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Abstract

Maritime vehicle routing and scheduling problem has been studied extensively

in the context of risk mitigation. This dissertation addresses three maritime vehicle

routing problems and its mathematical frameworks considering environmental uncer-

tainty.

First, LNG shipping problem is investigated considering LNG market change,

ship construction technology advances and random boil-off gas (BOG) generation.

This is formulated as a two-stage stochastic mixed integer program. In the initial

stage, a single production-inventory plan and routing schedule is determined before

the realization of the random BOG generation. For every possible realization of the

random BOG, the second-stage variables are represented by the amount of LNG

surplus or shortage when an LNG carrier arrives at a regasification plant. This model

provides a flexible transportation strategy reflecting LNGmarket trend and diversified

LNG carrier specifications.

Second, LNG production-inventory planning and ship routing under random

weather disruptions is discussed. This problem is formulated to two optimization

models: a two-stage stochastic mixed integer programming model and a paramet-

ric optimization model. The first one maximizes the overall expected revenue while

minimizing disruption cost which results from extreme weathers. The second one, a

parametric optimization model, attempts to reflect the decision maker’s preference

on risks by varying the ratio of revenue to on-time delivery. Therefore, a decision

maker can have a ’what-if analysis’ to compare multiple options for the final planning

decision. Stochastic production-inventory control constraints set is also developed

which synchronizes production-inventory plan and LNG carrier routing schedule un-

der weather disruption.
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Lastly, offshore pipeline networks damage assessment problem is discussed. In

order to collect how/what might have caused pipeline damages by a weather disrup-

tion, multiple AUVs are pre-positioned at some selected underwater locations before

the beginning of the extreme weather. Once the weather clears up, the pre-deployed

AUVs start pipeline damage assessment. This problem is formulated as a two-phased

multiple AUVs pre-positioning and routing model. The first phase problem is to deter-

mine optimum AUVs’ pre-positioning locations considering maximum AUV operating

distance and random weather impact. In the second phase, AUV paths are generated

to scan the designated offshore pipeline networks while minimizing operating cost

proportional to the number of pre-deployed AUVs.
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Chapter 1

Introduction

1.1 Background

Through the history of mankind, global supplies and passengers have transported

by sea. World seaborne trade has been increasing in proportion to the upward trend

of the world merchandise trade as shown in Figure 1.1. Oil and gas garnered 28

percent share of the world seaborne trade in 2014 in Figure 1.2 [1]. Therefore,

it is very important task to analyze potential risks which prevents safe maritime

transportation and its supporting activities, and to develop solutions to overcome the

challenges from the perspective of energy security.

There are various potential risks in maritime environment including such as

human-error, natural disaster (e.g. hurricane, earthquake, tsunami, and storm), ter-

rorism, fire and explosion. The most frequent and continuous causative factor in

maritime-based activities is extreme weather events. Due to the bad weather, if

ships are forbidden to sail, and energy production-inventory, and shipping related

onshore/offshore infrastructures are destroyed, then it not only negatively influence

on stable energy supply to global customer, but also can cause environmental con-

tamination in cases of oil spills or gas leaks.

In order to control these potential risks, three steps of risk mitigation procedures

can be considered: 1) disaster (emergency) preparedness, 2) response, 3) recovery

and restoration [7]. From the perspective of disaster (emergency) preparedness, ships

and fixed onshore/offshore installation can be constructed in order to properly endure

against any disruptions. If an installation is robust enough, on the other hand, it may

1



Figure 1.1: World GDP, merchandise trade and seaborne shipments (1975-2014) [1]

Figure 1.2: International seaborne trade (millions of tons loaded) [1]
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increases initial setup cost. Crisis management procedures or emergency response sys-

tems can be upgraded to enhance emergency response capability. In general, recovery

and restoration is considered as a consequence management if a disruptive situation

is out of control in real time.

This study puts emphasis on risk mitigation in LNG production-inventory plan-

ning, LNG shipping, and damages on offshore supporting facilities while considering

all three steps of risk mitigation procedures.

1.1.1 LNG Value Chain

Natural gas is becoming an important energy source worldwide which accounts

for more than 1/5 of the global energy trade. The areas of application for natural

gas are in industrial sectors, as well as residential and commercial sectors. Following

recent advances in drilling techniques, the market has seen a significant increase in

production from unconventional gas resources which were previously not economically

efficient. Therefore, prices have dropped to levels that are very competitive with

other fossil fuels. As natural gas is also favored among the fossil fuels with regard

to environmental concerns, expectations are that growth in demand and supply will

continue [8].

Natural gas can be transported to customers either through pipelines or by a

fleet of LNG cargo ships [9]. The trade of natural gas through pipeline is conve-

nient and economical up to 2,500 kilometers. However, as shipping distance increases

above this maximum distance, maritime transportation of natural gas becomes more

economically efficient [10].

In the last decade, there has been a remarkable upward trend in the LNG in-

dustry globally shown in Figure 1.3 [11, 12]. The Global LNG industry is expected

to make up 40 %of the world energy consumption by 2016 not only because LNG

is highlighted as a cleaner and more efficient energy source when compared to other

3



Figure 1.3: LNG trade volumes (1990-2013)

fossil fuels, but also because North America raises shale gas production and Asian

demand increases steadily [13, 14].

The majority of LNG has been traded by long term sale and purchase contracts

which spans 20-30 years ensuring a stable supply and demand. Most LNG ships

have been tied to specific contracts and shuttled between given liquefaction terminals

and regasification terminals. In recent years, however, it has been observed that

the portion of short-term contracts and spot demand is rapidly increasing in the

LNG market, this trend is depicted in Figure 1.4 [2]. The spot market introduces

more flexibility, which in turn means high fleet utilization of LNG cargo ships. The

changing demand pattern is directly causing the LNG supply strategy to be more

flexible.

The LNG value chain is composed of five phases as seen in Figure 1.5 [3]. Once

natural gas is produced and stored, at a temperature of -160 ◦C, it is loaded into a

vessel in liquid form to minimize the volume to 1/600 of its gaseous state for marine

transportation. When an LNG vessel arrives at a regasification terminal, LNG must

be transformed back to its original gaseous state for ground transportation [15]. This

study covers the first three phases from ’gas production’ to ’unloading.’ Within this

scope, suppliers can optimize their production inventory schedules while making ship

routing decisions for a specific time horizon that satisfies the terms and conditions of

4



Figure 1.4: Total, contracted and spot & short-term LNG trade [2]
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Figure 1.5: LNG value chain [3]

Figure 1.6: Instantaneous pressure distribution at the moment of sloshing impacts in high
and low-filling level conditions[4]

their contracts.

LNG vessels usually sail in the fully loaded condition or with minimum filling

of LNG to cool down the tank temperature. Otherwise, partly loaded vessels can

make an adverse sloshing impact to the containment system and vessel structure as

illustrated in Figure 1.6 [4].

Thanks to recent advances in ship design technology, newly constructed LNG

vessels can voyage without completely filling the tanks [16, 17]. Consequently, LNG

transportation strategies are transforming to cope with the changing business envi-

ronment. The next generation of LNG shipping model may need to satisfy multiple

customers with different contract durations utilizing various types of LNG vessels

6



Figure 1.7: LNG stratification inside tank

with different technological constraints and cargo capacities.

There are many inherent uncertainties in the LNG value chain network which

can lead to significant differences between the planned supply schedule and the actual

delivery to customers.

Uncertain weather conditions and geo-political volatility (e.g. Japanese tsunami

in 2011, Russian military intervention in Ukraine in 2014-2015) have disrupted stable

supply of traditional energy sources. Hence LNG trade is steadily growing as an

alternative energy source.

Maritime LNG transportation takes from a few days to a few weeks in general.

The transportation time can fluctuate due to uncertain marine weather conditions.

The weather variations also influence the laden LNG cargo by constantly changing

the internal tank environment (e.g. temperature, density and pressure). Therefore it

is hard to estimate the amount of natural gas that evaporates during the voyage seen

in Figure 1.7 [18].

Another disruption factor in LNG trade is extreme weather condition such as

hurricane, dust storm, and fog. For example, dust storms impact the world’s largest

7



LNG production facilities in Ras Laffan, Qatar. Dust storms occur in southwest of

Iran near the Persian Gulf which cause a negative impact on LNG production and

activities in the region [19]. The topography within the region contributes to the

frequency and intensity of dust and sand storms in this area. The natural funneling

of large air masses by the high mountains in Turkey and Iran combined with the

heights in Saudi Arabia, help funnel air across the Mediterranean into the Persian

Gulf [20, 21]. Dust storm can last from a few hours to a few days and its’ hourly

mean speed is 17 knot or above. The storm disturbs LNG loading operations in the

phase of transition from a storage to an LNG cargo vessel which takes about 24-36

hours. Dust storm severely disrupt LNG loading operations. The strong winds cause

the LNG loading arms and berthed cargo vessels to shake loading. Loading under

this conditions could lead to a gas leak, and also can quickly reduce visibility to 1/4

of a mile or less. In extreme cases, leaked gas can cause a ‘rapid phase transition’

fire and explosion, or injure people through direct contact due to its extremely low

temperature. Therefore, from a safe LNG supply viewpoint, on-going LNG cargo

loading must be strictly prohibited during a storm period and all scheduled loading

must be postponed until the storm passes to prevent any accidents.

1.1.2 Offshore Pipeline Damage Assessment

Oil and gas products transportation by pipeline system has many benefits com-

paring with shipping by trucks or cargo ships. As the pipeline networks usually avoid

densely populated area, it secures safer and reliable environment. Once pipeline net-

works are setup as permanent infrastructure, maintenance cost is lower than others

measures over the long run, and transit loss of pipeline shipping is negligible as well.

Any states of products - in liquid, gaseous, or slurry form - can be transported by

pipelines without limitations.

Pipeline systems can be categorized as onshore and offshore pipelines. Cross

8



Figure 1.8: A dust storm in the Persian Gulf [5]

country trunk pipelines, spur lines, and gathering and distribution lines are classi-

fied as onshore pipelines. Trunk lines, infield pipelines, intra-field pipelines, offshore

terminals, and effluent outfalls are offshore pipelines. The focus of this research is

offshore pipeline system.

Offshore pipelines system is mainly composed of main pipeline, risers, laterals,

pipeline end manifolds, shore approaches and terminal facilities, and electrical and

instrumentation system.

There are six stages of offshore pipeline installation: conceptual study, feasibility

study, basic engineering, detailed engineering, construction, and testing and commis-

sioning. Especially, when designing a pipeline network, six routing factors must be

carefully considered: pipeline length, sensitive locations, obstructions, installation

limitations, crossings, and drilling and rig movement.

In the Gulf of Mexico, majority of the pipeline systems setup after 1970th have

been designed to sustain storms for 100 years. However, despite of the storm-resistant

9



design, after experiencing years of hurricanes, it was observed that pipelines were

damaged by various reasons [22].

According to the Saffir-Simpson hurricane scale in Figure 1.9, hurricane is

categorized as five levels. This scale helps to estimate potential damages on property

along the coast from a hurricane landfall [6]. The strength of storm surge is highly

depends on the slope of the continental shelf and the shape of the coastline and wind

velocity are key factors to determine the scale of hurricane.

For example, in 2005, Hurricanes Katrina and Rita had significantly disrupted

production capability of the oil and gas industry along the Gulf of Mexico. When

hurricane Katrina entered the outer continental shelf (OCS), the strength was in

category 5, and hurricane Rita was a category 4.

After the two major hurricanes, 10% of the nation’s consumption was shut-in

because of production problems in the Gulf of Mexico, which are mainly due to critical

infrastructure damages. As the United States relies on the oil and gas supply from

the Gulf of Mexico, its impact to the economy has increased as well [23].

It has been reported that more than 600 offshore pipeline damages. Most of the

pipeline damages were found near platform interfaces, and estimated that caused by

the movement of pipelines that are near shore and in shallow water. In general, it is

difficult to identify how and what might have caused pipeline damages. We can only

assume the cause of damages in accordance with previous studies such as failure of

installation fixture, strong impact forces such as extreme hydrodynamic loading and

mud slide, inadequate design of the riser support clamps, or drifting vessels and its

anchor dragging during an extreme weather [22, 24].

In order to find causal factors of the damages, it is essential to develop proper

procedures and techniques for subsea pipeline damage assessment. We may consider

to deploy multiple sensors or unmanned underwater vehicles (UUVs) [25].

UUV is usually categorized as remotely operated vehicle (ROV), autonomous

10



Figure 1.9: Saffir-Simpson hurricane scale [6]

11



underwater vehicles (AUV), and remotely towed vehicles (ROTV). Especially, AUV

is a maritime vessel that can travel underwater without an operator on its own power

source. AUV is used for surveillance and reconnaissance, mine countermeasures,

anti-submarine warfare, mapping of the ocean floor, testing water samples, polar ice

research, and pipeline inspection. As AUV has its own power source and does not

require operator’s involvement, AUV is replacing ROV. AUV products are divided

into three categories: 200 meters + depth of water (30% of the market), up to 200

meters depth of water (40%), up to 30 meters of water (30%) [26].

1.2 Optimization Problems

1.2.1 LNG Production-Inventory Planning and Vessel Rout-

ing Problem

In LNG business, production-inventory planning and LNG carrier routing prob-

lem involves the integration of two logistics components: production control & in-

ventory management and cargo vessel route planning. Accordingly, the problem is

formulated as an inventory routing problem so that suppliers can plan a production-

inventory schedule and a routing schedule for a fleet of cargo ships within a time

horizon based on the given terms and conditions of contracts.

As LNG carrier construction technology advances, ships are having a larger

cargo capacity, and relaxing the rules for loading or unloading conditions. In the

mean time, various types of contracts - short-term, spot, and long-term contract

- have to be satisfied by properly assigning LNG ships. Therefore, it is also an

important consideration in LNG supply problem. Similar to other perishable goods,

a certain amount of LNG in a cargo tank evaporates as time goes. Considering this

phenomenon, initial loading amount also has to be predetermined.

There are several decisions variables to find an optimal plan. The main variables

12



typically considered are the amount of LNG cargo delivering to each customer, as-

signments of vessels to each established path, the daily production & inventory level

in a given time horizon based upon the vessel routing schedule, and expected cargo

arrival time at customers’ side. Once a production schedule and routing decisions

are determined, the departure time and the arrival time of an assigned vessel at each

terminal can also be obtained.

The impact of extreme weather in LNG value chain is very significant as ex-

plained in the previous section. If a disruption delays or put forwards an LNG career

departure time, then related production-inventory schedule also influenced. For ex-

ample, if LNG career departure is changing to an earlier schedule, then the produced

LNG may not enough to satisfy the demand. On the other hand, if the cargo ship

has to departure in a later date, then as the stored LNG cargo in a ground facility

needs to be kept in the storage in an extended time period. Therefore, in order to

mitigate expected disruptions, weather forecast information can be utilized for initial

production-inventory planning and adjustment of the plan to minimize the potential

impacts to the supply operations.

1.2.2 AUV-aided Offshore Pipeline Damage Assessment Prob-

lem

Offshore pipelines damage assessment problem using multiple AUVs are catego-

rized two steps. In order to collect data to know what and how an extreme weather

influence to the pipeline network, pre-deployment of AUVs can be considered before

the beginning of an extreme event, and AUVs pre-deployment locations and timing

needs to be determined. From the pre-positioned locations, every targeted areas must

be covered considering maximum operating capacity of deploying AUVs. Well before

the beginning of an extreme weather, its forecast accuracy would be low. However,

as the time gets closer to the beginning of the extreme weather, the accuracy will
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be enhanced in spite of that the AUVs and supporting ships are exposing to a high

risk environment. The key consideration in AUV pre-positioning problem is how to

mitigate risks which is random by utilizing uncertain weather information.

Efficient path generation algorithm for AUV is very important as it maneuvers

in a designated target area without operator’s intervention. Once AUV begins to

operate underwater, it is difficult to communicate with supporting ship due to the

low bandwidth channels undersea. Therefore, AUV has to maneuver based on pre-

programmed route information and obstacle avoidance algorithm to search out an

optimal or sub-optimal path between an initial position and the desired target under

specific constraint conditions.

As one of the key research topics for AUVs, path planning is a necessary and

fundamental element of AUVs and makes the vehicle fully autonomous and reliable.

Its goal is to plan a sequence of suitable paths subjected to some optimization cri-

teria that allows the vehicle to complete its task objectives by reaching the specified

destination point from the starting location. No autonomous vehicle or robot can suc-

cessfully operate in a constrained environment without a systematic mechanism for

planning its motion path. Path planning is one of the key techniques of AUVs’ intelli-

gent control system. Assuming the underwater environment is known, the main idea

of the path planning is to keep the AUV following connected pipelines maneuvering

from the source position to the destination position according to some optimization

criteria.

1.2.3 Contributions

Contributions of this dissertation is highlighted as follows:

• In Chapter 3, a new mathematical model for LNG carrier routing and production-

inventory scheduling in the form of an inventory routing problem (IRP) is pro-

posed which can cover overall contract patterns including long-term, short-term
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and spot demand. A fleet of LNG carriers with partial loading and unloading

capabilities is exploited to serve multiple customers in a single route. This LNG

IRP is basis of stochastic extensions of LNG IRPs.

