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Present Project
• Initial analysis with extremely minimal preprocessing
• Build MATLAB code to organize data for machine learning 
• Due to gaps in the data, all analyses were performed within-subjects to determine if the marker data could distinguish between single-

and dual-task walking
• Implement “leave one out” training/testing of linear support vector machine classifier
• Iterate combinations of individual marker times, locations, and relationships to create an optimal “dual-task detector”
• Perform statistical testing to determine if performance is meaningfully greater than chance

Conclusion
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Background
• Dual-tasking (DT) – performing two 

concurrent tasks – results in reduced 
performance compared to single-
task performance

• DT has been separately investigated for: 
• concurrent cognitive tasks1 (CC; 

Fig. 1)
• cognitive task simultaneous with a 

motor task2 (CM; Fig. 2) 

Present Study
• Proof-of-principal for study linking CC 

and CM DT in at risk populations (e.g.
elderly)

• This project focuses exclusively on CM
• Goal: to evaluate a potentially more 

sensitive measure of CM DT
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(Fig.1)

(Fig. 2)

• 3D motion capture data can determine if participants were distracted by 
a cognitive task while walking

• Initial step towards more refined preprocessing and machine learning to 
build a more sensitive detector

• Above-chance classification of ST 
vs CM DT walking

• t-test resulted in no statistical 
significance for group (Fig. 4)

• Permutation test showed 7 out of 9  
individuals classified above 
chance* (Fig. 5)

*more sensitive analysis than group t-test

(Fig. 3)

• Classification significant in 7/9 subjects but well under 100%; 
suggests need for more refined preprocessing and machine learning 
methods 

• Improve sensitivity through classification on higher-order features 
(e.g. using gait cycle and center of mass) 

• Examine model feature weights to determine whether some 3D 
markers are uninformative and do not need to be collected in future 
studies 
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(Fig.4)

(Fig.5)
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