
CONVERTING A NEURON-MORPHOLOGY

RECONSTRUCTION SYSTEM:

OPEN-SCIENCE DESIGN AND IMPLEMENTATION

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Zakariyya Mughal

May 2016

CONVERTING A NEURON-MORPHOLOGY

RECONSTRUCTION SYSTEM:

OPEN-SCIENCE DESIGN AND IMPLEMENTATION

Zakariyya Mughal

APPROVED:

Dr. Ioannis A. Kakadiaris, Chairman
Dept. of Computer Science

Dr. Emanuel Papadakis
Dept. of Mathematics

Dr. Shishir Shah
Dept. of Computer Science

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

Firstly, I am grateful for working with for the guidance and mentorship of my

advisor Dr. Ioannis A. Kakadiaris — in both research and personal matters.

Dr. Kakadiaris kept me on track and made sure that I had the resources to

keep organized. His many suggestions for improving my work were valuable

and those lessons will stay with me.

In addition, I would like to thank my committee, Prof. Shishir Shah and

Prof. Emanuel Papadakis for asking interesting questions and pushing me to

learn and try new ideas both inside and outside the classroom.

I would like to also thank Prof. Demetrio Labate, Prof. Emanuel Papadakis,

Pankaj Singh, Burcin Ozcan, Pooran Negi, and Paul Hernandez-Herrera for

enlightening discussions during our neuroscience research meetings and the

image analysis seminars in the Department of Mathematics.

To the members of the Computational Biomedicine Lab over the years of

my undergraduate and graduate studies — I learned a lot from our conversa-

tions which sparked ideas for further research and new ways of approaching

computer science and software engineering. Being able to learn from the di-

versity of projects in the lab was a quite enjoyable experience.

I would like to acknowledge my family for their patience during the many

hours that I would dissappear to work at the lab. I could not have completed

my thesis without their help and encouragement.

iii

CONVERTING A NEURON-MORPHOLOGY

RECONSTRUCTION SYSTEM:

OPEN-SCIENCE DESIGN AND IMPLEMENTATION

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Zakariyya Mughal

May 2016

iv

Abstract

The thesis describes the conversion of the Online Reconstruction and func-

tional Imaging Of Neurons (ORION) system for neuron-morphology recon-

struction from an interpreted language to a compiled language. The motiva-

tion of this conversion is to provide a tool that can be used by neuroscience

researchers to analyze their own neuron data and compare the output against

both manual and automated tracings. This is in line with the goals of open

science: a movement that seeks to make the findings and processes of research

more widely available for peer review and reproducibility. By collaboratively

sharing both neuron-imaging data and code between organizations, it is pos-

sible to compare the results of multiple methods without reimplementing all

the stages of the reconstruction pipeline.

In order to release the existing algorithm so that it can easily be incor-

porated into other tools, the implementation must be rewritten in a different

language. This presents a challenge because the languages have vastly differ-

ent paradigms. As a result, much of the existing code needs to be analyzed to

determine any changes needed to the design. Creating a new implementation

also means that the new system can be designed with modifiability in mind

so that future changes can be easily incorporated. The specific objectives are

to (i) analyze the ORION algorithm and implementation to determine the

architecture for the new system that is efficient and extensible; (ii) integrate

the system into a popular toolkit for biomedical image analysis for ease-of-use

and visualization; (iii) develop a test suite of both the individual components

(unit testing) and across the whole system (integration tests); and (iv) ensure

that the software gives reproducible results by making it easy to build and

v

distribute.

The reconstruction of neuron morphology from microscopy imaging data is

an invaluable method for understanding neuron characteristics. However, due

to the cost in time and effort, manual neuron reconstruction is not feasible

for large-scale analysis of neuron datasets. This implementation provides a

working method for determining neuron morphology that can be used to collect

statistical properties from various neuron data that can also be extended by

the community.

Keywords: neurons, cell morphology, biomedical image analysis, software

engineering

vi

Contents

Contents vii

List of Figures ix

List of Algorithms x

Acronyms xi

Notation xiii

1 Introduction 1

1.1 Motivation . 2

1.1.1 Scientific software . 4

1.1.2 Open science and scientific software engineering 6

1.1.3 Open neuroscience . 8

1.1.4 BigNeuron . 9

1.2 Systems Development Life Cycle 11

1.3 System objectives . 12

1.4 Benefits . 14

1.5 Neuron reconstruction and tracing 16

1.5.1 Segmentation-based reconstruction 16

1.5.2 Seed point reconstruction 18

1.5.3 Neuron tree similarity metrics 19

vii

2 Planning and Analysis 22

2.1 Design principles . 23

2.2 Challenges and risks . 25

2.3 Roads not taken . 28

2.4 ORION3 MATLAB call graph 30

3 Design 35

3.1 Incorporation of ORIONm . 36

3.2 Algorithms and architecture 37

3.3 Anticipating change . 39

3.3.1 Directory structure . 39

3.3.2 Build system . 40

4 Implementation 43

4.1 Data structures . 44

4.2 Numerical considerations . 46

4.3 Prototyping components . 47

4.4 Library integration . 47

5 Testing and verification 49

5.1 Testing portability . 51

5.2 Tracing-based comparison with ORIONm 52

6 Conclusion 55

Bibliography 57

viii

List of Figures

1.1 Systems development life cycle 13

2.1 Call graph of segmentation process in ORIONm 32

2.2 Call graph of registration process in ORIONm 33

2.3 Call graph of tracing process in ORIONm 34

3.1 High level diagram of ORION algorithm 37

3.2 Diagram of segmentation process 38

3.3 Diagram of tracing process . 38

4.1 Difference in memory layout between MATLAB (column-major)
and C (row-major). 44

5.1 Abstract diagram of pipeline of both ORIONc and ORIONm . 54

ix

List of Algorithms

1 Sketch of multiscaleLaplacianFilter and Makefilter func-

tions . 33

2 MATLAB tracing data capture 53

3 MATLAB tracing data comparison 53

x

Acronyms

ABI : Application Binary Interface

API : Application Programming Interface

DIADEM : Digital Reconstruction of Axonal and Dendritic Morphology

EEG : Electroencephalography

FFT : Fast-Fourier transform

fMRI : Functional Magnetic Resonance Imaging

NIF : Neuroscience Information Framework

NITRC : Neuroimaging Informatics Tools and Resources Clearinghouse

ORION : Online Reconstruction and functional Imaging Of Neurons

SDLC : Systems Development Life Cycle

xi

SVM : Support Vector Machine

TDD : Test-Driven Development

xii

Notation

z = x ∗ y : Convolution of x and y

F {·} : Fourier transform of argument

F−1 {·} : Inverse Fourier transform of argument

x̂ : Frequency domain representation of signal x such that x̂ = F {x}

z = x� y : Hadamard product (or pointwise/entrywise product) of −→x and

−→y such that −→z i = −→x i
−→y i

ORION3 : Version 3 of the ORION algorithm described in [1]

ORIONc : C version of ORION3

ORIONm : MATLAB version of ORION3

ORIONm→c : Test setup that uses the output of previous stages of ORIONm

as input for a stage of ORIONc

xiii

“ Each discovery made by an investigator in a basic
research laboratory has much larger implications
today. The sum of the work in basic biology rep-
resents a rapidly expanding tool kit for engineers
and inventors to use to construct items of value to
society. ”

David Baltimore in How Biology Became an

Information Science, 2001 [2]

1
Introduction

This thesis aims to detail the design and reimplementation of a neuron-morphology

reconstruction system. This system is the result of converting the existing

ORION3 [1] system from MATLAB [3] code to native C/C++ code. This

conversion process requires an analysis of the existing code to understand its

structure and create a plan for replicating the same functionality in the in the

1

new system.

This software project can be categorized as a rewrite; that is, a replication

of an existing software system without reusing the existing code. In software

engineering, the consensus on rewriting software from scratch is that it is

difficult and that teams should avoid rewrites [4]. This view arises because

there are several challenges and risks associated with rewriting large systems.

Rewrites often take a long time and instead of adding features, development

time is spent on redesign and reimplementation of old features. In addition, all

the institutional knowledge that came from years of bug fixes is often lost with

a rewrite. Rewrites are often expensive in terms of time and effort and rarely

pay off as much as product owners wish. Therefore, it is preferable to work on

slowly refactoring the code rather than a complete rewrite. Refactoring is a

process where instead of throwing away the existing system, the development

proceeds by making small, incremental changes over an extended period in

order to avoid getting the software into a broken state, while steadily improving

the maintainability and reusability of the software.

1.1 Motivation

In order to understand why this project is being undertaken, it is important to

understand why a rewrite is necessary as opposed to refactoring the existing

codebase. Both options require an analysis of the project outcomes and deliv-

erables, that is, a concrete set of goals that will direct the project development.

2

These goals can be classified as either scientific outcomes or engineering de-

liverables. Scientific outcomes are motivated by goals that advance the state

of scientific knowledge while engineering deliverables focus on specific techni-

cal aspects of the project that make future project maintenance and growth

possible. This section will only cover the scientific outcomes while engineering

deliverables are covered in Section 1.3.

The primary scientific outcome of this thesis is a system for neuron re-

construction. This system is designed with the principles of open science in

mind so that it is usable by biologists to study neuroanatomy. Section 1.1.2

contains further discussion on open-science and the challenge of reproducibil-

ity that needs to be addressed by computational science projects such as this

when trying to achieve the goal of open-science.

The secondary scientific outcome is to make this system compatible with

existing tools for image analysis so that it can be compared against other meth-

ods as part of the BigNeuron project. The role of BigNeuron in neuroscience

research is covered in Section 1.1.4.

The following sections contain an overview of the context of this project

first within the general context of scientific software (Section 1.1.1) and finally

narrow down its role relative to the specific context of neuron reconstruction

(Section 1.5).

3

1.1.1 Scientific software

Quantitative methods are an essential part of scientific research. The exper-

imental sciences depend on the dissemination of the methods used for each

study so that it is clear how results are obtained and analyzed. With the

rapid increase in computing power, storage, and availability, it has become

easier to collect and process larger and more complex datasets using sophisti-

cated methods and this has made software and software development an im-

portant part of all experimental fields [5, 6]. To produce reproducible results,

some common approaches to this change are to publish either a description of

the algorithm or refer to software that can be obtained separately (either in

binary or source code form).

Despite these approaches, there are still several challenges to successfully

reproducing a published method. A textual description of an algorithm is

rarely a complete description of how an algorithm is implemented. Sophisti-

cated methods often have tiny details that are mistakenly left out which may

be essential for the rest of the processing. One specific area where this oc-

curs often is in data preprocessing and annotation stages which can involve

human interaction; as a result of this interaction, some assumptions may not

be written down. For example, if the data contain instances with missing val-

ues, these instances may be removed based on some criteria. If these criteria

are not clearly written down, it can be difficult to apply the same procedure

again. This is why many statisticians recommend that the raw data and the

tidy data should both be available and if possible, manual processing should

4

be avoided in the data preprocessing step so that it is clear how to regener-

ate the tidy data from the raw data [7–10]. Referencing readily available

software packages gives other researchers direct access to the original method

used. However, even here, there can be problems. Even before running the

software, it is important to ensure that the software is available years later.

