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CHAPTER I

INTRODUCTION

This dissertation is concerned with the oscillatory behavior of 

solutions of the second order linear differential equation 

(E) [R(x)Y’]' + Q(x)Y = 0

on [a,°°), where R and Q are continuous symmetric matrix-valued 

functions or, more generally, are operators which assume their values 

in a B*-algebra, and where R is positive definite.

Since matrices form particular B*-algebras, we concentrate on them 

in certain instances in order to contribute to the research in this 

area. However, the principle objective of this dissertation is to 

extend the research which established oscillation criteria for the case 

where R and Q are nxn matrices to the generalized B*-algebra case.

Several authors have obtained results for the case where R and Q 

are nxn matrices. Among the most notable are F. V. Atkinson [2], 

G. J. Etgen [9], H. 0. Howard [14], C. A. Swanson [24], and E. 0. 

Tomastik [27]. Recently 0. M. Williams [28] has extended the results 

of Hille [15] on the nonoscillation properties of equation (E) by 

allowing R and Q to take their values on a B*-algebra.

In Chapter II the properties of a B*-algebra are delineated, and 

a characterization of B*-algebras is given. Also, the set G consisting 

of positive functionals which operate on a B*-algebra is introduced 

and characterized.
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The existence and uniqueness of solutions of equation (E) are 

discussed in Chapter III. In addition, basic properties of solutions 

are delineated.

Chapter IV establishes oscillation criteria for equation (E) using 

the characteristics of the set G and allowing R and Q to take their 

values in a B*-algebra.

The trigonometric differential system and the polar coordinate 

transformation are treated in Chapter V. Sufficient conditions for 

oscillation are established for the trigonometric differential system 

and then are extended to equation (E) by means of the polar coordinate 

transformation.

In Chapter VI we extend the results of K. Kreith [17] which 

formulate comparison criteria for both oscillation and nonoscillation.

The dissertation is concluded in Chapter VII with some remarks 

concerning extensions to nonlinear differential equations and to 

nonlinear differential inequalities.
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CHAPTER II

B*-ALGEBRAS

2.1 Characteristics of B*-Algebras.

The purpose of this section is to define a B*-algebra and to 

present some of the basic properties concerning B*-algebras which will 

be required throughout this paper.

A Banach space is a normed linear space over a scalar field, 

which is complete in the metric determined by its norm, ||* I I•

A Banach algebra is a Banach space with an associative 

multiplication defined and such that the inequality

| |AB| | <_ | |a[ | • j |b[ ] holds for all elements A,B in the space. A 

Banach algebra is called unital if there is an element I such that 

IA = Al = A for each element A in the algebra and ||l| | = 1. An 

element A in a unital Banach algebra is called nonsingular, or regular, 

if there is an element A-1 in the algebra such that AA-1 = A-1A = I. 

If an element does not meet this requirement, it is called singular.

If B is a unital Banach algebra over the complex scalar field

C, i.e., a complex unital Banach algebra, and B e B, then the spectrum 

of B is defined:

a(B) = {X e C / Al - B is singular}.

A complex unital Banach algebra B is called a B*-algebra provided 

it has an involutory operation (•)* with the following properties:

(i.) If A e B, there is a unique A* e B such that (A*)* = A.

(ii) If A, B e B, then (A+B)* = A*+B*.
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If A e B and a e C, then (aA)* = aA*, where a is the complex 

conjugate of a.

(w) If A, B e B, then (AB)* = B*A*.

(v) For all A e B, ||A*A|| = ||a||2.

An element A e B is called symmetric, or hermitian, if A* = A. 

Furthermore the following properties are assumed to hold:

(i) Each symmetric element has a real spectrum.

(£i) The set of symmetric elements with nonnegative real spectra 

is closed under addition, multiplication by positive 

scalars, and passage to a limit.

(t-t-i) Each element of the form A*A has a nonnegative real 

spectrum.

A symmetric element A having a positive (nonnegative), (negative) 

spectrum will be called positive (nonnegative), (negative) definite and 

will be denoted A > 0, (A > 0) , (A < 0) . From ('ii) above, sums and 

positive multiples of nonnegative definite elements are nonnegative 

definite.

The preceding definition is the one employed in [15, pg. 110] 

and in [28, pg. 3].

An example of a B*-algebra is Mn, the algebra of nxn matrices with 

complex entries. For this B*-algebra the operation (•)* is defined so 

that A* is the conjugate transpose of the matrix A. Another B*-algebra, 

and one that is most important from the standpoint of this paper, is the 

algebra of bounded linear operators on a complex Hilbert space H.



Rickart [23, pg. 244] has shown that every B*-algebra is isonretrically*- 

isomorphic to an algebra of bounded linear operators on a complex 

Hilbert space.

Assuming B is a B*-algebra of bounded linear operators on a Hilbert 

space H and B e 8, the spectrum of B consists of:

(i) {XeC/XI-B is 1-1 but not onto}.

(■fi) {AeC/M-B is not 1-1}.

The elements in (ii) are called eigenvalues of B, and any nonzero 

element a e H such that (XI - B) a = 0 is called an eigenvector of B.

For an element B e B, the number y(B) = sup {|a| / X e o(B)} is 

called the spectral radius of B. Clearly, the spectrum of B lies in 

the disc centered at 0 with radius y(B).

The following theorems describe some of the properties of the 

spectrum of an element A in a B*-algebra B. Their proofs are in 

Hille [15] so they will not be repeated here.

Theorem 2.1.1. If A is a positive definite element of a B*-algebra, 

then A-1 is positive definite.

Theorem 2.1.2. The unit element I is positive definite.

Theorem 2.1.3. If A is a symmetric element and o(A) Q [A,b] where 

al < A < bl and b-1I _< A-1 < a"1!.

a > 0, then



Theorem 2.1.4. If A is positive definite then for any positive integer 

n, An is positive definite. In addition, if o(A) C [a,b] where a > 0, 

then a2I < A2 < b2I.

It has been pointed out by Hille [15] and Taylor [25] that 

nonsingular elements (other than the identity) exist in a B*-algebra 8, 

and that the inverse operation is continuous.

Theorem 2.1.5. If A e 8 is nonsingular, and B e 8 is such that

I|a-b|| < jii, then B is nonsingular. Also,

||A-i - b“1|| < ||A"1[I2 IIa - b|| / (i - ||a||_1 I|a - B||).

The following theorems are well known (see Hille [15], Taylor [25] 

or Williams [28]), and are used extensively throughout this paper. The 

first theorem provides the existence of "square roots" in a B*-a.lgebra 

8.

Theorem 2.1.6. If A e 8, and A > 0, (A > 0), then there is an element

M e 8 such that M > 0, (M > 0) and A = M2.

Theorem 2.1.7. If A e 8 and A >_ 0, (A _< 0) , then for any C e 8

C*AC > 0, (C*AC _< 0). If C is nonsingular and A > 0, (A < 0), then

C*AC > 0, (C*AC < 0).



-7-

Theorem 2.1.8. If A e B, A > 0, and C e B such that C*AC = 0> then 

AC = 0.

Theorem 2.1.9. If A,C e B such that 0 < A < C, then 0 < C < A-l.

Integrals and derivatives of B*-algebra-valued functions will be 

required throughout this paper. The definition of an integral will be 

that of the ordinary Riemann-type integral. In particular, if B(x) is a 

function defined on the compact interval [a,b] which takes its values in 

a B*-algebra B, and {a = xq, kj, ..., x^ = b} denotes a partition of 

this interval, then B(x) is called integrable on [a,b] provided
n
,Z^B(x_j.) (x^ - x^ has a limit in B as the norm of the partition 

approaches zero. This limit is called the integral of B(x) on [a,b] and 

is denoted J^B(x)dx. It can be verified that B(x) is integrable on 

[a,b] whenever B(x) is continuous or piecewise continuous on [a,b].

By using the definition and basic properties of a B*-algebra B, and 

the definition of the integral, we obtain the following useful results.

Theorem 2.1.10. If B(x) is a continuous B-valued function on [a,b], 

then ll/aB(x)dxll 1 IiB<x)Ildx*

Theorem 2.1.11. If B(x) is a continuous B-valued function on [a,b] and 
if B(x) > 0 (B(x) 0) on [a,b], then J^B(x)dx > 0, (J^B(x)dx >_ 0).

Likewise B(x) < 0 (B(x) < 0) on [a,b] implies
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J^B(x)dx < 0 (J^B(x)dx < 0).

If B(x) is a B-valued function on the interval (a,b), it is called 
r vx -JJ lim - B(xn) • - ndifferentiable at x0 e (a,b) provided ----------- exists m o.' 11 X"*XQ X — Xq

The limit is denoted B’Cxg) and is called the derivative of B at xq.

In addition, if B is a continuous B-valued function on [a,b], and

A(x) = J^B(t)dt, then for each x s (a,b) the derivative A*(x) exists 

and equals B(x).

2.2 Positive Functionals.

This section introduces the concept of functionals operating on a 

B*-algebra.

Let H be a complex Hilbert space with inner product denoted by 

<,>. Assume that B* is the space of bounded linear operators on H. 

Denote by S, the subspace of B* consisting of the symmetric operators. 

Define the set G = {g;B* C / g is linear and g(A*A) > 0 

for each A e B*}. Then each g e G is a positive functional as defined 

by Rickart [23, pg. 212]. It is clear that g e G is positive if and 

only if g(A) > 0 for all nonnegative definite elements A in S. 

According to Rickart [23, pg. 215], every positive functional is 

bounded, -L.e., continuous.

It is easy to show that the set G is not empty. For example, for 

a e H, define g^ as follows: ga(A) = <Aa,a> where A e B*. Certainly 

g^ is linear and gQ(A*A) = <A*Aa,a> = <Aa,Aa> > 0, so g^ is positive.