• In Chapter 4 and 5, it is suggested that two different versions of stochastic LNG

IRPs based on the proposed new LNG IRP model. The first one considers ran-

domly evaporating gas losses during transport. The second model is formulated

by considering the random impact of uncertain weather condition to LNG load-

ing operations. Specifically, the production inventory constraints is reinforced

to be more practical since an extreme weather affects not only routing decisions

but also production and inventory schedules. In the first stochastic model, boil-

off-rate (BOR) is considered as a random element [27]. However, in the second

one, BOR is set as a constant to highlight the impact of weather disruptions

as the random element in the model. This is a reasonable assumption because

the weather disruption are much higher than the impact of uncertain BOR in

the latter one. Probing-based preprocessing techniques are developed on to the

proposed LNG IRP model. These techniques utilize the relationship between

time windows and the amount of BOG generated in each path. Since the LNG

IRP is a highly complex two-stage stochastic mixed integer program, this ap-

proach reduces the size of problems and enables faster convergence. LNG IRPs

are reformulated by replacing the MTZ sub-tour elimination constraints to the

proposed logical inequality to enhance the computational performance [28]. A

decision maker’s preference (DMP) model is proposed which reflects a decision

maker’s risk preference as a primary consideration rather than maximizing ex-

pected profit. This model is formulated as a parametric optimization model by

setting the preference as a ratio to allow a decision maker to adjust their level

of preference on risk.
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• In Chapter 6, a new offshore pipeline damage assessment concept and proce-

dure is developed to minimize overall inspection time and cost. The proposed

approach begins by positioning a certain number of AUVs in pre-determined

nodes over the weather impact zone before an expected event. After the ex-

treme event, pre-placed AUVs maneuver over the network following the optimal

scanning paths. A two-phased mathematical optimization model is proposed

for multi-AUV pre-positioning and routing (MAUV). In phase 1 (MAUV-ph1),

the optimum AUV positions are found. The MAUV-ph1 is formulated as a two-

stage stochastic integer program, where the first stage decision determines each

AUV position and the second stage augments additional AUV positions based

on weather forecast. In phase 2 (MAUV-ph2), AUV scanning paths are gen-

erated while minimizing AUV operating cost and inspection completion time.

Four Computational techniques have been suggested, including constraints re-

formulation, probing-based pre-processing techniques, logical inequality, and

Lagrangian method, to enhance the computational performance.
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1.3 Organization

This dissertation is organized as follows.

Chapter 2 is a review of the optimization problems two areas: 1) LNG production-

inventory scheduling and ship routing, 2) AUV-aided offshore pipeline damage assess-

ment. It also includes a comprehensive overview about environmental uncertainties

associated with maritime vehicle routing problems. In Chapter 3, a new deterministic

mathematical framework for LNG IRP is presented reflecting technological advances

in LNG carrier design and diversifying demand patterns. In Chapter 4, a two-stage

stochastic LNG IRP model considering BOG generation uncertainty is introduced.

This model is an extension of the proposed deterministic LNG IRP in chapter 3. A

deterministic equivalent to a stochastic programming model is derived and solved by

Monte Carlo sampling techniques. Experimental results are demonstrated how the

proposed stochastic model outperforms the deterministic counterpart by measuring

the value of stochastic solution. In Chapter 5, the impact of random extreme weather

condition on LNG carrier routing decisions and production-inventory scheduling is

analyzed. Based on this analysis, two LNG IRP models are presented. The first one

is a two-stage stochastic LNG IRP model for revenue maximization while minimizing

disruption cost. Second one is a parametric optimization model to project a deci-

sion maker’s preference on risks. Chapter 6 discusses multiple AUV deployment and

path planning in support of offshore pipeline damage assessment. This problem is

constructed as a two-phased mathematical framework: 1) pre-deployment of multiple

AUVs for underwater weather impact data collection, 2) its path planning for pipeline

damage assessment. In Chapter 7, the dissertation is concluded with a summary of

contributions and future researches that can be pursued.
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Chapter 2

Literature Review

2.1 LNG Inventory Routing Problem

The IRP is an integration of production-inventory problem and vehicle routing

problem (VRP). The very first IRP was formulated as a mixed integer program to

manage industrial gases at customer locations [29]. Major applications of IRP are

usually in the oil and gas industries because of the maritime shipping environment.

From the perspective of ship routing and scheduling, the problems can be categorized

into four basic models: 1) network design, 2) fleet deployment, 3) tramp cargo routing

and scheduling problem and 4) maritime IRP for a single product [2]. The fourth

model is the focal point of this research.

Ship routing and production inventory planning in the LNG business is a rep-

resentative maritime IRP. While optimizing inventory and production levels within

a given time horizon, a fleet of LNG vessels must be properly assigned to a path be-

tween a liquefaction terminal and a single or multiple regasification terminals. Since

2009, there has been notable research on LNG IRP. The earliest LNG models pro-

posed were formulated in an arc-flow and a path-flow model considering inventories

at a liquefaction and regasification terminals [30]. Some of the LNG value chain

optimization models to decide sailing schedule and vessel assignments were studied.

These study reflecting variations in seasonal price, price gaps among markets and

various contract types [31, 32]. This problem is similar to this study, but it differs

as it serves single customer in a route. Traditional LNG demand is mostly identified

from well-determined long-term contracts, and so an annual delivery program (ADP)

was considered with a limited number of berths, and a heterogeneous fleet of LNG
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ships to fulfill a set of long-term contracts [33]. However, this model is unsuitable

when considering spot-demand and short-term contracts.

Since LNG IRP is a complex optimization problem under various conditions,

there have been many studies on solution techniques. LNG IRP with 800,000 variables

and 200,000 constraints has been solved by Lagrangian relaxation technique to near

optimality [29]. Three branch-and-price methods were also suggested [34, 35, 36]. A

rolling horizon heuristic iteratively solved short planning horizons while sub-problems

obtained a good solution citerakke2011rolling. Two constraint programming models

iteratively solved the problems, too [37]. A multi-start local search heuristic [38]

and a set of construction and improvement heuristic were also introduced [39] as

well as a two-stage decomposition algorithm that iteratively solved a master problem

and its sub-problems [40]. There is a heuristic with a local intra-period search and

a large inter-period neighborhood search [41] as well as an approximate dynamic

programming [42]. As the proposed LNG IRP is the first attempt to include more

than one customer in a single journey of a vessel, no identified solution techniques

have been developed.

In practice, the LNG IRP is significantly affected by uncertainties. This is also

the case for most other marine transportation problems. One of the most difficult

challenges is the ability to accurately estimate demands. A simple way to approximate

demand is to average recent customers’ inventory levels as a constant [29], or to

consider the demand as a random element [43]. Even if the demands are known,

disruptions from the supplier side can still make a value chain unstable [44]. Other

uncertainties are the volatile market prices which influences the production inventory

decisions [45] and the unusual commodity characteristics such as random evaporation

rate of BOG in LNG transportation which limits accurate estimation of cargo load

[27]. In maritime transportation, sailing time is inherently uncertain due to changing

weather conditions [46, 47] as well as extreme weather disturbance especially in the
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Persian Gulf [48]. However, neither of these studies have considered uncertain internal

system dynamics of LNG carriers, but mostly focused on the impact from external

environments.

It is particularly recognized that there is limited literature regarding BOG effect

in LNG value chain. In an early stage of research, the focus was on discovering the

characteristics of BOG in a partially filled tank and developing mathematical models

[49]. In addition, the occurrence and the effect of BOG on LNG value chain have

been examined dividing the time phases into three categories: loading, unloading

and marine transportation [18]. Although the concept of evaporated gas involving

LNG inventory routing problem has been studied, BOG was often considered as a

constant [48, 47, 34]. The initial literature review reveals that there is a need for more

research on the impact of BOG and weather disruptions and the possible solutions.

Especially, it has not been identified that any mathematical models consider weather

disruptions on the LNG value chain. Because of this, three challenging issues are

encountered. First, the existing deterministic LNG IRPs may not generate efficient

solutions in response to the random BOG or extreme weather disruptions. Second,

if the LNG IRP is approached by a two-stage stochastic programming model, it

requires significant computational cost to obtain optimal solutions. Lastly, and in

certain cases, if a decision maker wants to be involved in the planning process under

risks, it is required to develop a model to project such preference on risks.

2.2 AUV Deployment and Path Planning Problem

Path planning is inherently a routing process to find an optimal path selecting

nodes and arcs to complete a given mission. There are two types of path generation

techniques: global path generation and local path generation depending on informa-

tion availability [50]. In this dissertation, global path planning is the focus of the

research.
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Path generation algorithms for AUVs have been constantly developed and im-

proved in many ways. Artificial potential fields based path generation algorithm was

introduced. This algorithm generated an optimal solution with entire network infor-

mation on two- and three-dimensional problems [51]. D* and A* algorithms have

been introduced [52]. In particular, A* considers bathymetry, exclusion zone, ob-

stacle, and ocean current data bases to facilitate planning [53]. A* is practiced in

Western Mediterranean Sea by varying operational conditions [54]. The performance

of A* is proved by comparing with four other algorithms: breadth first search, depth

first search, and Dijkstra’s and wall following algorithms. It has been observed that

A* and Dijkstra’s algorithm outperformed to the others. A continuous form of A*

algorithm which is named as FM* is developed [55]. This algorithm generates paths

continuously by updating perceived environmental information.

Mathematical optimization based approaches have been developed either in

mixed integer linear programming (MILP) or nonlinear programming. Multi-beam

forward looking sonar aided real-time obstacle avoidance and path planning algo-

rithm is developed. This is a nonlinear programming model which generates path

while minimizing the Euclidean distance to the goal [56]. Genetic algorithm is pro-

posed which minimizes the energy cost considering the variability of the environment.

This model generated an optimum path to cross the Sicily channel which has strong

current fields and complex [57]. MILP-based path generation algorithm for adap-

tive sampling is presented. This algorithm aims to maximize the line integral of the

uncertainty of field estimate along the generated path. This model considers to op-

timize multiple AUV paths based on a supporting ship [58]. Sensor-Driven Online

Coverage Planning for AUVs is formulated as a multi-objective optimization model

[59]. Three-dimensional path planning technique is suggested and solved by multi-

objective optimization algorithm. This model considers four criteria: total length of

path, margin of safety, smoothness of the planar motion, and gradient of diving [60].
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As real-time obstacle avoidance and path generation is an important research

area, various algorithms have been developed. In the early stage of the research in

real-time path planning and obstacle avoidance is designed to conduct two real-times

missions: pre-deployment survey of sea bottom and visual inspection of pipelines [61].

Morse-based boustrophedon decomposition coverage path-planning algorithm for 3D

coverage and Stochastic Trajectory Optimization for Motion Planning (STOMP) al-

gorithm is used for real-time path re-planning [62]. Informative path planning is

suggested which has used for surface vehicles. This model generates paths while

maximizing mutual information [63].

In another approach, two risk-aware path planning techniques - minimum ex-

pected risk planner and risk-aware Markov decision process - are proposed from the

perspective of safety and reliability of AUV operations [64]. Case-based path planning

is presented. This algorithm retrieves a matching rote from the DV and modifies it

to suit to the current situation. If there is no matching route, then it generates a new

routes based on past cases which have similar navigational environments [65]. Hybrid

route-path planning model is developed which utilizes task assign-route planning and

path planning based on differential evolution and firefly optimization algorithms [66].

Multiple AUVs task assignment and path planning have been studied considering

variable ocean current. The goal of this model is to reach all designated target nodes

[67]. In many AUV path generation problems, two criteria can be considered to select

a preferred path generation algorithm: length of the path and computational time.

By properly combining of two criteria in an objective function of a path planning

model, an optimal solution can be obtained [68].

There has been an increasing trend of research on unmanned vehicle applica-

tions. Considerable body of work on a large number of AUVs has been done includ-

ing topics such as coordination between multiple unmanned vehicle (UV) operators

[69], future position prediction [70], traffic flow optimization [71, 72], and routing
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optimizations [73, 74]. Especially, mathematical optimization models for multiple

UV task assignment and path planning have studied considering technical specifi-

cations and operational constraints including mission types, time limits, and no fly

zones [75, 76, 77, 78, 79]. This problem has the structure of multiple vehicles rout-

ing problem, and is tried to be solved by either exact or approximation algorithms

[80, 81, 82, 27]
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Chapter 3

A New Deterministic Framework for LNG IRP

3.1 Introduction

In this chapter, a novel LNG ship routing and production-inventory planning

model in the form of IRP is presented which serving geographically dispersed mul-

tiple customers using a fleet of heterogeneous vessels. This model can cover any

type of contract patterns including long-term, short-term and spot demand. It is ex-

ploited that a fleet of heterogeneous LNG carriers with partial loading and unloading

capabilities to serve multiple customers in a single route.

The rest of this chapter is organized as follows: Section 3.2 describes the pro-

posed problem. Section 3.3 provides mathematical formulations of the LNG ship

routing and scheduling problem in a deterministic form.

3.2 Problem Statement and Model Overview

The general goal of the proposed LNG IRP is to provide an optimal production

inventory schedule and transportation plans that satisfy all demands from customers

in an LNG supply chain while maintaining the terms and conditions of the contracts.

LNG contracts typically include the duration of a contract, frequency of deliveries,

the total amount of demand, and expected shipping dates and locations.

This model generates biannual shipping schedule that maximize the profit and

meets all customer demands, while ensuring the optimal LNG production and in-

ventory level at the liquefaction terminal in each time period. The shipping plan
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includes not only long-term contract but also short-term and spot demand. All op-

erating vessels must initiate a tour from a liquefaction terminal at the depot and

complete the tour after unloading cargoes visiting regasification terminals at remote

demand locations by designated sea routes.

For the maximization of the expected revenue, an LNG supplier has to consider

various aspects such as maximum capacities for production and storage, the total

number of LNG vessels per types, and shipping time. This problem considers two

types of LNG vessels according to the specifications of cargo tanks. The first vessel

type has a strict barred filling limit of LNG cargo which is categorized as a Type I

vessel. It has a permissible loading range that is either more than 70 % or less than

10 % of the tank. This exact filling limit is due to the sloshing impact which increases

potential risks such as gas leaks and other related accidents [27]. The second vessel

type (Type II) is not limited to this filling limit for its cargo. It is flexible to any level

of partial loading based on the cargo tank capacity which allows for numerous cargo

discharges at multiple regasification terminals in a path [83, 84]. Type I vessels can

only serve individual customers unless the additional short-term or spot demand is

very small. Type II vessels have no restriction on partial tank filling so that multiple

customers can be served by an assigned LNG vessel within the given tank capacity.

Unlike other products, the BOG during marine transportation is proportional to

the amount of cargo and shipping distance. Therefore, the loading amount of LNG

from a departing regasification terminal must aggregate not only all demands in a

path but also estimated BOG during a voyage. In particular, if a Type II vessel

is assigned to a path serving more than one customers, the overall sailing time in a

voyage may be longer than the travel time of each Type I vessel. As a result, a supplier

must consider gas losses during the shipment because the amount of evaporating gas

is proportional to the time of voyage.

This problem is formulated as a deterministic LNG IRP considering the constant
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rate of BOG. In addition, shipping grace period is considered to give a scheduling

flexibility. But, if a shipping delays beyond the grace, then it generates a penalty for

the delay which is proportional to the number of delay days.

There are four categories of decision variables involved in the problem: 1) the

amount of LNG cargo delivered to each customer, 2) vessel assignment to a path,

3) the daily inventory and production schedule, 4) departure and arrival time of an

incoming and outgoing vessel at each regasification terminal.

3.3 Mathematical Formulation

3.3.1 Sets, Elements, Data and Variables

In the context of IRP, the problem can be modeled on a directed network

G(V,A). A supplier at a liquefaction terminal i ∈ V delivers the requested LNG

cargo in time period t Dj,t to a customer at a regasification terminal j ∈ V by LNG

vessel k ∈ K through the traverse arc (i, j) ∈ A. A supplier transports a total r

number of cargoes to its customers within a given time horizon in accordance to the

agreed contracts. The most appropriate LNG vessel k ∈ K is assigned to transport

demand from each customer j ∈ V . Recall from the previous section that there are

two types of vessels: Type I vessel k1 ∈ K1 and Type II vessel k2 ∈ K2. Type I vessels

strictly follow the barred cargo fill range α. When an LNG vessel k ∈ K makes a

tour, the sequence of visits is determined by introducing a flow variable ui for each

terminal i ∈ V . To determine the daily production rate xprdt and inventory level xstrt

within a time horizon, a maximum production capacity ψ and minimum production

rate ψ must be considered, and a maximum storage capacity ρ and minimum safety

stock level ρ . When a customer j ∈ V \{1} wants to receive an ordered demand in

time period t Dj,t at the expected target delivery date TM tot
j , a shipping schedule

allows for the grace period β. The departure time xdepj of a vessel from a departing
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liquefaction terminal to a regasification terminal j ∈ V and arrival time xtotj to a

regasification terminal j ∈ V must be provided.

The deterministic LNG IRP model is presented in this section as a full formu-

lation. The following notations have been used, some of which have already been

defined. Then the mathematical formulation is presented with explanations on it:

Sets:

S Set of LNG terminals;

T Set of time periods;

K Set of LNG tankers;

G (V,A) Directed graph nodes V = {1, 2, ..., |S| = s + max(s) · (r − 1)

where r is a sequence of deliveries per terminal } as the set of

terminals and A = {(i, j) : i, j ∈ V, i 6= j} as the set of arcs in the

planning time horizon;

H Index of the origin (depot), where h = 1 + |S| (t− 1) = max(s) ·

(t− 1) in the planning time horizon, H ⊆ V ;

R Index of Type I LNG tanker, R ⊆ K;

K1 Set of Type I LNG vessels, K1 ⊆ K;

K2 Set of Type II LNG vessels, K2 ⊆ K, and K1 ∩K2 = ∅.

