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Abstract

An improved version of Matching Pursuit Decomposition (MPD), called Fractional

Matching Pursuit Decomposition (FMPD), which can solve the lateral instability

problem caused by conventional Matching Pursuit Decomposition, is proposed. On

synthetic data, including a wedge model and the Dickman field real dataset, FMPD

results show better lateral continuity among all the applications than conventional

MPD.

In pursuing better resolution in spectral decomposition, the conventional uncertainty

principle is not adequate for application purpose. An alternative definition of un-

certainty principle, which could clearly and quantitatively define combined temporal

and spectral resolution concerned in spectral decomposition, is presented. According

to this, complex uncertainty principle, the lowest limit is still valid if we consider

zero mean condition into wavelet selection.
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Chapter 1

Introduction

Spectral decomposition has drawn people’s attention in exploration geophysics since

Partyka et al. [1999] explicitly revealed the value of it in reservoir characterization.

Frequency representation of seismic data provided us a new perspective to process

and interpret, which frequently excavated detailed information that was buried in

time representation. The value of this new method was validated when more people

applied it to the real data. Over a decade’s exploration in this subject, spectral

decomposition has proved to be useful in many ways which significantly reduce the

chance of misinterpretation and support the drilling plans [Johann et al., 2003, Cuesta

et al., 2009]. Spectral decomposition is extremely useful in channel delineation [Par-

tyka et al., 1999, Sinha et al., 2005, Liu and Marfurt, 2007, Guo et al., 2009, Verma

et al., 2009, Li et al., 2010]; fault detection [Alam and Taylor, 2006, Pokhriyal and

Dotiwala, 2007]; subtle discontinuities detection [Matos et al., 2009, Li et al., 2010];

hydrocarbon indication [Burnett et al., 2003, Castagna et al., 2003, Hernandez and

Castagna, 2004, Fahmy et al., 2005, Guo et al., 2006, Wang, 2007, Tai et al., 2009,
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Li et al., 2011]; gas and brine separation, i.e. fluid property discrimination [Montoya

et al., 2005, Chen et al., 2006, Zhao et al., 2006, Deng et al., 2007]; thickness estima-

tion [Barnes et al., 2004, Marfurt and Kirlin, 2001]; general reservoir characterization

[Li and Zhang, 2008, Guo et al., 2009, Zhang et al., 2009]; dispersion analysis and

Q estimation [Odebeatu et al., 2006, Singleton et al., 2006]; automatic first break

detection [Liao et al., 2011]; interpolation between traces [Ozbek et al., 2009]; hidden

structural and stratigraphic features detection [Peyton et al., 1998, Johann et al.,

2003, Giroldi and Alegria, 2005, Spitzer et al., 2007, Sierra et al., 2009]; thinbed

reflectivity inversion [Chopra et al., 2006, 2007, 2009]. It is fair to say that further

investigation of spectral decomposition would broaden its value in exploration geo-

physics other than what have described above.

The general idea of spectral decomposition is to transform a seismic trace from 1-D

time series to a 2-D panel covering both time and frequency domains at the same

time. In practice, time frequency analysis often reveals more information than is

obvious from broad band dataset. However, many similar methods can successfully

decompose the seismic data into frequency representation. By extracting frequency

attributes out of the dataset, we can characterize the reservoir more accurately.

The first application of spectral decomposition in 3D dataset using Discrete Fourier

Transform(DFT) was by Partyka et al. [1999]. It was a giant success in reservoir

characterization [Gridley and Partyka, 1997, Partyka et al., 1999, Johann et al.,

2003, Giroldi and Alegria, 2005, Montoya et al., 2005]. In order to overcome the

fixed resolution problem of DFT, Continuous Wavelet Transform(CWT) was ap-

plied [Alam and Taylor, 2006, Matos and Marfurt, 2008, Sierra et al., 2009, Sinha
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et al., 2009]. An alternative method called Matching Pursuit Decomposition(MPD)

[Castagna et al., 2003, Fahmy et al., 2005, Geerdes and Young, 2005, Zhao et al.,

2006, Bradford and Wu, 2007, Wang, 2007, Liu and Marfurt, 2007, Ozbek et al.,

2009] was applied and showed better resolution than DFT and CWT. In general,

those three methods are quite similar to each other, each has its own advantages and

each does sufficient jobs on spectral decomposition. However, comparison between

those three methods [Chakraborty and Okaya, 1995] shows that MPD has best com-

bined resolution. Castagna et al. [2003] had also showed time frequency maps of

these three methods on synthetic data. Thorough comparison between CWT and

MPD on real data application can be found in Puryear’s paper (2008) [Puryear et al.,

2008]. Other methods like Wigner-Ville Distribution (WVD) [Guo et al., 2006, Li

et al., 2010], smoothed WVD [Li and Zhang, 2008], S transform [Miao et al., 2007]

are also actively studied.