The theorem which follows proves that G is closed under multiplica­

tion by nonnegative numbers and summation.

Theorem 2,2,1. If gj, g2, ..., g are elements of G and ay, 32, .a 
n

are nonnegative numbers, then I a.g. e G.
i=l 1 1

Proof. It is clear that Z a.g. is a linear functional on B*. Choose 
i=l 1 1 

(n \ n
Z a.g.l(A*A) = Z a.g.(A*A) 0 since a. 0 and

i=l 1 / i=l

n
(A*A) >_ 0 for i =* 1, 2," ..., n;—Thus—Z^a^g^" e G. 

i=l

It follows from Theorem 2.2.1 that G is a convex set, that is, 

{af + (1 - a)g / 0 _< a <_ 1} C G whenever f,g e G.

As another example of a positive functional, let B* = the set 

of nxn matrices, and consider the functional trace (•) defined by
n

trace (A) = Z a.., where A = (a..) e M . It is well known that 
i=l 11 n

trace (A) = ZA^ where X^, 1 < i < n, are the eigenvalues of A. 

Clearly trace (•) is linear, and since A*A is nonnegative definite, 

trace (A*A) >_ 0. Therefore, trace (•) is a positive functional. Also, 

n
trace (•) = Z g (•), where e. is then component vector with ”1" as 

i=l ei

its i^ component and "0's" elsewhere.
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The following theorem is easily established using the linearity and 

continuity of g e G.

Theorem 2.2.2. If A is a continuous B*-valued function on [a,b], then 
g[/\(x)dx] g[A(x)]dx. In addition, if F(x) = /XA(t)dt, then F is 

a differentiable B*-valued function on [a,b], g(F) is a differentiable 

complex-valued function on [a,b], and {g[F(x)]}’ = g[F’(x)].

If F is a differentiable B*-valued function, then the derivative 

of g(F) will be denoted g’(F).

L.ennua 2.2,3—is-a Cauchy-Schwartz inequality—for positive 

functionals. It is taken from Rickart [23, pg. 213].

Lemma 2.2.3. If g e G, then |g(A*B)|2 <_ g(A*A) g(B*B) for all

A,B e B*.

This lemma is used to establish several basic properties 

of positive functionals.

Theorem 2.2.4. Let g e G. Then g = 0, the zero functional, if and only 

if g(D = 0.

Proof. Clearly, if g = 0, then g(I) = 0. On the other hand, suppose 

g £ G and, g(I) = 0. If A.e B*, then by Lemma 2.2.3,



|g(A)|2 = |g(IA) |2 <_ g(I) g(A*A).

Since g(I) = 0, [g(A)| = 0 for all A e B*. Thus g is the zero

functional.

Theorem 2,2.5. If g e G, g / 0, and A e B* is positive definite, then 

g(A) > 0.

Proof. Let g e G. Choose A e B* such that A > 0. There is, by
2

Theorem 2.1.6,  a B e B* such that B > 0 and A = B . Therefore, by

Lemma 2.2.3, 0 < |g(I)|2 = [ g(BB-1) |2 < g(BB) gCB"^"1) = g(A)g(A-1).

Hence g(A) > 0.

Finally we arrive at a theorem which associates a positive number 

with each nonzero element of G.

Theorem 2.2.6. If g e G and g / 0, then there exists a positive number

p such 
g

that g(A*A) > Pg|g(A)|2 for all A e B*.

Proof. Let A e B*. Choose any g e G such that g / 0. By Lemma 2.2.3

[g(A)|2 = jg(IA) |2 <_ g(A*A)g(I). This reduces to g(A*A) _> ]g(A)|2.
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CHAPTER III

SECOND ORDER DIFFERENTIAL EQUATIONS IN A B*-ALGEBRA

Throughout the remainder of this paper we shall assume that H is a 

complex Hilbert space with inner product denoted and that 8* is the 

B*-algebra of bounded linear operators on H. We shall also be concerned 

with the special case where H is the linear space of ordered n-tuples 

and 8* = Mh is the collection of nxn matrices. In this special case 

we shall assume, without loss of generality, that H is the real vector 

space of ordered n-tuples of real numbers and 6* is the set of nxn 

matrices-with—real—entries-;—For-convenience—this will-be-^ef erred- to— 

as the "finite dimensional" case.

In this chapter we will consider existence, uniqueness, and other 

basic properties of the solutions of the linear differential equation 

(E) [R(x)Y']' +Q(x)Y = 0,

where R and Q are continuous, symmetric, B*-valued functions on the 

interval [a,00), and R is positive definite.

A solution of (E) is a B*-valued function Y on [a,00) such that 

each of Y and RY* is continuously differentiable and 

[R(x)Y’(x)]’ + Q(x)Y(x) E 0 on [a,»), i.e., Y satisfies (E).

Our first theorem establishes the existence and uniqueness of 

solutions of equation (E). Basically its proof is that of Picard and 

LindelUf, which utilizes the classical methods of successive 

approximations! and can be found in Hille [15, chapter 6].
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Theorem 3.1. If Yq and Zq are elements of B* and b e [a,”), then there 

is a unique solution Y of equation (E) such that Y(b) = Yq and 

R(b)Y,(b) = Z0.

The next theorem introduces a concept which is made use of 

extensively throughout this paper.

Theorem 3.2. If Yj and Y2 are solutions of equation (E) on [a,00) , then 

Y*(x)R(x)Y2(x) - Y*’(x)R(x)Y2(x) = K, a constant 

on [a,<»).

Proof. Let M(x) = Y*(x)R(x)Y2(x) - Y*’ (x)R(x)Y2(x).. Then, by taking 

the derivative, we have
Y*’RYA + Y*(RYA)’ - (RY?)*’Y2 - Y*’RYj 
11 1

= -Y*QY + Y*QY = 0.
12 12

This implies M(x) = K, a constant.

Two solutions, Yj and Y2, of (E) are said to be mutually conjoined 

if Y*(x)R(x)Y2(x) - Y*’(x)R(x)Y2(x) E 0 on [a,"). In particular, a 

solution Y of equation (E) is called self conjoined whenever 

Y*(x)R(x)Y’(x) = Y*’(x)R(x)Y(x) on [a,”).

The concept of conjoined solutions was used by M. Morse [19, 

chapter 3] in his research in the calculus of variations^ Conjoined 



solutions of (E), also referred to as prepared solutions, can be shown 

to exist merely by requiring a solution Y to satisfy

Y*(b)R(b)Y’(b) = Y*’(b)R(b)Y(b)

at some point b. Then since M as defined in Theorem 3.2 is constant,

M = 0 and Y is a conjoined solution.

A solution Y of equation (E) is called nontrivial if there exists 

at least one point c e [a,00) such that Y(c) is nonsingular.

Theorem 3.3. If Y is a nontrivial solution of equation (E), then

Y*(x)Y(x) + [R(x)Y’(x)]* R(x)Y’(x) > 0

jon [a^),

Proof. Let Y be a nontrivial solution of (E) and assume Y(c) is 

nonsingular,where c e [a,00).

Suppose there is a point b e [a,”) and a vector y, y + 0, such that

<[Y*(b)Y(b) + (R(b)Y,(b))*R(b)Y’(b)]y, y> = 0.

Then it follows that

Y(b)y = R(b)Y'(b)y = 0.

Let y(x) = Y(x)y. The vector y is a solution of the operator-vector 

equation
(3.1) [R(x)y’]’ + Q(x)y = 0.

Since the basic existence and uniqueness theorem (Theorem 3.1) also

holds for (3.1), we can conclude that y(x) = 0 on [a,"). But 

y(c) = Y(c)y = 0 contradicts the fact that Y(c) is nonsingular. 
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Corollary 3.4. Let Y be a solution of (E). If there is a point 

c e [a,”) such that Y(c) is nonsingular and

Y*(c)R(c)Y’(c) = [R(c)Y’(c)]*Y(c), 

then Y is nontrivial and conjoined.

A slightly stronger result holds in the finite dimensional case, 

see [2, chapter 10] or [19, chapter 3].

Corollary 3.5. Consider equation (E) where R and Q are nxn matrices.

A solution is nontrivial and conjoined if and only if there is a point 

b such that

Y*(b)Y(b) + [R(b)Y’(b)]*R(b)Y’(b) > 0

and

Y*(b)R(b)Y’ (b) = [R(b)Y* (b)]*Y(b) .

Hereafter, the term "solution" will be interpreted to mean 

nontrivial and conjoined solution.

A solution Y of (E) is called oscillatory if for each b s [a,00), 

there is a c > b such that Y(c) is singular. A solution Y of (E) is 

nonosdilatory if it is not oscillatory.

The differential equation (E) is said to be oscillatory provided it 

has an oscillatory solution; otherwise it is called nonosdilatory.

In the finite dimensional case, i.e., R and Q are nxn matrices, 

we have the following result attributed to Morse [19, Theorem 5.1]. This 
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theorem gives us important information about the oscillation properties 

of equation (E). It is known as the Morse Separation Theorem.

Theorem 3.6. If Y is a solution of equation (E) which is nonsingular on 

[6,0], and if U is any other solution of equation (E), then U has at 

most n singularities on [b,c], multiple singularities being counted 

according to their multiplicities. (Note: A singularity of U is a 

zero of det U.)

It follows from this theorem that if (E) has an oscillatory 

solution, then all solutions of (E) oscillate. On the other hand, if (E) 

has a nonosdilatory solution then no solution of (E) oscillates.