Data:

TRi,j Estimated travel time from i to j;

Cvsl
k Daily shipping cost of a vessel type k;

Dj,t Demand at j in time period t;

R Unit revenue of LNG per billion cubic meters (bcm) ;

TM tot
j Expected target delivery date at j;
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CGvsl
k Cargo capacity of vessel k;

Cstr Unit storage cost;

Cprd Unit production cost;

γ Maximum number of terminals can be visited in a route;

M Big-M;

α Barred fill range (%) of Type I LNG vessels α;

β Number of days of grace;

ε Boil-off rate (BOR) (%) [ε, ε];

ρ Minimum / maximum storage level [ρ, ρ];

Decision Variables:

xlngi,j Amount of loaded LNG at terminal i heading to terminal j;

xvsli,j,k =


1,

0,

If vessel k operates from terminal i to terminal j;

Otherwise;

xprdt Production level on date t;

xstrt Storage level on date t;

xtotj Vessel arrival date at a regasification terminal j;

xdelj Number of days of shipping delays at a regasification terminal j;

xdepj Departure date from a liquefaction terminal to a regasification ter-

minal j;

ui A flow in the vessel after it visits terminal i.
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3.3.2 Objective Function

The objective function is defined as

max R ·

 ∑
j∈V \{1}

∑
t∈T

Dj,t −
∑

(i,j)∈A
ε · TRi,j · xlngi,j


−
∑
t∈T

Cprd · xprdt

−
∑
t∈T

Cstr · xstrt

−
∑

(i,j)∈A

∑
k∈K

Cvsl
k · TRi,j · xvsli,j,k

(3.1)

to maximizes the overall revenue considering all cost factors in the supply chain. The

first term maximizes profit by subtracting the cost of evaporated gas in accordance

with BOR, duration of shipping and the amount of LNG in a cargo tank. The second

and third term minimize production and storage cost. These values are dependent

not only on the production level and storage level but also on the amount of BOG and

ship routes decisions indirectly from the first term. The fourth term is to minimize

overall vessel operating cost based on daily shipping cost of each vessels and ship

duration from a previous terminal to next destination.

3.3.3 Constraints

The proposed model considers multiple time periods in a planning horizon. How-

ever, it is formulated as single time period model by re-indexing the terminal index

with time period index. So, the index of terminals implies what terminal is served

in which time period. For indexing purpose, all redundant indices of liquefaction

terminals in the model are nullified by constraints (3.2) and (3.3):

∑
k∈K

xvsls,s+|S|(t−1),k = 0, ∀s ∈ S, t ∈ T\{1} (3.2)
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and ∑
k∈K

xvsls+|S|(t−1),s,k = 0, ∀s ∈ S, t ∈ T\{1}. (3.3)

When a route decision is made, a vessel assignment also has to be determined

simultaneously. Once a vessel is assigned to a path, the vessel must complete the tour

without being replaced by other vessels returning to the origin. Therefore, flow of a

vessel from a previous terminal to a following one is described as

xvsli,j,k ≤
∑
k∈K

xvsli,j,k ≤ |S| − (|S| − 1) · xvsli,j,k, ∀(i, j) ∈ A, k ∈ K. (3.4)

When a ship is assigned to a route, the amount of laden LNG cargo must be less

than the tank capacity of a vessel. This condition is defined as

xlngi,j ≤
∑
k∈K

CGvsl
k · x

lng
i,j , ∀(i, j) ∈ A. (3.5)

The number of operating vessels also must be less than the number of vessels in

a fleet and is expressed as

∑
(i,j)∈A

xvsli,j,k ≤ |K|, ∀k ∈ K. (3.6)

All departing vessels must return to the original liquefaction terminal once they

finish all planned shipping and is defined as

∑
j∈V

∑
k∈K

xvslh,j,k =
∑
i∈V

∑
k∈K

xvsli,h,k, ∀h ∈ V. (3.7)

Constraints (3.8) and (3.9) establish the condition that a customer receives a

shipment by one designated vessel in each time period:

∑
j∈V

∑
k∈K

xvsli,j,k ≤ 1, ∀i ∈ V \{1} (3.8)
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and ∑
i∈V

∑
k∈K

xvsli,j,k ≤ 1, ∀j ∈ V \{1}. (3.9)

As stated above, all outgoing vessels from a depot must return to the same

location, and should not terminate the tour while making any sub-tours. For each

routing decision, MTZ sub-tour elimination constraints filter any possible sub-tours

and is defined as

ui − uj + γ ·
∑
k∈K

xvsli,j,k ≤ γ − 1, ∀(i, j) ∈ A. (3.10)

The relation between the amount of LNG loading to a cargo tank and the de-

mands in each time period is denoted as

∑
i∈V

(1− ε · TRi,j) · xlngi,j −
∑
t∈T

Dj,t =
∑
l∈V

xlngj,l , ∀j ∈ V \{1}, (3.11)

Particularly, as evaporated gas losses are expected during transportation, an addi-

tional amount of LNG is considered in the constraints.

Once a laden LNG vessel unloads all cargoes at each regasification terminal, the

returning vessel must be empty in practice. So, constraints (3.12),

∑
i∈V

xlngi,h = 0, ∀h ∈ V, (3.12)

set the cargo level of laden LNG vessel returning to a liquefaction terminal as ‘0’.

Based on LNG contract terms, a specific amount of LNG cargoes have to be

delivered to customers at the expected time on regasification terminals allowing a few

days of grace period. Accumulated sailing time of an operating vessel is described as

xtotj ≥ xtoti + TRi,j −M · (1− xvsli,j,k), ∀(i, j) ∈ A, k ∈ K (3.13)
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and

xdepj ≥ xtoti + TRi,j −M · (1− xvsli,1,k), ∀(i, j) ∈ A, k ∈ K. (3.14)

Time window is obtained by backward calculation from an expected delivery date on

a target customer and defined as

|xtotj − TM tot
j | ≤ 0.5 · β, ∀j ∈ A. (3.15)

set the time window from an expected delivery date on a target customer.

As type I LNG vessels have strict filling limits on cargo tanks during voyages,

the conditions is set as

xlngi,j ≥ α · CGvsl
k · xvsli,j,k, ∀(i, j) ∈ A, k ∈ K1. (3.16)

Planning production inventory levels are determined by the demand in each time

period and formulated as

xprdt − xstrt + xstrt−1 =
∑
j∈V

Dj,t, ∀t ∈ T. (3.17)

Allowed minimum and maximum storage level at the liquefaction terminal is

constrained as

ρ ≤ xstrt ≤ ρ, t ∈ T. (3.18)
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Chapter 4

LNG IRP under BOG Uncertainty

4.1 Introduction

The presented deterministic LNG IRP model in the previous chapter is extended

to a two-stage stochastic model considering BOG uncertainty. Before a realization

of the random BOG, a single production inventory schedule and a vessel routing

plan are executed to supply the requested demand. After a realization of random

BOG generation during the shipping, the amount of LNG surplus or shortage can

be known. Consequently, this model maximizes the revenue particularly minimizing

the expected cost in the second stage. The stochastic LNG IRP is approximated to

a deterministic equivalent and solved using Monte Carlo sampling techniques. The

solutions are evaluated by expected value of perfect information (EVPI) and value

of stochastic solution (VSS). The result shows that the proposed model yields more

stable solutions over the deterministic model.

The remaining part of this chapter is organized as follows: Section 4.2 describes

the proposed problem. Section 4.3 provides mathematical formulations of the two-

stage stochastic LNG IRP considering random BOG. Then, Section 4.4 presents the

computational study with test case description and settings, numerical results and

sensitivity analysis. Finally, the chapter is concluded in Section 4.5.

4.2 Problem Description

Since this model is an extension of the proposed deterministic LNG IRP, it

follows all notations and specification defined in the previous chapter.
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It is analyzed that Type II vessels stop at multiple regasification terminals in a

path, the total sailing time may be longer than the schedule of a Type I vessel which

serves only one customer per voyage. As a result, this may leads to a relatively large

amount of evaporating gas in a tank in proportion to the time on the sea. In the

first stage problem, a single production-inventory schedule and LNG vessels routing is

obtained before a realization of the random BOG generation. After the realization of

the random gas evaporation, the amount of LNG surplus or shortage can be known

when discharging the LNG cargo. For example, if 100,000 bcm is required by a

customer, 100,500 may be loaded in an LNG carrier ship considering 500 bcm as the

estimated BOG. However, after a voyage, if a dischargeable cargo at a destination

is 99,900 bcm due to a gas loss, then you have to compensate the customer for the

undelivered 100 bcm. On the other hand, if 100,100 bcm is available at the end, then

the remaining 100 bcm may not generate any revenue unless the surplus is sold as a

spot demand. In this research, it is assumed that the value of the latter case is ‘0’.

4.3 A Stochastic Extension of BOG Impact to LNG IRP

For the reformulation, it is followed that the general notations already defined

in the previous chapter, the following are stochastic elements.

Stochastic Elements:

ω ∈ Ω Set of scenarios;

pω ∈ P The probability mass function in accordance with scenario ω ;

xlngi,j,ω Amount of loaded LNG at terminal i heading to terminal j in

accordance with scenario ω;
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y+
t,ω Amount of LNG surplus at a regasification terminal on date t in

accordance with scenario ω;

y−t,ω Amount of LNG shortage at a regasification terminal on date t in

accordance with scenario ω;

Ccom Compensation cost for the amount of LNG shortage at a regasifi-

cation terminal.
A two-stage stochastic model can be written as [85]

max
x∈X

cTx−Q(x), (4.1)

s.t. Ax = b,

and the recourse function Q(x) is translated as

Q(x) = EωQ(x, ω) =
∑

(i,j)∈A

∑
ω∈Ω

pωQ(x, ω), (4.2)

where

Q(x, ω) = min
y∈Y

dTωy,

Tωx+Wωy = hω,

(4.3)

which follows a discrete probability distribution P .

We consider BOG which is randomly generated within a minimum BOR ε and

a maximum BOR ε and added to the calculation for the amount of loading LNG in

a vessel during a laden voyage.

We denote Eω as a mathematical expectation, and ω as a scenario with respect

to probability space (Ω, P ). In the two-stage LNG routing problem, Q(x, ω) is the

optimal value of BOG (second stage problem). First stage decisions are expressed in
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vector x and second-stage decisions are actions represented by y. Accordingly, the

objective function of the deterministic model can be reformulated into a stochastic

form:

R ·

 ∑
j∈V \{1}

∑
t∈T

Dj,t −
∑

(i,j)∈A

∑
ω∈Ω

pω · εω · TRi,j · xlngi,j,ω


−
∑
t∈T

Cprd · xprdt

−
∑
t∈T

Cstr · xstrt

−
∑

(i,j)∈A

∑
k∈K

Cvsl
k · TRi,j · xvsli,j,k

−
∑
t∈T

∑
ω∈Ω

pω · (R + Ccom) · y−t,ω.

(4.4)

The relation between the amount of LNG loading to a cargo tank ans the de-

mands expressed in constraints (3.11) is replaced by

∑
i∈V

(1− εω · TRi,j) · xlngi,j,ω −
∑
t∈T

Dj,t =
∑
l∈V

xlngj,l,ω, ∀j ∈ V \{1}, ω ∈ Ω. (4.5)

The dischargeable amount of LNG at an arriving terminal depends on how much

BOG is generated during transport. This mechanism is expressed as

∑
i∈V

(1− εω · TRi,j) · xlngi,j,ω −
∑
t∈T

Dj,t

=
∑
l∈V

xlngj,l,ω −
∑
t∈T

(y−t,ω − y+
t,ω), ∀j ∈ V \{1}, ω ∈ Ω,

(4.6)

by adding or subtracting surplus or shortage from a contract demand. These second

stage variables are linked to the fifth term in (4.4).

The stochastic version of LNG IRP model has an infinite number of BOG sce-

narios. We try to obtain an approximated solution from a deterministic equivalent to
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a stochastic model using the Monte Carlo sampling. This allows us to have a decent

solution in a reasonable time.

Let ω1, ..., ωn be randomly generated samples drawn from P . Following the law

of large numbers, for a given vector x, we have

|Ω|−1 ·
∑
n∈N

Q(x, ωn), (4.7)

where EωQ(x, ω) with probability one.

Therefore Q(x) = EωQ(x, ω) is represented by the sample mean Q̂n(x) = |Ω|−1 ·∑
n∈N Q(x, ωn) and the replacing objective function (4.4) can be rewritten as

R ·

 ∑
j∈V \{1}

∑
t∈T

Dj,t − |Ω|−1 ·
∑

(i,j)∈A

∑
ω∈Ω

εω · TRi,j · xlngi,j,ω


−
∑
t∈T

Cprd · xprdt

−
∑
t∈T

Cstr · xstrt

−
∑

(i,j)∈A

∑
k∈K

Cvsl
k · TRi,j · xvsli,j,k

− |Ω|−1 ·
∑
t∈T

∑
ω∈Ω

(R + Ccom) · y−t,ω.

(4.8)
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4.4 Computational Result

4.4.1 Numerical Example

The computational study presented in this section evaluates the deterministic

LNG IRP model and two-stage stochastic model under BOG uncertainty by com-

paring solutions. In this section, the numerical example is described along with the

experimental settings to solve the problems. An optimal routing schedule is depicted

on a diagram with analysis on routing decisions. And then, the solution differences

between the deterministic and the stochastic model are compared by means of Ex-

pected Value of Perfect Information (EVPI) and Value of Stochastic Solution (VSS).

Further sensitivity analysis is done to investigate how the ratio between Type I and

II vessels in a fleet influence to optimal solutions and what are the implied meanings

of the composition of vessels.

The LNG IRP has been solved by GAMS/CPLEX [86] setting relative termi-

nation tolerance as 3% (optcr=0.03) and time limits as 10 hours (reslim=36000) in

GAMS/CPLEX. All following experimental outcomes were optimized on a 3.00 GHz

Intel Xeon machine with 400 GB of memory, running CPLEX version 12.6.

We tested the incidence of LNG business in Qatar, the biggest LNG exporter

with 5 contracted importers over the world planning a biannual shipping schedule.

For the deliveries, the supplier owns a total of 18 LNG vessels including 12 Type I

vessels and 6 Type II vessels. The average sailing speed is 19.5 nautical miles per

hour (kn). All sea routes are determined and the distances between terminals are

given as constants. Each demand is classified as long-term, short-term or spot with

expected target delivery dates with 4 days as time window. Overall planning horizon

is from D+0 to D+192 days. Daily BOG in a tank ranges 0.1% 0.15% follows a

normal distribution, N(0.00125, 0.0001045672). Inventory level is between 5,000 bcm

and 10,000 bcm at the depot. To solve the proposed model, weather scenarios are
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generated by Monte Carlo sampling technique.

Table 4.1: LNG cargo carriers

Tank capacity (bcm) Daily shipping cost (US $) Vessel type
#01 140,000 200,000 II
#02 140,000 195,000 II
#03 140,000 190,000 II
#04 140,000 185,000 II
#05 160,000 195,000 II
#06 160,000 190,000 II
#07 160,000 185,000 I
#08 160,000 180,000 I
#09 180,000 195,000 I
#10 180,000 190,000 I
#11 180,000 185,000 I
#12 180,000 180,000 I
#13 200,000 195,000 I
#14 200,000 190,000 I
#15 200,000 185,000 I
#16 200,000 180,000 I
#17 200,000 175,000 I
#18 216,000 180,000 I

Table 4.2: Shipping distance between terminals

(unit: knot)
Ter.#1 Ter.#2 Ter.#3 Ter.#4 Ter.#5

Depot 9,882 9,770 6,576 6,350 6,233
Ter.#1 533 9,191 5,073 9,940
Ter.#2 9,208 4,891 9,957
Ter.#3 11,513 954
Ter.#4 11,141

4.4.2 Result

Figure 4.1 shows the optimized 6 month routing plan from D+1 to D+192

observing target delivery dates with times windows per each time period. In the

schedule, 11 routes are generated and 9 LNG carriers are assigned to the routes.
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Table 4.3: Demands in the planning horizon

Time Index Demand (bcm) Target date Contract type
#02 60,000 D+36 spot demand
#03 62,500 D+36 short-term
#04 65,000 D+60 long-term
#05 175,000 D+60 long-term
#06 60,000 D+60 long-term
#08 60,000 D+72 spot demand
#09 62,500 D+72 short-term
#10 65,000 D+72 long-term
#11 175,000 D+120 long-term
#12 60,000 D+120 long-term
#14 60,000 D+108 spot demand
#15 62,500 D+108 short-term
#16 65,000 D+180 long-term
#17 175,000 D+180 long-term
#18 60,000 D+180 long-term

Table 4.4: Other parameters

Item Data Unit
Unit Price 105 US $ / bcm

Storage operating cost 10.5 US $ / bcm
Production cost 10.5 US $ / bcm

Maximum storage level 10,000 bcm
Minimum storage level 5000 bcm

BOG level [0.001, 0.0015] percent
Filling limit of vessels type #07- #18 0.9 percent

Vessel speed 19.5 knots
Time window (from a target date) 4 days

Among the assigned vessels, there are four Type II vessels serving two demand cargoes

in a route, and another seven Type I vessels delivering cargoes to a single customer

in a tour.

