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ABSTRACT 

 

The storage, manipulation, and transfer of the large amounts of data produced by 

high-throughput sequencing instruments represent major obstacles to realizing 

the full potential of this promising technology.  To date, significant effort has been 

devoted to efficiently compressing these cumbersome sequencing data sets, 

which are produced in two main text formats: FASTQ and FASTA. As an 

alternative to the current standard of storing all data, we contend that only high 

quality data need be stored and propose several new file formats to effectively 

refine and efficiently store such data.  The presented file formats are specifically 

designed to store only high quality sequencing reads in space efficient text and 

binary formats.  Additionally, we address the quality and redundancy issues of 

genetic reference databases required for a variety of investigations in the field of 

genomics. Presented modifications of non-alignment based sequence 

comparison algorithms address this challenge and make it possible to cluster 

together dozens of millions of genomic sequences (genes): one of the key 

challenges to reduce redundancy of genomic databases.  
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1. Introduction 

1.1 Challenges in Genomics caused by Next Generation Sequencing 

Technology Advances 

 

Recent successes in medicine [1], biotechnology, and agriculture [3], were 

enabled or facilitated by the quantum leaps of genomics during the last decades. 

New technologies were invented and better and faster ways to use them were 

developed. The first major attainment was the introduction of large-scale 

genomic sequencing in 1977 by Frederick Sanger [4], who developed the Sanger 

sequencing method [5]. For nearly 25 years it remained the most widely used 

method to perform sequencing. In 2004, 454 Life Sciences introduced their first 

commercial Next Generation Sequencing (NGS) instrument, which opened up a 

completely new era of DNA sequencing. Soon, the market was shared among a 

hand full of competitors offering different instruments and sequencing 

approaches. Over the last years, those NGS instruments were improved and 

refined, which opened the doors to cheaper, faster, and more reliable access to 

DNA data. The rapid piling up of more and more sequencing data brought along 

a variety of new challenges in this industry. New methods and tools for data 

analysis were needed, and timely hardware upgrades needed to be performed, in 

order to be able to deal with the exponential growth of available DNA data. 
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1.2 Motivation: High Throughput Sequencing Data Storage, 

Manipulation, and Analysis Challenges 

 

There are five main vendors which offer sequencing instruments. Illumina Inc. 

currently holds around 66% of the total sequencing market [6]. Illumina has been 

able to dominate the high end of the market, because they offer faster and more 

cost effective instruments than their competitors [8]. Other providers are Pacific 

Biosciences (PacBio) [9], Roche (454 Life Sciences) [10], Life Technologies (Ion 

Torrent) [11], and Applied Biosystems (SOLiD) [12]. Each product uses a 

different approach to produce DNA data from samples. For example, all Illumina 

sequencing instruments use the technique of sequencing by synthesis to 

produce DNA sequences, up to 3 billion reads per run [13]. The length of the 

sequences may vary from run to run; however, all sequences produced by the 

same run on an Illumina instrument are of equal length. Ion Torrent, SOLiD, and 

454 instruments produce sequences of different lengths. The accuracy of the 

sequenced nucleotides by Illumina is about 98%, which is slightly lower than 

what some competitive instruments produce, such as the sequencers from 454 

(99.9%), SOLiD (99.9%), or Pacific Bio (99.999%) [14] [15]. Due to the larger 

amount of data Illumina instruments produce, this slight deviation in accuracy can 

confidently be neglected. An overview of the different sequencing instruments 

and their properties can be seen in Table 1 and Table 2 [16].  
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Table 1: Sequencing instruments and their properties; 

Method Pacific Bio 
(single 
molecule 
real-time 
sequencing) 

Ion Torrent 
(Ion 
semiconductor) 

454 
(pyrosequencing) 

Illumina 
(sequencing 
by 
synthesis) 

SOLiD 
(sequencing 
by ligation) 

Sanger 
(chain 
termination) 

Read 
length in 
base 
pairs 

5,500 - 
8,500; 
maximum 
>30,000 

<400 <700 50 - 300 <100 400-900 

Accuracy 99.999% 98% 99.9% 98% 99.9% 99.9% 

Reads 
per run 

50,000 <80 million <1 million <3 billion 1.2 - 1.4 
billion 

N/A 

Time per 
run 

30min - 2h 2h 24h 1 - 10 days 1 - 2 weeks 20min - 3h 

Cost per 
1 million 
bases 

$0.33-$1.00 $1 $10 $0.05 to 
$0.15 

$0.13 $2400 

 

Table 2: The four sequencers currently produced and sold by Illumina; 

 Mi Seq Next Seq 500 Hi Seq 2500 Hi Seq X 

Applications Small genome, 
amplicon, and 
targeted gen panel 
sequencing 

Everyday genome, 
exome, 
transcriptome 
sequencing 

Production-scale 
genome, exome, 
transcriptome 
sequencing 

Population-scale 
human whole-
genome 
sequencing 

Output Range 0.3-15 Gb 20-120 Gb 10-1000 Gb 1.6 - 1.8 Tb 

Run Time 5-65h 12-30h 7h - 6d <3d 

Maximum Read 
Length 

300bp 150bp 125 - 150bp 150bp 

 

The number of existing sequencing instruments continues to increase, and so 

does the amount of data produced every day. At the same time the cost for both, 

instruments and data production, decreases continuously [17]. One of the main 

challenges that arise due to these circumstances is finding an efficient way how 

one can store this new massive amount of data. Hard drive sizes do not grow at 

the same exponential rate as the DNA data production does. Thus, many 

institutions face the problem of insufficient storage capacities. Another major 

challenge is the limitation of computer resources and hardware to adequately 

handle and perform diverse data manipulations. In order to perform certain 
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functionalities, often the entire data set needs to be available in main memory. 

Applying algorithms that exhibit bad time and memory complexities makes the 

use thereof unfeasible.  The analysis of NGS data also faces new challenges. 

Most analysis requires performing comparisons with some sort of references. 

Several years ago, the number of references was limited, and searches against 

references were trivial. Today, with often thousands or millions of potential 

references available, certain steps in the analysis process are very hard to 

perform. Many times there are several copies of the same reference sequence 

present in genomic databases. Reference sequences with only minor differences 

such as single mutations (SNPs) are present numerous times, increasing the 

redundancy of the entire database. Thus, processes with exponential time 

complexities such as sequence alignment techniques are often impractical.  This 

manuscript presents an attempt to address this problem using non pair wise 

comparison based sequence alignment techniques to identify sequence 

dissimilarities, and preliminarily exclude distant sequences from the sequence 

alignment procedure. 
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2. Data Storage and Novel File Formats 

2.1 Problem Description 

 

The currently used data formats for NGS data were designed around 1985, and 

are legacies of the FASTA Software Package introduced by David J. Lipman and 

William R. Pearson [18]. Although the sequencing industry has experienced 

many improvements since then, the file format itself has not changed. The 

amount of data that is produced on a daily basis was not nearly as much as it is 

today, and the file formats were not specifically designed to save space. Today, 

with millions of reads being produced by a single sequencing run, those file 

formats seem quite inadequate due to their initial design [19]. Modern NGS 

instruments produce data ranging from hundreds of Megabytes up to hundreds 

Gigabytes, per run. Many experiments and research projects require sequencing 

to be performed on multiple samples, and the accumulated amount of data often 

goes beyond the capabilities of conventional hard drives. Hence, special storage 

systems, such as RAID servers, frequently come to use [20]. Naturally, such 

solutions tag along vast amounts of expenses: for initial purchase, as well as 

service and upkeep. While one trend goes towards building larger and faster 

storage devices to store the data, another solution is to limit the data that need to 

be saved by utilizing data compression techniques. We differentiate between 

lossy and lossless data compression. While lossless data compression allows 

the original data to be completely reconstructed, lossy compression methods 

discard certain data sets. Similar approaches are used in digital image 
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compression, e.g., in the JPEG file format [21]. NGS data requires the usage of 

lossless data compression, due to the fact that single alteration in DNA 

sequences can change the functionality of genes completely. However, the 

original files obtained from sequencing instruments do contain information that is 

redundant, or irrelevant for most analyses [22]. Sequence headers often occupy 

more space than the actual sequences themselves. Additionally, hundreds of 

thousands of duplicated sequences can be present in a single file. Sequence 

quality scores are redundant information once sequences are known to be of 

good quality, but they are still stored in the FASTQ files.  

Another major challenge besides storage is the need to share data. One cannot 

simply send NGS data via email, but instead has to utilize some sort of online 

storage system to provide others with data. This can be as simple as to grant 

others online access to one's own storage systems or the data can be uploaded 

so certain cloud storage providers. Regardless of where the data is located, in 

order to use someone else's data, it has to be downloaded first, which is usually 

very time consuming. Compressing the data before sharing it with others can 

reduce the traffic needed for uploads and downloads. Assuming a modern 

internet connection with a download bandwidth of 50 Mbit/s (Mega Bit per 

second), a file of 3-4 Gigabyte, such as the human genome, would take around 

10 minutes to download. This might not seem very much, but there are two 

factors that need to be considered, and which can change the required time 

drastically: First, one does not always have a 50 Mbit/s connection. In fact, 

especially in areas without modern infrastructure, average bandwidths are often 
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even below 5 Mbit/s, as it is in Central America, or on the African continent. 

