A TWO-STATE ANALYSIS OF THE

CNE-DIMENSIONAL RELATIVISTIC PARTICLE

A Thesis
Presented to
the Faculty of the Department of Fhysics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
John Festus Plerce

June 1967

400868



A TWO-STATE ANALYSIS OF THE

CNE-DIMENSIONAL RELATIVISTIC PARTICLE

An Abstract of a Thesis
Presented to
the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
John Festus Plerce

June 1967



ABSTRACT

The quantum description of a one-~dimensional relativistiec
particle can be formulated in terms of a Feynman two-state analysis,
The formalism presents the main physical features of the relativistic
particle in a concise, simple form. A Hamiltonian is developed in
analogy with the ammonia molecule in an clectric field. Using this
Hamiltonian the conditions under which a particle loses its positive
definite energy quality can be determined. Zitterbewegung, the
Klein paradox, and the symmetry between particles of negative energy
and positive energy anti-particles can be developed as a consequence
of this condition. A second order propagation equation for the
state vector is formulated which may be interpreted in two ways:

(1) the state space is flat and the state vectors satisfy a Feynman
Gell-Kann propagation equation; (2) the state vectors satisfy a
Klein Gordon equation, but the state space is structured or curved.
The structure of the manifold, givcn by a Weyl geometry, is due

to the presence of an electromagnetic field.
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1, INTRCDUCTION

The mathematical formalism associated with a relativistic
rarticle in one dimension suggests that a two-state analysis may
be used to describe such a physical system, Accordingly, the two-

state techniques utilized by Feynmanl

to describe with great clarity
-the gquantum concepts of the ammonia molecule, and the spinning
electron in a magnetic field, are herein applied to the problem
of the relativistic particle in motion, The technique gives rise
to a representation for the Hamiltonian of the relativistic parti-
cle which may be interpreted by comparison to the more familiar
two-state systems, Using this Hamiltonlan, many of the basic
physical features of the relativistic particle may be developed
in a natural way with only a minimum of mathemestical formalism,
First, the conditions undér vhich a particle loses its positive
definite energy quality are determained by adiabatic perturbation
heory, These conditions are then used to provide a way of concep-
tually constructing physical systems whose general state is of
definite or indefinite'energy quality: those systems initially
possessing a positive definite energy quality and whose interac-

tions are such as to be within the demands of the adiabatic condi-

tion, maintain their positive definite energy nature; those systems

1R P, Feynman, Lectures on Physics, Volume IITI, (Addison-
Wesley Publishing Co., Reading, 1965), pp. 8.11-9,9,




whose interactions are such as to violate the adiabatic condition
lose their definite energy nature, and an appreclable negative energy
state component develops, -

The free §r weakly interacting particle, a system for which
the adiabatic condition is fulfilled, is investigated, and the
notion of deseribing the components of the state vector as Vlarge!
and "small" is developed, This "large and small'" characteristic is
then used to account for the disappearance of a degree of freedom
in the state vector as the non-relativistic limit is considered,

Systems for which the adiabétic condition is violated, and
which afe characterized by a non-negligable probability of being
in a negative energy state, are next examined, Sudden perturbation
theory is used to formulate a description of such systems, Exan-
ination of the probability current of a particle undergoing such
interaction leads to a model of Zitterbewegung in terms of transi-
tions from the positive energy state to the negative energy state,
This model for Zitterbewegung is then related to ils geometric
manifestation as a "deviation from the classical trajectory"z
and the frequency of jitter is determined.

Also an investigation of the Klein paradox provides a direct
insight into the physical consequences of the violation of the adia-

batic condition, and the subsequent transitions to the negative

2\ Tbert Vessiah, Quantum Mechanics, Volume II, (North-
Holland Publishing Co,, Amsterdam, 1952), p. 951.




energy states., These consequences are shown to manifest them-
selves in thé problem of the localization of a particle.

A method for identifying negative energy particles and posi-
tive energy “anti.particles" is also developed. Ry seeking a
positive energy state which can be put into one-to-one correspond-
ence with the negative energy eigenstates, the 'charge conjugate™
or "anti-particle"_state is developed. The analysis is then
reformulated in terms of the particle/anti-particle states to
show how the degree of freedom originally associated with the
energy, now manifests itself as a degree of freedom in charge.

From the representation for the relativistic Hamiltonian derived
sbove, a set of field equations can be formulated, The field equa-~
tions may be interpreted in two ways, If the cormutator of dif-
ferential operators in the equations is assumed to be zero, the
state vectors are solutions of a Feynman Gell-lann propagation
equation, However, an alternative interpretation is availeble in
which the state vectors are required to satisfy a Klein Gordon
equation., In this case, the commtator of differential operators
is non~zero, and determines a constraint relationship, This
constraint is interpreted from a differential geomelry point of
view as defining a curvature of a two-dimensional state manifold,
The components of the curvature tensor, and thereby the structure
of the state manifold, is found to be proportional to the strength

of the applied electromagnetic field. The contracted curvature



tensor Tor the two-state manifold is anti-symmetric, indicating
that the geometry of the manifold is not the usual Riemannian
variety cncountered in gravitational theory. Rather, the space
fits the form svggested by Weyl for describing in a differential
geometry format, the motion of a charged particle in an electro-
magnetic field,

Finally, the two-state analysis can be related to the four-
dimensional Dirac theory by means of a projection operator. This
is interpreted physically as corresponding to a projection along
a line of fixed spin--the two-state theory is a theory in which
spin is a constant of the motion. This interpretation is emphasized
by the fact that for those interactions amenable to treatment by
the two-state Tormalism, thers is no spin {lip.

The idea that one can go from studying the ammonia molecule
directly to an introductory theory of the relativistic particle
is of value from a pedantical vicwpoint., The limitations of the
two-state theory illustrate the necessity for a more complete
theory of larger dimension, and give some insight into why the
more complete theory ié developed the way it is ( with charge con-
jugation, operators for internal degrees of frecdom, Foldy~wWouthuysen
representations, ete.). Also, one is introduced to the fertile
" idea of describing the spin-field interactions in terms of a

curvature of state space., Such an approach could provide the



mathematical formalism necessary for describing, in a unified way,
particles possessing various degrees of spin,
In Section 2 the two-state formalism is reviewed, the isonor-

vhisnm to the relativistic perticle in motion is made, and the

P

-

physical features associated with the particle in motion are
investigated, In Section 3 the structure of the state manifold

is developed. In Scction & the correspondence to the Dirac theory.
is niade, and possible relationships to other particle theories

are suggested,



Z-a, TJO-STATZ ANALYSIS

Consider a physical system which admits a description in
terms og a two-dimensional vector space, BEy such a statement it
is meant that an arbitrary state of the system, ‘V’) s ¢an be
adequately descrihed b& a linear combination of two time inde-

pendent base states, Il) and |2):

lvw) = [Dco+ke®. (29

Furthermore, aSSume_tﬂaf the time development of the arbitrary

state is governed by the Schroedinger equation:

g lvel) = Hive)., (22)

The time development of the physical systém can be completely
desCribéd, without.explicit knowledge of the base states, if

the matrix elements, }40 » of the Hamiltonian of the system with
respect to those base states are known, It is emphasized here
that the physical interpretation of the time development of the
quantum system is with respect to the chosen set of base states,
This notion is éf primary importance and will fomm the central“
part of the arguments which follow, In such a case, the basic
equation (2.2) can be expressed in terms of the probability ampli-

tudes, C:, and (:2 H

b G0 =[] 2.3



The eigenvalues of H are easily evalvated from the formula

E, = (ﬂu;_lhﬁ * '[@%_Hgf* HllHl'J%. (24)

1
z

The eigenvectors of |F4 , or the states of definite energy, can

be expressed in terms of the original base states, I])‘ and l2;> :

h) = IDachht . |da, % & < [1)eft  (25)

) = IDacHht + [Da,efat = ImekEt (20)
where

1"

YA E*_{g” = B, (27)

21

and aq is determined by.the requirement of normalization.

