biomedical systems [20,91]. Tra-

ditional gain-scheduling controllers are designed by interpolation of separately designed controllers

for the system’s operation points. Such design methods suffer from implementation difficulties and

lack of closed-loop stability and performance guarantees [10,78]. In order to tackle these challenges,

the LPV gain-scheduling control approach was introduced to provide a direct, efficient, simple-to-

implement, and systematic design process to meet closed-loop stability and performance of nonlinear
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and time-varying systems [77].

Motivated by LPV methodology, the mentioned delay-independent and delay-dependent ap-

proaches have also been developed for the stability analysis and control synthesis of time-delay

LPV systems [15, 60, 73, 90, 92]. The mean-square stability of stochastic LPV systems with delayed

measurements has been studied in [103]. The authors in [97], derived delay-dependent sufficient

conditions for the closed-loop stabilization of LPV systems with an input delay. In another work, a

robust static gain-scheduled controller design for discrete-time polytopic LPV systems with a state

delay has been formulated in a delay-independent matrix inequality framework [72]. Dilated delay-

dependent linear matrix inequalities (LMIs) for the control of state-delay polytopic LPV systems

have been addressed in [62]. In this work, the coupling between controller matrices and Lyapunov

matrix functions has been avoided, and a gain-scheduled dynamic output-feedback controller with

memory has been designed to reject disturbances.

1.3 Outline of the Dissertation

The results presented in this dissertation either have been published or are under review for

publication [89–93]. In this dissertation, we study the analysis and controller synthesis of time-delay

systems. Furthermore, a robust control design for a class of LPV systems with parametric and

delay uncertainties will be addressed. As a practical, real-life application, we assess the potential of

the proposed estimation and control design strategies in the automated MAP regulation problem.

Chapter 1 gives the background, main motivations, and design objectives behind the considered

patient resuscitation task. Mathematical modeling is discussed, and the patient’s MAP response

dynamics subject to vasoactive drug administration are characterized by a dynamic first-order linear

time-varying model with adjustable, varying parameters and input delay. Such a dynamic model

can effectively address the complexity and the intra- and inter-patient variability of the physiological

response to vasoactive drugs.

In chapter 2, real-time dynamics identification of a patient’s MAP response to vasoactive drug
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infusion is studied. A Bayesian-based multiple-model square root cubature Kalman filtering (MM-

SRCKF) approach is utilized for the real-time estimation of the model’s time-varying parameters.

Validation results are proved to confirm the effectiveness of the developed identification algorithm

both in simulation scenarios and using experiment data.

Chapter 3 introduces robust IMC-PID and parameter-varying loop-shaping as simple-to-implement

frequency-domain-based control design approaches for automatically regulating blood pressure in

critical hypotensive patients via vasopressor drug administration. The considered MAP response dy-

namics model includes a time-varying delay in the control input, which restricts the implementation

of conventional control techniques. The proposed methods are examined to address the variability

and the time-varying delay of the physiological response to the drug. First, a Padé approximation is

used to transform the infinite-dimensional delay problem into a finite-dimensional model represented

in the form of a non-minimum phase (NMP) system. A systematic parameter-varying loop-shaping

control is proposed to provide the closed-loop system with stability and tracking performance in the

presence of measurement noise and disturbances. Second, an internal model control (IMC) strategy

is examined to design a fixed PID controller cascaded with a lag compensator by considering the

time-varying model to be an uncertain perturbed system. The small-gain theorem has been em-

ployed to investigate the robust stability and account for system uncertainty. The proposed control

methods are applied to critical hypotensive patient resuscitation to regulate MAP while considering

the limitations posed by the time-varying parameters of the physiological response model and the

large time-varying delay.

Chapter 4 details the development of robust delay-dependent gain-scheduling feedback control

laws with guaranteed closed-loop stability and induced L2 norm performance for continuous-time

LPV systems with arbitrary time-varying delay in the presence of parametric or time-delay uncer-

tainties. An extension of Lyapunov stability utilizing Krasovskii functionals is considered to derive

stability analysis and synthesis conditions for delay-dependent dynamic output feedback LPV control

design. The main challenges associated with this approach are selecting appropriate LKFs and find-

ing efficient integral inequalities to bound the derivative of the LKF. Accordingly, a novel modified
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parameter-dependent LKF candidate along with an affine version of Jensen’s inequality bounding

technique are employed leading to the derivation of less conservative sufficient conditions expressed

in terms of convex LMI optimization problems to be solved using efficient interior-point solvers. The

proposed methodology is compared with past work in the literature in terms of conservatism reduc-

tion and performance improvement through a numerical example. Moreover, the stability analysis

and control of LPV systems with varying uncertain delay is examined in this chapter. To this end,

the time-delay LPV system is described in an input-output representation, and the scaled small-gain

theorem is employed to analyze the varying delay in a less conservative approach. The proposed

results are then utilized in the automated MAP regulation in the clinical resuscitation of patients

sustaining hypotension. In order to conduct simulations, nonlinear model parameter generators are

cascaded with the estimators, and closed-loop experiments confirm the proposed LPV control design

benefits and efficacy.

Finally, chapter 5 concludes the dissertation by summarizing the present work’s essential contri-

butions and providing remarks about future research directions.

1.4 Notation

The notation used in the dissertation is standard and as follows. Throughout the dissertation

Rn stands for the n-dimensional Euclidean space, Rk×m is the set of real k ×m matrices, and R+

denotes the set of non-negative real numbers. Sn and Sn++ represent the set of real symmetric and

real symmetric positive definite n × n matrices, respectively. M � 0 and M � 0 (M ≺ 0 and

M � 0) denote the positive (negative) definiteness and semi-definiteness of the matrix M. The

inverse and transpose of a real matrix M are presented by MT and M−1, respectively. He[M] is

Hermitian operator defined as He[M] , M + MT. In a symmetric matrix, terms denoted by an

asterisk, ?, will be induced by symmetry as shown below:

 S +W + J + (?) ?

Q R

 :=

 S +W +WT + J + JT QT

Q R
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where S is symmetric. C(J, K) stands for the set of continuous functions mapping a set J to a set K.

Notation L2 stands for the space of square integrable functions f : [0,∞] → Rn with the L2-norm

||f ||L2
= {fT(t)f(t)dt}1/2, where f(t) is a vector valued function. ||f(t)||L2

is also considered as the

energy of f(t). Moreover, t denotes the continuous-time domain, and k stands for the discrete-time

variable. For a stochastic variable, xk, E [xk] denotes its expected value, and N {xk; x̂k|k,Pk|k}

represents a normal Gaussian probability distribution with the mean of x̂k|k and the covariance of

Pk|k.
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2 Real-Time Bayesian Parameter Estimation of Blood Pres-

sure Response Characteristics

The following chapter first appeared in the proceedings of American Control Conference (ACC),

2020, pp. 3355-3362.

Title: Real-Time Cubature Kalman Filter Parameter Estimation of Blood Pressure Response Char-

acteristics Under Vasoactive Drugs Administration

Authors: Shahin Tasoujian, Saeed Salavati, Karolos Grigoriadis, Matthew Franchek.

Reproduced in part with permission from IEEE American Control Conference Copyright 2020.

2.1 Introduction and Literature Review

There are multiple approaches to address the estimation of dynamical system parameters. Ex-

tended Kalman filtering (EKF) is one of the widely used methods [53]. However, it is only applicable

to systems with mild nonlinearities, and it requires the Jacobian matrix computation. Moreover,

numerical errors due to truncation and convergence problems are likely in EKF, and other local

approximation based estimators [5]. In an alternative approach, known as the sampling method, the

nonlinear representation of a system is used to estimate the parameters via a filter such as the un-

scented Kalman filter (UKF), which leads to more accurate estimation. In UKF, a set of weighted

sampling points propagates via the nonlinear function of the system. However, for higher-order

systems, UKF is prone to numerical instability since the weights of the sigma points may become

negative [104]. Another sampling method is particle filtering (PF), which is an iterative Monte Carlo

based method to compute the posterior probability distribution of the state of a nonlinear system

even with non-Gaussian noise. PF requires a broad set of randomly generated particles to approx-

imate the posterior probability density function. Under an increase in the number of iterations,

PF encounters particle degradation and depletion. In order to overcome such issues, the authors

in [5] have proposed a Bayesian filtering framework known as cubature Kalman filtering (CKF). The

sample points in the CKF algorithm propagate via equally valued cubature points, which are twice
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the size of the system nonlinear function. It uses a spherical-radial cubature rule to generate the

weighted sum of sampling points to approximate the integrals in Bayesian estimation. CKF demon-

strates better nonlinear performance, stability, and accuracy compared to EKF, PF, and UKF [104].

Similar to the EKF, the computational complexity of the CKF algorithm grows as n3, where n is

the dimension of the system state vector.

Traditional parameter estimation methods, such as the recursive least-squares algorithm and

instrumental-variable approach, have been examined for real-time parameter estimation problems in

biomedical applications [6, 49, 70]. Specifically, variance models have been proposed to characterize

the mean arterial blood pressure (MAP) response of patients to drug infusion [8,21]. However, these

methods fail to sufficiently address the pharmacological variability challenge and often suffer from a

slow convergence rate. In [29], the authors have used a first-order model with delayed measurements

to describe the MAP dynamics in response to hypotensive drugs. They have pre-identified the

parameters using dose-response characteristics induced by a rectangular test signal while avoiding

any adverse effect on the patient. If the identified parameters are not within the prescribed bounds,

then the experiment will be repeated. Nonetheless, in the case of outlying identification results, the

worst-case parameters are used. The output is filtered by a constant filter, which has been derived

using trial and error. The delay is determined via the response settling characteristics. In another

work, a generalized fuzzy neural network framework has been studied to estimate and control MAP

dynamics in response to vasodilator drugs [30]. The parameters have been assumed to be nonlinear

functions of the measured MAP. This method requires a training dataset and an effective learning

algorithm for the artificial scheme. Moreover, overparameterization and the determination of the

number of perceptrons remain as other obstacles.

Based on the time delay model introduced in [84], the authors in [106] have proposed discrete-

time parameters update laws. However, the procedure of the parameters identification of the original

model has not been addressed. A bank of Kalman filters (KFs) augmented with a posterior proba-

bility estimator to match a candidate model to that of the patient has been designed in [57]. Each

KF is responsible for generating the state vector updates for the next step, and the Kalman gain
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is assumed to be generated a priori. Then, by calculating the residual of the actual and generated

output, the state vector is updated accordingly. In order to capture the varying time delay, which

a conventional KF is not capable of, the multiple-model (MM) approach has been adopted through

which five equally spaced delay blocks from 10s to 50s, each is considered to be cascaded with the

same bank of KFs. The recursive posterior probability estimation is calculated for each residual

to update the input with the most likely delay. In a similar approach, [23] has examined KF to

estimate the MAP dynamics parameters in hypertension. In this work, authors have utilized the

model introduced first in [84]. They have discretized and transformed the infinite-dimensional model

into a linear one that accommodates an input with three backward steps. Then, the parameters are

gathered in a vector that is updated through the KF approach. However, it should be noted that

the conventional KF algorithm’s convergence can only be guaranteed in an ideal linear-Gaussian

environment. Reference [56] has addressed the marginalized PF design to estimate the model pa-

rameters in the case of hypertension under SNP administration. The method allows considering

linear and nonlinear states to be estimated separately to reduce the computational burden.

In more recent work, [54] utilized EKF for the real-time estimation of the MAP response model

parameters. Although this approach can provide real-time parameter identification of a patient’s

MAP response dynamics, the estimation can be inaccurate when the response is away from the

equilibrium point since EKF relies on local linearization [81]. Moreover, the utilized parameter

identification approach is not capable of providing a consistent estimate of the time-lag parameter of

the LPV model. Thus, to overcome the previously utilized estimation methods’ inherent limitations,

we propose a multiple-model square-root cubature Kalman filter (MMSRCKF) as a real-time model

parameter and time-delay estimation method of the MAP response dynamics. MMSRCKF is a

Bayesian filtering approach that can precisely estimate the model parameters and addresses the

stochasticity in the nonlinear model without a need for linearization. Contributions of this chapter

are as follows: MMSRCKF is proposed to estimate the nonlinear MAP response model parameters

effectively. In the case of hypotension, the patient’s MAP response dynamic under a vasopressor

drug injection is described by a time-varying model with a varying input delay. These varying
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quantities are augmented in a vector whose instantaneous values are estimated via MMSRCKF.

The multiple-model part addresses the hypothesis testing and the estimation of the input delay.

The square root (SR) algorithm employs the Cholesky factorization of the error covariance matrix

to guarantee its positive definiteness during numerical operations [22]. For the verification of the

proposed method, data from animal experiments is collected at the University of Texas, Medical

Branch (UTMB) at Galveston. The estimation results are compared to that of MMEKF reported

in [53].

2.2 Estimation Preliminaries and Methodology

In this section, a derivative-free online sequential state estimator known as the square root

CKF (SRCKF) algorithm is formulated for a general nonlinear discrete-time stochastic system.

Subsequently, the multiple-model approach is formulated and coupled with the introduced SRCKF

algorithm for the time-delay estimation of a system with an input delay.

2.2.1 SRCKF Algorithm

The Bayesian-based CKF scheme aims at estimating the states of a dynamical system using a

probabilistic framework [5]. The original CKF state estimation process is susceptible to numerical

problems such as indefinite error covariance matrix, divergence phenomenon, and filter instability. To

tackle these obstacles, CKF is enhanced with the square root computation, i.e., the covariance matrix

is decomposed using a factorization method, such as the Cholesky factorization to guarantee positive

definiteness within numerical operations [50]. The resulting square roots of the error covariance

matrices propagate through the sequential state estimation process. Next, the third-degree spherical-

radial rule is used to approximate the multidimensional integrals involved in the Bayesian filtering

[37].
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Consider a general nonlinear discrete-time stochastic system

 xk+1 = f(xk,uk) + wk,

yk = h(xk,uk) + vk, k = 0, 1, . . . , kf ,
(5)

where xk ∈ Rn stands for the unmeasured state vector of the system, uk ∈ Rnu is the input

vector, and yk ∈ Rny is the measurement vector at the time k, and kf is the final time. f(xk,uk) :

(Rn,Rnu) 7→ Rn and h(xk,uk) : (Rn,Rnu) 7→ Rny are known general nonlinear vector mappings, and

wk ∈ Rn and vk ∈ Rny are statistically independent zero-mean Gaussian process and measurement

noise signals, respectively. The probability distribution functions (PDFs) of the noise vectors, namely

p(wk) and p(vk) are known, as well as, the initial state vector PDF, i.e., p(x0).

SRCKF seeks to find the estimation of the state vector in the form of a conditional PDF,

p(xk|yk), that has the entire knowledge about the current state vector, xk, given the entire mea-

surement vectors sequence, i.e., yk = [ y0 y1 . . . yk ]. However, in some cases, a Gaussian

approximation of the conditional PDF allows to only compute the first two conditional moments,

i.e., the mean x̂k|k = E [xk|yk] and the error covariance matrix Pk|k = cov[xk|yk] which results in

p(xk|yk) ≈ N {xk; x̂k|k,Pk|k}. By assuming Gaussian white noise vectors, the prediction step (state

prediction) and correction step (measurement update) are carried out via integrating a nonlinear

function concerning a normal distribution, i.e.,

x̂k+1|k = E [xk+1|yk] =

∫
Rn

f(xk,uk)p(xk|yk)dxk ≈
∫
Rn

f(xk,uk)N {xk; x̂k|k,Pk|k}dxk, (6)

and

ŷk+1|k = E [yk+1|xk+1] =

∫
Rn

h(xk+1,uk+1)p(yk+1|xk+1)dxk+1

≈
∫
Rn

h(xk+1,uk+1)N {xk+1; x̂k+1|k,Pk+1|k}dxk+1. (7)

The third-degree spherical-radial rule is utilized to compute the numerical approximation of the

moment integrals (6) and (7). Next, for an arbitrary function g(x) with Σ as the covariance of x,
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the integral

I(g) =
√

2π|Σ|− 1
2

∫
Rn
g(x)exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
dx, (8)

in the spherical coordinate system becomes

I(g) = (2π)−
n
2

∫ ∞
r=0

∫
Un
g(Crz + µ)dz rn−1e−

r2

2 dr, (9)

where x = Crz + µ with ‖z‖ = 1, µ is the mean and C is the Cholesky factor of the covariance,

Σ, and Un is the unit sphere. Then, we used the symmetric spherical cubature rule to further

approximate the integral as

I(g) ≈ 1

2n

2n∑
i=0

g(
√
n(Cξi + µ)), (10)

where ξi denotes the ith cubature point at the intersection of the unit sphere and its axes. The main

benefit of this scheme is that the cubature points are obtained off-line using a third-degree cubature

rule [48]. We follow the steps introduced next to compute the estimation of the state vector via the

SRCKF algorithm:

1. Initialization: The state initial condition is given by x0|0 ≡ x0 with x̂0 = E [x0] where the

initial covariance matrix is P0|0. We decompose it as P0|0 = S0|0S
T
0|0 through the Cholesky

factorization, i.e.,

S0|0 = chol{[x0 − x̂0][x0 − x̂0]T}.

Then, generate the cubature points, ξi, for the initial state vector and the fixed weights,

wi = w =
1

2n
, for i = 1, 2, . . . , 2n.

2. Time update (Prediction) (k = 1, 2, . . . , kf ):

a) Evaluation of the cubature points

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1. (11)
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b) Evaluation of the propagated cubature points via the system dynamics

X∗i,k|k−1 = fk(Xi,k−1|k−1,uk−1). (12)

c) Evaluation of the predicted states based on the generated weights and propagated points

x̂k|k−1 =

2n∑
i=1

wiX
∗
i,k|k−1. (13)

d) Evaluation of the square root of the covariance matrix of the predicted state error covariance

Sk|k−1 = triangle
{

[χ∗k|k−1,SQk−1
]
}
, (14)

where χ∗k|k−1 is a centered weighted matrix, i.e.,

χ∗k|k−1 =
1√
2n

[X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1 · · · X∗2n,k|k−1 − x̂k|k−1 ], (15)

and SQk−1
is the square-root of the the process noise such that Qk−1 = SQk−1

ST
Qk−1

. Moreover,

B = triangle{A} stands for a general triangularization algorithm, e.g. QR decomposition,

where B is a lower triangular matrix. If C is an upper triangular matrix obtained through the

QR decomposition of AT, then the lower triangular matrix is given by B = CT.

3. Measurement update (Correction) (k = 1, 2, . . . , kf ):

a) Evaluation of the cubature points using the predicted square root matrix, Sk|k−1,

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1. (16)

b) Evaluation of the propagated cubature point via the output dynamics

Yi,k|k−1 = h(Xi,k|k−1,uk). (17)
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c) Estimation of the predicted measurement vector

ŷk|k−1 =

2n∑
i=1

wiYi,k|k−1. (18)

d) Evaluation of the square root of the innovation covariance matrix

Syy,k|k−1 = triangle
{

[Yk|k−1,SRk
]
}
, (19)

where Yk|k−1 is a centered weighted matrix, i.e.,

Yk|k−1 =
1√
2n

[Y1,k|k−1 − ŷk|k−1 Y2,k|k−1 − ŷk|k−1 · · · Y2n,k|k−1 − ŷk|k−1 ]. (20)

SRk
is also the square-root of the the measurement noise such that Rk = SRk

ST
Rk

.

e) Evaluation of the cross-covariance matrix

Pxy,k|k−1 = χk|k−1Y
T
k|k−1, (21)

with the centered weighted matrix χk|k−1 given by

χk|k−1 =
1√
2n

[X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 · · · X2n,k|k−1 − x̂k|k−1 ]. (22)

f) Evaluation of the SRCKF filter gain

Wk = Pxy,k|k−1S
−T
yy,k|k−1S

−1
yy,k|k−1. (23)

g) Evaluation of the corrected state update based on the measurement

x̂k|k = x̂k|k−1 + Wk(yk − ŷk|k−1). (24)
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h) Evaluation of the square-root of the corrected error covariance matrix

Sk|k = triangle
{

[χk|k−1 −WkYk|k−1,WkSRk
]
}
. (25)

The state estimation process continues iteratively from the second step of the algorithm, i.e., the

time update (prediction) by setting k = k + 1. The flowchart depicting the SRCKF algorithm is

shown in Fig. 2.
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Start

x̂0 = E [x0], P0|0 = S0|0S
T
0|0, wi =

1

2n
, ξi, i = 1, 2, . . . , 2n

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1

X∗
i,k|k−1

= fk(Xi,k−1|k−1,uk−1)

x̂k|k−1 =
2n∑
i=1

wiX
∗
i,k|k−1

χ∗
k|k−1

=
1
√
2n

[ X∗
1,k|k−1

− x̂k|k−1 X∗
2,k|k−1

− x̂k|k−1 · · ·X∗2n,k|k−1
− x̂k|k−1 ]

Sk|k−1 = triangle
{
[ χ∗

k|k−1
SQk−1

]
}

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1

Yi,k|k−1 = h(Xi,k|k−1,uk)

ŷk|k−1 =
2n∑
i=1

wiYi,k|k−1

Yk|k−1 =
1
√
2n

[ Y1,k|k−1 − ŷk|k−1 Y2,k|k−1 − ŷk|k−1 · · ·Y2n,k|k−1 − ŷk|k−1 ]

Syy,k|k−1 = triangle
{
[ Yk|k−1 SRk

]
}

χk|k−1 =
1
√
2n

[ X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 · · ·X2n,k|k−1 − x̂k|k−1 ]

Pxy,k|k−1 = χk|k−1Y
T
k|k−1

Wk = Pxy,k|k−1S
−T
yy,k|k−1

S−1
yy,k|k−1

x̂k|k = x̂k|k−1 +Wk(yk − ŷk|k−1)

Sk|k = triangle
{
[ χk|k−1 −WkYk|k−1 WkSRk

]
}

k + 1 Existsk = k + 1

Return

False

True

Figure 2: Flowchart of SRCKF algorithm
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2.2.2 Multiple-Model SRCKF for Input Delay Estimation

Time delay estimation introduces a challenge in the parameter identification framework since the

variable delay is not transformable to an equivalent random walk process. Rational approximations

of the delay, such as Padé approximation, can be considered as alternative solutions; however, the

introduced truncation error may be significant and problematic, especially for large and time-varying

delays. Thus, to obtain a more accurate delay estimation, the aforementioned SRCKF algorithm is

equipped with a multiple-model framework cascaded with a hypothesis testing module [32].