This means not only the software itself, but all its dependencies. This can

quickly become complicated as technology advances: changes in the Applica-

tion Programming Interface (API) or Application Binary Interface (ABI) can

cause incompatibility issues for both software distributed in source form or

binary form. Both source code and binary software can have dependencies

on platforms (e.g., operating systems, runtime systems, and computer archi-

tecture) and licensing of components that can hinder others from using the

software.

Even more precarious is when a dependency used by the software no longer

behaves the same way as it did in previous versions. This can lead to software

that appears to run, but gives unintended results. Maintaining backwards

compatibility for software is difficult since there are many parts to a non-

trivial software system. It may be possible to identify these compatibility

problems using testing (for more discussion, see Chapter 5). Resolving the

exact versions of libraries and toolchains needed to build and run can be

frustrating and is commonly known as dependency hell [11–13]. This problem

can become daunting when dealing with multiple platforms and many libraries.

As newer versions of these libraries are released, the maintenance phase of the

systems-development life cycle becomes more important (further discussion in

5

Section 1.2). Unmaintained software is prone to what is known as bit rot —

that is, the process through which software that was working no longer works

due to changes in the surrounding software ecosystem. There has been some

work to prevent bit rot by recording a static copy of the software environment,

but digital preservation (comprising both computing machinery and software)

is in its infancy and has not caught up to that of paper-based materials [14–

16].

1.1.2 Open science and scientific software engineering

As science becomes more oriented towards using computational tools, the ide-

als of reproducibility and statistical hypothesis testing become more difficult

to achieve. In recent years, there has been a push by researchers to incorporate

open-science practices in their work. One prominent advocate for open science

defines this as follows:

“ Open science is the idea that scientific knowledge of all kinds should be openly
shared as early as is practical in the discovery process.

”
Michael Nielsen [17]

The “scientific knowledge” mentioned in the above quote encompasses any

kind of knowledge including problem definitions, ideas, code, data, methods,

and journal articles. The goal is to allow for more opportunities for collabo-

ration and sharing of information by having this information available early

enough so that it is useful to others. This can prevent expensive duplication

6

of effort and encourage the direct comparison of results that is necessary for

meta-analysis studies.

For computer-science research, since the research products are often not

just papers nor data, but software implementations of algorithms, direct com-

parisons in terms of metrics such as accuracy and speed must be performed

on a variety of datasets and machines. Computer science is not the only field

that makes heavy use of software development: according to a survey of UK

researchers by the Software Sustainability Institute which spanned disciplines

as diverse as social science, medicine, and engineering, as high as 56% of re-

searchers implement their own research software, but 21% of this subset had

no training in software development [6].

Since software development is already a large part of the research process, it

can be argued that a review process of scientific software is just as important as

the paper peer review process. There are already issues with papers not having

enough statistical power to present reproducible results, but these problems

can be understood through careful reading of the experimental methods [18,

19]. Problems in the software are harder to analyze based on the papers alone

and these have been known to result in paper retractions [20–22].

This lack of training in software engineering has prompted many open

science advocates to offer open access teaching materials so that training is

available to everyone. In particular, the Software Carpentry organization has

published several guidelines and workshops to teach best practices for handling

7

software and data that are relevant to scientific research [23, 24]. These in-

clude using traditional software engineering tools and practices such as version

control systems, build automation, issue trackers, and pre-merge code reviews.

1.1.3 Open neuroscience

The history of biology has been defined by the tools used to visualize vari-

ous biological structures and processes across many scales [25]. Neuroscience,

in particular, has made use of many techniques: from the patch clamp for

studying ion channels to EEG for recording brain surface electrical activity

to fMRI and fluorescent microscopy for observing brain and neuron activity

respectively, these techniques have collectively allowed neuroscientists to char-

acterize what they are looking at. These techniques have made quantitative

image analysis a large part of biology when measuring and comparing results

across different samples. However, the results taken from different laboratories

may not be comparable due to variability in laboratory protocols [26] or sim-

ply due to insufficient access to raw data necessary to accurately use Bayesian

inference for predictions [27].

To address this problem, projects such as the Neuroscience Information

Framework (NIF) [28] and Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC) [29] provide databases of neuroscience data and tools

that are machine-readable. These are part of recent research efforts to improve

brain mapping and modelling [30, 31]. Some of these efforts are based on

manual data annotation [32–35], while others such as the BigNeuron project

8

from the Allen Institute for Brain Science are focused on completely automated

reconstruction. This last project is the subject of Section 1.1.4.

1.1.4 BigNeuron

The secondary scientific outcome is to provide an implementation of ORION3

for the BigNeuron project. This requires using the common interface provided

by the Vaa3D biomedical imaging toolkit [36–38]. This toolkit allows biologists

to visualize and analyze biomedical imaging datasets. Vaa3D can be extended

through the development of plugins. This allows algorithm developers to make

their interactive and non-interactive methods for image analysis available for

biologists to use without having to switch between multiple programs for pro-

cessing and visualizing data.

Creating an image analysis tool that can be easily integrated into other

systems allows others to reproduce the results in order to compare with both

ground truth data and other algorithms. There has been an attempt at com-

paring neuron-morphology extraction algorithms in the past under the DIA-

DEM Challenge which contributed datasets and a metric for comparing the

neuron tracings from algorithms against tracings from gold standard recon-

structions [39–41]. The DIADEM Challenge used six datasets from different

neuroscience institutions in order to have a diversity in terms of source of

the neurons (i.e., from different species and structures from different brain

regions) and in terms of the laboratory protocols (i.e., different labelling and

microscopy techniques).

9

The DIADEM Challenge was successful in raising awareness of the prob-

lem of neuron reconstruction and several new 3D reconstruction methods and

metrics have been proposed after the end of the DIADEM Challenge (see Sec-

tion 1.5). However, the lack of larger public datasets, standardized metrics,

and readily available algorithms have made it difficult to compare new methods

for neuron reconstruction.

To solve this problem, an open-science project called BigNeuron [42, 43]

continues where the DIADEM Challenge left off. Instead of comparing the

output on a few datasets, as in the DIADEM Challenge, BigNeuron aims to

enable high-throughput analysis of neuron microscopy stacks using multiple

methods contributed from various algorithm developers. By standardizing

on the Vaa3D platform, this precludes any issues that might arise due to

differences between how each method handles data which means that all the

algorithms can be bench-tested at once without a need for translating data

between formats.

However, since the Vaa3D is written in C++, incorporating plugin code

written in non-native languages poses a problem. For this reason, the BigNeu-

ron project organizers recommend that all algorithms that are submitted be

in C or C++. From the BigNeuron FAQ [44]

10

“ Q3. How can I incorporate code written in Matlab, Java, Python
or another language other than C/C++?

A. BigNeuron is a very large scale project, and enforcing a unified API is
critical to ensure fair comparison for any pre-defined assessment. We thus
discourage usage of Matlab, Java, Python or other programming languages
besides C/C++ for this bench testing.

”
This is why a rewrite of the code is necessary rather than trying to inte-

grate MATLAB via the MATLAB Engine Interface. Further discussion of the

benefits of this decision are discussed in Section 1.4.

1.2 Systems Development Life Cycle

Before starting with the development, we need to outline the general steps

needed to achieve the above stated outcomes and deliverables. In systems

engineering, these steps are called the Systems Development Life Cycle (SDLC)

of the project [45]. There are many variations of the SDLC each suited to

different kinds of projects; Figure 1.1 depicts a simple version used in this

project with six phases:

Planning: In this phase, project management and resource allocation details

are determined. This includes scheduling, tools, and defining project

objectives;

Analysis: This phase analyzes the project requirements and defines specific

technical milestones that relate to the objectives defined in the Planning

phase;

11

Design: The parts of the system are delineated and the expected input/out-

put characteristics of each part are determined;

Implementation: The physical system is built during this phase using the

system design from the previous phase;

Testing: As the Implementation phase proceeds, each standalone part is

tested individually in what are known as unit tests. When the parts

interact with each other, integration tests are conducted to determine

that these parts are compatible;

Maintenance: In this phase, the system is put in production and monitored

for changes in system performance and project requirements. When

these changes necessitate an update to the system, the project may re-

turn to the Planning phase.

It is important to note that the phases of this life cycle are not discrete;

there is overlap between phases. For example, parts of the design may change

as the implementation continues as more information about the physical sys-

tem is available.

1.3 System objectives

As opposed to the scientific outcomes discussed in Section 1.1, the system

objectives are the engineering deliverables; these are more closely tied to the

Design and Implementation phases as these objectives influence decisions made

12

P
la

nn
ing

Analysis

D
esig

n
Im

plem
entation

Test
ing

M
ai
n
te
n
a
n
ce

Figure 1.1: A simple systems development life cycle (SDLC): This
figure depicts an example of a life cycle used to delineate the phases of devel-
opment.

13

about the underlying resources and system architecture.

The first objective is a complete conversion of the existing code from MAT-

LAB to native code which will be referred to as ORIONm and ORIONc re-

spectively. This involves an analysis of the existing code to see which parts of

the algorithm will be converted.

The second objective is the ability to easily integrate the system with Vaa3D

as a plugin. This requires looking at the interface that Vaa3D uses and creating

compatible data structures so that the data does not need to converted between

multiple formats in memory.

The third objective is a test suite to verify that the components of the

ORIONc system operate on the same input and produce expected outputs

which are comparable to the ORIONm code and follow expected properties

outlined in the design.

The fourth objective is to ensure that the system provides a means for

reproducibility by testing the software under different conditions and making

it possible to the replicate the software environment so that others may run

the software.

1.4 Benefits

The first objective requires that all of the MATLAB code be replaced by native

code. This provides several benefits:

14

a) it removes a dependency on MATLAB which requires that all users ei-

ther install a licensed copy of MATLAB or use the MATLAB Compiler

Runtime for deployment;

b) it provides the benefit that changes in function behavior between versions

of MATLAB do not effect the output of the code; and

c) it implements certain operations that can run faster in native code than

in MATLAB.

The second objective will allow the code to work with Vaa3D, a widely used

tool for visualization and analysis. Furthermore, integrating with one tool will

provide a framework for integrating with other biomedical image analysis tools

such as ImageJ [46].

The third objective provides a safety net so that current and future develop-

ment clearly defines the expectation of the code not only in the documentation,

but as executable tests that indicate when a change causes these expectations

to no longer be met.

The fourth objective is what ensues that the previously discussed benefits

are available for others to use on their machines and allowing for reproducibility

of the neuron reconstruction results. This objective is what makes the project

an “open-science” project.