As a Tirst example -of the £wo-state technique, and in order
to set the stage for the relativistic analysis, consider the
treatment of the ammonia molecule, as given by Feynman.3 The
structure of the NH5 molecule is simplified to that of a tetra-
hedron with the nitrogen atom on either side of the plane defined
by the three hydrogen atoms., The base states are chosen to be
the geometrical arrangements |1> and |2> , corresponding to
the nitrogen atom "up", or on top of the plane of hydrogen atoms,

and to the nitrogen atom "down", or below the hydrogen atom

3R. P, Feynman, Loc. Cit,



plane, respectively. The general state of the NH3 system may then
be represented in terms of Il) and lZ) by the linear combination
(2.1). The time evolution of the state of the NH3 system ig,gov-
erned by the basic equation (2.3), where the matrix elements of
the Hamiltonian are with respect to the nitrogen "up" and the
nitrogen "down" hase states,

. The explicit form for the Hamiltonian matrix may be gained
from'physical argument. A first suggestion is that the two states
are degenerate with common energy Eo « If the Hamiltonian
matrix with respect to the base étates Il) and IZ) were diagonal,
then equation (2.2) would imply that if the NH3 molecule were in
a definite state, ii) or 12) , initially, it would remain there
for ever, Observation indiéates, however, that the IlE3 molecule
does not remain in a pure "up" or "down" state, This suggests
off-diagonal or "mixing terms" in the Hamiltonian matrix with
respect to ,1) and |2> . These off-diagonal terms represent
an inherent property of the NH3 molecule and would exist in the
absence of any external forces on the HH3 molecule system, The
Hamiltonian with respect to the base states ll) and r2> would
then be

Hij ) —% .?.] (26)



The eigenstates of the Hamiltonian (2,8) can be expressed in
terms of the "up-down'" base states, li) and IZ) s by equations
(2,5) and (2.6). Vith respect to these eigenstates,. lI) and

IH) , the Hamiltonian matrix has the diagonal form

H = E’+H o ( )
8 o E-A , 29
vhere EI = E+f and EII = E-A are the
energy eligenvalues,
Hext, consider the system of the NH3 molecule in an external
static electric field of mapgnitude 8 chosen perpendicular to
the plane of hydrogen atoms for convenicence., If one assigns a
dipole moment /(7 to the NHj molecule, directed along the altitude
of the tetrahedron, then with respect to the base states, |1> and
12> y it may bhe argued that the effect of the dipole moment
interaction with the‘electric field will be to further split the
energy levels of the unperturbed Hamiltonian, Specifically, the
new Hamiltonian matrix, with respect to the ,1) , lQ) basis

set, becones

Hi = [Ee.’;,”‘s Eo:ﬁgl ‘ - (2.10)

fith respect to the base states lI) and. h[) , the states of defi-

nite energy in.the absence of the field, the Hamiltonian would be
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represented by the matrix

ER -ub 2.11)
HI?' = {-}AC E;R] , ( |
The energy eigenvalues for the Hamiltonian of the NH3 molecule-

in-the-field system can be obtained from (2.4) and are
' K
3 2
Er = Eq (A6

Ep

(212)

(t]

Y4
E- (FP—" Azgz) .
A plot of the energy eigenvalues of the NH3 system as a function
of the electric field dipole interaction energy, )Ag y 15 given
in Fipure I.

The two-state technique as applied above to the NH3 molecule
also characterizes the problem of a spin one-half particle in a
magnetic field., The correspondence between the two systems is
established by describing the base states of the system and by
writing the matrix elements for the Hamiltonian,

For the spin one-half particle, two base states are defined
from the angular momentun projection along a chosen Z-axis, In
such a case Il) is chosen to correspond to the state of a parti-
cle vhose Z-component of spin is +‘§6 , and ]2> is chosen to

correspond to the state of a particle whose Z-component of spin

is ‘“2&5 .

The interaction of the particle with the magneﬂic field is

accounted for by assigning to the particle a magnetic moment as



FIGURE I. Two-State Inergy Eilgenspectrum for the NH,-
Molecule as a Function of the Dipole-Field Interaction Energy
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a consequence of its intrinsic spin property. The interaction is

then given by the classical expression

€= 4. B. - (209)
For the case of _B’ along the chosen Z-axis, in analogy to
the classic dipole, the g field is assumed to cause no "flipping"
from state |1> to 12> ., Or vice-versa, so that |1> and |2> are

stationary states, or states of definite energy., The Familtonian

with respect to |17 and [2) will then be diagonal and of the form

A

H.- = [A;)B OB] . (2.14)

=4 .
For the case of 8 arbitrarily directed, with components in

all three directions of the chosen reference frame XYZ, the above

developrr.lent permits one to assume that the base states of definite

energy, lI) and IH> , refer jto the measurementAof the component

of spin along a Z'-axis, This Z'-axis is chosen to be the axis of
~

the B’ field. Then with respect to the states |I) and [I) ,

the Hamiltonian for this system is as above

-2 5 @

. —
1t By, By , Bi' , are the components of the B field

with respect to the laboratory frame XYZ, then the eigen energies are
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E, = u(B;+B§+B§)V2

by = (BeByeE)

For the arbitrarily oriented magnetic field a linear representation

(2.18)

for the Hamiltonian operator is

. /"Bi . B +; H
Hy = | (ioiapes 00 @
i Ak Bx"LBy)e "/‘Bil .
The phase factor e‘s is arbitrary and following convention, is
set equal to -1 .
In spherical coordinates (2,18) may be written as

Hij = [,qusé. -;'uB-sin'Gef"#] | 218

-uB sin 66" -~ Bose
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2-b, CONNZCTION TO TEE RELATIVISTIC FARTICLE

The connection between the one-dimensicnal relativistic
particle and the two-state technique is most easily made at this
point by considering the E‘instein expression for the energy of the
one-dimensional relativistic particle of mass and charge

in an external field, which is .
%
E = ef [(r-efV + mrc?]” (2.9)

If the particle momentum is assumed to be an independ.en~t variable,
a plot of the total energy E versus (rr—-eﬂ)c exhibits the
same bi-valued behavior as does the energy level plot of the NH3
two-state system., (Compare Figure I and II.) Thus if one makes
the correspondence to the KH3 molecule in the static £ field,

as .showm in Table I, the rest mass term,m, C". can be associated
with the "internal" transition amplitu.de of the Hig molecule, and
thq particle momentum term, (‘n'-eﬂ)c ; can be associated with the
external interaction energy, ,u€ . The correspondence leads to
the following reprz*esenfation for the Hamiltonian for the relativis.

tic particle in motion, with respect to the base states ”:>

[ eptme*  (r-e ﬂ)c-|

— (2.20) —

and [I[7:
”

(r-efle e;ﬁ—-mc"J



FIGURE II. The Energy Eigenspectrum for the One-Dimensional
Relativistic Particle as a Function of the Particle Momentum



V2
E[ E .= eg +[(1r—en)2c2+ m,"’c“]
o ///
///
7
7
es l&
AN —> (r-eR)c —
~
\\
~
~
2 ~
eg-m,C >

. }
EE = Qg _[(n-en)zcz-l— m?2 c‘]
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The base states lI) and ‘11) are, resPecfively, the positive and
negative definite energy eigenstates when the particle is at rest
with respect to the observer., It will be this representation for
the Hamiltonian bf the relativistic particle which will be used

herein for further study.




TABLSE I

Table of Isomorphism between the -
Three Systems Treated by the Two-State Technique

NE4 in

Spin One-Half Relativistic Particle
Static” £ Field Particle in B Field

in Electromagnetic Field

A, Vith respeet to the base states “> and ‘2) :

Yy A (Bz +y By)e. f ';“B! mc* eg- (f-eﬁ)c

E+ub H‘ ] _ | B A(Bx'igy)e':‘] _ [e¢+ (r-ef)e m,c"]
Hij i [ A E-ué] - H; = [ Hij'

B, Vith respect to the btase states |I) and |12

T E4A ué o= uB 0 ' H eg+myct (r-eflc
U lué E+A 3 [0 wuB)] 11 |Gr-eR)c ef-rmc*

Table of Parametric Isomorphisms

E, <« » O « — ed
ul e »  uBz ¢ » [T-eAlc
A v BBy > mc*
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2~c, THE FRZE PARTICLE FEATURES

The basic features of the relativistic particle in motion are
now developed using the‘Hamiltonian representation (2.20). A key
point in understanding these features is that they depend on the
fact that the gencral state of the system has two degrees of free-
dom in energy., The system may possess a "positive definite energy",
by which is meant the system resides in.a stéte wﬁich is a positive
energy eigenstate of the Hamiltonien, or the state of the system
may be a linear combination of both positive and negative energy
eigenstates, in which case it is said to be in a state of "inde-
finite energy". Thus to understand the features of the relativisa~
tic particle, it is first necessary to determine how a particle
can be known to be in a state of definite energy, and secondly,
under what conditions does the particle maintain this characteristic,