Assuming a bandwidth of 3 Mbit/s for example, it would take more than three 

hours to download the same data set. Secondly, whenever data needs to be 

shared, it often exceeds the amount of just a few Gigabytes. Especially 

unprocessed data sets obtained from a sequencing instrument can easily exceed 

a few hundred Gigabytes. This tremendous amount of data in combination with a 

bad or slow connection will always result in hours, if not days needed for data 

transfers. 

A solution to this problem is to design and develop novel file formats that are 

appropriate and efficient for today's volume of generated sequences, and which 

do not store any redundant information such as sequence headers, sequence 

duplicates, or quality scores. Applications can also benefit from loading 

compressed data, especially if the decompression is done while opening or 

loading the file into memory, instead of involving a separate decompression step. 

Efficient compression allows to massively decrease the time needed to open or 

read a file, which often portraits a massive bottleneck. 

2.2 Current Data Formats to Store High-Throughput Sequencing Data 

 

Data obtained from Illumina sequencing instruments initially is stored in qseq text 

files [23]. Each line within the file represents one record, and each record 

represents one read. Unknown bases are shown as '.' symbols. The files contain 

the following information, which is tab delimited within each row:  
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Instrument name, run number, lane number, tile number, X coordinate, Y 

coordinate, index, read number, sequence, quality, filter. An example is shown in 

Figure 1. 

 

 

Figure 1: Example of a qseq file; 

 

The qseq files are specific to Illumina instruments. Since typical analysis software 

is not tailored to process solely Illumina data, the qseq files are usually converted 

into one of the two standard file formats for NGS data: FASTA and FASTQ files. 

Data produced by the 454 sequencer, the Ion Torrent, or the SOLiD instrument 

generally produce sequences of variable length in each run. The resulting data 

sets are saved in one of the two standard file formats, FASTA or FASTQ.  

FASTQ 

The FASTQ file format has been around for decades, but yet it has remained one 

of the two dominant standards in this industry [23]. FASTQ files generally consist 

of four lines per sequence or record. Each record starts with the '@' symbol in its 

first line, which is followed by the sequence identifier or sequence header. This 

identifier is composed of information about the sequencing instrument that was 

used, the flow cell lane, and other run specific information. The second line holds 

the characters representing the nucleotides (for DNA/RNA sequences) or amino 

SOLEXA5 1       4       1       1137    6698    0       1       

TAAATCAAAAGCACAATGAGATATCAATTTTCACCCACTGGAATGGCTATA     

aa]a]WY]F]aWaZWa]a][a]^]aaaaa_]Y``QaaaUa\aa]]YU`^]P     1 
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acids (for protein/polypeptide sequences). The third line starts with the '+' symbol 

and again shows the sequence identifier. Additional information or sequence 

description can be added in this line. The fourth line holds the quality scores for 

each individual nucleotide or amino acid from the second line, hence the lengths 

of line number two and line number four are identical (Figure 2). The quality 

scores are ASCII characters within a certain range, depending on the scoring 

scheme that was used for sequencing [24]. 

 

Figure 2: One record holding one sequence in FASTQ format; 

 

Line two and four can span over several lines, especially for long sequences, 

genes, or whole genomes that are saved in the FASTQ format. 

FASTA 

The FASTA format has its origins in the FASTP software package (later FASTA 

software package), which was introduced in 1985 [25]. Together with the FASTQ 

format it is among the most widely accepted formats in the fields of genomics 

and bioinformatics. Many search and analysis tools accept sequences in FASTA 

format (several do also accept the FASTQ file format). The first line of each 

record (or sequence) in the FASTA format starts with the '>' symbol, followed by 

an identifier and an optional description (similar to the first line in the FASTQ 
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format). The second line contains the actual sequence, composed of nucleotides 

or amino acids. This sequence can span over several lines, depending on the 

length of the sequence (Figure 3). 

 

Figure 3: One record holding one sequence in FASTA format; 

 

The format of the sequence identifiers is defined by the National Center of 

Biotechnology Information (NCBI). 

SRA 

The SRA file format was introduced as one of the International Nucleotide 

Sequence Databases Collaboration (INSDC) policies [26]. It is one of the 

currently supported file formats at the Sequence Read Archives (SRA) at NCBI, 

and the European Bioinformatics Institute (EBI). It supports data obtained from 

most current sequencing platforms: Roche’s 454, Illumina’s Genome Analyzer, 

Life Technologies’ SOLiD, Helicos’ Heliscope, Pacific Bio’s PacBio, and Life 

Technologies’ Ion Torrent. It performs a lossless compression and allows to 
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retrieve the original FASTQ files, including quality scores and sequence headers 

upon decompressing. 

ZIP and GZIP Compressed Files 

Compression algorithms didn't have much significance until the 1970s, when the 

first versions of the Internet became more popular. Although Huffman coding had 

already been invented in 1951 [27], the need to compress digital data wasn't 

justified until people started sharing more and larger amounts of data over the 

Internet. In 1977, Abraham Lempel and Jacob Ziv were pioneers in digital data 

compression, and they published their revolutionary LZ77 algorithm, which they 

refined again one year later [28]. Ever since then, Huffman Codes and Lempel-

Ziv compression techniques have been the base for many compression 

algorithms or modifications and alterations thereof.  

Huffman Codes 

Huffman Code Algorithms take blocks of input characters of fixed length and 

produce output blocks of variable length. This algorithm is based on the 

probability of the appearances of short substrings. Short substrings are assigned 

to input blocks with high probabilities, and long substrings to those with low 

probabilities. This concept is similar to the Morse code. Table 3 and Figure 4 

illustrate a simple example. A random sample text over the alphabet {A, B, C, D, 

E} is analyzed and the frequencies of each symbol present in the text are 

recorded. 
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Table 3: Frequencies for different symbols; 

Symbol Frequency 

A 23 

B 11 

C 9 

D 6 

E 6 

 

A tree is constructed according to the following scheme: First the two least 

common symbols are connected, which are 'D' and 'E'. Next, 'C' and 'B' are 

connected. The two resulting parent nodes are assigned the values 12 and 20, 

respectively. Those values are the sum of the frequencies of their child nodes. 

They are then connected in the next step to form another parent node with the 

value 32. In the final step, 'A' is added to the tree producing the root node with 

the value 55, which is the sum of all frequencies of all symbols. Each link 

branching to the right is assigned the value 1, and 0 is assigned to the ones 

branching to the left (Figure 4). 

 

Figure 4: The resulting tree from the first steps in Huffman Coding; 
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Next, the code table is generated (Table 4). Starting from the root, each 

character's code corresponds to the sequence of 0s and 1s needed to reach the 

symbol while going through the tree. The code length corresponds to the depth of 

the node within the tree. The total length equals the symbol's frequency 

multiplied by its code length. 

Table 4: Encoding table for the symbols present in the sample text; 

Symbol Frequency Code Code Length Total Length 

A 23 0 1 23 

B 11 100 3 33 

C 9 101 3 27 

D 6 110 3 18 

E 6 111 3 18 

 

Using this table, each character can be encoded using a binary representation. 

The random sample text can be encoded using a total number of 119 bits, while 

the same text saved as a conventional text file (1 byte per character) would 

require 220 bits. The decoding works as follows: Starting from the root, the 

encoded bit-stream is passed through the constructed tree. Every time a node is 

encountered that does not have a child leaf, the appropriate symbol of that node 

is looked up in the table using the binary sequence gone though so far. The next 

decoding step starts at the root node again. 

Huffman coding finds application in many data compression algorithms and 

formats, most worthy of mention in multimedia codecs such as JPEG [29] and 

MP3 [30].  
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Lempel Ziv Coding 

The Lempel Ziv compression algorithm (LZ77) divides the input string into non 

overlapping blocks of different lengths, recording all encountered blocks in a 

dictionary of finite size. The algorithm has five distinct steps: 

1. Dictionary initialization with all blocks of length 1 

2. Look for the longest block B that has appeared in the dictionary 

3. Encode B according to its dictionary index 

4. Add B followed by the first character from the next block to the dictionary 

5. Go back to Step 2 unless the end of the input string is reached 

A simple example consisting of only two symbols {a, b} is shown in Table 5, 

using the dictionary shown in Table 6. 