The underlying idea of the MMSRCKF method is to use a bank of N identical SRCKFs in a

parallel setting, as shown in Fig. 3.

Figure 3: Bank of N parallel SRCKFs for delay estimation

Every SRCKF uses the same measurement and input data, but a different delay is assigned to

each filter. The ith element in the bank provides us with a state vector estimation Xi
k together

with the residuals rik = yk − ŷik. By having this information, a hypothesis testing block can then

be used to estimate the value of the delay. Specifically, if the delay matches the one assigned to the

ith SRCKF element, then the corresponding residual is essentially a zero-mean white noise process,
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i.e., E [rik] = 0, and its covariance is given by

E [rik(rik)T] = HPi
kH

T + R , Ri
k, (26)

with H = [1 0 0 1], Pi
k denotes the estimation covariance at the kth step, and R stands for the

measurement noise covariance. The conditional probability density function of the ith SRCKF

element measurement can be computed through

f(ŷik|yk) =
1

(2π)
m
2 |Ri

k|
1
2

exp
{
− 1

2
(rik)T(Ri

k)−1rik

}
, (27)

where m is the dimension of available measurements at each time step. Then, the conditional

probability of each hypothesis is

pik =
f(ŷik|yk)pik−1

N∑
j=1

f(ŷjk|yk)pjk−1

, (28)

where pik can be interpreted as the normalized conditional probability of the case when the delay

equals the assigned value to the ith filter, i.e.,
N∑
j=1

pjk = 1. Now, it is possible to estimate the

delay according to the filter, which has the highest probability. However, for a more accurate delay

estimation and to avoid large fluctuations, instead of choosing the block with the most probable

delay estimation, we treat the hypotheses resulting as weights and blend them to improve the delay

estimation. In other words, we can estimate the time delay as

τ̂MM
k =

N∑
j=1

pjkτ
j
k , (29)

and τ jk is the delay estimation of the ith filter. Next, a bank of N parallel SRCKF estimators of the

MMSRCKF (see Fig. 3) will be implemented for the model parameter and time delay estimation of

the MAP response dynamics.
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2.3 MAP Response Estimation Results and Validations

Considering the continuous-time model (1), which characterizes the patient’s MAP response to

the infusion of a vasoactive drug, to implement recursive sequential estimation tools, we need to

discretize the continuous-time model at the sampling rate of Ts as follows
xk+1 =

(
1− Ts

Tk

)
xk +

KkTs

Tk

u(k− τk
Ts

),

yk = xk +MAPbk ,

(30)

where xk = ∆MAPk = MAPk −MAPbk at the kth time instant. In (30), we augment the state

vector with the parameters to be estimated, namely Kk, Tk, and MAPbk , i.e.,

XT
k = [X1

k X2
k X3

k X4
k ] = [∆MAP k Kk Tk MAPbk ]. (31)

Since model parameters are time-varying and assumed to be a priori unknown, (30) represents a

nonlinear equation with regards to the state vector, Xk, that can be expressed as the following

nonlinear dynamics 
X1
k+1 = fk(Xk, uk) + wk,

yk = hk(Xk) + vk,

(32)

with 
f1
k (Xk, uk) =

(
1− Ts

X3
k

)
X1
k +

TsX
2
k

X3
k

u(k− τkTs ),

hk(Xk) = X1
k +X4

k ,

(33)

and f ik(Xk, uk) = Xi
k, for i = 2, 3, 4. The process noise, wk, and the measurement noise, vk, are

both assumed to be additive and statistically independent zero-mean Gaussian processes with covari-

ances given by Qk and Rk, respectively. Although such an augmentation facilitates the estimation

procedure, the time-varying input delay neither can be included in the augmented state vector nor

be captured by a random walk process. Thus, time-delay is estimated through a multiple-model
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hypothesis testing process along with the SRCKF, discussed in Section 2.2.

Next, we test the proposed MMSRCKF estimation algorithm in simulation where the patient’s

model parameters are generated by nonlinear functions based on clinical observations (2)-(4). Then,

the verified estimation framework is validated using the experimental data from animal experiments.

In order to build a realistic simulation model of an individual’s MAP response to the drug

infusion with some known model parameters, we use (2)-(4) to generate the patient’s nonlinear

time-varying model parameters, i.e., K(t), T (t), τ(t), and MAPb(t), where model parameters are

nonlinear functions of the drug infusion rate, U (t). Figure 4 demonstrates the general structure of

the nonlinear patient parameter generation process.

Figure 4: Structure of nonlinear patient parameter generation

As shown, the model parameters are generated based on the given infusion rate, U (t), while

the parameter estimation tool estimates the model parameters sub-optimally, using the input drug

infusion rate and measured output MAP. Figure 5 depicts the piecewise constant phenylephrine

(PHP) drug infusion profile used to generate the nonlinear patient parameters.

24



Figure 5: Profile of piecewise constant PHP drug injection

Using the generated nonlinear patient, we evaluate the proposed MMSRCKF in estimating model

parameters, and the results are compared to the previously reported EKF algorithm [53]. Figures

6, 7, 8, and 9 present the estimation results for the varying model parameters, namely sensitivity

K(t), time constant T (t), MAP baseline value MAPb(t), and time delay τ(t), respectively. As

demonstrated, the implemented MMSRCKF method outperforms the EKF in terms of accuracy and

convergence speed. Additionally, MMSRCKF online estimation shows more desirable matches with

the generated nonlinear patient parameters based on pharmacodynamics [21]. It should be noted

that although the computation complexity of both CKF and EKF algorithms equally grows as n3

with n denotes the system size, the former filter is more accurate and numerically more stable. Table

2 further compares the root mean square errors (RMSEs) of the model parameters and estimated

MAP response in both algorithms by which the error reduction is obvious using MMSRCKF.
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Figure 6: Nonlinear patient sensitivity estimation

Figure 7: Nonlinear patient lag time estimation
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Figure 8: Nonlinear patient baseline MAP estimation

Figure 9: Nonlinear patient input delay estimation
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Table 2: Estimation root mean square errors (RMSEs)

RMSE

Parameter MMSRCKF EKF

K 0.061 0.095

T 8.370 24.917

MAPb 0.188 0.706

τ 3.128 9.114

MAP 0.008 0.202

In the next step, we implement the MMSRCKF algorithm on the collected data from an actual

animal experiment. The input PHP drug infusion rates and output MAP measurements for a 55

kg anesthetized swine were recorded at the Resuscitation Research Laboratory at the Department

of Anesthesiology, UTMB at Galveston, Texas. An intramuscular injection of ketamine was used

to sedate the swine, maintained under anesthetic conditions by the continuous infusion of propofol.

A Philips MP2 transport device with a sampling frequency of 20 Hz was used to monitor the

blood pressure response over a 6-hour experiment, while the PHP drug was being infused through a

bodyguard infusion pump. Figure 10 shows the piecewise constant PHP drug infusion profile versus

the corresponding measured raw blood pressure response and the MAP response over time. We

then use this dataset to validate the estimation of the MAP dynamic model parameters using the

proposed MMSRCKF methodology. The experimental dataset has been re-sampled at the sampling

frequency of 0.2 Hz.
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Figure 10: Instantaneous blood pressure and MAP response to a piecewise constant PHP drug in-
jection in an animal experiment

Regarding the multiple-model step of the MMSRCKF algorithm adopted for the time-delay

estimation, the estimation accuracy versus the algorithm speed of convergence triggered a trade-off

which needed to be addressed with care; hence, it is essential to choose an appropriate number of

the bank of SRCKFs constructing the MMSRCKF structure. In this work, we examined a bank

of 11 SRCKFs with the delay interval of τ ∈ [0 100]s. Consequently, the time gridding for the

evenly distributed filters was equal to 10s. The MAP estimation of the proposed algorithm, as

well as the clinically acquired MAP measurements, are illustrated in Fig. 11, which suggests that

the proposed identification method is capable of accurately capturing the MAP response of the

swine to the injection of the PHP drug. Additionally, the estimation of the model parameters,

namely the sensitivity K(t), time constant T (t), MAP baseline value MAPb(t), and time delay τ(t),

are depicted in Figs. 12, 13, 14, and 15, respectively. The estimated parameter values followed

the expected trends, as discussed in detail in [92]. Furthermore, the delay estimation in Fig. 15
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demonstrated a sharp initialization peak right after the initial injection of the drug and followed a

slowly decaying trend during the rest of the experiment as anticipated [21] and obeys (4).

Figure 11: MAP estimation results in an animal experiment

Figure 12: Sensitivity estimation in an animal experiment
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Figure 13: Lag time estimation in an animal experiment

Figure 14: Baseline MAP estimation in an animal experiment
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Figure 15: Time delay estimation in an animal experiment

2.4 Chapter Conclusion

In this chapter, precise real-time estimation of hemodynamics characteristics and mean arterial

blood pressure in response to vasoactive drug administration are considered, which are pivotal to

design an efficient controller to meet closed-loop physiological response requirements in various

clinical scenarios. Real-time estimation of such dynamic models was examined in this chapter. Due

to the inter-and intra-patient variabilities, an input-delay time-varying system was deemed to capture

the model parameter variations. A Bayesian estimation scheme known as cubature Kalman filter

was developed because of its convergence speed, nonlinear system handling, and numerical stability.

The varying parameters of the nonlinear system corrupted by noise were estimated through the

proposed framework. Since the input delay cannot be captured via a random-walk process, the filter

was augmented with a multiple-model module. Time delay and parameter estimation results of

the proposed Bayesian-based multiple-model square root cubature Kalman filtering (MMSRCKF)

algorithm were compared to the extended Kalman filter (EKF), which verified the advantage of the

utilized Bayesian-based approach.
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3 Loop-Shaping and IMC-PID Control for Automated Blood

Pressure Regulation

The following chapter first appeared in International Journal of Control, Automation and Systems

(IJCAS), 2019, 17 (7), pp. 3355-3362.
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Reproduced in part with permission from International Journal of Control, Automation and Sys-

tems, Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers,

Copyright 2019.

3.1 Introduction

In general, analysis and control of time-delay systems using frequency-domain methods can pro-

vide necessary and sufficient conditions with less computational complexity. Among the frequency-

domain methods, the internal model control (IMC) approach holds inherent robustness against pa-

rameter perturbations with a favorable disturbance rejection while providing a simple-to-implement

structure [61]. Moreover, the IMC structure allows the designer to address the plant uncertainties

and perform sensitivity analysis directly. The method has been widely used in time-delay systems

control [76] and has been further developed to address the control of unstable time-delay systems [79],

as well. Furthermore, the Smith predictor (SP), as the first systematic approach to deal with input

delays, is a particular case of the IMC strategy [85].

For some plant models, the IMC structure can be approximated by a proportional-integral-

derivative (PID) control structure [71] to account that the classic PID configuration is still the

dominant controller in the vast majority of industrial systems [101]. In this chapter, an equivalent

PID controller with a lag compensator is designed based on a robust IMC methodology that ex-

plicitly addresses the control of time-delay systems [74]. As another frequency-domain method, a
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parameter-varying loop-shaping approach is investigated in which, by using the Padé approxima-

tion, the infinite-dimensional system with pure delay is transformed into a finite-dimensional but

nonminimum phase (NMP) system. While carefully regarding the limitations posed by the internal

dynamics of the NMP system, this framework imposes phase and gain margins constraints to meet

performance and robustness requirements of the closed-loop system [89]. The loop-shaping method

aims at designing the closed-loop controller to meet bandwidth requirements in a straightforward

manner.

In this chapter, a first-order time-delay model is assumed to describe the MAP response to

vasoactive drugs (see chapter 1). For the control design, first, the NMP system resulted by the

rational approximation of the delay relinquishes the infinite-dimensional delay problem; however, it

suffers from a lack of adequate phase margin inherited by the delay magnitude. Consequently, the

loop-shaping algorithm is presented to introduce a parameter-varying controller to track the refer-

ence MAP. In the second method, the system is regarded as a nominal plant with the time-varying

delay and the parameters treated as uncertainties. The small-gain theorem explicitly characterizes

necessary and sufficient conditions for robust stability of the closed-loop system with the IMC con-

troller. Then, an equivalent IMC-PID controller is derived, and the previous robust condition is

used to design the PID coefficients. Furthermore, closed-loop performance degradation imposed by

the time delay presence is investigated by examining the complementary sensitivity function. Due

to their simplified underlying structure, the proposed controls are easily implementable for clinical

applications while achieving the desired MAP regulation. For control validation purposes, a nonlin-

ear simulation model with time-varying parameters is utilized to capture the varying physiological

characteristics of patients’ MAP response.

34



3.2 Control System Design

Considering the patient’s MAP response continuous-time dynamics (1), a first-order single-input

single-output (SISO) model with time-delay in the control input is presented in Laplace domain as

Gp(s) =
∆MAP (s)

I(s)
=

K

Ts+ 1
e−τs. (34)

The major obstacle in the control design process is the large varying time-delay, which results in

a reduced system bandwidth and poor closed-loop system performance. Subsequently, two feedback

control design methods are examined in this chapter: (1) loop-shaping controller whose structure

is varying with the variation of the system parameters, and (2) IMC-PID controller with a time-

invariant structure whose parameters are derived by considering the time variations as uncertainties

and employing the small-gain theorem.

3.2.1 Loop-Shaping Control Design

The structure of a closed-loop system with a loop shaping controller is shown in Fig. 16.

Figure 16: Closed-loop system structure

The first-order Padé approximation is used to transfer the infinite-dimensional time-delay model
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(34) into a finite-dimensional one as

Gp(s) =
∆MAP (s)

I(s)
≈ K

Ts+ 1
· 2− τs

2 + τs
. (35)

The model (35) is an NMP system with a right-hand plane (RHP) zero posing restrictions on

the achievable bandwidth [82]. The loop transfer function is L(s) = Gp(s)Gc(s) where Gc(s) is the

feedback controller to be designed and Gp(s) is the product of all other transfer functions around

the loop including the plant, the actuator, and sensor. By splitting the plant transfer function into

a minimum phase (MP) stable open-loop transfer function and a NMP part, Gp(s) can be rewritten

as Gp(s) = GMP (s)GNMP (s), where GMP (s) =
K

Ts+ 1
and GNMP (s) =

2− τs
2 + τs

, which is also

known as a Blaschke product. The presence of an RHP zero in GNMP contributes to additional

phase lag and restricts the achievable bandwidth region, which is closely characterized by the gain

crossover frequency, ωc, that is, the smallest frequency at which |L(jωc)| = 1. To find the crossover

frequency with the desired phase margin, ϕm, based on desired performance and stability conditions,

we consider the phase of L(jωc)

]L(jωc) = ]Gc(jωc) + ]GMP (jωc) + ]GNMP (jωc) ≥ −π + ϕm. (36)

By assuming Bode’s ideal loop transfer function for the minimum phase and the control transfer

functions (Li(s) = (
s

ωc
)n), we have

]Gc(s) + ]GMP (jωc) = n
π

2
, (37)

by which (36) can be expressed as [7]

]GNMP (jωc) ≥ −π + ϕm − n
π

2
, (38)

where n =
d log |L(jω)|
d logω

is defined as the logarithmic slope of the loop transfer function. By replacing
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]GNMP (jωc) = −2 tan−1 τωc
2

in (38), we have

ωc ≤ 2τ−1 tan(
π

2
− ϕm

2
+ n

π

4
). (39)

Equation (39) gives the upper bound of the crossover frequency with respect to the inverse value

of the delay for a given phase margin. For larger delays, the attainable crossover frequency de-

creases, thereby slowing down the system closed-loop response. This limitation plays a crucial role

in determining the achievable bandwidth in designing the control system.

Loop-shaping is a classical method that aims to design a controller to explicitly shape the magni-

tude of the loop transfer function, |L(jω)|, as a function of frequency to achieve desired bandwidth

and performance specifications. Considering the sensitivity transfer function S(s) = [1+L(s)]−1 and

the complementary sensitivity function T(s) = 1− S(s) = L(s)[1 + L(s)]−1, the closed-loop system

response in terms of the tracking error in the presence of disturbances and measurement noise can

be written as

e = y − y∗ = −S · y∗ + S ·Gd · d− T · n, (40)

where e is the error, y∗ is the reference command, Gd is the disturbance model, d is the disturbance

and n denotes measurement noise. To achieve a “perfect control” we should have e = 0; that is

e = 0 · y∗ + 0 ·Gd · d− 0 · n.

Regarding Eq. (40), in order to achieve perfect command tracking and disturbance rejection

one may design Gc(s) such that it increases the magnitude of the loop transfer function, |L(jω)|,

so that S ≈ 0, and T ≈ 1. On the other hand, in order to have zero noise transmission, the design

procedure should be altered to decrease the magnitude of the loop transfer function, |L(jω)|, so

that T ≈ 0 and equivalently S ≈ 1. All these objectives cannot be achieved simultaneously, which

is a fundamental nature of the feedback design, and a trade-off should be achieved between the

sensitivity and the complementary sensitivity functions. However, since those mentioned conflicting

objectives are generally in different frequency ranges, the reference tracking, and the disturbance

rejection requirements can be achieved by a large loop gain (|L(jω)| � 1) at low frequencies below
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the gain crossover frequency, ωc, and a small gain (|L(jω)| � 1) at high frequencies above ωc for

noise attenuation. Hence, to take advantage of the feedback control and achieve the desired reference

command tracking, we need large controller gains, i.e., the loop gain |L(jω)| has to be made as large

as possible within the bandwidth region. However, due to the time delay, which is translated into

an RHP zero in the present formulation, and the unmodeled high-frequency dynamics, it is desired

for |L(jω)| to drop sharply below one in the frequencies above the crossover region [82]. Typically,

the desired slope at the crossover region and at low frequencies below the crossover depends on the

nature of the reference command and disturbance signals. So, as a rule of thumb, to achieve zero

offset and reference command tracking (i.e., e ≈ 0 for t → ∞), the loop transfer function, L(s),

must contain at least one integrator for each integrator in the reference signal, y∗(s) [82]. Now,

considering that we are designing a proper controller for the step changes in the reference command

and disturbances, the logarithmic slope of the loop transfer function |L(s)|, n =
d log |L(jω)|
d logω

, is

desired to be at least n = −1 at the crossover region and at low frequencies below the crossover

and it is desired to have a larger roll-off, e.g. n ≤ −2 for the loop transfer function, |L(s)|, at high

frequencies above ωc (at least one decade above ωc) for noise attenuation.

By having the desired slopes and phase margin in mind and considering (39), the upper bound

of crossover frequency is obtained as

ωc ≤ 2τ−1 tan
π

4
− ϕm

2
. (41)

By assuming the desired phase margin to be ϕm =
π

3
, the upper bound on the crossover frequency

(41) will be ωc ≤ 2τ−1 tanπ/12 and the parameter-varying delay-dependent controller will be

Gc(s) = G−1
MP .

Kc

s( 1
10ωc

s+ 1)
=
Kc(Tcs+ 1)

s( 1
10ωc

s+ 1)
, (42)

where G−1
MP is added as the inverse of the MP stable transfer function to cancel the effect of the lag

term in Gp(s) and eliminate the undesired break frequencies before ωc. Assuming stepwise reference

command, to achieve perfect reference command tracking performance, one integrator, 1/s, is added
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to provide |L(s)| with the slope n = −1 at the crossover region and frequencies below that. The

term (
1

10ωc
s + 1) is added to introduce a low-pass filter into the controller dynamics and to make

|L(s)| have a large roll-off with a higher slope at high frequencies above ωc (one decade above ωc).