If the particle is at rest with respect to the observer, the
qugstion of whether the perticle possesses a definite or indefinite
energy is readily answered, For this case, the base states |1>
and |Z) are the positive and negative energy eigenstates of the
Hamiltonian, Thus if the general state of the particle at rest
with respect to the observer can be completely specified in terms

of either the base state |1> , or the tase state '2> , but not

a- combination—of-toth, then theparticle possesses—a definite

energy., Further since the statss ”.> and lz> are stationary
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_states for the particle at rest, the particls will maintain its
definite or indefinite energy quality if it is not set into motion.
If the particle is set into motion it may or may not méintain
its energy'quality, depending on the conditions under which it was
set into motion. The question is now asked, under what conditions
can a particle, which is initially at rest with respect to the obser-
ver'and possessing a positive definite energy, be put into motion and
still maintain its definite energy quality. Adiabétic perturbation
theory provides the necessary conditions for the maintainence of the

n

definite energy.  The general two-state equation for the time-

dependent Hamiltonian is
ih 3 @D = He lvwd | - (221

It is assumed from the development that, since the particle is
accelerated slowly, at each instant in time, ¢ , the Hamiltonian

HJH) possesses a complete set of energy eigenstates, denoted

| % (i) . K=12.. (2.22)

These eigenstates are functions of the momentum of the particle at

the time ¥ . They satisfy the eigen~value equation (for T=6 )

uD.'Bohm, Quantum Theory, (Prentice-Hall Inc., New York,
1951), p. 496 ff,
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Hie) 12, (p,8)) = 12 (p,@)2Ef6E), (2.23)

A complete set of stationary states may be built up at each moment

of time from these "instantaneous" eigenstates
. r J
Y (pt)) = |4 (p2)) 64{:5"’) °, K=iz, (2.24)

The general state may be expressed in terms of the instentaneous

stationary states as

(= . i || Eterde ~
i (pt) ) e® % Cult) . (225)

Thus if the system is initially prepared at =0 , such that

Cflo) = 10 C,(lo) = o0 (2.26)

and if 'E, ’ E,z , and <¢2 ’%%’ ¢,) are slowly varying functions

of time, then to the first approximation, Cz('t') is (see Appendix A-1)

o = mEpsm| giop(chE S y) @.27)

The probability of transition thus becomes

lesal* £ e <o (3]0 O, (2.26)



If the change in f{ﬂ) during a time T~ th; s is small in
comparison to the energy difference between the states, or more

explicitly,

@H-i—)}ga— << 1 (2.29)

the probability of a trensition to the negative energy state can
be considered negligible,

For the case of the particle initially at rest,

4 =113 latn) =11y

(), =%

and the adiabatic condition is

%%g

E~E,

(230

T <« 1 | T = gé:’g“ (231)

The adiabatic condition is secn to be rélated to the rate of change
of momentum., If, during a period of time ‘T corresponding to the
Bohr period associated with the positive and negative energy levels
for a given value of momentum, the change in momentum is small

compared to the difference in energy between these energy levels,

then the particle maintains itself in a positive definite energy
eigenstate of the Hamiltonian at each instant in time, even though

these eigenstates are constantly changing in time.
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Thus we can determine in an operational sense if a particle
possessing an arbitrary momentum is in a state of definite energy.
If the particle is brought to rest with respect to the observer,
or conversely, in such a manner so as not to violate the adiabatic
condition during the transition, the complete specification of the
state of the particle in terms of either the state |I> or II[) .
but not both, is a sufficient indication that the particle is one
of définite energy.

An investigation of the order of magnitude of the change in
momentum required to violate the adiabatic condition indicates that
ordinary accelerations are quite well within the demands of the ~5,
condition.5 Particles undergoing ordinary accelerations thus will
not exhibit those features dependent on the existence of a non-
negligeble negative energy amplitude. Cne would expect that systems
satisfying the adiabatic condition could be accurately described
in ferms of" a' one-component stéte veétor, the secoﬁd degree of
freedom being suppressed, A graphic example of the disappearance
of a degree of freedom-is present in the development of the non-
relativistic 1imit of the two-state equations.

From the above development it has been learned that a particle

initially at rest with respect to the observer and in a positive

5For example, the free electron initially at rest must experience
a force of .5 newtons before its energy state becomes indefinite,

6Davydov, Quantun Vechanics, (Addison-Wesley Publishing Co.,
Reading, 1965), p. 223 ff,
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definite energy state can be set into motion and still reside in
a positive definite energy state, provided the adiabatic cond1t10n
is satisfied, Since the particle's state /*(f)) is an eigen_state

of the Hamiltonian, it is governed by the equation

Hied = [dEp 232

With respect to the observer's states |I> and. ”[> it is repre-

sented by the following expanded matrix equations:

1107 = DG + DG (233

E;(F)CI * meCpt PCCI 234)
Consider the non-relativistic limit of these eguations, For

(2.34-b) can be approximated as
~ Pc.
Co= £5.C; (235)
So, in the non~-relativistic limit

G
Cz am,c" « 1 (238)

For this reasonrc_n- is termed the "small component! of the state

vector. Introducing the equation (2.35) into (2.34-a), the equation

governing the evolution of the state is determined:

EpCi= maeC + Cr (237)
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This is the throdinger time independent equation with the usuvally
suppresses rest mass factor., Thus for particles whose motions are
non-relativistic and whose interactions satisf{y the adiabatic condi-
tion, the two-state equations specialize to the non-rglativistic
Schrodinger equation and a subsidary condition. The second degree
of freedom dissolves, and the system is for all practical purposes
specified by a one-component wave function,

Fhysical systéms whose state is a linear combination of posi-
tive and negative energy states are now examined, Such a system is
the free particle of initially positive definite energy waich is
perturbed into motion in such a way as to violate the adiabatie
condition, Suddcn approximation theory should then provide the
means of developing the basic characteristics of this system.7

Consider a particle initially at rest with respect to the
obscrver and possrssing a positive definite energy, which is given
a momentum in a "sudden manner" at t==C> . The time-dependent
Hamiltonian may then be written as

He = H.+ Vi Ve ={© €< (239
, V tz2o0

'F{o is the Hamiltonian for a particle at rest with respect

to the observer, 1Its energy eigenstates are the observer's base
states |I) and |E) . Since for 1 <O the particle is in a

positive definite energy state, it may be represented as

"Bolm, Op. Cit., p. 408 ff.



#Ei‘ t<o .

I‘i’(t)> =) e
- The Hamiltonian for 't 20 ’ lH ( t) s has associated with it a
complete set of energy eigenstates, I'HP)) and l" (P)) s for

P a constant momentum, Thus the state vector of the system
may be expanded in terms of this set as

th)> = Z- IK(P)> CKH') e-"'F.'Ent

K=+

Sudden approximation theory, with the above assumption of a

prepared initial state then leads to the following equation for

22

(2.39)

(240)

the state of the system in terms of the base states |+@) and -ty

IWL‘)> ( '+(p)> e ﬁ'Ef - l (P)>E+mcz e_%’E.i)\/g_ztE__T

In terms of the observer's base states |I> and |]I> .

ey = {ID(e#5 + Ehale ™) +

pbet)l Etmd
IE>E+mc‘-{ #E* ) 2E

(249)

(242)
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If one now constructs the first order correction to the
probability current associated with the one~dimensional particle

(see Appendix B) the following current is obtained:

‘Jz:z —ﬁ% - £%<$05-é%%u;ﬁt ; . | 62430

Interpreting thié probability current frém a Schroedinger view=-
poinf, the first temm, }%h , is.what is expected classically as
the Maverage motionﬁ of the particle, However, the sudden pertur-
bation causes a deviation from tﬁis average motion, a deviation
which is oseillatory in time, and which does not correspond to

any classical motion, Schroedinger termed this oscillatory devia-
tion from the classical trajectory ”Zittérbewegung"S and éXplainéd
its nature in the following way. 4 quantum particle at low velo~
cities has associatgd with its wave packet a mean position which
maps out the uniform motion trajectory associated with the particle
when viewed classically, However, as the motion becomes relativis-
tic, this mean trajectory deviates from the classical uniform recti-
linear motion, This new mean trajectory is a superposition of the
classical motion and an oscillatory piece whose frequency of oscil-

c!—
lation is, to the first approximation, Qg? . This behavior is

caused by an interaction between the positive and negative energy
o [

states associated with the particle,

8Ejorken and Drell, Relativistic Quantum HMechanics, (Mc Graw-
Hill Book Co., New York, 1964), p. 38,
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A model of this interaction between the states may be gained
by exploiting the isomorphism between the NH3 nolecule in an elec-
trie field, and the relativistic particle in motion. For the case
of the Nij molecule, the flip-flop is induced by the interaction
of the electric field and the dipole moment of the molecule, For
the relativistic particle case, the flip~flop is induced by the
sudden existence of a particle momentum. The Zitterbewegung
disappears (has zero amplitude) when the particle is in a positive
energy state.

