Novel Algorithms
for the Analysis and Manipulation
of Short Genomic Sequences

A Dissertation
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By
Otto Dobretsberger

May 2014

Novel Algorithms
for the Analysis and Manipulation
of Short Genomic Sequences

Otto Dobretsberger

APPROVED:

Dr. loannis Pavlidis

Dr. Yuriy Fofanov

Dr. Nikolaos V. Tsekos

Dr. William Widger

Dr. Jehan-Francgois Paris

Dean, College of Natural Sciences and Mathematics

ACKNOWLEDGEMENTS:

| wish to express sincere appreciation to the Department of Computer Science
for their extended long-term support and especially to Dr. Yuriy Fofanov for his

vast reserve of patience and knowledge.

| would like to show my gratitude to Dr. William Widger, Dr. loannis Pavlidis, Dr.
Nikolaos Tsekos, and Dr. Jehan-Francois Paris for serving as members of the

dissertation committee.

| am indebted to my numerous colleagues for their support and particularly to my
teammates from the Institute for Pharmacology and Toxicology at UTMB

Galveston.

This dissertation would have never been completed without the encouragement
and devotion of my family and friends, especially my parents Otto Dobretsberger,

MD, and Elfriede Dobretsberger, as well as my fiancée Kimberly Hartman.

Novel Algorithms
for the Analysis and Manipulation
of Short Genomic Sequences

An Abstract of a Dissertation
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By

Otto Dobretsberger

May 2014

ABSTRACT

The storage, manipulation, and transfer of the large amounts of data produced by
high-throughput sequencing instruments represent major obstacles to realizing
the full potential of this promising technology. To date, significant effort has been
devoted to efficiently compressing these cumbersome sequencing data sets,
which are produced in two main text formats: FASTQ and FASTA. As an
alternative to the current standard of storing all data, we contend that only high
guality data need be stored and propose several new file formats to effectively
refine and efficiently store such data. The presented file formats are specifically
designed to store only high quality sequencing reads in space efficient text and
binary formats. Additionally, we address the quality and redundancy issues of
genetic reference databases required for a variety of investigations in the field of
genomics. Presented modifications of non-alignment based sequence
comparison algorithms address this challenge and make it possible to cluster
together dozens of millions of genomic sequences (genes): one of the key

challenges to reduce redundancy of genomic databases.

Table of Contents

IR 1 Yo [T £ o PR 1
1.1 Challenges in Genomics caused by Next Generation Sequencing
Technology AQVANCES...........cooiiiiiiiiii e 1
1.2 Motivation: High Throughput Sequencing Data Storage, Manipulation, and
ANAlYSIS ChalleNgES.......coviiiiiiiiiiiiiiiieeeeee e 2

2. Data Storage and Novel File FOrmatsccvvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 5
2.1 Problem DESCIIPLIONuuuuuittiiiiiiiiiitieiieeibieee bbb 5
2.2 Current Data Formats to Store High-Throughput Sequencing Data............ 7
2.3 Proposed APPIOACKoooviiiiiie e 17
2.4 Design and Implementationooouuuiiiiiie e 18
2.5 Discussion and CONCIUSION........uuuuuuuuuriiiiiiiiiiiiiiiiiiiiieiineeeneeeananaae 36

3. Gene Cluster Approach to Reduce Redundancy of Reference Sequences for

High Throughput Sequencing Data Analysiscccooovieeeiiiiiiiiiiee e, 37
3.1 Problem DeSCHPLION.........uuiiie e e e e e e e e e e eeeanes 37
3.2 Gene Cluster Database - Proposed approachccccevvvvviiiiiiieeeeeeennnns 39
3.3 Large Scale Sequence Clustering Challenge...............ccooovvviiiiiiiiiieeeeeennn, 40
3.4 Basic Idea of Proposed AppProach...........ccocooovvvviiiiiiii e, 45
3.5 IMPIEMENTALION ... 50
3.6 Higher Order Markov Chain Models for the Long Sequence Comparison
(0]] T o T 52
3.7 Proposed APPrOACKuuuiiiii e 59
3.8 Computational Modeling and Validation...............cccoooeieeiiiiiiiiiieieeeeeeeeeeas 60
3.8.1 Random Sequences and Random MutationsS.............cccoevvvvviiiiieeeeeeennnn, 60
3.8.2 Real Sequences and Random Mutations............ccccoeeeevvvviiiiiiiiieeeeeeeeenns 67
3.8.3 Real Sequences and Real Mutations...............ccceeiiiieeiiiiiiiiiiec e, 71
3.9 Discussion and CONCIUSIONoooiiiiiiiiii e 73

4. Conclusion and FULUIE WOIKcooiiiieiiiiiiie e e e e e e eeeeees 77

] (=] (=] [3 79

vi

1. Introduction

1.1 Challenges in Genomics caused by Next Generation Sequencing
Technology Advances

Recent successes in medicine [1], biotechnology, and agriculture [3], were
enabled or facilitated by the quantum leaps of genomics during the last decades.
New technologies were invented and better and faster ways to use them were
developed. The first major attainment was the introduction of large-scale
genomic sequencing in 1977 by Frederick Sanger [4], who developed the Sanger
sequencing method [5]. For nearly 25 years it remained the most widely used
method to perform sequencing. In 2004, 454 Life Sciences introduced their first
commercial Next Generation Sequencing (NGS) instrument, which opened up a
completely new era of DNA sequencing. Soon, the market was shared among a
hand full of competitors offering different instruments and sequencing
approaches. Over the last years, those NGS instruments were improved and
refined, which opened the doors to cheaper, faster, and more reliable access to
DNA data. The rapid piling up of more and more sequencing data brought along
a variety of new challenges in this industry. New methods and tools for data
analysis were needed, and timely hardware upgrades needed to be performed, in

order to be able to deal with the exponential growth of available DNA data.

1.2 Motivation: High Throughput Sequencing Data Storage,
Manipulation, and Analysis Challenges

There are five main vendors which offer sequencing instruments. Illlumina Inc.
currently holds around 66% of the total sequencing market [6]. lllumina has been
able to dominate the high end of the market, because they offer faster and more
cost effective instruments than their competitors [8]. Other providers are Pacific
Biosciences (PacBio) [9], Roche (454 Life Sciences) [10], Life Technologies (lon
Torrent) [11], and Applied Biosystems (SOLID) [12]. Each product uses a
different approach to produce DNA data from samples. For example, all lllumina
sequencing instruments use the technique of sequencing by synthesis to
produce DNA sequences, up to 3 billion reads per run [13]. The length of the
sequences may vary from run to run; however, all sequences produced by the
same run on an lllumina instrument are of equal length. lon Torrent, SOLID, and
454 instruments produce sequences of different lengths. The accuracy of the
sequenced nucleotides by lllumina is about 98%, which is slightly lower than
what some competitive instruments produce, such as the sequencers from 454
(99.9%), SOLID (99.9%), or Pacific Bio (99.999%) [14] [15]. Due to the larger
amount of data Illlumina instruments produce, this slight deviation in accuracy can
confidently be neglected. An overview of the different sequencing instruments

and their properties can be seen in Table 1 and Table 2 [16].

Table 1: Sequencing instruments and their properties;

Method Pacific Bio lon Torrent 454 lllumina SOLID Sanger
(single (lon (pyrosequencing) | (sequencing | (sequencing | (chain
molecule semiconductor) by by ligation) termination)
real-time synthesis)
sequencing)

Read 5,500 - | <400 <700 50 - 300 <100 400-900

length in | 8,500;

base maximum

pairs >30,000

Accuracy | 99.999% 98% 99.9% 98% 99.9% 99.9%

Reads 50,000 <80 million <1 million <3 billion 12 - 14| NA

per run billion

Time per | 30min - 2h 2h 24h 1-10days | 1-2weeks | 20min - 3h

run

Cost per | $0.33-$1.00 | $1 $10 $0.05 to | $0.13 $2400

1 million $0.15

bases

Table 2: The four sequencers currently produced and sold by Illumina;

Mi Seq Next Seq 500 Hi Seq 2500 Hi Seq X

Applications Small genome, | Everyday genome, | Production-scale Population-scale

amplicon, and | exome, genome, exome, | human whole-
targeted gen panel | transcriptome transcriptome genome
sequencing sequencing sequencing sequencing

Output Range 0.3-15 Gb 20-120 Gb 10-1000 Gb 16-18Th

Run Time 5-65h 12-30h 7h - 6d <3d

Maximum Read | 300bp 150bp 125 - 150bp 150bp

Length

The number of existing sequencing instruments continues to increase, and so

does the amount of data produced every day. At the same time the cost for both,

instruments and data production, decreases continuously [17]. One of the main

challenges that arise due to these circumstances is finding an efficient way how

one can store this new massive amount of data. Hard drive sizes do not grow at

the same exponential rate as the DNA data production does. Thus, many

institutions face the problem of insufficient storage capacities. Another major

challenge is the limitation of computer resources and hardware to adequately

handle and perform diverse data manipulations. In order to perform certain

functionalities, often the entire data set needs to be available in main memory.
Applying algorithms that exhibit bad time and memory complexities makes the
use thereof unfeasible. The analysis of NGS data also faces new challenges.
Most analysis requires performing comparisons with some sort of references.
Several years ago, the number of references was limited, and searches against
references were trivial. Today, with often thousands or millions of potential
references available, certain steps in the analysis process are very hard to
perform. Many times there are several copies of the same reference sequence
present in genomic databases. Reference sequences with only minor differences
such as single mutations (SNPs) are present numerous times, increasing the
redundancy of the entire database. Thus, processes with exponential time
complexities such as sequence alignment techniques are often impractical. This
manuscript presents an attempt to address this problem using non pair wise
comparison based sequence alignment techniques to identify sequence
dissimilarities, and preliminarily exclude distant sequences from the sequence

alignment procedure.

2. Data Storage and Novel File Formats

2.1 Problem Description

The currently used data formats for NGS data were designed around 1985, and
are legacies of the FASTA Software Package introduced by David J. Lipman and
William R. Pearson [18]. Although the sequencing industry has experienced
many improvements since then, the file format itself has not changed. The
amount of data that is produced on a daily basis was not nearly as much as it is
today, and the file formats were not specifically designed to save space. Today,
with millions of reads being produced by a single sequencing run, those file
formats seem quite inadequate due to their initial design [19]. Modern NGS
instruments produce data ranging from hundreds of Megabytes up to hundreds
Gigabytes, per run. Many experiments and research projects require sequencing
to be performed on multiple samples, and the accumulated amount of data often
goes beyond the capabilities of conventional hard drives. Hence, special storage
systems, such as RAID servers, frequently come to use [20]. Naturally, such
solutions tag along vast amounts of expenses: for initial purchase, as well as
service and upkeep. While one trend goes towards building larger and faster
storage devices to store the data, another solution is to limit the data that need to
be saved by utilizing data compression techniques. We differentiate between
lossy and lossless data compression. While lossless data compression allows
the original data to be completely reconstructed, lossy compression methods

discard certain data sets. Similar approaches are used in digital image

compression, e.g., in the JPEG file format [21]. NGS data requires the usage of
lossless data compression, due to the fact that single alteration in DNA
sequences can change the functionality of genes completely. However, the
original files obtained from sequencing instruments do contain information that is
redundant, or irrelevant for most analyses [22]. Sequence headers often occupy
more space than the actual sequences themselves. Additionally, hundreds of
thousands of duplicated sequences can be present in a single file. Sequence
guality scores are redundant information once sequences are known to be of

good quality, but they are still stored in the FASTQ files.

Another major challenge besides storage is the need to share data. One cannot
simply send NGS data via email, but instead has to utilize some sort of online
storage system to provide others with data. This can be as simple as to grant
others online access to one's own storage systems or the data can be uploaded
so certain cloud storage providers. Regardless of where the data is located, in
order to use someone else's data, it has to be downloaded first, which is usually
very time consuming. Compressing the data before sharing it with others can
reduce the traffic needed for uploads and downloads. Assuming a modern
internet connection with a download bandwidth of 50 Mbit/s (Mega Bit per
second), a file of 3-4 Gigabyte, such as the human genome, would take around
10 minutes to download. This might not seem very much, but there are two
factors that need to be considered, and which can change the required time
drastically: First, one does not always have a 50 Mbit/s connection. In fact,

especially in areas without modern infrastructure, average bandwidths are often

even below 5 Mbit/s, as it is in Central America, or on the African continent.
Assuming a bandwidth of 3 Mbit/s for example, it would take more than three
hours to download the same data set. Secondly, whenever data needs to be
shared, it often exceeds the amount of just a few Gigabytes. Especially
unprocessed data sets obtained from a sequencing instrument can easily exceed
a few hundred Gigabytes. This tremendous amount of data in combination with a
bad or slow connection will always result in hours, if not days needed for data

transfers.

A solution to this problem is to design and develop novel file formats that are
appropriate and efficient for today's volume of generated sequences, and which
do not store any redundant information such as sequence headers, sequence
duplicates, or quality scores. Applications can also benefit from loading
compressed data, especially if the decompression is done while opening or
loading the file into memory, instead of involving a separate decompression step.
Efficient compression allows to massively decrease the time needed to open or

read a file, which often portraits a massive bottleneck.

2.2 Current Data Formats to Store High-Throughput Sequencing Data

Data obtained from lllumina sequencing instruments initially is stored in gseq text
files [23]. Each line within the file represents one record, and each record
represents one read. Unknown bases are shown as "' symbols. The files contain

the following information, which is tab delimited within each row:

Instrument name, run number, lane number, tile number, X coordinate, Y
coordinate, index, read number, sequence, quality, filter. An example is shown in

Figure 1.

SOLEXAS 1 4 1 1137 6698 O 1
TAAATCAAAAGCACAATGAGATATCAATTTTCACCCACTGGAATGGCTATA
aala]WY]FlawazWal]a][a]*|laaaaa_]Y "QaaaUa\aa]][YU™\|P 1

Figure 1: Example of a gseq file;

The gseq files are specific to Illumina instruments. Since typical analysis software
is not tailored to process solely lllumina data, the gseq files are usually converted

into one of the two standard file formats for NGS data: FASTA and FASTQ files.

Data produced by the 454 sequencer, the lon Torrent, or the SOLID instrument
generally produce sequences of variable length in each run. The resulting data

sets are saved in one of the two standard file formats, FASTA or FASTQ.