The measures to evaluate stochastic solutions are EVPI and VSS. EVPI is the

difference between Wait and See (WS) and stochastic solutions (RP) which expresses

the value of information. WS is defined as a probability-weighted average of deter-

ministic solution assuming any specific scenario realization [85]. In this experiment,
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Figure 4.1: LNG ship routing plan from D+1 to D+192

Figure 4.2: Optimal solutions of WS, RP and EEV

we can calculate EVPI = WS - RP = 1,096,784,497 - 1,096,737,898 = 46,599. On

the other hand, VSS is RP minus EEV in this maximization problem which is the ex-

pected result of using mean value problem. In this test problem, EEV = 1,096,725,454

and so the value VSS = RP - EEV = 12,444 verifying the general relations between

the defined measures; EEV ≤ RP ≤ WS in Figure 4.2.

We conducted sensitivity analysis (SA) by varying the number of vessels between

Type I and II vessels in a fleet seen in Figure 4.3:

(1) SA #1-#5: SA#1is the instance that all vessels are Type I. SA#5 is the

case that all vessels are Type II. SA#2, 3 and 4, examined the sensitivity of adding
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Figure 4.3: Sensitivity analysis: SA#1-5

different numbers of Type II vessels. As a result in Figure 9, it is observed that there

is a significant gap between SA#1 and SA#2. This means that removing partial

filling cargo restrictions allows delivery to multiple customers if transportation is

cost beneficial. In SA#3 and 5, there is no change because additional vessels are

not necessary to maximize the profit. So, in term of long-term vessel procurement,

decisions to acquire additional vessels may be critical to avoid unnecessary costs.

(2) SA #6-#10: SA #6-#10 analyzes the impact of increasing the number of

vessels in a fleet. The fleet of vessels is composed of ships with capacities of 140,000

bcm to 216,000 bcm. Figure 4.4 shows that increasing profit is roughly proportional

to the number of Type II vessels. Hence, it is recommended to replace the current

Type I vessels to Type II.

4.5 Conclusion

In this chapter, a new biannual LNG IRP model is proposed, and formulated as

a multiple vehicle routing and production-inventory routing problem. Based on this

model, further extension of two-stage stochastic model was also presented applying

Monte Carlo optimization techniques.

Traditional LNG ship routing and scheduling problem only aims to satisfy long-

term contract. However, as short-term and spot demand contracts are rapidly in-

creasing in the LNG market, and also as LNG vessel technology can relax strict
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Figure 4.4: Sensitivity analysis #6-#10

restrictions on filling limits of cargo tanks, these changing environmental factors were

exactly reflected into the proposed model. The LNG IRP model can generate six

months of shipping and production inventory schedule to serve multiple customers in

a route assigning appropriate LNG vessels.

In the computational study, the effectiveness of the proposed models was shown

within the planning time horizon. By comparing the deterministic LNG IRP and

its stochastic version by means of EVPI and VSS, as a result, it is clarified that the

stochastic solutions outperform the deterministic one. As verified in the sensitivity

analysis, replacing Type I to Type II vessels in a fleet may increase expected profit

by reducing the total number of operating vessels.

As stated in the model, BOR is affected by various uncertain interactive factors,

and so it needs further research to develop a mathematical model to measure accurate

BOR. Even though many other elements are considered as deterministic components,

there exist many inherent uncertainties causing severe disruptions in LNG supply
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Table 4.5: Sensitivity analysis instances

SA Objective value number of Type II vessels
140K 160K 180K 200K 216K

#1 7,137,500 0 0 0 0 0
#2 1,018,532,546 1 1 1 1 1
#3 1,146,492,567 2 2 2 2 1
#4 1,146,492,567 3 3 3 4 1
#5 1,146,492,567 4 4 4 5 1
#6-1 244,638,911 1 0 0 0 0
#6-2 248,293,911 0 1 0 0 0
#6-3 248,293,911 0 0 1 0 0
#6-4 252,543,911 0 0 0 1 0
#6-5 252,458,911 0 0 0 0 1
#7-1 430,355,322 2 0 0 0 0
#7-2 487,665,322 0 2 0 0 0
#7-3 487,495,322 0 0 2 0 0
#7-4 487,495,322 0 0 0 2 0
#8-1 718,026,733 3 0 0 0 0
#8-2 726,951,733 0 3 0 0 0
#8-3 726,781,733 0 0 3 0 0
#8-4 726,781,733 0 0 0 3 0
#9-1 875,478,702 4 0 0 0 0
#9-2 888,143,702 0 4 0 0 0
#9-3 726,781,733 0 0 4 0 0
#9-4 887,973,702 0 0 0 4 0
#10-1 1,026,012,546 0 0 0 5 0

chain (i.e., hurricanes, dust storms, Tsunamis, political unrest) causing shipping de-

lays or degradation of LNG facilities. Therefore, it can continue to be extended to

the research in these directions.
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Chapter 5

LNG IRP under Weather Disruptions

5.1 Introduction

In the last decade, there has been a remarkable upward global trend in the

LNG industry [12]. North America has increased the production of shale gas to meet

the growing demand internationally, particularly from Asia [13, 87]. Generally, LNG

contracts have a 20-30 year duration which guarantees stable supply and demand

relations. Natural gas can be transported to customers either through pipelines or by

a fleet of LNG vessels. The trade of natural gas through pipeline is convenient and

economical up to 2,500 kilometers. However, as shipping distance increases above

this maximum, maritime transportation of natural gas in liquid form become more

economically efficient [9, 10].

The LNG supply chain is composed of seven phases [3]. Once natural gas is

produced, and stored at a temperature of -160◦C , it is loaded into a vessel in liquid

form to minimize the volume to 1/600 of its gaseous state for marine transportation.

When an LNG vessel arrives at a regasification plant at a customer site, LNG must be

transformed back to its original gaseous state for ground transportation and distribu-

tion [15]. This study covers the phases from gas production to unloading. Within this

scope, the problem is formulated as an inventory routing problem (IRP) with which

a supplier can optimize their production and inventory schedules while making ship

routing decisions for a specific time horizon that satisfies the terms and conditions of

their contracts.

There has been an increasing research effort in production-inventory scheduling

and ship routing during the last decade, and this research can be categorized into
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four basic models: 1) network design, 2) fleet deployment, 3) tramp cargo routing

and scheduling problem and 4) maritime IRP for a single product [29, 2]. The fourth

model is the focal point of this research.

There has been an increasing trend of research on LNG IRP since 2009. One of

the earliest approaches reported in the literature was a mixed integer programming

(MIP) model considering LNG cargo ships shuttling from a liquefaction plant to

a regasification plant [30]. Other researchers [31, 32] have improved their approach

including sailing schedule, terms and conditions of contracts, and various vessel types.

Traditional LNG demand is mostly identified from well-determined long-term

contracts, and so an annual delivery program (ADP) was considered to fulfill a set

of long-term contracts [33]. However, two conspicuous changes in LNG market have

been observed. First, there has been an increasing trend of spot-demand and short-

term contracts [43]. Second, recent technological advances in LNG tanker design and

construction has enabled more flexible LNG transportation such as a tanker making

multiple stops at regasification plants. Therefore this study expands the problem to

include any contract types and visiting multiple regasification plants in a journey,

which was not considered in previous studies.

There are two major uncertain factors in LNG supply planning. First, an LNG

carrier loses a small fraction of gas during the voyage due to random BOG [27].

Therefore, the initial load of LNG to a vessel at the liquefaction plant must consider

both the amount of demand to be delivered to the customer and the estimated amount

of BOG. Second, sudden changes in weather conditions (i.e., dust storm in the Persian

Gulf) can disrupt LNG supply schedule. For example, Qatar (the biggest exporter of

LNG in the world in volume) has experienced frequent disruptions in the LNG supply

operations caused by dust storms in the Persian Gulf [46, 47, 48].

The literature review reveals that some researchers have considered the BOG

impact in LNG supply chain, but no mathematical models have been specifically
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developed to consider weather disruptions as an uncertain factor in LNG carrier

routing and production-inventory scheduling. Therefore, it is proposed that new

mathematical models considering random extreme weather conditions, and computa-

tional techniques to solve the models more efficiently. Contributions of this research

is highlighted as follows:

• A two-stage stochastic LNG IRP model (TSS) is suggested to consider the im-

pact of random extreme weather conditions on LNG loading operations. Specif-

ically, it is reinforced that the production planning and inventory control con-

straints knowing that an extreme weather not only affects routing decisions

but also production and inventory schedules. In the previous study, boil-off-

rate (BOR) was considered as a random element [48]. However, BOR is set as a

constant to focus primarily on the impact of an extreme weather as a major dis-

ruption element in LNG shipping scheduling. This is a reasonable assumption

because the impact of an extreme weather have a substantially higher impact

than that of uncertain BOR.

• A decision maker’s preference model (DMP) proposed which allows a decision

maker to input his/her preference between the shipping delay (caused by a

random extreme weather condition) and the expected profit. Because achieving

one may come at the expense of the other. It is formulate as a parametric

optimization model to reflect a decision maker’s preference on risk between the

two extreme scenarios: i) scenario #1 - the earliest extreme weather beginning

and ii) scenario #2 - the latest extreme weather ending time.

• A probing-based preprocessing technique (PPT) has been developed to solve

TSS to speed up convergence. PPT utilizes the relations between the amount

of time spent and the amount of BOG generated in each path. Since TSS is a

highly complex two-stage stochastic MIP model, this approach reduces the size
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of problems and enables the model to be solved faster.

• A benefit of PPT is that it eliminates the need of tour sequencing decisions

in path planning. Accordingly, a reinforced PPT (rPPT) has been developed

by replacing the Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraint

in the TSS with the proposed logical inequality to enhance the computational

performance [28].

Demonstrated experimental results shows that the stochastic solutions are su-

perior to deterministic solutions under a disturbance; parametric solutions provided

guidelines for a decision maker’s involvement in the planning. Furthermore, it was

shown that the proposed probing techniques and a logical inequality to the TSS model

were computationally efficient.

The rest of this chapter is organized as follows: Section 5.2 describes the pro-

posed problem. Section 5.3 provides mathematical formulations of the LNG IRP in

a two-stage stochastic form considering extreme weather disruptions. Then, Section

5.4 presents the computational study with numerical results and sensitivity analysis.

Finally, the chapter is concluded in Section 5.5.

5.2 Problem Description

The general goal of the LNG IRP is to provide an optimal production inventory

schedule and transportation plans that satisfy all demands from customers in an LNG

supply chain considering the terms and conditions of their contracts. LNG contracts

typically include the duration of a contract, the frequency of delivery, and the total

amount of demand, expected shipping dates and locations, the grace period and any

associated penalties for delays. In order to maximize the expected revenue, an LNG

supplier has to consider various aspects such as maximum capacities for production

and storage, the total number of LNG vessels per type, and shipping schedule.
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We consider two types of LNG vessels according to the specifications of cargo

tanks. The first vessel type has a strict barred filling limit of LNG cargo which is

categorized as Type I. It has a permissible range that is either more than 70 % or

less than 10 % of the tank. This exact filling limit is due to the sloshing effect which

increases potential risks such as gas leaks and other related safety accidents [48]. The

second vessel type (Type II) is not limited to this filling limit for its cargo. It is

flexible to any level of partial loading which allows for numerous cargo discharges at

multiple regasification plants in a voyage path [83, 84].

Unlike other products, an LNG cargo evaporates gas during marine transport.

The amount of evaporated gas is proportional to the amount of LNG cargo on board

and shipping distance. Therefore, the loading amount of LNG from a departing

liquefaction plant must aggregate the total amount of LNG to be delivered and the

estimated BOG loss during a voyage.

An extreme weather such as a dust storm with strong winds in the Persian Gulf

can make the LNG loading operations unstable. In general, any extreme weather

event can be forecasted about three days in advance and the LNG loading operations

takes about 12 hours [88, 89, 90].

There are two kinds of relationships between an extreme weather and an LNG

loading schedule as illustrated in Figure 5.1. First, if an extreme weather is expected

to impact the LNG loading start time, then a planned loading schedule must be

altered. Due to the loading delay, an LNG cargo in the ground facilities must remain in

storage for an extended period of time until the facility is open again after the weather

disruption, which incurs an additional storage cost. Second, if a storm is expected

to begin before the end of planned loading operations, then a loading schedule must

be adjusted so that the loading can be completed before the beginning of the storm.

In this case, the LNG stock level will be lower than the planned amount because the

production inventory schedule was originally aimed to meet the LNG stock level at a
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later date. Therefore, additional production efforts must be made at a higher cost to

meet the demand.

The LNG supply network in this problem includes three routes: initial delivery

route, intermediate route and the return route as shown in Figure 5.2. An initial

delivery route connects a liquefaction plant to a regasification plant while the return

route follows the reverse order. An intermediate route links between two regasification

plants. Therefore, an intermediate route(s) can be included only if there are at

least two regasification plants to visit in a path. When a vessel starts a voyage

through an initial delivery route, the departure time from a liquefaction plant can

vary depending on the expected arrival time of an extreme weather condition and its

estimated duration.

There are seven categories of decision variables involved in the problem: 1) the

amount of LNG to be delivered to each customer per carrier, 2) the vessel assignment

to a travel path, 3) the daily inventory and production schedule, 4) departure and

arrival times of an incoming and outgoing vessel at each regasification plant, 5) the

number of delay days, 6) the amount of additional LNG production anticipating an

LNG inventory shortage and 7) the amount of excessive LNG or shortage after the

realization of a random weather disruption.

5.3 Mathematical Formulation

Based on the problem discussed in Section II, LNG IRP is formulated as a two-

stage stochastic MIP model. Additional details on modeling and solution techniques

are provided in this section.
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Figure 5.2: Three types of transportation routes connecting terminals

5.3.1 Sets, Elements, Data and Variables

In the context of IRP, the problem can be modeled on a directed network

G(V,A). A supplier at a liquefaction plant i ∈ V1 delivers requested amount of

LNG Dj to a customer at a regasification plant j ∈ V2 by LNG vessel k ∈ K through

the traverse arc (i, j) ∈ A. A path an is composed of the initial delivery route A1,

intermediate route A2 and return route A3. A supplier transports a total |rs| num-

ber of cargoes to its customers within a given time horizon in accordance to their

contracts. The most appropriate LNG vessel k ∈ K is assigned to transport LNG

through path an. Recall that there are two types of vessels: Type I vessels k1 ∈ K1

and Type II vessels k2 ∈ K2 where K = {K1 ∪K2} and K1 ∩K2 = ∅. Type I vessels

have to strictly follow the barred cargo fill range [α, α]. When an LNG vessel k ∈ K

makes a tour following a path an, the sequence of visits is determined by introducing

a flow variable ui for each plant i ∈ V . Daily production level xprdt and inventory

level xstrt are determined considering maximum production capacity ψ and minimum

production level ψ, and maximum storage capacity ρ and minimum safety stock level
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ρ respectively. LNG volume Dj ordered by a customer j ∈ V2 can be delivered be-

tween the expected target delivery date TM tot
j and TM tot

j + β considering days of

grace. If a cargo is delivered beyond this point, then it generates a penalty µj which

is proportional to the number of delay days (NDD) ydelj,ω up to TW days. The random

extreme weather timing ξj,ω,ds influencing a voyage from a liquefaction plant to a

regasification plant j ∈ V2 is represented by the sample ω ∈ Ω and probability mass

function pω. Scheduling a vessel departure time from a liquefaction plant is subject

to an expected vessel arrival time at a destination ytotj,ω, travel time TRi,j and extreme

weather timing ξj,ω,ds at the point of departure. Therefore a vessel departure time

from a depot τj,ω,ds can be obtained by the calculation of TM tot
j − (TRi0,j + ξj,ω,ds).

BOG is generated at the constant rate ε and added to the calculation for the amount

of loading LNG in a vessel during a laden voyage. It is defined that notation for the

sets, input data and decision variables used in the mathematical model.

Sets:

S Set of LNG terminals;

T Set of dates;

K Set of LNG vessels;

ds An indicator of the beginning (1) or ending (2) of an extreme weather,

ds = {1, 2};

G (V,A) Directed graph nodes V = {1, 2, ..., i = s + |S| · (rs − 1) where rs is

a delivery sequence number per plant} as the set of plants and A =

{(i, j) : i, j ∈ V, i 6= j} as the set of arcs in the planning time horizon;
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V1 Set of liquefaction plants where V1 = {1, 1 + |S|, 1 + 2 · |S|, ..., i0 =

1 + |S| · (rs − 1) in the planning horizon V1 ⊆ V ;

V2 Set of regasification plants in the plannning time horizon where V2 ⊆ V

and V1 ∩ V2 = ∅;

A1 Set of initial delivery routes where A1 = {(i, j) : i ∈ V1, j ∈ V2} as

the set of arcs from a liquefaction plant to a regasification plant where

A1 ⊆ A;

A2 Set of initial intermediate routes where A2 = {(i, j) : i, j ∈ V2, i 6= j}

as the set of arcs between regasification plants where A2 ⊆ A;

A3 Set of return routes where A3 = {(i, j) : i ∈ V2, j ∈ V1} as the set of

arcs from a regasification plant to a liquefaction plant where A1 ⊆ A

and A1 ∩ A2 ∩ A3 = ∅;

K1 Set of Type I LNG vessels, K1 ⊆ K;

K2 Set of Type II LNG vessels, K2 ⊆ K, and K1 ∩K2 = ∅;

an Set of paths where an ∈ A.