For many theorems in the following chapters we shall restrict 

equation (E) by setting R(x) = I, the identity element. With this 

restriction, equation (E) becomes

(e) Y" + Q(x)Y = 0,

where Q(x) is a continuous symmetric function on [a,00) taking its values 

in B*.
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CHAPTER IV 

OSCILLATION CRITERIA

FOR LINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

4.1 Introduction.

In Sections 4.2 and 4.3 of this chapter, oscillation criteria for 

the differential equations (E) and (e) are investigated. The previous 

results of Swanson [24], Etgen [10], Hayden and Howard [13], and 

Allegretto and Erb [1] are shown to be special cases of the theorems in 

these sections.

In Section 4.4, the research of P. Hartman [11J, W. J. Coles [4], 

and J. W. Macki and J. S. W. Wong [18] on weighted averages and 

averaging pairs is extended.

In Section 4.5 oscillation criteria for equation (E) are 

established and our results are compared with those of E. C. Tomastik 

[27].

Throughout this chapter we shall make extensive use of the 

properties of the set G of positive functionals on 8* introduced in 

Chapter II.

4.2 Oscillation Criteria for Equation (e) .

In this section we establish oscillation criteria for

(e) Y" + Q(x)Y = 0,

where Q is a continuous symmetric 8*-valued function on [a,00) . We then 
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demonstrate that many known oscillation criteria are special cases of 

our results.

Theorem 4.2.1. If there exists a g e G such that g[/^Q(t)dt] = +» 

then equation (e) is oscillatory.

Proof. Assume the theorem is false. Then there is a nontrivial 

conjoined solution Y of (e) which is nonsingular on [b,=°) for some

b > a. Define the operator S on [b,“) by S(x) = -Y’(x)Y”(x). Using the 

fact that Y is conjoined

_S * (x) = -[Y*(x)]~1[Y*(x) ]’ = - [Y* (x)]-1Y* (x)Y’Cx) Y“ ^x) = S (x) 

Hence, S(x) is symmetric.

By differentiating S(x) we find that

S’(x) = Q(x) + S2(x),

and integrating this equation yields

S(x) = S(b) + f?tQ(t)dt + f^S2(t)dt. 
v D 4 D

Now, utilizing the functional g e G mentioned in the hypothesis, we have 

g[S(x)] = g[S(b)] + g[/^Q(t)dt] + g[/^S2(t)dt].

Since g[J^Q(t)dt] =•+«>, there is a c > b such that

(4.2.1) g[S(x)] > g[J*S2(t)dt] for x £ [c,=°).

Let W(x) = /^S2(t)dt. Then W’(x) = S2(x). From (4.2.1) we have 
4 D

g[S(x)J > 0 for x e [c,°°). This fact, together with the properties of 



g introduced in Chapter II, gives

g[W(x)] = g[^S2(t)dt] = /*g[S2(t)]dt > ^pg{g[S(t)D2dt > 0 

on [c,<»). Also, we have

g*[W(x)] = g[W’(x)] = g[S2(x)] >. pg{g[S(x)]}2.

By using (4.2.1),

g*[W(x)] > pg{g[J^S2(t)dt]}2 = pg{g[W(x)]}2.

Thus g’[W(x)] 
{g[W(x)]}2 Pg

Integration yields the inequality

g[W(c) ] -^-g{W(c) ]— g[W(x)p Pg(^-c) -

Clearly this inequality cannot hold on [c,m), and we have a 

contradiction.

The following corollary investigates a particular form of 

equation (E).

Corollary 4.2,2. If in equation (E) R(x) = K, where K is a nonsingular 

constant B*-valued function on [a,™) such that K-1Q(x) is symmetric and 

continuous on [a,°°) , and if there is a g e G such that 

x-tm J^K.-1Q(t:)dt] = +°°, then (e) is oscillatory.
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Proof. Equation (E) reduces to

KY" + Q(x)Y = 0.

Since K is nonsingular on [a,00), we can write this equation as

Y" + K"1Q(x)Y = 0.

Because K-1Q(x) is a symmetric, continuous B*-valued function, the 

hypothesis of Theorem 4.2.1 is satisfied.

The following theorems contain a variety of well known oscillation 

criteria. It will be demonstrated that they are special cases of 

Theorem 4.2.1.

Theorem A. If Q in equation (e) is a continuous, symmetric, nxn matrix 

which has a diagonal element q^^(x) such that Ia^ii^t^t = +”’ t^ien 

(e) is oscillatory.

Now

8e = IaSe = /aqii(t)dtC- . cd. d C , d X J-
1 1

Let e. denote the constant vector with "1" as its i^ component and 

"O’s" elsewhere. Define g by g ,(A) = <Ae.,e.> = a., for any nxn- ef 1'1 ii
matrix A=(a^). As indicated in Chapter II, ge. e G.

so by Theorem 4.2.1, equation (e) is oscillatory.

This result can also be found in the work of C. A. Swanson 

[24, Theorem 1].
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The next theorem has been established by T. L. Hayden and-H. C.

Howard [13, Theorem 2],

Theorem B. Let Q in equation (e) be a continuous, symmetric, B*-valued 

function. If A(x) denotes the minimum eigenvalue of J^Q(t)dt and 

H"™ A(x) = -H”, then equation (e) is oscillatory.

Suppose X(x) = -H» Choose any constant vector a such that

||a|| = 1. Then

X(x) < <[/^Q(t)dt]a,a> on [a,”).

As indicated in Section 2.2, the vector a determines a functional 

g e G, so we have °a ’
ga[/^Q(t)dt] > A(x).

Hence, the hypothesis of Theorem 4.2.1 is satisfied.

In order to discuss the following theorem, extracted from the work 

of Allegretto and Erb [1], it is necessary to introduce some additional 

notation. Let k and n be positive integers with k j< n, and let 0^ 

denote the set of strictly increasing sequences of k integers chosen 

from {1, 2, ..., n}. If F is an nxn matrix and y = {m^, m^, ..., m^} 

is an element of 0^ n, then F(y,y) denotes the k*k submatrix of F 

which is obtained by deleting all rows and columns from F except for 

the rows and columns m^, , ..., m^. For any matrix A, let ZA denote

the sum of all entries of A.



Theorem C. Let Q in equation (e) be.a continuous, symmetric, nxn matrix.

If there exists a y e 0, such that fXSQ(y,y) (t)dt = +», then 
Ki n a

equation (e) is oscillatory.

By definition Q(y,y) is the kxk submatrix of Q obtained by removing

all rows and columns except for the rows and columns m 1’ m2 mk-

Let e(y) denote the constant n-component vector whose mp m2, ..., m^ 

entries are ones, while all other entries are zero. Then

<Q(t)e(y), e(y)> = ZQCyyXt),

so

<[/XQ(t)dt]e(Y),e(Y)> =. /^ZQ(y,y)(t)dt.

The vector e(y) determines the functional g . . e G, so we have

' ge(Y) = (t)dt-

Therefore, by Theorem 4.2.1, (e) is oscillatory.

The next theorem,proven for nxn matrices, is also a special case of

Theorem 4.2.1 since the functional "trace" is an element of G.

Theorem D. (Etgen [10, Theorem 2])« If trace [JXQ(t)dt] = +“, 

then equation (e) is oscillatory.

4.3 Other Oscillation Theorems for Equation (e).

This section is a further extension of the research of Allegretto 

and Erb [1], Etgen [10], and Hayden and Howard [13]. The results of



these authors are demonstrated to be special cases of the main- theorems 

of this section.

Theorem 4,3.1. Let Q be a continuous symmetric B*-valued function on

[a,00). If there exists a positive differentiable scalar function q such

,, lim rx 1 ,.. , ,cthat I —7—r- dt = +», and ifx-x» J a q(t) ’

J(x) = J^{q(t)Q(t) - r(q«(t))2/4q(t)]l}dt + I

has the property that there exists a g e G such that g[J(x)] = +”, 

then equation (e) is oscillatory.

Proof. Assume the theorem is false. Then equation (e) has a 

nonsingular conjoined solution Y on the interval [b,<») for some 

b > a. On this interval we define S by

S(x) = -Y,(x)Y-1(x).

Then S(x) = -q(x)Y*(x)Y-1(x) and

S’(x) = -q*(x)Y’(x)Y-1(x) + q(x)Q(x) + q(x)Y*(x)Y-1(x)Y*(x)Y-1(x) 

which can be written

s'(x> " [s(x) Ii2 + owqw - x-

Integration yields

S(x) + I = S(b) + J?" -y-r [S(t) + I]2dt 
Z b q(2

+ /bX<q(t)Q(t) - i)dt + till 1.
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Hence, utilizing the g e G mentioned in the hypothesis, we have 

gis(x) +311x).!] = g[S(b)] + gt/b [s(t) + ^4B2'I]2dt} +

Since g[J(x)] = +<», there is a number c > b such that

(4.3.1) g[S(x) +alXx).I] > g{j'X _1_ [s(t) + titlI]2dt} 

on [c,00).

Let W(x) - Jjy [SCO + I]2dt.

Then W’(x) = [S(x) + I]2- By making use of the

properties of g, we have

g’[W(x)] = g[WT(x)]

. +alXS>.I]2 >^y(g[S(X) +^X1]}2.

Then from (4.3.1),

g.[w(x)] > _V {g[/X 1 (s(t) +titlI)2dtJ}2

on [c,°°). This implies

Po(4.3.2) g’[W(x)] > S {g[W(x) ]}2 on [c,<=°).

Now (4.3.1) also implies g[S(x) + I] > 0 on [c,°°) and from 

this fact plus the properties of g

g[W(x)l = g[S(t) + I]2dt

> J’b Trfr + Il}2dt > o
— b q(,t) 2

on [c,00). Therefore (4.3.2) can be written
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g*[W(x)] > Pg 
(g[W(x)]}2 q(x) on [c,ro).