 

Table 5: The input string showing the corresponding value for each block; 

Input 
String 

a b b a a b b a a b a b b a a a a b a a b b a 

Dictionary 
Index 

0 1 1 0 2 4 2 6 5 5 7 3 0 
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Table 6: The dictionary created for the given input string; 

Index Entry 

0 a 

1 b 

2 ab 

3 bb 

4 ba 

5 aa 

6 abb 

7 baa 

8 aba 

9 abba 

10 aaa 

11 aab 

12 baab 

13 bba 

 

Theoretically, an infinitely large dictionary is possible. In practice however, a 

maximum dictionary size must be defined. No additional words may be added to 

the dictionary once the limit is reached. Instead, the remaining input string is 

being encoded using the largest available words already present in the dictionary 

in each step. It is very obvious that this technique works significantly better for 

longer input strings than for shorter input strings. Decoding follows the very 

straight forward lookup process of the indices in the dictionary. 

The most popular LZ77 application is the DEFLATE method [31], which 

combines LZ77 with Huffman Coding and finds use in various compression 

techniques like ZIP, GZIP, or PNG image files [32]. 
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Burrows Wheeler 

The Burrow Wheeler transform is not a compression algorithm in the 

conventional meaning. None of the characters present in the input change their 

values or are replaced, but instead a permutation of the order of characters is 

performed [33]. The advantage of this technique is that substrings with high 

repetition rates will be rearranged to occur next to each other. This circumstance 

can then be taken advantage of by another compression algorithm to actually 

reduce the size of the data [34]. Since the beginnings of high-throughput 

sequencing (HTS), the Burrows Wheeler transform has found many applications 

in bioinformatics, especially in alignment programs such as Bowtie [35], BWA, 

and SOAP2 [36]. It allows to greatly reduce the memory requirement. 

Assume the sample input text: 'BACABBA'. The algorithm sorts all possible 

rotations of the input text in lexicographic order (Table 7). 

Table 7: All rotations of the sample text, alphabetically sorted with the last character highlighted in 

bold font; 

Index All rotations: Alphabetically sorted: 

0 BACABBA 
 

ABACABB 
 

1 ABACABB 
 

ABBABAC 
 

2 BABACAB 
 

ACABBAB 
 

3 BBABACA 
 

BABACAB 
 

4 ABBABAC 
 

BACABBA 
 

5 CABBABA 
 

BBABACA 
 

6 ACABBAB 
 

CABBABA 
 

 



17 
 

The algorithm takes the very last character of each alphabetically sorted string to 

produce the output sequence: 'BCBBAAA'. The only additional information that 

needs to be saved is the index number of the row, in which the original sequence 

occurs, (4 in this case). Using this number, the original sequence can be 

deciphered. The decoding process works as follows: The encoded word is 

understood as the last column of the sorted table, as seen above. Alphabetically 

sorting the permutations of the encoded word will yield the first column of the 

table. The combination of the first and last columns of the table will yield all pairs 

of successive characters from the input (in a cyclical manner, so that the last and 

first character form a pair). Alphabetically sorting the pairs yields the first and 

second column. Following this method, the entire table can be reconstructed. 

There are two ways to find the original input sequence in this table. First, if the 

index number was saved, it can easily be looked up in the row of the given value. 

The second option is to put a unique character at the end of the sequence, 

before performing the Burrows Wheeler Transform. This unique character will 

appear at the very end of only one sequence in the reconstructed table, which 

will be the decoded input sequence. 

2.3 Proposed Approach 

 

The proposed approach specifically targets the challenges and problems 

discussed in chapter 2.1, and we present a time and memory efficient solution. 

We eliminate unnecessary data from the data sets, and keep only information 

that is known to be of value for further analysis. By removing duplicated 
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sequences, the redundancy is minimized. We keep track of the total number of 

copies of each sequence in a separate copy number array. We filter out 

sequences that do not pass a predefined quality threshold, which allows to 

discard all quality scores. Sequence headers are removed as well. Finally, after 

alphabetically sorting the nucleotide sequences, we can identify common 

prefixes among sequences, which can be substituted by single integer values, 

stored in a parallel array. This new data structure can be saved either as a text 

file, or as a binary file, and operates on both, sequences of equal length and 

sequences of variable length. The binary file format utilizes additional techniques 

and methods to minimize the space needed for a lossless sequence 

compression. 

2.4 Design and Implementation 

 

In this chapter we present the techniques and methods that were designed and 

developed to address the previously discussed problems. Our algorithms can be 

applied to sequencing data composed of sets of reads of equal length (Illumina 

reads), as well as sets of reads of variable length (reads from 454, Ion Torrent, 

SOLiD).  

We have developed various functions to prepare the data for the actual 

compression steps. First, we added an integer array parallel to the sequence 

array, which holds the copy numbers for each sequence. This allows us to 

exclude duplicate sequences within the data set by simply incrementing the 

sequence's copy number for each duplicate that is present. 
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The next important step is to sort the sequences alphabetically. Much thought 

and many experiments were conducted to find the most appropriate sorting 

algorithm for this purpose. Eventually, we decided to implement a Most 

Significant Digit (MSD) Radix Sort [37]. Although a Least Significant Digit (LSD) 

Radix Sort might be easier to implement, the MSD version does come with some 

considerable advantages. While the LSD implementation starts at the position 

that makes the least difference, in the MSD algorithm we start with the position 

that makes the most difference. We divide all of the characters with an equal 

value into their own bucket, and continue to do the same thing with all buckets 

until the array is sorted. The recursive implementation allows performing the sort 

without the need to examine every single character in every single read. As soon 

as a difference in a more significant position is encountered, the sequences are 

separated into new buckets. This means that unique sequences residing in their 

own bucket do not have to be examined all the way to the end of the sequence. 

This saves a lot of time, especially if a very large amount of sequences is present 

in the data set.  

Using these two techniques one can save the data in the so called AS, or ASF 

file format, which stands for Array Subsequences and Array Sequences Flexible, 

respectively. Both file formats start with an entry for the total number of 

sequences present in the data set. The AS format follows up with the read length 

of all sequences. Next, both formats list all sequences that are present in the 

following way: Each row begins with the actual sequence. If the sequence is 

unique, the copy number is not saved, and the next row shows the next 
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sequence. If the sequence is not unique, the copy number follows the sequence 

after a TAB key ('\t'). Then the next sequence follows in the next row (Figure 5).  

 

Figure 5: The AS (left) and the ASF format (right) with increased copy numbers for duplicate 
sequences, alphabetically sorted; 

 

The next technique we applied to the sequences leads to the so called ASC or 

ASFC format, where the 'C' stands for "compressed". DNA sequences often 

share a common prefix, which can be present in hundreds of thousands of 

sequences. In order to reduce the total number of characters that are present in 

the data set, we substitute prefix sequences with integer numbers, which indicate 

the length of the prefix in respect to the previous sequence. The two file formats 

for the ASC and ASFC files are very similar to the AS and ASF formats, with the 
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only difference that each row (except the one holding the first sequence) has its 

prefix with the preceding sequence removed. The ASC file format does not 

require storing the length of the prefixes, since all sequences are of equal length. 

The ASFC file format has each row starting with the integer number representing 

the prefix length, and the only characters that are saved to the file are the 

characters producing the suffixes for the sequences (Figure 6). 
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Figure 6: The AS and ASF formats (left), and the ASC and ASFC formats (right) format showing the 
removal of prefixes for each sequence; 

 

This format already shows a great potential to save on space while at the same 

time it remains readable to human eyes. 
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The compression resulting in the most significant reduction of file sizes is 

achieved using a binary file format to store the NGS data. The general file 

structure remains very similar for the so called ASCB and ASFB file formats, 

which contain reads of equal and flexible length, respectively. That is, first the 

total number of unique sequences is saved to the binary file as an unsigned 

integer value, followed by the sequence length in case of the ASCB file format. 

Then, prefix lengths, copy numbers, and suffix lengths (for ASFB), followed by 

the suffix sequences that represent the differences between sequential reads, 

are stored in binary format (Figure 7).  

 

Figure 7: The design of the ASCB and ASFB formats; in contrary to the AS, ASF, ASC, and ASFC 
formats, the copy numbers are saved before the nucleotide sequences; 

 

The algorithm takes advantage of the small size of the alphabet, NGS data is 

composed of. Instead of using one byte per character, as it is done when saving 

text files, we can fit four characters into one byte using the simple binary 

representation of nucleotides in a base-4 counting system (Table 8): 
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Table 8: Binary representation of the nucleotides A, T, C, G 

A 00 

T 01 

C 10 

G 11 

 

This assumes that no unknown characters ('N') are present in the current data 

set, hence reads containing said characters have been excluded. 