Thus the phenomena of Zitterbewegung may be characterized as
a coordinate manifestation of the existence in state space of a
time-dependent probability amplitude which is a consequence of
two facts: the particle is in motion with respect to the observer,
and the particle is in an indefinite energy state,

A graphic illustration of the significance of the non-negli.
gible transitions to the negative energy state is provided by the
paradox of the localization of the electron, as originally proposed
by Klein.9 The paradox concerns the attempt to localize a rela-
tivistic particle to within a distance d . Klein attempted this
localization by means of a potential barrier which rises appreciably
within the distance C‘r of localization, However, if this distance
of localization becomes comparable to the Compton wavelength of the

particle, ;g};, while the potential barrier changes by an amount

0. Klein, Zeitschrift fur Physik, 53:157, 1929.
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E +m,c?  ithin this range for d ( E is the energy of
the impingi?g pafticles), unofdinary results are achieved, Speci-
Tically, the expon;ntial deqay inAthe potential barrier wali_changes
to an oscillatory beﬁavior, and a reflected current is produced
which is greater than the incident current. These results are
detrimental to a theory allowing for only positive energy solutions,

However, by £he two-state analysis, this unordinary result is

preciéely what should happen, For d'*‘;g%l', the associated Bohr

period is

v = g~ B (2.44)

MoC" [ 4

During this period of time, the change in the Hamiltonian is

T W e, c Erme. (245)

The gradient in energy is too severe to satisfy the adiabatic
condition, Consequently transitions to the negative energy state
becone non»neéligible, "anti-particles™ are produced, and these
manifest themselves as an addition to the original current,

Now the identification of negative energy particles with the
above meﬁtioned positive energy "anti-particles” can easily be
developed, Thermotivation for this identification lies in the
seemingly paradoxical behavior which would be attributed to a

negative energy particle by virtue of its relativistic features,



in comparison to the 'norwal behavior! associated with positive
definite energy non-relativistic particles, A way of reformula-
ting the two-state development is sought which would allow the
degree of freedom now associated with energy, to manifest itself
in some other way. This desire is expressed quantitatively by
asking the question, does there exist a positive energy state
which can be put into one-to-one correspondesnce with the negative
energy eigenstate, and if so, what is its egquation of motion?

Cne way of enswering this question is provided by the following
development utilizing the representation of the two-state problem
in terms of the base states lI) and |]I> .

Let l"(P)) represent the negative encrgy eigenstate for the
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Hamiltonian, for the given value of momentum, Appendix A-2 provides

the first order expansion of the |"> in terms of the observer's

base states |ID> and |JI)

-0 =|1)¢; + [IDCy

|-tp> = (224,11 + lD)wfé’-’?ﬁ" .

(246)

Consider the stzate I’ﬁ> constructed form the negative energy eigen-

state in the following operational manner:

= D&+ D)

(4_01)&'*‘
Y 11 O/ \cx

1#> = K-> '

(247)
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Now |# is a positive definite cnergy state, since as -2 0
Fy ' ? »
I#)""'II) . In Appendix C it is shown that the equation

of motion for |#) is

r e I B | { 20

~eftmc*  (wteAlc 01 e It
= (h737 Y (248)

I

(r+ef)c ~eg-m,c* Xz )

which involves the original Hamiltonian with the substitution €-»-€.
For fhis reason the operation from which |¥"> was gained from the
negative energy eigenstate is termed the "charge conjugation opera.
tion', l*) is termed the state "conjugate! to the negative
enargy eigenstate l--> ’ and it is the "anti-particle” state asso-
ciaeted with the positive energy eigenstate |+> . Thus formally
one can equally well consider c<_>mbinations of particle and anti-
particle states, or positive ana negative energy states, The degree
of freedom which had originally been associated with energy now
manifests itself as a degres of freedom inv chgrge.
The above charge conjugation operetion is not unique., A
second possibility for the charge conjugate state is l#> = EK;J") ,
and its expansion in terms of the base states |I> and III) is
yI =[© -1 CII *
1 o/\G

Its Hamiltonian with respect to |I> and |I> is

H:

(249

o

~eg+mct  ~(mrreflc (250)

[rtef)e  -ed-m.c* | .



The interesting.point about this Hamiltonian is the -1 factor in
the off-diagonal elements, This second charge conjugation opera-

tion causes a shift in the arbitrary off-diagonal phase facéor,

6;”( , which had originally been set equal to +1, In Section 4
it will be seen that this second charge conjugation operation cor-
responds to that charge conjugation operation associated with the
Dirac theory in the original representation, The change in sign
of the off-diagonal term is a manifestation of the flip in spin
involved in the charge conjugation operation in Dirac's theory.

Cn the two~-state level, however,Athe change in the phase effects
in no way the measurable quantities like currents, and energy
expectation values, Thus one can at best say that the change in

§

the value of the phase factor e" represents an '"internal degree
of freedom" which for the systems treated by the two-state analysis,
remains "hidden", This point will again be discussed in Section L4,
Once an insight into the'physics associated with the relativ-
istic quantum particle has been gained, the above development may
be recast into a more powerful mathematical form, A representation
for the Lorentz group in the state space may be developed, repre-
sentations for the various dynamic variable operators can be
derived, the concept of "even" and "odd" operators can be intro-
duced, and a form of the Foldy-!fouthuysen problem can be considered,

These developments, however, will be defered until the results of

the correspondence to Dirac's theory are available from Section 4,
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At present, it is enough to realize that the two-state analysis
has provided a simple means of illustrating the conditions under

which an object will maintain or change its energy status, has

characterized the phenomena of Zitterbewegung, and has provided a
general insight into the features of the relativistic particle of

definite and indefinite energy.



30

3. CURVATURE CF Til¥§ STATE FANIFCLD

The relativistic two-state Hamiltonian (2.20) may be cambined

with the De Broglie operator correspondence rule,

T = hku = Bz B

to yield a set of field equations for the amplitudes V¥, and Vi ,
where,\r{ and V¢, are taken as an equivalent notation for C, and

Cs2 . By direct substitution of (3.1) into the two-state equation

‘Jﬁat(,) = [e¢+m,c"  (r-ef) (V.) | (3.2

(T-eR)e ef - m,c* \ /A

it may be shown (see Appendix D) that each amplitude satisfies the
expression

T - [ 6.3

If the partial derivative commutator (gg'%i ax.at (Ué) ]
taken to be zero, equafion (3.3) reduces to a form comparable to

the Feymman, Gell-Mann propagation equation,lo

as will be showm
in the next section. However, if the commitator is not set identi-

cally equal to zero, but rather used to determine a constraint

1OR. Feynman and 4, Gell-Mann, Physical Review, 103:193,

January 1958,
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relationship, the above equation provides an interesting interpre-
tation of the interaction between the particle and the electro-

magnetic field in temms of a geometric structure of a state space

set into correspondence with W, 1) and “{(xt) .
Specifically, it is noted from equation (3.3) that the state

amplitudes Y and ¥ satisfy the Klein Gordon equation,
2 (W) . e\, (ay? e oA en 9 Y
= (\a) : [(”%')“'(‘ﬁ) A= 32 538~ 58 R 5 | | 64

subject to the constraint that

ek -20)(Y) = () _a.a)(v.) (3.5)
JtoxX T 3% )% HilTox ~9t)\Yl,

Geometrically speaking, the non-vanishing of such a commutaﬁor

may be interpreted as suggesting that a two-dimensional surface,

when viewed as imbedded in a higher dimensional space, has certain
characteristics, generally termed a Ystructure", which can be

described in terms of its curvaturé, torsion, and other qﬁalities.

This may be seen in the following way.

Assume that the two-dimensional surface related to the state
amplitudes, presently unspecified, is in actuality imbedded in a
higher dimensional space, The coordinate variables X end T
are assumed to be intrinsic to this surface, that is, they identifly
voints uniguely on this surface, but not in the imbedding space

outside the surface, Since the surface is imbedded in the space,
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a field of vectors defined on the surface may be characterized as
having components which lie in the surface (intrinsic components),

eand components which are orthogonal to the surface (extrinsic

components), Although the extrinsic components of such a vector
field are not immediately knowm to the observer confined to the
surface, the change 'in this "normal component! of the vector field
as the observer moves from one point to another on the surface~may
posséss a component which lies in the surface. Tﬁis tangent com-
ponent of the derivative of the "normal" (unobserved) vector field
ianifests itself to the surface observer by a non-commutation of
differential displacements. This the observer can relate to the
apparent shapve or "structure" of the suvrface in the imbedding space,

The constraint relation (3.5) suggests explicitly how this
"structure" will manifest itself, in that the commutator is related
to a physical entity, the electromagnetic force on a charge € .
Thus the observation of an electromagnetic force on the one-dimen-
sional particle can be interpreted as requiring the assiconment of
a structure to this two~dimensional surface relatcd to the state
amplitudes, which we will qall the "state manifold", This inter-
pretation is quite analogous to the general relativistic situation
where the existence of a gravitational force is interpreted by
assigning a structure to the three-dimensional coordinate hyper-
surface at an instant in time,

From an analytical viewpoint, the comrutator in partial

derivatives has the significance of defining the components of
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a curvature tensor associated with the surface, 1ilon-zero components
of the curvature tensor implies that the state manifold may not be

flat; it may or may not have curvature.