FASTQ

The FASTQ file format has been around for decades, but yet it has remained one
of the two dominant standards in this industry [23]. FASTQ files generally consist
of four lines per sequence or record. Each record starts with the ‘@' symbol in its
first line, which is followed by the sequence identifier or sequence header. This
identifier is composed of information about the sequencing instrument that was
used, the flow cell lane, and other run specific information. The second line holds

the characters representing the nucleotides (for DNA/RNA sequences) or amino

acids (for protein/polypeptide sequences). The third line starts with the '+' symbol
and again shows the sequence identifier. Additional information or sequence
description can be added in this line. The fourth line holds the quality scores for
each individual nucleotide or amino acid from the second line, hence the lengths
of line number two and line number four are identical (Figure 2). The quality
scores are ASCII characters within a certain range, depending on the scoring

scheme that was used for sequencing [24].

GHUI-EASKXS 6868 FC:2:1:20863:12308408/1
CAGCCATCTACTTTGTAMTGTTGATGCAMCGHHHHHHATH
+HUWI-EASKKX 8868 FC:-2:1:2063:12308#08/1
aac¥ cUcacaccc_baBaa__ K [_aBBBBBBEBBBEB

Figure 2: One record holding one sequence in FASTQ format;

Line two and four can span over several lines, especially for long sequences,

genes, or whole genomes that are saved in the FASTQ format.

FASTA

The FASTA format has its origins in the FASTP software package (later FASTA
software package), which was introduced in 1985 [25]. Together with the FASTQ
format it is among the most widely accepted formats in the fields of genomics
and bioinformatics. Many search and analysis tools accept sequences in FASTA
format (several do also accept the FASTQ file format). The first line of each
record (or sequence) in the FASTA format starts with the '>' symbol, followed by

an identifier and an optional description (similar to the first line in the FASTQ

format). The second line contains the actual sequence, composed of nucleotides
or amino acids. This sequence can span over several lines, depending on the

length of the sequence (Figure 3).

=Y, pestis g1|16120353|ref|NC_003143.1| Yersinia pestis C092

GATCTTTTTATTTAAACGATCTCTTTATTAGATCTCTTATTAGGAT CATGATCCTCTGT GGAT AAGTGAT
TATTCACATGGCAGAT CATATAATTAAGGAGGAT CGTTTGTTGT GAGT GACCGGT GATCGTATTGCGTAT
AAGCTGGGATCT AAATGGCATGTTATGCACAGT CACT COGCAGAAT CAAGGTTGTTATGTGGATATCTALC
TGGTTTTACCCTGCTTTTAAGCATAGT TATACACATTCGT TCGCGCGATCTTTGAGCT AATTAGAGT AAA
TTAATCCAATCTTTGACCCAAATCTCTGCTGGAT CCTCTGGTATT TCATGT TGGATGACGTCAATTTCTA
ATATTTCACCCAACCGT TGAGCACCTTGTGCGATCAATTGTTGATCCAGTTTTATGATTGCACCGCAGAA
AGTGTCATATTCTGAGCTGCCTAAACCAACCGCCCCAAAGCGTACTTGGGATAAATCAGGCTTTTGTTGT
TCGATCTGTTCTAATAATGGCTGCAAGT TATCAGGT AGATCCCCGGCACCATGAGT GGATGTCACGATTA
ACCACAGGCCATTCAGCGT AAGTTCGT CCAACTCT GGGCCATGAAGT ATTTCTGT AGAAAACCCAGCTTC
TTCTAATTTATCCGCT AAATGT TCAGCAACATATTCAGCACTACCAAGCGTACTGCCACTTATCAACGTT
ATGTCAGCCATTCAAGAACCCAACT GAAGT AAAGAGCT GGCATTGTACTCTGTGAATCAGCTGGGATCTA

Figure 3: One record holding one sequence in FASTA format;

The format of the sequence identifiers is defined by the National Center of

Biotechnology Information (NCBI).

SRA

The SRA file format was introduced as one of the International Nucleotide
Sequence Databases Collaboration (INSDC) policies [26]. It is one of the
currently supported file formats at the Sequence Read Archives (SRA) at NCBI,
and the European Bioinformatics Institute (EBI). It supports data obtained from
most current sequencing platforms: Roche’s 454, lllumina’s Genome Analyzer,
Life Technologies’ SOLID, Helicos’ Heliscope, Pacific Bio’s PacBio, and Life

Technologies’ lon Torrent. It performs a lossless compression and allows to

10

retrieve the original FASTQ files, including quality scores and sequence headers

upon decompressing.

ZIP and GZIP Compressed Files

Compression algorithms didn't have much significance until the 1970s, when the
first versions of the Internet became more popular. Although Huffman coding had
already been invented in 1951 [27], the need to compress digital data wasn't
justified until people started sharing more and larger amounts of data over the
Internet. In 1977, Abraham Lempel and Jacob Ziv were pioneers in digital data
compression, and they published their revolutionary LZ77 algorithm, which they
refined again one year later [28]. Ever since then, Huffman Codes and Lempel-
Ziv compression techniques have been the base for many compression

algorithms or modifications and alterations thereof.

Huffman Codes

Huffman Code Algorithms take blocks of input characters of fixed length and
produce output blocks of variable length. This algorithm is based on the
probability of the appearances of short substrings. Short substrings are assigned
to input blocks with high probabilities, and long substrings to those with low
probabilities. This concept is similar to the Morse code. Table 3 and Figure 4
illustrate a simple example. A random sample text over the alphabet {A, B, C, D,
E} is analyzed and the frequencies of each symbol present in the text are

recorded.

11

Table 3: Frequencies for different symbols;

Symbol Frequency

23
11
9
6
6

mo0|m|>

A tree is constructed according to the following scheme: First the two least
common symbols are connected, which are 'D' and 'E'. Next, 'C' and 'B' are
connected. The two resulting parent nodes are assigned the values 12 and 20,
respectively. Those values are the sum of the frequencies of their child nodes.
They are then connected in the next step to form another parent node with the
value 32. In the final step, 'A' is added to the tree producing the root node with
the value 55, which is the sum of all frequencies of all symbols. Each link
branching to the right is assigned the value 1, and 0O is assigned to the ones

branching to the left (Figure 4).

Figure 4: The resulting tree from the first steps in Huffman Coding;

12

Next, the code table is generated (Table 4). Starting from the root, each
character's code corresponds to the sequence of Os and 1s needed to reach the
symbol while going through the tree. The code length corresponds to the depth of
the node within the tree. The total length equals the symbol's frequency

multiplied by its code length.

Table 4: Encoding table for the symbols present in the sample text;

Symbol Frequency Code Code Length Total Length
A 23 0 1 23
B 11 100 3 33
C 9 101 3 27
D 6 110 3 18
E 6 111 3 18

Using this table, each character can be encoded using a binary representation.
The random sample text can be encoded using a total number of 119 bits, while
the same text saved as a conventional text file (1 byte per character) would
require 220 bits. The decoding works as follows: Starting from the root, the
encoded bit-stream is passed through the constructed tree. Every time a node is
encountered that does not have a child leaf, the appropriate symbol of that node
is looked up in the table using the binary sequence gone though so far. The next

decoding step starts at the root node again.

Huffman coding finds application in many data compression algorithms and
formats, most worthy of mention in multimedia codecs such as JPEG [29] and

MP3 [30].

13

Lempel Ziv Coding

The Lempel Ziv compression algorithm (LZ77) divides the input string into non
overlapping blocks of different lengths, recording all encountered blocks in a

dictionary of finite size. The algorithm has five distinct steps:

1. Dictionary initialization with all blocks of length 1

2. Look for the longest block B that has appeared in the dictionary

3. Encode B according to its dictionary index

4. Add B followed by the first character from the next block to the dictionary

5. Go back to Step 2 unless the end of the input string is reached

A simple example consisting of only two symbols {a, b} is shown in Table 5,

using the dictionary shown in Table 6.

Table 5: The input string showing the corresponding value for each block;

nput ' g ' b|blaja|b|blala|bla|b|blajalaja|blalal|b]|b
String

Dictionary | 0 |1 |1|0| 2 4 2 6 5 5 7 3

Index

14

Table 6: The dictionary created for the given input string;

ndex | Entry
a

b

ab
bb
ba
aa
abb
baa
aba
abba
10 aaa
11 aab
12 baab
13 bba

OONO|OA|WIN|FL|O

Theoretically, an infinitely large dictionary is possible. In practice however, a
maximum dictionary size must be defined. No additional words may be added to
the dictionary once the limit is reached. Instead, the remaining input string is
being encoded using the largest available words already present in the dictionary
in each step. It is very obvious that this technique works significantly better for
longer input strings than for shorter input strings. Decoding follows the very

straight forward lookup process of the indices in the dictionary.

The most popular LZ77 application is the DEFLATE method [31], which
combines LZ77 with Huffman Coding and finds use in various compression

techniques like ZIP, GZIP, or PNG image files [32].

15

Burrows Wheeler

The Burrow Wheeler transform is not a compression algorithm in the
conventional meaning. None of the characters present in the input change their
values or are replaced, but instead a permutation of the order of characters is
performed [33]. The advantage of this technique is that substrings with high
repetition rates will be rearranged to occur next to each other. This circumstance
can then be taken advantage of by another compression algorithm to actually
reduce the size of the data [34]. Since the beginnings of high-throughput
sequencing (HTS), the Burrows Wheeler transform has found many applications
in bioinformatics, especially in alignment programs such as Bowtie [35], BWA,

and SOAP2 [36]. It allows to greatly reduce the memory requirement.

Assume the sample input text: 'BACABBA'. The algorithm sorts all possible

rotations of the input text in lexicographic order (Table 7).

Table 7: All rotations of the sample text, alphabetically sorted with the last character highlighted in

bold font;
Index All rotations: Alphabetically sorted:
0 BACABBA ABACABB
1 ABACABB ABBABAC
2 BABACAB ACABBAB
3 BBABACA BABACAB
4 ABBABAC BACABBA
5 CABBABA BBABACA
6 ACABBAB CABBABA

16

The algorithm takes the very last character of each alphabetically sorted string to
produce the output sequence: 'BCBBAAA'. The only additional information that
needs to be saved is the index number of the row, in which the original sequence
occurs, (4 in this case). Using this number, the original sequence can be
deciphered. The decoding process works as follows: The encoded word is
understood as the last column of the sorted table, as seen above. Alphabetically
sorting the permutations of the encoded word will yield the first column of the
table. The combination of the first and last columns of the table will yield all pairs
of successive characters from the input (in a cyclical manner, so that the last and
first character form a pair). Alphabetically sorting the pairs yields the first and
second column. Following this method, the entire table can be reconstructed.
There are two ways to find the original input sequence in this table. First, if the
index number was saved, it can easily be looked up in the row of the given value.
The second option is to put a unique character at the end of the sequence,
before performing the Burrows Wheeler Transform. This unique character will
appear at the very end of only one sequence in the reconstructed table, which

will be the decoded input sequence.

2.3 Proposed Approach

The proposed approach specifically targets the challenges and problems
discussed in chapter 2.1, and we present a time and memory efficient solution.
We eliminate unnecessary data from the data sets, and keep only information

that is known to be of value for further analysis. By removing duplicated

17

sequences, the redundancy is minimized. We keep track of the total number of
copies of each sequence in a separate copy number array. We filter out
sequences that do not pass a predefined quality threshold, which allows to
discard all quality scores. Sequence headers are removed as well. Finally, after
alphabetically sorting the nucleotide sequences, we can identify common
prefixes among sequences, which can be substituted by single integer values,
stored in a parallel array. This new data structure can be saved either as a text
file, or as a binary file, and operates on both, sequences of equal length and
sequences of variable length. The binary file format utilizes additional techniques
and methods to minimize the space needed for a lossless sequence

compression.

2.4 Design and Implementation

In this chapter we present the techniques and methods that were designed and
developed to address the previously discussed problems. Our algorithms can be
applied to sequencing data composed of sets of reads of equal length (lllumina
reads), as well as sets of reads of variable length (reads from 454, lon Torrent,

SOLID).

We have developed various functions to prepare the data for the actual
compression steps. First, we added an integer array parallel to the sequence
array, which holds the copy numbers for each sequence. This allows us to
exclude duplicate sequences within the data set by simply incrementing the
sequence's copy number for each duplicate that is present.

18

The next important step is to sort the sequences alphabetically. Much thought
and many experiments were conducted to find the most appropriate sorting
algorithm for this purpose. Eventually, we decided to implement a Most
Significant Digit (MSD) Radix Sort [37]. Although a Least Significant Digit (LSD)
Radix Sort might be easier to implement, the MSD version does come with some
considerable advantages. While the LSD implementation starts at the position
that makes the least difference, in the MSD algorithm we start with the position
that makes the most difference. We divide all of the characters with an equal
value into their own bucket, and continue to do the same thing with all buckets
until the array is sorted. The recursive implementation allows performing the sort
without the need to examine every single character in every single read. As soon
as a difference in a more significant position is encountered, the sequences are
separated into new buckets. This means that unique sequences residing in their
own bucket do not have to be examined all the way to the end of the sequence.
This saves a lot of time, especially if a very large amount of sequences is present

in the data set.

Using these two techniques one can save the data in the so called AS, or ASF
file format, which stands for Array Subsequences and Array Sequences Flexible,
respectively. Both file formats start with an entry for the total number of
sequences present in the data set. The AS format follows up with the read length
of all sequences. Next, both formats list all sequences that are present in the
following way: Each row begins with the actual sequence. If the sequence is

unique, the copy number is not saved, and the next row shows the next

19

sequence. If the sequence is not unique, the copy number follows the sequence

after a TAB key ('\t"). Then the next sequence follows in the next row (Figure 5).