Consequently, the desired loop transfer function L(s) is shaped as

L(s) =
KKc(1− τ

2 s)

s( 1
10ωc

s+ 1)(1 + τ
2 s)

. (43)

Equation (43) can be used to determine the control gain, Kc, by setting |L(jωc)| = 1, i.e.,

Kc = |1 + j0.1| ·
∣∣∣∣1 + jωc

τ
2

1− jωc τ2

∣∣∣∣ · ωcK = 1.005 · ωc
K
, (44)

where Eq. (44) represents the control gain explicitly as a function of the model gain and the delay

term incorporated indirectly through (41). Shown in Fig. 17 is the control gain, Kc, calculated

through considering time-varying patient sensitivity, K, according to Eq. (2), and the crossover

frequencies obtained from (41) for various time-varying delay values according to Eq. (4). It should

also be clarified that K, T , and τ are considered to be slowly varying parameters such that the

dynamic response is faster than the parameter variations. The relevance and accuracy of using the

Padé approximation has been extensively addressed in [89]. Figure 18 shows the Bode plots for the

closed-loop system for the time-delay interval 0.65 sec ≤ τ ≤ 21.15 sec with increments of 1.025 sec,

where the stability condition and the desired phase margin is satisfied for all the delay values.
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Figure 17: Delay dependent time-varying controller gain, Kc
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As shown, gain crossover frequency, ωc, decreases as the time-delay increases. This implies that

the limitation on a system with a large time-delay is much stricter and requires the system to have

a lower ωc in order to compensate for the larger time-delays.

3.2.2 IMC-Based PID Control Design

A family of first-order time-delay systems subject to parametric uncertainties can be expressed

by a set of plants with a multiplicative uncertainty defined by

Ω =
{
Gp(s)|Gp(s) = Gp(s) (1 + ∆) , ‖∆‖∞ ≤ 1

}
, (45a)

Gp(s) =
K

Ts+ 1
e−τs, (45b)

where Gp denotes the known nominal system and Gp(s) is any perturbed plant of interest with a

time-varying delay and parameters all varying within the prescribed bounds. Model uncertainties

are embedded in a stable rational transfer function, ∆, and the delay-free plants are all analytic

functions and bounded in C+ (or
K

Ts+ 1
∈ RH∞). The bounded parameters K, τ , and T and their

nominal counterparts denoted by K, τ , and T define the relative errors through

δ ,
K −K
K

, (46a)

ε ,
τ − τ
τ

, (46b)

γ ,
T − T
T

, (46c)

which are bounded by known parameters as |δ| ≤ p, |ε| ≤ q, and |γ| ≤ r. The schematic of the

proposed IMC method is shown in Fig. 19.
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Figure 19: Schematic of the IMC strategy and equivalent closed-loop controller

A candidate for the controller that enables the closed-loop system to track a step reference signal

with a satisfactory level of disturbance rejection and noise attenuation is given by [74],

Gc(s) =
1

K
· Ts+ 1

λs+ 1
, (47)

which is referred to a λ-tuned controller. Then, the following result as a consequence of the small-gain

theorem gives the necessary and sufficient condition for robust stability of the closed-loop system.

Theorem 1. Consider Ω as a set of perturbed time-delay plants satisfying the multiplicative uncer-

tainty given by (45). The controller (47) then robustly stabilizes the family of the input-delay plants

with the bounded relative uncertainties (46) if and only if the following inequality is met:

{
δ2 + 4(δ + 1)

[(
1 + (γ + 1)ω̃2T̃ 2

)
sin2 εω̃

2
+

1

2
γω̃T̃ sin εω̃

]

+ ω̃2
[
T̃ (δ − γ)

]2}
·

{
1 +

[
ω̃(γ + 1)T̃

]2}−1

<
(λ
τ
ω̃
)2

+ 1,

(48)

with ω̃ = ωτ and T̃ =
T

τ
.

Proof. As per the small-gain theorem, if a family of uncertain systems, fulfilling the multiplicative

uncertainty condition given by (45), satisfies the H∞ norm inequality

‖η(s)∆(s)‖∞ < 1, (49)
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then internal stability for these systems is guaranteed. Since ‖H(s)‖∞ = supσ
(
H(s)

)
< 1 corre-

sponds to |H(jω)| < 1, for all ω, using the expressions for η(jω) and ∆(jω), (49) yields

∣∣∣∣Gc(jω) ·GP (jω) · GP (jω)−GP (jω)

GP (jω)

∣∣∣∣ =
∣∣Gc(jω) ·

[
GP (jω)−GP (jω)

]∣∣ < 1. (50)

By substituting the equations (45b) and (47) into (50), one can obtain

∣∣∣∣jTω + 1

K
· 1

jλω + 1
·
(
Ke−jτω

1 + jTω
− Ke−jτω

1 + jTω

)∣∣∣∣ =

∣∣∣∣K(1 + jTω)e−jτω −K(1 + jTω)e−jτω

K(1 + jTω)
· 1

jλω + 1

∣∣∣∣ < 1.

(51)

After carrying out some mathematical manipulations, the above inequality becomes

{(K −K
K

)2

+ 4
K

K
sin2 ω(τ − τ)

2
+ (ωT )2

[(K
K
− T

T

)2

+ 4
K

K

T

T
sin2 ω(τ − τ)

2

]

+ 2ω
K

K
(T − T ) sinω(τ − τ)

} 1
2

×

{[
1 + (ωT )2

][
1 + (λω)2

]}− 1
2

< 1.

(52)

Using the relative error definitions for the parameters in (52), the inequality (48) is obtained.

After establishing robust stability conditions, the next section introduces a PID controller struc-

ture derived from the IMC framework.

Derivation of Equivalent PID Structure

As per Fig. 19, a feedback loop with an equivalent controller transfer function, Gceq (s) can be

used to design a PID controller with a low-pass filter to enhance robustness, i.e.,

Gceq (s) =
Gc(s)

1−Gcs)Gp(s)
=

1

K
· Ts+ 1

λs+ 1− e−τs
(53a)

≡ Kp
(

1 +
1

Ti
· 1

s
+ Tds

)
· 1

TF s+ 1
, (53b)

where (53) is a PID plus lag compensator with appropriate coefficients to be computed. Using the
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fist-order Padé approximation of the delay, the right-hand side (RHS) of (53a) is

Ts+ 1

K(λs+ 1)−Ke−τs
≈ 1

K
·

(Ts+ 1)
(
1 + τ

2 s
)

λτ
2 s

2 + (λ+ τ)s
=

(
1
2 + T

τ

)
K
(
1 + λ

τ

)︸ ︷︷ ︸
Kp

·

[
1 +

1(
T +

τ

2

)
︸ ︷︷ ︸

Ti

· 1

s
+

Td︷ ︸︸ ︷(
1

2
τ + 1

T

)
s

]
1(

λ
τ

λ
τ + 1

· τ
2

)
︸ ︷︷ ︸

TF

s+ 1

.

The next section examines the closed-loop performance of the proposed control structures for the

blood pressure regulation problem.

3.3 Simulations Results and Discussions

3.3.1 PID Controller Tuning

Nominal values for the blood pressure response to phenylephrine (PHP) are obtained experimen-

tally [98]. The parameters of the plant are perturbed from the nominal values K = 0.55, T = 700,

and τ = 40 by relative errors of |δ| ≤ 0.182, |γ| ≤ 0.143, and |ε| ≤ 0.75, respectively. For determining

the robustly stabilizing range of the tuning parameter, the left-hand side (LHS) and RHS of (48)

are considered as separate functions of the uncertainties and the nominal values. Provided that any

assigned value of λ renders the RHS greater than LHS, the robust stability requirement is fulfilled.

In general, these two functions are close to each other if the uncertainties are at their lower and

upper bounds. Choosing
λ

τ̃
= 1.2, the RHS and LHS of (48) versus the dimensionless frequency ω̃

are shown in Fig. 20 as two shaded areas where the robust stability condition holds.
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Figure 20: Robust stability criterion, Eq. (48) for different uncertainties on the delay and gain
parameters with (a) lower bound of the time constant uncertainty, and (b) upper bound
of the time constant uncertainty

Remark 1. For time constant values without uncertainty, i.e., γ = 0, mathematical manipulations

reveal that

λ

τ
≈ q, (54)

satisfies the robust stability condition.

In order to improve the closed-loop system performance, let us define MT = ‖T(s)‖∞ as the

maximum value of the magnitude of the complementary sensitivity function, T(s). Typically, a

large value of MT (about 0.5 dB) is indicating inadequate performance and this is the case as Fig.

21(a) illustrates. In classical feedback control design, usually an upper bound is placed on MT as a

prevalent design requirement. In particular, it is meaningful to set MT less than 1.25 (2 dB) [82].

By retuning the controller parameter and increasing
λ

τ
to 2.5, Fig. 21(b) indicates that T(s)
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rolls off more smoothly and performance is enhanced with MT / 1.5. Such a value for the tuning

parameter is used to evaluate the closed-loop performance in the next section.

Figure 21: Logarithmic norm of the complementary sensitivity function vs. logarithmic dimension-
less frequency, ω̃, for different values of delay uncertainty, ε, (a) not tuned, and (b) tuned
controller

Remark 2. In general, increasing the filter time-constant will decrease the overshoot and conse-

quently yields an improved performance [16]. However, increasing λ leads to a more conservative

controller because of the fact that the open-loop gain decreases [76] and the resulting closed-loop

dynamics exhibits more sluggish behavior.

Remark 3. In general, MT is a better measure of robustness than the gain margin (GM) or the

phase margin (ϕm). Robustness based on GM and ϕm tends to be overly optimistic and their
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associated lower bounds can be established through

GM ≥ 1 +
1

MT
, (55a)

ϕm ≥ 2 sin−1
( 1

2MT

)
≈ 1

MT
. (55b)

However, to reduce conservatism, the structured singular value, µ can be used by constraining the

phase and gain variations to the diagonal elements of the transfer function matrix [71].

3.3.2 MAP Regulation Closed-Loop Simulation Results

In order to evaluate the performance of the proposed controllers, experimental data are used to

build a realistic nonlinear patient’s MAP response model based on (34) where instantaneous values

of model parameters K, T , and τ are generated based on (2)-(4).

For comparison purposes, we implement the proposed loop-shaping and the IMC-PID controllers

and evaluate their performance against a fixed structure PI controller (see [98]). Given nominal

values of the model parameters as K = 0.55, T = 700, and τ = 40, the tuned PI controller transfer

function is as follows

GC(s) = 10 +
0.018

s
, (56)

which is obtained to meet the prescribed gain and phase margin constraints [105]. In the absence

of disturbances and measurement noise, the tracking profile and the control effort are shown in Fig.

22, where the objective is to elevate the MAP to track the stepwise MAP reference.
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Figure 22: Tracking performance and control effort for proposed controllers against a fixed PI con-
troller with no disturbance and measurement noise

According to Fig. 22, the overshoot of the closed-loop response remains within the acceptable

range, and the parameter varying controller provides the fastest response with the least settling time

among the examined controllers. For the sake of completeness, we assume that the closed-loop system

is experiencing both input (Fig. 23(a)) and output disturbances due to medical interventions and

physiological conditions such as hemorrhage and additional medications such as infusion of lactated

ringers (LR) and sodium nitroprusside (SNP). Figure 23(b) is a typical profile of such disturbances.
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(a)

(b)

Figure 23: Profile of disturbances in (a) input and (b) output channels

In order to evaluate the robustness of the proposed controllers, we consider the over/underestimation

errors of 30% for the time delay value. As Fig. 25(a) suggests, in the overestimation case, the results

are more conservative due to the higher assumed time delay value in the controller design processes

and consequently slower closed-loop response. Additionally, for the underestimated time delay case,

Fig. 25(b) presents larger overshoots than the nominal cases. However, the MAP tracking results
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confirm the robustness of the proposed controllers against the parameter uncertainty.

For the case with measurement noise (white noise with intensity of 10−3) and disturbances,

closed-loop performance of both controllers is plotted in Fig. 24. As expected, both proposed

controllers outperform the fixed structure PI controller. Moreover, the parameter-varying loop

shaping controller outperforms the time-invariant PID controller with respect to the rise time and

speed of the response due to its varying structure, which better handles the relatively slowly varying

plant. Although the PID controller indicates a slower rise time, its performance remains acceptable

because of the IMC framework’s inherent robustness.

Figure 24: Tracking performance and control effort for closed-loop system with disturbances and
measurement noise
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(a)

(b)

Figure 25: Closed-loop performance of the parameter-varying loop-shaping and IMC-PID controllers
in the presence of input and output disturbances and time delay estimation error (a) 30%
overestimated time delay value , and (b) 30% underestimated time delay value
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3.4 Chapter Conclusion

This chapter has focused on comparing robust, and parameter-varying frequency domain-based

control design approaches for automatically regulating blood pressure in critical hypotensive patients

using vasopressor drug infusion. The governing dynamics of the mean arterial pressure (MAP) re-

sponse has been expressed by a first-order system with a time-varying delay and varying model

parameters. The loop-shaping design methodology is based on the gain and phase margin stability

measures, and the structure of the associated controller has been assumed to be parameter-varying

based on the varying system parameters. The internal model control (IMC) design has been per-

formed via the small-gain theorem, and a parameter-dependent stability criterion has been derived

for the tuning parameter. An equivalent PID controller has been extracted whose coefficients were

fixed, and system parameter variations have been assumed as unstructured uncertainties. Sensitivity

analysis has then been carried out to achieve a compromise between robust stability and robust per-

formance requirements. Furthermore, such an analysis and tuning further attenuated the overshoot,

and the oscillatory response generated a less sluggish closed-loop system and maintained the band-

width within a desirable range. Closed-loop simulations using a nonlinear patient MAP response

model derived from experimental data demonstrated the proposed controllers’ desirable robustness

against model parameters variations and time-delay while adjusting the set-point response under

disturbances and measurement noise.
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4 Robust Control of LPV Time-Delay Systems

The following chapter appeared in:

1. Proceedings of ASME Dynamic Systems and Control Conference (DSCC), 3, 2019, pp. 1-9.

Title: Delay-Dependent Output-Feedback Control for Blood Pressure Regulation Using LPV Tech-

niques

Authors: Shahin Tasoujian, Karolos Grigoriadis, Matthew Franchek.

Reproduced in part with permission from ASME Dynamic Systems and Control Conference Copy-

right 2019.

2. IET Control Theory & Applications, 2020, 14 (10), pp. 1334-1345.

Title: Robust Delay-Dependent LPV Synthesis for Blood Pressure Control with Real-Time Bayesian

Parameter Estimation

Authors: Shahin Tasoujian, Saeed Salavati, Matthew A Franchek, Karolos Grigoriadis.

Reproduced in part with permission from IET Digital Library, Copyright 2020.

4.1 Introduction

In this chapter, first, a robust delay-dependent linear parameter varying (LPV) gain-scheduled

dynamic output-feedback controller is proposed to guarantee the specified performance of the closed-

loop system and its robustness in terms of the induced L2-norm characteristics when the investigated

LPV time-delay system is assumed to be subject to parameter variability, varying time-delay, norm-

bounded uncertainties, and disturbances that impair the closed-loop response. Next, we consider

an improved parameter-dependent Lyapunov-Krasovskii functional (LKF) candidate, and the affine

Jensen’s inequality [14] is employed for bounding the integral cross-terms that appear in the LKF

derivative. The main contribution of this section resides in the employment of affine Jensen’s in-

equality, and hence, the conservatism that stems from the bounding of integral cross-terms in the

derivation of the LKF derivative is substantially diminished. The utilized affine Jensen’s inequal-

ity bounding technique considers intermediary values of delay instead of assuming the worst-case

delay value. These choices of LKF and bounding method, and avoiding model transformations
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have enabled us to derive less conservative conditions for the synthesis of delay-dependent dynamic

output-feedback controllers for the LPV time-delay systems with large and fast-varying time delays.

The proposed approach’s conservativeness has been assessed and compared with previous work in

the literature through a numerical example.

In the next part of this chapter, we aim to develop an efficient, robust delay-dependent dy-

namic control design for LPV systems with varying uncertain time delay. To this end, we utilize

the proposed improved parameter-dependent LKF candidate and further enhance it with the less

conservative descriptor method analysis. The input-output approach is considered to address the

stability of the interconnected input-output LPV system representation under a varying uncertain

delay [28]. The choices of the LKF and the bounding method and avoiding model transformations

have enabled us to derive less conservative sufficient conditions for stability and performance anal-

ysis in terms of the induced L2-norm of the closed-loop system. Subsequently, we present robust

gain-scheduling state-feedback and dynamic output-feedback controller design methods for the class

of LPV time-delay systems with large and fast-varying uncertain time delays are derived. The merit

of this work lies in the fact that the proposed approach can deal with arbitrary varying time delays

without any constraints on the delay derivative, and the nominal delay is also assumed to be vary-

ing, which imposes further challenges in deriving the stability conditions. We examine the stability

analysis and the worst-case disturbance amplification in terms of a prescribed induced L2-norm

performance index. The final conditions are presented in a convex linear matrix inequality (LMI)

format using a Lyapunov-Krasovskii functional approach. Finally, after applying a proper congruent

transformation, the control synthesis results are presented in an easy-to-implement setting.

In the next section, we address the sampled-data LPV control design for the mean arterial blood

pressure (MAP) response regulation problem. The input-delay technique is used to map the hybrid

closed-loop system into the continuous-time domain with delay in the states. Next, delay-dependent

conditions are considered to study the stability and H∞-norm performance analysis of the hybrid

closed-loop LPV system, which leads to the sampled-data output-feedback control synthesis. The

proposed delay-dependent sampled-data LPV control approach demonstrates superior capability in
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dealing with LPV systems with arbitrary varying time-delay and variable sampling rates.

Finally, an LPV time-delay model is assumed to represent the MAP response to PHP drug

infusion dynamics as a benchmark example to evaluate the proposed LPV control design methods.

Results of computer simulations utilizing collected animal experiment data and a nonlinear patient

simulation model demonstrate the superiority and effectiveness of the proposed delay-dependent LPV

controllers to achieve desired MAP reference tracking, transient response performance, disturbance

rejection and noise attenuation.

4.2 Delay-Dependent Gain-Scheduling Control Synthesis for LPV Time-

Delay Systems

4.2.1 Robust H∞ Output-Feedback Control Design

Considering a time-delayed LPV system with the state-space model representation as follows

ẋp(t) = A(ρ(t))xp(t) + Aτ (ρ(t))xp
(
t− τ(ρ(t))

)
+ B1(ρ(t))w(t) + B2(ρ(t))u(t),

z(t) = C1(ρ(t))xp(t) + C1,τ (ρ(t))xp
(
t− τ(ρ(t))

)
+ D11(ρ(t))w(t) + D12(ρ(t))u(t),

y(t) = C2(ρ(t))xp(t) + C2,τ (ρ(t))xp
(
t− τ(ρ(t))

)
+ D21(ρ(t))w(t),

xp(t0 + θ) = φ(θ), ∀θ ∈ [−τ , 0],

(57)

where xp(t) ∈ Rnp is the state vector, w(t) ∈ Rnw is the exogenous input vector with bounded

L2-norm, u(t) ∈ Rnu is the control input vector, z(t) ∈ Rnz is the vector of controlled outputs,

y(t) ∈ Rny is the vector of measured outputs, and the state space matrices A(·), Aτ (·), B1(·),

B2(·), C1(·), C1,τ (·), D11(·), D12(·), C2(·), C2,τ (·), and D21(·) are real-valued matrices which are

continuous functions of the time-varying scheduling parameter vector ρ(·). This vector is assumed

to be measurable in real-time with known bounds and belongs to the following set

F ν
P , {ρ(t) ∈ C(R+,Rns) : ρ(t) ∈P, |ρ̇i(t)| ≤ νi, i = 1, 2, . . . , ns}, (58)
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where ns is the number of parameters and P is a compact subset of Rns . Moreover, in LPV time-

delay model representation (57), φ(θ) ∈ C([−τ 0],Rnp) is the functional system’s initial condition,

and τ(t) is a differentiable scalar function representing the parameter-varying time delay which lies

in the set T ντ defined as

T ντ , {τ(ρ(t)) ∈ C(P,R+) : 0 ≤ τ(·) ≤ τ <∞, τ̇(·) ≤ ντ}. (59)

Considering the LPV time-delay system (57), with an allowable parameter vector trajectory in

F ν
P , and a time-delay in T ντ , the design objectives are as follows:

• Asymptotic stability of the LPV system with an uncertain varying time-delay in the presence

of parameter variations, delay uncertainties, and disturbances, and

• Minimization of the worst-case amplification of the desired output, z, to a nonzero disturbance

signal, w, with bounded energy, i.e., solving the problem of the induced L2-norm (energy-to-

energy gain) of the mapping Tzw : w→ z given by

min‖Tzw‖i,2 = min sup
ρ∈Fν

P

sup
‖w‖2 6=0,w∈L2

‖z‖2
‖w‖2

. (60)

However, instead of the optimal objective (60), we address the suboptimal problem as

‖Tzw‖i,2 < γ, (61)

where γ is a positive scalar. This means that if the condition (61) holds, the L2-norm of the desired

output signal is bounded by γ‖w‖2 for any nonzero disturbance signal with bounded energy, i.e.,

‖w‖L2
6= 0,w ∈ L2.
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A full-order delay-dependent dynamic output-feedback LPV controller is considered in the fol-

lowing form

ẋK(t) = AK(ρ(t))xK(t) + Aτ,K(ρ(t))xK(t− τ(ρ(t))) + BK(ρ(t))y(t),

u(t) = CK(ρ(t))xK(t) + Cτ,K(ρ(t))xK(t− τ(ρ(t))) + DK(ρ(t))y(t),

(62)

where xK(t) ∈ Rnp is the controller state vector and xK(t − τ(ρ(t))) ∈ Rnp is the delayed

state of the controller, which is included in the controller structure to improve the closed-loop

results compared a the memoryless controller. It should be noted that, in order to achieve convex

conditions, the controller is assumed to be full order, i.e., the order of the controller is equal to np.