From the general relations governing the geometric character
of a curved manifold (Appendix E), the curvature tcensor and the
contracted curvature tensor of the state manifold may be determined,
Assume en origin and a coordinate system on the state menifold. Con-
sider F?Gx%) as a position vector to any point on the state manifold,
and regard V, as V¥ (2)) = ;;I;"gg' , and 1412 . as%(ﬂ:%?ﬁz,, ,
that is, covariant base vectors in the space tangent to the manifold
at the point F (xt) .

The components of the curvature tensor follow irmediately

from (3.5) by the relations

(5% - m&)Y

(%% - EE)V

]

LA (3.9)

‘*{( ,;'2 (3.6)

They are:

L'”,. '% (‘%5'%%) = L2
Lo = -% ("g‘zé‘%% - -Lzul

A1l other components are zero,

)]

(3.1

)

In Einstein's general relativity theory, the components of the

Riemann tensor are said to account for the acceleration induced by



the gravitational field.1l Cn the state manifold considered above,
the components of the curvature tensor account for the accelera-

tions induced by the electromagnetic field., The components of the

curvature tensor (3.7) are directly proportional to the E? field
strength, which classically is the acceleration producing field on
a charged particle, " Such a result suggests that a study of the
structure of the state manifold may yield a better understanding
of the electromagnetic field,

A significant deviation from the gra%itétional theory is
exhibited by the fact that the contracted curvature tensor for

the manifold is antisymmetriec,

r 0 +i2 (’%%“%x@)
Lvut' = luut)f = %? (—gﬁ%..%g)j; o Cifﬁ

Several points beccome clear from the above results, First, the
motion of the particle is not that associated with a "flat space",
since L,uv¢ O for some components, Also, the anti-symmetry of
the contracted curvature tensor indicates that the geometry of. °
the state manifold in non-Riemannian, Cf particular interest is

the fact that the form of the contracted curvature tensor is exactly
that proposed by Weyl for describing in a differential geometry forw
mat, the rotion of a charged particle in an electromagnetic field,

as will now be developed.

11Adler, Introduction to General Relativity, (Mc Graw-Hill
Book Co,, Wew York, 1964), p, 186.
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Geometrically, the extension of the Riemann geometry initiated
by Veyl is the i‘ollowing.12 The basic relations for the general

commection and the curvature tensor are as given in Appendix E,

If the connection is separated into syrmetirc and anti-symnmetric

parts
LS = Thotnj (3.9)

J

the curvature tensor may also be separated as follows:

Lig = B * L (3.10)
where
§_ Loy - h i
Bjxl = %‘ff"%?f'*' PJ; Mhx = r,,n: r{] (3
Ga ™ e~ g + 25 0 -2a;, 0% (3)2)

the slash indicating a covariant derivative, For the present study,

consider the connection to be symmetric:

N=0 (313)

Hxamination of the contracted curvature tensor reveals that it

may be separated into symmetric and anti-symmetric parts:

12 . 2 . .
L. P. Eisenhart, ¥on-Riemannian Geometrv, (Volume VIII of

the American Mathematical Society Colloauium Publications; American
lathematical Society, New York, 1927), pp. 8-10,
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W

B.;:Ki 2 Bu = by I : (319

where

b,y h : 3
;é(%g'z,{ +%—%L)—%§% +F}‘L Mo =Tk (215)

Ao
x
]

W

ﬁ.iu

If the symmetric comnection is expressed in terms of the ordinary

h, h

Riemamn connection, the Christoffel connection, as

: ‘ ‘
r.ﬂ( = {J';( + ajk ’ (317)
then from the properties of the Christoffel connection it may be

shown13 that

oo ok aah) - w92
B = (-] = 5(4-3y o

Likewise if R"J is the ordinary contracted Rismann tensor, the

Ricei tensor, the symmetric part of the contracted curvature tensor is

H : h
b = Rixt/2 (3J'Ix+3nla)~&Ju:L*33';aiu‘aak&a (319
13Eisenhart, Loe. Cit.
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The important thing to note here is that the deviation of the
contracted curvature tensor from the ordinary Ricei tensor, both

in the additional symmetric parts and the entirely additional anti-

syrmetric components, i1s dependent upon the extension of the sym-
metiric connection beyond the usual Christoffel part., Thus, the
fact that (3.8) is anti-symmetric indicates that the geometry of
the state manifold is not strictly Riemannian, and the connection
associated with the manifold, though syrmetric, is not strictly
the Christoffel connection,

The general analytical features of WG&l's theory are now
summarized.lh The general relativistic commection of gravity
(physics) to geometry involves the assignment of a manifold in a
space somehow to the physical system studied, and the characteriz-
ing of the qualities of the manifold in terms of a metric, gij,
and a connection derivable from the metric, the Christofiel connec-
tion, This derivation involves the requirement of the conservation
of the length or "norm"™ of a vector as it is "parallel displaced"
from one point to another on the surface., Weyl relaxed this require-
ment and allowed the nowmn of the vector to vary as it was displaced
infiﬁitesimally from a given point. This variation was chosen to

be proportional to the norm of the vector at the given point, and

1%Adler, Op. Cit., pp. #01-10,
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the diflerential veclor of the displacement:

dl = (ég ) (320)

whers g% " 1is to be termed the '"gauge vector'!, By so doing, the
connection for the manifold was generalized beyond the Christoffel

connection:
ioe {L)e Side+ S8 gnd, (321)

If one constructs the curvature tensor from this symmetric connec-

tion, and contracts it as shown, one finds the following:

B, = n(34-) (322)

whers [} is the mumber of dimensions,

The analytical structure is now given a ;mysical interpre~
tation, The basic ided is that "forces'" acting on a physical
system can be interpreted by assigning a "structure" to the geo-
metry of a manifoldAwhich somehow has been put into correspondénce
"with the physical system, For Weyl, thé structure of the manifold,
and thereby the physics of the system, is determined when, not only
the metric associated with the manifold, but also the gauge vector

is determinéd. Further, equations involving ~  which are

identical in form to the equations describing the electromagnetic
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field can be derived. Thus by analogy, Weyl suggests that the
geonetric manifestation of an interaction of a physical systenm

with an electromagnetic field is a "shortening of norms of vectors®,

or a "change in scale" at different points on the manifold,

We now connect what has been swmarized here, and the state
manifold characterized previously. It is noticed that the contrac-
ted curvature tensor (3.8) is enti-syrmetiic, Thus if one relates
(3.22) with the anti;symmetric part of the contracted curvature
tensor given by (3.14) and (3.16), and sets the symmetric part of

(3.14) equal to zero, one finds:

By = Bi= 4By = (%%-3%) (323)

where M =2 , since the state manifold is two-dimensional,

The comparison of (3.23) and (3.8) irmediately indicates that
the geometry of the étate manifold can be characterized as a Weyl
geonetry, and that‘the gavge vector ﬁ5K ris indeed exgctly that
of the electromagnetic potential; Thus we may characterize the
"physics" of the state manifold as follows, Its curvature tensor
has no symmetric part, indicating that the manifold may be thought
of as “gravitationally flat"., EHowever, there are other effects,
ﬁanifesting themselves as ''changes in scaie" aé one moves from
point to point on the manifold, These changes in scalermay e
identified with the.existence of an electromagnetic field inter-

acting with the physical systen.
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Thus, permitting the differential cummutator to determine a
_constraint on the state manifold has allowed the leyl theory "to

enter by the back door", in the sense that such a constraint deter-

mines a structure for the manifold which is directly attributable
- to the electromagnetic field in a way proposed by Weyl.