Data:

TRi,j Estimated travel time from i to j;

TM tot
j Expected cargo arrival date at j;

TW Time window - maximum NDD from an expected cargo arrival date;

CGvsl
k Cargo capacity of vessel k;

Dj Demand at plant j;

R Unit revenue of LNG per billion cubic meters (bcm);

Cvsl
k Daily shipping cost of a vessel k;

Cstr Daily storage cost per bcm;

Cprd Daily production cost per bcm;

Cap Daily contingency production cost per bcm;

57



µj Penalty for shipping delay to j;

γ Maximum number of plants can be visited in a path;

M Big-M;

α Barred fill range (%) of Type I LNG vessels [α, α];

β Number of days of grace;

ε Daily boil-off rate;

ρ Minimum / maximum storage level [ρ, ρ];

ψ Minimum / maximum production level [ψ, ψ].

Random Elements:

ω ∈ Ω A sample point and sample space of extreme weather variations;

pω The probability mass function of extreme weather variations;

ξj,ω,ds An extreme weather beginning time (ds = 1) or ending time (ds = 2)

which impacts to an LNG loading time heading to a regasification plant

j in accordance with scenario ω;

τj,ω,ds Departure date from a liquefaction plant to a regasification plant j in

accordance with scenario ω where τj,ω,ds = TM tot
j − (TRi0,j + ξj,ω,ds).

Decision Variables:

xlngi,j Amount of LNG cargo from i to j;

xvsli,j,k =


1,

0,

If vessel k maneuvers from i to j;

Otherwise;

xi,j,k,ds =


1,

0,

If vessel k departs at days ds;

Otherwise;
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xprdt Production level on date t;

xstrt Storage level on date t;

ytotj,ω Vessel arrival date at a regasification plant j in accordance with scenario

ω;

ydelj,ω NDD at a regasification plant j in accordance with scenario ω;

y+
t,ω Amount of excessive LNG on date t in accordance with scenario ω;

y−t,ω Amount of LNG shortage on date t in accordance with scenario ω;

ui A flow in the vessel after it visits plant i.

5.3.2 A Two-Stage Stochastic Approach to LNG IRP

Solving TSS can be computationally challenging due to the existence of uncer-

tain parameters. The realization of uncertain parameters has to be considered in

computation. The uncertainty can be assumed to follow a continuous probability dis-

tribution. However, one has to deal with a nonlinearity of the model, which leads to

a substantial burden in computation. Alternatively, the problem can be solved by a

discrete approximation of the continuous variable, in which a set of scenarios are often

generated to represent the random events. A drawback is that it can still be compu-

tationally expensive if the model requires a large number of scenarios to accurately

capture the distribution. However, if the scenario set is small then this is tractable,

and the model can be solved with deterministic problem solution techniques without

loss of optimality [91]. As the set of set of scenarios Ω are considered being discrete

and finite, a deterministic equivalent problem (DEP) form of a two-stage stochastic

LNG IRP is formulated as follows.
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The objective function is defined as

maximize R ·

∑
j∈V2

∑
t∈T

Dj,t −
∑

(i,j)∈A
ε · TRi,j · xlngi,j


−

∑
(i,j)∈A

∑
k∈K

Cvsl
k · TRi,j · xvsli,j,k −

∑
t∈T

(Cprd · xprdt + Cstr · xstrt )

− |Ω|−1 ·
∑
t∈T

∑
ω∈Ω

(Cap · y−t,ω + Cstr · y+
t,ω)− |Ω|−1 ·

∑
j∈V2

∑
ω∈Ω

µj · ydelj,ω,

(5.1)

with five terms. The first term is the lump sum profits for exporting LNG minus

the boil-off loss. The second term is the vessel operating costs in proportion to the

shipping distance. The third term is the production and inventory cost. The fourth

term is the expected cost for additional LNG productions or extended inventories

after the realization of an extreme weather. The last term is the expected penalty for

shipping delays beyond the grace period.

The constraints are divided into three groups. The first group consists of con-

straint (5.2) to (5.11), their purpose is to make multiple vessel routing decisions while

meeting demands from costumers. The second group consists of constraint (5.12) to

(5.14), their purpose is to determine the voyage schedule under weather disruptions.

The remaining constraint deal with production inventory planning.

To construct a path and make connections between two routes in the path, the

condition is described as

xvsli,j,k ≤
∑
l∈V

xvslj,l,k ≤ |S| − (|S| − 1) · xvsli,j,k, ∀i, j ∈ V, k ∈ K. (5.2)

LNG cargo capacity should be greater than or equal to the sum of loading cargo and

BOG, and is defined as

xlngi,j ≤
∑
k∈K

CGvsl
k · xvsli,j,k, ∀(i, j) ∈ A. (5.3)
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Total number of assigning vessels which are bounded by the fleet size and is expressed

as ∑
(i,j)∈A1

xvsli,j,k ≤ |K|, ∀k ∈ K. (5.4)

Flow of an operating LNG carrier in a path is balanced by the following three con-

straints:

∑
(i,j)∈A1

∑
k∈K

xvsli,j,k =
∑

(i,j)∈A3

∑
k∈K

xvslj,i,k. (5.5)

∑
j∈V

∑
k∈K

xvsli,j,k ≤ 1, ∀i ∈ V2, (5.6)

and ∑
i∈V

∑
k∈K

xvsli,j,k ≤ 1, ∀j ∈ V2. (5.7)

MTZ sub-tour elimination constraint is denoted as

ui − uj + γ ·
∑
k∈K

xvsli,j,k ≤ γ − 1, ∀(i, j) ∈ A2. (5.8)

LNG cargo unloading level is determined considering BOG generation which is pro-

portional to the travel distance of a ship and is expressed as

∑
i∈V

(1− ε · TRi,j) · xlngi,j −Dj =
∑
l∈V

xlngj,l , ∀j ∈ V2. (5.9)

Barred fill range of Type I vessel is specified by two constraints:

xlngi,j ≥ α · CGvsl
k · xvsli,j,k, ∀(i, j) ∈ A, k ∈ K1 (5.10)

and

xlngi,j ≥ α · CGvsl
k · xvsli,j,k, ∀(i, j) ∈ A3, k ∈ K1. (5.11)
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A vessel departure time should be either before or after the occurrence of a weather

disruption, and is described as

∑
k∈K

xvsli,j,k =
∑
k∈K

xi,j,k,ds, ∀(i, j) ∈ A1, ds ∈ DS. (5.12)

Determination of the arrival and departure times of an LNG vessel at each regasifi-

cation plant is defined as

∣∣∣∣∣∣(τj,ω,ds + TRi,j) ·
∑
k∈K

xi,j,k,ds − ytotj,ω

∣∣∣∣∣∣ ≤M · (1−
∑
k∈K

xvsli,j,k), (5.13)

∀(i, j) ∈ A1, ω ∈ Ω, ds ∈ DS

and

∣∣∣∣∣∣TRi,j ·
∑
k∈K

xvsli,j,k − ytotj,ω + ytoti,ω

∣∣∣∣∣∣ ≤M · (1−
∑
k∈K

xvsli,j,k), (5.14)

∀(i, j) ∈ A2, ω ∈ Ω.

Shipping time window considering a grace period is defined as

TM tot
j − TW ≤ TM tot

j + β + ydelj,ω, ∀j ∈ V2, ω ∈ Ω (5.15)

and

β + ydelj,ω ≤ TW, ∀j ∈ V2, ω ∈ Ω. (5.16)

For example, if a vessel is delayed beyond the time window, then a penalty is charged
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accordingly. Considering production and storage capacity, production-inventory schedul-

ing scheme is defined as

ρ ≤ xstrt ≤ ρ, ∀t ∈ T, (5.17)

ψ ≤ xprdt ≤ ψ, ∀t ∈ T, (5.18)

and

xstrt −xstrt−1 = xprdt +y+
t,ω−y−t,ω−

∑
an∈A

∑
k∈K

LDan,t′,ω,ds·xvslan,k,ds, (5.19)

∀t, t′ω,ds ∈ T, ω ∈ Ω, ds ∈ DS.

These constraints ensure that the ordered amount of LNG will be ready on or before

the loading date to a cargo. In this problem, a random extreme weather variation

is considered in lead time estimation in addition to travel times. For example, if

an extreme weather delays a planned LNG loading operation for a certain length of

time, then production inventory schedule and an LNG vessel departure time should be

synchronized with the adjusted LNG loading schedule. For the time synchronization,

the following procedures are proposed in the preprocessing stage.

Time Synchronization Elements:

t′ω,ds Departure date from a liquefaction plant in accordance with ω;

t′′ Arrival date at the last regasification plant in a path;

jman
mth regasification plant in path an where m ∈ V2, j : (·, j) ∈ an;

Dm
an

Demand from mth regasification plant in path an;

TRm
an

Trevel time from (m − 1)th to mth plant in path an where∑
(i,j)∈A TRi,j ∈ an;
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LDan,t′ω,ds
The total amount of LNG to be loaded for path an in accordance

with ω.

First, the departure date from a liquefaction terminal t′ω,ds of an LNG vessel

from a liquefaction plant needs to be determined. Let us assume that an LNG vessel

is to serve m regasification plants in path an. The departure date can be estimated

by subtracting the total travel days ∑m∈V2 TR
m
an

and the storm duration ξj1
an
,ω,ds from

the expected cargo arrival date t′′ at the mth regasification plant as

t′ω,ds = t′′ −

ξj1
an
,ω,ds +

∑
m∈V2

TRm
an

 ,∀an ∈ A, t′ω,ds, t′′ ∈ T, ω ∈ Ω, ds ∈ DS. (5.20)

Second, the amount of LNG LDan,t′ω,ds
to be loaded for a vessel at date t′ω,ds from

a liquefaction plant is estimated by

LDan,t′ω,ds
=

∑
m∈V2

Dm
an

+BOGan

where BOGan = ε ·
∑
m∈V2

TRm
an
·

 ∑
m∈V2

Dm
an
−
|m|∑
cr=1

|m|∑
m=cr

Dm
an

 .
∀an ∈ A, t′ω,ds ∈ T, ds ∈ DS.

(5.21)

Basically, LDan,t′ω,ds
includes the sum of demands and the estimated evaporated loss

BOGan during the voyage on a path an. The total amount of BOG in a path BOGan

depends on a daily BOR ε, total travel time ∑m∈V2 TR
m
an

and the amount of LNG on

board in each route∑m∈V2 D
m
an
−∑|m|cr=1

∑|m|
m=crD

m
an

as seen in equation (21). Therefore,

one thing to note here is that BOG losses may vary depending on the travel sequence

on a path, which can change the combination of travel days and LNG on board.

This property is utilized to eliminate inferior routing options using this preprocessing

technique, which is explained in detail in Section 5.3.4. The following Proposition

5.1 provides a basis for BOG-based probing technique.
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Proposition 5.1. For any path an1 and an2 (an1 6= an2) with same set of

regasification terminals, if LDan1,t′,ω ≥ LDan2,t′,ω then BOGan1 ≥ BOGan2 .

5.3.3 Generalization of Production-Inventory Constraints

In the previous section, a production-inventory control constraint (5.19) and

time synchronization scheme are presented which include maximum two customers in

a single journey of an LNG carrier. If both constraint (5.19) and time synchronization

scheme are integrated into a single constraint in the model, then it makes the model as

a nonlinear mixed integer programming model which is difficult to solve. Therefore,

this section presents a new constraints set which makes the LNG IRP model as an

MILP.

With this constraints set, it is possible to solve the problem in the case of more

than two customers in a path.

Let us assume that time index t is discrete, and there is no weather disruption

impact to a production-inventory control constraint which is in a deterministic form

such as

xstrt = xstrt−1 + xprdt −
∑
j∈V2

LDj,t,∀t ∈ T. (5.22)

To determine the amount of LNG cargo∑j∈V2 LDj,t, which is loading to an LNG vessel

at time t two factors needs to be considered: i) LNG cargo loading time before the

beginning of a weather disruption which is random, ii) LNG volume to be produced

and stored which is loading to an LNG carrier heading to a terminal j. Let’s define

that LNG carrier loading time which is heading to a terminal j as STt,j ∈ {0, 1}.

Total number of variables STt,j ∈ {0, 1},∀t ∈ T, j ∈ J in the model is

numberofdays(|t|)× numberofregasificationterminals(|j|). (5.23)
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In order to synchronize the time index t in variable STt,j ∈ {0, 1} and the LNG

carrier departure time, the relation is formulated as

(TM tot
j − TRi0,j)

∑
k∈K

∑
ds∈DS

xvsli0,j,k,ds =
∑
t∈T

ctSTj,t ∀j ∈ V2, ct = {1, 2, 3, ..., t}. (5.24)

LNG carrier departure timing is expressed in the left-hand side (LHS). If a route

from a liquefaction terminal i0 to a regasification terminal j is selected, then travel

time between the two terminals TRi0,j are subtracted from an expected arrival time

of a vessel at terminal j TM tot
j . The LHS is equal to the right-hand side (RHS) value

which is composed of ct and STj,t. To transform the time index t to a constant value,

constant ct is introduced which is equal to the index t. For example, if an LNG carrier

is heading to a regasification terminal 2 as an initial destination from a liquefaction

terminal, then the cargo arrival time at terminal j TM tot
j = 20, and shipping days

between two terminals TRi0,j = 10. Therefore an LNG carrier departure time is at

day 10. In order to synchronize the value in the LHS to the RHS, ∑t∈T ctSTj,t must

be 10 where c10 = 10 and ST2,10 = 1.

LNG carrier departure timing is indicated by

∑
t∈T

STj,t ≤ 1,∀j ∈ V2. (5.25)

If j is an initial destination in a path of an LNG carrier which is from a lique-

faction plant, then ∑t∈T STt,j = 1. Otherwise 0.

When ∑t∈T STt,j = 1, cargo level in an LNG carrier xlngi0,j is equal to the LNG

production target level ∑t∈T LDj,t,∀j ∈ V2. If j is not an initial destination in a

path, xlngi0,j = ∑
t∈T LDj,t = 0. The condition is expressed as

xlngi0,j =
∑
t∈T

LDj,t,∀j ∈ V2. (5.26)
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Figure 5.3: Two-stage production-inventory planning strategy

So far, a deterministic production-inventory control constraints set (DPIC) has

been explained. The ultimate goal of the proposed mathematical model is to mitigate

the impact of random weather disruption in production-inventory planning and LNG

carrier routing scheduling problem.

LNG carrier departure time (TM tot
j − TRi0,j) is influenced by random weather

disruption timing ξj,ω,ds. Time t is also replaced to t̃ which is random. Constraint

(5.24) is extended to

τ̃j,ds
∑
k∈K

∑
ds∈DS

xvsli0,j,k,ds =
∑
t̃∈T

ct̃STj,t̃∀j ∈ V2, ct = {1, 2, 3, ..., t}, (5.27)

where τ̃j,ds = (TM tot
j − TRi0,j)− ξ̃j,ds.

The random value of τ̃j,ds needs to be synchronized with the index t̃. Therefore,

constraint (5.28) is approximated by assuming τ̃ as discrete time point τj,ω,ds with
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samples ω ∈ Ω in the following constraint

τj,ω,ds
∑
k∈K

∑
ds∈DS

xvsli0,j,k,ds =
∑
t∈T

ctSTj,t,ω∀j ∈ V2, ω ∈ Ω, ct = {1, 2, 3, ..., t}, (5.28)

where τj,ω,ds = (TM tot
j − TRi0,j)− ξj,ω,ds.

In the same way, a deterministic production-inventory constraint (5.22) is ex-

tended as

xstrt̃ = xstrt̃−1 + xprd
t̃

+ xprd+
t̃
− xprd−

t̃
−
∑
j∈V2

LDj,t̃,∀t̃ ∈ T (5.29)

by introducing a second-stage production adjustment variable xprd+
t̃

, xprd−
t̃

considering

random realization of an extreme weather. Its deterministic equivalent constraint is

shown as

xstrt,ω = xstrt−1,ω + xprdt + xprd+
t,ω − xprd−t,ω −

∑
j∈V2

LDj,t,ω,∀t ∈ T, ω ∈ Ω. (5.30)

Deterministic equivalent form of a stochastic time indicator constraint is formulated

as

∑
t∈T

STj,t,ω ≤ 1,∀j ∈ V2, ω ∈ Ω. (5.31)

For example, ST2,10,1 means that a LNG cargo for customer 2 is produced or stored

at day 10 according to a weather scenario #1. In the same way, constraint (5.26) is

also extended as

xlngi0,j =
∑
t∈T,

LDj,t,ω, ∀j ∈ V2, ω ∈ Ω. (5.32)
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5.3.4 Decision Maker’s Preference Model (DMP)

The TSS model is formulated to maximize the mathematical expectation of

profits while minimizing second-stage costs resulted by random weather disruptions.

In this section, DMP model is proposed to take a decision maker’s preference into

account in the planning. Suppose an LNG supplier wants to put more emphasis on

’on-time delivery’ rather than ’profit maximization.’ Then the priority should be to

minimize the NDD caused by a weather disruption. This implies that the overall

LNG shipment preparation must be done well before the beginning of any possible

storm disruptions. With this in mind, a parametric optimization model is proposed in

which the decision maker decides how much risk he/she is willing to take in shipment

delay over making optimal profit considering a potential disruption. As shown in

Figure 5.4, two extreme weather scenarios are considered for the construction of

proposed DMP model: i) scenario #1 - the earliest beginning time of an extreme

weather ξj and ii) scenario #2 - the latest ending time of an extreme weather ξj. The

number of extreme weather days in the DMP model ξprefj is obtained by

ξprefj =
⌈
λ · ξj + (1− λ) · ξj

⌉
, ∀j ∈ V2, ω ∈ Ω (5.33)

as a convex combination of the two extreme scenarios reflecting a decision maker’s

preference by a weight parameter λ (0 ≤ λ ≤ 1). A risk-averse decision maker may

take a large value of λ (closer to 1) to secure a longer shipment preparation time.