15

1.5 Neuron reconstruction and tracing

Computational neuromorphology was first started in the late 1960s with initial

attempts to capture microscopy images for computer storage and analysis [47,

48]. However, due to limitations in computer processing and storage, it was

not until the late 1990s that a public dataset of neuron morphology was avail-

able [49]. With the release of the DIADEM Challenge data, there was an

opportunity for more researchers to participate in the development of auto-

mated neuron reconstruction algorithms [40].

After the DIADEM Challenge concluded, there have been several papers

that provide new approaches for neuron reconstruction. The papers can be

grouped roughly into either segmentation-based reconstruction or seed point

reconstruction methods. Segmentation-based reconstruction uses image fea-

tures to determine tubular structures for labelling the volume and as such

obtains the centerline and structure boundary at once. Seed point reconstruc-

tion works by obtaining seed points that are representative of the centerline

and then connecting these seed points to reconstruct the neuron.

1.5.1 Segmentation-based reconstruction

In Bauer, Pock, Sorantin et al. [50], the authors present a method for automatic

segmentation of 3D volumes of blood vessels especially where the vessel tree

contains many overlapping structures. This is achieved by first extracting the

tubular shapes using a Hessian filter. The results of the Hessian filter are then

16

further processed by using a medialness filter to suppress false data (such as

tumors or overlapping structures) that might occur at the boundaries of the

vessel. Once the tubular structures are detected, the centreline is extracted by

traversing the medialness response along the path with maximal value. The

centreline and boundary provides structural information that can be used to

construct model of the vessel structure that takes into account properties of

blood flow (vessel radius, branching angle). This structural information is

then used as a shape prior for assigning each tube to a tree in order to handle

multiple trees.

In Jiménez, Papadakis, Labate et al. [51], the authors present a method

that first uses low-pass, high-pass, and Laplacian filter responses as features

to train an SVM to classify voxels as being background or foreground. This

is used to binarize the neuron data so that only a subset of the volume needs

to be analysed for seed selection. Seed selection is performed by applying a

distance transform to the binary volume and then only keeping voxels that

have a greater distances than the average distance in the 26-neighborhood of

that voxel. Tracing between these seed points is then done with a variation of

Dijkstra’s algorithm that adds weights based on the distance transform and

on the orientation between each successive edge. These constraints keep the

centerline path from deviating from the center of the tubular structure and

from having sharp changes in direction.

Hernandez-Herrera, Papadakis and Kakadiaris [52] describes a segmenta-

tion method based on one-class classification. This segmentation method uses

the Laplacian filter response in order to create a training set of background

17

voxels. Two representative eigenvalues of the Hessian filter are then used to

create a discriminant function based on the distribution of these eigenvalues.

This discriminant function is then used for segmentation.

1.5.2 Seed point reconstruction

In Xie, Zhao, Lee et al. [53, 54], the authors cover a method for tracing based

on choosing seed points that represent the underlying neuronal structure and

then connecting these seeds to produce a neuron tree. The seeding is initiated

by applying a windowing cube on the volume in order to detect seed candidates

at the local maxima. These seeds candidates are pruned to simplify tracing.

Then a cost function is introduced in order to a find a path between the seed

points. This cost function incorporates a smoothness term which constrains

new edges between seed points so that large changes in orientation are avoided.

Finally, these local edges are used to construct a global tree by using the

minimal-spanning-tree (MST) algorithm.

Luo, Sui, Wang et al. [55] presents a method for neuron reconstruction

that is based on an open-curve snake model. This method starts with a seed

detection step that is based on what is known as a Sliding Volume Filter which

selects a spherical region around each voxel in order to calculate the orientation

of the gradient vectors within that region relative to center of the spherical

region. By calculating the filter response as the cosine of the orientation,

regions with a high response have more voxels where the gradient is oriented

towards the center which indicates a tubular region. This filter response is

18

used for initial seed point selection. These seed points are further pruned by

using the eigenvalues of the Hessian of the volume to choose points that lie

along the centerline of the tubular structure. The intensity of the voxels at

the seed points is recalculated to create an SVF-enhanced image which is then

used by an open-curve snake model for neuron tracing. This model creates a

deformable model that is used to add edges to a curve that extends along the

direction of the eigenvalue of the Hessian calculated earlier.

Gulyanon, Sharifai, Bleykhman et al. [56] use a joint probability model

to both optimize voxel labels (foreground, background) and open-curve snake

model configurations. This probability model uses the Frangi vessellness fea-

tures as a data prior. A Discriminative Random Field is used to determine

initial labels for the voxel classifications and voxels with a high confidence are

used as the initial seed points for the 3D snake configuration. This inference

is performed on subvolumes so that the probability model only uses the local

intensity distribution.

1.5.3 Neuron tree similarity metrics

The DIADEM Challenge also provided a metric for comparing tracings from an

automated reconstruction to gold standard tracings from human experts [41,

57]. This method works on the SWC format which provides both a spatial

location and a radius for each point in the neuron tree. The method of reg-

istering the test tracing to the gold standard tracing starts by choosing an

19

unregistered gold standard bifurcation node. To check that there is a match-

ing node in the test tracing, the method looks for a test node that is in within

a cylindrical region around the same spatial location as the gold standard node

in order to find a match. The matching continues along both the parent and

any children of the gold standard node. In order to determine that a gold

standard node and test node are sufficiently close, a path length error is cal-

culated by taking the path length between a nodes in the test tracing divided

by the corresponding path length in the gold standard tracing. As long as this

path length error is within acceptable bounds, the path is considered a match.

Finally, if there are any gold standard nodes that have not been registered,

the algorithm tries to determine if there is any already registered path that

passes through that node in order to determine a match.

Recently, a new method for measuring the similarity of neuron tracings has

been proposed in [58, 59]. This method measures the similarity between two

tracings by using a Gaussian-weighted distance field between a given point in

one tree and the closest point in the other tree. This allows for small deviations

between the two trees without excessive penalization. This similarity metric is

then applied to every point in one tree in order to determine a graph coloring

that assigns each node in one tree to a corresponding node in the other tree.

There are still many more challenges for working with neuromorphology

data including working with time-lapse data, handling subcellular structures,

working with dense trees that contain multiple neurons, and dealing with

electron microscopy data [39]. The target of all these challenges is to capture

the dynamics of large neural circuits in hopes that understanding how groups

20

of neurons work will provide insight into brain function.

21

“ Measure twice and cut once. ”
Carpentry rule of thumb

“ But cut ting is more fun than m eas uri ng! ”
Anonymous

2
Planning and Analysis

Before writing a single line of code, it is a good practice to understand the scope

of the problem. Gathering the deliverables and requirements of the project is

necessary not only for understanding how long the project will take, but also

the order in which to implement each component. Establishing this order

proves very useful for later in the testing phase of the project (Chapter 5).

22

2.1 Design principles

In order to meet the objectives listed in Section 1.3, certain principles need to

be agreed upon before the design phase can begin. These principles are meant

to direct how resources are used in the design and implementation.

The first of these is to keep the project history in version control and

make the project publicly available as soon as possible. The choice made

here is to use the Git version control system with the GitHub hosting service

(https://github.com/) since it has been adopted by many other similarly

scoped science projects including Vaa3D, OpenCV, and InsightToolkit; this

gives it easy visibility via search engines. This is to address the open-science

portion of the scientific outcome as it allows for a workflow that allows work-

in-progress changes to reside alongside the stable codebase so that even work

that is not yet complete is available as soon as possible.

The second principle is to choose an implementation language that makes

integration easy (i.e., the second engineering objective). The choices for native

languages that are widely available for this purpose are C and C++. Due to

the way C++ implements naming conventions through name mangling, this

can complicate the integration process and make the library maintenance more

challenging due to changes in the ABI. To mitigate this, one common approach

to implement a C wrapper API/ABI around an existing C++ API in what is

known as an hour-glass interface [60]. This provides a stabilized ABI which

means that if libraries are updated independent of the ORIONc code, then the

ORIONc code will not have to be recompiled. However this can complicate

23

https://github.com/

development by having to maintain two layers, so to keep the development

simplified, the main implementation language is in C.

As with all software, the ORIONc software has a series of steps required

to prepare the software for building and installing and since ORIONc is native

code, these steps can be complex because it needs to run on multiple platforms.

Therefore, it is expedient to create an automated build system that outlines

the steps needed to build ORIONc so that the process of creating the final

binaries is replicable by anyone that obtains ORIONc and reduces the need

for reading manual instructions. This automated build system should also be

able to run tests to ensure that the software works as expected. The ORIONc

project uses GNU Make since it is a portable build tool that runs on many

systems. Overall, this specific principle improves reproducibility.

Another principle that is used to guide the development is to avoid pre-

mature optimization; that is, do not attempt to make the code more efficient

before it is necessary. Instead of guessing which parts of the code are slow,

a profiler can be used to measure the bottlenecks in the code. It is also not

advisable to focus on optimization at the stage of rewriting the software.

This principle does not give the developer a license to write code in a way

that is not optimizable later. For example, at this stage of the project, parallel

computing will not be implemented through the use of tools such as POSIX

threads and OpenMP since it can complicate debugging and testing. How-

ever, through careful avoidance of programming methods that make parallel

programming difficult, such as global variables and file system access, later

24

refactoring of the code to use a parallel architecture is possible.

This rewrite should be approached in an incremental manner by using test-

driven development. For example, instead of trying to convert many modules

of ORIONm at once, each is converted one at a time after writing tests for that

specific component to ensure that it works independently. This also means

that adding new external dependencies is done at the last possible moment.

If a module of ORIONc requires an FFT function, the function should be

created first as an empty stub function that is used to understand the minimum

number of parameters needed to implement the FFT functionality. Then when

the external dependency is incorporated, the call to the external library can be

placed in the stub. This helps avoid creating coupling with the external library

so that different approaches can easily be tried by only having to change the

code at a single spot.

2.2 Challenges and risks

While the code for the algorithm already exists, starting with a line-by-line

translation of the MATLAB code has some limitations outlined as follows.

Toolbox: The code is written to use MATLAB’s extensive specialized tool-

boxes for image processing and statistics which means that equivalents

must be incorporated into the new codebase.

Memory management: Since MATLAB is a dynamic array language with

automatic memory management, it is simple to create multidimensional

25

array and extend it without having to keep track of the variable’s size

or the variable lifetime. Since C uses manual memory management, it

is necessary to manually allocate and release memory to avoid memory

leaks.

Data layout differences: MATLAB uses column-major and 1-based index-

ing, while C/C++ both used row-major and 0-based indexing. Some of

the code will be written with the assumption that all indices start at 1

and this may not be documented everywhere. This is discussed in more

detail in Section 4.1.

Caching: The ORIONm code makes frequent use of the file system to cache

calculations between runs. The purpose of this is to speed up experi-

ments so that when an experiment is rerun, any images that have been

processed in an earlier stage (i.e., segmentation) do not need to be re-

processed in later stages (i.e., centerline extraction). Code written in

this form imposes an algorithm structure that is no longer strictly im-

perative — the code is now interspersed with checks to see if the data

already exists and instead of passing the data between functions using

multidimensional arrays as parameters, the parameters to the functions

are filenames.