.~ Cnes agaih the basic simplicity and clarity inherent in the
two-state analysis of the one-dimensional relativistic particle
has allowed the developnent and undefstanding of an intriguing
and fruitful area of physics in terms of two-dimensional geonmetry.
Such an insight is usually impedéd by the presence of a more complex

form, more degrees of freedom, and more dimensions,
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L, THEZ RZLATICH OF TWO-STATE TO THE DIRAC FORMALISH

The correspondence of the preceeding analysis to the Dirac

L

formalism is quite direct, . If the Dirsc equation is formilated
for the special case of motion in one spatial dimension, the
Hamiltpniaﬁ display, with respect to those base states for which

the operators & and /B are displayed as

2 [2 9 s[5 4]

is .
} |
egtmct o (reflc O
H = o eg+moct o -(r-eRc |+ (4.2)
0 (fr—eé),c K-) ey-myc? o
0o ~{r-2R);C o ed-me* |

If the Hamiltonian is reduced by excluding the second and fourth
rows and columns, as indicated by the arrows, the result is the
Hamiltonian (2,20):

H - [ep«m.c" (w-ea),c] (43)

(r-eflc ef-mc*

The mathematical basis for this reduction is provided by the use
of the projection operétion. The two~state forms may be considered
as a '"projection" of the Dirac forms. In addition, associated with
a given set of projection operators is a "symmetry property", a

property in terms of which the system may be characterized, and
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for which there exists a distinct set of values, A set of projec-
tion operators 2llows the Yclassification" of a system in terms of

its associated symmetry, Thus the problem that will now be consi-

- dered is to determine a representation for the projection operator
which gives rise to the above two-state form for the Hamiltonian,
and subsequently to interpret physically its associated symmetry,

Consider the operator /42 represented as

1 000
p= (2429 @4
o 00~

It has the property that fzf = I , therefore it is a reflexive
“operator, 'Since it is reflexive, it may be shown by theorem that two

projection operators may be constructed from the operator:

i

Pe = H{T+p) (45)
P. = Ahlm-p) (4.6)

If one operates on (4,2) with the projection operators (4.5) and

(4.6), the results are

eg+m,c* o0 (r-ef),¢ O
H = |r-efle 0 eg-mc* o "
Y- I o (o] 0
and
‘0 o 0 0
o eftmoc® 0  -(r-ef)c ‘ (48)
H= o "o 0 0
o -lr-efc O ef-m,(k
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The Hemiltonian (4,3) can be directly identified with (4.7), and
the Hamiltonian (%4.8) may be identified with (2.50) in Section 2,

The physical interpretation of the symmetry property associated

with the projection operator sef Fa and [P is best seen by exam-
ining the energy eigenfunctions for the free particle with momentum
in the Z-direction, in the 4-dimensional representation., These are
'conveniently given by Hessiah,15 classified in terms of their energy
and spin character, and here displayed in Table II., Again, projec-
tion of the wave functions by [P, gives rise to the two, two-state
eigenfunctions of the Hamiltoniaﬁ, represented with respect to the
observer's base states |I) and |H) . The non-zero reduced
eigenfunctions are
! ‘ =Pc o
vy ~ [g;] - [ _E_g;,_c_] v ~ [§§]= £om.cs (49)
. From the spin-energy classification of the four~dimensional

picture, lh{) . describes an object of positive energy, whgreas

IMQ) describes a negative energy object, Moreover, the séin
associated with IM{) ana,'lkg> is, in both cases, %, indicating
that a degree of freedom has been removed in the two-state analysis,
If the 4-dimensional wave functions are projected by the operator

P. , the result is a prepared spin state -3, The results in

lSI{essiah, Op._Cit., p. 924,
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Tl;le fnergy Eigenfunctions for the
z

Spin 3 Free Particle of Fomentum (0,0,p)
Energy +3p "Ep
Spin +3 -3 . +5 -2
- PC
2
['4 o I 0 Ep+m,C*
E,tmct o I o
~pC
o e 0 |
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S
S
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either case are isomorphic. Thus the above investigation indicates
that all features of the two-state analysis may be carried over to

the full Dirac formalism, as characteristics attributable to parti-

cles in one-dimensional motion, and in a preparcd spin state,

That spin.is a constant of the motion can also be seen direct-
ly from the relation between the two-state and Dirac theory, Using
the Dirac theory, Kendlowitzl6 has shown that for a particle with
its spin and velocity vectors parallel to the electric field, the
spin configuration is a constant of the motion., The restriction
to one spatial dimension, inherent in the structure of the two-
state theory, makes this spin-velocity-fisld configuration the only
one admissible to two-state description,

One further point is mentioned in this context, The projec-
tion of the Dirac Hamiltonian along the -3 line of spin gives rise
to the Eamiltonian (%4,8), which is identical to the original two-
state Hamiltonian, except for the -1 factors on the off-diagonal,
In Section 2 it was mentioned that such an off.diagonal factor was
due to the specification of the phase factor efsb in the Ramiltonian,
Thus there is a relationship between the specification of the phase
factor and the spin state of the system, In particular, under the
sccond charge conjugation operation, the change in the phase factor

would indicate a flip in spin. This is in keeping with the Dirac

Mendlowitz, American Journal of Fhysies, 2%:19, 1958,
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theory, for which charge conjugation involves spin flip, The first
conjugation operatioﬁ is the one associated with the Dirac theory

17

in the Hajorana representation, The two representations are
identical for the case of one-dimensional motion.

Also, as a consequence of the direct link between the two-state
analysis and the Dirac formalism, one would expect correspondences
in two-state theory for the operators and transformations included
in the full Dirac theory. This is indeed the case, Specifically,
the diagonalization of the free or weakly coupled particle Hamiltonian,
developed by Foldy and Houthuysen,ls has a counterpart in two-state,
It is identical to the Foldy and Wouthuysen.transformation matrix,
projected by the operator !RL . The conditions for such diagonali.
gation, specified by Foldy and Wouthuysen, are eguivalent to the
adiabatic condition of Section 2, The two-state analogues of ths
various "dynamic variable" operators in the original and in the
Foldy-louthuysen representalion may also be easily developed. Finally,
the representation of the Lorentz gfoup in tﬁe two-dimensional state
space 1is identical to the representation in Dirac theory, again
projected by 'Rr .

The developments of Section 3 may also be generaiized. If -the
space~-time commutator in the propagation equation (3.3) is set to

zero, the resulting equation is

17Davydov, Op. Cit., p. 261,

18Foldy and Wouthuysen, Phvsical Review, 78:29, April 1950.
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’(:2) = l@“‘)z*(?)z“ﬁ"/' ’%%%*" h 737 a)
| (419
- e(z"—é; (V;,

If one defines the 4-dimensional field intensity tensor

r, - (%) ()

where

= (7 8 #a (21t (“UZ)
FL4- (A) [+ x (z' )
then the interaction term in equation (4#.10) may be written as

“§ P [0 (412

YNow if one defines a set of 4-dimensional matrices
I o .. |%e
% - [0 'I[] g = [o o (414

and a set of operators

Oow = 2 (X1~ 5 1) (415)



then
o000 ) 5
Ge=%4 6%-RL) = 1255, | (414)
o1 00

Frojection by the operator "?p gives rise to a reduced operator
(r) o -
0'34 = [_l o (4'-17)

Thus (4.13) may be written as
L ( ¥ (4.19)
and consequently, the 4-dimensional generalization of (4,10) is
Y- [(’ﬂ;ﬁ)ﬂ (B) B - 03 —2ie 0,0 +2 J Y (419)

This result corresponds to the second order propagation equation
suggested by Feynman and Gell-Hann for describing beta decay.19
Of greater interest, however, is the generalization of ths
alternative procedufe of Section 3, in which the spin—fiéld inter-
action is described in terms of a structured state manifold. The

Lh.dimensional constraints define a curvaeture tensor associated with

2 lH-dimensional state manifold, and the Weyl characteristics of

19Feynman and Gell-lann, Cp. ggﬁ., p. 193.
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the two-~dimensional surface associated with the spin-electric field
interaction would be carried over directly., Further, the spin-
nagnetic field interaction would héve a description in terms of

the curvature of the #4-dimensional state manifold. Indeed, by
carrying out the same development -in L-dimensions that was done

in 2-dimensions, it is found that the constraint relationships
which follow require that the contracted curvature tensor for the
L_dimensional state manifold be proportional to the field intensity
tensor, E;p » This result is quite similar to the conclusions
dravn by Flint,zo and Haskey,21 in a modification of Kaluza's theory,
in which the 4-dimensional trajectory of a charged particle moving
in an electromagnetic field is related to the null geodesics in a
5-dimensional "structured" space. They found that in order to make
this correspondence, it was necessary to assune that the contracted
curvature tensor of the 5-dimensional space was proportional to the
field intensity tensor F;g . Further, they suggested that the
Klein Gordon equation would be the wave equation associated with
the null geodesics in the S~dimensional space, analogous to the
D'alembertian wave equation's association with the null geodesics

in four dimensional space-tine,

20, . . . .
i, Flint, Proceedings of the Royal Societwv, London, Series A,

131:170, 1931,

214, Haskey, Philosophical Fazazine, 27:221, 1939,




Two points of difference vetween Flint's work and what is
described in this paper are worth noting. ‘hereas Flint postulated
the structure of the 5-dimensional space so as to be able to make
the correspondence described above, the structure of the state
nanifold was not postulated, but rather was displayed explicitly
in the formalism, Secondly, whereas the role played by the state
vector in Flint's theory is vague, the state vector in the preceding
work.defines the state manifold, as seen in Section 3. The exact
relationship between this extension of the two-state theory and the
Tive dimensional theorics describing a charged particle!s motion
requires further study.