By integrating this inequality we get

1 1  1 rx _1
g[W(c)] g[W(c)] g[W(x)] Pg -'c q(t)

lim rx _i, . ■Slnce x-x» /cq = ■H”> this inequality cannot hold on [c,00).

and we have a contradiction.

Referring to the notation introduced for nxn matrices prior to

Theorem C, we can use Theorem 4.3.1 to prove the following corollary.

Corollary 4.3.2. Let Q be a continuous symmetric nxn matrix and let f

be a positive differentiable scalar function on [a,00) such that
lim fx 1
x-x» •'a fOO" dx - ■Ho• If there exists aye 0k>n such that

 

then equation (e) is oscillatory.

Proof. By definition Q(y,y) is the kxk submatrix of Q obtained by deleting 

all rows and columns of Q except for the rows .and columns m^, m^,
k. nwhere is an increasing subsequence of Let e(y) be the

constant n-component vector whose nip m^, ..., m^ entries are ones.

while all other entries are zeros. Then
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<[J^f(t){Q(t) - [f^-]2I}dt +^^-I]e(Y), e(Y)> 
a z.x Uy

= /gf(t){EQ(Y,Y)(t) - [|^-]2EI(Y,Y)ldt 4-^^- EI(y,Y).

The vector 6(y) determines a functional ge(Y) e G, so we have

g , x {/Xf (t)Q(t) —— I dt + a—1} = +00 which satisfies. the 
x-x» 6e(Y) 4 a x 4f(t) 2 

hypothesis of Theorem 4.3.1.

By using the same terminology we can show that the next theorem, 

found in the work of Allegretto and Erb [1, Corollary 2], is a special 

case of Corollary 4.3.2.

Theorem E. If there exists a Y E 0^ m such that

JXt[EQ(Y,Y)(t) - ^^-Jdt + EI(y,y) 
a 4t2 z

= /Xf(t){ZQ(Y,Y)(t) - [|^-]2ZI(Y,Y)}dt +^1zI(y,y).

Since the first term on the left side of this equation has limit +» as

x and the second term is constant, the hypothesis of

Corollary 4.3.2 is satisfied.

If the reasoning which led to Theorem D, Section 4.2, is repeated, 

we have the next result.

lim /Xt[ZQ(Y,Y)(t) - ]dt = +»
x-x” Ja * ’1 AOt2 then equation (e) is oscillatory.

Let f(t) = t. Then f is a positive differentiable scalar function

on [a,”) and = +». In addition*• ’ x-*» Ja
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Theorem F. (Etgen [10, Theorem 3])» Let Q be a continuous, symmetric, 

nxn matrix and define r and J as in Theorem 4.3.1. If

trace [J(x)J = +», then equation (e) is oscillatory.

The very same logic used to demonstrate that Theorem B, Section 4.2, 

was a special case of Theorem 4.2.1 can be used to show that the 

following result of Hayden and Howard [13, Theorem 3] is a special case 

of Theorem 4.3.1.

Theorem G. Let Q be a continuous, symmetric function taking its values 

in B*. If there is a positive differentiable scalar function q such that 

lim jx 1 j defined in Theorem 4.3.1, has the property
x-x» Ja q(t) 
that the minimum eigenvalue of J(x) has limit +» as x », then 

equation (e) is oscillatory.

4.4 Weighted Averages and Averaging Pairs.

Additional information about the oscillation of equation (e) can be 

obtained by considering the concepts of weighted averages of and

of averaging pairs as introduced by Coles [4] and Macki and Wong [18], 

respectively. These concepts lead to oscillation criteria which differ 

extensively from those developed in sections 4.2 and 4.3.

A weighted average of f^Q(t)dt is defined by W. J. Coles [4] as 

follows: Let f be a nonnegative continuous scalar function on [a,°°) such 

that J^f(t)dt / 0, and there is a number b > a with the property that
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/;f(t)[/^Q(s)ds]dt
(4.4.1) A(x) = ----------

exists on [b,”).

Coles* results were obtained for the scalar equation

(4.4.2) y" + q(x)y = 0.

Our next theorem extends his work to equation (e).

Theorem 4.4.1. Let Q be a continuous, symmetric function on [a,°°) which 

takes its values in B*. If there exists a g e G and a nonnegative 

continuous scalar function f on [a,00) satisfying

/^(f(t) [ f^f (s)ds]k / /tf2(s)ds}dt = +»

for some k, 0 k < 1, and for b > a, and

^g[A(x)]

where A is given by (4.4.1), then (e) is oscillatory.

Proof. Assume (e) is nonosdilatory.. Then there is a nontrivial 

conjoined solution Y of (e) such that Y is nonsingular on [b,°°) for 

some b > a. We can define S(x) = -Y* (x)Y~1 (x) on [b,<”). Since Y is 

conjoined, S is symmetric. Differentiation of S(x) and subsequent 

integration of the derivative yields

S(x) = S(b) + J^Q(t)dt + /^S2(t)dt.
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(4.4.3)

/^f2(t)dt /^(g[S(t)]}2dt .

Multiplication by f(x) followed by integration results in

^f(t)S(t)dt = /^f(t)S(b)dt+/^f(t)J^Q(s)dsdt

+g [J^f(t)/^S2(s)dsdt].

By hypothesis, the first term on the right side of this equation 

increases to +», so there exists a number c > b such that for x > c, 

g[/^f(t)S(t)dt] > g[^f(t)/Js2(s)dsdt].

Let W(x) = JXf(t)f^S2(s)dsdt]. Then W’(x) = f(x)/^S2(t)dt. By 
' b v b v b

using the properties of g.

+ JJf(t)/Js2(s)dsdt.

Let g e G be the positive functional given in the hypothesis. Then 

fXf(t) (^Q(s)dsdt 
g[/^f(t)S(t)dt] =(^f(t)dt}{g[S(b) +-^---—---------  ]}

/£f(t)dt

g*[W(x)] = g[W'(x)] = f(x)J^g[S2(t)]dt pgf(x)J’^{g[S(t)]}2dt.

Also 
p f(x) 

g*[W(x)] >_ —-S------
Jbf2(t)dt

By using the Cauchy-Schwartz inequality, 

P f(x)
g’ [W(x2 _> ------- {/bf (t)g[S(t) ]dt}2.



-30-

P f(x)
SO g*[W(x)l > g---- {g[/Xf(t)S(t)dt]}2.

b

This implies, by (4.4.3), that

P f(x) 
g*[W(x)] > —2------  {g[J^f(t)J S2(s)dsdt}2,

b b 

or
p^f(x)

(4.4.4) g*[W(x)] >—“--------(g[W(x)]}2.
f*f2(t)dt

From the definition of W(x), we derive

g[W(x)] > g[/Jf(t)^S2(s)dsdt] 

for d >^,-c because J^S2(s) > J^S2(s)ds on [d,00). 

Since f^S2(s)ds is a constant, 
' D

g[W(x)] > [^f(t)dt][g{/^S2(s)ds}].

Let g[/^S2(s)ds] = m, a positive constant. This implies 

(g[W(x) ] }k _> mk[J'^f (t)dt]k

on [d,”), for 0 < k < 1. Now combine this with (4.4.4) to obtain

k k 9(4.4.5) {g[W(x)} g’[W(x)] > p m ----—---------- (g[W(x)]}2
8 JXf2(t)dt 

b

on [d,00).

It can be deduced from (4.4.3) that J^f (t)g[S(t)] dt >■ 0 on [c,°°).

This implies that f(x) 0 and g[S(x)] 0 on [b,c]. Hence
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f^{g[S(t)]}2dt > 0 on [c,=) and (t)/^{g[S(s)]}2dsdt > 0 on [c,»).

Therefore

g[W(x)] = /*f(t)/tg[S2(s) Jdsdt >, p J^f(t)/^{g[S(s) ] }2dsdt > 0 
a. D g D D

on [c,”) so we can rewrite (4.4.5) as

on [d,°°).

By integrating, we get

dt.

-. ■ lim rxSince J f(t) x-*<» J c

[/=£(s)dslk
p mT f(t) —5---------

g C J^f2(s)ds

[/£f(s)ds]k
—---------- dt = +”, this inequality cannot hold on
/bf2(s)ds 

1 (
g[W(x) ](

1 j 1 
1-k |g[W(c)]|

2-k f(x)[/*f(t)dt]k
g*[W(x)] > p mk ---—--------

g Jbf2(t)dt

1 11-k jg[W(c)]( - 1
. jg[W(x)]|

[djoo), and we have a contradiction.

The following theorem uses the concept of averaging pairs to 

develop oscillation criteria for equation (e).

A pair of scalar functions (o,a) is called an averaging pair 

provided

(i) a is. continuous on [a,”), a > Q, a > 0, and a is 
differentiable on la,00).
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(^) J^a(t) (J^a(s)a2(s)ds)"‘1dt = +».

.This is the definition used by Macki and Wong [18] in their study of 

equation (4.4.2). Our theorem extends their results to equation (e).

Theorem 4.4.2. Let Q be a continuous symmetric function which takes its 

values in B*. If there exists an averaging pair (a,a) and a g e G such 

that g n(Ka + 4 D

where K (s) - fs[a(u)Q(u) - | <* a'<u>>2 x]du
a •’a 4 a(u)

and n(K) = (/^a(s)ds)-1/^o(s)K(s)ds,

then equation (e) is oscillatory.

Proof. Assume the theorem is false. Then there is a nontrivial conjoined 

solution Y of (e) which is nonsingular on [b,°°) for some b > a. We can 

define S(x) = -a(x)Y’(x)Y-1(x) on [b,”). Since Y is conjoined S is 

symmetric.