In my thesis, I limit my study to DFT, CWT, and MPD. There is an improvement

on MPD, I called it fractional MPD, which can solve the lateral instability problem

caused by conventional MPD. We are always trying to pursue better resolution on

spectral decomposition, not only temporally but also spectrally. Since wavelet based

spectral decomposition methods have exhibited its value in real data applications, it

is needed to examine what factor really controls the power of resolution. It is gener-

ally said that time spread of waveform and bandwidth of spectrum cannot be made

arbitrarily small simultaneously. And there is a lowest limit of 1/2 derived from

mathematical definition. However careful examination upon uncertainty principle

suggests that, the conventional uncertainty product is not accurate to characterize

3



the resolution on spectral decomposition. Instead, we should use complex uncertainty

principle which is comprehensively described in chapter 4.
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Chapter 2

Basic Theory—Time Frequency

Analysis

2.1 Fourier Transform (FT)

Mathematical theory of modern time frequency analysis is based on the Fourier

Transform. This seemingly simple and well-known transform is named after Joseph

Fourier, a 19th century Franch scientist.

In 1807, Joseph Fourier was fascinated about the behavior of heat. He was in struggle

of finding the solution to the function of heat transmission. The trickiness of this

problem is when hot and cold objectives were put into contact, the discontinuity in

temperature arose. Joseph Fourier’s remarkable idea of the solution is to use a series

of continuous functions to represent the discontinuous function, which seems absurd

at that time of understanding, turns out to be the most powerful scientific method

that had been discovered. We could also view the Fourier Transform as decomposing

5



the function/signal using the expansion functions of sine and cosine function/signal

at different values of parameter, which we call that parameter frequency.

The first application of Fourier Transform was almost 60 years after the discovery

of this method which is a tremendous loss of 60 years. However, by that application

we could quantitatively differentiate light with different colors by frequency. Even

though the value of Fourier Transform is tremendous, there are limitations in it.

One major assumption is that the signal is considered to be stationary for Fourier

Transform to be absolutely correct. Stationary signals are constant in their statistical

parameters over time. However, seismic signals are non-stationary signals begin with

non-stationary source. Also truncated signals with finite time length are always non-

stationary. Primary solution was using Short Window Fourier Transform when they

were dealing with speeches, which is totally applicable in seismic analysis.

2.2 Short Time Fourier Transform (STFT)

Since we could view Fourier Transform as the summation of a series of sine and

cosine waves at different frequencies, it is convenient for us to write the transform as

followed:

S(t) =
∫ ∞

−∞
A(ω) cos(ωt)dω +

∫ ∞

−∞
B(ω) sin(ωt)dω (2.1)

In this case, STFT could be written as followed:

S(t)w(t− τ) =
∫ t2

t1
w(t− τ)A(ω) cos(ωt)dω +

∫ t2

t1
w(t− τ)B(ω) sin(ωt)dω (2.2)

The assumption for STFT was that truncated signals are stationary, which is approx-

imated true for an efficiently small window. Due to the Uncertainty Principle(UP),

6
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Figure 2.1: Illustration of uncertainty principle

which states that there is a limitation combined the resolution in temporal and

spectral domain, we cannot arbitrarily obtain optimal resolution both in time and

spectrum as illustrated in Figure 2.1.

Therefore, once the window for STFT was chosen, we faced a fixed resolution through

the whole seismic trace. However, in reality, long window is preferred if that is suf-

ficient enough to represent the signal, which could also decrease consummation of

time in computation. And short window is preferred where there is dominated by

high frequency signals. In general, we tend to adjust the window sizes throughout
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the trace. To accomplish this expectation, we could use Wavelet Transform(WT)

which has adjusted resolution.