Considering (57) and (62), and defining the closed-loop state vector as xT
cl(t) , [ xT

p (t) xT
K(t) ],

closed-loop system will be in following form

ẋcl(t) = Acl xcl(t) + Aτ,cl xcl(t− τ(ρ(t))) + Bcl w(t),

z(t) = Ccl xcl(t) + Cτ,cl xcl(t− τ(ρ(t))) + Dcl w(t),
(63)

where

Acl =

A + B2DKC2 B2CK

BKC2 AK

 ,Aτ,cl =

Aτ + B2DKC2,τ B2Cτ,K

BKC2,τ Aτ,K

 ,

Bcl =

B1 + B2DKD21

BKD21

 ,Ccl =

[
C1 + D12DKC2 D12CK

]
,

Cτ,cl =

[
C1,τ + D12DKC2,τ D12Cτ,K

]
,Dcl = D11 + D12DKD21,

(64)

and the dependence on the scheduling parameter vector has been dropped for brevity. Now, consid-

ering the closed-loop system (63), the following result provides sufficient conditions for the synthesis

of a delayed output-feedback controller to guarantee closed-loop asymptotic stability and a specified

level of disturbance rejection performance according to (61).
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Theorem 2. [15]: The system (57) is asymptotically stable over ρ ∈ F ν
P and τ ∈ T ντ and satisfies

the induced L2-norm performance specification (61), if there exists a continuously differentiable

matrix function P̃(ρ(t)) : F ν
P 7→ S2np

++ , parameter dependent matrix functions X(ρ(t)),Y(ρ(t)) :

F ν
P 7→ Snp++, constant matrices Q̃, R̃ ∈ Snp++, parameter dependent matrices Â(ρ(t)), Âτ (ρ(t)) :

F ν
P 7→ Rnp×np , B̂(ρ(t)) : F ν

P 7→ Rnp×ny , Ĉ(ρ(t)), Ĉτ (ρ(t)) : F ν
P 7→ Rnu×np , Dk(ρ(t)) : F ν

P 7→

Rnu×ny , and scalars γ > 0, λ2, and λ3 such that the following LMI condition



−2Ṽ P̃− λ2Ṽ + A −λ3Ṽ + Aτ B 0 Ṽ + τR̃

? Ψ̃22 + λ2(A + A T) R̃ + λ3A T + λ2Aτ λ2B CT λ2Ṽ − P̃

? ? Ξ̃22 + λ3(Aτ + A T
τ ) λ3B CT

τ λ3Ṽ

? ? ? −γI DT 0

? ? ? ? −γI 0

? ? ? ? ? (−1− 2τ)R̃


≺ 0, (65)

holds, with

Ṽ =

Y I

I X

 ,
A =

AY + B2Ĉ A + B2DKC2

Â XA + B̂C2

 ,

Aτ =

AτY + B2Ĉτ Aτ + B2DKC2,τ

Âτ XAτ + B̂C2,τ

 ,

B =

B1 + B2DKD21

XB1 + B̂D21

 ,
C =

[
C1Y + D12Ĉ C1 + D12DKC2

]
,

Cτ =

[
C1,τY + D12Ĉτ C1,τ + D12DKC2,τ

]
,

D =

[
D11 + D12DKD21

]
,
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Ψ̃22 =
∑ns
i=1±(νi

∂P̃
∂ρi

) + Q̃− R̃,

Ξ̃22 = −
(

1 +
∑ns
i=1±(νi

∂τ
∂ρi

)

)
Q̃− R̃.

(66)

For the robust LPV control synthesis, we consider a class of uncertain time-delay LPV systems

norm-bounded uncertainties in the state and delayed state matrices as

ẋp(t) = A∆(ρ(t))xp(t) + A∆τ (ρ(t))xp(t− τ(ρ(t))) + B1(ρ(t))w(t) + B2(ρ(t))u(t)

z(t) = C1(ρ(t))xp(t) + C1,τ (ρ(t))xp(t− τ(ρ(t))) + D11(ρ(t))w(t) + D12(ρ(t))u(t)

y(t) = C2(ρ(t))xp(t) + C2,τ (ρ(t))xp(t− τ(ρ(t))) + D21(ρ(t))w(t),

(67)

where A∆(ρ(t)) = A(ρ(t))+∆A(t), A∆τ (ρ(t)) = Aτ (ρ(t))+∆Aτ (t) are bounded matrices contain-

ing parametric uncertainties. The norm-bounded uncertainties are assumed to satisfy the following

relation  ∆A(t)

∆Aτ (t)

 = H∆(t)

 E1

E2

 , (68)

where H ∈ Rnp×i, E1 ∈ Rj×np , E2 ∈ Rj×np are known constant matrices and ∆(t) ∈ Ri×j is an

unknown time-varying uncertainty matrix function satisfying

∆T (t)∆(t) � I. (69)

Now, considering the uncertain delayed LPV system (67), the following result provides sufficient

conditions for the synthesis of a robust time-delay output-feedback LPV controller, in the form

of (62), which guarantees the asymptotic stability and a specified level of disturbance rejection

performance as in (61) for the uncertain closed-loop time-delay system.

Theorem 3. There exists a full-order robust output-feedback LPV controller of the form (62) which

asymptotically stabilizes the uncertain LPV system (67) with all admissible uncertainties ∆A(t)

and ∆Aτ (t) of the form (68) and ∆(t) satisfying (69) with ρ ∈ F ν
P and τ ∈ T ντ and satisfies

||z||2 ≤ γ||w||2 for the closed-loop system, if there exists a continuously differentiable matrix function
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P̃(ρ(t)) : F ν
P 7→ S2np

++ , parameter dependent matrix functions X(ρ(t)),Y(ρ(t)) : F ν
P 7→ Snp++,

constant matrices Q̃, R̃ ∈ Snp++, parameter dependent matrices Â(ρ(t)), Âτ (ρ(t)) : F ν
P 7→ Rnp×np ,

B̂(ρ(t)) : F ν
P 7→ Rnp×ny , Ĉ(ρ(t)), Ĉτ (ρ(t)) : F ν

P 7→ Rnu×np , Dk(ρ(t)) : F ν
P 7→ Rnu×ny , and

scalars γ > 0, ε > 0, λ2, and λ3 such that the following LMI



−2Ṽ P̃− λ2Ṽ + A −λ3Ṽ + Aτ B

? Ψ̃22 + λ2(A + A T) R̃ + λ3A T + λ2Aτ λ2B

? ? Ξ̃22 + λ3(Aτ + A T
τ ) λ3B

? ? ? −γI

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

0 Ṽ + τR̃

 HT HTX

0 0

 0

CT λ2Ṽ − P̃ λ2

 HT HTX

0 0

 ε

 YTET
1 0

ET
1 0



CT
τ λ3Ṽ λ3

 HT HTX

0 0

 ε

 YTET
2 0

ET
2 0


DT 0 0 0

−γI 0 0 0

? (−1− 2τ)R̃ 0 0

? ? −εI 0

? ? ? −εI



≺0,

(70)

is feasible, with Ṽ, A , Aτ , B, C , Cτ , D , Ψ̃22, and Ξ̃22 as in (66).

60



Proof. By substituting the matrices with additive norm-bounded uncertainties, i.e., A∆(ρ(t)) =

A(ρ(t)) + ∆A(t) and A∆τ (ρ(t)) = Aτ (ρ(t)) + ∆Aτ (t), for A(ρ(t)) and Aτ (ρ(t)) into the LMI

condition (65) of Theorem 2, we obtain



−2Ṽ P̃− λ2Ṽ + A +

 ∆AY ∆A

0 X∆A


? Ψ̃22 + λ2(A + A T) + λ2(

 ∆AY ∆A

0 X∆A

+

 ∆AY ∆A

0 X∆A


T

)

? ?

? ?

? ?

? ?

−λ3Ṽ + Aτ +

∆AτY ∆Aτ

0 X∆Aτ

 B 0 Ṽ + τR̃

R̃+λ3A T+λ2Aτ + λ3

∆AY ∆A

0 X∆A


T

+λ2

∆AτY ∆Aτ

0 X∆Aτ

 λ2B C T λ2Ṽ − P̃

Ξ̃22+λ3(Aτ + A T
τ )+λ3(

∆AτY ∆Aτ

0 X∆Aτ

+

∆AτY ∆Aτ

0 X∆Aτ


T

) λ3B C T
τ λ3Ṽ

? −γI DT 0

? ? −γI 0

? ? ? (−1− 2τ)R̃



≺ 0.

(71)

This constraint can also be written as the summation of the initial LMI constraint (65) and the LMI

corresponding to the uncertain parts as shown in (72). That is
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(71) = (65)+

0

 ∆AY ∆A

0 X∆A


? λ2(

 ∆AY ∆A

0 X∆A

+

 ∆AY ∆A

0 X∆A


T

)

? ?

? ?

? ?

? ? ∆AτY ∆Aτ

0 X∆Aτ

 0 0 0

λ3

 ∆AY ∆A

0 X∆A


T

+ λ2

 ∆AτY ∆Aτ

0 X∆Aτ

 0 0 0

λ3(

 ∆AτY ∆Aτ

0 X∆Aτ

+

 ∆AτY ∆Aτ

0 X∆Aτ


T

) 0 0 0

? 0 0 0

? ? 0 0

? ? ? 0



≺ 0.

(72)
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Finally (72) can be equivalently written as

(71) = (65)+

He

(



 H 0

XH 0



λ2

 H 0

XH 0



λ3

 H 0

XH 0


0

0

0



 ∆(t) 0

0 ∆(t)



 0,

 E1Y E1

0 0

 ,
 E2Y E2

0 0

 , 0, 0, 0

) ≺ 0.

(73)

Finally, using the following inequality [100]

Θ∆(t)Φ + ΦT∆T(t)ΘT ≤ ε−1ΘΘT + εΦTΦ, (74)

which holds for all scalars ε > 0 and all constant matrices Θ and Φ of appropriate dimensions,

and using the Schur complement [12], the final LMI condition (70) is obtained and it completes the

proof.
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LPV Controller Synthesis Procedure

The parameter dependent decision matrix variables X, Y, Â, Âτ , B̂, Ĉ, Ĉτ , and DK are deter-

mined to minimize the performance index γ and to hold the LMI condition (70). Subsequently, the

delayed gain-scheduling output-feedback controller (62) matrices are computed through the following

steps:

1. Determine M and N from the factorization problem

I−XY = NMT, (75)

where the obtainedM and N matrices are square and invertible in the case of a full-order controller.

2. Consider the following relations

Â = XAY + XB2DKC2Y +NBKC2Y + XB2CKMT +NAKMT,

Âτ = XAτY + XB2DKC2,τY +NBKC2,τY + XB2Cτ,KMT +NAτ,KMT,

B̂ = XB2DK +NBK ,

Ĉ = DKC2Y + CKMT,

Ĉτ = DKC2,τY + Cτ,KMT.

(76)

3. Finally, Compute the controller matrices in the following order

Cτ,K = (Ĉτ −DKC2,τY)M−T,

CK = (Ĉ −DKC2Y)M−T,

BK = N−1(B̂ −XB2DK),

Aτ,K = −N−1(XAτY+XB2DKC2,τY+NBKC2,τY + XB2Cτ,KMT − Âτ )M−T,

AK = −N−1(XAY + XB2DKC2Y +NBKC2Y + XB2CKMT − Â)M−T.

(77)
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4.2.2 Improved Integral Inequality for Less Conservative Control Design

In time-delay systems analysis, frequency-domain approaches are limited to systems with con-

stant delays [58,65]. On the other hand, time-domain techniques utilizing LKFs have recently gained

significant attention, primarily because of their potential in addressing the stability analysis and con-

trol synthesis of systems with arbitrary varying time-delays. In the Lyapunov-Krasovskii method,

the prominent sources of conservatism are rooted in choosing the LKF, the use of model trans-

formations (such as Newton-Leibniz [43] and Padé approximations [42]) and the use of bounding

techniques required for constraining the quadratic integral terms of the form −
∫ t
t−τ(t)

ẋT(s)Rẋ(s)ds,

obtained from the derivative of the LKF. The authors in [64] used an LKF with the parametrized

Newton-Leibniz model transformation to obtain sufficient conditions for the stability of time-delay

systems. In [67], the same type of LKF, together with Park’s inequality, was employed for bound-

ing the cross-terms. Although this bounding method has helped to better address the bounding of

cross-terms and hence reducing the conservatism, it still suffers from the use of model transforma-

tions that have inherent conservatism. The authors in [102] proposed a parameter-dependent LKF

along with Jensen’s inequality for the integral term bounding to derive delay-dependent H∞ results

for LPV time-delay systems. This approach has avoided any model transformations, and therefore,

no conservatism has been introduced in this regard. The resulting conditions have been derived

using a more accurate and tighter bounding technique compared to previous work in the literature.

Nevertheless, the presented stability and performance conditions are not guaranteed for fast varying

time delays with rates greater than one. In the same work, due to the use of a simpler version of

Jensen’s inequality, intermediary values of delay are all neglected, and only the worst-case delay

value is considered, which leads to conservative results and poor performance, especially when the

actual delay value is small.

Similar to the previous section, we employ a Lyapunov-Krasovskii based strategy to derive delay-

dependent gain-scheduled control synthesis conditions for LPV time-delay systems. Moreover, an

improved parameter-dependent LKF candidate is proposed, followed by using an efficient bounding

technique, the affine Jensen’s inequality, to design an output-feedback LPV controller. These choices
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of LKF and integral inequality improved the results by reducing the conservatism of the method

by limiting the bounding gap in the integral cross-terms of LKF derivative. After introducing

appropriate slack variables, the final relaxed synthesis conditions are formulated in terms of tractable

and convex LMI conditions. Additionally, the closed-loop results of the proposed methodology are

compared with past work in the literature in terms of conservatism reduction and performance

improvement through a simple numerical example.

In this part of the chapter, we will take advantage of the following lemma, which plays a central

role in deriving the proposed technical results for the LPV time-delay systems framework.

Lemma 1. (Affine Jensen’s inequality) [14]: Given a matrix J ∈ Sn++, a vector function

g : R≥0 → Rn integrable over [a, b], where 0 ≤ a < b, and a vector function w : R≥0×R≥0 → Rn+m

satisfying
∫ b
a
g(s)ds = Mw(a, b) for a constant matrix M ∈ Rn×(n+m), the following inequality

−
∫ b

a

g(s)TJg(s)ds ≤ w(a, b)TQw(a, b), (78)

holds for all N ∈ Rn×(n+m) with

Q = NTM + MTN + (b− a)NTJ−1N. (79)

To achieve less conservative results, we utilize a new extended-state based quadratic LKF candi-

date with modified integral terms, which depend explicitly on delay. The utilized approach avoids

model transformation; hence, it leads to further conservatism reduction. Additionally, affine Jensen’s

inequality is used for bounding the LKF derivative’s cross-terms. In order to derive tractable LMI-

based results, other conservative bounding approaches, such as the rational Jensen’s inequality,

consider the worst-case delay value to upper-bound the rational term. On the other hand, our

work’s utilized inequality is affine with respect to the time-delay (hence convex), so it provides a

tighter bound of the integral terms of the LKF derivative by taking all the possible intermediate

time-delay values into account. The following theorem provides sufficient conditions for the synthesis

of a delayed dynamic output-feedback LPV controller to meet the control design objectives, namely,
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closed-loop asymptotic stability and a specified level of disturbance attenuation performance (61)

for the closed-loop system.

Theorem 4. There exists an output-feedback LPV controller of the form (62) to asymptotically stabi-

lize the LPV system (57) and satisfies the induced L2-norm bound performance specification given in

(61) with parameter trajectories ρ ∈ F ν
P and τ ∈ T ντ , if we can find a continuously differentiable

parameter dependent positive-definite matrix functions P̃(ρ(t)) : F ν
P → S2np

++ , X(ρ(t)),Y(ρ(t)) :

F ν
P → Snp , positive-definite matrices Q̃, R̃ ∈ S2np

++ , symmetric real matrices W̃, T̃ ∈ S2np
++ , real

matrices Ñ1, Ñ2,Ñ3 ∈ R2np×2np , parameter dependent real matrices Â(ρ(t)), Âτ (ρ(t)) : F ν
P →

Rnp×np , B̂(ρ(t)) : F ν
P → Rnp×ny , Ĉ(ρ(t)), Ĉτ (ρ(t)) : F ν

P → Rnu×np , DK(ρ(t)) : F ν
P → Rnu×ny ,

a positive scalar γ, given scalars λ2, λ3, and λ4 such that the following LMI



Ξ̃11 P̃− Ṽ + λ2A T Ξ̃13 (1− τ̇)τW̃ + λ4A T B CT 0 τÑT
1

? τR̃ + τ2τ̄2

4 W̃ − 2λ2Ṽ λ2Aτ − λ3Ṽ −λ4Ṽ λ2B 0 0 0

? ? Ξ̃33 λ4A T
τ λ3B CT

τ 0 τÑT
2

? ? ? (1− τ̇)(ÑT
3 + Ñ3 − W̃) λ4B 0 τÑT

3 0

? ? ? ? −γ2I DT 0 0

? ? ? ? ? −I 0 0

? ? ? ? ? ? −τT̃ 0

? ? ? ? ? ? ? −τR̃



≺0,

(80)

is feasible. In the derived LMI condition (80)

Ξ̃11 =

[∑ns
i=1±

(
νi
∂P̃
∂ρi

)]
+ Q̃ + (A + A T) +

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)](
ÑT

1 + Ñ1−τ2W̃
)
+τT̃,

Ξ̃13 =

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)]
(−ÑT

1 + Ñ2)+Aτ+λ3A T,

Ξ̃33 =

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)](
− ÑT

2 − Ñ2

)
− Q̃ + λ3(Aτ + A T

τ ),

(81)

τ̇ =
∑ns
i=1±

(
νi

∂τ
∂ρi

)
and Ṽ, A , Aτ , B, C , Cτ , and D are as given in (66).
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Proof. The proof relies on employing an LKF candidate of the form

V (xclt , ẋclt ,ρ, t) = V1(xcl,ρ, t) + V2(xclt ,ρ, t) + V3(ẋclt ,ρ, t) + V4(xclt ,ρ, t) + V5(ẋclt ,ρ, t), (82)

with

V1(xcl,ρ, t) = xT
cl(t)P(ρ(t))xcl(t),

V2(xclt ,ρ, t) =

∫ t

t−τ(t)

xT
cl(η)Qxcl(η)dη,

V3(ẋclt ,ρ, t) =

∫ 0

−τ(t)

∫ t

t+θ

ẋT
cl(η)Rẋcl(η)dηdθ,

V4(xclt ,ρ, t) =

∫ 0

−τ(t)

∫ t

t+θ

xT
cl(η)Txcl(η)dηdθ,

V5(ẋclt ,ρ, t) =

∫ 0

−τ(t)

∫ 0

α

∫ t

t+θ

ẋT
cl(η)

τ2

2
Wẋcl(η)dηdθdα,

The notation xclt(θ) refers to xcl(t + θ) for θ ∈ [ −τ 0 ] where xclt ∈ C([−τ 0],Rnp) is the

infinite-dimensional state vector of the system.