AS

40

28

ACACACACACACACACACACACACACACACACACACACAL
AR R RN R R AR R AR AR R AR AATTTTTTTRARAARRARARR
TITGEE6EGGGTTITTITTITTITITTIITTITITIITITTT
CACACACACACARCACACACACACACACACACRCACACACR
AR RS ACT GG ASCATTGHC CGC AAGTT THG AN NN M A RN
ARTAGTT CCATICTGGANGT GEAT GAGTHG NN CCH
ARCAAAGATGTATAT GERCACACAGGAANC ANNHHHN G AN
AACAGGAGAAGATTTTGNT ARAGCAAT THCTHNHHHNGAN
ATCAGRAGATGATCCAANA RGAST TAGGHC THNHH NN A RH
ACAAGOGAGT ACGACCCHACCARAATT GNT THHHHRGACH
ACACATARAATTTAGTCHATCCTT TGT CHT CHNHHHAATH
AGTTARA A TOGTAGAGHNTATATTATCTHATHNENENGTH
AGTGAAGTTATITGCGTHAACATCATC AN ANNHNHHGGH
AGGAGCACTTGAAGARGNT CCAGT ATCANATHNHHEN CCH
AGCTAGAOGCTITIGGTHAT AT TAGTAANGTHNENENT CH
TACAGTACRCGATAATCHARCR AT A ARG THT GHNEHHNGTH
TACGTTGTCTTIGAT TANA AR TCCTT CHG THNHHHAGGH
TACGGAGGT ARAGAT GCNT GACAT ATCTHAANNHHHN A AN
TTAAA AT TCGTAGAGTTHTATTATCCT ANGTHNHHNNT TCH
TITGAAT AATCACAAATNT TAGAR A AT GHGTHHHNHN CGH
TCGAGET CCGAATTGECHAARGAT CAT THAANNENRGCCH
TGATGET TTTTGAATACHT TTARAA AT ANACH NN NN A AN
CRRATOGARATARACACHAGTT CTACCCHT ANNKHHACCH
CARGGACATAAGATARTNT ARCTCTACGHGTHNHNHNT TH
CATAACT RARCTOCARCNT CAGGCAGAGHAGHNHHNT TTH
CAGCCAT CTACTTTGTANT GTTGATGCANCGHNENENATH
OGAAAGCGT AR AT AATHCTTCATATACHATHNENHAATH
GATATCARAATTTSGACNT CTT AAAST THATHNHHHAGGH
GAGCTTAGTGATACTTGHG GG CAGGEGCNT THNHNRCACH
GTCOCGAT CTATSTCTTCHT TOGAT CCT THC THHHHHHG AN
GTEITTT ARRAGCTATTHCTAATGARACNT THNHHNT GGH
GEAACTARAT AAGTTATHAAART CTAAT ANCANNKHNT ATH
GEATGAGGEATT CAGOGHGTGACARAT THOGHNENNCTTH
GETAAGCCTTCTASTTTHGCAT TAGACANT ANNHHNGA RN
GECT GET GAGTCGEGAGHAC T TG CAATHOGH NN N G TH
GEGT CAT ATACATTCACHATACATATCTHAANNNNENGAN

noon oo

ASF

=1

AR AR A AR AR AR R PR R AR PR R AR AR ANR

AR A A TCACGEECT eI G ACATTGTAT GG T GTETGTTACATARCATTC
AR ATCGETT T AR AR AT CETTA AR ARG CAGOCATTTTAT GARGICOG
ARASTTCCAGGET TEGRAGGC AR AT R AGETC TG TACT CCARGCCTGT ST
AATTATGTT AR TG TGGT TTT AT CTAAGCAGT ST GT ARAASTTGTGTTT
AATTCTACCC T AR O TA A AR TT A ACCCT AR COCTARACCTARCOCTA
AR CCGTGACG T AR A TAAACCTARGTTTTAACCCTARCOCTARCACT
AAGARAGTAR AT TOCAGCA RGO AGT GACTAGAGGAGGACRCATTICA
ATAATCT AR C AT A A O AT A AR T GG TACCACCOCGTGATGTITITIT
ATTAAOGACT AR ACCTARCCET AR OCTAACGCTARCACTACCACTAAC
ATTTTTGAARGCTI TACTT AR TCATATAGGAARATARGT GAATTASTT
ATTTTGACAAGT TI TACTGATAGT CTCCGAAATCACTCATTTTTITATTT
ATTTC AT TG A A T TA A A TCACT ARATT TAR RAATECTTARTEET
ATTIC T GTAAGTICRATCGEC TIGTCTAT TICAGGEGTITTGASTITAT
ATTET ACGEETETETAACT TTACAT TCACT AGCAGGAGTGAC AAR ARCAT
AT TGO T GeT TT AR A A GAG T ACACE T AR GA A AT AR ATGOCTAGTTIGAD
AT AT e T A A TT OO CTGG AT T CCACATTAACTCAT GARACTTT
ATCACATAT ARG AR TTTT AGR AR C AT CCATGTTETTAOGTACATTGT BT
ATCTTATTCC AT A AT OO TAGGEC TG ST CATTATGEG5TACTCTA
ATGACAA A AT A G A A TEACT T AR GAT GA A ACTCCAC A A AR CEEEE
AT G TGEC AR ATTEGCCGATCCAAGTCATTTGTEGTTCCRATETI TG
A A A AT A R AT TAGT GCTGAT TTCAT AT CGTCTTSTTTTARAST OC
AT ACCAGAGETEGAT G ACGGITOC OGO CGT OO CGITCTAAITIC
AT T AR AT AGA A A TTT TG C AR TCACAT CA AT AGT TAGGC AT GARGEETT
ACTCCATTI T T T A RCTTTTCATI TCT CRAARAGAARARRGEETT A
ACTEEECTEC O TCAGEOEGEAGIEEE T TAGIIOTAIGTC

A AT O A G AR GE O GE T O TE G AR C OO CACAC AR TGO GT CTAACT ST
AT ATC T ACATT GO AT TEA AT GTTTOC TG AR TCCCAATGCT GACR
ACCETGETI TOC AR T GEOECEEGET CGAGC TT CTATACOGAGATITITIT
A A A T T O AR A OO A AT GO T AGAGAGE T TETE GO AR A ARCT ARD
AGATETTT T T T AT e TAC TAGTGART GT AATGT AACACACROCCAT
ACGERARATCTETAGECET GET ST TARCCGAGTAT CTGT CCTACGOCTICE
A GEATACAGOGAT CT TG T Ol TG C AGACAGECARGT AGAGT CGETICCT
A AAGEATGEAT CACTIGECTATEGEACTATCTCT
AGAACEATGEAT (AT TG GG AT GECTAT GEGACTATCTCT
ASTTIGARGGATGGAT AT Go5GEC AT GECTATGEGACTATITCT

Lo e R

L

B Ra

LI)

Figure 5: The AS (left) and the ASF format (right) with increased copy numbers for duplicate
sequences, alphabetically sorted,;

The next technique we applied to the sequences leads to the so called ASC or
ASFC format, where the 'C' stands for "compressed”. DNA sequences often
share a common prefix, which can be present in hundreds of thousands of
sequences. In order to reduce the total number of characters that are present in
the data set, we substitute prefix sequences with integer numbers, which indicate
the length of the prefix in respect to the previous sequence. The two file formats

for the ASC and ASFC files are very similar to the AS and ASF formats, with the

20

only difference that each row (except the one holding the first sequence) has its
prefix with the preceding sequence removed. The ASC file format does not
require storing the length of the prefixes, since all sequences are of equal length.
The ASFC file format has each row starting with the integer number representing
the prefix length, and the only characters that are saved to the file are the

characters producing the suffixes for the sequences (Figure 6).

21

AS

ASC

40

54
LARARALRALLALALRARDARALRARRR RRTGCGAT CGATGRGCTAGRGCTAGCE 18
AATGCGATCGAGRTATACGACTAGCTA 9
AATGCOGAT AGCGAGGCGRGRGOGEGECE 21
VAATGCGAC CGAGCGECGECCCGRECGA
AATGCGAGRRARTCGRGEOGAGCGGRG
AATGCGAGAGRGGCGEAAGRCGAT CGA
AATGCGTTATTACTATCTATTTRACTIA
VAATGCGTCCCAGRCTAGCTRACGRT CGA
AATGCGTGRCTAGCTRAGCTATCGRAGET 2
AATGCGCCCAGATGAGCTAGGAGCTAG
AATGCGOGRRGCACTATGAGECTAGGA
AATGCGOGAMGEEERGCTAGRGCT AGR
AATGCGOGATACTRGERAGCTTAGGCRA
AATGCGCALGERGCATGCATTTTIATTA 11
AATGCGOCCCGATATTRRRCGRGECRG 2
AATGCGOGARAGCTCEGEEECGRGRACT
AATGCGOGGRACTAGRGCTRAGCATCGRG
ARARAARARMAA AR AN TATACTGRCGATCAGCTAGCGATCGACTAGCGAT CGR
ARARAARARMMRA AR AMCGCTRGCATC AGOGATCAGGEEATAG CEATCAGERACT
ARARAARARMARA AR AMGRCTRGCATCAGRRARR R RARGCGAC TAGCATGCTAG
ARARAARARMARA AR RAMGT BACATCGRCATCAGCATGCACTAGCATGACTAGCG 66
ARARAARARAA AR AMGCCTRCGRCT AGCATCGACTAGCATGCATGACTGRCT 3
ARARAARARMMRA AR AR GCCTRGCATCGRACTAGCATGCATGCATCGATGRAC TAG
ARARAARARAA MR AN GECTAGCATCGACTAGCATCGATGAC TACGATCGATR
ARARMAARARMA AR AMCGRCTRAATCGAGEAGRGACTGACATCGATCAGCATAR 11
ARARAARARAA MR AMCGACTTGCAT GAGAGCTAGCATARAD RARRARAL DAL
ARARARRARAA M AR AMGEAGCTTTTTITTTTITT TAGCATCGACTAGCAGCTL

40

54
RARALLLARALALRRARALALROARRL RARTGCGAT CGRTGRGCTRGAGCTAGEG 18
GATATACGACTAGCTA 9

AGCGRGGCOGRAGAGCGEECG 21

CCGAGCGECGECCCGRGCGA

TTATTACTATCTATTTACTTA
CCCAGACTAGCTACGATCGA
GACTAGCTAGCTATCGAGCT 2

CCCAGATGAGC TAGGAGCTAG
GARGCACTATGAGGCTAGGA

GGEAGCTAGAGCTAGA

TACTAGGAGCT TAGGCAA

GGAGCATGCATTTTATTA 11
CCCGATATTAAACGAGGCAG 2
GARAGCTCGEEGGCGAGACT
GACTAGAGCTAGCATCGAG
TATACTGACGATCAGCTAGCGATCGAC TAGCGATCGA
CGCTAGCATCAGCGATCAGGGGATAGCGATCAGGACT
GACTAGCATCAGRARRARA AAGCGACT AGCATGCTAG
GTAACATCGACATCAGCAT GCACTAGCATGACTAGCG 66
GCCTACGACTAGCATCGAC TAGCATGCATGACTGACT 3
GCATCGACTAGCATGCATGCATCGATGACTAG
GCTAGCATCGACTAGCATC GATGACTACGATCGATA
CGACTAATCGAGGAGAGACTGACATCGATCAGCATAA 11
TGCATGAGAGCTAGCATAARAARAANARARAA
GEAGCTTITITTTTTTTTTAGCATCGACTAGCAGCTE

ASF

ASFC

40
IARRALARALARRARARALAALARARARRTGCGAT CGATGAGC TAGRGCTAGCG 13
AATGCGATCGAGATATRCGGECTE 8
VAATGCGAT GEOGAGGCGAGRGARACGEEGE 21
VAATGCGAC CGAGCGECGECCCGRECGR
VAATGCGAC GRRRTCGRGGCCGGAG
VAATGCGAC GEAGGOGERARGRCGRT CGA
AATGCGAGATTACTATCTATTACTTR
VAATGCGAGCCAGRCTCGRATOGR
VAATGCGAGGRATAGGAGCT 2
AATGCGTCCAGRTGAGCTRAGGAGCTAG
AR TGCGTGARGEACTR TGECTAGER
VAATGCGTGGAGCGEAGCTAGR
AATGCGCAGARCTAGGRAGRR
AATGGTAMLGERGCATGCATTTATTA 11
AATGGGACCCGRTATTARAGECRG 2
AATGECARRRRGCTCGGEERGRCT
AATCCGAAGRCTRAGRGCTAGCATCGRAG
ARARAARARAA AR AN TATACTGRCGATCAGCTAGCGATCGACTGATCGR
ARARAARARARA AR AN TGCTRAGCATC AGOGATCAGEEEATAGCEGATCAGERACT
ARARAARARAA AR AMGRCTAGCATCAGRARARR R CATGCTAG

AAAMPAARAARA AP AAANCRRACATCGACATCAGCATGCACTAGCATGACTAGCG 66
ARARAARARARA AR ARAMCGCTRACGRCT AGCATCGACTRAGCATGCCTGACT 3
ARARAARARARA AR AR ATAGCTAGCEATCGACTAGCATGCATGCATCGATGRAC TAG
ARARAARARAA MR AGERCTAGCATCGACTRAGCATCGATGACTGEATCGATA
ARAPAARANAR AP AANC ARG RCTGATCGAGGAGAGACTGACATC GRAGCATAR 11
ARARRARARAR AR AN TANGACTAGCAT GRGRGCTAGCATARRRDRLRD
ARARAARARAA MR ACANCGAGCTTTITITTITTTAGCAGCTR

EEEEEEEEEEEEEEES

40
ALARRRARARLARRLARAARARARARR ARTECGAT CEATGAGCTAGRGCTAGES 13
38 GATRTRACGGCTIR 3

35 GECGAGGCGRAGRGRACGECG 21

34 CCGRGCGECGECCCGRAGIGR

35 GRRATCGAGGCCGGRG

35 GEAGGCGGRRGRCGATCGR

34 GATTACTATCTRTTACTIR

35 CCRGRCTCGATCGR

35 GATAGGRAGCTZ

33 TCCRGATGRGCTRAGGAGCTRG

34 GRRGGRCTRTGGCTRGGR

35 GAGCGGRGCTRGR

33 CAGARCTAGGAGRL

31 GTAARGGAGCRTGCATTIATTA 11

32 GACCCGRTATTRARGGCRG 2

32 CARRRRLGCTCGGGGRGRCT

30 CCGAAGRCTRGRAGCTRAGCRATCGRG

17 TATRACTGACGRTCAGCTAGCGATCGACTGATCGA

18 GCTRGCATCAGCGATCRGGGEATAGCGRATCRAGGACT

17 GRCTAGCATCRGARRRRRCRTGCTRG

17 CARACATCGACATCAGCATGCACTAGCATGACTAGCG &6
17 CGCTRACGACTRGCATCGACTRAGCATGCCTGRCT 3

16 TAGCTAGCATCGACTAGCRTGCRATGCATCGRT GACTAG
16 GERCTAGCATCGACTAGCRTCGATGRCTGATCGATA
16 CAGACTGATCGAGGAGRGACTGACATCGAAGCATRA 11
15 TAMGACTAGCRTGAGAGCTRGCATRARRRALRAL

14 CAMCGRGCTTITITITTITITAGCRAGCTR

Figure 6: The AS and ASF formats (left), and the ASC and ASFC formats (right) format showing the
removal of prefixes for each sequence;

This format already shows a great potential to save on space while at the same

time it remains readable to human eyes.