A consequence of this reasoning is the possible correspondence
between the description of particles of fixed spin, and those of
spin zero, The parallels in thé description of the two types of
systeris are well known.22’23 Though the descriptions are parallel,
attenpts to unify the two types of systems under one theory have
not been completely successful, The developments in this paper
suggest another approach to the problen, Spin zero particles are
governed by a Klein Gordon equation. In Section 3, it was found
that fixed spin perticles could satisfy a Klein Gordon equation,
subject to a constraint, which could be interpreted from a differene

tial geometric point of view, Thus one can regard spin zero

2Zposhbach and Villars, Reviews of Kodern Physics, 30:25, 1958,

ZBK. Case, Phvsical Review, 95:1323, 1954,




particles as described in terms of a state manifold which is
geometrically "flat", and particles of spin other than zero as
described in terms of a state manifold which is "structured“,
rather than flat.” The degree of structure is dependent upon the
spin quality of the particle and the field present, as scen in
Sections 3 and &,

In conclusion, the investigation of the one-dimensional par-
ticle in tems of a two-state analysis has lead to an elegent intro-
duction into the basic features of Relativistic Quantum }7echanics.,
Further, the direct nature of tﬂe generalization of the two-state
description to Dirac theory has provided a good insight into the
relation between the physics of the relativistic quantum particle
and the mathematical formalism used to describe it., Finally, the
simplicity of the two-~state formalism allows connections to other
modes of descriptioﬁ, such as differential geometry, to be seen
quite readily. By so doing, the two-state description provides
a clear and versatile model, something which is necessary for gaine

ing insight into phenomtna, and germinating original thought.
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APPENDIX A
THE PERTURBATION ANWALYSIS OF THE
TIME DEPENDENT TWO-STATE EAMILTONTAN

Part 1: The adiabatic perturbation analysis in terms of "instant-
aneous eigenstates", ,

Let

.ot
Y = |, G ¥ Eoder (229

Placing this into the Schroedinger equation (2.21) and using (2.23):

£) (18038431 ) KB 4 714> CE, e Ede
= ZI@C Ece” FLEde

Multiplying by
e 4
e
e vl Endo |

and assuming
<¢ml ¢”> = gmﬂ /

then

s T (Bl |20 e ¥LEEMOC 0

It is now shown that the K=m term in the sumation may be

transformed away, First it is shown that <¢MI ‘STI ¢m>



is imaginary:

SRCAUSECRCN)ENERCH - E
= ({3l en)) + (|30

Thus
(ol 3|y = = ((Bul3z]om))”
or <¢mlfil¢m> is imaginary., Since it is imaginary,

represent the product as:

<¢m l'g‘?’¢m>= ".‘;:"ﬂm

with ﬂm a real function,

Now consider the transfomation

+. «(6) d
18> =18) e #ﬁﬁ 6)de
Ex=E.+p2 .
Substituting this into (A.1) one obtains
Q_,Cm.+<¢' %{I¢"‘/>"L/ﬂm<¢mll ¢".:>
; (tfer
Kém <¢ml |¢K —%I (Ec-Em)de
T g (A0 & FRERERNS

kim

Now since

<¢m’¢m> - <¢m/l¢m’>

A-2

(A.2)



and since <¢m’ ’% , ¢n:> is imaginary by an argument similiar to

the one above, it may be shown that
ar 'N_ L
<¢m ';'T['l¢m>"'{ /l’".

Thus since {Bw @)= émx , (A.2) reduces to

o~ En)d
%—%+>:<¢1%!¢K {e-Ede

Kom ’

We now relate (Pl SEIPX ) to the Hamiltonian, ¥ultiply

(2.23) by the phase factor

2
e ‘é‘/oﬁ" d@
then

H® 18y = 14y Elt) .

Differentiating with respect to time and multiplying by (@[, taking

into account the Hermitian property of the Hamiltonian results in

{?a I& |9 = Ee- E,) {4a 4] 8

or

’/ /7 ¢n: Q"H‘Iﬁkl
<¢’”1§TI¢">: s EI:E E, . .



Ah

Thus

) , )
WCm _ 5= Co(hn |3 |pi) o Fh(EcEND
KA : E«— E,, _ = O .

Now if the initial conditions are chosen such that

C' (0)= I,O, CZ(O) = 0.0,

then to the first approximation:

. . G (R
E,~E, .

/ ’
If E, and EZ, are slowly varying functions of time, and

treating /gm as small,

t
)G~ $#IFEED e 3 ,
ot T E,~-E,

Finally if <¢2.,’ %@)%I) is slowly varying over the period of

time involved,

ng( h )<¢ |98 |9/ Me FlEE)t 1)’ (2.27)

The condition of "smallness" imposéd here is the adiabatic condition;

(2,27) is valid if

e @RI CE-E . (2.29
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Part 2: The sudden approximation analysis of the free particle

C given a momentum "suddenly",

Problem: Consider a particle initially at rest with respect to
the observer and possessing a positive definite ecnergy, At t=0
let the particle be given a momentum P in a "sudden'manner,

Find the state vector describing the system,

Write

Hey =1H, + W,

where
t <o

Vit) = {\3 t 20

and IHo is the Hamiltonian for a particle at rest with repsect
to the observer., TFor t<o , the system is in a positive definite

energy state, thus its state may be represented as

- LE
vy = 1) e "

Now for t 20 , }H(i’) is the Hamiltonlan associated with a

particle possessing constant momentum P with respect to the
observer, It has a complete set of energy elgenvectors, l""‘F’)
and l"(?)) . It is assumed that this set is complete for all
time, Thus the general state of the system may be represented

in terms of these energy eigenvectors as:



A%

Vi) = " R G
K=+

If continuity of the state vector is demanded at

W) = 11> = |+@> Cy + |-pp C- .

Using the information in Appendix A, part 3, the expansion factors

can be determined:

Cee<¢l,  C.=<1,

'—-{—t 1/E+mcl
E_-M,,cz 8 ZE

or

vigy =5 > & 55"

In terms of the observer's base states |I> and l][> , Appendix A,

part 3, implies that the state vector is represented as:

_EE pc

woy = G221 (7% + (’?’;m;z 26__&‘%"‘{)
+ |1 {Tn—cz(e-&‘ﬁt'__ 6-‘_%1.)} '
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Part 3: The expansion of the energy eigenstates "Hp)> and |-(P))
in tems of the observer's base states [I) and |y .

I #p)) is the positive energy eigenstate associated with the
momentum P . With respect to the observer's base states lI)

and IJI> , the eigenstate is expanded as

[+ = 11> Crtp) + 11 CyplP),

whore C r and Cn- satisfy

mc* pc |[Cq Cr
= EJP)
pc -mc* Cn C}Z )

for  E,lp) =+/lpc+lmc)* = +E¢) .

This inmplies
Pc__
Cn- - E-anz CI }

CI arbitrary.

Thus  |+{p)) may be represented as

[+(py = \/%(’I> + E%P’H) ) .

Likewise |—{p})> 1is the negative energy eigenstate for the momentum

P . With respect to |I> and }ﬂ:) s it is expanded as

/
-0y = 11 Cam) + Ly Cglp)
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/ !
where CI and CJI. satisfy
’
mer pe |[Cq Cr

/
pc -mc? Cr Cr J

for E_tp) = = Ypa*rmer)* = -Ew .
This implies

CI = E+mc‘ CII )

4

C i arbitrary.