Our next task is to establish the asymptotic stability of the LPV system based on Lyapunov

stability theory. Accordingly, we evaluate the time derivative of the LKF (82) along the trajectories of

the closed-loop LPV system (63). After applications of the Leibniz integral rule, the time derivative

of LKF is obtained as follows

V̇ (xclt , ẋclt ,ρ, t) = V̇1(xcl,ρ, t) + V̇2(xclt ,ρ, t) + V̇3(ẋclt ,ρ, t) + V̇4(xclt ,ρ, t) + V̇5(ẋclt ,ρ, t), (83)
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where

V̇1(xcl,ρ, t) = 2ẋT
cl(t)P(ρ(t))xcl(t) + xT

cl(t)

[ ns∑
i=1

ρ̇i(t)
∂P(ρ(t))

∂ρi(t)

]
xcl(t),

V̇2(xclt ,ρ, t) = xT
cl(t)Qxcl(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

)
xT
cl(t− τ(t))Qxcl(t− τ(t)),

V̇3(ẋclt ,ρ, t) = τ(t)ẋT
cl(t)Rẋcl(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

) ∫ t

t−τ(t)

ẋT
cl(η)Rẋcl(η)dη,

V̇4(xclt ,ρ, t) = τ(t)xT
cl(t)Txcl(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

) ∫ t

t−τ(t)

xT
cl(η)Txcl(η)dη,

V̇5(ẋclt ,ρ, t) =
τ2(t)τ2

4
xT
cl(t)Wxcl(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

) ∫ 0

−τ(t)

∫ t

t+θ

ẋT
cl(η)

τ2

2
Wẋcl(η)dηdθ.

The affine Jensen’s inequality (Lemma 1) is used to bound the derivative terms with the negative,

integral cross term. This direct bounding technique enables us to provide a delayed-scheduled tight

upper bound on the time derivative of the LKF and therefore obtain less conservative results. In

this context, the third derivative term is bounded as follows

V̇3(ẋclt ,ρ, t) ≤ τ(t)ẋT
cl(t)Rẋcl(t) +

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

)
[ xT

cl(t) xT
cl(t− τ(t)) ]︸ ︷︷ ︸

w(t−τ(t),t)T([
NT

1 + N1 −NT
1 + N2

NT
2 −N1 −NT

2 −N2

]
︸ ︷︷ ︸

NTM+MTN

+τ(t)

[
NT

1

NT
2

]
︸ ︷︷ ︸

NT

R−1︸︷︷︸
J−1

[ N1 N2 ]︸ ︷︷ ︸
N

)[ xcl(t)

xcl(t− τ(t))

]
︸ ︷︷ ︸

w(t−τ(t),t)

, (84)

where by considering the affine Jensen’s inequality (1), we choose the function g(t) , ẋcl(t), inte-

grable over [t−τ(t), t] and verifying
∫ t
t−τ(t)

ẋcl(t)dt = Mw(t−τ(t), t), where M , [I, −I] ∈ R2np×4np

and w(t − τ(t), t) ,
[ xcl(t)

xcl(t− τ(t))

]
∈ R4np . Also, J = R ∈ S2np

++ , and N = [N1, N2] ∈ R2np×4np

where R, N1 ∈ R2np×2np , and N2 ∈ R2np×2np are additional matrix variables to be determined to

hold the inequality.
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By employing the same bounding trick on the next derivative terms we obtain

V̇4(xclt ,ρ, t) ≤ τ(t)xT
cl(t)Txcl(t) +

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

) ∫ t

t−τ(t)

xT
cl(η)dη︸ ︷︷ ︸

w(t−τ(t),t)T(
NT

3 + N3︸ ︷︷ ︸
NTM+MTN

+τ(t) NT
3︸︷︷︸

NT

T−1︸︷︷︸
J−1

N3︸︷︷︸
N

)∫ t

t−τ(t)

xcl(η)dη︸ ︷︷ ︸
w(t−τ(t),t)

, (85)

and

V̇5(ẋclt ,ρ, t) ≤
τ2(t)τ2

4
ẋT
cl(t)Wẋcl(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τ(t)

∂ρi(t)

) τ2

τ2(t)

[
τ(t)xcl(t)−

∫ t

t−τ(t)

xcl(η)dη
]T

W
[
τ(t)xcl(t)−

∫ t

t−τ(t)

xcl(η)dη
]
, (86)

where we choose M , I ∈ R2np×2np and w(t− τ(t), t) ,
∫ t
t−τ(t)

xcl(η)dη ∈ R2np , J = T ∈ S2np
++ , and

N = N3 ∈ R2np×2np where T, W ∈ S2np
++ , and N3 are matrix variables to be determined.

Next, it remains to formulate the results as an LMI condition. Thus, the descriptor technique [28]

is used, which introduces slack variables V1, V2, V3, and V4 as follows

I ,
[
xT
cl(t)V

T
1 + ẋT

cl(t)V
T
2 + xT

cl(t− τ(t))VT
3 +

∫ t

t−τ(t)

xT
cl(η)dηVT

4

]
(

Aclxcl(t) + Aτ,clxcl(t− τ(t)) + Bclw(t)− ẋcl(t)

)
= 0. (87)

By considering the derivative of the utilized LKF (83) and the performance index as

J =

∫ ∞
t0

−γ2wT(t)w(t) + zT(t)z(t) < 0,

which is assumed to establish the prescribed closed-loop performance level γ given in (61), and by
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augmenting (83) with 2I and
dJ

dt
, we obtain the following inequality

V̇ (xclt , ẋclt ,ρ, t) + 2I − γ2wT(t)w(t) + zT(t)z(t) ≤ ζT(t)Ωζ(t) < 0, (88)

where the augmented state vector ζ(t) is defined as

ζT(t) ,
[

xT
cl(t) ẋT

cl(t) xT
cl(t− τ(t))

∫ t
t−τ(t)

xT
cl(η)dη wT(t)

]
, (89)

with

Ω=



Ξ11 P−VT
1 + AT

clV2 Ξ13 (1− τ̇)τW + AT
clV4 VT

1 Bcl

? τR + τ2τ̄2

4 W −V2 −VT
2 VT

2 Aτ,cl −V3 −V4 VT
2 Bcl

? ? Ξ33 AT
τ,clV4 VT

3 Bcl

? ? ? (1− τ̇)(NT
3 + N3 −W) VT

4 Bcl

? ? ? ? −γ2


+ΓTΓ + τ

(
ΠTT−1Π + ΦTR−1Φ

)
,

(90)

where

Ξ11 =

[∑ns
i=1±

(
νi
∂P
∂ρi

)]
+ Q + VT

1 Acl + AT
clV1 +

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)](
NT

1 + N1− τ2W
)
+τT,

Ξ13 =

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)]
(−NT

1 + N2) + VT
1 Aτ,cl + AT

clV3,

Ξ33 =

[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)](
−NT

2 −N2

)
−Q + VT

3 Aτ,cl + AT
τ,clV3,

Γ =

[
Ccl 0 Cτ,cl 0 Dcl

]
,

Π =

[
0 0 0 N3 0

]
,

Φ =

[
N1 0 N2 0 0

]
.

(91)
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Slack variables in relation (87) are chosen as V1 , λ1V ∈ S2n, V2 , λ2V, V3 , λ3V, and

V4 , λ4V, where λ1 = 1, λ2, λ3, and λ4 are real constants and V is a real-valued symmetric matrix

which is partitioned as V ,

 X N

NT ?

, V−1 ,

 Y M

MT ?

, such that XY + NMT = I.

Finally, it remains to substitute closed-loop matrices (64) into (90) and then by applying the Schur

complement to Ω in (90), we obtain a 8 × 8 block matrix. Finally, by defining Z ,

 Y I

MT 0

,

and performing a congruence transformation diag
(
ZT,ZT,ZT,ZT, I, I,ZT,ZT

)
on the 8× 8 block

matrix and redefining the matrix multiplications as �̃ , ZT � Z, LMI (80) is obtained and the

proof is complete.

Finally, using the determined LMI decision variables, output-feedback LPV gain-scheduled con-

troller can be computed following the controller synthesis steps (75)-(77).

Numerical Example

As an illustrative example, we construct an LPV state-delayed system with the following state-

space representation [107]

ẋ(t) =

 0 1 + 0.2ρ(t)

−2 −3 + 0.1ρ(t)

x(t) +

 0.2ρ(t) 0.1

−0.2 + 0.1ρ(t) −0.3

x
(
t− τ(ρ(t))

)

+

0.2

0.2

 d(t) +

 0.2ρ(t)

0.1 + 0.1ρ(t)

u(t),

z(t) =


φ 0

0 ξ

0 0

x(t) +


0

0

ψ

u(t),

y(t) =

[
1 0

]
x(t),

(92)

where ρ(t) = sin(t) is the LPV system scheduling parameter, τ(ρ(t)) = τ |sin(αt)| is the parameter-

dependent time-varying delay with 0 ≤ τ(t) ≤ τ and |τ̇ | ≤ ν = τα. Weighting scalars φ, ξ, and ψ
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are selected to construct the desired controlled output vector, z(t), by penalizing the states of the

system and the control input.

Based on the results of Theorem 4, an output-feedback controller of the form (62) is designed

to minimize the induced L2-norm (or H∞-norm) of the closed-loop LPV time-delay system (63).

The design objective is to guarantee closed-loop stability and minimize the effect of the disturbance

using the measurement information of state x1, while maintaining the control input within reasonable

limits over the entire range of the scheduling parameter and delay variations.

Remark 4. The condition in Theorem 4 leads to an infinite-dimensional convex optimization prob-

lem with an infinite number of LMI constraints. To tackle this issue, we take advantage of the

gridding approach to convert the infinite-dimensional problem to a finite-dimensional convex opti-

mization problem [4]. In this regard, a quadratic parameter dependence is adopted for the parameter

dependent matrices as follows: G(ρ(t)) = G0 +
ns∑
i=1

ρi(t)Gi1 + 1
2

ns∑
i=1

ρ2
i (t)Gi2 , where G(ρ(t)) repre-

sents any of the involved LMI decision variables. Finally, gridding the scheduling parameter space at

appropriate intervals leads to a finite set of LMIs to be solved for the unknown LMI variables and γ.

Furthermore, in order to improve the results, a 3-dimensional search over the three scalar variables

λ2, λ3, and λ4 is performed to obtain the minimum value of γ. The MATLAB® toolbox YALMIP

is used to solve the corresponding LMI optimization problems [51].

In the considered numerical example (92), the weighting scalars are chosen as φ = 1, ξ = 10, and

ψ = 1. The time delay is considered to be τ(t) = 3|sin(0.3t)| (i.e., τ = 3 and α = 0.3). The results

of the proposed LPV control design approach are compared with prior results of an LPV time-delay

control design with simpler LKF candidate with a conservative bounding technique [90]. Figure

26 demonstrates the closed-loop responses of (92) for the proposed control and the one in [90]. As

illustrated, the proposed control scheme outperforms the one in [90] by regulating both system states

to zero by minimizing the effect of the disturbance. We consider a simulation scenario where a pulse

disturbance d(t) = 5 for t ∈ [5 8] sec and zero elsewhere, is assumed to affect the system. It should

be noted that the same weighting scalars, parameter-dependence basis function, and the scheduling

parameter grid points are considered for both approaches. The obtained optimal energy-to-energy
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performance levels γ are 1.1786 and 3.1546 for the proposed control and the one in [90], respectively.

Accordingly, Theorem 4 provides better disturbance attenuation, faster regulation, and improved

induced L2-norm performance levels compared with the other controller.

Figure 26: Closed-loop response of system states x1, and x2 subject to disturbance

Table 3 compares the obtained performance level γ for both control design methods and for

different maximum delay values, τ . It is noted that the control synthesis condition in [90] is not

feasible for τ ≥ 3.5. On the other hand, the proposed LPV delay-dependent control scheme, which

utilizes the improved LKF candidate and the efficient use of the affine Jensen’s inequality bounding

technique, can handle much larger allowable maximum delay values and provides considerably less

conservative results for a larger delay range and delay variation rates ν > 1.

Table 3: Performance levels γ of both methods for different maximum delay values τ

Method τ = 1 τ = 3 τ = 3.2 τ = 3.5 τ = 10 τ = 50

Proposed 0.59 1.18 1.44 1.45 3.92 5.37

[90] 0.46 3.15 8.39 Inf. Inf. Inf.
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4.3 Robust Control of LPV Systems with Uncertain Time-Delay

Model-based control design tools provide a systematic and practical framework for addressing

closed-loop stability and performance requirements in a wide variety of real-world control problems.

The mathematical modeling describing real-world systems can be carried out via either the certainty

equivalence principle and physics laws or system identification techniques, which approximates the

system dynamics in terms of bias and variance error on an identified model using the system’s

input and output data measurements [34]. However, unmodeled and hidden dynamics, problems

like aging and external excursions, and generally inaccuracies and simplifications in modeling phys-

ical processes and systems make the mathematical model differ from the actual system dynamics.

Consequently, robust control analysis has been introduced as an effective way of dealing with such

modeling mismatch and discrepancy issues [47]. However, for such systems with varying uncertain

delays, utilizing classical robust control methods or incorporating the delay uncertainty variations

into the delay upper bound introduces extra conservatism and compromises the closed-loop perfor-

mance.

Moreover, delay uncertainty and, in particular, uncertainty in time-varying delays further poses a

robustness challenge in the model-based control design. The analysis and control of systems with un-

certain time-delay is considered to be of theoretical and practical significance. It is noteworthy that

in typical stability analysis of such systems, the delay is assumed to be the sum of a nominal delay,

either constant or time-varying, and a perturbed uncertain part where the system with the nominal

delay is regarded to be asymptotically stable. In this regard, necessary stability conditions for linear

time-invariant (LTI) systems with an uncertain constant delay via a frequency-domain approach and

sufficient conditions for LTI systems with an uncertain time-varying delay via Lyapunov-Krasovskii

approach have been investigated in [41]. The utilized LKF has been developed to comply with a

prescribed derivative expression, and it also does not explicitly depend on the bounds of the uncer-

tainty. In [27], the author has used a complete LKF, with a particular functional form, consisting of

nominal plus additional terms where the former analyzes the system under the nominal delay, and

the latter addresses delay perturbations and vanishes as the perturbations disappear. Inspired by
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this research, static state-feedback control of input-delay systems with an uncertain delay has been

addressed in [96] where the LKF derivative is constructed based on a delay Lyapunov matrix. The

work in [28] employs the small-gain theorem augmented with a scaling matrix, which provides a less

conservative input-output stability analysis framework. Moreover, to handle delay uncertainties, a

factor depending on the bound of the delay rate has been introduced, which can be selected a priori

to further reduce the conservatism. By unifying the results with the LKF strategy, delay-dependent

sufficient stability conditions have been derived in terms of convex LMI constraints.

On the other hand, stability analysis and control design of LPV systems with uncertain arbitrarily

varying delays and external disturbances, to the best of our knowledge, has not been addressed in

the LPV time-delay context. To address this problem, in this part, we develop a robust delay-

dependent control design for LPV systems with uncertain time delay. We propose an improved

parameter-dependent LKF candidate and further enhance it with the less conservative affine Jensen’s

inequality bounding technique.

4.3.1 State-Feedback Control of LPV Systems with Uncertain Time-Delay

Time-delayed LPV systems with varying uncertainty in the delay are subject to performance

degradation and instability. In this line, we investigate the stability of such systems invoking an

input-output stability approach. By considering explicit bounds on the delay rate and time-varying

delay uncertainty, the scaled small-gain theorem is adopted to form an interconnected time-delay

LPV system for the uncertain dynamics.

By considering the uncertain time delay, τ(t), as a differentiable scalar function

τ(t) = τn + η(t), |η(t)| ≤ µ ≤ τn, (93)

where τn denotes the constant nominal delay value and the time-varying uncertain part of the delay

is bounded by a constant µ. The time-varying delay lies in the set T ντ as defined in (59).

Stability and L2-Gain Analysis of LPV Systems with Uncertain Delay
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In order to examine the stability and L2-gain analysis of the LPV system with an uncertain time-

varying delay, we utilize the small-gain theorem. For this purpose, by considering the uncertain time

delay (93), the delayed state of the system can be rewritten as follows

xp(t− τ(t)) = xp(t− τn)−
∫ −τn
−τn−η(t)

ẋp(t+ s)ds, (94)

where the time-varying uncertain part of the delayed state is treated as a disturbance and defined

as a new feedback signal

u1(t) , (∆y1)(t) = − 1

µ
√

F (ντ )

∫ −τn
−τn−η(t)

y1(t+ s)ds, (95)

where F (ντ ) is a continuous function of the time-delay rate, ντ , which will be defined later using an

extension of the small-gain theorem. By defining a new auxiliary system, ∆, with additional input

and output vectors, namely, y1 and u1, the overall interconnected feedback system is constructed

as shown in Fig. 27.

Figure 27: The overall interconnected system
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Accordingly, the unforced time-delay LPV system (57), i.e., no control input or u ≡ 0, is repre-

sented as a feedback interconnected system as follows

ẋp(t) = A(ρ(t))xp(t) + Aτ (ρ(t))xp(t− τn) + µAτ (ρ(t))X−1u1(t) + γ−1B1(ρ(t))w(t),

y1(t) =
√

F (ντ )Xẋp(t),

z(t) = C1(ρ(t))xp(t) + C1,τ (ρ(t))xp(t− τn) + µC1,τ (ρ(t))X−1u1(t)+γ−1D11(ρ(t))w(t),

(96)

where X denotes a scaling non-singular matrix and w(t) = γw(t).

The following lemma is used to derive the delay-dependent conditions for stability and L2-gain

analysis of the LPV time-delay system with an uncertain time-varying delay.

Lemma 2. (Small-Gain Theorem for Systems with Uncertain Time-Delay) [28]: Con-

sidering y1 = Ty1u1u1, and u1 = ∆y1, where both systems Ty1u1 : L2[0,∞] → L2[0,∞] and

∆ : L2[0,∞] → L2[0,∞] are considered to be input-output stable. The interconnected overall sys-

tem (Ty1u1
, ∆) is input-output stable if γ0(∆)γ0(Ty1u1

) < 1, where γ0 is the induced L2-gain of a

system. Moreover, the L2-gain of the system ∆ is found to be γ0(∆) ≤ µ
√

F (ντ ) where [80]

F (ντ ) =



1, −∞ ≤ ντ ≤ 1,

2ντ − 1

ντ
, 1 < ντ < 2,

7ντ − 8

4ντ − 4
, ντ ≥ 2,

7

4
, ντ is unknown,

(97)

with ‖Ty1u1
‖i,2 <

1

µ
√

F (ντ )
.

Using Lemma 2, the following theorem provides a sufficient LMI condition to guarantee the

stability and performance objective (61) of the LPV system (57) with an uncertain varying delay.

Theorem 5. The unforced LPV system (57) with an uncertain delay and |η(t)| ≤ µ ≤ τn, over

the given sets F ν
P and T ντ is asymptotically stable with ‖z‖2 ≤ γ‖w‖2, if there exist continuously
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differentiable parameter dependent positive-definite matrix functions P(ρ(t)) , S(ρ(t)) : F ν
P → Snp++,

positive-definite matrices Q, R ∈ Snp++, parameter dependent real matrices V1, V2, V3 : F ν
P →

Rnp×np , and a positive scalar γ satisfying the following LMI condition



Ṗ−R + Q+VT
1 A+ATV1 P−VT

1 + ATV2 R + VT
1 Aτ + ATV3 µVT

1 Aτ VT
1 B1 CT

1

? τ2
nR+F (ντ )S−VT

2 −V2 VT
2 Aτ −V3 µVT

2 Aτ VT
2 B1 0

? ? −R−Q+VT
3 Aτ+AT

τV3 µVT
3 Aτ VT

3 B1 CT
1,τ

? ? ? −S 0 µCT
1,τ

? ? ? ? −γ2I DT
11

? ? ? ? ? −I


≺0,

(98)

where Ṗ =
∑ns
i=1 ρ̇i(t)

∂P(ρ(t))
∂ρi(t)

and the parameter dependence of the matrices is dropped for brevity.

Remark 5. Considering Ṗ =
∑ns
i=1 ρ̇i(t)

∂P(ρ(t))
∂ρi(t)

, due to affine presence of the derivative of the

scheduling parameter, we may replace it by Ṗ =
∑ns
i=1±νi

∂P(ρ(t))
∂ρi(t)

where the notation
∑ns
i=1±(·)

indicates that every combination of +(·) and −(·) should be included in the LMI condition (e.i., all

combinations of lower and upper bounds of ρ̇i). Consequently, it leads to 2ns LMIs that must be

checked simultaneously.

Proof.

V (xpt , ẋpt ,ρ, t)= xT
p (t)P(ρ(t))xp(t)+

∫ t

t−τn
xT
p (s)Qxp(s)ds+

∫ 0

−τn

∫ t

t+θ

ẋT
p (s)R0ẋp(s)dsdθ. (99)

We evaluate the time derivative of the LKF (99) along the trajectories of the LPV system (57)

V̇ (xpt , ẋpt ,ρ, t) = 2ẋT
p (t)P(ρ(t))xp(t) + xT

p (t)Ṗxp(t) + xT
p (t)Qxp(t)

+ xT
p (t− τn)Qxp(t− τn) + τnẋT

p (t)R0ẋp −
∫ t

t−τn
ẋT
p (θ)R0ẋp(θ)dθ. (100)
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Employing the Jensen’s inequality, the integral term in (100) can be upper bounded through

−
∫ t

t−τn
ẋT
p (θ)R0ẋp(θ)dθ ≤ −

1

τn

(∫ t

t−τn
ẋp(θ)dθ

)T

R0

(∫ t

t−τn
ẋp(θ)dθ

)

= − 1

τn

[
xp(t)− xp(t− τn)

]T
R0

[
xp(t)− xp(t− τn)

]
. (101)

Next, in order to derive a relaxed final condition and be able to formulate the final results as an

LMI suitable for the synthesis conditions, we use the descriptor technique [28]. Introducing three

slack variables V1, V2, and V3 and using the LPV system dynamics (96), we define I as

I =

[
xT
p (t)VT

1 + ẋT
p (t)VT

2 + xT
p (t− τn)VT

3

]
(

Axp(t) + Aτxp(t− τn) + µAτX−1u1(t) + γ−1B1w(t)− ẋp(t)

)
= 0.