2.3 Wavelet Transform(WT)

S(a, b) =
1√
|a|

∫ ∞

−∞
S(t)ψ⋆

(
t− b

a

)
dt (2.3)

In a simple way, WT can be considered as cross-correlating adjusted mother wavelet

with seismic trace and laying out the correlation coefficient on the time scale map.

However, we can always transform scale to frequency and get a time frequency map.

There are two major categories for WT when we computed it. They are:

• Continuous Wavelet Transform (CWT): which uses a sliding window through

the trace with overlapping.

• Discrete Wavelet Transform (DWT): which uses a series of window segments

without overlapping.

Note that Morlet wavelets do not constitute orthogonal basis. Because of overlapping,

we have plenty of redundant information. Even in DWT analysis, Morlet wavelet is

only approximately orthogonal since we have infinite extended tails of Gaussian.

There are orthogonal wavelets to be used inWT analysis such as Daubechies [Daubechies,

1990]. Between the choice of weird shape of wavelet like Daubechies and good-looking

shape of wavelet like Morlet, I vote for Morlet for the reason that I believe the beauty

of the universe is simplicity. And approximately orthogonal Morlet wavelet is enough.

If we use Morlet wavelet as the mother wavelet, we could consider Morlet wavelet

8



transform as STFT with a Gaussian window. Their major difference is whether the

shape of the window can be adjusted or not.

Mathematically, we tend to decompose signals into sine and cosine waves. Because

these waves are beautiful. They are periodic. Moreover, complex analysis is easier

in some ways. There is a big connection between complex waves and Fourier waves

which is Euler Equation:

e−iθt = cos(θt) + i ∗ sin(θt) (2.4)

Special case of Euler Equation:

eiπ + 1 = 0 (2.5)

This special case, combining natural logarithm e, circumference ratio π, imaginary

unit i, integer unit 1 and the greatest 0, is the most beautiful function in the math-

ematical world in my and perhaps many others’ perspective. This equation is also

valued as ”God made equation” by mathematicians. While geophysically, what we

are dealing with is the convolution of impulse and Earth medium. Instead of using

truncated Fourier waves, how about we use some impulse-like waves to represent

seismic signals? Followed by this intuitive, Matching Pursuit was applied to decom-

pose seismic signals into impulse-like wavelets, Ricker wavelets.

9



Chapter 3

Matching Pursuit Decomposition

3.1 Matching Pursuit (MP)

Matching Pursuit is a statistical regression method. Mallat and Zhang [1993] had

clear demonstrated what is Matching Pursuit and all the mathematical concerns

about it. One statistical paper by Friedman [Friedman et al., 2000] had pointed out

that Matching Pursuit used by Mallat and Zhang was a greedy approach of a more

sophisticated method called additive model.

S(t) =
∞∑
n=0

angγn(t) (3.1)

Whether this additive model will reveal more information from seismic data or not

is left to be explored. However, this greedy approach has a great advantage in time

consummation. In Chapter two, we will discuss more about matching pursuit and

some improvements of it.

10



The objective of matching pursuit is to reconstruct the original signal with the com-

bination of best matched wavelets from a pool of wavelet dictionary. After that, we

distribute the spectra of matched wavelets along the envelop of the matched wavelet

in time frequency map to get the energy distribution of the signal. Figure 3.1 has

explicitly described the procedure of Matching Pursuit Decomposition (MPD) algo-

rithm.

ALGORITHM 

Input seismic 

trace 

Wavelet Dictionary 

Wavelet=Ricker(f) 

Best Matched 

Wavelet 

Residual 

Reconstructed 

trace 

Residual 

Trace 

correlation 

subtraction 
energy>threshold  

energy<threshold  

summation 

Figure 3.1: Algorithm of conventional MPD

3.2 Criteria for Wavelets

The algorithm behind MP is simple. However the choice of wavelet dictionary is not.

Same as in WT, for efficiency reasons, there are some criteria to choose wavelets as

the dictionary.
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3.2.1 Compact Support

∫ ∞

−∞
|ψ(t)| dt <∞ and

∫ ∞

−∞
|ψ(t)|2 dt <∞ (3.2)

The reason for compacted wavelet is easy to imagine compared to the choice of the

window length. Compacted wavelet is just like a window to extract the segment of

the signal to be analyzed.