Then the number of weather disrupted days considered in the DMP is getting closer

to scenario #1. As a result, 1) inventory schedule, 2) production schedule and 3) a

vessel departure time from a liquefaction plant moves toward the left-hand side in the

timeline in Figure 5.4. Otherwise, all shipment preparation schedules move toward

the right-hand side getting closer to scenario #2.

The decision maker’s preference also influences the timing of extreme weathers
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Figure 5.4: An illustrative example of DMP solutions with two extreme weather scenarios:
1) inventory schedule, 2) production schedule and 3) departure time of an LNG
vessel

in the daily inventory and production schedule in constraints (5.19). Accordingly,

time-synchronization elements in the pre-processing stage expressed in (5.20) is also

replaced by

t′ = t′′ − ξprefj1
an
−

∑
m∈V2

TRm
an
, ∀an ∈ A, t′, t′′ ∈ T. (5.34)

As stated above, the expected objective value (i.e., revenue) of the DMP model

is lower than the expectation of the TSS model by considering decision maker’s prefer-

ence on risks. The relations between the expected value of the TSS model EVTSS and

the expected result of the DMP model EVDMP can be established by the following

Proposition 5.2.

Proposition 5.2 EVTSS ≥ EVDMP.

Proof. Defining that z(x(ξj,ω), ξj,ω) as the objective function of LNG IRP asso-

ciated with one particular extreme weather duration ξj,ω. Let x∗(ξj,ω) and EVTSS =
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Eξj,ω
z(x∗(ξj,ω), ξj,ω) be an optimal solution and the expected value of the TSS model,

respectively. Let us represent the expected result of the DMP model EVDMP =

z(x(ξprefj ), ξj,ω) by replacing all random extreme weather durations ξj,ω by a determin-

istic parameter ξprefj . For every realization, ξj,ω, we have the relation z(x∗(ξj,ω), ξj,ω) ≥

z(x(ξprefj ), ξj,ω). Taking the expectation of both sides yields the inequality.

5.3.5 Computational Considerations

In this section, two computational techniques are discussed to improve compu-

tational performance supposing that an LNG vessel serves less than two regasification

plants {i, j} ∈ V2 in a path (assuming γ = 2). The first approach is a probing-based

preprocessing technique which reduces the number of binary variables in the model.

This technique eliminates both infeasible and inferior routing options in terms of time

window and potential BOG losses in a path. The second one is a logical inequality

which replaces MTZ sub-tour elimination constraint. Five routing cases considered

in this model are listed in Figure 4.

Figure 5.5: Five routing cases
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In Case#1, the time gap between two plants are greater than the estimated

travel time TRi,j. Therefore, this routing option is excluded from the model because

it makes unnecessary vessel idle time offshore to meet the scheduled port entry time.

The time window gap in Case#2 is less than or equal to the estimated travel time

from plant i to plant j. Thus an LNG vessel can travel from plant i to j, but not

in the reverse direction. Case#3 shows that two time windows are overlapped and

the length of the nested time period is less than or equal to the travel time between

two plants. Thus, a vessel also can travel from plant i to j but not in the reverse.

In Case#4 and Case#5, the overlapped time duration is greater than or equal to

the travel days between two plants. Therefore, an assigned vessel can travel to both

directions. However, recalling equation (5.21), it is possible to eliminate one of the

two routing options by comparing the amount of BOGs.

We have a simple illustrative example in Figure 5.6. If a vessel travels following

sequence (A), i0 → i→ j → i0, then BOG(A) = 0.00125(%)·{3,000·(60,000+150,000)

+6,000·150,000 }=19,125(m3), where daily BOR ε is 0.00125(%). If it follows se-

quence (B), BOG(B) = 0.00125(%) ·{7,000 ·(60,000+150,000) + 6,000·60,000} =

22,875(m3). As a result, it is shown that a routing option (B) is inferior to (A)

and should be excluded from a routing option in the optimization model. Algo-

rithm 1 below provides an overview of the PPT procedure. Algorithm 1 provides

an overview of the proposed probing procedure.

Figure 5.6: An illustrative example of routing options serving two regasification plants
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Algorithm 1 Probing procedures: fixing binary variables to either 0 or 1
1: for (i, j) ∈ A2, k ∈ K do
2: if (TM tot

i + TW ≤ TM tot
j − TW ) then

3: if (TM tot
j − TM tot

i − 2 · TW ≥ TRi,j) then
4:

∑
k∈K x

vsl
i,j,k = 0

5:
∑
k∈K x

vsl
j,i,k = 0

6: else (TM tot
j − TM tot

i − 2 · TW < TRi,j) then
7:

∑
k∈K x

vsl
j,i,k = 0

8: end if
9: else if (TM tot

j − TM tot
i − 2 · TW ≤ TRi,j) then

10:
∑
k∈K x

vsl
j,i,k = 0

11: else if (BOGi,j ≤ BOGj,i) then
12:

∑
k∈K x

vsl
j,i,k = 0

13: else ∑k∈K x
vsl
i,j,k = 0

14: end if
15: end if
16: end if
17: end for

The key advantage of the proposed technique is that there is no need of sequenc-

ing process stated by constraint (5.8) because only one routing option is available after

the PPT procedure is applied. Thus, a logical inequality

2
∑
k∈K

xvsli,j,k ≤
∑
k∈K

xvslj,i0,k +
∑
k∈K

xvsli0,i,k, ∀(i, j) ∈ A2 (5.35)

can replace constraint (5.8) in the TSS model when when LNG carriers are allowed

to serve one or two customers in a path. The resulting model is named as reinforced

PPT (rPPT). The logical operation is shown in Remark 3.2.

Remark 3.2. Suppose that an assigned LNG vessel departs from a liquefaction

plant i0 and visits two regasification plants i and j in sequence via path an: i0 → i→

j → i0 which is the only routing option. Then, ∑k∈K x
vsl
i,j,k must be equal to 1. If a

vessel does not serve i and j together in a path, then ∑k∈K x
vsl
i,j,k = 0.

For the reformulation of production-inventory constraint, in the previous section,

a new binary variable STj,t,ω is introduced. Maximum number of additional binary
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variables is |j|×|t|×|ω|. In order to reduce the solution space, probing-based prepro-

cessing algorithm is designed. If a regasification plant becomes an initial destination

in a path, then an expected departure time of an LNG carrier can be calculated based

on travel time from an origin to the destination. As random weather beginning time

put forwards some day, then it needs to be synchronized with STj,t,ω. Other than

the weather disruption period including forecast time period, STj,t,ω can be nullified.

The procedure is shown in Algorithm 2.

Algorithm 2 Probing-based preprocessing: fixing STj,t,ω variables to either 0 or 1
1: for i ∈ V2, t ∈ T, ω ∈ Ω do
2: sdj,t+1 = sdj,t +Dj,y

3: if (sdj,t+1 > 0) then
4: STj,t+ftp,ω = 0 : ftp (forecast time period)
5: end if
6: end for

5.4 Computational Result

This section presents the computational results of the proposed models. First,

an illustrative example and experimental setting details are described. After then, the

results is discussed demonstrating computational outcomes and quality of solutions.

Particularly, the solutions of DMP model is analyzed to show how decision maker’s

risk preference is influencing to the planning decisions. Computational performance

is evaluated as well. The proposed models are simulated based on the given data

below. The major characteristics of this case study are tabulated in Table 5.1.

As the impact of a dust storm in the Persian Gulf is considered as a random

element, we analyze 10 years’ worth of data from 1990 to 1999 provided by Doha

International Airport in Qatar. It is identified that dust storms were usually intensive

between April and September [92]. Historical data revealed that the variation of dust
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Table 5.1: LNG transportation network characteristics

Data Unit
Time horizon D+1 to D+200 days
Total shipping requests 15 times
LNG vessels (Type I / II) 5 / 10 ships
Storage level [10,220K] bcm
Production level [10,10K] bcm
BOR 0.00125 (%) per day
Barred filling range <70 (%)
Grace periods +10 days
Maximum shipping delays +10 days

storms closely follows the Johnson SB distribution [93]. Hence, random dust storm

scenarios are generated accordingly.

Table 5.2: Monthly dust storm days (1990-1999)

’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 µmonth σmonth
JAN 3 0 2 1 2 1 0 0 1 0 1 1.1
FEB 4 6 4 5 6 1 0 5 2 2 3.5 4.5
MAR 7 4 7 6 5 2 4 2 5 6 4.8 3.3
APR 4 9 3 5 2 2 11 5 4 4 4.9 8.5
MAY 9 14 6 9 9 4 1 2 4 10 6.8 16.6
JUN 11 8 11 11 14 10 6 5 7 5 8.8 9.3
JUL 8 7 13 5 14 10 1 12 5 3 7.8 19.3
AUG 6 2 6 2 1 1 0 10 0 1 2.9 11
SEP 1 4 2 0 2 2 1 1 1 3 1.7 1.34
OCT 1 2 1 0 1 1 1 1 1 1 1 0.22
NOV 2 2 3 3 2 4 1 1 0 3 2.1 1.43
DEC 0 1 1 0 3 0 1 1 0 0 0.7 0.9
µyear 4.67 4.92 4.92 3.92 5.08 3.17 2.25 3.75 2.5 3.17

Johnson SB distributions:

Parameters:

γ shape parameter → −0.18191

δ shape parameter (δ > 0)→ 0.4341

λ scale parameter (λ > 0)→ 8.3591

δ location parameter → 1.837
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Domain:

ξ ≤ x ≤ ξ + λ

Probability Density Function (PDF):

f(x) = δ

λ
√

2πz(1− z)
exp(1

2(γ + δ · ln( z

1− z ))2). (5.36)

Cumulative Density Function (CDF):

F (x) = Φ ·
(
γ + δ · ln z

(1− z)

)

wherez ≡ x− ξ
λ

, and Φ is the Laplace integral.

(5.37)

CPLEX 12.6 was used to solve the LNG IRP model. However, CPLEX was not

able to obtain an optimal solution after 24 hours of computations. Therefore, the

solution pools algorithm in CPLEX was used to find a near optimal solution in a

fast manner, in which groups of feasible solution candidates are accumulated within a

specified gap of optimal solutions. The relative termination tolerance is set at 3% and

the time limit is limited up to 24 hours. All following experiments were conducted

on a 3.00 GHz Intel Xeon machine with 364 GB of memory.

The computational outcomes are composed of two solution sets. The first set

are the routing decisions presented in Figure 5.8 which include vessel assignments

to every path and expected departure and arrival times on plants within the given

time horizon.
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Figure 5.7: Historical records of dust storm in the Persian Gulf (1990-1999)

The second set of the solution is a daily production inventory schedule. The

proposed TSS model consists of the first-stage decisions on production inventory

schedule and the second-stage decisions on additional production or storage after the

realization of disruptions as shown in Figure 5.9. In the graph, two things are

worth noting here: 1) when dust storms can possibly disrupt LNG operations and

2) how significant the level of disruptions in the time horizon. For instance, when

LNG vessel #3 serves plants 16 and 18 and LNG vessel #6 visits plant 5, two vessels

are expected to depart from a liquefaction plant from D+106 to D+117. During

the period, six different types of LNG shortage scenarios or four types of surplus

situations are expected.

While the stochastic model maximizes the expected value of profit, the DMP

model reflects a decision maker’s preference as a parameter presented in Figure 5.10.

In this numerical example, when a decision maker is risk averse in order to reduce
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Figure 5.10: Production-inventory schedule by varying the risk preference ratio based on
risk preference ratio

NDD (λ→ 1), then an ordered LNG stock is ready well before potential dust storm

disruptions as the production schedule moves to the left in the graph. Conversely, if

a decision maker is risk prone λ → 0), then the production inventory schedule goes

to the right.

Figure 5.11 shows the relationship between the preference ratio and NDD in

the DMP model. If λ=0 (considering the shortest dust storm duration), it is expected

to have the least profit because the planned LNG production inventory schedule and a

vessel departure time consider the latest ending time of a dust storm which generates

the most high value penalty regardless of random dust storm scenarios. When λ

becomes 0.1 to 0.5, there is no significant changes in the expected profit but NDD is

steadily decreases as λ increases. When λ increases from 0.6 to 1, dust storm scenarios

in the early stages influence to the problem generating extended storage costs. There

are three remarkable points in this experiment. First, in the worst case (λ = 0),

profit can significantly drop compare to other preference options. Second, when λ is
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Figure 5.11: Profit and number of delay days changing with preference ratio

in between 0.1 and 0.5, if profits are in an acceptable range, then choosing λ = 0.5

yields reasonable solution because the NDD are decreasing from 17 to 5 days. As

a result, this what-if analysis can help a decision maker to choose a preferred LNG

supply operations plan.

A finite number of scenarios are used to solve the deterministic equivalent TSS

model. There is a trade-off between the number of scenarios used and the correspond-

ing computation time. As there are more scenarios used in the model, the accuracy

of estimating the recourse function improves. However, using more scenarios comes

at the cost of longer computation time. Therefore, sensitivity analysis has been con-

ducted by varying the number of scenarios to find where it converges to. As shown

in Figure 5.12, the objective value (expected profit) is converging to around 3080

million ($USD) as the scenario size increases.

A probing-based preprocessing technique is applied to the TSS model as shown

in Figure 5.14. The number of binary variables increases as the size of time window

expands. When PPT is applied, the total number of binary variables has reduced
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Figure 5.12: Expected profit of TSS model per scenario

Figure 5.13: Number of binary variables of TSS model and PPT model
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Figure 5.14: Computational time changes per number of scenarios

compared to TSS. For example, when β = 1, the number of binary variable gap

between TSS and PPT is 234 (20.3%); but if β becomes 10, the reduction becomes

larger at 486 (30.23%).

Experiments were made to compare computational performance of TSS, PPT

and rPPT. Both PPT and rPPT were able to find a solution while the TSS model

failed to solve the test problem regardless of the scenario size tried. As Figure 12

shows, there was a positive correlation between computation time and scenario size

for rPPT. Furthermore, there was a considerable computational performance gain

using rPPT when compared to PPT. This shows a clear advantage of using the

proposed logical inequality (rPPT).

5.5 Conclusion

In this chapter, two LNG IRP models are proposed to generate optimal rout-

ing decisions and production inventory schedules that satisfy multiple demands in a
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path under weather disruptions. The proposed TSS model aimed to maximize the

expected profit utilizing weather information derived from historical data. Since the

TSS model has a very complex stochastic MIP structure, neither CPLEX solver nor

a solution pools algorithm solves the problem. However, the proposed probing-based

preprocessing technique was successful at reducing the number of binary variables up

to 32% utilizing the time windows relations and BOG amount comparisons. Further-

more, by replacing MTZ constraint by the suggested logical inequality (5.35), it is

verified that a very stable and efficient computational performance. The DMP as a

parametric model reflects a decision maker’s preference such as shipping reliability

for weather disruptions. Therefore the DMP also can be considered as a rational

decision supporting methodology comparing to the TSS model. By extending this

research, we can consider other LNG IRP models with multiple liquefaction plants

under various uncertainties that can cooperatively respond to potential disruptions

in the supply chain.
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Chapter 6

Multiple Autonomous Underwater Vehicle Pre-positioning

and Routing for Offshore Pipeline Damage Assessment

6.1 Introduction

In August and September 2005, hurricanes Katrina and Rita overwhelmed south-

ern United States and paralyzed both onshore and offshore oil and gas infrastructures.

Damage assessment had been performed focusing on offshore pipeline systems in the

Gulf of Mexico in the passage of two Hurricanes. As a result of the damage assess-

ment, more than 600 pipeline damages were reported [24]. It is assessed that the

majority of the reported damages occurred at or near platform interfaces, or resulted

by the impact of an outside force other than the direct hurricane impact, such as plat-

form failures, riser damages or anchor dragging. The remaining portion of damages

was due to loss of cover and movement of pipelines that are near shore and in shallow

water. However, due to the incomplete data, it was not easy to determine what the

actual root causes of pipeline failures were, and what actual events occurred during

the hurricanes.

In order to investigate subsea pipeline networks, divers or unmanned underwater

vehicles (UUVs) can acquire damage information. UUV-aided damage assessment is

faster and free from safety accidents comparing with divers’ inspection [94, 95].

UUV is named in various ways. In US Navy, UUV is named as unmanned un-

dersea vehicle as the military focus is only in the sea. UUV is usually categorized as

remotely operated vehicle (ROV), autonomous underwater vehicles (AUV), and re-

motely towed vehicles (ROTV) [96]. Major focus of this dissertation is AUV. AUV is
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vessel that can travel underwater without an operator on its own power source. AUV

is used for surveillance and reconnaissance, mine countermeasures, anti-submarine

warfare, mapping of the ocean floor, testing water samples, polar ice research, and

pipeline inspection. As AUV has its own power source and does not require opera-

tor’s involvement, AUV is replacing ROV [97]. AUV products are divided into three

categories: 200 meters + depth of water (30% of the market), up to 200 meters depth

of water (40%), up to 30 meters of water (30%) [26].

In order to overcome complicated hazardous environments and to perform a suc-

cessful mission in which the AUV travels to the designated targets without operator

intervention, it is very important to achieve a high degree of autonomy, reliability and

robustness. Particularly, it is critical to develop an efficient path generation algorithm

for AUVs.