(102)

Considering the augmented forward system with all input and output vectors, i.e.,

y1

z

 = G

u1

w


as in Fig. 27, the assumption ||G||i,2 < 1 is equivalent to [28]

||y1||2L2
+ ||z||2L2

< ||u1||2L2
+ ||w||2L2

. (103)

Inequality (103) satisfies both the condition given in Lemma 2 for the input-output stability of

the LPV system with uncertain time-delay, i.e., ‖Ty1u1‖i,2 <
1

µ
√

F (ντ )
, and also the prescribed

performance level given in (61), i.e., ‖Tzw‖i,2 < γ. Finally, by augmenting the derivative of the

LKF given in (100) by the descriptor method’s result and (103) is

V̇ (xpt , ẋpt ,ρ, t) + 2I + yT
1 (t)y1(t) + zT(t)z(t)− uT

1 (t)u1(t)−wT(t)w(t) ≤ ζT(t)Ωζ(t)<0, (104)

where the augmented state vector ζ(t) is defined as

ζT(t) ,
[

xT
p (t) ẋT

p (t) xT
p (t− τn) uT

1 (t)X-T wT(t)
]
. (105)
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Using the bound computed for the integral term in the LKF time-derivative (101), and substituting

the dynamics vectors from (96) in (104), Ω is obtained as



Ṗ−R + Q + VT
1 A + ATV1 + CT

1 C1 P−VT
1 + ATV2

? τ2
nR + F (ντ )S−VT

2 −V2

? ?

? ?

? ?

R + VT
1 Aτ + ATV3 + CT

1 C1,τ µ(VT
1 Aτ + CT

1 C1,τ ) γ−1(VT
1 B1 + CT

1 D11)

VT
2 Aτ −V3 µVT

2 Aτ VT
2 B1

−R−Q + VT
3 Aτ + AT

τ V3 + CT
1,τC1,τ µ(VT

3 Aτ + CT
1,τC1,τ ) γ−1(VT

3 B1 + CT
1,τD11)

? −S + µ2CT
1,τC1,τ γ−1µCT

1,τD11

? ? γ−2DT
11D11 − I


,

(106)

where S(ρ(t)) , XTX, and R ,
R0

τn
. By pre- and post-multiplying (106) by diag(I, I, I, I, γI) and its

transpose, and applying the Schur complement, LMI (98) is obtained and the proof is accomplished.

State-Feedback LPV Controller Design Process

We extend the results of Theorem 5 for the synthesis of a robust state-feedback gain-scheduling

controller for the case of general LPV systems (57) with an uncertain varying time-delay as in (93).

Such a parameter-dependent controller is proposed in the following format:

u(t) = K(ρ(t))xp(t), (107)

where the controller utilizes full-state information and aims to meet the design objectives as men-

tioned in Section 4.2.1. Feeding back the control law (107) into the LPV system dynamics (57), the
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resultant closed-loop system will be

ẋp(t) = Acl(ρ(t))xp(t) + Aτ (ρ(t))xp
(
t− τ(t)

)
+ B1(ρ(t))w(t),

z(t) = C1,cl(ρ(t))xp(t) + C1,τ (ρ(t))xp
(
t− τ(t)

)
+ D11(ρ(t))w(t),

(108)

where Acl(ρ(t)) = A(ρ(t)) + B2(ρ(t))K(ρ(t)), C1,cl(ρ(t)) = C1(ρ(t)) + D12(ρ(t))K(ρ(t)). By

substituting Acl(ρ(t)) and C1,cl(ρ(t)) for A and C1 in (98), the following theorem presents a suffi-

cient condition for investigating the closed-loop stability and performance with an uncertain delay

implementing a state-feedback LPV controller.

Theorem 6. There exists a state-feedback gain-scheduling LPV controller (107), over the sets F ν
P

and T ντ , to provide the closed-loop system (108) with asymptotic stability and the induced L2-

norm performance index given in (61), if there exist continuously differentiable parameter dependent

positive-definite matrix functions P̃(ρ(t)) , S̃(ρ(t)) : F ν
P → Snp++, positive-definite matrices Q̃,

R̃ ∈ Snp++, parameter dependent real matrix functions U(ρ(t)) : F ν
P → Rnp×np , Y(ρ(t)) : F ν

P →

Rnu×np , a positive scalar γ, and real scalars λ2 and λ3 such that the LMI (110) is feasible and such

a control law can then be computed as follows

u(t) = Y(ρ(t))U−1(ρ(t))x(t). (109)
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˙̃
P− R̃ + Q̃ + AU + UTAT + B2Y + YTBT

2 P̃−U + λ2(UTAT + YTBT
2 )

? τ2
nR̃ + F (ντ )S̃− λ2(U + UT)

? ?

? ?

? ?

? ?

R̃ + AτU + λ3(UTAT + YTBT
2 ) µAτU B1 UTCT

1 + YTDT
12

λ2AτU− λ3U
T λ2µAτU λ2B1 0

−R̃− Q̃ + λ3(AτU + UTAT
τ ) λ3µAτU λ3B1 UTCT

1,τ

? −S̃ 0 µUTCT
1,τ

? ? −γ2I DT
11

? ? ? −I


≺ 0.

(110)

Proof. First, we substitute the closed-loop system matrices in the LMI condition (106) given by The-

orem 5, i.e., Acl for A and C1,cl for C1. Next, in order to obtain tractable convex results, we select the

slack variables as V1 , λ1V ∈ Rnp×np , V2 , λ2V, and V3 , λ3V where λ1 = 1 λ2 and λ3 are real

constants. Then, followed by performing a congruent transformation diag
(
UT,UT,UT,UT, I, I

)
on

(106), we define the resultant matrix multiplications as �̃ , UT�U and the new decision variables

as U , V−1 and Y , KU by which the final LMI (110) is obtained and the proof is complete.

4.3.2 Dynamic Output-Feedback Control of LPV Systems with Varying Uncertain

Time-Delay

Assuming τ(t) is a differentiable scalar function representing the varing uncertain time delay:

τ(ρ(t)) = τn(t) + η(t), |η(t)| ≤ µ ≤ τn, (111)
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where τn(t) denotes the nominal time-varying delay and η(t) stands for the time-varying uncertain

part of the delay which is bounded by µ. The major difference compared to the uncertain time

delay (93) discussed in Section 4.3.1 is that (111) considers the nominal delay to be time-varying.

Moreover, the time-varying delay is considered to be dependent on the scheduling parameter vector

and lies in the set T ντ as defined in (59).

Input-Output Approach: Stability and L2-Gain Analysis of LPV Systems with Uncer-

tain Delay

By considering the uncertain time delay (111), the delayed state of the system can be rewritten

as follows

xp(t− τ(t)) = xp(t− τn(t))−
∫ −τn(t)

−τn(t)−η(t)

ẋp(t+ s)ds, (112)

where the time-varying uncertain part of the delayed state is treated as a disturbance and defined

as a new feedback signal

Up(t) , (∆yp)(t) = − 1

µ
√

F (ντ )

∫ −τn(t)

−τn(t)−η(t)

yp(t+ s)ds. (113)

We define a new auxiliary system, ∆, with additional input and output vectors, namely, yp and Up,

and the overall interconnected feedback system can be shown as in Fig. 28.

Figure 28: The overall interconnected system
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The unforced LPV time-delay system is represented in the form of an interconnected feedback

system as

ẋp(t) = A(ρ(t))xp(t) + Aτ (ρ(t))xp(t− τn) + µAτ (ρ(t))X−1
p Up(t) + γ−1B1(ρ(t))w(t),

z(t) = C1(ρ(t))xp(t) + C1,τ (ρ(t))xp(t− τn) + µC1,τ (ρ(t))X−1
p Up(t) + γ−1D11(ρ(t))w(t),

y(t) = C2(ρ(t))xp(t) + C2,τ (ρ(t))xp(t− τn) + µC2,τ (ρ(t))X−1
p Up(t) + γ−1D21(ρ(t))w(t),

yp(t) =
√

F (ντ )Xpẋp(t).
(114)

Next, the small-gain theorem (Lemma 2) is used to derive the stability conditions for the auxiliary

system with additional input and output signals. Accordingly, by considering yp = TypUp Up, and

Up = ∆yp, where both operators TypUp : L2[0,∞] → L2[0,∞] and ∆ : L2[0,∞] → L2[0,∞] are

considered to be input-output stable. The interconnected overall system (TypUp , ∆) is input-output

stable if γ0(∆)γ0(TypUp) < 1, where γ0 is the induced L2 gain. The induced L2-gain of the operator

∆ is found to be bounded as γ0(∆) ≤ µ
√

F (ντ ), hence

‖TypUp‖i,2 <
1

µ
√

F (ντ )
. (115)

The following theorem summarizes the main results to derive a sufficient condition to investigate

the stability and performance analysis of the unforced LPV time-delay system with an uncertain

time-varying delay. To reduce the conservatism, we take the benefit of the Lyapunov-Krasovskii

approach and a quadratic LKF candidate with modified integral terms, which depend explicitly

on the time delay function. The utilized approach avoids model transformation; hence, it leads

to further conservatism reduction on this level. Additionally, the affine Jensen’s inequality (see

Lemma 1), as an efficient class of integral inequality bounding technique, is employed for bounding

the cross-terms in the derivative of the functional. The utilized inequality bounding is affine with

respect to time-delay and takes all the possible intermediate time-delay values into account, so,

unlike traditional bounding techniques, it can provide tighter bounds for the integral cross-terms.
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Theorem 7. The unforced LPV system (57) with an uncertain delay and |η(t)| ≤ µ ≤ τn, over the

defined sets F ν
P and T ντ is asymptotically stable and satisfies the induced L2-norm performance

requirement given by (61), if there exist a continuously differentiable parameter dependent positive-

definite matrix function P(ρ(t)) : F ν
P → Snp++, a parameter dependent symmetric matrix function

Sp(ρ(t)) : F ν
P → Snp , positive-definite matrices Q, R, T ∈ Snp++, real valued matrices V1, V2, V2,

V4, N1, N2, N3 ∈ Rnp×np , and a positive scalar γ, such that the following LMI condition (116)



Σ11 P−VT
1 + ATV2 Σ13 ATV4

? Σ22 VT
2 Aτ −V3 −V4

? ? Σ33 AT
τ V4

? ? ? (1− τ̇)(NT
3 + N3)

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

µVT
1 Aτ VT

1 B1 CT
1 0 τn(t)NT

1

µVT
2 Aτ VT

2 B1 0 0 0

µVT
3 Aτ VT

3 B1 CT
1,τ 0 τn(t)NT

2

µVT
4 Aτ VT

4 B1 0 τn(t)NT
3 0

−Sp 0 µCT
1,τ 0 0

? −γI DT
11 0 0

? ? −γI 0 0

? ? ? −τn(t)T 0

? ? ? ? −τn(t)R



≺ 0,

(116)
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holds, with the variables as

Σ11 = Ṗ + Q +
[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(NT

1 + N1) + τn(t)T + VT
1 A + ATV1,

Σ13 =
[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(−NT

1 + N2) + VT
1 Aτ + ATV3,

Σ22 = τn(t)R + F (ντ )Sp −VT
2 −V2,

Σ33 = −
[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(NT

2 + N2)−Q + VT
3 Aτ + AT

τ V3.

(117)

Proof. The proof begins by suggesting the LKF candidate in the form of

V (xpt , ẋpt ,ρ, t) = V1(xp,ρ, t) + V2(xpt ,ρ, t) + V3(ẋpt ,ρ, t) + V4(xpt ,ρ, t), (118)

where

V1(xp,ρ, t) = xT
p (t)P(ρ(t))xp(t),

V2(xpt ,ρ, t) =

∫ t

t−τn(t)

xT
p (η)Qxp(η)dη,

V3(ẋpt ,ρ, t) =

∫ 0

−τn(t)

∫ t

t+θ

ẋT
p (η)Rẋp(η)dηdθ,

V4(xpt ,ρ, t) =

∫ 0

−τn(t)

∫ t

t+θ

xT
p (η)Txp(η)dηdθ.

We evaluate the derivative of LKF (118) along the trajectories of the system (114), that is

V̇ (xpt , ẋpt ,ρ, t) = V̇1(xp,ρ, t) + V̇2(xpt ,ρ, t) + V̇3(ẋpt ,ρ, t) + V̇4(xpt ,ρ, t), (119)

where the derivative terms are

V̇1(xp,ρ, t) = 2ẋT
p (t)P(ρ(t))xp(t) + xT

p (t)

[ ns∑
i=1

ρ̇i(t)
∂P(ρ(t))

∂ρi(t)

]
xp(t),

V̇2(xpt ,ρ, t) = xT
p (t)Qxp(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τn(t)

∂ρi(t)

)
xT
p (t− τn(t))Qxp(t− τn(t)),
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V̇3(ẋpt ,ρ, t) = τn(t)ẋT
p (t)Rẋp(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τn(t)

∂ρi(t)

) ∫ t

t−τn(t)

ẋT
p (η)Rẋp(η)dη,

V̇4(xpt ,ρ, t) = τn(t)xT
p (t)Txp(t)−

(
1−

ns∑
i=1

ρ̇i(t)
∂τn(t)

∂ρi(t)

) ∫ t

t−τn(t)

xT
p (η)Txp(η)dη.

Using Lemma 1, we bound the integral cross-term appeared in the third and fourth derivative

terms. The affine Jensen’s inequality is a direct bounding technique which enables us to provide a

delayed-scheduled tight upper bound on the time derivative of the LKF and therefore obtain less

conservative results (see (84) and (85)). Next, to derive a relaxed final condition and formulate the

final results in an LMI form suitable for the controller synthesis, we apply the descriptor technique

[28]. To this end, by using the LPV system dynamics (114), I is defined as

2I = 2

[
xT
p (t)VT

1 + ẋT
p (t)VT

2 + xT
p (t− τn(t))VT

3 +

∫ t

t−τn(t)

xT
p (η)dηVT

4

]
(
A(ρ(t))xp(t) + Aτ (ρ(t))xp(t− τn) + µAτ (ρ(t))X−1

p Up(t) + γ−1B1(ρ(t))w(t)−ẋp(t)

)
=0, (120)

where four slack variables Vi ∈ Rnp×np , i = 1, · ·, 4 are introduced through the descriptor technique

[28]. Moreover, the other reason to augment 2I descriptor method’s expression with the derivative

of LKF is that we want V̇aug to depend on ẋpt which enables the design to treat the fast-varying

delay more effectively.

Consider the augmented forward system, i.e.,

yp
z

 = G

Up
w

 as shown in Fig. 28, the assump-

tion ||G||i,2 < 1 is equivalent to [28]

||yp||2L2
+ ||z||2L2

< ||Up||2L2
+ ||w||2L2

. (121)

Inequality (121) satisfies both conditions, the one given in Lemma 2 for the input-output stability

of the LPV system with uncertain time-delay, i.e., ‖TypUp‖i,2 <
1

µ
√

F (ντ )
, and the condition for

the prescribed performance index given in (61). Finally, augmenting the derivative of the LKF by
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descriptor approach’s term (120) and (121) will supply

V̇aug = V̇ (xpt , ẋpt ,ρ, t) + 2I + yT
p (t)yp(t)+ zT(t)z(t)− UT

p (t)Up(t)−wT(t)w(t) ≤ ζT(t)Ωζ(t)< 0,

(122)

where the augmented state vector ζ(t) is defined as

ζT(t) ,
[

xT
p (t) ẋT

p (t) xT
p (t− τn(t))

∫ t
t−τn(t)

xT
p (η)dη UT

p (t)X-T
p wT(t)

]
. (123)

Using the upper bounds for the derivative of the LKF, and substituting the dynamics vectors from

(114) in (122), Ω is obtained as



Σ11 + CT
1 C1 P−VT

1 + ATV2 Σ13 + CT
1 C1,τ ATV4

? Σ22 VT
2 Aτ −V3 −V4

? ? Σ33 + CT
1,τC1,τ AT

τ V4

? ? ? (1− τ̇)(NT
3 + N3)

? ? ? ?

? ? ? ?

µ(VT
1 Aτ + CT

1 C1,τ ) γ−1(VT
1 B1 + CT

1 D11)

µVT
2 Aτ γ−1VT

2 B1

µ(VT
3 Aτ + CT

1,τC1,τ ) γ−1(VT
3 B1 + CT

1,τD11)

µVT
4 Aτ γ−1VT

4 B1

−Sp + µ2CT
1,τC1,τ µγ−1CT

1,τD11

? −I + γ−2DT
11D11


+τn

(
ΓTR−1Γ + ΠTT−1Π

)
,

(124)

where Sp(ρ(t)) , XT
pXp, Γ =

[
N1 0 N2 0 0 0

]
, and Π =

[
0 0 0 N3 0 0

]
. We
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then pre- and post-myltiply (124) by diag{I, I, I, I, I, γI) and apply the Schur complement lemma,

LMI (116) is resulted and the proof is complete.

Dynamic Output-Feedback Gain-Scheduled LPV Controller Design

In this part, we extend the results of Theorem 7 for the synthesis of a robust output-feedback

gain-scheduling H∞ controller for the case of LPV systems with varying uncertain time-delay. Such

a delay-dependent output-feedback controller is sought to accomplish design objectives, namely,

asymptotic internal stability and desired performance index (61) of the closed-loop LPV time-delay

system. To this end, a full-order (nK = np) dynamic output-feedback controller is considered with

following structure

ẋK(t) = AK(ρ(t))xK(t)+Aτ,K(ρ(t))xK(t− τn)+µAτ,K(ρ(t))X−1
K UK(t)+BK(ρ(t))y(t),

u(t) = CK(ρ(t))xK(t)+Cτ,K(ρ(t))xK(t− τn)+µCτ,K(ρ(t))X−1
K UK(t)+DK(ρ(t))y(t),

yK(t) =
√

F (ντ )XK ẋK(t),

(125)

where XK denotes a scaling non-singular matrix. In the controller dynamics (125), the uncertain

part of the delayed state of the controller is treated as a disturbance and defined as a feedback signal

UK(t) = (∆yK)(t) = − 1

µ
√

F (ντ )

∫ −τn(t)

−τn(t)−η(t)

yK(t+ s)ds. (126)

Feeding back the control dynamics (125) into the LPV system dynamics (57), the resultant closed-

loop system will be

ẋcl(t) = Acl xcl(t) + Aτ,cl xcl(t− τn) + µAτ,cl X−1 U(t) + γ−1Bclw(t),

z(t) = Cclxcl(t) + Cτ,cl xcl(t− τn) + µCτ,cl X−1 U(t) + γ−1Dclw(t),

y(t) =
√

F (ντ )Xẋcl(t),

(127)
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where the closed-loop state vector is defined as xcl(t) ,

xp(t)

xK(t)

, U(t) ,

Up(t)
UK(t)

, y(t) ,

 yp(t)
yK(t)

,

X−1 ,

X−1
p 0

0 X−1
K

, and closed-loop state-space matrices are as defined in (64).

The following theorem provides sufficient conditions for the synthesis of a delayed dynamic

output-feedback controller to meet the control design objectives, namely, closed-loop asymptotic

stabilization and a specified level of disturbance attenuation performance (61) for the closed-loop

LPV system with varying uncertain time-delay (127).

Theorem 8. There exists an output-feedback gain-scheduled LPV controller (62) over ρ ∈ F ν
P

and τ ∈ T ντ , to provide the closed-loop system with asymptotic stability and the induced L2-norm

performance specification given in (61), if there are continuously differentiable parameter dependent

positive-definite matrix functions P̃(ρ(t)) : F ν
P → S2np

++ , X(ρ(t)),Y(ρ(t)) : F ν
P → Snp , S̃(ρ(t)) :

F ν
P → S2np , positive-definite matrices Q̃, R̃, T̃ ∈ S2np

++ , real matrices Ñ1, Ñ2, Ñ3 ∈ R2np×2np ,

parameter dependent real matrices Â(ρ(t)), Âτ (ρ(t)) : F ν
P → Rnp×np , B̂(ρ(t)) : F ν

P → Rnp×ny ,

Ĉ(ρ(t)), Ĉτ (ρ(t)) : F ν
P → Rnu×np , DK(ρ(t)) : F ν

P → Rnu×ny , a positive scalar γ, given scalars

λ2, λ3, and λ4 such that the following LMI



Ξ̃11 P̃− Ṽ + λ2A T Ξ̃13 λ4A T µAτ B CT 0 τn(t)ÑT
1

? Ξ̃22 λ2Aτ − λ3Ṽ −λ4Ṽ µλ2Aτ λ2B 0 0 0

? ? Ξ̃33 λ4A T
τ µλ3Aτ λ3B CT

τ 0 τn(t)ÑT
2

? ? ? ÑT
3 + Ñ3 µλ4Aτ λ4B 0 τn(t)ÑT

3 0

? ? ? ? −S̃ 0 µCT
τ 0 0

? ? ? ? ? −γI DT 0 0

? ? ? ? ? ? −γI 0 0

? ? ? ? ? ? ? −τn(t)T̃ 0

? ? ? ? ? ? ? ? −τn(t)R̃



≺0,

(128)
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is feasible, with

Ξ̃11 =
˙̃
P + Q̃ +

[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(ÑT

1 + Ñ1) + τn(t)T̃ + A + A T,

Ξ̃13 =
[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(−ÑT

1 + Ñ2) + Aτ + λ3A T,

Ξ̃22 = τn(t)R̃ + F (ντ )S̃p − 2λ2Ṽ,

Ξ̃33 = −
[
1−

∑ns
i=1±(νi

∂τ
∂ρi

)
]
(ÑT

2 + Ñ2)− Q̃ + λ3(Aτ + A T
τ ),

and Ṽ, A , Aτ , B, C , Cτ , and D are as given in (66).