22

The compression resulting in the most significant reduction of file sizes is
achieved using a binary file format to store the NGS data. The general file
structure remains very similar for the so called ASCB and ASFB file formats,
which contain reads of equal and flexible length, respectively. That is, first the
total number of unique sequences is saved to the binary file as an unsigned
integer value, followed by the sequence length in case of the ASCB file format.
Then, prefix lengths, copy numbers, and suffix lengths (for ASFB), followed by
the suffix sequences that represent the differences between sequential reads,

are stored in binary format (Figure 7).

ASFB

&

l | | | |
Prefix Copy Suffix Suffix Sequence
Length Number Length

Figure 7: The design of the ASCB and ASFB formats; in contrary to the AS, ASF, ASC, and ASFC
formats, the copy numbers are saved before the nucleotide sequences;

The algorithm takes advantage of the small size of the alphabet, NGS data is
composed of. Instead of using one byte per character, as it is done when saving
text files, we can fit four characters into one byte using the simple binary

representation of nucleotides in a base-4 counting system (Table 8):

23

Table 8: Binary representation of the nucleotides A, T, C, G

A 00
T 01
C 10
G 11

This assumes that no unknown characters ('N') are present in the current data

set, hence reads containing said characters have been excluded.

Depending on whether unknown nucleotides represented with the character 'N'
are excluded or not, a base-4 or a base-5 counting system is used to transform
blocks of nucleotides into integer values of the appropriate counting system. One
so called block is the maximum amount of nucleotides the largest possible
integer variable in C++ (unsigned long long int) can hold in its 8 bytes. Using the
base-4 counting system, we can fit exactly 32 characters into such a variable,
without losing any space to overhead. If reads containing unknown nucleotides
have to be saved, the base-5 counting system allows a maximum of 27
characters to be saved in the 8 byte variable. This means each block also
produces a very small overhead. For each sequence we first save one byte

containing the following information:

The first bit of the byte indicates whether the copy number of the read equals one
or not (O=false, 1=true). The second bit indicates whether the prefix length is less
than 64 (O=false, 1=true). The remaining 6 bits are used to store the length of the
prefix, as long as it is not more than 63 characters long (63 is the largest number

one can represent using 6 bits, Figure 8).

24

lofof1fof1]1]1]1

N

Is copy number= 17
Prefix length using 6 bits 15 prefixlength less than 647

Figure 8: The first byte holding information about the Copy number and the prefix length;

If the prefix is longer than 63, an additional byte is used to store the prefix length,
effectively giving this number 14 bits to allow a maximum value of 16,347 for the

prefix (Figure 9).

11213141586 7089110/ 11)112|15)14

Figure 9: If 6 bits are not enough to store the length of the prefix, an additional byte is saved right
after the first one, effectively giving the prefix length a maximum of 14 bits to be stored;

If the first bit indicated the copy number equals 1, meaning the sequence is
unique, no additional byte to store the copy number must be saved to the file. If
said bit was set to zero, meaning that there are several copies of the same
sequence present, an additional byte will be saved next. This byte is divided as
follows: the first bit indicates whether the copy number is less than 128. If this is
true, the following 7 bits are used to store this copy humber, allowing a maximum
of 127 thereof. If the copy number exceeds this value, an additional two bytes are
added, increasing the total number of bits to 23 (Figure 10). This allows the
maximum value for the copy number to be 8,388,607. The reason behind adding

two bytes instead of one is based on the presence of repeatable regions in the

25

sample. Most sequences are usually unique, meaning their copy number equals
one. Then there are several sequences that are not unique, but have a few
duplicates across the entire set of sequences. However, if a sequence is present
in more than 127 copies, it is more than likely that this sequence originates from
a repeatable region, and its copy number therefore is expected to also exceed

the maximum value possible, if only one byte would have been added.

first byte for copy number extra byte extra byte
0

Is the copy number less than 1287

7 bits 8 bits 8 bits

s

23 bits for saving the copy number

Figure 10: The first bite of the first byte for the copy number indicates that the copy number exceeds
the value 127; two extra bytes are added, raising the new maximum for the copy number to 2% - 1,
which is 8,388,607;

Since all sequences are of the same length if they are produced with an Illlumina
instrument, no more additional information about the sequences has to be saved.
However, if the reads are of different lengths, another byte is introduced before
the actual sequences are saved to file. This additional byte contains on its first bit
a one, if the suffix length is less than 128 and a zero otherwise. The following 7
bits are used to write the length of the suffix, as long as it does not exceed 128. If
this limit is not enough, another byte is combined with the initial 7 bits to allow a

maximum value of 32,767 for the suffix length (Figure 11).

26

0] |

The suffix length is
not less than 128

T hits 3 hits

\/

13 bits to store the suffix length

Figure 11: The first bit indicates the suffix length exceeds 127, hence an extra byte is added to
increase the maximum suffix length to 2*° - 1, which is 32,767;

The algorithm then divides the suffix sequences into blocks. Depending on
whether the base-4 or the base-5 counting system was used, the block size is
either 32, or 27, respectively. This means every 32 or 27 characters are
converted into an integer number in the appropriate counting system. This
number, saved into an unsigned long long integer variable, is then written to the
binary file using 8 bytes. In order to reduce the amount of overhead, the last
block, which usually does not require 8 bytes to be saved, has a variable block
size, which depends on the number of characters present in this last block.
Following this scheme, the entire set of sequences of equal length is written to

the binary file (Figure 12).

27

Copy number of the sequence using 7 bits

a) b)
NEERENRIEEEEEEEN
\/ The copy number of the
sequenice does not equal 1
Prefix length of the TH i ber of th
sequence using§ The prefix length of the = copYy nul.m EL_T liS
hits sequence is less than 64 SEquence 1s less than 1=
c) d)
Block containing the first Block containing the second
32 nueleotides of the suffix 32 nueleotides of the suffix

Figure 12: Visual representation of how the data for each individual sequence from an Illlumina data
set is stored in the binary file; the copy number in this example is bigger than 1 (0 bit in a)), but less
than 127 (1 bit in b)); the prefix length is less than 64 (1 bit in a)); the first two blocks for the suffix
sequence are depicted in the figure (c) and d)); there is no need to store the suffix length, since all
sequences are of same length;

The file reading procedure can be seen as the reversed process of writing the
binary file. After the number for the total amount of unique sequences is read, the
sequence length is read in case the data set is composed only of sequences of
equal length. Next, all the bytes that contain information about the sequences are
read. The first byte contains the information about the prefix length, and whether
the copy number of the sequence equals one. If necessary, additional bytes are
read to calculate the total prefix length and the copy number. If the sequences
are of variable length, an extra one or two bytes are read in order to retrieve the
length of the suffix. The suffixes are extracted from the binary file the same way

they are stored there: First, blocks of 8 bytes are read and stored in an unsigned

28

long long int variable. Those 8 bytes are then transformed back into 32 or 27
characters, depending on the underlying counting system. The total number of
blocks can be determined by dividing the already read suffix length by the
number of nucleotides that fit in one block. The last block can consist of less than
8 bytes in order to reduce the overhead. Once all blocks are successfully read,
using the known prefix length, the entire sequence is reconstructed, and the first
byte from the next record is read. This way, the original data set is rebuilt

sequence by sequence.

The compression rates our approach is able to achieve are beyond the average
compression rate one can expect. The analytical model is built as follows: Let k =
number of reads, and let n = length of the reads; the total number of nucleotides
is then k * n. In an ASC file, the number of possible nucleotides at position 1 is 4,
and 16 at position 2, etc.; thus the number of nucleotides that are not being
saved can hence be seen as k-4, k-16, etc. for position 1 and 2, respectively. A
generalization of the model is shown in the following formula, which returns the

number of nucleotides that are not stored in the ASC format:

X
Zk — 41
=1

Assuming x = max (k - 4') >0;

The number of nucleotides that need to be stored is therefore:

29

(e xn) — Zk—-ﬂﬁ
=1

We have performed many experiments on both random data, as well as actual
DNA data from sequencing instruments. While the results using the randomly
generated data very closely resemble what the analytical model predicts, the

experiments using real data showed very different results.

The file size reduction depends strongly on the properties of the sequencing
data. Using the presented formats, the binary file sizes can be as low as 0.7% -
5% of the original FASTQ file. We compared our results with compression
techniques that are commonly used in the bioinformatics and genomics industry:

ZIP, GZIP, and SRA.

Important to mention is that especially in old data sets, many reads are of very
poor quality. Our algorithm also checks the quality for each individual nucleotide,
and excludes reads which do not pass the minimum quality threshold, which is
set to 10 by default. This led to another important observation: Especially
databases like the Small Reads Archive have the potential to massively free up

space, if they were to only accept and store reads of satisfactory quality.

The time and space complexity of the sorting algorithm we implemented is linear,
i.e. O(n). This implies that the file conversion time is linearly dependent only on

the total number of reads.

30

We have chosen four different data sets to illustrate the advantages of our data

compression over other techniques. The four data sets contain reads from:

Bacteria

Human Transcriptome
Human Genome
Groudwater Metagenome

PwbdPR

Generally, converting the original FASTQ files into the SRA file format yields just
a slightly better result than a ZIP or GZIP compression produces. In all cases, the
binary compressed file we produced outperformed all other methods by a large
margin, even if no low quality reads were excluded. A second comparison which
also included the exclusion of low quality reads resulted in an even more

significant difference (Table 9).

Table 9: Our four data sets compared in file sizes (MB) using different file formats;

.) All reads Low quality reads excluded
Data Set SRA zip gzip FASTQ | FASTA

AS Asc | AscB AS ASC ASCB
Bacteria 726 910 910 2,819 1,246 | 1,055 864 271 871 718 191
Human 2,237 | 2,786 | 2,786 | 14,520 | 5,814 293 158 59 141 99 30
transcrlptome
g'::;i:e 14,301 | 20,916 | 20,916 | 105,142 | 51,153 | 43,408 | 38,548 | 11,870 | 15340 13,885 3,635
Groundwater |, g00 | 6566 | 6566 | 20,002 | 9264 | 7,578 | 6,001 | 2134 | 4670 4,286 1,130
metagenome

If we take the original FASTQ file sizes as references, we can observe that both
ZIP and GZIP compression tend to yield files in the range of 19% - 30% of the
original file sizes. The SRA file conversion delivers files ranging from 15% - 30%,

depending on the composition of the DNA sequences (Figure 13).

31

120,000

100,000

80,000

£0,000 BFASTO

40,000 H3RA

file size in MB

20,000

0o 4
Bacteria Hurman Human Groundwater
transcriptome genome metagenome

Figure 13: FASTQ to SRA compression of the four test files;

The compressed binary files of the nucleotide sequences take up only 10% -
0.4% of the original FASTQ file sizes. Especially data sets that contain many
repeated sequences have the potential to produce a significantly smaller binary
file. If many sequences share a long common prefix, even smaller file sizes can
be achieved. Since nucleotides with very low quality scores should never be
included in any type of bioinformatics analysis, we also compared the original
files to the data sets, which resulted after excluding low quality reads. The file
sizes again decreased significantly for data sets that contained many such low
quality reads. For example, while the binary file of the human genome sample
was almost 12 Gigabytes in size, the cleaned data set was only 3.6 Gigabytes,
i.e. about 70% smaller. A direct comparison of how much the cleaning of the data

sets yields can be seen in Figure 14.

32

Human genome
120000
[sm} 100000 -+
=
= | 80000 -
ab]
M 60000 -
i
&
= 40000 A
20000 - I
o | - I I
FASTCI FASTA ASCB ASCB
u:urlglnal u:urlglnal original cleaned cleaned cleaned

Figure 14: Human Genome data set, depicting the reduction of file sizes when cleaning the data set
from duplicate sequences and sequences with quality scores below the threshold 10;

Not only do we compare our approach in terms of resulting file sizes. An almost
equally important aspect that needs to be considered is the amount of time such
file conversions take to efficiently convert files from one format to another. The
sorting algorithms we implemented are a variation of a most-significant digit
Radix Sort in combination with a Counting Sort. These algorithms run in linear
time, i.e. O(n), where n is the total number of objects to be sorted. This benefits
the total runtime enormously. In fact, especially for very large files, the main

bottleneck in time complexity drifted from execution and calculations to I/O.

We again compared the times needed to perform various file conversions. Not
only did we look at the time it takes to decompress SRA files into the common

FASTQ format, but we also examined the times to compress and decompress

33

files using the GZIP approach. We opposed these times to the results obtained

from our implementation, which you can see in Tables 10, 11, and 12.

Table 10: Time comparisons for SRA and GZIP and our implemented file formats;

Data SRAto | FASTQ | .GZto
Set FASTQ | to.GZ | FASTQ
Bacteria 61.8 478.3 56.0
Genome
Human 404.3 817.1 176.7

transcriptome
Human 7,901.3 | 8,366.6 | 1,141.4
genome
Groundwater | 347.2 | 3,322.7 | 257.0
metagenome

Table 11: Time comparisons for our implemented file formats (all reads);

FASTQ | FASTQ | ASto | ASCB | ASCB | ASCB ASCB
toAS | to ASC | ASCB to to AS | to ASC | (read/write)
FASTA
34.0 61.9 41.1 50.5 42.5 69.3 22.0/
14.7
299.7 302.3 11.8 157.4 14.3 20.4 4.7/3.4
1,434.5|2,670.3 | 1,632.4 | 1,962.7 | 1,692.3 | 1,791.2 | 1,002.0/620.9
263.0 480.7 256.6 560.0 502.5 500.7 181.5/115.2

Table 12: Time comparisons for our implemented file formats (low quality reads excluded);

FASTQ | FASTQ | ASto | ASCB | ASCB | ASCB ASCB
to AS | to ASC | ASCB to to AS | to ASC | (read/write)

FASTA
354 55.9 35.9 43.6 36.1 58.7 19.4/12.1
276.8 279.3 6.0 122.8 7.5 10.6 2.6/1.9

1,003.3 | 1,497.9 | 631.5 | 722.2 | 625.4 | 1,000.2 | 336.9/226.0
228.1 549.6 | 1945 | 2529 | 199.6 | 525.8 115.1/71.9

34

Figure 15 depicts the times needed using conventional file compression

techniques to compress and decompress the NGS data, such as SRA and GZIP.