Subvolume: The MATLAB code breaks up the input data into subvolumes.

This allows the computation to run a small region of the data which

allows for processing data that may be too large to fit entirely mem-

ory. Furthermore, when used in conjunction with the aforementioned

26

caching, the steps used for each processing stage can be more granular

which means that if any processing is incomplete (e.g., because the com-

puter runs out of memory or disk space), the data is not entirely lost.

However, this complicates the algorithm because any calculation involv-

ing coordinates in a volume must map indices in subvolumes to indices

in the corresponding supervolume.

The Caching and Subvolume issues can both be described as design deci-

sions that result in cross-cutting concerns. Cross-cutting concerns are parts

of the program design that do not reside within only a subset of the system

and cause dependencies between subsystems. These often manifest when an

action must be taken in every module of a system. A classic example of this is

logging — logging must be done in each module, but this requires that logging

metadata must be persisted so that each module can use it. This persistence

adds an input to each module that does not strictly relate to the function of

that module. In the same way, caching and handling of subvolumes both re-

quire that each step read all subvolumes of the previous step and write all the

subvolumes that will be used in the next step. This filename-based coupling

makes it difficult to treat each step as a self-contained module. By removing

these concerns altogether in the new design, the ORIONc system will be more

extensible and modular.

27

2.3 Roads not taken

There were two possible ways to avoid having to do a rewrite that could have

fulfilled some of the objectives listed above. These were not chosen because

they would have not met the primary scientific outcome (open-science) nor the

fourth objective (reproducibility). Both of these approaches allow for calling

MATLAB from C code and thus allow for processing with ORIONm.

The first of these approaches is to use the standard MATLAB Engine API

that comes with MATLAB. This allows for controlling a MATLAB instance

using inter-process communication which means each run requires starting a

MATLAB process with a valid MATLAB license. This means that ORIONm

can not be run multiple times as each run will use an additional MATLAB

license. This precludes using ORIONm on a cluster as each additional process

will fail when the number of licenses has run out. Furthermore, the startup

time for each MATLAB process is significant enough to slow down each vol-

ume processed. This does not meet the reproducibility criteria of the fourth

objective as it requires the end-user to have a license that may be difficult

to obtain and furthermore can tie the software to a specific version of the

MATLAB software.

The second approach is to use the MATLAB Compiler tool to generate a

dynamic library (e.g., liborion3mat.so on GNU/Linux and liborion3mat.dll

on Windows) from the ORIONm code that can be linked to C/C++ code. This

allows for distributing MATLAB code to people that do not have MATLAB

by using the MATLAB Compiler Runtime along with an encrypted archive

28

of the ORIONm workspace. Unlike the MATLAB Engine API, this can be

used in parallel. However, the encrypted archive is tied to a single operating

system (e.g., Windows, GNU/Linux) and computer architecture (e.g., i386 or

x86-64). This makes reproducibility difficult since the dynamic library can

only be generated on the same kind of computer and version of MATLAB as

the corresponding version of the MATLAB Compiler Runtime.

A preliminary prototype of the MATLAB Compiler approach for interfac-

ing with MATLAB was attempted in the Analysis phase, but rejected as it

made distribution difficult and added a large binary dependency that would

need to be maintained in addition to the ORIONm code. This approach could

work for a research project where the ability for others to run the code on differ-

ent data sets is sufficient. This can be accomplished by creating a lightweight

virtual machine that comes pre-installed with the library and MATLAB Com-

piler Runtime. Those without access to MATLAB will still be able to run the

algorithm as is, but will not able to adapt it by modifying the code. However,

we reject this approach in the context of ORION3 as it would violate the pri-

mary scientific outcome (open-science) since encrypted code prevents others

from seeing how the algorithms for ORIONm and MATLAB are implemented.

Although we reject the above approaches, there is a benefit to using MAT-

LAB. Writing native code rather than MATLAB code can make maintenance

and reproducibility more difficult if the development does not aim for those

goals early on [61, 62]. Many considerations go into creating portable software

and many of these same considerations are also necessary for reproducible com-

putational science (e.g., file system handling, floating-point accuracy, compiler

29

differences, and dynamic libraries) [63]. The developers of MATLAB have al-

ready done much of the work required to make MATLAB portable across

different operating systems. Fortunately, the ORIONm code only needs simple

file system handling support. Other issues such as the aforementioned floating

point accuracy and compiler differences are still unresolved by MATLAB itself

and must be addressed in ORIONc. Further discussion about these and other

issues is Chapters 4 and 5.

2.4 ORION3 MATLAB call graph

Even if the ORIONc code is a rewrite, it is a good idea to look at how the

original ORIONm codebase is arranged. One way to do this is to build a call

graph, that is, a graphical representation of which functions are called by other

functions. Using this, it is possible to recursively trace the execution of the

code. By taking this call graph and creating equivalent functions in the native

code, a direct comparison can be made between the two codebases. Thus, each

function can be converted one by one.

There is a tool built in to MATLAB to create call graphs called depfun,

however this tool runs slowly when running on the entire codebase. There

is an alternative called fdep [64]. The results of fdep are then passed to

the GraphViz graph layout tool to visualize the results [65]. Note that the

call graph generated by fdep is generated using static call graph analysis,

so functions that might not be called during execution may be included (e.g.,

function calls that are in dead code branches). The call graph for the MATLAB

30

code is depicted in Figs. 2.1 to 2.3. In each of the figures, the label in the

outermost box is a function name in ORIONm and each box inside is functions

that are called from inside the body of that function. Arrows represent a

function call. For example, in Fig. 2.1, the readNegativeSamples function

calls multiscaleLaplacianFilter which in turn calls Makefilter.

Alternatively, the call graph represents the flow of data — the lowest

levels deal with the least amount of data and as you go up higher in the

graph more pieces of information are integrated together from many sources.

An illustration of this can be seen in the relationship between data flow of

multiscaleLaplacianFilter and Makefilter as sketched in Algorithm 1.

What this shows is that a function lower in the call graph, Makefilter, is a

simpler function in terms of information processing than its parent in the call

graph, multiscaleLaplacianFilter, which has to integrate information from

multiple calls to the Makefilter child function. This kind of relationship is

generally the case between functions in a call graph and this is why it is often

easier to test functions lower in the call graph first — there is less data to

take into account and the functions lower in the call graph are generally more

standalone. This means that they can easily be individually tested. This view

allows for a testing strategy that starts from the bottom-most level of the call

graph and steadily moves upwards.

31

ru
n
S
eg

m
en

ta
ti

on
S
p
in

es

O
R

IO
N

3
S
p
in

es

co
m

p
u
te

E
ig

en
va

lu
es

G
au

ss
ia

n
F

il
te

r

F
il
te

r
T

y
p

es

F
il
te

rF
ra

n
gi

F
il
te

rS
at

o
F

il
te

rO
R

IO
N

1

O
R

IO
N

3
D

en
d
ri

te
s

re
ad

N
eg

at
iv

eS
am

p
le

s

m
u
lt

is
ca

le
L

ap
la

ci
an

F
il
te

r
M

ak
efi

lt
er

h
d
af

co
m

p
u
te

2D
D

is
cr

im
an

tF
u
n
ct

io
n

re
m

ov
eI

so
la

te
d
R

es
p

on
se

s

ge
tR

es
p

on
se

T
oD

is
cr

im
in

an
tF

u
n
ct

io
n

n
or

m
al

iz
eR

es
p

on
se

D
is

cr
im

in
an

tF
u
n
ct

io
n

ge
tF

ea
tu

re
s

co
m

p
u
te

F
ea

tu
re

s
re

ad
E

ig
en

va
lu

es
G

au
ss

ia
n
F

il
te

r

re
m

ov
e

sm
al

l
co

n
C

om
p
3D

se
tt

in
gD

ef
au

lt
P

ar
am

et
er

s

F
ig

u
re

2.
1:

C
a
ll

g
ra

p
h

o
f

se
g
m

e
n
ta

ti
o
n

p
ro

ce
ss

in
O

R
IO

N
m

32

Algorithm 1 Sketch of multiscaleLaplacianFilter and Makefilter func-
tions

1: function Makefilter(filter size, degree, scale factor)
2: return F . Calculates a filter F given the above parameters
3: end function
4: function multiscaleLaplacianFilter(V olume, degree, scales)
5: for scalei ∈ scales do
6: Fi ←Makefilter(|V olume| , degree, scalei)
7: end for
8: MaxScale(x, y, z)← arg maxi(V olume ∗Fi)(x, y, z)
9: end function

registration main VolCrop2

createCharID

RAWfromMHD

findMaxIntProjRegistration

WriteRAWandMHD

exportAmiraRegistrationParameters

createTranslationFilesNames

Figure 2.2: Call graph of registration process in ORIONm

33

createVisualizationFromSWC

getDisconnectedComponents

createSWCfromSegments

getDirectionFromPoints

mergeClose BranchingPoints

SWCtoVTK

detectCenterlinePoints

callHough

uhnToDxf

detect end points as maximal chains

smooth SWC

smoothSegments

computeDistanceTransformOfSomaAndPipette 02

segmentSomaPipetteRemoval

remove small segments from SWC

computeDistanceMap

extractCenterlineFromSegmentation

getStartingPointsFromSegmentation

compute fast marching

readSWC

num2string

connectCenterline

updateUHNtypes

delete RAW

image MIP gray post process centerline

detect crossings

merge connected components

writeSWC

findSoma3DPoint

segmentSomaPipette

extractAdaptiveSphere

reorganize SWC

change rootFromSWC

Figure 2.3: Call graph of tracing process in ORIONm

34

“ The trouble with computers is you play with them.
They are so wonderful. You have these switches —
if it’s an even number you do this, if it’s an odd
number you do that — and pretty soon you can do
more and more elaborate things if you are clever
enough, on one machine. ”

Richard Feynman in Surely You’re Joking, Mr.

Feynman!: Adventures of a Curious Character,

1985

3
Design

Once the planning is done, the actual technical details of the project are deter-

mined in the Design phase. This phase is not a discrete step that is separate

from the following Implementation phase; as the implementation continues,

the Design is updated to take into account new information. As such, it is im-

portant that the Design is able to incorporate incremental changes otherwise

35

adding new changes will become difficult — especially when fundamental data

structures need to be modified. The following details these design decisions.

3.1 Incorporation of ORIONm

Since the algorithm already exists as a design in the ORIONm implementation,

this can be leveraged as a starting point for the conversion. This means that

the structure of ORIONc will start off with the same structure as the MATLAB

version. This is to reduce the cognitive load when rewriting and testing each

component because the inputs and outputs remain the same and keeping the

names the same makes it easier to navigate between corresponding functions.