Proof. By substituting the closed-loop system state vector xcl for xp, and using the LKF candidate

(118) and its derivative (119), applying the affine Jensen’s bounding method, and finally substituting

the closed-loops system dynamics (127), we achieve

V̇aug = V̇ (xclt , ẋclt ,ρ, t)+2I+yT(t)y(t)+zT(t)z(t)−UT(t)U(t)−wT(t)w(t) ≤ ζT
cl(t)Ωclζcl(t)<0,

(129)

where the augmented closed-loop state vector ζcl(t) is defined as

ζT
cl(t) ,

[
xT
cl(t) ẋT

cl(t) xT
cl(t− τn(t))

∫ t
t−τn(t)

xT
cl(η)dη UT(t)X-T wT(t)

]
. (130)

Now, we just need to substitute the closed dynamics (127) in V̇aug (129), and Ωcl is obtained as

given in (124), where closed-loop system matrices Acl, Aτ,cl, Bcl, Ccl, Cτ,cl, Dcl are replaced for

A, Aτ , B1, C1, Cτ , and D11, respectively, and S(ρ(t)) , XTX.

Next, in order to obtain tractable convex results, we select slack variables in (120) as V1 , λ1V ∈

R2np×2np , V2 , λ2V, V3 , λ3V, and V4 , λ4V where λ1 = 1, λ2, λ3, and λ4 are real constants.

Accordingly, V and its inverse are partitioned as V ,

 X N

NT ?

, V−1 ,

 Y M

MT ?

, such

that XY + NMT = I. After substituting the closed-loop matrices (64) into Ωcl, we apply the
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Schur complement to the resulting 9× 9 block matrix. Finally, by defining Z ,

 Y I

MT 0

, and

performing a congruence transformation diag{ZT,ZT,ZT,ZT,ZT, I, I,ZT,ZT} on the 9× 9 block

matrix and redefining the matrix multiplications as �̃ , ZT � Z, LMI (128) is obtained and the

proof is accomplished.

Numerical Example

In this part, we investigate LPV systems with varying uncertain time delays as given in (111).

That is, both nominal and uncertain parts of the delay are considered to be time-varying. Figure

29 presents such case where |η(t)| ≤ µ ≤ τn.

Figure 29: Varying uncertain time delay profile example

As an illustrative example, we consider an LPV state-delayed system (92), where the LPV system
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scheduling parameter is ρ(t) = sin(t), and varying uncertain time delay of the system is

τ(ρ(t)) = τ0 + τn|sin(αt)|︸ ︷︷ ︸
τn(t)

+η(t) ≤ τ , |η(t)| ≤ µ ≤ τn, (131)

and |τ̇ | ≤ ντ = τnα.

Now, we apply the results of Theorem 8 to find an output-feedback controller of the form (125)

to minimize the induced L2-norm for the considered LPV system with varying uncertain time delay

(92). The results of the proposed robust LPV control design are compared with another LPV time-

delay control design, in which a relatively simpler and unimproved LKF candidate, along with a

conservative bounding technique has been utilized. For τ0 = τn = 2, α = 0.25, and |η(t)| ≤ µ ≤

τn = 4, i.e., τ(t) = 2 + 2|sin(0.25t)| + η(t), Table 4 lists the obtained optimal energy-to-energy

performance levels γ of the proposed design and the one in [90] for different maximum time delay

uncertainty values. As expected, due to considering the time-delay uncertainty explicitly in the

design process, employing an improved LKF candidate and the efficient affine Jensen’s inequality

bounding technique, the proposed approach (Theorem 8) is capable of handling much larger allowable

delay uncertainties and provides improved induced L2-norm performance levels compared with the

other controller. Moreover, control design in [90] leads to infeasible results for µ > 3.1

Table 4: Performance levels γ of both methods for different delay uncertainty values µ

Method \ µ 0.5 1 2 3.1 4

[90] 6.42 19.61 54.42 554.77 Inf.

Theorem 2 2.15 2.18 2.24 2.35 2.56

Remark 6. Unlike other methods for time-delay systems analysis, which handle the varying time-

delay uncertainty by considering the largest time-delay value [44], the proposed method (Theorem 8)

addresses the time-delay uncertainty explicitly in the design process; thus, it provides better distur-

bance attenuation, an improved induced L2-norm performance level, and less conservative results for

a larger delay uncertainty range and delay variation rates ντ > 1.

94



4.4 Sampled-Data LPV Control Design

In this part, we propose a delay-dependent sampled-data output-feedback LPV control technique

to address the MAP control problem. The patient’s MAP response dynamics have been captured by

a continuous-time LPV system with varying time-delay. The interconnection of the continuous-time

plant and a digital controller through converter devices forms a hybrid closed-loop configuration.

Therefore, to benefit the wealth of continuous-time control synthesis tools, the input-delay method

has been employed to transfer the hybrid closed-loop system into the continuous-time domain with

system inherent time delay and a delay imposed by the mapping approach. The designed sampled-

data gain-scheduled output-feedback controller is required to establish the closed-loop asymptotic

stability and a prescribed level of performance for the LPV system with an arbitrarily varying time

delay and sampling time, where the final results are provided in a convex LMI constraint setting.

Due to the simplicity and availability of control approaches, the literature on the continuous-

time control system design is rich [74, 91, 92]. However, the controller implementation is usually

fulfilled by a digital instrument in discrete-time. This combination of the continuous-time plant and

the discrete-time digital controller along with the sampling analog-to-digital (A/D) and the holding

digital-to-analog (D/A) converter devices will form sampled-data closed-loop system representation

with a hybrid nature [69]. To this end, the designer is required to find an appropriate discrete-time

controller to provide a guarantee for the stability and the prescribed performance of the closed-loop

hybrid system while taking the converter devices and intersample behavior into account [19]. The

sampled-data control design process is even more demanding when the studied continuous-time plant

is a nonlinear or an LPV system [88]. A general intuitive approach, also known as the indirect digital

controller design, is to discretize the plant and then find a discrete-time controller and then cascade

the digital controller with the continuous-time plant along with the converter devices [19]. Another

indirect method is to take advantage of well-established continuous-time control design methods

to design a controller and then use conventional methods such as trapezoidal approximation [3] to

come up with the controller in the discrete-time domain [69,94]. Despite the simplicity in the design

process, traditionally utilized indirect sampled-data control design approaches fail to guarantee
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stability and desired performance for the closed-loop hybrid dynamical system and also disregard

the effect of sampling/hold rate of converter devices implicitly in the design process, which may

result in the degraded performance of the control design and instability [68]. On the other hand,

authors in [69, 88] used the lifting technique [9] to come up with a direct sampled-data filter or

control design methods for the LPV systems. In the lifting method, first, the continuous-time

plant and the sample and hold converter devices are augmented, and then the augmented plant is

mapped to an equivalent discrete-time system representation followed by a digital control design

process. However, the sampled-data control design methods relying on the lifting approach are

computationally complex and cumbersome [87].

Sampled-Data Controller Design Procedure

We consider the general LPV time-delay system with the state-space representation as in (57),

where the time-varying scheduling parameter vector ρ ∈ F ν
P (58), and τ ∈ T ντ (59).

Due to the digital nature of controllers, in this section, we seek to design a full-order discrete-time

parameter-varying controller of the form

xd(k + 1) = Ad(ρ(k))xd(k) +
∑N
i=1 Aτdixd(k − i) + Bd(ρ(k))y(k),

ud(k) = Cd(ρ(k))xd(k) +
∑N
i=1 Cτdixd(k − i) + Dd(ρ(k))y(k),

(132)

that uses the sampled measurements of the continuous plant to generate a discrete control action,

goes through a zero-order hold device before being inputted to the continuous-time plant. xd(k),

y(k), and ud(k) are the discrete-time signals of controller state vector, measurement, and control

input, respectively. For the sake of brevity, the counter k is chosen to show the sampling instances,

tk, and N denotes the number of back samples of the controller state vector. Figure 30 demonstrates

the configuration of the hybrid sampled-data closed-loop system, which shows the interconnection

of the open-loop continuous-time system and a digital controller along with the signal converter

devices.
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Figure 30: Sampled-data closed-loop system configuration

Unlike continuous-time LPV system in which scheduling parameter vector ρ(t) ∈ F ν
P is contin-

uously being measured in real-time, in sampled-data control design framework, parameter vector is

only measured at sampling instances. Hence, in the continuous-time system, we assume that the

parameter vector does not change in between two consecutive samples and the set of all admissible

parameter trajectories is redefined for the sampled-data system as

ενP,{ρ(t)∈P,ρ(tk+t)=ρ(tk), |ρi(tk+1)−ρi(tk)|≤ νi, k ∈ Z+, i = 1, 2, . . . , ns,∀t ∈ [0,Tk]}, (133)

where Tk denotes the varying sampling period, i.e., the length of time interval [tk, tk+1]. Intercon-

nection of the system (57), the controller (132), and the converters form a closed-loop system Tzw

which maps the disturbance signal w(t) to the desired control signal z(t). Considering the allow-

able parameter trajectories in ενP , the designed sampled-data controller is required to satisfy the

asymptotic stability of the closed-loop system in the face of the parameters and delay variations, and

disturbances to maintain the boundedness of the closed-loop system trajectories, and minimize the

worst case amplification of the desired output, z, to a nonzero disturbance signal, w, with bounded

energy, i.e., solving the problem of γ-suboptimal induced L2-norm (energy-to-energy gain) of the
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mapping Tzw : w→ z given by (61).

Considering a continuous-time full-order controller with a state-space representation as follows

ẋK(t) = AK(ρ(t))xK(t)+ Aτ,K(ρ(t))xK(t− τ(ρ(t))) + AT ,K(ρ(t))xK(tk)+ BK(ρ(t))y(tk),

uK(tk) = CK(ρ(t))xK(tk) + DK(ρ(t))y(tk),

u(t) = uK(tk), tk ≤ t < tk+1,

(134)

where ρ ∈ ενP and ρ(tk) is replaced with ρ(t) for tk ≤ t < tk+1 for the simplicity, emphasizing the

fact that the continuous-time scheduling parameter vector is considered to be piecewise constant and

does not vary in between sampling instances. It should be noted that unlike conventional approaches

where a continuous-time controller is discretized without taking the converter devices into account,

in the proposed sampled-data controller design approach (134), the effects of sampling and holding

devices are taken into consideration. In the sampled-data framework, as shown in Fig. 30, controller

(134) uses discrete-time signals of measurement and the scheduling parameter vector. In order to

obtain a unified state-space continuous-time domain representation, the input-delay approach is

utilized as follows [28]:

u(tk) = t(t− (t− tk)︸ ︷︷ ︸
Tk(t)

) = u(t−Tk(t)), tk ≤ t < tk+1, (135)

where Tk ≤ tk+1 − tk ≤ T̄ and T̄ denotes the maximum sampling interval value. Taking the

advantage of the input-delay approach, the sampling/holding characteristics are captured by defining

a new delay term, Tk. By substituting (135) in (134) the controller state-space model is transferred

into a continuous-time representation as follows

ẋK(t) = AK(ρ(t))xK(t) + Aτ,K(ρ(t))xK(t− τ(ρ(t))) + AT ,K(ρ(t))xK(t−Tk)

+ BK(ρ(t))C2(ρ(t))xp(t−Tk),

u(t) = CK(ρ(t))xK(t−Tk) + DK(ρ(t))C2(ρ(t))xp(t−Tk).

(136)
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Finally, by augmenting the controller (136) and the LPV system (57) and defining the closed-loop

state vector as xT
cl(t) = [ xT

p (t) xT
K(t) ], closed-loop sampled-data system is in the following form

ẋcl(t) = Acl xcl(t) + Aτ,cl xcl(t− τ(t)) + AT ,cl xcl(t−T (t)) + Bcl w(t),

z(t) = Ccl xcl(t) + Cτ,cl xcl(t− τ(t)) + CT ,cl xcl(t−T (t)) + Dcl w(t),

(137)

with closed-loop system matrices

Acl =

A 0

0 AK

,Aτ,cl =

Aτ 0

0 Aτ,K

,AT ,cl =

B2DKC2 B2CK

BKC2 AT ,K

,Bcl =

B1

0

,
Ccl =

[
C1 0

]
,Cτ,cl =

[
C1,τ 0

]
,CT ,cl =

[
D12DKC2 D12CK

]
,Dcl = D11.

(138)

The closed-loop LPV system (137) has two delays: the first one is the inherent system delay, and the

other delay term is imposed using the input-delay approach and the sampling. In the following, we

employ the Lyapunov-Krasovskii approach by using an extended quadratic LKF candidate, which

results in sufficient delay-dependent conditions to guarantee the closed-loop stability and L2-gain

performance of the sampled-data LPV system with arbitrary varying time-delay and sampling rate.

Theorem 9. : There exists a full-order output-feedback gain-scheduled LPV controller (134), over

the sets ενP and T ντ , to asymptotically stabilizes the closed-loop LPV system (137) and satisfies

the induced L2 norm performance level given in (61), with the sampling time Tk ≤ T̄ , if there

exists a continuously differentiable parameter dependent positive-definite matrix function P̃(ρ(t)) :

Rs → S2np
++ , parameter dependent matrix functions X(ρ(t)),Y(ρ(t)) : Rs → Snp , positive-definite

matrices Q̃τ , Q̃T , R̃τ , R̃T , T̃τ ∈ S2np
++ , parameter dependent real matrix functions Â(ρ(t)),

Âτ (ρ(t)), ÂT (ρ(t)) : Rs → Rnp×np , B̂(ρ(t)) : Rs → Rnp×nu , Ĉ(ρ(t)) : Rs → Rnu×np , Ĉd(ρ(t)),

DK(ρ(t)) : Rs → Rnu×ny , a positive scalar γ, and real scalars λ2, λ3, λ4, λ5 ∈ R such that
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Ξ̃11 P̃− Ṽ + λ2A T R̃τ+Aτ+λ3A T R̃T +AT + λ4A T λ5A T B CT

? τ2R̃τ+T
2
R̃T −2λ2Ṽ λ2Aτ − λ3Ṽ λ2AT − λ4Ṽ −λ5Ṽ λ2B 0

? ? Ξ̃33 λ3AT + λ4A T
τ λ5A T

τ λ3B CT
τ

? ? ? Ξ̃44 λ5A T
T λ4B CT

T

? ? ? ? −T̃τ λ5B 0

? ? ? ? ? −γI DT
11

? ? ? ? ? ? −γI



≺0, (139)

is feasible, and the variables in (139) are as follows

Ṽ =

Y I

I X

 ,A =

 AY A

XAY +NAKMT XA

 =

AY A

Â XA

 ,

Aτ =

 AτY Aτ

XAτY +NAτ,KMT XAτ

 =

AτY Aτ

Âτ XAτ

 ,

AT =


B2(DKC2Y + CKMT) B2DKC2

XB2DKC2Y +NBKC2Y

+XB2CKMT +NAT ,KMT
(XB2DK +NBK)C2

=

B2Ĉ B2DKC2

ÂT B̂C2

,

B =

 B1

XB1

 ,C =

[
C1Y C1

]
,Cτ =

[
C1,τY C1,τ

]
,

CT =

[
D12(DKC2Y + CKMT) D12DKC2

]
=

[
D12Ĉ D12DKC2

]
,

Ξ̃11 =

[∑s
i=1±

(
νi
∂P̃
∂ρi

)]
+ Q̃τ − R̃τ + τ2T̃τ + Q̃T − R̃T + A + A T,

Ξ̃33 = −
[
1−

∑s
i=1±

(
νi

∂τ
∂ρi

)]
Q̃τ − R̃τ + λ3(Aτ + A T

τ ),
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Ξ̃44 = −
[
1−

∑s
i=1±

(
νi
∂T
∂ρi

)]
Q̃T − R̃T + λ4(AT + A T

T ). (140)

Proof. The proof relies on employing an LKF candidate of the form

V (xclt , ẋclt ,ρ, t) = V0(xcl,ρ, t) + Vτ (xclt , ẋclt ,ρ, t) + VT (xclt , ẋclt ,ρ, t), (141)

with

V0(xcl,ρ, t) = xT
cl(t)P(ρ(t))xcl(t),

Vτ (xclt , ẋclt ,ρ, t) =

∫ t

t−τ(t)

xT
cl(η)Qτxcl(η)dη +

∫ 0

−τ

∫ t

t+θ

ẋT
cl(η)τRτ ẋcl(η)dηdθ

+

∫ 0

−τ

∫ t

t+θ

xT
cl(η)τTτxcl(η)dηdθ,

VT (xclt , ẋclt ,ρ, t) =

∫ t

t−T (t)

xT
cl(η)QT xcl(η)dη +

∫ 0

−T

∫ t

t+θ

ẋT
cl(η)T RT ẋcl(η)dηdθ,

and the time derivative of LKF is as follows

V̇ (xclt , ẋclt ,ρ, t) = V̇0(xcl,ρ, t) + V̇τ (xclt , ẋclt ,ρ, t) + V̇T (xclt , ẋclt ,ρ, t), (142)

where

V̇0(xcl,ρ, t) = 2ẋT
cl(t)P(ρ(t))xcl(t) + xT

cl(t)

[ ns∑
i=1

ρ̇i(t)
∂P(ρ(t))

∂ρi(t)

]
xcl(t),

V̇τ (xclt , ẋclt ,ρ, t) = xT
cl(t)Qτxcl(t)−

(
1− ρ̇i(t)

∂τ(t)

∂ρi(t)

)
xT
cl(t− τ(t))Qτxcl(t− τ(t))

+τ2ẋT
cl(t)Rτ ẋcl(t)−

∫ t

t−τ
ẋT
cl(η)τRτ ẋcl(η)dη + τ2xT

cl(t)Tτxcl(t)−
∫ t

t−τ
xT
cl(η)τTτxcl(η)dη,

V̇T (xclt , ẋclt ,ρ, t) = xT
cl(t)QT xcl(t)−

(
1− ρ̇i(t)

∂T (t)

∂ρi(t)

)
xT
cl(t−T (t))QT xcl(t−T (t))

+ T
2
ẋT
cl(t)RT ẋcl(t)−

∫ t

t−T

ẋT
cl(η)T RT ẋcl(η)dη.
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The time derivative of LKF (142) will be upper-bounded as follows

V̇ (xclt , ẋclt ,ρ, t)≤ V̇0(xcl,ρ, t) + xT
cl(t)Qτxcl(t)−

(
1−ρ̇i(t)

∂τ(t)

∂ρi(t)

)
xT
cl(t−τ(t))Qτxcl(t− τ(t))

+ τ2ẋT
cl(t)Rτ ẋcl(t)−

[
xcl(t)− xcl(t− τ(t))

]T
Rτ

[
xcl(t)− xcl(t− τ(t))

]
+ τ2xT

cl(t)Tτxcl(t)

−
( ∫ t

t−τ(t)

xcl(η)dη
)T

Tτ

( ∫ t

t−τ(t)

xcl(η)dη
)

+ xT
cl(t)QT xcl(t)

−
(
1− ρ̇i(t)

∂T (t)

∂ρi(t)

)
xT
cl(t−T (t))QT xcl(t−T (t)) + T

2
ẋT
cl(t)RT ẋcl(t)

−
[
xcl(t)− xcl(t−T (t))

]T
RT

[
xcl(t)− xcl(t−T (t))

]
. (143)

Next, to derive relaxed LMI conditions appropriate for the synthesis conditions, we use the

descriptor technique [28], which introduces slack variables V1, V2, V3, V4, and V5 as follows

I =

[
xT
cl(t)V

T
1 + ẋT

cl(t)V
T
2 + xT

cl(t− τ(t))VT
3 + xT

cl(t−T (t))VT
4 +

∫ t

t−τ(t)

xcl(η)dηVT
5

]
(

Acl xcl(t) + Aτ,cl xcl(t− τ(t)) + AT ,cl xcl(t−T (t)) + Bcl w(t)− ẋcl(t)

)
= 0.

(144)

To establish the prescribed performance requirement, we consider the performance index as J =∫∞
t0
−γ2wT(t)w(t) + zT(t)z(t) < 0, and by augmenting (143) with 2I and

dJ

dt
the final inequality is

obtained as follows

V̇ (xclt , ẋclt ,ρ, t) + 2I − γ2wT(t)w(t) + zT(t)z(t) ≤ ζT(t)Ωζ(t) < 0, (145)

where the augmented state vector ζ(t) is defined as

ζT(t) ,
[

xT
cl(t), ẋT

cl(t), xT
cl(t− τ(t)), xT

cl(t−T (t)),
∫ t
t−τ(t)

xT
cl(η)dη, w(t)

]
, (146)
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and

Ω =



Ξ11 P−VT
1 + AT

clV2 Rτ + VT
1 Aτ,cl + AT

clV3

? τ2Rτ + T
2
RT −V2 −VT

2 VT
2 Aτ,cl −V3

? ? Ξ33

? ? ?

? ? ?

? ? ?

RT + VT
1 AT ,cl + AT

clV4 AT
clV5 VT

1 Bcl

VT
2 AT ,cl −V4 −V5 VT

2 Bcl

VT
3 AT ,cl + AT

τ,clV4 AT
τ,clV5 VT

3 Bcl

Ξ44 AT
T ,clV5 VT

4 Bcl

? −Tτ VT
5 Bcl

? ? −γ2I



+ ΓTΓ,

(147)

where

Ξ11 =

[∑ns
i=1±

(
νi
∂P
∂ρi

)]
+ Qτ −Rτ + τ2Tτ + QT −RT + VT

1 Acl + AT
clV1,

Ξ33 = −
[
1−

∑ns
i=1±

(
νi

∂τ
∂ρi

)]
Qτ −Rτ + VT

3 Aτ,cl + AT
τ,clV3,

Ξ44 = −
[
1−

∑ns
i=1±

(
νi
∂T
∂ρi

)]
QT −RT + VT

4 AT ,cl + AT
T ,clV4,

Γ =

[
Ccl 0 Cτ,cl CT ,cl 0 Dcl

]
.