3500

3000

2500

% M Bacteria
c | 2000
S
g 1500 B Huma n_
- transcriptome
@ | 1000 Groundwater
E metagenome
| soo i
0 -
SRA to GLto FASTOfo FASTOto ASCBto
FASTQ FASTO GZ ASCB FASTA

Figure 15: Times for compressing and decompressing data sets using ASCB, SRA, and GZ formats;

Clearly, the SRA file format shows by far the worst performance. We then
recorded the times of our solution again in two different ways: First we did not
exclude any reads from the data sets, but then we converted the files again and
excluded all reads with quality scores below our set threshold of 10. The results
indicate that the most significant differences are between conventional
compression techniques and our approach, rather than between the two runs
with and without the exclusion of sequences. This finding implies that our
algorithms are generally faster and much more time efficient, and the total
number of sequences plays a much less significant role. While for example the
decompressing process of the human transcriptome SRA file to a usable FASTQ

takes 404 seconds (i.e., 6.7 minutes), the same file can be read within 5 seconds

35

if it were compressed in our binary format. This would allow bioinformatics
applications to read much smaller files into memory in much less time, while at
the same time the file reading and decompressing is performed within the same
process (as opposed to first decompressing a file using SRA / GZIP and then

separately reading the file into memory using conventional application I/O).

All experiments were performed on a single computer running on 4xAMD
Opteron 6300 Series, 2.8GHz 16 Core Socket G34 CPU, 512GB DDR3 1600Mhz

E/R, 1TB SATA Il Enterprise Hard Drive 3.0Gb/s, 7200 RPM.

2.5 Discussion and conclusion

The proposed algorithms and file structures are expected to have a huge impact
on how HTS data will be managed in the future. For example, instead of having
to download all the sequenced data from a metagenomics related project onto
100 hard drives, the same amount of information can now be saved on just three
hard drives of the same type. This removes the necessity of large data storage
devices such as RAID servers. Instead, the three hard drives can directly be

plugged the workstation the analysis is performed on.

This advantage in return enables the analysis of HTS data to be done on regular
computers or workstations, instead of on big data clusters. It takes us closer to

the goal of bringing analysis and data generation together.

36

3. Gene Cluster Approach to Reduce Redundancy of Reference
Sequences for High Throughput Sequencing Data Analysis

3.1 Problem Description

Data redundancy is an issue many researchers have to deal with when obtaining
or downloading data from public storages such as SRA or GenBank [38]. Often
the sequencing data is outdated or very old. The quality of the sequences
produced several years ago is not nearly close to today's standards, and thus the
sequencing data itself many times is of poor quality as well. Many data sets are
incomplete, are missing annotations, or contain sequences that are too short to
be used. The redundancy lies not only in the sequences though. A large portion
of unnecessary data resides in the headers of FASTQ and FASTA files. Many
times the header lines are much longer than the actual nucleotide sequences,
thus reducing the total amount of useful information in a FASTA or FASTQ file far
below 50% of its total file size. Additionally, in several cases the headers are

even several magnitudes greater than the actual sequences (Figure 16).

37

»gi| 3026237 8| ref| MP_B44755.1| mbtH-like protein [Bacillus anthracis str. Ames)gi|47527668 | ref|¥YP_019017.1| balhimycin biosynthetic
protein MbtH [Bacillus anthrads str. 'Ames Ancestor])gi | 491852 18 | ref| YP_028470.1| balhimycin biosynthetic protein MbtH [Bacillus anthracis
str. Sternelzi |49479960 |ref|¥P_D36475.1| balhimycin biosynthetic protein MbtH [Bacillus thuringiensis serovar konkukian str. 97-
27)ei|65219670 | ref|ZP_00392629.1] COG2251: Uncharacterized protein conserved in bacteria [Bacillus anthracis str.
A2012)gi | 118477774 ref| YP_B54925 1| mbtH-like protein [Bacillus thuringiensiz str. Al Hzkam]gi | 165570487 | ref|ZP_02215141.1| mbtH-like
protein [Bacillus anthracis str. AD488]ei| 167632767 |ref|ZP_02391093.1| mbtH-like protein [Bacillus anthracis str.
A04472)zi | 167639636 ref| ZP_D2397905.1| mbtH-like protein [Bacillus anthracis str. A0193]gi| 170686910 | ref|ZP_02878129.1| mbtH-like
protein [Bacillus anthracis str. AQ465)ei| 170706688 |ref|ZP_02897147.1] mbtH-like protein [Bacillus anthracis str.
A0389)gi | 177649522 | ref| ZP_D2932524.1| mbtH-like protein [Bacillus anthracis str. A0174)gi| 190565680 | ref|ZP_03018600.1] mbtH-like
protein [Bacillus anthracis str. Tsiankowskii-llgi| 196033814 |ref|ZP_03101225.1] mbtH-like protein [Bacillus cereus
Wlgi| 196029924 | ref| ZP_02107227.1| MbtH-like protein [Bacillus cersus NVHO597-99]gi | 1960435 21 | ref|ZP_032110769.1| mbtH-ike protein
[Bacillus cereus D3BB10E]gi | 218903507 | ref| YP_002451341.1| mbtH-like protein [Bacillus cereus AHE20)gi | 2278 14816 | ref| YP_0D2E14825.1|
mbtH-like protein [Bacillus anthracis str. COC 684)si| 229603791 |ref|YP_D02866710.1| mbtH-like protein [Bacillus anthracis str.
AD24%8)gi | 254684950| ref| ZP_05148810.1| mbtH-like protein [Bacillus anthracis str. CNEVA-9066]gi | 2547 22257 |ref| ZP_05184145 1| mbtHike
protein [Bacillus anthracis str. A1055)gi | 254737398 |ref|ZP_05195102 1| mbtH-like protein [Bacillus anthracis str. Western Morth America
USAE153]gi | 254743418 | ref| ZP_05201103.1| mbtH-like protein [Bacillus anthrads str. Kruger Blgi | 254751713 |ref| ZP_05203750.1 | mbtH-like
protein [Bacillus anthracis str. Vollumlgi| 254760232 |ref|ZP_05212256.1| mbtH-like protein [Bacillus anthracis str. Australiz
94]gi | 301053892 | ref| YP_0037521032.1| balhimycin biosynthetic protein MbtH [Bacillus cereus biovar anthracis str.
Cllegi | 376266284 | ref| YP_DD5113995 1 | Polymyxin synthetase PmxB [Bacillus cereus F337/76]gi |386736 125 | ref| YP_006209306.1| MbtH-like
protein [Bacillus anthracis str. H9401)gi|421510129 |ref|ZP_15957027.1] MbtH-like protein [Bacillus anthracis str. UR-
1)gi| 421636180 | ref| ZP_16076779.1| MbtH-like protein [Bacillus anthracis str. BF1)gi| 30257009 [gb| AAP 25241 1| mbtH-like protein [Bacillus
anthracisstr. Amesgi [47502816| gb |AAT31492.1| mbtH-like protein [Bacillus anthracis str. 'Ames Ancestor]si|49179145 |gb | AATE4521.1|
mbtH-like protein [Bacillus anthracis str. Sternelsi | 49331516 | sb| AATE2162.1] MbtH protein [Bacillus thuringie nsis serovar konkukian str. 97-
27]gi| 118416999 | gb | ABKE541E.1| mbtH-like protein [Bacillus thuringiensis str. Al Hakam)gi | 164713642 | gb| EDR19165.1| mbtH-like protein
[Bacillus anthracdis str. AD488]gi | 167512345 | gb | EDRE7721. 1| mbtH-like protein [Bacillus anthracis str. AD193)gi| 167531579 | gb | EDRS4244.1|
mbtH-like protein [Bacillus anthracis str. AQ442)ei[170128419|gb|EDS97287.1| mbtH-ike protein [Bacillus anthracis str.
AD3E9])gi | 170668961| gb | EDT19705 .1 | mbtH-like protein [Bacillus anthracis str. AD465])gi| 172084596 |gh |EDTE9654.1| mbtH-like protein
[Bacillus anthracis str. AD174]gi| 190563707 |gb|EDV17E672.1| mbtH-ike protein [Bacillus anthracis str. Tsiankowskii-
1lgi| 1959534594 | b |EDX57451.1| mbtH-like protein [Bacillus cereus Wgi | 196025840 | gb | EDX64509.1| mbtH-like protein [Bacillus cereus
03BB108]gi| 196029193 | gb |[ED¥67797.1| MbtH-like protein [Bacillus cersus NVHO557-99)gi | 218538120| gb | ACKI0515.1| mbtH-like protein
[Bacillus cereus AHE 20]zi | 22 7003692 | gh| ACP13435 1| MbtH-like protein [Bacillus anthracis str. COC 684)zi| 229268199 |gb | ACO49836.1 |
mbtH-like protein [Bacillus anthracis str. AD248]ei|300376061 |gb |ADKD4965.1| MbtH-like protein [Bacillus cereus biovar anthracis str.
Cllgi | 264512084 | gb| ABWES483.1| Polymyxin synthetase PrxB [Bacillus cereus FB37/76)zi | 384385977 |gb | AFHE3638.1| MbtH-like protein
[Bacillus anthracis str. H9401)zi [401137706|gb|ENIS4779.1| hypothetical protein 1GW_02499 [Bacillus cereus
I15P3191)£i| 401819842 | gb | EMT12014.1| MbtH-like protein [Bacillus anthracis str. UR-1)gi| 403396708 |gb| E)Y93945.1| MbtH-like protein
[Bacillus anthracis str. BF1]

MTHPFENDMNYTYKVLKNEEGO Y SLWPAFLDVPIGWNVVHKEASRNDCLOYVENNWEDLNPESNOVGKKILVGKR

Figure 16: 36 header lines for one amino acid sequence of length 74, as found in GenBank;

Another major issue is the redundancy of references in reference databases.
Exact copies of same sequences might be present multiple times, each time with
different annotation. Sequences with just minor variations between one another
such as very few or even single SNPs are present in the hundreds of thousands.
Finding and selecting appropriate references is therefore very difficult,

sometimes even impossible. The interpretation of results hence is another

38

challenge, especially if many different reference sequences were involved in the
analysis. For example, assuming one has a 6 Gigabases dataset, which is the
resulting output from one NGS experiment. Searching for each individual
sequence in a reference sequence data base would require an immense amount

of time and resources.

Most analysis performed on HTS data, such as searching, mapping, or
assembly, requires performing comparisons to already known data. This pool of
known data can be tremendously huge, and algorithms with very high time
complexities, most significantly sequence alignment algorithms, cannot efficiently

be applied to this large amount of references.

3.2 Gene Cluster Database - Proposed approach

One of the possible solutions to this problem would be the creation of a gene
cluster database [39]. In this approach gene sequences have to be clustered
together using a certain degree of maximum dissimilarity. As long as two or more
sequences are similar to each other within the boundaries of this limit, they form
their own cluster and a single representative sequence is chosen to correspond
to this new cluster. Applying this idea to the entire set of known reference gene
sequences, many almost identical sequences can be eliminated. This clustering
process can be performed for several dissimilarity thresholds. This allows

creating different sets of clusters. Depending on the target application, the

39

smallest, most appropriate cluster can be chosen to serve as a reference data
base. If the analysis requires a higher order of dissimilarity the cluster set can

easily be exchanged with the one representing the next higher dissimilarity.

3.3 Large Scale Sequence Clustering Challenge

The biggest problem one would face trying to design and implement mentioned
sequence clusters is to find the longest common subsequences within a set of
references [40]. This can be done using a variety of different sequence alignment
algorithms. Sequence Alignment is the primary technique used to identify regions
of similarity among multiple DNA, RNA, or protein sequences. Those similarities
usually imply an evolutionary or structural relation among the analyzed
sequences. Alignment methods typically produce matrices, with the aligned
sequences representing the rows thereof. Identical or similar residues ideally
appear in the same column, enabled by displaying gaps as dashes ("-") (Figure

17).

AGCCTTGTCATCCGTATC-TTTCAA--—~
AGCCTTGTCATCCGTATC-TTTCA-———-
-GCCTTGTCATCCGTATC-TTTCAACG-~-
—-CCTTGTCATCCGTATC-TTTCAACGTG
—-CCTTGTCATCCGTATC-TTTCAAC--~-
—=—=CTTGTCATCCGTATCTTTTCAAC---
——=CTTGTCATCCGTATC-T——==————~
-===TTGTCATCCGTATC-TT-———————

Figure 17: Sequence alignment utilizing gap insertions ("-");

40

Sequence alignment applications result in certain alignment scores by summing

up the scores for:

e Aligned pairs of letters
e Letters aligned with gaps
e Aligned mismatches [41]

The higher the alignment score, the more similar two or more sequences are said

to be.

Sequence alignment can be performed locally [42] or globally [43]. Global
sequence alignment requires that all letters and gaps in each sequence must be
aligned. Hence global alignment works best for sequences of same or
comparable length that are expected to be similar. Local sequence alignment
works best on sequences of different lengths, which are expected to have certain
regions of high similarity within the sequences. See Figure 18 for an example of

global and local alignment, applied to the same sequences.

@ --T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

A
aattgccgecgtegttttcagCAGTTATGTCAGate

Figure 18: Global alignment (A) and local alignment (B) performed on the same set of sequences;

41

Another simple approach to visualize the results of alignment is the Dot-matrix
[44]. Here, each sequence is placed on the edge of a matrix, the first one on the
top row, the second one along the leftmost column of the matrix. A dot is printed
at each location where the characters of the two sequences match. Regions of
similarity are revealed by diagonal lines within the matrix, while isolated dots

apart from mentioned lines represent random matches (Figure 19).

[a¥]] 3 : “";E-‘E ;—-{E,:LE. 3 .= _5‘1_, X ™~ !." .:}:.m_‘m!”;!] :1:!
5 e 4:{".";"*5-“ poact =;:§ '**:ﬁ“*"‘:i ¥- % 2
= ﬁﬁl ""Hﬁ‘? i P agE ,-.»EEE;-; LT
Y. T Er A £ 1 Srad g ik Gk
It :-.,E-‘-{:-..- R *3: ul = 't TR
%!ﬂi@at,!&h‘ 5 ..j‘}r T nh
S e - EERAL i S8
e AR TR ER FARRE A IR B |
I T D W BTl
¥ e O L MR T30 g s A K ok
{3 3% 1S Tl il “ug
b=l BT e ANETTY R eris e S Bl el
N A LTS At g SR Vatiea g B et I L [ST
TN T TS O B Ry < P B
RN A PR es - O NG T T AR AER B R S | s
| SP o - ad o | - o TR - 4 g P I T | T, H .
= - L oag e g0 Wl oy mrlll avey R vae L2l eit et 20y
D ELIE g LER T e D Nl s 3 aaiin g la
= FATRR L o bR DOTREE N e e s e ik e
=] A I T TN TR L L T T T N A LR
bk Ul AN TUONT T g el et Ve i e e g o %
Eh - A AN+ bl & frd viipdct b I
ALS13382.1 1M 1500K 2K 2500K 3M 3500K 4M 4809037

Figure 19: Dot-matrix for the complete genomes of Salmonella str. LT2 [45] vs. Salmonella str. CT18
[46];

There are three techniques commonly used for sequence alignment: The
Needleman-Wunsch algorithm for global alignment [47], the Smith-Waterman
algorithm for local alignment [48], and the Longest Common Subsequence (LCS)

approach [40].