Depending on whether unknown nucleotides represented with the character 'N' 

are excluded or not, a base-4 or a base-5 counting system is used to transform 

blocks of nucleotides into integer values of the appropriate counting system. One 

so called block is the maximum amount of nucleotides the largest possible 

integer variable in C++ (unsigned long long int) can hold in its 8 bytes. Using the 

base-4 counting system, we can fit exactly 32 characters into such a variable, 

without losing any space to overhead. If reads containing unknown nucleotides 

have to be saved, the base-5 counting system allows a maximum of 27 

characters to be saved in the 8 byte variable. This means each block also 

produces a very small overhead. For each sequence we first save one byte 

containing the following information: 

The first bit of the byte indicates whether the copy number of the read equals one 

or not (0=false, 1=true). The second bit indicates whether the prefix length is less 

than 64 (0=false, 1=true). The remaining 6 bits are used to store the length of the 

prefix, as long as it is not more than 63 characters long (63 is the largest number 

one can represent using 6 bits, Figure 8).  
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Figure 8: The first byte holding information about the Copy number and the prefix length; 

 

If the prefix is longer than 63, an additional byte is used to store the prefix length, 

effectively giving this number 14 bits to allow a maximum value of 16,347 for the 

prefix (Figure 9). 

 

Figure 9: If 6 bits are not enough to store the length of the prefix, an additional byte is saved right 
after the first one, effectively giving the prefix length a maximum of 14 bits to be stored; 

 

If the first bit indicated the copy number equals 1, meaning the sequence is 

unique, no additional byte to store the copy number must be saved to the file. If 

said bit was set to zero, meaning that there are several copies of the same 

sequence present, an additional byte will be saved next. This byte is divided as 

follows: the first bit indicates whether the copy number is less than 128. If this is 

true, the following 7 bits are used to store this copy number, allowing a maximum 

of 127 thereof. If the copy number exceeds this value, an additional two bytes are 

added, increasing the total number of bits to 23 (Figure 10). This allows the 

maximum value for the copy number to be 8,388,607. The reason behind adding 

two bytes instead of one is based on the presence of repeatable regions in the 
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sample. Most sequences are usually unique, meaning their copy number equals 

one. Then there are several sequences that are not unique, but have a few 

duplicates across the entire set of sequences. However, if a sequence is present 

in more than 127 copies, it is more than likely that this sequence originates from 

a repeatable region, and its copy number therefore is expected to also exceed 

the maximum value possible, if only one byte would have been added. 

 

Figure 10: The first bite of the first byte for the copy number indicates that the copy number exceeds 
the value 127; two extra bytes are added, raising the new maximum for the copy number to 2

23
 - 1, 

which is 8,388,607; 

 

Since all sequences are of the same length if they are produced with an Illumina 

instrument, no more additional information about the sequences has to be saved. 

However, if the reads are of different lengths, another byte is introduced before 

the actual sequences are saved to file. This additional byte contains on its first bit 

a one, if the suffix length is less than 128 and a zero otherwise. The following 7 

bits are used to write the length of the suffix, as long as it does not exceed 128. If 

this limit is not enough, another byte is combined with the initial 7 bits to allow a 

maximum value of 32,767 for the suffix length (Figure 11). 
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Figure 11: The first bit indicates the suffix length exceeds 127, hence an extra byte is added to 
increase the maximum suffix length to 2

15
 - 1, which is 32,767; 

 

The algorithm then divides the suffix sequences into blocks. Depending on 

whether the base-4 or the base-5 counting system was used, the block size is 

either 32, or 27, respectively. This means every 32 or 27 characters are 

converted into an integer number in the appropriate counting system. This 

number, saved into an unsigned long long integer variable, is then written to the 

binary file using 8 bytes. In order to reduce the amount of overhead, the last 

block, which usually does not require 8 bytes to be saved, has a variable block 

size, which depends on the number of characters present in this last block. 

Following this scheme, the entire set of sequences of equal length is written to 

the binary file (Figure 12). 
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Figure 12: Visual representation of how the data for each individual sequence from an Illumina data 
set is stored in the binary file; the copy number in this example is bigger than 1 (0 bit in a) ), but less 
than 127 (1 bit in b) ); the prefix length is less than 64 (1 bit in a) ); the first two blocks for the suffix 
sequence are depicted in the figure (c) and d) ); there is no need to store the suffix length, since all 

sequences are of same length; 

 

The file reading procedure can be seen as the reversed process of writing the 

binary file. After the number for the total amount of unique sequences is read, the 

sequence length is read in case the data set is composed only of sequences of 

equal length. Next, all the bytes that contain information about the sequences are 

read. The first byte contains the information about the prefix length, and whether 

the copy number of the sequence equals one. If necessary, additional bytes are 

read to calculate the total prefix length and the copy number. If the sequences 

are of variable length, an extra one or two bytes are read in order to retrieve the 

length of the suffix. The suffixes are extracted from the binary file the same way 

they are stored there: First, blocks of 8 bytes are read and stored in an unsigned 
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long long int variable. Those 8 bytes are then transformed back into 32 or 27 

characters, depending on the underlying counting system. The total number of 

blocks can be determined by dividing the already read suffix length by the 

number of nucleotides that fit in one block. The last block can consist of less than 

8 bytes in order to reduce the overhead. Once all blocks are successfully read, 

using the known prefix length, the entire sequence is reconstructed, and the first 

byte from the next record is read. This way, the original data set is rebuilt 

sequence by sequence. 

The compression rates our approach is able to achieve are beyond the average 

compression rate one can expect. The analytical model is built as follows: Let k = 

number of reads, and let n = length of the reads; the total number of nucleotides 

is then k * n. In an ASC file, the number of possible nucleotides at position 1 is 4, 

and 16 at position 2, etc.; thus the number of nucleotides that are not being 

saved can hence be seen as k-4, k-16, etc. for position 1 and 2, respectively. A 

generalization of the model is shown in the following formula, which returns the 

number of nucleotides that are not stored in the ASC format:  

∑     
 

   

 

Assuming x = max (k - 4
l 
) > 0; 

The number of nucleotides that need to be stored is therefore: 
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We have performed many experiments on both random data, as well as actual 

DNA data from sequencing instruments. While the results using the randomly 

generated data very closely resemble what the analytical model predicts, the 

experiments using real data showed very different results. 

The file size reduction depends strongly on the properties of the sequencing 

data. Using the presented formats, the binary file sizes can be as low as 0.7% - 

5% of the original FASTQ file. We compared our results with compression 

techniques that are commonly used in the bioinformatics and genomics industry: 

ZIP, GZIP, and SRA.  

Important to mention is that especially in old data sets, many reads are of very 

poor quality. Our algorithm also checks the quality for each individual nucleotide, 

and excludes reads which do not pass the minimum quality threshold, which is 

set to 10 by default. This led to another important observation: Especially 

databases like the Small Reads Archive have the potential to massively free up 

space, if they were to only accept and store reads of satisfactory quality. 

The time and space complexity of the sorting algorithm we implemented is linear, 

i.e. O(n). This implies that the file conversion time is linearly dependent only on 

the total number of reads.  
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We have chosen four different data sets to illustrate the advantages of our data 

compression over other techniques. The four data sets contain reads from: 

1. Bacteria 
2. Human Transcriptome 
3. Human Genome 
4. Groudwater Metagenome 

 

Generally, converting the original FASTQ files into the SRA file format yields just 

a slightly better result than a ZIP or GZIP compression produces. In all cases, the 

binary compressed file we produced outperformed all other methods by a large 

margin, even if no low quality reads were excluded. A second comparison which 

also included the exclusion of low quality reads resulted in an even more 

significant difference (Table 9). 

Table 9: Our four data sets compared in file sizes (MB) using different file formats; 

Data Set SRA zip gzip FASTQ FASTA 
All reads Low quality reads excluded 

AS ASC ASCB AS  ASC  ASCB 

Bacteria 726 910 910 2,819 1,246 1,055 864 271 871 718 191 

 Human 
transcriptome  

2,237 2,786 2,786 14,520 5,814 293 158 59 141 99 30 

Human 
genome  

14,301 20,916 20,916 105,142 51,153 43,408 38,548 11,870 15340 13,885 3,635 

Groundwater 
metagenome 

4,888 6,566 6,566 20,902 9,264 7,578 6,901 2,134 4670 4,286 1,130 

 

If we take the original FASTQ file sizes as references, we can observe that both 

ZIP and GZIP compression tend to yield files in the range of 19% - 30% of the 

original file sizes. The SRA file conversion delivers files ranging from 15% - 30%, 

depending on the composition of the DNA sequences (Figure 13).  
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Figure 13: FASTQ to SRA compression of the four test files; 

 

The compressed binary files of the nucleotide sequences take up only 10% - 

0.4% of the original FASTQ file sizes. Especially data sets that contain many 

repeated sequences have the potential to produce a significantly smaller binary 

file. If many sequences share a long common prefix, even smaller file sizes can 

be achieved. Since nucleotides with very low quality scores should never be 

included in any type of bioinformatics analysis, we also compared the original 

files to the data sets, which resulted after excluding low quality reads. The file 

sizes again decreased significantly for data sets that contained many such low 

quality reads. For example, while the binary file of the human genome sample 

was almost 12 Gigabytes in size, the cleaned data set was only 3.6 Gigabytes, 

i.e. about 70% smaller. A direct comparison of how much the cleaning of the data 

sets yields can be seen in Figure 14. 
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Figure 14: Human Genome data set, depicting the reduction of file sizes when cleaning the data set 
from duplicate sequences and sequences with quality scores below the threshold 10; 

 

Not only do we compare our approach in terms of resulting file sizes. An almost 

equally important aspect that needs to be considered is the amount of time such 

file conversions take to efficiently convert files from one format to another. The 

sorting algorithms we implemented are a variation of a most-significant digit 

Radix Sort in combination with a Counting Sort. These algorithms run in linear 

time, i.e. O(n), where n is the total number of objects to be sorted. This benefits 

the total runtime enormously. In fact, especially for very large files, the main 

bottleneck in time complexity drifted from execution and calculations to I/O.   