By differentiating S we have

S’W -^7 [s(x) + n2 <• IftoQto -

Qr ®Put V(x) = S(x) H--- — I and integrate to get

S(x) - SF dt + Ka(x) + C’



where C e B* is a constant of integration. Then adding —y-- I to both 

sides yields

V(x) = S(x) + I = dt + Ka(x) + I + C.

This implies

n(v) = n(/J dt) + n(K + 1) + c.
j >£ vb a(t) -p a ‘•

Now. using the g described in the. hypothesis,

g n(v)
T

V2(t) 
a(t) dt) + g n(Ka + i) + g(C).

c. lim . a’(x) TxSince _ g H(K 4--- — I)x-x» & i a 2 = +», we have g II (V)
V2(t) 
a(t) dt)

on [c,«>) for some c > b. This implies

(4.4.6) g[fJa(t)V(t)dt] > g[/^a(t)^ dsdt].

Then, using the properties of g and squaring both sides, we get

J^o(t)/a(t) g
V(t) 

_/a(t)_
„ (X z x ft V2(s) 
g V^Jb a(s) dsdt

Consider the left side of this inequality. From the Cauchy-Schwartz 

inequality, we have

•i- /^o2(t)a(t)dt 
p ' b
g
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Therefore, 

9 2 A 9(4-4-7) ^Ka2(t,i,(t)dt)(^I^rldt)> {st<c>/= dsdd}.

Let W(x) = 77^-dsdt. Then W'(x) = d(x)f? TT^" dt* s0

(4.4.8) g'[W(x)] = g[W’(x)] = a(x)J^g[^^- ]dt.

In addition (4.4.7) becomes

(4.4.9) ^o2(x)a(t)dt^/^g[^^y-]dt^ > {g[W(x)]}2.

It can be deduced from (4.4.6) that J^o(t)g[V(t)]dt > 0 on [c,m).

This implies that o(t) ^0 and g[V(t)] 0 on [b,c]. Hence

•x I fv(t) 
br j-Fa' Lva(t)J

2 
dt>0 on [c ,=), and J^o(t)

V(s) ' 

_/a(s)_

2
■ dsdt > 0 on [c,°°) .

Therefore,

_/a(s)_
g[W(x)] = /^(t) /tg[^^.]dsdt > Pgj£a(t) g r , _ ,2V-(-s-> ( dsdt > 0

on [c,").

This fact, plus (4.4.8) and (4.4.9), allows us to write

8'[W(x)J > a(x)^bg!a(t)),dt

1g[W<X),)2 '

By integrating we get

riT/ x i > rriz x i - "fTT?"Vi > P /Xo(t) (/^a2(s)a(s)ds)-1dt.
g[W(c)] g[W(c)] g[W(x)] pg-'c Jb



Since (a,a) is an averaging pair. JX°(t) (J?o* 2(s)a(s)ds)-1dt = -H»,

a g e G such that the function P defined by
2

Pto - ^<q(t)Q(t) - R(t) Mt + R(x)

has the property that g[P(x)] = +», and If [q(x)R(x) J™1 > k(x)I, 

where k is a positive scalar function and fXk(t)dt = +«, then
x-*» •'a

equation (E) is oscillatory.

Proof. Suppose the theorem is false. Then there exists a nontrivial 

conjoined solution Y of (E) such that Y(x) is nonsingular on [b,00) for 

some b > a. Define S(x) by

q-1(x)S(x) = -R(x)Y*(x)Y-1(x) on [b,»).

Then S(x) is symmetric because Y(x) is conjoined and R(x) is symmetric.

X-T" Q 0
so

this inequality cannot hold on [c,°°). Therefore, we have a contradiction.

4.5 Oscillation Criteria for Equation (E).

In this section, oscillation criteria are developed for the 

differential equation.

(E) [R(x)Y*]* + Q(x)Y = 0,

where R and Q are continuous symmetric B*-valued functions on [a,”) and 

R is positive definite. Results by Howard [14] and Etgen [10] are 

shown to be special cases of our criteria.

Theorem 4.5.1. If there exists a positive differentiable function q and
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By taking the derivative

S*(x) = [S(x)R-1(x)S(x) + q’(x)S(x)]+ q(x)Q(x)

which factors into

S’(x) = (S + | Rq’Xq-lR-bCS + | Rq’) + qQ - R(^’— •

If we integrate and add to both sides, we get

SW + = s(b) + J^{q(t)Q(t) - I 4q(t) '^dt +

+ J^(S + | Rq'Xq-iR-^CS + | Rq’)dt.

Let S(x) = S(x) + SlXZElRto. , Then

S(x) = S(b) + /^(q(t)Q(t) - + qVxXRM

+ S(t)[q(t)R(t)]-1 S(t)dt.

By hypothesis

S(x) > S(b) + /^(q(t)Q(t) - R(t?a?L(t)]2}dt + +

+ JJk(t)[S(t)]2dt.

Also by hypothesis, there is a g e G and a c > b such that

(4.5.1) g[S(x)] > g{J^k(t) [S(t) ]2dt} on [c,=°).

Let W(x) = J^k(tXS(x) ]2dt. Then W’(x) = k(x)[S(x)]2. By using 

the properties of g,

* *g'[W(x)] = g[W’(x)] = k(x)g{ [S(x) ]2} >_ pgk(x){g[S(x)]}2.
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Substituting (4.5.1) into this equation, we get

(4.5.2) g*[w(x)J > pgk(x){g[J^k(t)[S(t)]2dtJ2 = pgk(x)(g[W(x)]}2.

Now (4.5.1) implies g[S(x)] > 0 on [c,°°), so

g[W(x)] = J^k(t)g{ [S(x) ]2}dt >_ pJ^k(t){g[S(t) }2dt > 0.

This means we can write (4.5.2) as

g [W(x)J— > p on [C}oo),
(g[W(x)]}2 8

We can integrate to get

g[W(c)] > g[W(c)] " g[W(x)] > Pg ^<t)dt

on [c,m).

Since j‘^k(t)dt = +», this inequality cannot hold on [c,“).

The resulting corollary has been proven by Howard [14, Theorem 3] 

for the case where R and Q are nxn matrices. We can use our theorem 

to extend his results to the 8*-valued case.

Corollary 4.5.2. Let R and Q be continuous symmetric 8*-valued

functions on [a,™), and let R be positive definite. Let P and q be 

defined as in Theorem 4.5.1. If X(x) = +00, where X(x) is the 

minimum eigenvalue of P(x), then (E) is oscillatory.

Proof. Choose any constant unit vector a. Then X(x) <_ <P(x)a,a>. This 
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inner product determines a £ G as was demonstrated in Chapter II.

Therefore ga(P(x)] >_ X(x), so the hypothesis of Theorem 4.5.1 is 

satisfied.

Theorem H. (Etgen [10, Theorem 3]). Let R and Q be continuous symmetric 

nxn matrices on [a,°°), and let R be positive definite. Define P and 

q as in Theorem 4.5.1. If trace [P(x)J = +», then (E) is 

oscillatory.

Since trace is an example of a g s G as was demonstrated in

Chapter II, this theorem is a special case of Theorem 4.5.1.

Equation (e) is a special case of equation (E) by having R(x) = I, 

the identity element. The next theorem extends this thinking by letting 

R(x) = r(x)I, where r(x) is a continuous positive scalar function.

Theorem 4.5.3. In equation (E), let Q be a continuous symmetric
•#B—valued function on [a,”) and let R(x) = r(x)I, where r is a 

continuous positive scalar function on [a,”). If there is a g e G such 

that g[fXQ(t)dt] = +00 and I"*"™ fX —7—r- dt = +», then (E) is
X-*” 6LJax J x^« Ja r(t) ’

oscillatory.

The proof is an obvious modification of the proof of Theorem 4.2.1.
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The following theorem extends the work of Tomastik [27]. In 

particular, we allow the coefficients in equation (E) to take their 

values in B* rather than being limited to nxn matrices.

Theorem 4.5.4. Let R and Q in equation (E) be continuous positive 

definite symmetric B*-valued functions on [a,00). If there exists a

g e G such that g[/^R-1 (t)dt] = +== and

minimum eigenvalue [J^Q(t)dt] = +“, then equation (E) is oscillatory.

Proof. Assume (E) is nonosdilatory. Then there is a nontrivial 

conjoined solution Y of (E) such that Y(x) is nonsingular on [b,”) for 

some b > a.

Since Y (x) is nonsingular on [b,°°), we can define S by 

S(x) = -R(x)Y'(x)Y-1(x).

The conjoined property of Y and the symmetry of R imply that S is 

symmetric.

Taking the derivative of S(x) and integrating S*(x) yields 

S(x) = S(b) + J^Q(t)dt + f^S(t)R-1(t)S(t)dt.
v D v D

Now f?IS(t)R-1(t)S(t)dt is positive definite, and, by the hypothesis, 
J b

S(b) + J’^Q(t)dt is positive definite, on [c,“) for some point c >_ b.

Hence S(x) > 0 on [c,00). This implies that S-^ exists and that S-1(x) > 0 

on [c,”).
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Let g be the positive functional described in the hypothesis. Then 

g[S-1(x)] > 0 on [c,=°).

We now take the derivative of S-1(x) and integrate [S-1(x)J . This 

gives

S-^x) = S-^c) - /V1(t)dt - JV1(t)Q(t)S-1(t)dt.

Therefore,

gtS-^x)] = gtS-^c)] - g[J^R-1(t)dt] - gf/V^^QC^S-^^dt].

Since g[S-1(c)] is a constant, g[/^S“1(t)Q(t)S~1(t)dt] > 0, and 

g[J^R-1(t)dt] = +“, we have that g[S-1(x)] = -<» which 

' contradicts g[S-1(x)] > 0.