42

Needleman-Wunsch Algorithm

The Needleman Wunsch algorithm was designed to compute global alignment. It
was introduced in 1970 by Saul Needleman and Christian Wunsch. The
algorithm is an example of dynamic programming [49] and finds the best
alignment by using optimal alignments of smaller subsequences. It's time
complexity for two sequences that are both n letters long initially was n®, but the
algorithm soon was improved to only require n® [50]. At first, the scoring function
o for matches and mismatches, as well as the gap penalty must be defined. A
simple scoring function would be +1 for matches and -1 for mismatches. Then,
there are two steps that need to be performed in order to compute the best

alignment:
First, fill a scoring matrix T according to the following function:

Ti—1,j—1)+ a(S1(i),52()))
T (i,j) = max T(i—1,j)+ gap penalty
T(i,j — 1) + gap penalty
S1 and S2 are sequence 1 and sequence 2, respectively, while i and j represent

the indices for the matrix and sequence positions. Secondly, use the completed

matrix T to trace back and find the best alignment.
Smith-Waterman Algorithm

The Smith Waterman algorithm was designed to perform local alignment. Temple
F. Smith and Michael S. Waterman first proposed the variation of the Needleman

Wunsch algorithm in 1981. Just like the Needleman Wunsch algorithm, it is a

43

dynamic programming algorithm, and it guarantees to find the optimal local
alignment considering a given scoring system. Unlike the Needleman Wunsch
Algorithm, negative scores are not allowed, but are instead set to zero. The
backtracking algorithm starts at the cell with the highest score and ends upon
reaching a cell with a zero score, which produces the optimal local alignment for

that location.

Longest Common Subsequence Algorithm

The LCS algorithm is also based on dynamic programming. The problem it aims
to solve is as follows: Given two strings, X and Y, the goal is to produce the
longest common subsequence, which appears left to right in both strings (but not

necessarily in a contiguous block). For example, for the two strings:

e X=AEIOUZ
e Y =A0USTZ

The LCS would be AOUZ. A naive solution would generate all subsequences for
each of the given sequences using all present characters, and look for the
longest subsequences appearing in both sets. This solution would be classified
as NP-hard [51], and require an exponential time complexity, which is
unacceptable especially for very long sequences. The remedy is found in
dynamic programming, which allows solving the problem in polynomial time, as

long as the number of sequences remains constant.

44

A solution to this problem cannot be heuristically approached, but must be found
exhaustively instead. However, all techniques used to perform sequence
alignment share the common problem of immense time, memory, and processing
power needed, especially for very large sequences. To align two sequences of
length m and n, O(mn) time is needed. In order to align a set of k sequences, the

time complexity increases to O(kmn).

3.4 Basic Idea of Proposed Approach

The following process serves as a preliminary step for pair wise sequence
alignment in order to exclude sequences that are too distant from each other
from the process. First, Markov Chain profiles [52] [53] are created for all
sequences present in the data set. This process is only dependent on the total
number of sequences and possesses linear time complexity, because each
profile has to be generated only once. Next follows the pair wise comparison of
the newly created profiles, in order to find the distance between two sequences.
For lower order Markov Chain profiles this can be done very fast, and allows
identifying sequences, which are very distant from each other. One can then
exclude the flagged sequences from any further alignment process, since it
would not yield a satisfying result. Although this process requires additional time
to execute, the overall time will be reduced due to the enormous time complexity

of pair wise sequence alignment algorithms.

45

Markov Chain profiles are generally used to probabilistically model state
transitions where the succeeding states only depend on k number of states. All
states preceding the last k are irrelevant. In other words, a Markov Chain model
of order 1 means that every next state is dependent solely on the current one. In
a Markov Chain model of order 2, every state is dependent on the 2 immediate
preceding sates. A transition matrix P can be created to illustrate the likelihoods
to transition from one (current) state into each of the possible following states

[53].

We can model our application the following way: We have 4 distinct states, each
nucleotide being one of them: A, T, C, G. Each nucleotide has a 25% chance to
be followed by any of the four nucleotides again. First we can create a transition

graph (Figure 20).

Figure 20: Transition Graph depicting the chances to change from one state (nucleotide) to another;

46

The transition matrix P created suing these four distinct states looks as follows:

025 025 025 025
025 025 025 025
P=1 025 025 025 025
025 025 025 025

If we are looking at the nucleotide Adenine, and we want to calculate the
probability of encountering Thymine 2 locations away from the current, we need

to proceed as follows:

PrA->?->T]=
PIA->A->T]|+PrfA->T->T]|+PrlA->C->T]+Prl[A->G->T] =
0.25*0.25+0.25*0.25+0.25*0.25+ 0.25*0.25 = 0.25

Now this might seem obvious assuming the probabilities never change, but
instead remain 0.25 for each and every transition throughout the sequence. In
reality however, these probabilities differ a lot and depend on the nature of the
DNA sequence. In an Adenine / Thymine rich region for example, the chances to
encounter an A or T are much higher than for C and G. For instance, if at the
current position resides an A, the probabilities can state that with a 45% chance,
the next nucleotide will also be an A, and a T with 35%. With a chance of only
15%, the current A is followed by a C, and a G with 5%. On the other hand, if the
current position shows a C, with the chance of 55%, it is followed by an A, and a

T with 30%, while with the chance of 5% it is followed by another C, and a G with

47

10%. The probabilities of transitions for current positions T and G can be seen in

the following new transition graph:

Figure 21: Possible transition graph for the new probabilities in an A/T rich region of the DNA
sequence;

The new transition matrix looks as follows:

045 035 015 005
040 035 015 010
P=1 055 035 005 0.10
050 030 010 010

Trying to answer the same question as before, namely the chance to encounter a
Thymine 2 locations from the current location, which is an Adenine, yields the

following result:

48

PrlA->?->T]=
PIIA->A->T]+Pr[A->T->T]|+PrA->C->T|+Pr[A->G->T] =
0.45*0.35+0.35*0.35+ 0.15*0.35 + 0.05 * 0.30 = 0.3475

Not surprisingly, the value has increased. This way the likelihood of an arbitrarily

far away nucleotide can be estimated using the shown Markov Chains.

Before the Markov Chain Profiles are created, we sort the sequences by length.
This allows removing all sequences which due to their length differences do not
allow successful alignment to begin with. For example, one sequence is of length
2000, a second sequence is of length 1000, and the maximum dissimilarity
threshold is set to 5%; then it is impossible to meet the threshold of 5% (Figure

22).

length 1

length 1 - length 2
length 1

> threshold

———length 2 NV

Figure 22: All sequences are sorted by length and all sequences which differ beyond a certain
threshold in their lengths, are excluded;

49

Once all the distances are computed and the set of the remaining sequence has
been reduced, the sequence alignment can be performed on only a small subset

of the prior very large data set.

3.5 Implementation

The way we can compare two sequences using Markov Chain profiles is to view
the cumulative differences as state values. Then the probability of each
nucleotide depends on k previous nucleotides, where k is the order of the Markov
Chain profiles. Depending on the highest Markov Chain order, the number of
states varies. For example, in Markov Chain order 1 (M;), there are only four
states: A, T, C, G. Proceeding to Markov Chain order 2, the number of states
increases to 16 (AA, AT, AC, AG, TA, TT, TC, TG, CA, CT, CC, CG, GA, GT,
GC, GG). The total number of states can be written as 4", where n is the highest

order of the Markov Chain profiles.

A mismatch in one sequence will affect a different number of states, dependent

on the set order of Markov Chains (Figure 23 and 24).

50

G EEEEEEQEEEEEE G) EEEEEFGEEEEEE

A: 10 A:9 (-1)
T:8 T:8
C:8 C:8
G:5 G: 6 (+1)

Figure 23: Markov Chain profiles of order 1 with changing states upon encountering a nucleotide

mismatch;

|
Sl *****ATA***** 52 *****Am*****
AA: 8 AA: 8
AT:9 AT:8(-1)
AC: 10 AC: 11 (+1)
AG: 2 AG: 2
TA: 4 TA: 3(-1)
TT: 6 TT: 6
TC: 8 TC: 8
TG: 7 TG: 7
CA: 6 CA:7 (+1)
CT:12 CT:12

Figure 24: Markov Chain profiles of order 2 with changing states upon encountering a nucleotide
mismatch;

While the substitution of an A to a G only increases the score for G and

decreases the score for A in My, this single substitution affects 4 states in My,

51

and would affect 8 states in M3. Hence the number of affected states in defined

to be 2", where n equals the highest Markov Chain order.

The worst case cumulative differences can be calculated using the formula:

2*n*m

Where n - Markov Order and m - number of mismatches.

3.6 Higher Order Markov Chain Models for the Long Sequence
Comparison Problem

We face the following problem: The longer the sequence is, the more deviation
from the worst case scenario occurs. This happens due to the fact that the same

n-mers will be hit repeatedly in very long sequences (Figure 25).

ATCAGGAGCTAGAGGAGGAAGTCTCTAGAGCGATTCAGGACTATCAGGACTAGAGC

cause changes in the same n-mers (states) repeatedly

Figure 25: The longer the sequences, the higher the probability for a mismatch to alter the state of
several states repeatedly;

We have developed two data structures in order to provide the necessary
functionality: Markov_Chains_Profile and Susbequences_Frequency_Array

(Figure 26).

52

| Markov_Chains_Profile ¥ | | Subsequences_Frequency Array |
Class Class

4

Figure 26: The two classes Markov_Chains_Profile and Subsequences_Frequency_Array, which are
used to compute the Markov Chain profiles for the sequences and to calculate their distances;

The class Markov_Chains_Profile has two data members and provides several

methods (Figure 27).

»

(Markov_Chains_Profile
Class

= Fields
o® frequency

;‘n*."' max_subsequence_size_considered
= Methods
~Markov_Chains_Profile
get_Max_Cumulative_Difference
get_Max_Subsequence_Size_Censider..,
get_Min_MNumber_of MM_Expected
get_Pointer_to_Frequency_Array
is_Min_Number_of MM_Expected_Bel ...
Markowv_Chains_Profile (+ 1 overload)
show_Cumulative_Differences

LOlE S Sl S A ¢

show_Frequencies

Figure 27: The class Markov_Chains_Profile, its data members, and its methods;

The variable max_subsequence_size considered represents the highest Markov
Chain order the object is supposed to implement. The field frequency is an array

of instances of Subsequences_Frequency_Array. The size of this array is the

53

highest Markov Chain order supported by the object, stored in the variable

max_subsequence_size_considered.

The function get_Pointer_to_Frequency_Array provides access to the frequency

arrays of the object and is used in the process of comparing two profiles.

The second class we have developed is the Subsequences_Frequency_Array. It
has three data members: array_size, frequency, and subsequence_length

(Figure 28).

*

| Subsequences_Frequency_Array
Class

= Fields

o* array_size

o frequency

#? subsequence_length
=l Methods

~Subsequences_Frequency_Array
get_Cumulative_Difference
get_Cumulative_Difference_Percent
get_Pointer_to_Frequency_Array
get_Subsequence_Length
show_Frequencies

LAl S S A A Sl

Subsequences_Frequency_Array [+ 1 owverl..

Figure 28: The class Subsequences_Frequency_Array, its data members, and its methods;

The field subsequence_length represents the highest Markov Chain order an
instance of this object is expected to support. Its value is passed as an argument
to the constructor when creating the array within the Markov_Chains_Profile

object. The field array_size represents to total length of this frequency array, and

54

is calculated by 4', where | = subsequence_length. This means with increasing
Markov Chain orders, the array will grow exponentially in size. The field
frequency is an unsigned integer array of size array_size. It serves as a counting

array to store the frequencies of occurrences of all possible n-mers.

The frequency array is built by converting every occurrence of a subsequence of
length n (n = Markov Chain order) into an integer number. This integer number
represents a unigue index within the frequency array. Every occurrence of a
certain n-mer will increase the value located at the index in the frequency array
corresponding to the n-mer's converted integer value. Figure 29 will exemplify

this procedure:

. 4 % 3 & % % A=0(00)
ATG ATG T=1(01)

C=2(10)

G=3(11
¢ 000111%*(...)**000111 -

Increase value Increaﬁévalue
atindex 7 (+1) atindex 7 (+1)

Frequency array [0] [0] [0] [©2] [©O] [O] [O] [O+2]
index O 1 2 3 4 3 & K

Figure 29: The procedure of converting of n-mers into integer numbers;

55

Each nucleotide corresponds to a 2-bit number: A=00, T=01, C=10, and G=11.
All n-mers are investigated converted to their appropriate integer values. These
integer values then serve as indices for the frequency array, and each
occurrence of a certain n-mer increases the value present at its representing

index in the frequency array.

Once all frequency arrays for all sequences are created, the Markov Chain
profiles can be compared in order to obtain the cumulative differences among

them, using the method get_Cumulative _Difference (Figure 30).

= Methods

W ~.Subsequences Frequency Array

% get_Cumulative_Difference

% get_Cumulative_Difference_Percent

Figure 30: The function get_Cumulative_Difference, used to compare two frequency arrays;

The cumulative differences are calculated by taking the sum of all absolute
values of the differences per location within the frequency arrays frequency; and
frequencys.:
array_size—1
Z |frequency,[i] — frequency,[i]|
0

With i going from O to array_size-1;

As an example, assume the frequency arrays frequency; and frequency, of two

Markov Chain profiles to be as follows:

56

frequency:: [1] [3] [7] [0} [9] [5] [3] [0] [O0] [1] [O] [3]

frequency,: [6] [2] [2] ([0] [O] [1] [1] (O] [9] [4] [4] [O]

Then the following absolute differences prevail among them:

Differences: 7 1 5 0 9 o 2 0 9 3 4 3

The cumulative difference of Markov Chain profile 1 and Markov Chain profile 2
is therefore: 7+1+5+0+9+6+2+0+9+3+4+3=49; this will be seen as

the distance value between the corresponding sequence 1 and sequence 2.