We again compared the times needed to perform various file conversions. Not 

only did we look at the time it takes to decompress SRA files into the common 

FASTQ format, but we also examined the times to compress and decompress 
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files using the GZIP approach. We opposed these times to the results obtained 

from our implementation, which you can see in Tables 10, 11, and 12. 

Table 10: Time comparisons for SRA and GZIP and our implemented file formats; 

Data  
Set 

SRA to 
FASTQ 

FASTQ 
to .GZ 

.GZ to 
FASTQ 

Bacteria 
Genome 

61.8 478.3 56.0 

Human 
transcriptome 

404.3 817.1 176.7 

Human 
genome 

7,901.3 8,366.6 1,141.4 

Groundwater 
metagenome 

347.2 3,322.7 257.0 

 

Table 11: Time comparisons for our implemented file formats (all reads); 

FASTQ 
to AS 

FASTQ 
to ASC 

AS to 
ASCB 

ASCB 
to 

FASTA 

ASCB 
to AS 

ASCB 
to ASC 

ASCB 
(read/write) 

34.0 61.9 41.1 50.5 42.5 69.3 22.0/ 
14.7 

299.7 302.3 11.8 157.4 14.3 20.4 4.7/3.4 

1,434.5 2,670.3 1,632.4 1,962.7 1,692.3 1,791.2 1,002.0/620.9 

263.0 480.7 256.6 560.0 502.5 500.7 181.5/115.2 

 

Table 12: Time comparisons for our implemented file formats (low quality reads excluded); 

FASTQ 
to AS 

FASTQ 
to ASC 

AS to 
ASCB 

ASCB 
to 

FASTA 

ASCB 
to AS 

ASCB 
to ASC 

ASCB 
(read/write) 

35.4 55.9 35.9 43.6 36.1 58.7 19.4/12.1 

276.8 279.3 6.0 122.8 7.5 10.6 2.6/1.9 

1,003.3 1,497.9 631.5 722.2 625.4 1,000.2 336.9/226.0 

228.1 549.6 194.5 252.9 199.6 525.8 115.1/71.9 

 

 

 



35 
 

Figure 15 depicts the times needed using conventional file compression 

techniques to compress and decompress the NGS data, such as SRA and GZIP.  

 

Figure 15: Times for compressing and decompressing data sets using ASCB, SRA, and GZ formats;  

 

Clearly, the SRA file format shows by far the worst performance. We then 

recorded the times of our solution again in two different ways: First we did not 

exclude any reads from the data sets, but then we converted the files again and 

excluded all reads with quality scores below our set threshold of 10. The results 

indicate that the most significant differences are between conventional 

compression techniques and our approach, rather than between the two runs 

with and without the exclusion of sequences. This finding implies that our 

algorithms are generally faster and much more time efficient, and the total 

number of sequences plays a much less significant role. While for example the 

decompressing process of the human transcriptome SRA file to a usable FASTQ 

takes 404 seconds (i.e., 6.7 minutes), the same file can be read within 5 seconds 
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if it were compressed in our binary format. This would allow bioinformatics 

applications to read much smaller files into memory in much less time, while at 

the same time the file reading and decompressing is performed within the same 

process (as opposed to first decompressing a file using SRA / GZIP and then 

separately reading the file into memory using conventional application I/O).  

All experiments were performed on a single computer running on 4xAMD 

Opteron 6300 Series, 2.8GHz 16 Core Socket G34 CPU, 512GB DDR3 1600Mhz 

E/R, 1TB SATA II Enterprise Hard Drive 3.0Gb/s, 7200 RPM.  

2.5 Discussion and conclusion 

 

The proposed algorithms and file structures are expected to have a huge impact 

on how HTS data will be managed in the future. For example, instead of having 

to download all the sequenced data from a metagenomics related project onto 

100 hard drives, the same amount of information can now be saved on just three 

hard drives of the same type. This removes the necessity of large data storage 

devices such as RAID servers. Instead, the three hard drives can directly be 

plugged the workstation the analysis is performed on.  

This advantage in return enables the analysis of HTS data to be done on regular 

computers or workstations, instead of on big data clusters. It takes us closer to 

the goal of bringing analysis and data generation together.  
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3. Gene Cluster Approach to Reduce Redundancy of Reference 

Sequences for High Throughput Sequencing Data Analysis 
 

3.1 Problem Description 

  

Data redundancy is an issue many researchers have to deal with when obtaining 

or downloading data from public storages such as SRA or GenBank [38]. Often 

the sequencing data is outdated or very old. The quality of the sequences 

produced several years ago is not nearly close to today's standards, and thus the 

sequencing data itself many times is of poor quality as well. Many data sets are 

incomplete, are missing annotations, or contain sequences that are too short to 

be used. The redundancy lies not only in the sequences though. A large portion 

of unnecessary data resides in the headers of FASTQ and FASTA files. Many 

times the header lines are much longer than the actual nucleotide sequences, 

thus reducing the total amount of useful information in a FASTA or FASTQ file far 

below 50% of its total file size. Additionally, in several cases the headers are 

even several magnitudes greater than the actual sequences (Figure 16). 
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Figure 16: 36 header lines for one amino acid sequence of length 74, as found in GenBank; 

 

Another major issue is the redundancy of references in reference databases. 

Exact copies of same sequences might be present multiple times, each time with 

different annotation. Sequences with just minor variations between one another 

such as very few or even single SNPs are present in the hundreds of thousands. 

Finding and selecting appropriate references is therefore very difficult, 

sometimes even impossible. The interpretation of results hence is another 
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challenge, especially if many different reference sequences were involved in the 

analysis. For example, assuming one has a 6 Gigabases dataset, which is the 

resulting output from one NGS experiment. Searching for each individual 

sequence in a reference sequence data base would require an immense amount 

of time and resources.  

Most analysis performed on HTS data, such as searching, mapping, or 

assembly, requires performing comparisons to already known data. This pool of 

known data can be tremendously huge, and algorithms with very high time 

complexities, most significantly sequence alignment algorithms, cannot efficiently 

be applied to this large amount of references.  

 

3.2 Gene Cluster Database - Proposed approach 

 

One of the possible solutions to this problem would be the creation of a gene 

cluster database [39]. In this approach gene sequences have to be clustered 

together using a certain degree of maximum dissimilarity. As long as two or more 

sequences are similar to each other within the boundaries of this limit, they form 

their own cluster and a single representative sequence is chosen to correspond 

to this new cluster. Applying this idea to the entire set of known reference gene 

sequences, many almost identical sequences can be eliminated. This clustering 

process can be performed for several dissimilarity thresholds. This allows 

creating different sets of clusters. Depending on the target application, the 
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smallest, most appropriate cluster can be chosen to serve as a reference data 

base. If the analysis requires a higher order of dissimilarity the cluster set can 

easily be exchanged with the one representing the next higher dissimilarity.  

3.3 Large Scale Sequence Clustering Challenge 

 

The biggest problem one would face trying to design and implement mentioned 

sequence clusters is to find the longest common subsequences within a set of 

references [40]. This can be done using a variety of different sequence alignment 

algorithms. Sequence Alignment is the primary technique used to identify regions 

of similarity among multiple DNA, RNA, or protein sequences. Those similarities 

usually imply an evolutionary or structural relation among the analyzed 

sequences. Alignment methods typically produce matrices, with the aligned 

sequences representing the rows thereof. Identical or similar residues ideally 

appear in the same column, enabled by displaying gaps as dashes ("-") (Figure 

17). 

 

Figure 17: Sequence alignment utilizing gap insertions ("-"); 

 



41 
 

Sequence alignment applications result in certain alignment scores by summing 

up the scores for: 

 Aligned pairs of letters  

 Letters aligned with gaps  

 Aligned mismatches [41]  

 

The higher the alignment score, the more similar two or more sequences are said 

to be. 