Path planning is an important task necessary in the application of AUVs, which

is to search out an optimal or sub-optimal path between an initial position and the

desired target under specific constraint conditions. As one of the key research topics

for AUVs, path planning is a necessary and fundamental element of AUVs and makes

the vehicle fully autonomous and reliable. Its goal is to plan a sequence of suitable

paths subjected to some optimization criteria that allows the vehicle to complete its

task objectives by reaching the specified destination point from the starting location.

Path planning is inherently a routing process to find an optimal path selecting

nodes and arcs to complete a given mission. There are two types of path generation

techniques: global path generation and local path generation depending on informa-

tion availability [50]. In this dissertation, global path planning is the focus of the

research.

Path generation algorithms for AUVs have been constantly developed and im-

proved in many ways. Artificial potential fields based path generation algorithm was
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introduced. This algorithm generated an optimal solution with entire network infor-

mation on two- and three-dimensional problems [51]. D* and A* algorithms have

been introduced [52]. In particular, A* considers bathymetry, exclusion zone, ob-

stacle, and ocean current data bases to facilitate planning [53]. A* is practiced in

Western Mediterranean Sea by varying operational conditions [54]. The performance

of A* is proved by comparing with four other algorithms: breadth first search, depth

first search, and Dijkstra’s and wall following algorithms. It has been observed that

A* and Dijkstra’s algorithm outperformed to the others. A continuous form of A*

algorithm which is named as FM* is developed [55]. This algorithm generates paths

continuously by updating perceived environmental information.

Mathematical optimization based approaches have been developed either in

mixed integer linear programming (MILP) or nonlinear programming. Multi-beam

forward looking sonar aided real-time obstacle avoidance and path planning algorithm

is developed. This is a nonlinear programming model which generates path while min-

imizing the Euclidean distance to the goal [56]. Genetic algorithm is proposed which

minimizes the energy cost considering the variability of the environment. This model

generated an optimum path to cross the Sicily channel which has strong current fields

and complex [57]. MILP-based path generation algorithm for adaptive sampling is

presented. This algorithm aims to maximize the line integral of the uncertainty of field

estimate along the generated path. This model considers to optimize multiple AUV

paths based on a supporting ship [58]. Sensor-driven online coverage planning for

AUVs is formulated as a multi-objective optimization model [59]. Three-dimensional

path planning technique is suggested and solved by multi-objective optimization al-

gorithm. This model considers four criteria: total length of path, margin of safety,

smoothness of the planar motion, and gradient of diving [60].

As real-time obstacle avoidance and path generation is an important research

area, various algorithms have been developed. In the early stage of the research in
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real-time path planning and obstacle avoidance is designed to conduct two real-times

missions: pre-deployment survey of sea bottom and visual inspection of pipelines

[61]. Morse-based boustrophedon decomposition coverage path-planning algorithm

for 3D coverage and STOMP algorithm is used for real-time path re-planning [62].

Informative path planning is suggested which has used for surface vehicles. This

model generates paths while maximizing mutual information [63].

In another approach, two risk-aware path planning techniques - minimum ex-

pected risk planner and risk-aware Markov decision process - are proposed from the

perspective of safety and reliability of AUV operations [64]. Case-based path planning

is presented. This algorithm retrieves a matching rote from the DV and modifies it

to suit to the current situation. If there is no matching route, then it generates a new

routes based on past cases which have similar navigational environments [65]. Hybrid

route-path planning model is developed which utilizes task assign-route planning and

path planning based on differential evolution and firefly optimization algorithms [66].

Multiple AUVs task assignment and path planning have been studied considering

variable ocean current. The goal of this model is to reach all designated target nodes

[67]. In many AUV path generation problems, two criteria can be considered to select

a preferred path generation algorithm: length of the path and computational time.

By properly combining of two criteria in an objective function of a path planning

model, an optimal solution can be obtained [68].

There has been an increasing trend of research on unmanned vehicle applica-

tions. Considerable body of work on a large number of AUVs has been done includ-

ing topics such as coordination between multiple unmanned vehicle (UV) operators

[69], future position prediction [70], traffic flow optimization [71, 72], and routing

optimizations [73, 74]. Especially, mathematical optimization models for multiple

UV task assignment and path planning have studied considering technical specifi-

cations and operational constraints including mission types, time limits, and no fly
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zones [75, 76, 77, 78, 79]. This problem has the structure of multiple vehicles rout-

ing problem, and is tried to be solved by either exact or approximation algorithms

[80, 81, 82, 27]

This proposed study in this chapter covers the AUV utilized offshore natural

gas pipeline network damage assessment problem. Within this scope, the proposed

concept is to utilize multiple AUVs not only to collect data how an extreme weather

event influences to subsea pipeline network but also to accelerate the inspection speed

considering the random realization of an extreme weather event. The literature review

reveals that no mathematical model been specifically developed to employ a fleet of

AUVs for offshore pipeline damage assessment considering uncertainty in weather

forecast even though a relatively large volume of research has been conducted in

the area of a single AUV inspection. Therefore, a new mathematical framework

is proposed in this chapter to find optimal pre-positioning locations and paths for

multiple AUVs to cover the whole target nodes and edges considering uncertainty in

the weather information. The contributions of the research are listed as follow:

• A new offshore pipeline damage assessment concept and procedure is developed

to minimize overall inspection time and cost. The proposed approach begins by

positioning a certain number of AUVs in pre-determined nodes over the weather

impact zone before an expected event. After the extreme event, pre-placed

AUVs maneuver over the network in accordance with the optimized scanning

paths.

• A two-phase mathematical optimization model is proposed for multi-AUV pre-

positioning and routing (MAUV). In phase 1 (MAUV-ph1), the optimum AUV

positions are found. The MAUV-ph1 is formulated as a two-stage stochastic in-

teger program, where the first stage decision assigns each AUV position and the

second stage augments additional AUV positions in accordance with updated
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weather forecast. In phase 2 (MAUV-ph2), AUV scanning paths are generated

while minimizing AUV operating cost and inspection completion time.

• Computational techniques have been suggested, including constraints refor-

mulation, probing-based pre-processing techniques, logical inequality, and La-

grangian method, to enhance the computational performance.

The rest of the chapter is organized as follows. Section 6.2 describes the problem

of pipeline network damage assessment using multiple AUVs. Section 6.3 presents the

mathematical formulations for MAUV and computational considerations. Section

6.4 discusses computational results. The chapter is concluded with discussions of

opportunities for extensions of the proposed work in Section 6.5.

6.2 Problem Statement and Model Outline

The MAUV problem objective is to provide optimal positions of AUVs and

their associated maneuvering paths for an expedited damage assessment. Operating

AUVs must be able to scan all designated target nodes and edges while minimizing

completion time and total cost for multiple AUVs mobilization.

Figure 6.1 presents a pipeline network damage assessment planning procedure

over a planning horizon. If we consider that AUVs are prepositioned closer to a poten-

tial impact area before an extreme event impacts the region, damage assessment can

be expedited as pre-deployed AUVs immediately collect and transmit the assessment

information as soon as the event is cleared. Consequently, a fast recovery plan can

be developed and its implementation will be accelerated. Therefore, the first phase

starts by determining AUVs pre-deployment locations among multiple candidates to

cover all target facilities while minimizing the number of AUV positions and the as-

sociated cost. As new technologies enable more precise forecast of extreme events, a

better prediction of the impact due to such an event can be made as the arrival time
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Figure 6.1: Offshore pipeline network damage assessment over a planning horizon

of the event becomes closer. If AUV positions are determined only after accurate

event information is available, AUVs can be placed just around the perimeter of the

impending event impact area; hence, it can greatly help assess damage soon after the

disaster. However, it is likely that there may not be enough time to complete AUV

positioning if it delays too long because the limited number of supporting vessels

and human resources may not complete AUS pre-deployment activities before the

beginning of an extreme weather. On the other hand, if AUV are positioning well in

advance, the variance of the forecast error can be high. As a result, some preposi-

tioned AUV locations can be far out of the event impact zone or can be damaged by

the harsh weather.

The goal in this research is to address these issues by decomposing the problem

into two stages. In the first stage, AUV pre-positioning locations are selected antic-

ipating an arrival of an extreme event. In the second stage, the AUV locations are

adjusted, if necessary, when the arrival time of the predicted extreme event becomes

closer with updated weather forecast. The second phase determines the optimal num-

ber of AUVs to use and generate optimal AUV paths to complete damage assessment

in minimal time. It aims to have a condition that no on-site crews are required for

the mission. Thus, the objective of MAUV-ph2 is to minimize the AUV operating

cost only. For the path planning, every path has to follow five requirements: i) AUV
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Figure 6.2: Flowchart of MAUV model optimization

traverses directly from depot to any accessible target node; ii) Each target node and

edge is scanned only once but can be visited multiple times to pass through; iii) AUV

returns either to the original position or any other depot locations, iv) Every indexed

AUV conducts a single mission, and v) AUV returns to any of AUV positions off the

pipeline.

Figure 6.2 depicts the flowchart of the proposed two-phase optimization of

MAUV problem. The Phase 1 problem is formulated as a two-stage stochastic inte-

ger program whose goal is to determine AUV pre-positioning locations. Input data

to the model include AUV maximum operating time, facility durability scale, and

extreme weather impact scale which is random. The Phase 2 problem generates AUV
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paths for post-disaster damage assessment. Once AUV location information is given

to MAUV-ph2, a probing-based preprocessing method eliminates infeasible edges con-

sidering AUV maneuvering capacity, and calculates upper bounds for target coverage

constraint. A Lagrangian heuristic and a subgradient method [98] are applied to

obtain a tight lower bound on the objective value of MAUV-ph2.

6.3 Mathematical Formulation

6.3.1 Sets, Elements, Data and Variables

Sets:

G (V,E) Directed network with nodes V and edges E

V Set of nodes V = {1, 2, 3, ..., i}

V1 Set of target nodes where V1 ⊆ V

V2 Set of AUV pre-positioning candidate nodes where V2 ⊆ V and

V1 ∩ V2 = ∅

V21 Set of AUV pre-positioning candidate nodes connected to edge(s)

in a network where V21 ⊆ V2

V22 Set of AUV pre-positioning candidate nodes where V22 ⊆ V2 and

V21 ∩ V22 = ∅

V ′ Set of selected AUV pre-positioning nodes where V ′ ⊆ V2

V ′′ Set of revised target nodes for phase 2 where V ′′ = V1 ∪ (V21 − Vr)

E Set of edges E = {{i, j} : i, j ∈ V ′′, i 6= j}

E1 Set of initial routes from an AUV prepositioned node to a target

node E1 = {{i, j} : i ∈ V ′, j ∈ V ′′} where E1 ⊆ E
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E2 Set of intermediate routes from a target node to another target

node E2 = {{i, j} : i, j ∈ V ′′} where E2 ⊆ E and E1 ∩ E2 = ∅

E3 Set of returning routes from a scanning node to a recovery node

E3 = {{i, j} : i ∈ V ′′, j ∈ V ′} where E3 ⊆ E and E1 ∩E2 ∩E3 = ∅

and E1 ∪ E2 ∪ E3 = E

K Set of AUVs K = {1, 2, 3, ..., k};

Ω Set of sample scenarios of extreme events ω ∈ Ω

Data:

ci Unit setup cost for AUV pre-positioning at node i ∈ V2 in the first

stage

c+
i Unit setup cost for AUV pre-positioning at node i ∈ V2 in the

second stage

cp Maximum number of AUV pre-positioning nodes that can be in-

stalled in the second stage

ai,j,ω Weather impact indicator. 1 if an edge (i, j) ∈ E is included in

weather impact zone in accordance with a scenario ω ∈ Ω, 0 oth-

erwise.

di,j Travel time (min.) of AUV over edge (i, j) ∈ E

Pk Unit operating cost of AUV k

Bk Maximum operating time (min.) of AUV k

STj Node scanning time at j ∈ V ′′

N Maximum number of scanning nodes in a path

yi Pre-positioning indicator. 1 if AUV pre-positioning node i ∈ V ′ is

selected and 0 otherwise
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xi,j,k Edge scanning indicator. 1 if AUV k is traversed over an edge

E(i, j) and 0 otherwise

hk AUV mobilization indicator. 1 if AUV k is mobilized and 0 other-

wise

Decision Variables:

ad+
i,ω Pre-deployment selection indicator. 1 if AUV pre-deployment node

i is added in the second stage according to a scenario ω ∈ Ω and 0

otherwise

drbi,j Durability scale [0,1] of pipeline over an edge (i, j) ∈ E

wxω Impact scale [0,1] of an extreme event according to a scenario ω ∈ Ω

6.3.2 Phase 1: AUV Pre-positioning (MAUV-ph1)

Phase 1 model decides which AUV pre-positioning locations are to setup so as to

assess all target nodes and edges while minimizing the sum of the AUV pre-positioning

setup costs and considering weather forecast uncertainty. MAUV-ph1 is formulated

as a two-stage stochastic program. MAUV-ph1 formulation is as follows.

The objective function is defined as

min
∑
i∈V2

ciyi + EP

∑
i∈V2

c+
i ad

+
i,ω

 (6.1)

to minimize the overall cost for pre-positioning AUVs. The first term is the sum

of fixed costs for AUV position setup in the first stage. The second term is the

sum of expected cost for additional AUV position setups in the second stage con-

sidering uncertain weather information. Due to the stochastic property of weather
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Figure 6.3: An illustrative example of offshore pipeline network

information, solving MAUV-ph1 is computationally challenging. Therefore, scenar-

ios ω1, ..., ωN ∼ P are generated by Monte Carlo sampling technique and approxi-

mated the solution by replacing the expectations that appear in the objective function

EP
[∑

i∈V2 c
+
i ad

+
i,ω

]
with the corresponding sample average 1

|Ω|
∑
i∈V2

∑
ω∈Ω ci

+ad+
i,ω.

A target edge must be covered by at least one AUV pre-positioning location

regardless of the uncertain weather condition, and is constrained as

∑
i:(i,j)∈E1

ai,j,ω
(
yi + ad+

i,ω

)
≥ 1, ∀j ∈ V2, ω ∈ Ω. (6.2)

The value of ai,j,ω in (6.2) is determined based on two criteria: First, every network

bus j ∈ V2 must be covered by at least one AUV. After that the AUV must be

able to return to a depot after completing the damage assessment task. This means

that the total maneuvering distance from an AUV pre-positioning location i ∈ V1 to

any returning position l ∈ V2 via a target node j ∈ V2 should be less than or equal

to the maximum maneuvering distance of AUV k ∈ K. Second, uncertain weather

conditions need to be considered in addition to the first criterion. For instance, if the

impact of the extreme weather wxω is higher than the impact of durability of pipeline

drbi,j over an edge (i, j) ∈ E1, then the edge is included in a target network as ai,j,ω

becomes 1, and 0 otherwise. The determination of ai,j,ω is described in Algorithm
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3.

Algorithm 3 Determinination of ai,j,ω
1: for (i, j) ∈ E1, (j, l) ∈ E3, ω ∈ Ω do
2: if {(di,j +min{dj,l} ≤ Bk) and (drbi,j ≤ wxω)} then
3: ai,j,ω = 1
4: else
5: ai,j,ω = 0
6: end if
7: end for

Any chosen pre-positioning location is set up either in the first stage or in the

second stage and is defined as

yi + ad+
i,ω ≤ 1, ∀i ∈ V1, ω ∈ Ω. (6.3)

It limits the maximum number of AUV positions in the second stage considering

availability of resources for the tasks and is formulated as

∑
i∈V1

ad+
i,ω ≤ cp, ∀ω ∈ Ω. (6.4)

After the selection of AUV pre-positioning locations by MAUV-ph1, the re-

maining nodes are re-labeled as dummy nodes for AUV paths generation in MAUV-

ph2. For example, if n4 is not selected as a pre-positioning location, then a target

edge e4 cannot be scanned by any AUV. Therefore, if there is an unselected element

i ∈ (V21 − V ′), then this point is put as a dummy node in Phase 2. The revised set

of target nodes including dummy nodes is defined as V ′′ = V1 ∪ (V21 − V ′).

6.3.3 Phase 2: AUV Path Generation (MAUV-ph2)

Based on the AUV preposition decision from Phase 1, Phase 2 determines opti-

mal paths for deployed AUVs to assess the target network so as to minimize the sum
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of AUV operating costs. AUV k ∈ K starts and ends assessment from/to locations

i ∈ V ′ conducting damage assessment through the traverse edge E.

In MAUV-ph2, the objective function is expressed as

min
∑
k∈K

Pkhk (6.5)

to minimize the sum of AUV operating costs Pk which are proportional to the number

of AUVs. AUV allocation for any damage assessment mission is indicated by

∑
(i,j)∈E1

xi,j,k ≤ hk, ∀k ∈ K. (6.6)

Each AUV must cover at least one target node in the network and is defined as

∑
i:(i,j)∈E1\E3

xi,j,k ≥ 1, ∀j ∈ V ′′. (6.7)

Flow conservation of AUVs is controlled by the following two constraints:

∑
(i,j)∈E1

xi,j,k =
∑

(j,i)∈E3

xj,i,k, ∀k ∈ K (6.8)

and

∑
i:(i,u)∈E\E3

xi,u,k =
∑

j:(u,j)∈E\E3

xu,j,k, ∀u ∈ V ′′, k ∈ K. (6.9)

The total number of AUVs departing from any AUV positions is the same as the

number of returning AUVs in (6.8), and flow-in equals flow-out for any target nodes

in (6.9). Any target edge E2 must be assessed at least once by a maneuvering AUV

either from i to j or the opposite, and described as

∑
k∈K

(xi,j,k + xj,i,k) ≥ 1, ∀(i, j) ∈ E2. (6.10)
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Every AUV operating path, including maneuvering time over a pipeline and inspection

on a specific node, must be bounded by its maximum operating time, and is defined

as ∑
(i,j)∈E

(di,j + STj)xi,j,k ≤ Bk, ∀k ∈ K. (6.11)

Sub-tours are eliminated to make a complete operating path using MTZ sub-tour

elimination constraints and is formulated as

ui − uj + (|V ′′|+ 1)xi,j,k ≤ |V ′′|, ∀(i, j) ∈ E2, k ∈ K. (6.12)

6.3.4 Computational Considerations

The MAUV-ph2 has a framework of multiple vehicle routing problem which is

classified as an NP-hard problem [99]. For the practical large-scale instances, it is very

difficult to obtain the optimal solution. Therefore, in this section, four computational

techniques are discussed to improve computational performance of MAUV-ph2.