If we were to use the worst case scenario value as a threshold to filter out distant
sequences, almost all sequences would be passing this restriction, hence being
not very effective. To illustrate this problem we performed several simulations
using randomly generated test sequences of sizes between 100 and 10,000
nucleotides, which is the typical range of gene lengths. We then computed the
cumulative differences by inserting random Single Nucleotide Polymorphisms
(SNPs) in a copy of that same sequence, and compared the results with the
worst case cumulative differences. This experiment was conducted for each
Markov Chain order from one to seven. Setting the threshold for dissimilarity to
10% (which depicts the amount of mismatches between two sequences), we
compared the average dissimilarities with the worst case dissimilarities. The
results projected precisely our prediction: For long sequences, the differences
between the predicted and the actual values are much greater than for short

sequences (Figure 31).

57

a) | 120

100 -

BD

W 529100 worst

B Seql00 actual
40

distance values

0 A

b) | 250

200

150
W 5eq200 worst

100 W Seq200 actual

50

distance values

c) | 1200

1000

BOO

W 5&q 1000 worst

W Seq1000 actual
400 -

distance values

200

M1 M2

Figure 31: Markov Chain Profile M1 - Ms predictions of cumulative differences (blue columns) versus
actual cumulative differences (red columns);
a) illustrates the findings for random sequences of length 100, b) of length 200 and c) of length 1000;

58

While this difference between the worst cases and the average actual cases are
decreasing with higher Markov Chain orders, one cannot simply choose an
arbitrarily large Markov Chain order for this purpose. The reason therefore is that
the higher the Markov Chain order, the larger the number of n-mers that are
present in the Markov Chain models. At the point where O(n) < O(m?), with n
being the total number of sequences and m being the highest Markov Chain
order, this exponentially growing number of n-mers rises to the peak where the
time needed for computations will not compensate sufficiently for the exclusion of

sequences from the alignment process.

3.7 Proposed Approach

It is possible to identify alternative thresholds for different sequence lengths and
different Markov Chain orders to eliminate sequences. These new thresholds are
found at distance values, which allow 95% or 99% of all sequences to pass,
while the few remaining outliers will be excluded. Thus, these new boundaries
serve as the criteria to indicate whether sequences, due to their distances, can
be excluded from the alignment process. Using three steps of exhaustive
analysis, those boundaries can be predicted for different sequence lengths, and
different Markov Chain orders, which can be increased until a 95% or 99%

threshold that is sufficient enough has been found.

59

Those three steps include analysis with random sequences and random
mutations (SNPs), real sequences with randomly inserted SNPs, and finally real

sequences with real mutations.

3.8 Computational Modeling and Validation

3.8.1 Random Sequences and Random Mutations

In the first analytical modeling we produced randomly generated sequences of
lengths: 100, 200, 300, 500, 1,000, 2,000, 3,000, 5,000, and 10,000. We then
introduced mutations at random locations with the following mutation rates: 1%,
2%, 3%, 5%, 10%, and 15%. We calculated the Markov Chain profile distances
for all Markov Chain orders from one to six. Each possible combination of
parameters was executed 1,000 times in order to obtain representative averages

and standard deviations (Figures 32, 33).

60

Length 100

160

140

P M7

N g —w
o=
/

distance value

dissimilarity in %

Figure 32: Average distance values and standard deviations for random sequences of length 100 for
different Markov Chain orders and increasing dissimilarities caused by introduced SNPs;

Length 1,000

1400
1200 //z
1000 "I{

e

=
— Boao
g ‘// //{ M5
a¥}
E 00
i 400 —]2
=
M1

_é

1 2 3 5 10 15

dissimilarity in %

Figure 33: Average distance values and standard deviations for random sequences of length 1,000
for different Markov Chain orders and increasing dissimilarities caused by introduced SNPs;

61

At the length of 200, with an introduced dissimilarity of 3% and Markov order 3,
the worst-case cumulative dissimilarity value is 36. However, our calculations
have shown that setting the threshold to 30 will already include 95% of the

executions (Figure 34).

200

180
worst case

160

140
95%
120

100 -
80

60

40 I l
| |

20 i

N N |1,

r—rrr T T1r r &P r T T T T TeT T T T F T

number of sequences

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

distance values

Figure 34: Random sequence length: 200; Dissimilarity: 3%; Markov Order: 3; 95% threshold at 30;
worst case cumulative difference at 36;

Very similar was the result from a different experiment with longer sequences
(length 1,000), 1% dissimilarity, and Markov order 4. While the worst case

cumulative difference is 80, the 95% threshold is at 68 (Figure 35).

62

100 -

worst case
S0

80

95%
70

60

50

40

number of sequences

20
10 I ‘
0 -y rr-‘-‘[n ||1||I||||rrl'rrl"l""l" AREREmERmEEmaR T |L1l||[|

1 4 7 101316192225283134374043464952555861646770737679

distance values

Figure 35: Random sequence length: 1,000; Dissimilarity: 1%; Markov order: 4; 95% threshold at 68;
worst case cumulative difference at 80;

As we increase the sequence length, our observations reflect exactly what we
predicted in our analysis: The worst-case cumulative difference value is far from
the actual cumulative differences, which we observed during the simulations. For
the next example we then further increased the sequence length to 2,000,
introduced 3% dissimilarity and applied Markov Chain order 3. While the worst-
case cumulative difference value for this situation is at 360, at 114 we already

included 95% of all executions, 99% at 124 (Figure 36).

63

200
180

95% Worst case

160
140

99%
120

100
&0

60

number of sequences

o I
0 A T T T T T T

bin bin bin bin bin bin bin bin bin bin bin bin bin hin
10 20 30 40 50 &0 70 80 90 100 110 120 130 140

distance values

Figure 36: Random sequence length: 2,000; Dissimilarity: 3%; Markov order: 3; bin size: 10;

Another property that was expected to have significant influence on the 95%
threshold is order of dissimilarity percentage. To observe this property we ran the
experiment on sequences of length 1,000 and used Markov order 4. The worst-
case cumulative difference value is 80, with an introduced dissimilarity of 1%.

Our 95% threshold was at 68 (Figure 37).

64

100

Qo

95% worst case
80

70

60

50
40

30
20

number of sequences

10

] .II.IIII.IIIIIIIIIIIIII.III

1 4 7101316192225283134374043464952555861646770737679 80

distance values

Figure 37: Random sequence length: 1,000; Dissimilarity: 1%; Markov order: 4;

The result showed us that the worst-case assumption (80) was quite close to the
actual worst-case cumulative difference (68), especially when compared with the
next simulation, where only the dissimilarity was increased to 5%. Now, the
expected worst-case cumulative difference was at 400, while the actual 95%
threshold was at exactly half of that value, at 200. Even the 99% mark (212) was

not significantly closer to the worst-case expectation (Figure 38).

65

30
95%
25
O 99%
[
E 20
= worst case
o
T 1s
"
IS
C 10
0]
o
El s
=
- Ml LA |
o L | n
= = I T T T ot T I I - BT - B VI R - T Y-
B I T A T IET- T S = = T~ e Ry V= R T QT I A R = = G 400
e e R L I o e = = e et s v S R

distance values

Figure 38: Random sequence length: 1,000; Dissimilarity: 5%; Markov order: 4;

This graph can be smoothened out by increasing the bin sizes of the distance

values on the x-axis from 1 to 10 (Figure 39).

100
a0
80
70
60
50
40
30 -
20
10

95%

99%
worst case

number of sequences

3

400

hin 220
bin 230

distance values

Figure 39: Random sequence length: 1,000; Dissimilarity: 5%; Markov order: 4; bin size increased to
10;

66

Our analysis showed that with increasing sequence length, even a small increase
in dissimilarity has a major impact on how close the expected worst-case
cumulative difference is to the actual measurements. The simulations confirmed

said predictions.

3.8.2 Real Sequences and Random Mutations

After the demonstrated simulations had verified the predictions of our analysis,
we have performed similar applications on real DNA data, instead of randomly
generated sequences. For this purpose the gene thrA from Escherichia coli K-12
[54] was taken, which has a length of 2463 nucleotides. We introduced mutations
of various rates (1%, 2%, 3%, 5%, 10%) at random locations within this
nucleotide sequence and performed the distance calculations on all Markov
Chain profiles for the Markov orders from one to six. With an introduced
dissimilarity of 1%, and a Markov Chain order 1, the estimated worst case
distance value is 49.26. However, our model has shown that setting the threshold
to 16 will already result in an inclusion of 95% of all sequences, while a threshold

of 20 will include 99% (Figure 40).

67

200

180

worst case
160

140

120 -
100
80

60 -
a0 I l

i) LI I B | T T 1 T T III Ill T T T T T © T T T T T

1234567 8 51011121314151617181920212223242526272829 49

95%

number of sequences

distance values

Figure 40: Gene length: 2,463; Dissimilarity: 1%; Markov order: 1;

After increasing the Markov order to 5 with the other parameters unaltered, the
95% and 99% thresholds yielded a distance value of 196 and 203, respectively,

while the worst case distance increased to 246.3 (Figure 41).

68

250 7

worst case
200 1
[74] 0,
o 95%
E 150
@
=
(=3
2 | 100 4
e
Q
S | 50
L
=
c 0 T T - T
ﬂﬂﬂﬂﬂﬂﬂaﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
= ™ M g L D K~ T O = N ™Mo w0 = ;D = N 246
E £ £ £ £ € £ £ £ ™ o = =\ =@ =\ od sl od o NN NN
&2 5 28808080808 L8 EEEEEEEEEE EEC
4 O O O 4O 4O O O O o9 O 4O 4O o

distance values

Figure 41: Gene length: 2,463; Dissimilarity: 1%; Markov order: 5; bin size increased to 10;

The same gene was again mutated at random locations with a dissimilarity rate
of 10%. Using both Markov Chain orders 1 and 3, a major difference between the

worst case sequence distances and the 95% threshold for each were observed

(Figures 42, 43).

69

250
200
A worst case
= 95%
L | 1s0
o
[a}]
%]
5 | 100
e
a}]
< |
E | so
S
S 1]
0 T T T T T T T T T T T T T T T T T III III T T T T T T T T I-I T T T T T T T T T T T T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 501
distance values
Figure 42: Gene length: 2,463; Dissimilarity: 10%; Markov order: 1;
160
140
worst case
o | 120
o
100 -
=
= 95%
= | 80
La¥]
-.T 60
(=}
= 40 -
o
E 20 -
: | I
C 0 =T T T T T T T T T T T T T T T
bin 1503
10 20 30 40 50 60 70 80 90 100110120130140150160170180120200

distance values (bin size = 10)

Figure 43: Gene length: 2,463; Dissimilarity: 10%; Markov Order: 3;

These observations are in line with what the simulations using randomly

generated sequences were suggesting, as Figures 44 and 45 illustrate.

70

250

200 |

150

Bfrequencies ecoli

100 - Wireguenciessimulation

number of sequences

1 3 5 7 9 11131517 1921 23 25 27 29

Figure 44: Sequence length (gene and random simulation): 2,463; Dissimilarity: 1%; Markov order: 1;

250

200

150

I Bfrequencies ecoli

100 M frequencies simulation

30 I

number of sequences

0 -
bin bin bin bin bin bin bin bin bin bin bin bin
10 30 50 70 90 110 130 150 170 190 210 230

Figure 45: Sequence length (gene and random simulation): 2,463; Dissimilarity: 1%; Markov order: 5;

3.8.3 Real Sequences and Real Mutations

To complete the validation of the proposed work, several examples of Segment 6
from the HIN1 influenza virus were chosen, where a certain degree of SNP
occurrences was expected. For this purpose, six such sequences were

investigated, whose length is 1410 nucleotides each. The samples were taken

71

from different geographical locations: 1 from Georgia [55], 1 from lllinois [56], 1
from Stockholm [57], 1 from Strasbourg [58], 1 from Texas [59], and 1 from
Thailand [60]. Upon aligning each sequence with one another, the following

similarities were found:

Table 13: Similarities of HIN1 Influenza Virus, Segment 6;

Georgia |lllinois | Stockholm |Strasbourg |Texas | Thailand
Q323549 GQ894817 GQ365682 G(Q329108 GQ323513 | GABE69S3
Georgia 100% 99.4% |99.9% 99.7% 99.8% |99.7%
GQ323549
lllinois 100% 99.6% 99.7% 99.5% |99.7%
GQ894817
Stockholm 100% 99.9% 99.9% |99.9%
GQ365682
Strasbourg 100% 99.8% | 100%
GQ329108
Texas 100% | 99.8%
GQ323513
Thailand

GQB66953

Next, Markov Chain models have been used to calculate the distances between
the sequences. This gave us the opportunity to estimate whether our model
could accurately be used to find the maximum distance values that should be
considered for a sequence not to be excluded. Since the Segment 6 of the
influenza virus is of length 1410 nucleotides, we compared the distances with
simulated sequences of length 1410, and assumed a dissimilarity of 1%. When
we compared the actual distances to the worst case scenario distance values,

we observed the expected big differences. We then looked at the 95% and 99%

72

thresholds and found those to be a lot closer to the actual values of the real gene

distances (Figure 46).

Sequence length 1410

160

140

7

n
ah]
= m— N orst Case
o /
z 80 99% Threshold
=) o
= / / F 95% Threshold
s 60 rFd
" / / -~ == == Rzl Genes
— -
T | 40 // =
- -
20
— - -
-— -
I:I 1 1 1 1 1
M1 M2 M3 M4 M5

Markov Chain Orders

Figure 46: Real gene distance values (H1N1 influenza virus segment 6) compared to simulated
sequences of the same length for Markov Chain orders 1-6;

3.9 Discussion and Conclusion

We have successfully shown that our model can adequately be applied to real
data. The distance scores we retrieve hold the information whether a sequence
needs to be excluded from the alignment process or not. By having a given
sequence length, we can set a distinct threshold to keep at least 95% or 99% of
all sequences that possess a distance value below said threshold. We can
choose the proper Markov Chain model in order to estimate the maximum

allowed distance. The simulations predicted that in lower Markov Chain models

73

the differences between the thresholds we set and the worst cases are much

larger than at higher Markov Chain models. Increasing sequence lengths were

expected to have the same effect. Our application on real data has proven those

predictions right (Figure 47 + 48).