To facilitate this way of working, the filenames and directory structure

of the original MATLAB code are copied verbatim: instead of using the .m

extension for MATLAB files, the .c extension is used. Inside each of these .c

files, a function signature is defined that matches the one found in MATLAB

with the exception that the name is prefixed with orion such that a ORIONm

function named hdaf would appear as ORIONc function named orion hdaf.

This prefixing is common in C libraries as a way to provide an application-

specific namespace for symbols. This helps avoid naming collisions where

multiple libraries may define the same symbol and these multiple definitions

will need to be disambiguated.

36

3D volume Segmentation Registration Tracing Centerline

Figure 3.1: High level diagram of ORION algorithm: This high-level di-
agram shows that there are three steps to the ORIONm algorithm as described
in the text. The input to the algorithm is a 3D volume of microscopy data and
the output is a graph-based representation of the neuron morphology based
on the centerline.

3.2 Algorithms and architecture

The architecture of a software system includes both the individual components

and how they interact with one another and the core data structures that are

used to transfer data between the components. The following description of

the architecture will approach these details from the top-down.

The ORION algorithm as implemented in ORIONm consists of three parts

(as shown in Fig. 3.1 where data is drawn as dashed-line ovals and processing

is drawn as solid-lined rectangles), namely

Segmentation: to label the foreground and the background of the image (see

Fig. 3.2);

Registration: for aligning subvolumes so that they can be used to create a

single volume (this step is not needed in ORIONc); and

Tracing: to extract a centerline from the volume to capture the underlying

neuron morphology (see Fig. 3.3).

37

Obtain
background

training data

Obtain
vessellness
features

Learn dis-
criminant
function

Threshold
Post-

processing

Figure 3.2: Diagram of segmentation process

Shortest path
using

fast-marching

Center of
neurite

Radii
estimation

Neuron
morphology

representation

Post-
processing
of tracing

Figure 3.3: Diagram of tracing process

38

3.3 Anticipating change

Since the code for ORIONc changes rapidly throughout the project, it is nec-

essary that the code structure is planned so that it does not have to change

too drastically as new components are added to the project. This requires

developing a project structure that does not require too many manual changes

which slow down development. In the following, various aspects of the code

structure and how they improve the code’s ability to easily incorporate change.

3.3.1 Directory structure

The first part of setting up a new project is choosing a directory structure.

This determines where new files should go. A common structure is to create

separate directories for code for a library and code that will be compiled into

an executable. This is reflected in the directory structure where

lib: contains subdirectories which have all the source code that will be com-

piled together to create a library file (i.e., liborion.a on many Unix

systems);

lib/t: contains source files that have a matching directory layout to the rest

of the lib directory so that it is easy to find the corresponding test to a

given component (e.g., a library source file lib/path/func.c will have

a corresponding test source file in lib/t/path/func.c); and

src: contains source files that will be compiled into executables that can be

run at the command-line.

39

3.3.2 Build system

Whenever a native build system is chosen, an important property is that it

should be portable. In order to fulfill this property, the build system is written

using GNU make which is a portable version of the Unix make build tool. This

tool works by reading a Makefile that lists the prerequisites for a given target

file and a set of commands needed to build those prerequisites. If the target

is older than any one of its prerequisites, then that target file is rebuilt. This

allows for testing changes to large projects without out needing to rebuild the

entire project.

Another property is that the build system should not have to require many

changes when adding new source code to the project. This is accomplished

by using automatic dependency scanning. Before any code is compiled, the

files are scanned to create a list of prerequisites for each file. By scanning

for prerequisites, most of the files in the project do not need explicit rules in

the Makefile which means that when a new file is added to the project, no

changes to the build system are necessary.

An automatic build system allows for easily building the project on a new

machine. If the build system is portable and well-tested, the project should

build on the new system without manual intervention. When making a project

for scientific purposes, this is essential for reproducibility because the knowl-

edge of how to build the software is completely written down in an executable

form.

40

3.3.2.1 Configuration

Software projects do not live in isolation; many projects depend on outside li-

braries to implement functionality. However, whenever a dependency is added,

this adds another point where the build could break. Outside libraries are not

necessarily in the same location on every system. In order to portably build

the ORIONc with these outside libraries, the build system has automatic build

configuration that scans for the location of any dependencies that it needs.

This allows the same build system to be used on multiple systems without

having to use any fixed paths that are specific to a single computer.

In addition, sometimes developers may want to enable system-specific fea-

tures in order to speed up their code. When this happens, the code must be

able to detect when such features are available and use a fallback if they are

not available. The build system for ORIONc contains an automatic system

configuration scanner that it uses for this purpose. This configuration scanner

is currently only used to enable the GCC compiler’s branch prediction macro

(__builtin_expect) which is used to give hints to the compiler whether or

not a given condition is likely or not [66].

3.3.2.2 Debugging

As the project progresses, the development is inevitably going to come across

bugs. When programming in C or C++, the class of bugs that occur are

different from the kinds that occur in MATLAB. These usually are related

to invalid memory access (e.g., buffer overflows, stack overflows). To help

41

ease debugging, the build system must also support tools that can help track

these errors. These tools often require the addition of build options that add

extra metadata to the compiled code. The build system thus supports code

coverage builds: which are used to determine how much of the code is tested

by the testing code; debug builds: to enable debugging symbols that can

be used to stop and inspect the execution of a program and catch memory

access violations; and profiling builds: which can be used to understand

the areas of the code that are running slowly in order to intelligently decide

whether to optimize it.

42

“ One of my most productive days was throwing
away 1000 lines of code. ”

Ken Thompson

“ Programming, programming, all through the
night,
We’re stuck here until our new program works
right.
Programming, programming, isn’t it fun?
The maintenance starts when debugging is done! ”

Steve Savitzky in The Programmer’s Alphabet,

1981 [67]

4
Implementation

As discussed in Chapter 3, the Implementation stage starts by converting

the MATLAB code to native code by following the same architecture as the

ORIONm code as initial point. This chapter discusses the real world charac-

teristics of the code used to implement ORIONc. This starts with the data

structures that are used for calculations. Implementing a data structure that

43

MATLAB C

x(r,c) x[r][c]

r
c

1 2 3

1 1 4 7
2 2 5 8
3 3 6 9

r
c

0 1 2

0 1 2 3
1 4 5 6
2 7 8 9

Figure 4.1: Difference in memory layout between MATLAB (column-major)
and C (row-major).

captures the domain of the problem correctly is the most important first step

in any software system because once a data structure is chosen, it can be dif-

ficult to change as every part of the code relies on the properties of that data

structure.

4.1 Data structures

The main data structure used in the implementation is an n-dimensional ar-

ray or tensor. Since the algorithm is meant to work with 3D data, the n-

dimensional array has a fixed n = 3. To define this data structure, we need to

examine the memory layout. There are two approaches to this: column-major

and row-major. The difference between the two is based on which dimension

index changes the faster when accessing memory linearly. This difference is

illustrated in Fig. 4.1 which depicts a data that is stored in memory with in-

creasing value from 1 to 9. The indices to access the same value differ between

MATLAB and C not only due to MATLAB’s 1-based indexing and C’s 0-based

indexing, but also the memory layout.

44

For ORIONc, the n-dimensional array is stored as row-major as this is the

default that most C programmers expect. This array is represented by the C

structure

typedef struct {
p i x e l t y p e ∗ p ; /∗ a l l o c a t e d memory f o r data ∗/

s i z e t sz [PIXEL NDIMS] ; /∗ s i z e o f each dimension ∗/
p i x e l t y p e spac ing [PIXEL NDIMS] ; /∗ ph y s i c a l spac ing ∗/
} ndarray3 ;

where pixel_type is represents the floating point storage type used for the

n-dimensional data, p is a pointer to the block of memory where the data is

stored, and PIXEL_NDIMS is the constant 3. The spacing field is used to store

the physical spacing between items in the n-dimensional grid and is used for

normalizing calculations.

There are also other data structures that are mainly used for book-keeping

and storage of the algorithm parameters. For example, to obtain the output

of the Hessian filter, a collection of the eigenvalue features and the associated

scales used for that filter are returned by using the C structure

typedef struct {
/∗ s c a l e used f o r t h i s f i l t e r r e s u l t ∗/
f loat s c a l e ;
/∗ the t h r ee e i g enva l u e s f o r each vox e l ∗/
array ndarray3 ∗ e i g f e a t ;
} o r i o n e i g f e a t r e s u l t ;

This allows for access to the filter response as well as the original parameters

that generated that response.

45

4.2 Numerical considerations

Scientific computing often uses floating point for calculations, but the tech-

niques for reducing numerical error are often overlooked [68]. For example, a

simple summation of a list of floating point numbers accumulates numerical

errors as more numbers are numbers are added. To compensate for this nu-

merical error, algorithms such as Kahan summation are used to accumulate

this error in another running compensation variable [69].

Another numerical consideration is making sure that the result of the float-

ing point operations can fit within the limits of the storage type. For example,

multiplying large floating point numbers can cause the result to become larger

than the largest double (64-bit) floating point value which means that the

result is no longer representable. This can happen when calculating factori-

als for a Taylor series. To avoid this, it is important to calculate the bounds

of a calculation and provide error checking for when the input could lead to

invalid results. For a factorial function that works with 64-bit floating point

data, we can calculate the bounds of input to the function n! as n ∈ [0, 170].

In addition, since the domain of the input variable is so small, storing the

pre-calculated data in a lookup table can help avoid numerical errors that

accumulate through multiplication.

46

4.3 Prototyping components

As mentioned before, the design of ORIONc initially follows the architecture

of the ORIONm code. To accomplish this, each MATLAB function has a

corresponding C function that is located in a similarly named file. Using the

call graphs obtained in Section 2.4, we first choose a function that is a leaf

node in the call graph. This function requires very little data for its inputs,

so testing the ORIONc implementation against the ORIONm implementation

does not require a lot of set up for each of the parameters. In order to prototype

the ORIONc function, we take a set of test parameters and apply them to the

ORIONm function and capture its output. This output is then placed inside

a test file and used to compare the C output to the MATLAB output. This

procedure is then repeated for each parent function in the call graph.

4.4 Library integration

Some of the calculations needed for this implementation require outside li-

braries. In order to integrate with these libraries, it is necessary to convert

the ORIONc data structures into appropriate data structures for each library.

To compute the vessellness filter, the ITK library is used [70]. This library

is widely used in biomedical image analysis and has many implementations of

filters that are commonly used for image segmentation. The ITK library uses a

data structure called itk::Image for to store the inputs and outputs for calcu-

lations. This data structure is internally very similar to the ORIONc ndarray3

47

data structure as they both use a row-major block of memory to store their

data. As such, it is possible to convert the ndarray3 data to itk::Image

data without having to copy the data by sharing the buffer between the two

libraries.

For computation of the fast-Fourier transform, a small library called Kiss

FFT is used [71]. This library has functions for computing an n-dimensional

Fast-Fourier transform (FFT). This library also uses a n-dimensional array

data structure that is similar to ndarray3 which makes it easy to write a

wrapper to the FFT code that takes an ndarray3 input.