The first technique is to reformulate maneuvering time constraint (6.11) to re-

duce the number of redundant constraints. The second one is to tighten the solution

space using constraint (6.7). In the third approach, a preprocessing algorithm is pro-

posed to fix the values of some binary variables considering operational feasibility

under the given technical specifications, and to generate coefficients for the two re-

vised constraints. Lastly, a Lagrangian relaxation method is developed to obtain a

tighter dual (i.e., lower) bound on the objective function of MAUV-ph2.

1) Option 1: reformulation of operation time constraint If any AUV is not

assigned for damage assessment, then there is no need to check whether the AUV

can complete a maneuver within the maximum operation time as stated in constraint

(6.11). In this case, the left-hand-side of (6.11) is 0, but the right-hand-side remains

at a constant value. Therefore, by replacing Bk to Bkhk in (6.13), right-hand-side can
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Figure 6.4: An illustrative example of maximum number of AUVs passing a node

only have a positive value only if an AUV is assigned to a task. Otherwise, the value

is 0 since hk is 0. Additionally, as variable hk indicates whether AUV k is assigned

for damage assessment and formulated as

∑
(i,j)∈E

(di,j + STj)xi,j,k ≤ Bkhk,∀k ∈ K. (6.13)

Constraint (6.13) substitutes (6.6) which essentially imposes the same constraint.

2) Option 2: upper bound generation for target coverage constraint According

to constraint (6.7), a target node must be assessed by at least one AUV, but no upper

limit is set on the number of AUVs maneuvering over the node. If we impose an

upper bound on the number, it can help reduce solution space; hence it can expedite

convergence to find an optimal solution.

Figure 6.4 shows an example in which node 6 is connected with nodes C1, C2,

C3 and C4 over four independent edges. If each edge is scanned by multiple indepen-

dent AUVs toward node 6 and flow-in to any of AUV depots off the network, then

a total of four AUVs will maneuver over node 6. Therefore, (6.7) can be reinforced

by limiting the number of maximum allowed AUVs on node j edj as an upper bound
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and is formulated as

1 ≤
∑

i:(i,j)∈E\E3

xi,j,k ≤ edj,∀j ∈ V ′′. (6.14)

Upper bound edj is obtained by Algorithm 4 discussed in Option 3 below.

3) Option 3: probing-based preprocessing To increase the computation speed of

the MAUV-ph2 model, an efficient preprocessing algorithm is developed. First, if the

flight distance between two nodes is greater than the maximum operation time of AUV

Bk, then the variable xi,j,k will be fixed to 0. Second, the maximum number of AUVs

passing over node j edj is counted which set an upper bound in (6.14). Algorithm

4 provides an overview of the proposed probing-based preprocessing procedure.

Algorithm 4 A probing-based preprocessing
1: Initialize edj
2: for (i, j) ∈ E, k ∈ K do
3: if (di,j > Bk then: operational feasibility check
4: xi,j,k = 0
5: end if
6: if (di,j 6= 0) then: upper bound for (14)
7: edj = edj + 1
8: end if
9: end for

4) Option 4: Lagrangian relaxation for lower bound generation A tighter dual

(lower) bound on the objective function of MAUV-ph2 can be generated utilizing

Lagrangian heuristic approach. In MAUV-ph2 model, the number of sub-tour elimi-

nation constraints, i.e., (6.12), is exponential which can consume significant compu-

tational resources [100, 101]. Therefore (6.12) is relaxed and added to the objective

function (6.5) as

L(λ) = min
∑
k∈K

Pkhk +
∑
k∈K

∑
i,j)∈E2

λi,j,k{ui − uj + (|V ′′|+ 1)xi,j,k − |V ′′|} (6.15)
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subject to (6.6)-(6.12) where λk ≥ 0.

The Lagrangian dual problem L(λ) provides a lower bound on the objective

function of MAUV-ph2 model. From the Lagrangian dual problem, the Lagrangian

multiplier is iteratively modified to find the best lower bound by using the subgradient

method summarized as follows:

Algorithm 5 Subgradient method
1: Initialize upper bound L, λi,j,k ≥ 0, θ = 2
2: repeat
3: γi,j,k = g(xi,j,k): gradient of L(λi,j,k)
4:

tj=θj(L−L(λi,j,k))
||γi,j,k||2

: step size
5: λ′i,j,k = λi,j,k
6: λi,j,k = max{0, λi,j,k + tjγi,j,k}
7: until termination condiction ||λ′i,j,k − λi,j,k|| < ε is satisfied

6.4 Simulation Result

A set of experiments on the proposed MAUV model, composed of two phases

of MAUV-ph1 (AUV pre-positioning locations) and MAUV-ph2 (AUV routing deci-

sions), is conducted. In the first part, MAUV-ph1 is validated by using simulated

random data with a goal to understand how the model works under extreme events,

and compare the results with the solutions from a deterministic model. To simulate

uncertain weather condition in MAUV-ph1, the impact scale of an extreme weather

wxi,j,ω is randomly generated, where wxi,j,ω ∼ U(0.4, 0.9). In the second one, MAUV-

ph2 is tested with a real offshore pipeline network in the Gulf of Mexico as shown in

Figure 6.6

All experiments were run on a Linux server with Intel Xeon 3.00 GHz processors

and 364GB RAM. CPLEX 12.6 was used as the mixed integer programming (MIP)

solver. The solution pools algorithm is utilized which accumulates groups of feasible
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Figure 6.5: An example of AUV specification

solutions to find a near optimal solution [102]. Two algorithm termination criteria

are used including the relative termination tolerance gap of 3% and the 12-hour CPU

runtime limit.

Figure 6.5 shows the specification of an AUV that are available for damage

assessment. Ten instances of MAUV-ph1 model were solved, and evaluated the value

of the stochastic solution (VSS) [85] for each of the instances, and compared with

solutions from the deterministic counterpart.

Table 6.1 compare the outcomes from the deterministic model and the stochastic

programming MAUV-ph1 model by using the VSS. The column “Deterministic Model

(total cost)” represents the objective value of a deterministic model. The column

“Stochastic Model (total cost)” represents the objective value of MAUV-ph1 model.

The VSS equals the total cost of the deterministic model minus the total cost of

the stochastic model. As can be seen in column VSS, MAUV-ph1 under stochastic

assumption outperforms the deterministic model in all studied cases.

As a result of solving MAUV-ph1, we not only obtain the AUV pre-positioning

locations but also identify which pipelines are included in the target area. Figure 6.8

shows the topology of a offshore pipeline network system example in Figure 6.6 which

is composed of 158 pipeline segments and 72 pipeline joints within the target area
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Figure 6.7: Offshore pipeline damage assessment target area

Table 6.1: Comparison of MAUV-ph1 and its deterministic counterparts

Case ID Number of nodes Deterministic Stochastic VSS
#1 20 37 27.67 9.33
#2 25 44 27.67 16.33
#3 30 43 30.33 12.67
#4 35 43 32.00 11.00
#5 40 44.33 32.67 11.67
#6 45 47 33.33 13.67
#7 50 42.67 32.67 10.00
#8 55 44.00 34.67 9.33
#9 60 45.33 35.67 9.67
#10 65 47.33 34.67 12.67

shaded in grey.

Figure 6.9 and Figure 6.10 provides a MAUV-ph2 solution set that C1, C2

and C3 are minimum number of AUV positions to cover the target area. Total 30

AUVs are needed to scan the target area, and assigned as the following: 13 AUVs at

C1, 9 AUV at C2, and 8 AUVs at C3.

We also conducted sensitivity analysis by varying the maximum range of AUV
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coverage which affects the result of MAUV-ph1 and consequently the result of MAUV-

ph2. It is observed from Table 6.2 that as maximum coverage increases, the number

of depots is decreased. In case #4, for example, if an AUV can operate up to 200

hours, then it is possible to cover all target area only from a single depot. As a result,

AUV pre-positioning setup cost is minimized but increases overall AUV operating

cost in phase 2.

Table 6.2: AUV maximum coverage range and MAUV ph-1 solutions

ID Max. endurance AUV depots AUV types Total cost time
#1 25 hrs C2, C3, C4 (3) I(6) / II(3) C#1

dpt + 255 33.5 min
#2 50 hrs C1, C3, C4 (3) I(3) / II(5) C#1

dpt + 250 33.5 min
#3 100 hrs C1, C4 (2) I(5) / II(4) C#1

dpt + 265 33.5 min
#4 200 hrs C4 (1) I(5) / II(6) C#1

dpt + 335 34.5 min

*C#1
dpt: AUV pre-positioning setup cost of case #no where C#1

dpt = ∑
i∈V2 ciyi

As depicted in Figure 6.11, AUV scanning time, pre-positioning setup cost,

and operating cost have triangular relations. For example, case#2 has the least AUV

operating cost compared with other test cases. Case#4 is the most economical case

with regards to AUV pre-positioning setup cost but has the longest scanning time.

Table 6.3: Four combinations of computational options

Case Option 1 Options 2 Option 3 Option 4
MAUV-ph2 No No No No
MAUV_T1 Yes No Yes Yes
MAUV_T2 Yes Yes Yes Yes

We evaluated performance of computational techniques suggested in section

6.3.4. For the comparison, three combinations of computational options have been

used as shown in Table 6.5. MAUV-ph2 is the original MAUV model without any

computational techniques. MAUV_T1 considers 1, 3, and 4. MAUV_T2 was solved

applying all four options. MAUV-ph2 did not converge within the 12-hour CPU run-

time limit. MAUV_T1 could not find an initial feasible solution in nearly 7 hours.
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Figure 6.11: Triangular relations of damage assessment time, AUV prepositioning setup
cost, and operating cost in accordance with AUV maximum maneuvering
time
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Figure 6.12: Convergence

But then the objective value dropped immediately to the same value of MAUV_T2,

and converged after 521 minutes. However, as depicted in Fig. 8, MAUV_T2 con-

verged faster because a tighter upper bound for target coverage constraint was pro-

vided to the model in addition to a tighter lower bound on the objective function.

This shows that these additional information to the model help expedite convergence

of the algorithm.

6.5 Conclusion

A two-phase mathematical optimization model was proposed for offshore natural

gas pipeline network damage assessment by using AUVs. As random weather impact

is considered to the determination of AUV pre-positioning locations, MAUV-ph1 was

formulated as a two-stage stochastic program to cover a target area while minimizing

total AUV positions setup cost. Based on the AUV pre-positioning locations from

phase I, MAUV-ph2 model further generated AUV paths and required number of
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AUVs to complete the damage assessment. As MAUV-ph2 was an NP-hard problem,

probing-based preprocessing techniques and a logical inequality are developed, and

Lagrangian heuristic is applied to obtain a good lower bound of MAUV-ph2 objective

value in a reasonable time. Based on experimental results, it is presented that the

superiority of the stochastic solutions compared with deterministic solutions using

VSS. By applying four computational techniques, optimal solutions are obtained in a

reasonable time. Additionally, in the sensitivity analysis, triangular relations among

damage assessment time, AUV pre-positioning setup cost, and operating cost were

discovered by varying the service range from each AUV positions.
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Chapter 7

Summary and Future Work

This dissertation was directed towards aiding the LNG suppliers overcome the

complexity and uncertainty involved in LNG supply projects and offshore pipeline

damage assessment.

A new biannual LNG ship routing and scheduling model was proposed in a deter-

ministic setting in Chapter 3. The proposed LNG IRP was extended to a stochastic

model considering BOG generation uncertainty while serving geographically dispersed

multiple customers using a fleet of heterogeneous vessels in Chapter 4. The research

motivations are not only contract trend changes to shorter ones but also technological

advances in LNG vessel design. The mutual coincidence of both transitions enables

developing a new LNG shipping strategy to keep up with emerging market trend. A

deterministic LNG scheduling model was proposed which is formulated as a multiple

vehicle routing problem. The model was then extended to a two-stage stochastic

model considering BOG generation which is unknown. Since the VRP is typically a

combinatorial optimization problem, its stochastic extension is much harder to solve.

In order to overcome this computational burden, a Monte Carlo sampling optimiza-

tion was used to approximate the stochastic model while ensuring good quality of

solutions. The solutions were evaluated using expected value of perfect information

EVPI and value of stochastic solution VSS.

Chapter 5 investigated LNG inventory planning and ship routing problem with

production decision under extreme weather disruptions in LNG business. Once an

extreme weather is expected to impact the region of interest, every planned LNG

loading operation at a liquefaction plant must be rescheduled. Otherwise, risks under
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a disruption drastically increase and it can result in unexpected fires and explosions

generating mass casualties and property damages. Two mathematical models were

proposed to cope with the potential disruptions. In the first model, LNG inventory

routing problem is formulated as a two-stage stochastic mixed integer program to

maximize the overall expected revenue while minimizing uncertain impact of dust

storms within the established time period. The proposed DMP model differs from

the proposed two-stage stochastic LNG IRP in that a decision maker’s preference

on risks is reflected by a parametric optimization technique. This model enables a

decision maker to have a ‘what-if analysis’ by varying the level of risk preference.

To overcome the computational difficulties of the proposed models, two techniques

have been proposed. First, a probing-based preprocessing technique was developed

to reduce the number of binary variables utilizing the relations among time windows

and the amount of boil-off gas in a path. Second, the routing process was further

simplified in the model by replacing the sub-tour elimination constraint with a logical

inequality. Computational results indicated that the proposed models and techniques

are well suited to solve the problem in a reasonable time.

Chapter 6 addressed a two-phase mathematical framework for efficient offshore

pipeline damage assessment using AUVs. In the first phase, a two-stage stochas-

tic integer programming optimization model was proposed for damage assessment in

which the first stage determines the optimal AUV locations anticipating an arrival

of an extreme weather event, and the second stage augments the additional AUV

deployment locations, if necessary, when the arrival time of the predicted extreme

event becomes closer with updated information. AUV paths to scan the pipeline

network are generated in the second phase while minimizing operating costs of the

AUVs. Computational techniques are developed to reduce the solution time. Numeri-

cal experiments on a test pipeline network showed that the proposed stochastic model

outperformed the deterministic counterpart in terms of the total AUV pre-positioning
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setup cost. Additional sensitivity analyses exhibit the relationships among damage

assessment time, AUV pre-positioning setup cost, and operating cost.

There can be several extensions to the studies presented in this dissertation. The

proposed deterministic model, a parametric model and the following two versions of

stochastic LNG IRPs were constructed considering changing market trends, technical

advances and two crucial uncertainties (BOG and dust storm). As a next step, one

can consider safety and security enhancement in LNG supply network. In spite of

international collaboration efforts against piracy, pirate attacks are still a serious

threat to maritime transportation including global LNG shipping.

There are two potential security challenges in maritime security: 1) terrorism,

2) safety accident prevention & consequence management. First, terror attacks can

occur in either onshore or offshore marine activities. Potential attacks can be direct

action (e.g., vehicle-borne improvised explosive devices or RPG-7 attacks) or stand-

off attacks (e.g., mortar, artillery or rocket fires) in day and night. Second, there are

numerous types of safety accidents (e.g., oil spill, gas leak) which require preventive

surveillance or early warning. Once an incident is notified, it requires accurate (near)

real time information collection capabilities to closely monitor the changing situations.

In response, utilization of security unmanned vehicles (UVs) passing through

piracy and disaster or crisis prone areas can be considered. The basic concept is

that an LNG cargo vessel becomes a platform for a fleet of security UVs. Therefore,

security UVs can provide situational awareness under volatile security situations by

taking off and landing at the LNG cargo vessel. The expected outcome of this model

is a surveillance and reconnaissance schedule of multiple UVs and an optimal LNG

inventory routing schedule as well.

On the perspective of utilizing multiple UVs, this model minimizes the number of

operating UVs and idle times of each UV considering regular maintenance constraints.

For a practical purpose, various technical specifications and operational limits of
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various types of UVs (e.g., maximum operable range, cargo load limit and vision

equipment capacity) can be further considered.

If we extend the proposed LNG IRP to a two-echelon LNG IRP model, then,in

the first echelon, LNG cargo vessel routes and production inventory plan is optimized

while determining an optimal path(s) of security drones in the second echelon. There-

fore, extending the proposed LNG IRP to a two-echelon LNG IRP model can be an

immediate next step of this study.

The suggested MUAV model mainly focused on weather uncertainty to AUVs

pre-positioning and its path generation while minimizing total operation time and

cost. In practice, there are numerous other uncertain environmental elements which

causing AUVs to be in malfunctioned condition or generating unreliable results re-

sulting from dynamically changing subsea environment. Therefore, as an extension

to the proposed model, we can consider various uncertain elements not only in the

planning phase but also in the operations phase.
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