Sequence alignment can be performed locally [42] or globally [43]. Global 

sequence alignment requires that all letters and gaps in each sequence must be 

aligned. Hence global alignment works best for sequences of same or 

comparable length that are expected to be similar. Local sequence alignment 

works best on sequences of different lengths, which are expected to have certain 

regions of high similarity within the sequences. See Figure 18 for an example of 

global and local alignment, applied to the same sequences. 

 

Figure 18: Global alignment (A) and local alignment (B) performed on the same set of sequences; 
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Another simple approach to visualize the results of alignment is the Dot-matrix 

[44]. Here, each sequence is placed on the edge of a matrix, the first one on the 

top row, the second one along the leftmost column of the matrix. A dot is printed 

at each location where the characters of the two sequences match. Regions of 

similarity are revealed by diagonal lines within the matrix, while isolated dots 

apart from mentioned lines represent random matches (Figure 19).  

 

Figure 19: Dot-matrix for the complete genomes of Salmonella str. LT2 [45] vs. Salmonella str. CT18 
[46]; 

 

There are three techniques commonly used for sequence alignment: The 

Needleman-Wunsch algorithm for global alignment [47], the Smith-Waterman 

algorithm for local alignment [48], and the Longest Common Subsequence (LCS) 

approach [40]. 
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Needleman-Wunsch Algorithm 

The Needleman Wunsch algorithm was designed to compute global alignment. It 

was introduced in 1970 by Saul Needleman and Christian Wunsch. The 

algorithm is an example of dynamic programming [49] and finds the best 

alignment by using optimal alignments of smaller subsequences. It's time 

complexity for two sequences that are both n letters long initially was n3, but the 

algorithm soon was improved to only require n2 [50]. At first, the scoring function 

σ for matches and mismatches, as well as the gap penalty must be defined. A 

simple scoring function would be +1 for matches and -1 for mismatches. Then, 

there are two steps that need to be performed in order to compute the best 

alignment:  

First, fill a scoring matrix T according to the following function: 

  (   )     {

 (       )    (  ( )   ( ))

 (     )              

 (     )              

  

S1 and S2 are sequence 1 and sequence 2, respectively, while i and j represent 

the indices for the matrix and sequence positions. Secondly, use the completed 

matrix T to trace back and find the best alignment. 

Smith-Waterman Algorithm 

The Smith Waterman algorithm was designed to perform local alignment. Temple 

F. Smith and Michael S. Waterman first proposed the variation of the Needleman 

Wunsch algorithm in 1981. Just like the Needleman Wunsch algorithm, it is a 
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dynamic programming algorithm, and it guarantees to find the optimal local 

alignment considering a given scoring system. Unlike the Needleman Wunsch 

Algorithm, negative scores are not allowed, but are instead set to zero. The 

backtracking algorithm starts at the cell with the highest score and ends upon 

reaching a cell with a zero score, which produces the optimal local alignment for 

that location.   

 

Longest Common Subsequence Algorithm 

The LCS algorithm is also based on dynamic programming. The problem it aims 

to solve is as follows: Given two strings, X and Y, the goal is to produce the 

longest common subsequence, which appears left to right in both strings (but not 

necessarily in a contiguous block). For example, for the two strings: 

 X = AEIOUZ 

 Y = AOUSTZ 

The LCS would be AOUZ. A naive solution would generate all subsequences for 

each of the given sequences using all present characters, and look for the 

longest subsequences appearing in both sets. This solution would be classified 

as NP-hard [51], and require an exponential time complexity, which is 

unacceptable especially for very long sequences. The remedy is found in 

dynamic programming, which allows solving the problem in polynomial time, as 

long as the number of sequences remains constant. 
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A solution to this problem cannot be heuristically approached, but must be found 

exhaustively instead. However, all techniques used to perform sequence 

alignment share the common problem of immense time, memory, and processing 

power needed, especially for very large sequences. To align two sequences of 

length m and n, O(mn) time is needed. In order to align a set of k sequences, the 

time complexity increases to O(kmn). 

 

3.4 Basic Idea of Proposed Approach 

 

The following process serves as a preliminary step for pair wise sequence 

alignment in order to exclude sequences that are too distant from each other 

from the process. First, Markov Chain profiles [52] [53] are created for all 

sequences present in the data set. This process is only dependent on the total 

number of sequences and possesses linear time complexity, because each 

profile has to be generated only once. Next follows the pair wise comparison of 

the newly created profiles, in order to find the distance between two sequences. 

For lower order Markov Chain profiles this can be done very fast, and allows 

identifying sequences, which are very distant from each other. One can then 

exclude the flagged sequences from any further alignment process, since it 

would not yield a satisfying result. Although this process requires additional time 

to execute, the overall time will be reduced due to the enormous time complexity 

of pair wise sequence alignment algorithms. 



46 
 

Markov Chain profiles are generally used to probabilistically model state 

transitions where the succeeding states only depend on k number of states. All 

states preceding the last k are irrelevant. In other words, a Markov Chain model 

of order 1 means that every next state is dependent solely on the current one. In 

a Markov Chain model of order 2, every state is dependent on the 2 immediate 

preceding sates. A transition matrix P can be created to illustrate the likelihoods 

to transition from one (current) state into each of the possible following states 

[53]. 

We can model our application the following way: We have 4 distinct states, each 

nucleotide being one of them: A, T, C, G. Each nucleotide has a 25% chance to 

be followed by any of the four nucleotides again. First we can create a transition 

graph (Figure 20). 

 

Figure 20: Transition Graph depicting the chances to change from one state (nucleotide) to another; 
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The transition matrix P created suing these four distinct states looks as follows: 

 

 

If we are looking at the nucleotide Adenine, and we want to calculate the 

probability of encountering Thymine 2 locations away from the current, we need 

to proceed as follows: 

Pr[A -> ? -> T] = 

Pr[A -> A -> T] + Pr[A -> T -> T] + Pr[A -> C -> T] + Pr[A -> G -> T]  = 

0.25 * 0.25 + 0.25 * 0.25 + 0.25 * 0.25 + 0.25 * 0.25 = 0.25 

Now this might seem obvious assuming the probabilities never change, but 

instead remain 0.25 for each and every transition throughout the sequence. In 

reality however, these probabilities differ a lot and depend on the nature of the 

DNA sequence. In an Adenine / Thymine rich region for example, the chances to 

encounter an A or T are much higher than for C and G. For instance, if at the 

current position resides an A, the probabilities can state that with a 45% chance, 

the next nucleotide will also be an A, and a T with 35%. With a chance of only 

15%, the current A is followed by a C, and a G with 5%. On the other hand, if the 

current position shows a C, with the chance of 55%, it is followed by an A, and a 

T with 30%, while with the chance of 5% it is followed by another C, and a G with 
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10%. The probabilities of transitions for current positions T and G can be seen in 

the following new transition graph: 

 

Figure 21: Possible transition graph for the new probabilities in an A/T rich region of the DNA 
sequence; 

 

The new transition matrix looks as follows: 

 

Trying to answer the same question as before, namely the chance to encounter a 

Thymine 2 locations from the current location, which is an Adenine, yields the 

following result: 
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Pr[A -> ? -> T] = 

Pr[A -> A -> T] + Pr[A -> T -> T] + Pr[A -> C -> T] + Pr[A -> G -> T]  = 

0.45 * 0.35 + 0.35 * 0.35 + 0.15 * 0.35 + 0.05 * 0.30 = 0.3475 

Not surprisingly, the value has increased. This way the likelihood of an arbitrarily 

far away nucleotide can be estimated using the shown Markov Chains. 

Before the Markov Chain Profiles are created, we sort the sequences by length. 

This allows removing all sequences which due to their length differences do not 

allow successful alignment to begin with. For example, one sequence is of length 

2000, a second sequence is of length 1000, and the maximum dissimilarity 

threshold is set to 5%; then it is impossible to meet the threshold of 5% (Figure 

22). 

 

Figure 22: All sequences are sorted by length and all sequences which differ beyond a certain 
threshold in their lengths, are excluded; 
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Once all the distances are computed and the set of the remaining sequence has 

been reduced, the sequence alignment can be performed on only a small subset 

of the prior very large data set.  

 

3.5 Implementation 

 

The way we can compare two sequences using Markov Chain profiles is to view 

the cumulative differences as state values. Then the probability of each 

nucleotide depends on k previous nucleotides, where k is the order of the Markov 

Chain profiles. Depending on the highest Markov Chain order, the number of 

states varies. For example, in Markov Chain order 1 (M1), there are only four 

states: A, T, C, G. Proceeding to Markov Chain order 2, the number of states 

increases to 16 (AA, AT, AC, AG, TA, TT, TC, TG, CA, CT, CC, CG, GA, GT, 

GC, GG). The total number of states can be written as 4n, where n is the highest 

order of the Markov Chain profiles. 