3.2.2 Zero Mean

∫ ∞

−∞
ψ(t)dt = 0 (3.3)

Zero mean condition is crucial in reality. We are supposed to have no information

from the real signal at 0Hz which means ψ̂(ω)|ω=0 = 0, where ψ̂(ω) = FT (ψ(t)).

3.2.3 Energy Normalization

∫ ∞

−∞
|ψ(t)|2 dt = 1 (3.4)

Normalized wavelets are convenient for computation. If we used un-normalized

wavelets, the cross-correlated coefficient would have to be adjusted by normalization.

For physical reasons, I prefer using energy normalization instead of other means like

absolute normalization.

Besides these criteria for wavelet choice, we also need to consider the parameters of

the wavelet dictionary. Apart from frequency which is essential parameter in time
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frequency analysis, phase parameter is somewhat important. And phase is chang-

ing through the propagation of waves. Therefore, should we consider phase into

our analysis? How much difference would it make if we consider phase? In order

to seek answers to these questions, we compared three kinds of Matching Pursuit

Decomposition (MPD).

3.3 Three MPDs

3.3.1 Conventional MPD

Wavelet dictionary:

Wavelet = Ricker(f) (3.5)

The procedure of conventional MPD was shown in the Figure 3.1. The dictionary

used in this method is wavelets at different frequencies.

3.3.2 Phase MPD

Wavelet dictionary:

Wavelet = Ricker(f, φ) (3.6)

The procedure of phase MPD is also the same as the conventional MPD. The only

difference between them is the wavelets used in this method are not only at different

frequencies but also at difference phase. By adding a phase parameter, we conse-

quently expand the amount of the wavelets in the dictionary which results in longer

computing time.
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Figure 3.2: Algorithm of complex MPD

3.3.3 Complex MPD

Complex MPD is still in progress but shows promising results. Instead of cross-

correlate wavelets with seismic signals, we extract frequency and phase information

directly from seismic signals. By using the relationship between instantaneous fre-

quency and dominant frequency of Ricker wavelet, we could construct the complex

Ricker wavelet, and subtract the constructed wavelet every iteration until the energy

of the residual trace is low enough. The algorithm is illustrated in Figure 3.2.
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Figure 3.3: Three MPDs on synthetic trace

3.4 Synthetic Results of Three MPDs

I applied all three MPDs on synthetic trace I generated similar to the synthetic trace

in Castagna et al. [2003]. Due to the synthetic trace was generated by convolving

zero phase wavelets with reflectivity, we are expecting similar results of conventional

MPD and phase MPD, which is exactly shown in the Figure 3.3. And we can see

that complex MPD is good at resolving separate event like a 2nd event, while the

other two MPDs are good at resolving overlayed event like a 4th event.
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3.5 Solution for Instability—Fractional MPD

When we applied conventional MPD on 2D profile, and look at the frequency slice

of the results, we can see clear lateral instability. We found out that by subtracting

only a portion of the coefficient, we can solve the amplitude inconsistency problem.

Comparison between MPD and FMPD on a wedge model at a vertical section is

shown in Figure 3.4, Figure 3.5, and Figure 3.6.
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Figure 3.6: Frequency slice of conventional MPD versus fractional MPD results on
wedge model with mix RC

3.6 Reason for Lateral Instability

We suspected that the reason for lateral instability was because of orthogonality. Due

to the Ricker wavelet is not orthogonal, the path it chose to find the bested matched

wavelet varies. In another way, conventional MPD using non-orthogonal wavelets as

the dictionary is path dependent. If we use approximately orthogonal wavelets like

Morlet wavelet, the difference between MPD spectra and FMPD spectra is small.

The instability occurred when the trace had two identical reflections. Conventional

MPD couldn’t decide which one to be subtracted first. However, fractional MPD

beautifully solves the problem. The speculation is reinforced by the comparison

shown in Figure 3.7:

And more comparison between MPD and FMPD on vertical sections and timeslices

is presented in Appendix A and Appendix B.
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Figure 3.7: Reason for lateral instability
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Chapter 4

Uncertainty Principle

4.1 A World Full of Uncertainties

Quantum mechanics provides us a new perspective to redefine our world. The Heisen-

berg’s Uncertainty Principle strikes us the knowledge that we cannot arbitrarily de-

termine precisely the position and the momentum of certain particles simultaneously.