Corollary 4.5.5. Let R and Q in equation (E) be continuous positive

definite symmetric nxn matrices. If fX r..(t)dt = +“>, where r. . is 
x-*» ja ii ’ ii

the i^ diagonal element of R-^, and

minimum eigenvalue [/^Q(t)dt] = 4», then equation (E) is oscillatory.

Proof. In order to satisfy the hypothesis of Theorem 4.5.4, we must

only show that there exists a g e G such that g[/^R-1 (t)dt] = +°°.

As in Theorem A, Section 2, we can define a g„ e G such that 
ei

= fa Hence x^ 8ei[/^R-1(t)dt^ = 'H>°-
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CHAPTER V

TRIGONOMETRIC MATRICES

AND THE POLAR COORDINATE TRANSFORMATION

Let Q be a continuous symmetric nxn matrix on [a,”), and let {S,C} 

be a solution pair of the second order system

(5.1) Y' = Q(x)Z , Z* = -Q(x)Y.

This differential system is referred to as a trigonometric differential 

system because the solution pairs have many of the properties of the sine 

and cosine functions. See^ for example, Etgen [6].

In particular it is easy to verify that if {S,C} is a solution of

(5.1) , then the matrices S*C - C*S and S*S + C*C are constant on [a,”). 

We can, in fact, show that the following identities hold on [a,00).

S*C = c*s,-

SC* = CS*,
(5.2)

S*S + C*C E I,

SS* + CC* El.

This can be done if we impose the initial condition

Y(b) = Y0 , Z(b) = Z0

such that Y*Zq = Z*Yq. This implies S*C E C*S on [a,00), and the pair 

{S,C} is conjoined. Also, the pair is nontrivial if and only if the 

constant matrix S*S + C*C is positive definite. In fact, assuming that 

{S,C} is nontrivial, we can without loss of generality assume that

S*S + C*C = I

on [a,»).
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These identities can be used to show that

SC* = CS*,

SS* + CC* = I.

In addition, if A and B are nxn matrices such that A*B = B*A, AB* = BA*, 

A*A +B*B = I, and AA* + BB* = I, then the matrix functions

U = SA - CB,

V = CA + SB,

are solutions of (5.1) which also satisfy the identities corresponding to

(5.2) . These can be compared with the trigonometric addition formulas.

If Q is positive definite on [a,00), then {S,C} has oscillatory properties 

similar to those of {sin/^q(t)dt, cos/*q(t)dt} where q is a positive 

continuous scalar function on [a,°°) [7], Finally, if Q is nonsingular 

on [a,00), then (5.1) can be written

[Q-I(x)Y’]’ + Q(x)Y = 0,

a special case of equation (E).

The solution pair {S,C} of (5.1) was introduced by J. H. Barrett [3] 

in order to study the oscillation properties of the second order 

differential equation

(5.3) [P(x)Y']’ + F(x)Y = 0,

where P and F are continuous nxn matrices on [a,°°). He accomplished 

this by performing a generalized polar coordinate (or Priifer) 

transformation

Y(x) = S*(x)M(x) , P(x)Y'(x) = C*(x)M(x),

where M satisfies the matrix differential equation

M*(x) = [S(x)P-1(x)C*(x) - C(x)F(x)S*(x)]M(x), 
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and Q is the matrix

Q(x) = C(x)P-1(x)C*(x) + S(x)F(x)S*(x).

Clearly, Q is symmetric.

Theorems which are handled with greater ease using the trigonometric 

differential system have their results transformed back to equation (5.3).

The following lemma and theorems establish a condition which 

guarantees the oscillation of the trigonometric differential system

(5.1) in the case where Q > 0 on [a,”).

If we choose a nontrivial conjoined solution pair {S,C} of equation

(5.1) , then the matrix defined by

(5.4) 0(x) = [C(x) - iS(x)]-1[C(x) + iS(x)]

exists on [a,°°). The following lemma describing the properties of 0 is 

well known. (See [2, Chapter 10], [7], or [9].)

Lemma A. The matrix 0 defined by (5.4) has the following properties 

on [a,°°) .

(•i) 0 is unitary, -i.e. , 00* = 0*0 = I.

(.'Li') Let Yl, Y2> •••> Yn denote the eigenvalues of 0. Then

|Yj| = 1 for j = 1, 2, ..., n, and Yj(c) =1, c >_ a, for at 

least one j, 1 < j <_ n if and only if S (c) is singular, i.e. , 

det S(c) = 0. Moreover, the multiplicity of the zero of 

det 8(c) equals the number of eigenvalues of 0 having the 

value +1.

(•iii) The eigenvalues of 0 move monotonically and positively on



the unit circle as x increases on [a,co).

(iv) Let a)j(x) = arg[y^(x)], j = 1, 2, .n, and assume that

0 <_ (a) <_ 2it, j = 1, 2, .n, and that every Wj is

continued as a continuous function on [a,”). Then the 

functions a\. (x) are increasing functions on [a,00).

(v) If for some point b > a, all of the eigenvalues of 0(b) 

are in the upper half-plane, then the symmetric matrix 

C(b)S-1(b) is positive definite. Similarly, if for some 

point c > a, all of the eigenvalues of 0(c) are in the 

lower half-plane, then C(c)S-1(c) is negative definite.

(V'i) Both of the matrices C*C - S*S and 2S*C are real and 

symmetric. In addition, they have the same eigenvectors.

Theorem 5.1. Let 0 be the continuous, unitary nxn matrix defined by (5.4) 

on [a,°°). If the differential system (5.1) is nonoscillatory, then there 

is a number c > a and a nontrivial conjoined solution pair {U,V} of (5.1) 

such that V(x)U-1(x) is negative definite on [c,°°).

Proof. Let {S,C} be any nontrivial conjoined solution pair of (5.1) 

which satisfies the identities (5.2). Since (5.1) is nonoscillatory, 

there is a number b > a such that S is nonsingular on [b,00). Define 

the matrix T by

T(x) = C(x)S-1(x) on [b,=°).

Then using the identities (5.2), we can show that T is symmetric on [b,”).



By taking the derivative of T(x), we have

T’(x) = -Q(x) - T(x)Q(x)T(x).

Since Q is positive definite on [b,00), T’(x) is negative definite which 

means T(x) decreases on [b,”) in the sense that each of its eigenvalues 

is a decreasing function. Note that if C(x)S-1(x) is negative definite 

at some point c > b, then it is negative definite on [c,00). Because it 

is not necessarily the case that C(x)S-1(x) is eventually negative 

definite, we will proceed to construct a solution pair such that this 

condition does hold.

Consider the matrix 6 mentioned in the hypothesis. Since S is 

nonsingular on [b ,co) we can conclude from (^) of Lemma A that no 

eigenvalue, (x), of 0(x) passes through the point +1 as x increases on 

[b,®). It then follows that the increasing functions

Wj(x) = arg[y^(x)], j = 1, 2, ..., n, 

are bounded above on [b,®). Hence

“j(“) = j = 1, 2, ..., n,

exists, and we can define

°tj = u)j (®) (mod 2ir), j = 1) 2, ..., n.

From this we can conclude that 0(x) = 0(®) exists.

Let G = C*C - S*S and H = 2S*C. Then by (vi) of Lemma A, the 

matrices G and H are real, symmetric, and have the same eigenvectors. 

Furthermore GH = HG, G^ + H2 = 0, and since C* + iS* = (C - iS)-1, 

we can write (5.4) as
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0(x) = [C*(x) + iS*(x)] [C(x) + iS(x)]/

This expands to

- S*(x)S(x) + i2S*(x)C(x)9(x) = C*(x)C(x)

which be writtencan

= G(x) + iH(x).0(x)

lira = H(«)6(x) = 0(°°) existsSince

= H(“)G(c°) and G2(°°) I holdthe identities G(o°)H(»)exist and

and H(°°)Hence, G(”) are realbecause they hold for all x >. b«

be diagonalizedthey can

that

J*0(=°)J = J*G(”)J + iJ*H(=°)J = D

where D is of the form

D

For any nxn matrix M we

M is an nxn matrix with real

= D.

can choose a matrix K such thatWe

and N has all its eigenvalues 

JT0(»)J

T T T= K J 0(co)JK = K DK = NT(JK) 0(»)(JK)

ian e n

on the lower half-plane. This is

symmetric, and have the same eigenvectors, so

entries, then = M*. Hence = J*, so

J* — J-1. This means

ei«l
eia2

T shall denote the transpose of M as M . If

both G(x) = G(=°) and H(x)

by the same real, orthogonal, matrix J, ^.e.
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accomplished by setting

K =

where it < + Oj < 2tt, j = 1, 2, n.

Hence we have
ei(2Xi + ui)

ei(2X2 + a2)

TN = K DK =

ei(2Xn + an)

so N has all its eigenvalues in the lower half-plane.

so

We can rewrite K in the form
cos(Xi)

cos(X2)

cos(Xn)

sin(Xi)

sinCXz)

sin(Xn)

JK = J

cosCXj)

cos(X2)

cos(Xn)

sin(Xi)

sin(X2)

sin(X ) n
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If we let
cos(Ai)

cos(A2) 

cos(X ) n

and

sin(Xi)

sin(X2)

B = -J

then the matrices A and B satisfy the identities

A*B = B*A,

AB* = BA*,
(5.5)

A*A + B*B = I ,

AA* + BB* = I,

and
T T(5.6) N = (JK) 0(-»)(JK) - (A - IB) 0(o°) (A - iB).

We now let

U(x) = S(x)A - C(x)B

and V(x) = C(x)A + S(x)B.

Clearly {U,V} is a solution pair of (5.1), and by using (5.2) and

(5.5) the following identities hold on [b,»).
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U*V = v*u

UV* = vu*
(5.7)

u*u + V*V = I

UU* + W* = I.