(148)

By choosing the four slack variable matrices in (87) as V1 , λ1V ∈ S2np , V2 , λ2V, V3 , λ3V,

V4 , λ4V, and V5 , λ5V, where λ1 = 1, λ2, λ3, λ4, and λ5 are scalars and V matrix and its inverse

are partitioned as V ,

 X N

NT ?

, V−1 ,

 Y M

MT ?

, such that XY +NMT = I. Next, we
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substitute closed-loop matrices (138) into (147) and then we apply Schur complement formula to the

Ω (147), resulting a 7 × 7 block matrix. Finally, by defining Z ,

 Y I

MT 0

, and performing a

congruence transformation diag
(
ZT,ZT,ZT,ZT,ZT, I, I

)
on the 7× 7 block matrix and redefining

the matrix multiplications as �̃ , ZT � Z, final LMI condition (139) is obtained and the proof is

complete.

4.4.1 Digital Controller Derivation

Once the parameter dependent matrices X, Y, Â, Âτ , ÂT , B̂, Ĉ, and DK satisfying the mentioned

LMI condition (139) are obtained, we compute the square and invertible matrices M and N from

the factorization problem

I−XY = NMT,

and finally the continuous-time practically valid gain-scheduled controller matrices of (134) are

computed in the following order

AK = N−1(Â−XAY)MT,

Aτ,K = N−1(Âτ −XAτY)MT,

BK = N−1(B̂ −XB2DK),

CK = (Ĉ −DKC2Y)M−T,

AT ,K = N−1(ÂT −XB2DKC2Y −NBKC2Y −XB2CKMT)M−T.

(149)

For the implementation purpose, we need to find a discretized equivalence of the designed

continuous-time LPV control design (134) as follows

xd(k + 1) = Ad(ρ(k))xd(k) +
∑l+2
i=l Aτdixd(k − i) + Bd(ρ(k))y(k),

ud(k) = Cd(ρ(k))xd(k) + Dd(ρ(k))y(k).

(150)
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By using the approached suggested in [68], discrete-time controller matrices are computed as follows

Ad = e(tk+1−tk)AK(ρ(tk)) + (e(tk+1−tk)AK(ρ(tk)) − I)A−1
K (ρ(tk))AT ,K(ρ(tk)),

Bd = (e(tk+1−tk)AK(ρ(tk)) − I)A−1
K (ρ(tk))BK(ρ(tk)),

Cd = CK(ρ(tk)),

Dd = DK(ρ(tk)),

Aτdl =
c1
2

(e(tk+1−tk)AK(ρ(tk)) − e(tk+1−τk−tl+1)AK(ρ(tk)))A−1
K (ρ(tk))Aτ,K(ρ(tk)),

Aτdl+1
=
(1+c2

2
e(tk+1−tk)AK(ρ(tk))− c2− c3

2
e(tk+1−τk−tl+1)AK(ρ(tk))− 1+c3

2
I
)
A−1
K (ρ(tk))Aτ,K(ρ(tk)),

Aτdl+2
=
c4
2

(e(tk+1−τk−tl+1)AK(ρ(tk)) − I)A−1
K (ρ(tk))Aτ,K(ρ(tk)),

(151)

with

c1 =
tl+1 − (tk − τk)

tl+1 − tl
, c2 =

(tk − τk)− tl
tl+1 − tl

, c3 =
tl+2 − (tk+1 − τk)

tl+2 − tl+1
, c4 =

(tk+1 − τk)− tl+1

tl+2 − tl+1
.

Thus far, designing the LPV controllers is accomplished. In the next part, the blood pressure

regulation and control problem is introduced as a real-life case study to illustrate the efficiency

and assess the closed-loop performance and the improvements of the proposed gain-scheduling LPV

control scheme in several simulation scenarios.

4.5 Closed-Loop MAP Regulation

4.5.1 MAP Response Continuous-Time LPV Modeling

By considering continuous-time MAP response dynamics (1), the following LPV model is utilized

to capture the MAP response dynamics subject to PHP drug infusion [92,93]

ẋ(t) = − 1

T (t)
x(t) +

K(t)

T (t)
u(t− τ(t)),

y(t) = x(t) + do(t),

(152)
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where the state variable is considered to capture the MAP variations in mmHg from its baseline

value, i.e., x(t) = ∆MAP (t) = MAP (t)−MAPb(t), u(t) is the drug infusion rate in ml/h, y(t) is

the patient’s measured MAP response output in mmHg, and do(t) denotes the disturbance signal.

Next, in order to utilize the proposed time-delay LPV control design tools introduced in Section

4, we need to transform the input delay system dynamics (152) into a tractable state-delay LPV

representation (57). For this purpose, we introduce a low-pass input dynamics

u(s) =
Ω

s+ Λ
ua(s), (153)

where Ω and Λ are positive scalars that are selected based on the bandwidth of the actuators. Then,

the state-space state-delay LPV representation of the MAP response dynamics takes the standard

time-delay LPV representation (57) with the augmented state vector of the system defined as x(t) ,

xa(t) = [ x(t) u(t) xe(t) ]T. w(t) = [ r(t) do(t) ]T stands for the exogenous disturbance vector

including the reference MAP command, r(t), and output disturbance signals. xe(t) is defined for

command tracking purposes, i.e., ẋe(t) , e(t) = r(t)− y(t), and thus the state space matrices of the

MAP response dynamics in the LPV system representation (57) are as follows:

A(ρ(t)) =


− 1
T (t) 0 0

0 −Λ 0

−1 0 0

 ,Aτ (ρ(t)) =


0 K(t)

T (t) 0

0 0 0

0 0 0

 ,B1 =


0 0

0 0

1 −1

 ,

B2 =


0

Ω

0

 ,C1 =

0 0 φ

0 0 0

 ,C1,τ = 02×3,D11 = 02×2,D12 =

0

ψ

 , (154)

where the LPV scheduling parameter vector takes the form ρ(t) = [ K(t) T (t) τ(t) ]T, which

is not known a priori ; however, it is supposed to be measured or estimated in real time. In a

practical scenario, the Bayesian-based square-root cubature Kalman filtering algorithm can be used

to estimate the scheduling parameters (see chapter 2).
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4.5.2 Automated LPV MAP Control Simulation Results and Discussions

The nonlinear patient simulation model developed in Section 1.1.1 is utilized along with the real-

time model parameter estimations provided by the multiple-model square-root cubature Kalman

filtering (MMSRCKF) algorithm (see chapter 2), to validate the proposed robust time-delay LPV

control approaches in the closed-loop simulations. MMSRCKF estimates the model parameters of

the nonlinear patient in real-time and feeds them to the LPV controller as the scheduling parameter

vector, as shown in Fig. 16.

The closed-loop MAP tracking results of the proposed LPV control design methodologies have

been compared against the conventionally implemented fixed-gain PI controller (see [98]) in various

one-hour-long simulation scenarios. Given the following nominal values of the model parameters

and time-delay, K = 0.55, T = 150, and τ = 40, the tuned PI controller transfer function will be in

the following form

Gc(s) = 3 +
0.017

s
, (155)

which is computed based on the desired gain and phase margin control design constraints [105].

For the investigated MAP control task, the controlled output vector, z(t), in (57) is defined to

be z(t) = [φ ·xe(t) ψ ·u(t)]T as (154) suggests. The weighting scalars φ and ψ penalize the tracking

error, xe(t), and the control effort, u(t), respectively to fulfill desired performance objectives.

By employing the LPV controller synthesis results presented in chapter 4, robust delay-dependent

gain-scheduling LPV controllers are designed for systems with either parametric uncertainties or

varying uncertain delay. Such control design is sought to guarantee closed-loop asymptotic stability

and desired energy-to-energy (induced L2-norm) over the entire range of model parameter trajecto-

ries, ρ ∈ F ν
P , and time-delay variation, τ ∈ T ντ , with the varying time-delay uncertainty lies in

the range given in (111).

For this purpose, the results of Theorem 8 have been implemented to design a gain-scheduled

LPV controller for calculating the drug injection rate in the computerized MAP regulation case

107



study. The first scenario has been generated in the simulation environment in the absence of distur-

bances and measurement noise to investigate the controllers’ ability to respond to reference command

changes. Accordingly, the MAP tracking profiles and the associated control efforts are depicted in

Fig. 31, where the favorable controller is sought to regulate the MAP response to desirably track

the commanded MAP profile with a minimal settling time and zero steady-state error while keeping

the response overshoot within a narrow allowable range. As shown, the MAP reference to be tracked

consists of sharp stepwise and ramp changes. According to this figure, the proposed gain-scheduling

controller outperforms the fixed-gain control design in fulfilling the resuscitation goals.

Figure 31: Closed-loop response and PHP injection rate of proposed LPV controller against fixed
structure PI controller for disturbance and noise free case

In the next scenario, we assume that the closed-loop system is subject to measurement noise and

output disturbances. During the resuscitation, a patient’s blood pressure could be influenced by

factors other than the vasoactive drug administration such as hemorrhage, unmodeled physiological

variations, medications interference like lactated ringers (LR) or sodium nitroprusside (SNP), and

any other medical interventions. Figure 23(b) shows a typical profile of such incidents modeled as a
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disturbance signal. The closed-loop simulation results of the proposed LPV control design and PI

controller are shown in Fig. 32 where the closed-loop system is subject to measurement noise and

output disturbances. The considered measurement noise is assumed to be a white noise signal with

an intensity of 10−3.

Figure 32: Closed-loop response and PHP injection rate of proposed LPV controller against fixed
structure PI controller subject to disturbance and measurement noise

As illustrated in Fig. 32, the proposed LPV control method, due to its scheduling structure

and robustness in the design, demonstrates a superior MAP command tracking performance with

respect to the rise time and speed of the response while desirably rejecting the disturbances and

measurement noise. The design parameters are given in Table 5 where the MATLAB® toolbox

YALMIP with MOSEK solver has been used to solve the LMI optimization problems.

Table 5: Design parameters and performance index

λ2 λ3 λ4 φ ψ Λ Ω γ

22.3 0.26 −0.10 1.6 1.1 50 50 26.4
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To evaluate the robustness of the proposed LPV control design (Theorem 3), we investigate

the closed-loop response in the presence of uncertainties on the model parameters. Accordingly, the

time-delay and the sensitivity are considered to be under-estimated by 30%, and the time constant is

considered to be over-estimated by 30%, which corresponds to the worst-case perturbation scenario.

The closed-loop MAP response of the system with the proposed robust LPV control design is com-

pared to the response of the LPV controller designed without considering uncertainty obtained using

the results of Theorem 2. As per Fig. 33, the control without considering uncertainty in the design

demonstrates oscillatory behavior and higher overshoots both in the closed-loop MAP response and

also in the PHP injection control input signal, which are undesirable. As the results suggest, the

proposed robust LPV control design is capable of compensating for parameter uncertainties.

Figure 33: Closed-loop MAP response and control effort (PHP injection rate) of robust LPV con-
troller in the presence of model parameter uncertainty
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Moreover, to examine the robustness of the proposed control scheme in handling the time-varying

delay uncertainty, we created a scenario in which the model’s varying time-delay has been under-

estimated by 50%. The closed-loop MAP response of the system with the proposed robust state-

feedback LPV controller (Theorem 6) has been compared with the response of a fixed-gain PI

controller. Fig. 34 depicts the MAP tracking result of both controllers in this scenario and shows

that the PI controller, which is designed without considering the time-varying delay uncertainty,

demonstrates undesirable oscillatory performance and higher overshoots both in the closed-loop

MAP response tracking and also in the PHP injection control input signal.

Figure 34: MAP response tacking performance and PHP injection rate of LPV controller against
fixed structure PI controller under time delay uncertainty

Finally, we assess the proposed sampled-data controller (discussed in Section 4.4) in MAP ref-

erence tracking while rejecting disturbances. For this purpose, the results of Theorem 9 have been

employed to design a gain-scheduled sampled-data controller (132) for calculating the drug injection

rate in the automated MAP regulation task. To have an effective discrete control design, the choice
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of sampling frequency is crucial and is a trade-off between the quality of the closed-loop system

response and the implementation costs. In the presented simulation scenario, we consider one sam-

ple per two seconds, i.e., 0.5 Hz. Figure 35 depicts the closed-loop performance of the proposed

sampled-data LPV control design, where the closed-loop system is subject to output disturbances

(as shown in Fig. 23(b)). As illustrated, the sampled-data LPV control, due to its scheduling struc-

ture and direct discrete-time synthesis, takes the sampling/hold times into account, has a superior

MAP tracking performance with respect to the rise time and speed of the response while desirably

rejecting the external disturbances.

Figure 35: MAP response tacking performance and PHP injection rate of the proposed sample-data
LPV controller under output disturbance

4.6 Chapter Conclusion

This chapter has proposed sufficient stability and control synthesis conditions for linear param-

eter varying (LPV) systems with time-varying uncertain delays affected by external disturbances.

The uncertain delay has been examined as a nominal varying delay plus a perturbed function, and
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in order to confine the perturbation in a stable domain, an input-output stability approach via the

small-gain theorem results has been investigated. To this end, a Lyapunov-Krasovskii based ap-

proach has been employed, and by utilizing an improved parameter-dependent Lyapunov Krasovskii

functional (LKF) candidate and applying an efficient bounding technique, the affine Jensen’s in-

equality, sufficient stability, and performance conditions have been derived and formulated in terms

of tractable and convex linear matrix inequality (LMI) conditions. Next, by introducing appropriate

slack variables, the final relaxed synthesis conditions have been developed to provide closed-loop

stability and minimize the disturbance amplification in terms of the induced L2-norm performance

specification. The mean arterial blood pressure (MAP) regulation via automated drug administra-

tion example has been studied to assess the proposed control algorithm’s effectiveness compared

to the traditional control tools. To this end, MAP response dynamics to drug infusion has been

characterized in an LPV state-delay representation. The final closed-loop simulations have been con-

ducted to prove the potential adopted methodologies. As the results suggest, the proposed robust

gain-scheduled LPV control design methods have significantly improved the MAP tracking accu-

racy over previous tools in the literature. Moreover, the proposed design favorably regulated the

hypotensive patient’s MAP response to the commanded MAP values while rejecting disturbances

and measurement noises. Furthermore, developed control strategies in this chapter demonstrated a

superior potential in handling model parameter variations, large time-delay and sampling time, and

compensating for fast-varying sampling rates and delay uncertainties.
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5 Conclusion, Contributions and Future Work

In this chapter, the important results and contributions of the dissertation are summarized, and

we make recommendations for future research.

5.1 Summary of the Dissertation

This dissertation’s primary focus was to develop and implement novel Bayesian-based parameter

estimation and advanced gain-scheduling control techniques to be implemented on the automated

blood pressure regulation task in clinical hypotensive patients. Most importantly, considerable effort

has been devoted to study linear parameter varying (LPV) time-delay systems. Accordingly, various

robust delay-dependent control design strategies have been introduced and assessed for such complex

systems in cases of fast parameter variations, uncertainties, modeling mismatches, input and output

disturbances, and measurement noise.

In the first chapter of the dissertation, the importance, necessity, and objectives of the mean ar-

terial blood pressure (MAP) regulation in critical patient resuscitation scenarios have been discussed

in detail. In this regard, a first-order continuous-time linear time-varying model with adjustable pa-

rameters and a varying input delay was considered to characterize patients’ MAP response dynamics

subject to vasoactive drug infusion. The utilized mathematical model effectively addressed the com-

plexity, pharmacological variability, and the intra- and inter-patient variability of the physiological

response to vasoactive drugs.

Chapter 2 proposed a Bayesian-based square root cubature Kalman filtering (SRCKF) approach

for real-time model parameter estimation. Moreover, we used a multiple-model module with a

posterior probability estimation to provide the time delay estimation. The proposed MMSRCKF

estimation algorithm has been implemented on the MAP response model. To this end, we discretized

the model and augmented the state vector with model parameters as unknown states of the sys-

tem. Simulated nonlinear patient and swine animal experimental data have been used to verify the

effectiveness of the developed identification algorithm.

Chapter 3 has proposed and compared two frequency-domain based control design methods,
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namely, parameter-varying loop-shaping and internal model control (IMC), to regulate the blood

pressure in critical patients via vasopressor drug administration. The first method has trans-

formed the infinite-dimensional time-delay problem into a finite-dimensional but non-minimum phase

(NMP) one through using the Padé approximation. The parameter-varying loop-shaping controller

has been designed to make the closed-loop system meet bandwidth requirements in a straightforward

manner while carefully dealing with the limitations imposed by the internal dynamics of the NMP

system. In the IMC control design method, the small-gain theorem has been used to characterize

necessary and sufficient conditions for robust stability of the closed-loop system.

In chapter 4, we addressed the stability analysis and control synthesis problem for LPV time-

delay systems with norm-bounded parametric and/or time-delay uncertainties. First, by considering

a class of LPV systems with additive norm-bounded uncertainties in the state and delayed state ma-

trices and employing Lyapunov-Krasovskii functionals (LKFs), delay-dependent sufficient conditions

were derived and formulated in terms of linear matrix inequalities (LMIs) to ensure the robust sta-

bility and a prescribed energy-to-energy gain performance level. In the next section of the same

chapter, an improved parameter-dependent LKF candidate and an efficient bounding technique, the

affine Jensen’s inequality, were proposed to design a less conservative output-feedback LPV con-

troller. A numerical example was provided and compared the proposed less conservative controller

design scheme to another method in the literature. We further extended the research to address the

robust control synthesis for the class of LPV systems with varying uncertain delays. To this end, we

encountered the problem by considering the uncertain time delay as a nominal varying delay plus

a perturbed function, and in order to confine the uncertainty in a stable domain, an input-output

stability approach via the small-gain theorem results has been examined. Then, stability analysis,

along with robust control synthesis conditions, characterized via a prescribed induced L2-norm of the

closed-loop system, are derived via bounding the derivative of LKF, and the final results have been

formulated in a relaxed parameter-dependent LMI frame. The next section of chapter 4 focused on

the direct sampled-data LPV control design for continuous-time LPV time-delay systems. A combi-

nation of a digital controller and a continuous-time system resulted in a hybrid closed-loop system
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that is challenging to analyze mathematically and needs to be encountered using advanced control

methods that take the sampling behavior into account. We applied the input-delay approach to map

the hybrid closed-loop system into a unified continuous-time domain. The mapping introduced an-

other delay into the system dynamics other than the system’s inherent time-delay. To complete the

discussion, by employing the Krasovskii method of Lyapunov functionals, we proposed sampled-data

output-feedback LPV synthesis conditions to ensure the asymptotic parameter-dependent quadratic

(PDQ) stability and induced L2-norm performance index of the hybrid closed-loop LPV system.

The investigated approach provided a less conservative approach in handling LPV systems with

fast-varying time-delay and potentially large variable sampling rates. Finally, as a benchmark,

we examined the automated MAP control in a hypotensive patient resuscitation where the MAP

response dynamics to drug infusion was characterized in a time-delay LPV representation. The

effectiveness of the proposed gain-scheduling LPV control design tools was evaluated in terms of

MAP command tracking, disturbance rejection, and robustness against uncertainties. The closed-

loop simulation results have been provided to verify the proposed LPV methodology’s performance

and superior potential.

5.2 Future Research Direction

Here are the list of some future research directions to extend the LPV time-delay control design:

• The developed real-time parameter estimation tool (2) and the proposed feedback control

design methods (chapters 3 and 4) can ultimately be implemented and tested on an actual

clinical patient resuscitation after passing the medical standards and safety protocols.

• The application of the proposed LPV time-delay systems analysis and control synthesis ap-

proaches could be extended to the LPV modeling and control of fluid resuscitation in burn

patients.

• The results in chapter 4 were based on satisfying a prescribed energy-to-energy gain (or equiv-

alently induced L2-norm) of the closed-loop system. In future research, we will study designing
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gain-scheduling LPV controllers with different performance objectives, such as energy-to-peak,

peak-to-peak, and multi-objective problems.

• In this dissertation, we derived the delay-dependent output-feedback synthesis conditions based

on the improved LKFs and a less conservative affine Jensen’s inequality bounding technique.

This research could be further extended by examining more complete LKFs to improve the

results and further reduce the conservatism. Additionally, we might examine and compare the

results of other bounding techniques such as Wirtinger inequality to limit the bounding gap

in the integral cross-terms of the LKF derivative.

• Future research will aim to address the sampled-data gain-scheduling LPV control problem in

the presence of time-delay uncertainties and actuator saturation constraints.

• In future research, convergence analysis and the sensitivity of the proposed MMSRCKF algo-

rithm to different initial conditions will be addressed and compared to other available estima-

tions tools, such as EKF, UKF, and PF.

• Finally, future work will focus on the real-time testing and closed-loop implementation of the

proposed MMSRCKF and automated LPV control methodologies for real animal and human

cases.
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