Our world is all about probabilities. Analogously, we discover some kind of similar

relationship between temporal and spectral resolution. However, unlike quantum

mechanics, in time frequency analysis, there is nothing uncertain about temporal or

spectral resolution. We can only have a wide waveform with a narrow spectrum or

a narrow waveform with a wide spectrum, which says that the combined resolution

in time and frequency domain is constant. In order to get better resolution in one

domain, we have to sacrifice the other.
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4.2 Motivation for Resolution Pursuit

A window is a wavelet and vice versa. Spectral decomposition methods, such as

Short Time Fourier Transform (STFT), Wavelet Transform (WT), and Matching

Pursuit Decomposition (MPD), all encounter issues of windows or wavelets. The

problem of uncertainty principle is inevitably attached to spectral decomposition

analysis. While we are pursuing better time resolution for better structure imaging,

we want better frequency resolution, which can help us in differentiating various

geological features [Castagna et al., 2003]. The research on uncertainty product

of various kinds of wavelets is a good way to pursue better resolution on spectral

analysis. In this chapter, we compare Ricker wavelet, Morlet wavelet, mu-wavelets,

and pseudo-mu-wavelets by calculating their uncertainty product. We found out

that the mathematical definition of uncertainty principle is not accurate for our

purpose, pursuing better resolution on spectral decomposition. We come up with a

new definition of calculating uncertainty product, which is called complex uncertainty

product, serves as a practical representation.

4.3 Mathematical Definition of Uncertainty Prin-

ciple

A commonly accepted uncertainty product was defined using standard deviation. It

is by this definition that uncertainty product has been proved to have the lowest limit

1/2. Let’s see how it is defined. We consider a pair of signals defined by Fourier
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Transform(FT):

S(ω) = FT (S(t)) =
∫ ∞

−∞
S(t)e−iωtdt (4.1)

We consider unit energy signal here. The signal can always be converted to have

unit energy with following equations:

S(t)after =
S(t)before√∫∞

−∞ |S(t)before|2dt
(4.2)

and

S(ω)after =
S(ω)before√∫∞

−∞ |S(ω)before|2dω
(4.3)

After conversion, the energy of the signal resembles a probability function.

E =
∫ ∞

−∞
|S(t)|2dt =

∫ ∞

−∞
|S(ω)|2dω =

∫ ∞

−∞
P (A)dA = 1 (4.4)

We can then calculate mean value of time and frequency using following equations:

< t >=
∫ ∞

−∞
t|S(t)|2dt (4.5)

and

< ω >=
∫ ∞

−∞
ω|S(ω)|2dω (4.6)

The variance (square of standard deviation) of time and frequency can be expressed

as followed:

σ2
t =

∫ ∞

−∞
(t− < t >)2|S(t)|2dt (4.7)

and

σ2
ω =

∫ ∞

−∞
(ω− < ω >)2|S(ω)|2dω (4.8)

Therefore, uncertainty product(UP) can be defined as the combination of σt and σω:

UP = σt ∗ σω ≥ 1/2 (4.9)

21



4.4 Lowest Limit of UP—Gaussian

Proved by Cohen in his book time frequency analysis [Cohen, 1994], Gaussian wavelet

has the lowest uncertainty product by definition using standard deviation. The proof

procedure is rewritten as followed: First we prove the uncertainty product has the

lowest limit 1/2. We assume a signal:

S(t) = A(t)e−iφ(t) (4.10)

which satisfies,

∫ ∞

−∞
|S(t)|2 dt = 1 =⇒

∫ ∞

−∞
A(t)2dt = 1 (4.11)

This derivation is valid for signals have zero mean time and zero mean frequency.