Denote the matrix Y on [b,”) by

(5.8) Y = [V - iU]-1[V + iU].

Then

Y = [(C - iS)(A + iB)]~1[(C + iS)(A - IB)] 

= (A + IB)-1 0(A - iB).

Since 0(x) = 0(«>) exists, Y(<») exists and

(5.9) Y(=o) = (A + iB)-1 0(»)(A - iB).

T TBy using the fact that A* = A and B* = B along with the identities 

(5.5), we can show that

(A - iB)T = (A + iB)-1.

This implies by (5.6) and (5.9) that

N = Y(»).

Hence, Y(«) has all its eigenvalues in the lower half-plane. This implies 

there exists a number c > b such that Y(x) has all its eigenvalues in the 

lower half-plane on [c,00). Therefore, by (v) of Lemma A, we can 

conclude that V(x)U-1(x) is negative definite on [c,”).

Theorem 5.2. If Q is a continuous positive definite symmetric nxn 

matrix on [a,00), and if there exists a positive functional g e G such 

that g[/^Q(t)dt] = +», then equation (5.1) is oscillatory.
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Proof. By the technique demonstrated in Theorem 5.1, we can construct a 

nontrivial conjoined solution pair {S,C} such that C(x)S-1(x) is negative 

definite on [c,”) for some c > a.

Let W(x) = C(x)S-1(x) < 0 on [c,00) . Then W(x) is symmetric, and 

W^fx) exists and is negative definite on [c,”). By differentiating 

W^x) and integrating the derivative, we have

W^x) = W^c) + /^Q(t)dt + J^(t)Q(t)W(t)dt.

Hence, utilizing the positive functional g mentioned in the hypothesis, 

we get

g[W-1(x)] = gtW-^c)] + g[^Q(t)dt] + g[jV1(t)Q(t)W-1(t)dt].

Since g[/^Q(t)dt] = +~, there is a point d >_ c such that 

gfW^x)] > gE/^W- 1(t)Q(t)W- 1(t)dt] > 0 on [d,=°).

This contradicts W-1(x) < 0 on [b,«).

As a corollary to Theorem 5.1 we get an extension of a result of 

W. T. Reid [21, Theorem 5.4].

Corollary 5.3. Suppose there is a nontrivial conjoined solution Y of the 

differential equation (5.3) such that

Q(x) = M*-1(x)[Z*(x)P-1(x)Z(x) + Y*(x)F(x)Y(x)]M“1(x), 

where Z(x) = P(x)Y’(x) and M*(x)M(x) = Y*(x)Y(x) + Z*(x)Z(x), is positive 

definite on [b,°°) for some b > a. If there is a g e G such that
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g[/^Q(t)dt] = +“>, then equation (5.3) is oscillatory.

Proof. Consider the solution Y called out in the hypothesis. We can 

perform the polar coordinate transformation by setting Y(x) = S*(x)M(x) 

and Z(x) = C*(x)M(x), where M satisfies the differential equation

M’(x) = [S(x)P-1(x)C*(x) - C(x)F(x)S*(x)]M(x) 

and

Q(x) = C(x)P-1(x)C*(x) + S(x)F(x)S*(x).

It can be shown that M*(x)M(x) = Y*(x)Y(x) + Z*(x)Z(x) > 0 because 

Y is nontrivial. Thus M(x) is nonsingular on [b,<»). In addition, 

M*(x)Q(x)M(x) = Z*(x)P~1Z(x) + Y*(x)F(x)Y(x), 

so

Q(x) = M*-1(x)[Z*(x)P-1(x)Z(x) + Y*(x)F(x)Y(x)]IF1(x).

Since Q(x) is positive definite on [b,”) and there is a g c G such 

that g[/^Q(t)dt] = +», we have, by Theorem 5.2, that the 

trigonometric differential equation (5.1) is oscillatory. Because we 

are dealing with an n*n matrix differential equation. Theorem 3.6 implies 

all the solutions of equation (5.1) are oscillatory, in particular S. 

Therefore Y = S*M is oscillatory, so equation (5.3) is oscillatory.



CHAPTER VI

COMPARISON CRITERIA

In this chapter we shall extend the work of K. Kreith [17] by 

generalizing his comparison lemma [17,Lemma 2]. This is done by making 

use of the set of positive functionals G defined in Chapter II to relax 

his hypotheses. In addition, we shall introduce comparison criteria for 

oscillation and nonoscillation by using both Kreith*s work and our 

extensions.

Consider the differential equation

(6.1) [P(x)V*]’ + G(x)V = 0

and compare it with equation

(E) [R(x)Y*]’ + Q(x)Y = 0

where P, G, R, and Q are continuous symmetric functions on [a,™) which 

take their values in B*. In addition, we assume that P and R are 

positive definite.

Theorem 6.1. Suppose equations (6.1) and (E) are B*-valued differential 

equations, and V is a non-identically zero solution of (6.1) satisfying

(i) V*(x)[Q(x) - G(x)]V(x) > 0,

(•i-i.) V*’(x)[P(x) - R(x)]V’(x) > 0 on [b,c], and

V(b) = V(c) = 0.

If Y is a conjoined solution of equation (E), then Y(x) is singular for 

some point x on [b,c].



-53-

Kreith proved this theorem for the finite dimensional case 

[17, Lemma 2], and his proof extends without modification to the 

B*-valued case.

The following theorem is an extension of Theorem 6.1.

Theorem 6.2. Suppose equations (6.1) and (E) are B*-valued differential 

equations, g e G, and V is a non-identically zero solution of (6.1) 

satisfying

(^) g[V*(Q - G)V] > 0 on [b,c]

(•zLi) g[V*'(P - R)V*J _> 0 on [b,cj

(Hi) g[V*(b)V(b)] = g[V*(c)V(c)] = 0

(w) For any point d, if g[V*(d)V(d)] = 0, then 

g[V*’(d)R(d)V'(d)] > 0.

If Y is a conjoined solution of (E), then Y(x) is singular at some point 

x e [b,c].

Proof. Assume Y is a conjoined solution of (E) which is nonsingular on 

[b,c]. Then Y-1 exists on [b,c]. Let V be a non-identically zero 

solution of (6.1) satisfying (i) through (iv) of the hypothesis.

Now

(V*PV* - V*RY’Y-1V)' = V*(PV')’ - V*(RY’)’Y-1V + V*’(P - R)V* 

+ (v1 - Y,Y~1V)*R(V* - Y’Y-1V).

By letting S = RY’Y-1 and integrating, we obtain
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V*PV’ - v*sv|£ = J£v*(Q - G)Vdt + /^V*’(P - R)v*dt

+ f^(V* - Y,Y-1V)*R(V’ - Y,Y-1V)dt.

Therefore, using the positive functional g mentioned in the hypothesis, 

we get

(6.2) g[V*(c)P(c)V*(c)] - g[V*(c)S(c)V(c)] - g[V*(b)P(b)V*(b)

+ g[V*(b)S(b)V(b)J

= g[/^V*(Q - G)Vdt] + g[/^V*’(P - R)V'dt] 

+ - Y’Y-1V)*R(V' - Y’Y-1V)dt].

By Lemma 2.2.3

| g[V*(x)P(x)V’ (x) ] | 2 <_ g[V*(x)V(x)] g[ (P (x) V* (x) ) * P(x)V’(x)] 

and

| g[V*(x) S(x)V(x) ] | 2 <_ g[V*(x)V(x)] g[(S(x)V(x))*S(x)V(x) ].

By of the hypothesis, g [V*(x)V(x)J = 0 when x = b or x = c.

Hence, the left side of equation (6.2) is zero and we have

0 = /£g[V*(Q - G)V]dt + J^g[V*’(P - R)V']dt

+ - Y,Y~1V)*R(V' - Y*Y~1V)]dt.

Each term on the right side of this equation is nonnegative, so it 

suffices to show that at least one term is positive. Concentrating on 

the third term, we have

g[(V* - Y’Y-1V)*R(V' - Y’Y-1V)] = g[V*’RV’J + g[(Y,Y~1V)*R(Y,Y~1V)]

- g[V*’R(Y’Y~1V)] - g[(Y’Y-1V)*RV'].

By evaluating this at x = b, and using hypothesis (.'LT-'l') and (iv), we
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get

g[(V* - y’Y-1V)*R(V’ - Y'Y'^Xb)] = g[V*’(b)R(b)V(b)] > 0.

Since g[(V’ - Y’Y-1V)*R(V’ - Y’Y-1V)] is continuous, there is an interval 

[b, b’] on which it is positive, and we have

/^g[V* - Y’Y_1V)*R(V’ - Y’Y^V) dt

>, /k'g[(V' - Y’Y-^J^RCV - Y,Y-1V)]dt > 0.

The following result was obtained by Kreith [17, Theorem 1]. We

offer an alternate proof.

Corollary 6.3. Let J be a nonzero n*n matrix with "ones" and "zeros" 

on the main diagonal and "zeros" elsewhere. Assume that the scalar 

equation

(6.3) [r(x)y']’ +q(x)y = 0,

where r and q are continuous functions on [a,00) with r > 0, is 

oscillatory. If J[Q(x) - q(x)I]J > 0 and J[r(x)I - R(x)]J > 0 on 

[a,”), then equation (E) is oscillatory.

Proof. Let v be a nontrivial solution of (6.3), and let V(x) = v(x)I. 

In equation (6.1), let P(x) = r(x)I and G(x) = q(x)I. Thus V is a 

solution of equation (6.1).