A mismatch in one sequence will affect a different number of states, dependent 

on the set order of Markov Chains (Figure 23 and 24).  



51 
 

 

Figure 23: Markov Chain profiles of order 1 with changing states upon encountering a nucleotide 
mismatch; 

 

 

Figure 24: Markov Chain profiles of order 2 with changing states upon encountering a nucleotide 
mismatch; 

 

While the substitution of an A to a G only increases the score for G and 

decreases the score for A in M1, this single substitution affects 4 states in M2, 
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and would affect 8 states in M3. Hence the number of affected states in defined 

to be 2n, where n equals the highest Markov Chain order.  

The worst case cumulative differences can be calculated using the formula: 

2 * n * m 

Where n - Markov Order and m - number of mismatches. 

 

3.6 Higher Order Markov Chain Models for the Long Sequence 

Comparison Problem 

 

We face the following problem: The longer the sequence is, the more deviation 

from the worst case scenario occurs. This happens due to the fact that the same 

n-mers will be hit repeatedly in very long sequences (Figure 25).  

 

Figure 25: The longer the sequences, the higher the probability for a mismatch to alter the state of 
several states repeatedly; 

 

We have developed two data structures in order to provide the necessary 

functionality: Markov_Chains_Profile and Susbequences_Frequency_Array 

(Figure 26). 
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Figure 26: The two classes Markov_Chains_Profile and Subsequences_Frequency_Array, which are 
used to compute the Markov Chain profiles for the sequences and to calculate their distances; 

 

The class Markov_Chains_Profile has two data members and provides several 

methods (Figure 27). 

 

Figure 27: The class Markov_Chains_Profile, its data members, and its methods; 

 

The variable max_subsequence_size_considered represents the highest Markov 

Chain order the object is supposed to implement. The field frequency is an array 

of instances of Subsequences_Frequency_Array. The size of this array is the 
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highest Markov Chain order supported by the object, stored in the variable 

max_subsequence_size_considered.  

The function get_Pointer_to_Frequency_Array provides access to the frequency 

arrays of the object and is used in the process of comparing two profiles. 

The second class we have developed is the Subsequences_Frequency_Array. It 

has three data members: array_size, frequency, and subsequence_length 

(Figure 28).  

 

Figure 28: The class Subsequences_Frequency_Array, its data members, and its methods; 

 

The field subsequence_length represents the highest Markov Chain order an 

instance of this object is expected to support. Its value is passed as an argument 

to the constructor when creating the array within the Markov_Chains_Profile 

object. The field array_size represents to total length of this frequency array, and 
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is calculated by 4l, where l = subsequence_length. This means with increasing 

Markov Chain orders, the array will grow exponentially in size. The field 

frequency is an unsigned integer array of size array_size. It serves as a counting 

array to store the frequencies of occurrences of all possible n-mers. 

The frequency array is built by converting every occurrence of a subsequence of 

length n (n = Markov Chain order) into an integer number. This integer number 

represents a unique index within the frequency array. Every occurrence of a 

certain n-mer will increase the value located at the index in the frequency array 

corresponding to the n-mer's converted integer value. Figure 29 will exemplify 

this procedure: 

 

Figure 29: The procedure of converting of n-mers into integer numbers; 
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Each nucleotide corresponds to a 2-bit number: A=00, T=01, C=10, and G=11. 

All n-mers are investigated converted to their appropriate integer values. These 

integer values then serve as indices for the frequency array, and each 

occurrence of a certain n-mer increases the value present at its representing 

index in the frequency array. 

Once all frequency arrays for all sequences are created, the Markov Chain 

profiles can be compared in order to obtain the cumulative differences among 

them, using the method get_Cumulative_Difference (Figure 30).  

 

Figure 30: The function get_Cumulative_Difference, used to compare two frequency arrays; 

 

The cumulative differences are calculated by taking the sum of all absolute 

values of the differences per location within the frequency arrays frequency1 and 

frequency2: 

∑ |          [ ]             [ ]|

            

 

 

With i going from 0 to array_size-1; 

As an example, assume the frequency arrays frequency1 and frequency2 of two 

Markov Chain profiles to be as follows: 
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frequency1: [1] [3] [7] [0] [9] [5] [3] [0] [0] [1] [0] [3] 

frequency2: [6] [2] [2] [0] [0] [1] [1] [0] [9] [4] [4] [0] 

Then the following absolute differences prevail among them: 

Differences: 7   1   5   0   9   6   2   0   9   3   4   3 

The cumulative difference of Markov Chain profile 1 and Markov Chain profile 2 

is therefore: 7 + 1 + 5 + 0 + 9 + 6 + 2 + 0 + 9 + 3 + 4 + 3 = 49; this will be seen as 

the distance value between the corresponding sequence 1 and sequence 2. 

If we were to use the worst case scenario value as a threshold to filter out distant 

sequences, almost all sequences would be passing this restriction, hence being 

not very effective. To illustrate this problem we performed several simulations 

using randomly generated test sequences of sizes between 100 and 10,000 

nucleotides, which is the typical range of gene lengths. We then computed the 

cumulative differences by inserting random Single Nucleotide Polymorphisms 

(SNPs) in a copy of that same sequence, and compared the results with the 

worst case cumulative differences. This experiment was conducted for each 

Markov Chain order from one to seven. Setting the threshold for dissimilarity to 

10% (which depicts the amount of mismatches between two sequences), we 

compared the average dissimilarities with the worst case dissimilarities. The 

results projected precisely our prediction: For long sequences, the differences 

between the predicted and the actual values are much greater than for short 

sequences (Figure 31). 
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Figure 31: Markov Chain Profile M1 - M5 predictions of cumulative differences (blue columns) versus 
actual cumulative differences (red columns);  

a) illustrates the findings for random sequences of length 100, b) of length 200 and c) of length 1000; 
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While this difference between the worst cases and the average actual cases are 

decreasing with higher Markov Chain orders, one cannot simply choose an 

arbitrarily large Markov Chain order for this purpose. The reason therefore is that 

the higher the Markov Chain order, the larger the number of n-mers that are 

present in the Markov Chain models. At the point where O(n) < O(m4), with n 

being the total number of sequences and m being the highest Markov Chain 

order, this exponentially growing number of n-mers rises to the peak where the 

time needed for computations will not compensate sufficiently for the exclusion of 

sequences from the alignment process. 

 

3.7 Proposed Approach 

 

It is possible to identify alternative thresholds for different sequence lengths and 

different Markov Chain orders to eliminate sequences. These new thresholds are 

found at distance values, which allow 95% or 99% of all sequences to pass, 

while the few remaining outliers will be excluded. Thus, these new boundaries 

serve as the criteria to indicate whether sequences, due to their distances, can 

be excluded from the alignment process. Using three steps of exhaustive 

analysis, those boundaries can be predicted for different sequence lengths, and 

different Markov Chain orders, which can be increased until a 95% or 99% 

threshold that is sufficient enough has been found.  
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Those three steps include analysis with random sequences and random 

mutations (SNPs), real sequences with randomly inserted SNPs, and finally real 

sequences with real mutations.  

 

3.8 Computational Modeling and Validation 

3.8.1 Random Sequences and Random Mutations 

 

In the first analytical modeling we produced randomly generated sequences of 

lengths: 100, 200, 300, 500, 1,000, 2,000, 3,000, 5,000, and 10,000. We then 

introduced mutations at random locations with the following mutation rates: 1%, 

2%, 3%, 5%, 10%, and 15%. We calculated the Markov Chain profile distances 

for all Markov Chain orders from one to six. Each possible combination of 

parameters was executed 1,000 times in order to obtain representative averages 

and standard deviations (Figures 32, 33).  
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Figure 32: Average distance values and standard deviations for random sequences of length 100 for 
different Markov Chain orders and increasing dissimilarities caused by introduced SNPs; 

 

Figure 33: Average distance values and standard deviations for random sequences of length 1,000 
for different Markov Chain orders and increasing dissimilarities caused by introduced SNPs; 
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At the length of 200, with an introduced dissimilarity of 3% and Markov order 3, 

the worst-case cumulative dissimilarity value is 36. However, our calculations 

have shown that setting the threshold to 30 will already include 95% of the 

executions (Figure 34).  

 

Figure 34: Random sequence length: 200; Dissimilarity: 3%; Markov Order: 3; 95% threshold at 30; 
worst case cumulative difference at 36; 

 

Very similar was the result from a different experiment with longer sequences 

(length 1,000), 1% dissimilarity, and Markov order 4. While the worst case 

cumulative difference is 80, the 95% threshold is at 68 (Figure 35). 
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Figure 35: Random sequence length: 1,000; Dissimilarity: 1%; Markov order: 4; 95% threshold at 68; 
worst case cumulative difference at 80; 

 

As we increase the sequence length, our observations reflect exactly what we 

predicted in our analysis: The worst-case cumulative difference value is far from 

the actual cumulative differences, which we observed during the simulations. For 

the next example we then further increased the sequence length to 2,000, 

introduced 3% dissimilarity and applied Markov Chain order 3. While the worst-

case cumulative difference value for this situation is at 360, at 114 we already 

included 95% of all executions, 99% at 124 (Figure 36). 
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Figure 36: Random sequence length: 2,000; Dissimilarity: 3%; Markov order: 3; bin size: 10; 

 

Another property that was expected to have significant influence on the 95% 

threshold is order of dissimilarity percentage. To observe this property we ran the 

experiment on sequences of length 1,000 and used Markov order 4. The worst-

case cumulative difference value is 80, with an introduced dissimilarity of 1%. 