However, presented by Cohen [Cohen, 1994], every signal can always be shifted to

have zero mean time and zero mean frequency by following equation:

snew(t) = e−i<ω>(t+<t>)sold(t+ < t >) (4.12)

Therefore, we have the new signal with zero mean time < t >= 0 and zero mean

frequency < ω >= 0. From that, we deduce,

σ2
t =

∫ ∞

−∞
t2|S(t)|2dt (4.13)

and

σ2
ω =

∫ ∞

−∞
ω2|S(ω)|2dω =

∫ ∞

−∞
|S ′(t)|2dt (4.14)

The square of uncertainty product can be represented as,

σ2
t σ

2
ω =

∫ ∞

−∞
t2|s(t)|2dt×

∫ ∞

−∞
|′(t)|2dt (4.15)
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Schwarz Inequality states,

∫
|f(x)|2dx

∫
|g(x)|2dx ≥ |f ∗(x)g(x)dx|2 (4.16)

where, f ∗(x) is the complex conjugate of f(x).

Therefore, if we take ts(t) as f and s′(t) as g, we derive Eq. 4.15 to the following

and get the lowest limit,

σ2
t σ

2
ω ≥

∣∣∣∣∫ ts∗(t)s′(t)dt
∣∣∣∣2

=
∣∣∣∣∫ (tA′A+ itφ′A2)dt

∣∣∣∣2
=

∣∣∣∣∣
∫
(
1

2

d

dt
tA2 − 1

2
A2 + itφ′(A2))dt

∣∣∣∣∣
2

=
∣∣∣∣−1

2
+ iCovtω

∣∣∣∣2
=

1

4
+ Cov2tω

≥ 1

4
(4.17)

where, Covtw =< tφ′(t) > − < t >< ω >=< tφ′(t) >, since < t >< ω >= 0.

If above those two inequalities were satisfied, Schwarz Inequality equals if only f is

proportional to g which gives us,

−c ∗ t ∗ s(t) = s′(t) (4.18)

from that, we can derive,

s(t) = e−(cr+ici)t
2/2 (4.19)

and we have condition for the other inequality to be equal,

Covtw =< tφ′(t) >=
∫
tφ′|s(t)|2)dt = 0 (4.20)
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Let’s put Eq. 4.19 into Eq. 4.20 and get,

Covtw =
∫
tφ′|s(t)|2)dt

= −
∫
tcit|s(t)|2)dt

= −ci
∫
t2e−crt2)dt

= 0 (4.21)

=⇒ ci = 0 (4.22)

Put Eq. 4.22 back into Eq. 4.19, we obtain the wavelet which has the lowest limit

which is Gaussian wavelet.

s(t) = (α/π)1/4e−αt2/2 (4.23)

where (α/π)1/4 is the normalization coefficient.

4.5 Results of Conventional Uncertainty Product

Algorithm for calculating uncertainty product of different wavelets is based on the

mathematical definition. Figure 4.1 has clearly explained the procedures. The fol-

lowing figure illustrates the last part of the procedure, The standard deviations of

various wavelets are presented in the Appendix A. We compared the conventional

UP of different wavelets in the Figure 4.3. We found out that uncertainty product

of wavelet is independent of frequency.
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Figure 4.1: Procedures of calculating UP

4.6 Deeper Investigation of Uncertainty Product

Conventional UP can also be expressed as the width of the waveform in time times

the bandwidth of the spectrum. However, we use the whole spectrum as shown in

Figure 4.4a, containing both the positive and negative spectrum, in calculating the

conventional UP, whose results are shown in Figure 4.3. The results are mathemat-

ically meaningful, but are they physically meaningful?

Negative frequency won’t occur in reality, plus the spectrum we use in spectral de-

composition is only the positive part, it seems meaningless to add negative frequency
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Figure 4.2: Results of standard deviation and UP of Ricker

into uncertainty product calculation. What we really care in spectral decomposition

is only the positive spectrum. Since the negative part of the spectrum is the complex

conjugate of the positive spectrum, we can easily reconstruct the negative spectrum

from the positive spectrum. Due to the Hilbert transform, positive part of the spec-

trum means everything. Therefore, from a more practical point of view, we should

adjust the way we calculate uncertainty product, ignore the negative part of spec-

trum. In my opinion, the reason why we have the negative frequency from Fourier

transform is we have cos(−wt) and cos(wt) both orthogonal to cos(wt) at the same

time. Whereas, if we use complex representation of signal, we only have exp(ix)

orthogonal to exp(−ix). Is the uncertainty principle still valid if we use complex

representation of signal instead of real time signal? It seems so, those two assump-

tions of inequality in mathematical derivation of lowest limit won’t change whether

the signal is represented by complex time or real time.
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Figure 4.3: Conventional UP of wavelets

4.7 Results of Complex Uncertainty Product

Therefore, if we calculate the uncertainty product using complex wavelets generated

by Hilbert transform, Figure 4.5 is what we get which we call complex uncertainty

product.