48

“ Everyone knows that debugging is twice as hard
as writing a program in the first place. So if you’re
as clever as you can be when you write it, how will
you ever debug it? ”

Brian W. Kernighan and P. J. Plauger in

The Elements of Programming Style, 1978

5
Testing and verification

When testing a system, there are two related procedures that are used to

ensure that the system is working in the intended manner: verification and

validation. Verification is testing whether an implementation of a model is

correctly implemented. This is analogous to asking “did we build it right?”.

Validation is checking the accuracy of the model to a real system. This asks

49

“was it the right thing to build?” [72].

When testing is done on the whole system to check if the final output

makes sense, this is a kind of validation. This is how the ORIONm is currently

tested. However, validation testing can not stand on its own. We also need to

improve the system’s verification testing. One such way is to implement unit

testing. This kind of testing involves running each unit of the system (such as

a function) and checking if the expected outputs are generated for a given set

of inputs.

By performing unit tests, the expectation of a given unit is recorded in a

way that it can be run repeatedly and in completely automated manner. This

allows for running the same tests both in new environments and whenever a

part of the code changes. Since it is completely automated, debugging in case

there are any unmet expectations can be performed quickly. However, testing

can only prove the existence of bugs, not their absence. This is why a particu-

lar form of software engineering methodology called Test-Driven Development

(TDD) advocates writing tests before the actual code being tested. In this

way, the test code will fail first and just enough code is added to make the

test pass. In this way, it is clear that the added code made that specific test

case pass.

Some of examples of tests that are used in the ORIONc code include an-

alytic testing: which test numerical calculations where an analytic solution

is known for certain inputs (e.g., the FFT of f(x) = sin 2πx); property

testing: which tests if a function satisfies certain conditions on its outputs

50

(i.e., a function that outputs data in sorted order can be checked to see if the

sorted property is retained); integration tests: which test if two separate

systems can work together (i.e., the output of one system can be used as the

input to another system).

It is important to keep in mind that since many of these tests are performed

on floating point data, the tests can not use strict equality and must compare

their values to within a tolerance. For example, when testing the FFT imple-

mentation, one property that can be tested is if computing F−1 {F {x}} = x.

However, due to numerical errors, the absolute error |F−1 {F {x}} − x| is

within a range of ε = 1× 10−7 when using 32-bit floating point numbers for

computation — which is expected based on the machine epsilon [73, 74].

5.1 Testing portability

One of the issues with testing is that some tests that may hold one machine,

may not hold on another. This can be due to differences in library versions,

differences between compilers, or even differences between processors. This

is why testing in multiple environments is necessary to ensure that the tests

are themselves portable. In order to test in multiple environments, ORIONc

is tested using a continuous integration server which tests every change on

a different machine using different compilers. Using a continuous integration

server like this has helped track down some issues with using an older version

of ITK and other issues that had to do with how a specific compiler interpreted

the source code. Furthermore, using a continuous integration server allows for

51

a workflow where every new feature can be worked on separately from the

main “released” code and tested as it is being developed. Only when that

code has been appropriately tested will that feature be brought into the main

code. This allows in-progress code to be worked on separately from working

code.

5.2 Tracing-based comparison with ORIONm

In order to look more closely at whether or not the ORIONc code implements

the same algorithms as ORIONm, it is possible to compare the data from

across the entire ORIONm pipeline. This can be accomplished by recording the

input parameters given to every ORIONm function and passing those inputs

to the ORIONc input. In Fig. 5.1, the pipeline for ORIONc is depicted on the

top row and the pipeline for ORIONm is depicted on the bottom row. The

middle row represents the process of taking the ORIONm data and passing it to

the corresponding ORIONc component. Then the output of the components

in the middle row and the bottom row are compared. The reason for this

comparison procedure is so that the functions can be compared individually

to find where the two systems deviate instead of having to see the differences

accumulate over the entire system. A full description of the algorithm is given

in Algorithms 2 and 3. In Algorithm 3, the algorithm makes reference to

an “appropriate method”. This method depends on the kind of data being

compared. For example, in Table 5.1, the comparison is done by generating a

histogram a and b for each volume so that both histograms contain the same

52

Stack ID histogram intersection

1 0.999973665203964
2 0.999967508148729
3 0.999978416844418
4 0.999982131154914
5 0.999959276433577

Table 5.1: Example of comparison captured from data for the Makefilter

function

number of bins n and the same bin boundaries. Then the intersection of the

two histograms is calculated as

K∩(a, b) =
n∑

i=1

min(ai, bi). (5.1)

Algorithm 2 MATLAB tracing data capture

1: Set breakpoints at every function start and end.
2: Run the MATLAB code under the debugger.
3: while Program has not finished do
4: When the debugger stops, save the State of the input and output data

at each breakpoint along with a stack frame ID. Add State to SavedStates.
5: Continue the debugger.
6: end while

Algorithm 3 MATLAB tracing data comparison

1: SavedStates← the list of all saved states from Algorithm 2.
2: for State ∈ SavedStates do
3: Load the MATLAB data from State.
4: Convert MATLAB data structures to C data structures.
5: Call corresponding ORIONc function using C data structures
6: Compare the results using an appropriate method.
7: end for

53

Input

f
u
n
M 1

f
u
n
M 2

f
u
n
M 3

f
u
n
M 4

f
u
n
M 5

f
u
n
M
−
C

1
f
u
n
M
−
C

2
f
u
n
M
−
C

3
f
u
n
M
−
C

4
f
u
n
M
−
C

5

f
u
n
C 1

f
u
n
C 2

f
u
n
C 3

f
u
n
C 4

f
u
n
C 5

F
ig

u
re

5.
1:

A
b
st

ra
ct

d
ia

gr
am

of
p
ip

el
in

e
of

b
ot

h
O

R
IO

N
c

an
d

O
R

IO
N

m

54

“ The purpose of computing is insight, not numbers. ”
Richard W. Hamming in Numerical Methods for

Scientists and Engineers, 1962

“ There’s no sense in being precise when you don’t
even know what you’re talking about. ”

John von Neumann

6
Conclusion

The main contribution of this thesis is a neuron-morphology reconstruction

system with an automated test suite. The existence of an automated test suite

allows for future refactoring and additions to the code with confidence that

each component behaves as expected. The consequences of this contribution

go beyond just the testing of the current state of the system — testing allows

55

the code to evolve to incorporate new designs.

While the code currently relies heavily on the original ORIONm design,

removing much of the MATLAB specific design decisions such as caching make

it easier to refactor because the only input data to a ORIONc function are those

which are passed in directly as input parameters. This also leaves room for

making parts of the system run in parallel as there will be no extra overhead

or file system contention involved in reading and writing to the disk.

Furthermore, although the main backbone of the ORIONc pipeline uses

the same design as ORIONm, the implementation inside each component calls

out to generic, reusable code. This reusable code (everything outside of the

lib/kitchen-sink directory) is designed so that it can more easily be tested

than the code based on ORIONm.

Future work on this software system can also include packaging the software

for easy installation in repositories such as NeuroDebian [75]. This will allow

end-users an easy way to install the software without having to deal with

building it themselves. This also serves as another way of testing the software

because these end-users will likely use the software on a wide variety of data

as well as under different environments. This opens the door to improvements

both to the robustness of the reconstruction algorithm and the portability of

the software system.

56

Bibliography

[1] A. Santamaŕıa-Pang, P. Hernandez-Herrera, M. Papadakis, P. Saggau
and I. A. Kakadiaris, “Automatic morphological reconstruction of neu-
rons from multiphoton and confocal microscopy images using 3D tubu-
lar models”, Neuroinformatics, vol. 13, no. 3, Jan. 2015. doi: 10.1007/
s12021-014-9253-2.

[2] D. Baltimore, in The Invisible Future: The Seamless Integration of Tech-
nology into Everyday Life, P. J. Denning, Ed., New York, NY, USA:
McGraw-Hill, Inc., 2001, ch. How Biology Became an Information Sci-
ence, pp. 43–55.

[3] MATLAB, Version 8.1 (R2013a). Natick, Massachusetts: The Math-
Works Inc., 2013.

[4] J. Spolsky. (6th Apr. 2000). Joel on software: Things you should never
do, part I, [Online]. Available: http://www.joelonsoftware.com/

articles/fog0000000069.html (visited on 4th Aug. 2015).

[5] S. M. Baxter, S. W. Day, J. S. Fetrow and S. J. Reisinger, “Scientific
software development is not an oxymoron”, PLoS Computational Biol-
ogy, vol. 2, no. 9, pp. 0975–0978, 2006. doi: 10.1371/journal.pcbi.
0020087.

[6] S. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong, S. Crouch, D. De
Roure, I. Emsley, C. Goble, A. Hay, D. Inupakutika, M. Jackson, A.
Nenadic, T. Parkinson, M. I. Parsons, A. Pawlik, G. Peru, A. Proeme,
J. Robinson and S. Sufi, UK research software survey 2014, Dec. 2014.
doi: 10.5281/zenodo.14809.

[7] G. K. Sandve, A. Nekrutenko, J. Taylor and E. Hovig, “Ten simple rules
for reproducible computational research”, PLoS Computational Biology,
vol. 9, no. 10, P. E. Bourne, Ed., e1003285, Oct. 2013. doi: 10.1371/
journal.pcbi.1003285.

57

http://dx.doi.org/10.1007/s12021-014-9253-2
http://dx.doi.org/10.1007/s12021-014-9253-2
http://www.joelonsoftware.com/articles/fog0000000069.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://dx.doi.org/10.1371/journal.pcbi.0020087
http://dx.doi.org/10.1371/journal.pcbi.0020087
http://dx.doi.org/10.5281/zenodo.14809
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1371/journal.pcbi.1003285

[8] J. T. Leek. (Nov. 2013). How to share data with a statistician, [Online].
Available: https : / / github . com / jtleek / datasharing (visited on
28th Nov. 2015).

[9] A. E. Jaffe, T. Hyde, J. Kleinman, D. R. Weinbergern, J. G. Chenoweth,
R. D. McKay, J. T. Leek and C. Colantuoni, “Practical impacts of
genomic data “cleaning” on biological discovery using surrogate vari-
able analysis”, BMC Bioinformatics, vol. 16, no. 1, p. 372, 2015. doi:
10.1186/s12859-015-0808-5.

[10] H. Wickham, “Tidy data”, Journal of Statistical Software, vol. 59, no.
10, pp. 1–23, 2014. doi: 10.18637/jss.v059.i10.

[11] R. Anderson. (2000). The end of DLL hell, [Online]. Available: http:
//web.archive.org/web/20010605023737/http://msdn.microsoft.

com/library/techart/dlldanger1.htm.

[12] D. Burrows. (15th Jun. 2005). Modelling and resolving software depen-
dencies, [Online]. Available: https://people.debian.org/~dburrows/
model.pdf.