Our 95% threshold was at 68 (Figure 37). 
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Figure 37: Random sequence length: 1,000; Dissimilarity: 1%; Markov order: 4; 

 

The result showed us that the worst-case assumption (80) was quite close to the 

actual worst-case cumulative difference (68), especially when compared with the 

next simulation, where only the dissimilarity was increased to 5%. Now, the 

expected worst-case cumulative difference was at 400, while the actual 95% 

threshold was at exactly half of that value, at 200. Even the 99% mark (212) was 

not significantly closer to the worst-case expectation (Figure 38). 



66 
 

 

Figure 38: Random sequence length: 1,000; Dissimilarity: 5%; Markov order: 4; 

 

This graph can be smoothened out by increasing the bin sizes of the distance 

values on the x-axis from 1 to 10 (Figure 39). 

 

Figure 39: Random sequence length: 1,000; Dissimilarity: 5%; Markov order: 4; bin size increased to 
10; 
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Our analysis showed that with increasing sequence length, even a small increase 

in dissimilarity has a major impact on how close the expected worst-case 

cumulative difference is to the actual measurements. The simulations confirmed 

said predictions.  

3.8.2 Real Sequences and Random Mutations 

 

After the demonstrated simulations had verified the predictions of our analysis, 

we have performed similar applications on real DNA data, instead of randomly 

generated sequences. For this purpose the gene thrA from Escherichia coli K-12 

[54] was taken, which has a length of 2463 nucleotides. We introduced mutations 

of various rates (1%, 2%, 3%, 5%, 10%) at random locations within this 

nucleotide sequence and performed the distance calculations on all Markov 

Chain profiles for the Markov orders from one to six. With an introduced 

dissimilarity of 1%, and a Markov Chain order 1, the estimated worst case 

distance value is 49.26. However, our model has shown that setting the threshold 

to 16 will already result in an inclusion of 95% of all sequences, while a threshold 

of 20 will include 99% (Figure 40). 
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Figure 40: Gene length: 2,463; Dissimilarity: 1%; Markov order: 1;  

 

After increasing the Markov order to 5 with the other parameters unaltered, the 

95% and 99% thresholds yielded a distance value of 196 and 203, respectively, 

while the worst case distance increased to 246.3 (Figure 41). 
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Figure 41: Gene length: 2,463; Dissimilarity: 1%; Markov order: 5; bin size increased to 10; 

 

The same gene was again mutated at random locations with a dissimilarity rate 

of 10%. Using both Markov Chain orders 1 and 3, a major difference between the 

worst case sequence distances and the 95% threshold for each were observed 

(Figures 42, 43).  
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Figure 42: Gene length: 2,463; Dissimilarity: 10%; Markov order: 1; 

 

 

Figure 43: Gene length: 2,463; Dissimilarity: 10%; Markov Order: 3; 

 

These observations are in line with what the simulations using randomly 

generated sequences were suggesting, as Figures 44 and 45 illustrate. 
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Figure 44: Sequence length (gene and random simulation): 2,463; Dissimilarity: 1%; Markov order: 1; 

 

 

Figure 45: Sequence length (gene and random simulation): 2,463; Dissimilarity: 1%; Markov order: 5; 

 

3.8.3 Real Sequences and Real Mutations 

 

To complete the validation of the proposed work, several examples of Segment 6 

from the H1N1 influenza virus were chosen, where a certain degree of SNP 

occurrences was expected. For this purpose, six such sequences were 

investigated, whose length is 1410 nucleotides each. The samples were taken 
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from different geographical locations: 1 from Georgia [55], 1 from Illinois [56], 1 

from Stockholm [57], 1 from Strasbourg [58], 1 from Texas [59], and 1 from 

Thailand [60]. Upon aligning each sequence with one another, the following 

similarities were found: 

Table 13: Similarities of H1N1 Influenza Virus, Segment 6; 

 

 

Next, Markov Chain models have been used to calculate the distances between 

the sequences. This gave us the opportunity to estimate whether our model 

could accurately be used to find the maximum distance values that should be 

considered for a sequence not to be excluded. Since the Segment 6 of the 

influenza virus is of length 1410 nucleotides, we compared the distances with 

simulated sequences of length 1410, and assumed a dissimilarity of 1%. When 

we compared the actual distances to the worst case scenario distance values, 

we observed the expected big differences. We then looked at the 95% and 99% 
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thresholds and found those to be a lot closer to the actual values of the real gene 

distances (Figure 46).  

 

Figure 46: Real gene distance values (H1N1 influenza virus segment 6) compared to simulated 
sequences of the same length for Markov Chain orders 1-6; 

 

3.9 Discussion and Conclusion 

 

We have successfully shown that our model can adequately be applied to real 

data. The distance scores we retrieve hold the information whether a sequence 

needs to be excluded from the alignment process or not. By having a given 

sequence length, we can set a distinct threshold to keep at least 95% or 99% of 

all sequences that possess a distance value below said threshold. We can 

choose the proper Markov Chain model in order to estimate the maximum 

allowed distance. The simulations predicted that in lower Markov Chain models 
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the differences between the thresholds we set and the worst cases are much 

larger than at higher Markov Chain models. Increasing sequence lengths were 

expected to have the same effect. Our application on real data has proven those 

predictions right (Figure 47 + 48).  

 

Figure 47: With increasing sequence length, the difference between worst case dissimilarity and the 
threshold to include 95% or 99% of the sequences increases; 1% dissimilarity; 

 

 

Figure 48: The difference between the worst case dissimilarity and the threshold to include 95% or 
99% of the sequences decreases with higher Markov Chain orders; dissimilarity 1%; 

 

The higher the dissimilarity of the sequences is, the greater is the deviation of the 

worst case scenario from the actual distance values and from the 95% or 99% 
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thresholds. Previous examples (1% dissimilarity) have been evaluated with a 2% 

(Figure 49) and a 5% (Figure 50) dissimilarity as well for confirmation. 

 

Figure 49: Increasing Markov Chain orders reduce the differences between the worst case 
cumulative distance values and the thresholds for 95% and 99%; increasing dissimilarities (here 2%) 

have the opposite effect; 
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Figure 50: Higher rates of dissimilarities (here 5%) increase the gap between worst case cumulative 
differences and the thresholds for 95% and 99%; 

 

The presented solution will allow to greatly improve the times needed to perform 

pair-wise sequence alignment, because we reduce the total number of 

comparisons that need to be performed. With the information one has about the 

data set, the maximum allowed threshold will be calculated and sequences will 

be excluded if they score above this threshold. In combination with the binary 

data compression introduced in the beginning of this dissertation, the resulting 

data set will only require a fraction of the space it initially needed. Additionally, 

the now much smaller data set is also cleaned of low quality reads and other 

redundant information such as sequence headers and quality scores.  
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4. Conclusion and Future Work 
 

The presented work addresses two of the major challenges in HTS data analysis. 

Using the proposed approaches one can reduce the file sizes of the sequences 

produced by NGS instruments by 95% - 99%. This lessens the amount of hard-

disk space required to store the data sets and allows a much faster transmission 

over the internet thereof. Additionally, the time needed to read and write to the 

proposed data formats is several magnitudes smaller than what alternative 

compression formats require. Where once storage clusters and machines with 

high end processing powers were needed, many problems can now be dealt with 

right there where the data was created, without the need to move it. 

Furthermore, the computation times needed for some of the most time 

consuming analytical procedures in genomics are decreased significantly. Via the 

proposed method, one can preemptively reduce the size of a data set before time 

consuming alignment procedures are applied. Utilizing Markov Chain models to 

identify dissimilarities amongst sequences, distant sequences can be excluded 

from the time consuming sequence alignment process. This made it possible to 

cluster over 9 million gene sequences into 6 million clusters with one 

representative sequence each within several hours - a process previously 

expected to have requirements of vast proportions.  

During the course of development to facilitate the presented approaches, several 

data structures and algorithms have been implemented. They do not only serve 

as tools to address the discussed challenges, but are also applied in attempts to 
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deal with other big-data problems faced in the NGS data analysis and genomics, 

such as pathogen detection in presence of complex environments, analysis of 

metagenomic samples, and copy number variation analysis. 
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