-Waiit Case

TN Cases

40 m—GEN case s

:u/,/

Length Lemgth Length Length Lemgth Length Length
100 100 300 500 1000 3000 5000

distance values

Markov Order 1

Worst Cane
—GiNcases

e 50 EBEE S

/

Length Length Leagth Lemgth Length Length Length
100 200 200 500 1000 3000 5000

Markowv Order 2

Figure 47: With increasing sequence length, the difference between worst case dissimilarity and the
threshold to include 95% or 99% of the sequences increases; 1% dissimilarity;

450
400
350
300
250
200

——'Worst Cage
—0%cases
150 —5 S
100

0

Length Length Length Length Length Length Length
100 200 o0 200 1000 00 2000

distance values

Markov Order 4

&0

00

400

300

Warst Case
—09% cases

e FE 0 CBEES

Length Length Length Length Length Length Length
100 200 300 500 1000 3000 5000

Markov Order 5

Figure 48: The difference between the worst case dissimilarity and the threshold to include 95% or
99% of the sequences decreases with higher Markov Chain orders; dissimilarity 1%;

The higher the dissimilarity of the sequences is, the greater is the deviation of the

worst case scenario from the actual distance values and from the 95% or 99%

74

thresholds. Previous examples (1% dissimilarity) have been evaluated with a 2%

(Figure 49) and a 5% (Figure 50) dissimilarity as well for confirmation.

distance values

distance values

o - 7
i
i
150
/f =——Wiori Case
100 =+ =0kl
! — 5% s
/
50 _Jf
o
Length Lemgth Length Lemgth Length Length Lemgih
100 200 300 SO0 1000 3000 5000
Markov Order 1
200
00
700 T
00 4
500 1 ——WorstCase
#0071 —— 0% cases
| —g5%cases
200
100

Lemgth Lengih Length Langth Length Leagth Length
100 00 300 300 1000 3000 5000

Markov Order 4

Length Lempth Length Length Leagth Length Lemgth
1 200 30 500 1000 3000 5000

Markov Order 2

1200 -

1000

BOD

600 -7

400

200 -

o -+

=—=Worst Case
—0Ncaiel
=5 cases

Length Length Length Lemgth Lémgth Length Length
100 00 300 500 1000 3000 5000

Markov Order 5

Figure 49: Increasing Markov Chain orders reduce the differences between the worst case
cumulative distance values and the thresholds for 95% and 99%; increasing dissimilarities (here 2%)
have the opposite effect;

75

600

500 1000
"q," 400 800
=
o o T - "
: 300 Wiorst Case ey Waorst Cade
;E:- —INCasel —0 CaRES
T | D —5% E B 400 —% e
-
=

100 200

0 1]
Length Length Lemgth Length Length Length Length Leagth Leapth Length Length Leagth Length Lempth
100 200 300 500 1000 3000 S000 100 W00 300 500 1000 3000 3000
Markov Order 1 Markov Order 2

2500 5000

1000 2500
i
1] 2000
r-: 1500
= Worst Case . Worst Cae
@ 1500
'\E 1000 —— TN ases —N e
E =% cases 10040 —5 e
= | soo

@

__———-__'--""-_:

Length Length Length Length Length Length Length
109 200 300 500 1000 5000 3000

Markov Order 4

=

Length Length Length Length Length Length Lenpth
100 200 300 500 1000 3000 S000

Markov Order 5

Figure 50: Higher rates of dissimilarities (here 5%) increase the gap between worst case cumulative
differences and the thresholds for 95% and 99%;

The presented solution will allow to greatly improve the times needed to perform

pair-wise sequence alignment, because we reduce the total number of
comparisons that need to be performed. With the information one has about the
data set, the maximum allowed threshold will be calculated and sequences will
be excluded if they score above this threshold. In combination with the binary
data compression introduced in the beginning of this dissertation, the resulting
data set will only require a fraction of the space it initially needed. Additionally,
the now much smaller data set is also cleaned of low quality reads and other

redundant information such as sequence headers and quality scores.

76

4. Conclusion and Future Work

The presented work addresses two of the major challenges in HTS data analysis.
Using the proposed approaches one can reduce the file sizes of the sequences
produced by NGS instruments by 95% - 99%. This lessens the amount of hard-
disk space required to store the data sets and allows a much faster transmission
over the internet thereof. Additionally, the time needed to read and write to the
proposed data formats is several magnitudes smaller than what alternative
compression formats require. Where once storage clusters and machines with
high end processing powers were needed, many problems can now be dealt with

right there where the data was created, without the need to move it.

Furthermore, the computation times needed for some of the most time
consuming analytical procedures in genomics are decreased significantly. Via the
proposed method, one can preemptively reduce the size of a data set before time
consuming alignment procedures are applied. Utilizing Markov Chain models to
identify dissimilarities amongst sequences, distant sequences can be excluded
from the time consuming sequence alignment process. This made it possible to
cluster over 9 million gene sequences into 6 million clusters with one
representative sequence each within several hours - a process previously

expected to have requirements of vast proportions.

During the course of development to facilitate the presented approaches, several
data structures and algorithms have been implemented. They do not only serve
as tools to address the discussed challenges, but are also applied in attempts to

77

deal with other big-data problems faced in the NGS data analysis and genomics,
such as pathogen detection in presence of complex environments, analysis of

metagenomic samples, and copy number variation analysis.

78

References

[1] J. J. McCarthy, H. L. McLeod, G. S. Ginsburg, Genomic Medicine: A Decade
of Successes, Challenges, and Opportunities. Sci. Transl. Med. 5, 189sr4 (2013).

[2] K. M. East, A. M. Hott, N. P. Callanan, N. E. Lamb, Journal of Genetic
Counseling: Biotech 101: An Educational Outreach Program in Genetics and
Biotechnology. Volume 21, Issue 5, pp 704-712, 2012

[3] A.G.A. Khaled, K. A. Hamam, M.H. Motawea, G.A.R. El-Sherbeny, Journal of
Genetic Engineering and Biotechnology: Genetic studies on tissue culture
response and some agronomical traits in Egyptian bread wheat. Volume 11,
Issue 2, pp 79-86, 2013

[4] F. Sanger, M. Dowding, World Scientific Pub Co Inc: Selected Papers of
Frederick Sanger (With Commentaries). 1996

[5] F. Sanger, S. Nicklen, A.R. Coulson, National Academy of Sciences of the
United States of America: DNA sequencing with chain-terminating inhibitors.
Volume 74, No. 12, pp 5463-5467, 1977

[6] B. Toner, " In Sequence Survey: Illumina Holds Two-Thirds of Sequencing
Market, Splits Desktop Share with lon PGM", GenomeWeb, October 2012. Web.
April 2014

[7] http://www.illumina.com/, last accessed April 2014

[8] K. Robinson, "What Might Knock Illumina Off Its Perch?", OmicsOmics, April
2014. Web. April 2014

[9] http://www.pacificbiosciences.com/, last accessed April 2014
[10] http://www.454.com/, last accessed April 2014

[11] https://www.lifetechnologies.com/us/en/home/brands/ion-torrent.html, April
2014

[12] http://mww.appliedbiosystems.com/absite/us/en/home/applications-
technologies/solid-next-generation-sequencing/next-generation-systems/solid-
sequencing-chemistry.html, April 2014

[13] R. Cronn, A. Liston, M. Parks, D. S. Gernandt, R. Shen, T. Mockler, Nucleic
Acids Research: Multiplex sequencing of plant chloroplast genomes using Solexa
sequencing-by-synthesis technology. Volume 36, Issue 19, pp €122, 2008

79

[14] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law, BioMed
Research International: Comparison of Next-Generation Sequencing Systems.
Volume 2012, 2012

[15] H. Y. Lam, M. J. Clark, R. Chen, R. Chen, G. Natsoulis, M. O'Huallachain, F.
E. Dewey, L. Habegger, E. A. Ashley, M. B. Gerstein, A. J. Butte, H. P. Ji, M.
Snyder, Nature Biotechnology: Performance comparison of whole-genome
sequencing platforms. Volume 30, pp 78-82, 2012

[16] E. C. Hayden, "Next-generation genome sequencers compared”, Nature.
April 2012. Web. April 2014

[17] G. Cochrane, C. E. Cook, E. Birney, GigaScience: The future of DNA
sequence archiving. 2012

[18] W. R. Pearson, D. J. Lipman, Proceedings of the National Academy of
Sciences of the United States of America: Improved tools for biological sequence
comparison. Volume 85, pp 2444-2448, 1988

[19] A. Pollack, "DNA Sequencing Caught in Deluge of Data", The New York
Times. November 2011. Web. April 2014

[20] S. W. Jun, M. Liu, K. E. Fleming, FPGA: Scalable multi-access flash store for
big data analytics. Pp 55-64, 2014

[21] G. K. Wallace, Communications of the ACM: The JPEG still picture
compression standard. Volume 34, Issue 4, pp 30-44, 1991

[22] M. Kircher, S. Sawyer, M. Meyer, Nucleic Acids Research: Double indexing
overcomes inaccuracies in multiplex sequencing on the Illlumina platform.
Volume 40, Issue 1, pp €3, 2011

[23] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, P. M. Rice, Nucleic Acids
Research: The Sanger FASTQ file format for sequences with quality scores, and
the Solexa/lllumina FASTQ variants. Volume 38, Issue 6, pp 1767-1771, 2009

[24] S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin, D. M. Welch, Genome
Biology: Accuracy and quality of massively parallel DNA pyrosequencing.
Volume 8, Issue 7, 2007

[25] W. R. Pearson, Methods in Enzymology: Rapid and sensitive sequence
comparison with FASTP and FASTA. Volume 183, pp 63-98, 1990

[26] R. Leinonen, H. Sugawara, M. Shumway, Nucleic Acids Research: The
Sequence Reads Archive. Volume 39, Issue suppl 1, pp D19-D21, 2010

80

[27] R. G. Gallager, Information Theory, IEEE Transactions: Variations on a
theme by Huffman. Volume 24, Issue 6, 1978

[28] J. Ziv, A. Lempel, Information Theory, IEEE Transactions: Compression of
individual sequences via variable-rate coding. Volume 24, Issue 5, pp 530-536,
1978

[29] G. Lakhani, Image Processing, IEEE Transactions: Modified JPEG Huffman
coding. Volume 12, Issue 2, pp 159-169, 2003

[30] M. S. Vinton, Acoustics, Speech, and Signal Processing: Scalable and
progressive audio codec. Volume 5, pp 3277-3280, 2001

[31] P. Deutsch, Network Working Group: DEFLATE Compressed Data Format
Specification version 1.3. May 1996

[32] I. Oztiirk, I. Sogukpinar, International Journal of Computer, Information
Science and Engineering: Analysis and Comparison of Image Encryption
Algorithms. Volume 1, Issue 3, 2007

[33] H. Li, R. Durbin, Bioinformatics: Fast and accurate short read alignment with
Burrows-Wheeler transform. Volume 25, Issue 14, pp 1754-1760, 2009

[34] P. Ferragina, SODA '04: Compression boosting in optimal linear time using
Burrows-Wheeler Transform. pp 655-663, 2004

[35] B. Langmead, S. L. Salzberg, Nature: Fast gapped-read alignment with
Bowtie 2. Volume 9, pp 357-359, 2012

[36] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, J. Wang,
Bioinformatics: SOAP2: an improved ultrafast tool for short read alignment.
Volume 25, Issue 15, pp 1966-1967, 2009

[37] A. Andersson, S. Nilsson, Journal of Experimental Algorithms: Implementing
radixsort. Volume 3, Number 7, 1998

[38] D. A. Benson, M. Boguski, D. J. Lipman, J. Ostell, Nucleic Acids Research:
GenBank. Volume 22, Issue 17, pp 3441-3444, 1994

[39] Y. Gangman, S. H. Sze, M. R. Thron, Bioinformatics: Identifying clusters in
functionally related genes in genomes. Volume 23, Issue 9, pp 1053-1060, 2007

[40] D. S. Hirschberg, Journal of the ACM: Algorithms for the Longest Common
Subsequence Problem. Volume 24, Issue 4, 1977

81

[41] S. R. Eddy, Nature Biotechnology: Where did the BLOSUMG62 alignment
score matrix come from?, Volume 22, pp 1035-1036, 2004

[42] B. Morgenstern, K. Frech, A. Dress, T. Werner, Bioinformatics: DIALIGN:
Finding local similarities by multiple sequence alignment. Volume 14, Issue 3, pp
290-294, 1998

[43] X. Huang, Bioinformatics: On global sequence alignment. Volume 10, Issue
3, pp 227-235, 1994

[44] E. L. L. Sonnhammer, R. Durbin, Gene: A dot-matrix program with dynamic
threshold control suited for genomic DNA and protein sequence analysis. Volume
167, Issues 1-2, pp GC1-GC10, 1995

[45] http://microbes.ucsc.edu/cgi-bin/hgGateway?db=salmTyph, April 2014

[46] http://microbes.ucsc.edu/cgi-
bin/hgGateway?hgsid=555757&clade=eukaryota-
protista&org=Salmonella+typhimurium+LT2&db=0, last accessed April 2014

[47] S. B. Needleman, C. D. Wunsch, Journal of Molecular Biology: A general
method applicable to the search for similarities in the amino acid sequence of two
proteins. Volume 48, Issue 3, pp 443-453, 1970

[48] T. F. Smith, M. S. Waterman, Journal of Molecular Biology: Identification of
common molecular subsequences. Volume 147, Issue 1, pp 195-197, 1981

[49] I. Holmes, R. Durbin, Journal of computational Biology: Dynamic
Programming Alignment Accuracy. Volume 5, Issue 3, pp 493-504, 2009

[50] D. Sankoff, Proceedings of the National Academy of Sciences of the United
States of America: Matching sequences under deletion/insertion constraints/
Volume 69, Issue 1, pp 4-6, 1972

[51] A. Gorbenko, Applied Mathematical Sciences: On the Longest Common
Subsequence Problem. Volume 6, Issue 116, pp 5781-5787, 2012

[52] W. R. Gilks, Encyclopedia of Biostatistics: Markov Chain Monte Carlo, 2005

[53] P. H. Peskun, Biometrika: Optimum Monte-Carlo sampling using Markov
chains, Volume 60, Issue 3, pp 607-612, 1973

[54] M. Katinka, P. Cossatrt, L. Sibilli, I. Saint-Girons, M. A. Chalvighac, G. Le
Bras, G. N. Cohen, M. Yaniv, Proceedings of the Academy of Sciences of the

82

United States of America: Nucleotide sequence of the thrA gene of Escherichia
coli. Volume 77, Issue 10, pp 5730-5733, 1980

[55] http://www.ncbi.nIm.nih.gov/nuccore/GQ323549, last accessed April 2014
[56] http://www.ncbi.nIm.nih.gov/nuccore/GQ894817, last accessed April 2014
[57] http://mww.ncbi.nIm.nih.gov/nuccore/GQ365682, last accessed April 2014
[58] http://mww.ncbi.nim.nih.gov/nuccore/GQ329108, last accessed April 2014
[59] http://www.ncbi.nIm.nih.gov/nuccore/GQ323513, last accessed April 2014

[60] http://www.ncbi.nlm.nih.gov/nuccore/GQ866953, last accessed April 2014

83