[13] P. J. Guo and D. Engler, “CDE: Using system call interposition to auto-
matically create portable software packages”, in Proc. USENIX Annual
Technical Conference, Portland, OR, 2011, p. 21.

[14] National Digital Information Infrastructure and Preservation Program,
“Preserving.exe: Toward a national strategy for software preservation”,
Library of Congress, Tech. Rep., 18th Oct. 2013, pp. 1–42.

[15] D. Thain, P. Ivie and H. Meng, “Techniques for preserving scientific
software executions: Preserve the mess or encourage cleanliness?”, in
Proc. 12th International Conference on Digital Preservation, Chapel Hill,
USA, Nov. 2015. doi: 10.7274/R0CZ353M.

[16] H. Meng, M. Wolf, P. Ivie, A. Woodard, M. Hildreth and D. Thain, “A
case study in preserving a high energy physics application with Parrot”,
Journal of Physics: Conference Series, Dec. 2015, forthcoming.

[17] M. Nielsen. (28th Jul. 2011). Definitions of open science?, [Online]. Avail-
able: https://lists.okfn.org/pipermail/open-science/2011-
July/000907.html (visited on 28th Nov. 2015).

[18] J. P. A. Ioannidis, “Why most published research findings are false”,
PLoS Med, vol. 2, no. 8, e124, 2005. doi: 10.1371/journal.pmed.

0020124.

58

https://github.com/jtleek/datasharing
http://dx.doi.org/10.1186/s12859-015-0808-5
http://dx.doi.org/10.18637/jss.v059.i10
http://web.archive.org/web/20010605023737/http://msdn.microsoft.com/library/techart/dlldanger1.htm
http://web.archive.org/web/20010605023737/http://msdn.microsoft.com/library/techart/dlldanger1.htm
http://web.archive.org/web/20010605023737/http://msdn.microsoft.com/library/techart/dlldanger1.htm
https://people.debian.org/~dburrows/model.pdf
https://people.debian.org/~dburrows/model.pdf
http://dx.doi.org/10.7274/R0CZ353M
https://lists.okfn.org/pipermail/open-science/2011-July/000907.html
https://lists.okfn.org/pipermail/open-science/2011-July/000907.html
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1371/journal.pmed.0020124

[19] K. S. Button, J. P. A. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint,
E. S. J. Robinson and M. R. Munafò, “Power failure: Why small sample
size undermines the reliability of neuroscience”, Nature Reviews Neuro-
science, vol. 14, no. 5, pp. 365–376, Apr. 2013. doi: 10.1038/nrn3475.

[20] G. Miller, “Scientific publishing. a scientist’s nightmare: Software prob-
lem leads to five retractions”, Science, vol. 314, no. 5807, pp. 1856–1857,
Dec. 2006. doi: 10.1126/science.314.5807.1856.

[21] Z. Merali, “Computational science: . . . error.”, Nature, vol. 467, no. 7317,
pp. 775–777, 2010. doi: 10.1038/467775a.

[22] L. N. Joppa, G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’Hara,
D. Gavaghan and S. Emmott, “Troubling trends in scientific software
use”, Science, vol. 340, no. 6134, pp. 814–815, May 2013. doi: 10.1126/
science.1231535.

[23] G. Wilson, “Where’s the real bottleneck in scientific computing?”, Amer-
ican Scientist, vol. 94, no. 1, p. 5, 2006. doi: 10.1511/2006.57.3473.

[24] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T.
Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley,
B. Waugh, E. P. White and P. Wilson, “Best practices for scientific
computing”, PLoS Biology, vol. 12, no. 1, J. A. Eisen, Ed., e1001745,
Jan. 2014. doi: 10.1371/journal.pbio.1001745.

[25] P. Moore, Visualizing the invisible: Imaging techniques for the structural
biologist. Oxford University Press, 2012.

[26] R. Parekh, R. Armañanzas and G. a. Ascoli, “The importance of meta-
data to assess information content in digital reconstructions of neuronal
morphology”, Cell and Tissue Research, vol. 360, no. 1, pp. 121–127,
Feb. 2015. doi: 10.1007/s00441-014-2103-6.

[27] R. A. Poldrack, “Inferring mental states from neuroimaging data: From
reverse inference to large-scale decoding”, Neuron, vol. 72, no. 5, pp. 692–
697, 2011. doi: 10.1016/j.neuron.2011.11.001.

[28] D. Gardner, H. Akil, G. A. Ascoli, D. M. Bowden, W. Bug, D. E. Dono-
hue, D. H. Goldberg, B. Grafstein, J. S. Grethe, A. Gupta, M. Halavi,
D. N. Kennedy, L. Marenco, M. E. Martone, P. L. Miller, H.-M. Müller,
A. Robert, G. M. Shepherd, P. W. Sternberg, D. C. Van Essen and
R. W. Williams, “The Neuroscience Information Framework: A data
and knowledge environment for neuroscience”, Neuroinformatics, vol. 6,
no. 3, pp. 149–160, Sep. 2008. doi: 10.1007/s12021-008-9024-z.

59

http://dx.doi.org/10.1038/nrn3475
http://dx.doi.org/10.1126/science.314.5807.1856
http://dx.doi.org/10.1038/467775a
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1511/2006.57.3473
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1007/s00441-014-2103-6
http://dx.doi.org/10.1016/j.neuron.2011.11.001
http://dx.doi.org/10.1007/s12021-008-9024-z

[29] D. N. Kennedy, C. Haselgrove, J. Riehl, N. Preuss and R. Buccigrossi,
“The NITRC image repository.”, NeuroImage, vol. 124, Part B, pp. 1069–
1073, Jan. 2016. doi: 10.1016/j.neuroimage.2015.05.074.

[30] H. Markram, “Seven challenges for neuroscience”, Functional Neurology,
vol. 28, no. 3, pp. 145–151, 2013. doi: 10.11138/FNeur/2013.28.3.145.

[31] M. Feldman. (20th Jun. 2013). ‘‘BigBrain” project makes terabyte map
of a human brain, [Online]. Available: http://spectrum.ieee.org/
tech-talk/biomedical/imaging/bigbrain-project-makes-terabyte-

map-of-a-human-brain (visited on 20th Nov. 2015).

[32] G. A. Ascoli, D. E. Donohue and M. Halavi, “NeuroMorpho.Org: A
central resource for neuronal morphologies”, Journal of Neuroscience,
vol. 27, no. 35, pp. 9247–9251, 2007. doi: 10.1523/JNEUROSCI.2055-
07.2007.

[33] M. Helmstaedter, K. L. Briggman and W. Denk, “High-accuracy neu-
rite reconstruction for high-throughput neuroanatomy”, Nature Neuro-
science, vol. 14, no. 8, pp. 1081–1088, 2011. doi: 10.1038/nn.2868.

[34] M. Helmstaedter and P. P. Mitra, “Computational methods and chal-
lenges for large-scale circuit mapping”, Current Opinion in Neurobiology,
vol. 22, no. 1, pp. 162–169, 2012. doi: 10.1016/j.conb.2011.11.010.

[35] V. Marx, “Neuroscience waves to the crowd”, Nature Methods, vol. 10,
no. 11, pp. 1069–1074, 2013. doi: 10.1038/nmeth.2695.

[36] Hanchuan Peng Group. (30th Mar. 2015). Vaa3D: Open-source, multi-
dimensional data visualization and analysis, [Online]. Available: http:
//www.vaa3d.org/ (visited on 7th Aug. 2015).

[37] H. Peng, Z. Ruan, F. Long, J. H. Simpson and E. W. Myers, “V3D
enables real-time 3D visualization and quantitative analysis of large-
scale biological image data sets”, Nature Biotechnology, vol. 28, no. 4,
pp. 348–353, Mar. 2010. doi: 10.1038/nbt.1612.

[38] H. Peng, A. Bria, Z. Zhou, G. Iannello and F. Long, “Extensible visual-
ization and analysis for multidimensional images using Vaa3D”, Nature
Protocols, vol. 9, no. 1, pp. 193–208, Jan. 2014. doi: 10.1038/nprot.
2014.011.

[39] Y. Liu, “The DIADEM and beyond”, Neuroinformatics, vol. 9, no. 2-3,
pp. 99–102, Mar. 2011. doi: 10.1007/s12021-011-9102-5.

60

http://dx.doi.org/10.1016/j.neuroimage.2015.05.074
http://dx.doi.org/10.11138/FNeur/2013.28.3.145
http://spectrum.ieee.org/tech-talk/biomedical/imaging/bigbrain-project-makes-terabyte-map-of-a-human-brain
http://spectrum.ieee.org/tech-talk/biomedical/imaging/bigbrain-project-makes-terabyte-map-of-a-human-brain
http://spectrum.ieee.org/tech-talk/biomedical/imaging/bigbrain-project-makes-terabyte-map-of-a-human-brain
http://dx.doi.org/10.1523/JNEUROSCI.2055-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.2055-07.2007
http://dx.doi.org/10.1038/nn.2868
http://dx.doi.org/10.1016/j.conb.2011.11.010
http://dx.doi.org/10.1038/nmeth.2695
http://www.vaa3d.org/
http://www.vaa3d.org/
http://dx.doi.org/10.1038/nbt.1612
http://dx.doi.org/10.1038/nprot.2014.011
http://dx.doi.org/10.1038/nprot.2014.011
http://dx.doi.org/10.1007/s12021-011-9102-5

[40] K. M. Brown, G. Barrionuevo, A. J. Canty, V. De Paola, J. a. Hirsch,
G. S. X. E. Jefferis, J. Lu, M. Snippe, I. Sugihara and G. a. Ascoli,
“The DIADEM data sets: Representative light microscopy images of
neuronal morphology to advance automation of digital reconstructions”,
Neuroinformatics, vol. 9, no. 2-3, pp. 143–57, Sep. 2011. doi: 10.1007/
s12021-010-9095-5.

[41] T. A. Gillette, K. M. Brown and G. A. Ascoli, “The DIADEM metric:
Comparing multiple reconstructions of the same neuron”, Neuroinfor-
matics, vol. 9, no. 2-3, pp. 233–245, Sep. 2011. doi: 10.1007/s12021-
011-9117-y.

[42] H. Peng, M. Hawrylycz, J. Roskams, S. Hill, N. Spruston, E. Meijering
and G. A. Ascoli, “BigNeuron: Large-scale 3D neuron reconstruction
from optical microscopy images”, Neuron, vol. 87, no. 2, pp. 252–256,
Jul. 2015. doi: 10.1016/j.neuron.2015.06.036.

[43] H. Peng, E. Meijering and G. A. Ascoli, “From DIADEM to BigNeuron”,
Neuroinformatics, vol. 13, no. 3, pp. 259–260, Apr. 2015. doi: 10.1007/
s12021-015-9270-9.