Since v is oscillatory, given any number b > a, there are numbers 

c and d, b _< c < d such that V(c) = V(d) = 0. Define e to be the vector 

whose entries are the diagonal elements of the matrix J. Let ge be the 

positive functional defined by g (•) = <(«)e,e>. Then
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ge[V*(c)V(c)] = ge[V*(d)V(d)] = 0,

g [V*(Q - qI)V] = Ev2J[Q - qI]J >_ 0, 
D

and

g [V*'[rl - R]V’] = E(v')2J[rI - R] J >_ 0, 
6 D

where A is the sum of the elements of the matrix A. It is easy to see 

that for any point z, ge[V*(z)V(z)] = 0 if and only if v(z) = 0. Since 

v is a nontrivial solution of (6.3) we can conclude that if v(z) = 0, 

then v’(z) / 0 so [v’(z)]2 > 0. In addition,

V*’(z)R(z)V’(z)] = [v’(z)]2R(z)

which implies

ge[V*'(z)R(z)V*(z)] = [v*(z)]2ge[R(z)] > 0

since R is positive definite.

Therefore the hypotheses of Theorem 6.2 are satisfied and we can 

conclude that (E) is oscillatory.

The next corollary compares equation (E) with a scalar equation 

to obtain an oscillation criterion when R and Q are 8*-valued 

functions.

Corollary 6.4. Suppose the scalar equation

(6.4) [p(x)y’]’ + f(x)y = 0,

where p and f are continuous functions on [a,”) and p > 0, is oscillatory. 

If there is a positive functional g e G such that



-57-

(i) g[Q - fl] > 0,

(H) g[pl - R] >_ 0

on [a,00), then equation (E) is oscillatory.

Proof. Let Y be a nontrivial conjoined solution of equation (E). Let

v be a nontrivial solution of the scalar equation (6.4). Since (6.4) is 

oscillatory, for each number b > a, there exist numbers c and d, 

b <_ c < d, such that v(d) = v(c) = 0. Let V be the B*-valued function 

on [a,00) defined by V(x) = v(x)I. It is easy to verify that the 

hypotheses of Theorem 6.2 are satisfied.

It is clear that Theorem 6.1 can also be used for nonoscillation 

criteria. We first consider the finite dimensional case.

Theorem 6.5. Suppose the scalar equation (6.4) is nonosdilatory. If 

there exists a positive functional g e G such that

(^) g[fl - Q] > 0

(ii) g[R - pl] >, 0

on [a,”), then (E) is nonoscillatory.

Proof. Let y be a nontrivial solution of the scalar equation (6.4).

Then there is a number b >_ a such that y(x) + 0 on [b,°°). Define the 

matrix Y by Y(x) = y(x)I. Then Y is nonsingular on [b,ro).

Assume the theorem is false, that is, assume (E) is oscillatory.

Let U be a nontrivial conjoined solution of (E) such that U(b) = 0.
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There is a point c > b such that U(c) is singular. Let y be a nonzero 

constant vector such that U(c)y = 0, and let z be the vector defined 

by z(x) = U(x)y. Then z(b) = z(c) = 0. Also, since U is nontrivial, 

z’(b) 4 0 and z’(c) 0.

Let Vj, V2, ..., Vn denote the nxn matrices such that has a 

"one" in the i,i position and "zeros" elsewhere, 1 < i < n. Clearly

n

Therefore
n

0 < g(I) = E g(V ).
i=l

Since the V^’s are nonnegative definite, it follows that g(V ) > 0 for 

at least one i, 1 _< i < n.

Fix an integer i, 1 j< i n, such that g(V^) > 0, and let V be the 

matrix whose i*"*1 column is the vector z and whose remaining columns are 

all "zero." Suppose d is a number such that z(d) = 0, then V(d) is the 

zero matrix, and

g[V*(d)V(d)] = 0.

Also, z’(d) + 0 and

g[V*’(d) p(d)I V’(d)] = p(d)g[V*’(d)V'(d)]

n
= p(d) E [z'(d)]2 g[V.] > 0, 

j=l J 1

where z!(d), j = 1, 2, n, are the components of z’(d).
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It now follows that the hypotheses of Theorem 6.2 are satisfied. 

Thus Y = yl is singular on Ih,c], that is, y has a zero on Ib,c] and we 

have a contradiction.

The difficulty of extending the preceeding theorem to the B*-valued 

case lies in the construction of a solution V such that V is zero at 

two points. If we use the more restrictive definition of oscillation 

as presented by Hille [15, pg. 486], we are able to obtain an extension. 

According to Hille, a solution Y of (E) is oscillatory on [a,”) provided 

it has an algebraic singularity on every interval [b,«>) where b > a. 

The B*-valued function Y on [a,<») is said to have an algebraic singularity 

at a point x e [a,°°) if Y(x) is not 1-1.

Lemma 6.6. If A is an algebraically singular element of 8*, then there 

is a nonzero element, K, of B* such that AK = 0.

Proof. Let A be an algebraically singular element of B*. Then there is 

a nonzero element, y, of H such that Ay = 0, the zero element of f?.

Define the nonzero element K in BA so that K maps H into the space 

generated by y, that is, into multiples of y. Then AK is the zero 

element of B* since for any a e H, AKa = A(my) = mAy = 0 for some 

scalar m.

Theorem 6.7. Suppose equations (6.1) and (E) are B*-valued differential 

equations, and for every non-identically zero solution V of equation
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(6.1) , the following conditions hold on [a,00):

(i) V*(x)[Q(x) - G(x)]V(x) 0

V*’(x)[P(x) - R(x)]V’(x) J* 0.

If equation (E) is nonosdilatory on [a,”), then equation (6.1) is 

nonosdilatory on [a,”).

Proof. Since (E) is nonosdilatory, we are able to choose a solution

Y such that Y is nonsingular on [b,°°) for some b > a.

Assume equation (6.1) is oscillatory on [a,°°). By requiring the 

initial condition that W(b) = 0, there is a nontrivial conjoined solution 

W of equation (6.1) such that W satisfies the initial condition, and 

W(c) is singular for some point c > b. Then by Lemma 6.6 there exists 

a nonzero constant element K e B* such that W(c)K = 0. Denote

V(x) = W(x)K. Then V(x) is a non-identically zero solution of equation

(6.1) such that V(b) = V(c) = 0. This, plus (i) and (f’i) of the 

hypothesis, implies, by Theorem 6.1, that Y is singular at some point on 

[b,c]. This contradicts the fact that Y is nonsingular on [b,=°).
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CHAPTER VII

NONLINEAR DIFFERENTIAL EQUATIONS

Let K be a subset of real Euclidean n2 space and let <$> be the 
K 

collection of functions to which 4> belongs only in case is a

real-valued function on K. If Y is an nxn matrix and <|> e <$) then

denote

<j>(Y) = <Hyii,yi2»---,yin>y2i,‘--,ynn)-

Let <(>_, a_, t_, 6„, (i,j = l,2,...,n), be members of and 

consider the following system of n2 differential equations.

n
L [r., (x,<}>(Y) ,cr ..(Y’))y* ] , n ih ’ Yih ’ ih hi h=l J

+ hvlh<x-tlh<¥)’slh<Y'»xhj -0 
h=l J

where i,j = l,2,...,n, and r^ are continuous, real-valued functions, 

and satisfy conditions which will insure the existence of solutions when

appropriate initial conditions are specified. In addition, assume that

ih r, . and q., hi ih q, . for all i,h. nhi

This system was introduced by Etgen [6] and represented in the form

(7.1) [RCx.Y.Y^Y']’ + Q(x,Y,Y')Y = 0,

where R and Q are nxn symmetric matrices for all pairs of nxn continuous 

matrices (Y,Y’).

Nonlinear matrix differential equations of this form have also been 

studied by Howard [14], Tomastik [26], and Kartsatos [16]. These authors
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apply to the nonlinear differential equation (7.1) the same basic 

techniques and ideas that had been developed for the linear differential 

equation (E) in order to characterize its oscillation properties.

Swanson [24] has considered nonlinear matrix differential 

inequalities of the form

(7.2) Y*(L(Y))^0

where L(Y) = [R(x,Y,Y,)Y*]’ + Q(x,Y,Y’)Y.

Let R and Q be 8*-valued functions defined on [a,°°) x 8* x B* such 

that each of R(x,A,B) and Q(x,A,B) is symmetric for all x e [a,”) and 

A,B e 8*, and R is positive definite. Consider the differential 

equation

(7.3) [R(x,Y,Y’)Y’]’ + Q(x,Y,Y*)Y = 0, 

as well as the differential inequality

(7.4) Y*L(Y)Y£0, 

where L(Y) = [R(x,Y,Y*)Y*]* + Q(x,Y,Y*)Y.

It is easy to verify the theorems and definitions in Chapter III 

extend to the nonlinear case. Also, the methods that were developed for 

the linear equation can be extended to (7.3) and (7.4).

The following theorems are nonlinear versions of some of the main 

theorems proven in previous chapters. Since their proofs are analogous, 

these theorems are stated without proof.
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Theorem 7.1. If P(x,Y,Y’) = I and if there is a g e G such, that 

g[^Q(t,Y,Y')dt] - d-

for every nonsingular differentiable Y e B*, then equation (7.3) is 

oscillatory.

The proof is analogous to the proof of Theorem 4.2.1. Similar 

resulcs for the case of nxn matrices were established by Etgen 

[10, Theorem 2] and Howard [14, Theorem 2],

The following theorem is similar to Theorem 4.5.4, and its proof is 

analogous.

Theorem 7.2. If there is a g e G such that g[(t,Y,Y*)dt] = +» 

minimum eigenvalue [J^Q(t,Y,Y*)dt] = +», and R(x,Y,Y’) and Q(x,y,Y’) 

are positive definite for every nonsingular differentiable Y e B*, then 

equation (7.3) is oscillatory.
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