Thus I’(P)> may be represented as
T -pc
~p)) = V 2+Emc ('I) Ermct T I]I>> ]

Conversely, the observer's states II> and XD can be
expressed in terms of I-Hp)} and |-(p)> by regarding the
observer's frame as moving with velocity -;,% with respect to
the particle's frame, The substitution p—2-p in the above

development then ylelds:

1 = VERRE (|40 - |- Frt)
,H} ,\/E+mc1— (-{-( )>E+mc" + ,—(p}>)
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Finally, the transformation between the eigenstates ,‘H p))

and "'(F)) ’ a.nd ’I> , and “I) may be written as
|K> =S5 K>,
whers

M = § l+m), l-fﬁ))}
17>={ 1D, 1D §

In terms of a matrix representation
T KY = LTlssILyLLIK)

From the above knowledge of the expansion factors of l +> and

I-Y in tems of |I) and I , the matrix display is

G0 = TISSIKY = /585 | pe “”1’“
E+mc2'

Since I-Hp)} and {-(p)> are the energy eigenstates for the
momentum: P, and |ID> and |ID are the eigenstates for the
momentum zero with respect to the observer, 55 is the transforma-
tion on the state vectors induced by a Lorentz transformation of
coordinates, Thus S:]K is the representation of the Lorentsz

group in the state vector space for the observer,



APPENDIX B

THE TWO..STATE PROBABILITY CURRENT
Part 1: The development of a two-state probability current,

Given

mc* PC (:i [ﬁ J (:I

U

ot
pc -meA|G Cr

make the operator correspondence

L dZ

and the corresponding transformation on the expansion factors:

ipz
C.— Cbe“P =d;

Then
a,
N=ihss (84)

C%’g’é ~mc? A, a,

me*  chig| (4

Taking the Hermitian conjugate of both sides of this equation:

mc* -cff'%z
-ihdr[at, 4= [ a2 ] AL e (85)

4
Post multiplying (B.5) by (az) , and promultiplying (B.4) by
[ Q,*J a :‘] , and subtracting the former from the latter

leads to the following equation:



& (afa+aja,) =-C 3 (alaraza)

If this is interpreted as a one-dimensional continuity equation,

then a probability current may be defined as

a
J.= clata,+ala) =[a’f,dﬂ(g g) (42)

If the current is interpreted in temms of the classical analogue

Ji= oV

6

may be regarded as representing the velocity operator,

then the matrix

B2



Part 2: The two-~state current for the free particle set into
motion "suddenly'_'.
Consider a free particle initially at rest with respect.
to the observer and possessing a positive definite energy, .
and which is given a constant momentum p at t=0 ina
"sudden" manner so as to viclate the adiabatic condition, Its
state vector may be represented in terms of the observer's base

states 1> and ,]I) as shown in Appendix A-2:

~ tEst 2 _ kR

Vi) = ‘E;?Cl {|I> (6 R (E%;a_c")e § )
-LEst _LE.T
1) Ema (e - ei“’*"‘)}

E+mc?

Thus the probability current associated with the particle by

the observer is

PclE+mcY - (pc? )
J - C[ ‘?lgzmc (1' %C”’%&f)‘zm) (1‘%“’5‘—;—‘& E; t)]
FA

For convenience of interpretatiocn, consider the case where
Pc << mg(;z » 50 that the approximation fF, - f_ :::,Zm,cz can
be made. Then up to first order terms in f_C , the probability

current with respect to the observer is

)= © [# (1-tcos2pt)] = % ~Fhcos

where again, E,'—’ E y and E_ =-F .
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APPENDIX C
THE DEVELOPMENT OF THE CHARGE CONJUGATE
STATE AND ITS EQUATION OF MOTION

Let

) =(|1) - |1) B )/ B

Then the expansion factors for ' -(ﬂ) satisfy the equation

/
egimc* (m-eflc CI CI F CI E
= == ()
/ "
(r-eflc  eg-mc? Cﬂ CH CII
consider the operator correspondence
—sh 2
i JZ

and the induced transformation

/

) LTr2
— Rt .
CL CL 6 s d&
Then the equation (C.2) becomes

/
e¢+mc‘°' (,, dZ dr azl

= E(p)
(Bd-ef)c  ed-mc ||Ax dg

The complex conjugate of the last equation is:
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~(eg +mc?) ('?'3)2 +eA)c a?
d;"

Now define the state l*) constructed from the negative energy

ﬂ.l )E
,¢| L) (o
2 ()

(l. JZ+8A "Eﬂ'l'mcz I

eigenstate in the following manner:

[#> = K1)
l#> = 1) % + lm&

- [2) ¢

(sz
Then equation (C.6) may be written as

ed+mey LeteAcl[o 1 Le*™) o 1][5e #’TE)E
]

—-—
—

(Bl ieflc -ep+me? 1o we™™ 1 ol % ST
Multiplying by the inverse matrix, and inverting the operator
correspondence,

| [a n][—.femmcl) (n'+eﬁ)6][0 l}(h& _ 3&),{?)

| © (1r+en)c_?e¢+ma’ | O XH )fr

Thus the equation of motioen for 1) with respect to {I7 ana

IH> is

~ed+mc* (mreflc XI Y
= Eip)
(r+efllc -ed-mc|| v Y
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Since Elp) = E*(P) in the notation, it is concluded that
li‘) is a positive energy eigenstate of its Hamiltonian, and
that its Hamiltonian is related to the free particle Hamiltonian
by the substitution €2 ~€ , Thus I#) is interpreted as

representing a particle of positive energy and charge — & .,
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AFFENDIX D

THE DEVELOPMENT OF THE KLEIN GORDON EQUATICN

Re-write the state vector for the relativistic partlcle with
respect to the states II7 and 1T , the states of definite energy

when the pérticle is at rest, as

1Y>=11) Vi + [I)VR)

Then the equation of motion for the state amplitudes becomes, using

Hamiltonian (2,20) and the operator correspondences

+mc* h .
) | Bl e b
or
ih JV sled+mct )Y +[BL - eA)c W, . (D3)
h Y = (b -eAlcY +ep-met) e (D.4)
Taking symmetric and anti-symmetric combinations of V| and Yz :
ff( ‘;’f’*z- (D)

the following equations result, through the addition and subtraction

of (D.3) and (D.4)
mc?lK= (k %?-6%55—ﬁ§ g_gheﬂc.ﬁ'

mc2$=£h§§<-e¢ﬂ<—§;§§ +eAcK
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From the last equations, the following second order equations result:

o*K- z J ~2i P
The(me] K+ Y AAK- g e K-2le B3, (0.7)
P 3
f‘[" -8k L[5 5 - L &K
2
us-(%-) (AASERES Reh
-5 tfrd ks
where

’q,a: (HJ Lcé) Xﬂ-‘- ().’)LCt),

Adding and subtracting (D.7) and (D.8), and using (D.5) yields

Dl%:("%&)zlﬁ"'( )14 HA\{/ ‘g___.)g,ulrl‘ ZLCH ,,_1&

P Y g
28 2 9 _J
~e [ 0z at)l’é "'[Jt Iz az%?]‘i’z
2 2 . A
= (B Y AR g - den i
' . 2_3J
e [-32-B Ve t[hR-Rk]v

or more compactly,

Dz(l}fH ne s (2.0 -2 38 - 2fe A 42 (;V/)
[relte b -t - Y (Y

Now the Klein Gordon equation, in terms of the function f{x) , is

O 0 = (8E) e + [£f AL fom - 48 2 fun - 2ie ), iy



Thus the amplitudes 'H{ and VG, can satisfy a Klein-Gordon

equation, if they are subjected to the constraints

49
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APPERDIX E

LEASIC DIFFERENTTIAL GEOMETRY RELATICNS

Let the position of any point P on a manifold be specified
- d H“
by a vector F (x*) relative to some origin, where X, #=/[uyh
are a set of parameters whose number is such as to allow the unique
specification of the point on the manifold. The number AN is the
dimension of the manifold.
T C'

Assuming F(Xx“) € at P, the set of vector functions
~» _ 2F .
Ay~ 9z V= | uyN | span the n-dimensional space tangent
to the manifold at P ., Since the vecotr functions are linecarly
independent, they form a basis in the tangent space,

The coefficients of comnection at the point P on the manifold

is given by the following relation:

dav. _ > °
ks “a/:Lv-r

It is noted that the definition of the coefficients of connection
involve only components of the differentiation lying in the tangent
space at the point P ., The curvature tensor Lc;gr § 1s defined
by the folleowing squation:

N
a Ay - 322& S o
XK~ IAIxT T Cu beworr
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From (£.1) it follows that

L.u - JL:Y - )Lﬁzza‘ r u __Lf’ Ll.l

vor  9x” dxX" vy pe ve Lpr .

The contracted curvature tensor is defined by

yy -
L‘UD"AQ-.LVV ’
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