[44] BigNeuron Consortium. (13th Mar. 2015). Frequently asked questions,
[Online]. Available: https://alleninstitute.org/bigneuron/faq/
(visited on 7th Aug. 2015).

[45] Justice Management Division. (Jan. 2003). The Department of Justice
systems development life cycle guidance document, [Online]. Available:
http://www.justice.gov/archive/jmd/irm/lifecycle/table.htm

(visited on 10th Nov. 2015).

[46] C. A. Schneider, W. S. Rasband and K. W. Eliceiri, “NIH Image to Im-
ageJ: 25 years of image analysis”, Nature Methods, vol. 9, no. 7, pp. 671–
675, 2012. doi: 10.1038/nmeth.2089.

[47] M. Halavi, K. A. Hamilton, R. Parekh and G. A. Ascoli, “Digital recon-
structions of neuronal morphology: Three decades of research trends”,
Frontiers in Neuroscience, vol. 6, 2012. doi: 10.3389/fnins.2012.

00049.

[48] E. Meijering, “Neuron tracing in perspective”, Cytometry Part A, vol.
77A, no. 7, pp. 693–704, Mar. 2010. doi: 10.1002/cyto.a.20895.

[49] R. C. Cannon, D. A. Turner, G. K. Pyapali and H. V. Wheal, “An on-line
archive of reconstructed hippocampal neurons”, Journal of Neuroscience
Methods, vol. 84, no. 1, pp. 49–54, 1998. doi: 10.1016/S0165-0270(98)
00091-0.

61

http://dx.doi.org/10.1007/s12021-010-9095-5
http://dx.doi.org/10.1007/s12021-010-9095-5
http://dx.doi.org/10.1007/s12021-011-9117-y
http://dx.doi.org/10.1007/s12021-011-9117-y
http://dx.doi.org/10.1016/j.neuron.2015.06.036
http://dx.doi.org/10.1007/s12021-015-9270-9
http://dx.doi.org/10.1007/s12021-015-9270-9
https://alleninstitute.org/bigneuron/faq/
http://www.justice.gov/archive/jmd/irm/lifecycle/table.htm
http://dx.doi.org/10.1038/nmeth.2089
http://dx.doi.org/10.3389/fnins.2012.00049
http://dx.doi.org/10.3389/fnins.2012.00049
http://dx.doi.org/10.1002/cyto.a.20895
http://dx.doi.org/10.1016/S0165-0270(98)00091-0
http://dx.doi.org/10.1016/S0165-0270(98)00091-0

[50] C. Bauer, T. Pock, E. Sorantin, H. Bischof and R. Beichel, “Segmenta-
tion of interwoven 3D tubular tree structures utilizing shape priors and
graph cuts”, Medical Image Analysis, vol. 14, no. 2, pp. 172–184, 2010.

[51] D. Jiménez, M. Papadakis, D. Labate and I. A. Kakadiaris, “Improved
automatic centerline tracing for dendritic structures”, in Proc. IEEE 10th

International Symposium on Biomedical Imaging, 2013, pp. 1050–1053.
doi: 10.1109/ISBI.2013.6556658.

[52] P. Hernandez-Herrera, M. Papadakis and I. A. Kakadiaris, “Segmenta-
tion of neurons based on one-class classification”, in Proc. IEEE 11th

International Symposium on Biomedical Imaging, 2014, pp. 1316–1319.

[53] J. Xie, T. Zhao, T. Lee, E. Myers and H. Peng, “Automatic neuron
tracing in volumetric microscopy images with anisotropic path search-
ing”, in Proc. International Conference on Medical Image Computing
and Computer-Assisted Intervention, Springer, 2010, pp. 472–479.

[54] ——, “Anisotropic path searching for automatic neuron reconstruction”,
Medical Image Analysis, vol. 15, no. 5, pp. 680–689, 2011.

[55] G. Luo, D. Sui, K. Wang and J. Chae, “Neuron anatomy structure re-
construction based on a sliding filter”, BMC Bioinformatics, vol. 16, no.
1, p. 342, 2015. doi: 10.1186/s12859-015-0780-0.

[56] S. Gulyanon, N. Sharifai, S. Bleykhman, E. Kelly, M. D. Kim, A. Chiba
and G. Tsechpenakis, “Three-dimensional neurite tracing under glob-
ally varying contrast”, in Proc. IEEE 12th International Symposium on
Biomedical Imaging, 2015, pp. 875–879.

[57] T. A. Gillette, “Comparative topological analysis of neuronal arbors
via sequence representation and alignment”, Dissertation, George Mason
University, 2015, p. 274.

[58] D. Mayerich, C. Bjornsson, J. Taylor and B. Roysam, “Metrics for com-
paring explicit representations of interconnected biological networks”, in
Proc. IEEE Symposium on Biological Data Visualization, 2011, pp. 79–
86. doi: 10.1109/BioVis.2011.6094051.

[59] D. Mayerich, C. Bjornsson, J. Taylor and B. Roysam, “NetMets: Soft-
ware for quantifying and visualizing errors in biological network segmen-
tation.”, BMC Bioinformatics, vol. 13 Suppl 8, no. Suppl 8, S7, 2012.
doi: 10.1186/1471-2105-13-S8-S7.

[60] S. Du Toit. (10th Sep. 2014). Hourglass interfaces for C++ APIs, [On-
line]. Available: http://www.slideshare.net/StefanusDuToit/cpp-
con-2014-hourglass-interfaces-for-c-apis (visited on 22nd Nov.
2015).

62

http://dx.doi.org/10.1109/ISBI.2013.6556658
http://dx.doi.org/10.1186/s12859-015-0780-0
http://dx.doi.org/10.1109/BioVis.2011.6094051
http://dx.doi.org/10.1186/1471-2105-13-S8-S7
http://www.slideshare.net/StefanusDuToit/cpp-con-2014-hourglass-interfaces-for-c-apis
http://www.slideshare.net/StefanusDuToit/cpp-con-2014-hourglass-interfaces-for-c-apis

[61] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram and V. Stodden,
“Reproducible research in computational harmonic analysis”, Computing
in Science & Engineering, vol. 11, no. 1, pp. 8–18, 2009. doi: 10.1109/
MCSE.2009.15.

[62] C. Collberg, T. Proebsting and A. M. Warren, “Repeatability and bene-
faction in computer systems research”, University of Arizona, Technical
Report TR 14-04, 27th Feb. 2015.

[63] B. Hook, Write Portable Code: An Introduction to Developing Software
for Multiple Platforms. No Starch Press, Jul. 2005.

[64] U. Schwarz. (20th Jun. 2010). fdep: A pedestrian function dependencies
finder, [Online]. Available: http://www.mathworks.com/matlabcentral/
fileexchange/17291-fdep--a-pedestrian-function-dependencies-

finder (visited on 8th Jul. 2015).

[65] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering”, Softw. Pract. Exper., vol. 30,
no. 11, pp. 1203–1233, Sep. 2000. doi: 10.1002/1097-024X(200009)30:
11<1203::AID-SPE338>3.3.CO;2-E.

[66] U. Drepper. (21st Nov. 2007). What every programmer should know
about memory, [Online]. Available: http://www.akkadia.org/drepper/
cpumemory.pdf (visited on 30th Oct. 2015).

[67] S. Savitzky. (1981). The programmer’s alphabet, [Online]. Available:
http://steve.savitzky.net/Songs/alphabet/ (visited on 20th Nov.
2015).

[68] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic”, ACM Comput. Surv., vol. 23, no. 1, pp. 5–48, Mar.
1991. doi: 10.1145/103162.103163.

[69] W. Kahan, “Pracniques: Further remarks on reducing truncation errors”,
Commun. ACM, vol. 8, no. 1, pp. 40–, Jan. 1965. doi: 10.1145/363707.
363723.

[70] L. Ibáñez and B. King, in The Architecture of Open Source Applications:
Structure, Scale, and a Few More Fearless Hacks, A. Brown and G.
Wilson, Eds., vol. 2, Kristian Hermansen, 2012, ch. ITK.

[71] M. Borgerding. (29th Jul. 2012). Kiss FFT, [Online]. Available: http:
//kissfft.sourceforge.net/ (visited on 30th Oct. 2015).

[72] B. Boehm, “Software risk management”, English, in ESEC ’89, ser. Lec-
ture Notes in Computer Science, C. Ghezzi and J. McDermid, Eds.,
vol. 387, Springer Berlin Heidelberg, 1989, pp. 1–19. doi: 10.1007/3-
540-51635-2_29.

63

http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1109/MCSE.2009.15
http://www.mathworks.com/matlabcentral/fileexchange/17291-fdep--a-pedestrian-function-dependencies-finder
http://www.mathworks.com/matlabcentral/fileexchange/17291-fdep--a-pedestrian-function-dependencies-finder
http://www.mathworks.com/matlabcentral/fileexchange/17291-fdep--a-pedestrian-function-dependencies-finder
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://steve.savitzky.net/Songs/alphabet/
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://kissfft.sourceforge.net/
http://kissfft.sourceforge.net/
http://dx.doi.org/10.1007/3-540-51635-2_29
http://dx.doi.org/10.1007/3-540-51635-2_29

[73] M. Frigo and S. G. Johnson. (19th Mar. 2007). benchFFT: FFT accu-
racy benchmark results, [Online]. Available: http://www.fftw.org/
accuracy/ (visited on 30th Oct. 2015).

[74] M. Tasche and H. Zeuner, “Worst and average case roundoff error anal-
ysis for FFT”, BIT Numerical Mathematics, vol. 41, no. 3, pp. 563–581,
doi: 10.1023/A:1021923430250.

[75] Y. O. Halchenko and M. Hanke, “Open is not enough. let’s take the next
step: An integrated, community-driven computing platform for neuro-
science”, Frontiers in Neuroinformatics, vol. 6, no. 22, 2012. doi: 10.
3389/fninf.2012.00022.

64

http://www.fftw.org/accuracy/
http://www.fftw.org/accuracy/
http://dx.doi.org/10.1023/A:1021923430250
http://dx.doi.org/10.3389/fninf.2012.00022
http://dx.doi.org/10.3389/fninf.2012.00022

	Contents
	List of Figures
	List of Algorithms
	Acronyms
	Notation
	Introduction
	Motivation
	Scientific software
	Open science and scientific software engineering
	Open neuroscience
	BigNeuron

	Systems Development Life Cycle
	System objectives
	Benefits
	Neuron reconstruction and tracing
	Segmentation-based reconstruction
	Seed point reconstruction
	Neuron tree similarity metrics

	Planning and Analysis
	Design principles
	Challenges and risks
	Roads not taken
	ORION3 MATLAB call graph

	Design
	Incorporation of ORIONm
	Algorithms and architecture
	Anticipating change
	Directory structure
	Build system

	Implementation
	Data structures
	Numerical considerations
	Prototyping components
	Library integration

	Testing and verification
	Testing portability
	Tracing-based comparison with orionmat

	Conclusion
	Bibliography