From the results showing above, the rule on lowest limit of uncertainty product

breaks. We have lower limit than 1/2. By carefully examination, we discovered that
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Figure 4.4: Comparison between conventional UP and complex UP

those wavelets which have uncertainty product of lower than 1/2 all have one thing

in common. They violate zero mean condition in choosing wavelets.
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Figure 4.5: Complex UP of wavelets
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Chapter 5

Thickness Estimation

5.1 Need for Accurate Thickness Estimation

You won’t hesitate to drill a well if your reservoir is enormously large. However,

when you are dealing with unconventional reservoir or small reservoir, you need to

evaluate, take a deeper thought on whether to drill or not, whether this well is worth

drilling, or should we skip it. By estimating the whole volume, porosity, and recovery

factor of the reservoir, we know the economic value of this reservoir. Based on that

information, we decide to drill a well or not. Thickness estimation is the key in

calculating the volume of the reservoir. Therefore, how to estimate the thickness?

Which method is more accurate?
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5.2 Resolution Limit

Seismic responses are the results of convolution of wavelets and reflectivity. Based on

just the amplitude map, we suffered from resolution problem, which means we can

hardly resolve extreme thin layers. Even though we can detect there is a thin bed

over there, we can hardly tell the top and base of the thin bed just simply base on the

amplitude map. ”Resolvability” is the ability to separate two events. ”Detectability”

is the ability to know the existence of the events. Therefore, the question remains

what is the resolution limit of seismic data?

5.3 Resolution Criterion

There are three major kinds of resolution criteria, which are fully discussed by Kall-

weit and Wood1982, and I paraphrase as followed:

5.3.1 Rayleigh’s Criterion

Two wavelets are resolved when their separation are larger than or equal the time

interval from peak to trough of the convolving wavelet.

5.3.2 Ricker’s Criterion

Two wavelets are resolved when their separation are larger or equal than the time

interval between two inflection points in the primary lobe of the convolving wavelet.

When the time separation between two wavelets is below the interval of two inflection

points of the convolving wavelet, the shape of the waveform becomes like one larger
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Figure 5.1: Resolution illustration of Rayleigh criterion and Ricker criterion

event. There comes no depression between those two wavelets, instead, we see a clear

flat top.

5.3.3 Widess’s Criterion

While Rayleigh and Ricker considered two positive reflections, Widess considered

two opposite reflections. Widess discovered that when two wavelets are closer than a

quarter of the predominant period of the incident wavelet, the shape of the waveform

approaches the time derivative of the incident wavelet. There Widess defined a

quarter of the predominant period of the incident wavelet as the highest limit of a

thin bed. The derivative of a wavelet looks like the wavelet with a 90 degree phase

shift. Therefore, base on the waveform, we cannot tell whether the waveform is result

of one event or two, in other words, we cannot resolve this thin bed.

5.3.4 Tuning Thickness

Widess said that [Widess, 1973], it is appropriate to define a thin bed as one whose

actual thickness is below one eighth of the predominant wavelength, whose time

thickness is below one quarter of the predominant period, based on the reason that,

the derivative of the convolving wavelet times a constant factor looks similar to two
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Figure 5.2: Wiggle plot of wedge model

Figure 5.3: Peak and trough of wedge model
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Figure 5.4: Thickness estimation: amplitude method

wavelets convolving with a thin bed whose reflection coefficients are opposite equal

value as shown in Figure 5.5. It is reasonable to deduce that the tuning thickness is

whose time thickness equals one quarter of the predominant period. However, when

we take a look at the max amplitude of the reflection as shown in Figure 5.4, the

big change of the amplitude is not exactly located at one quarter of the predominant

period. Someone may want to define tuning thickness exactly at where the max

amplitude of the trace starts to decrease which is more reasonable from my point of

view. In that case, the tuning thickness is exactly the Rayleigh’s criterion, peak to

trough interval. The peak to trough interval of Ricker wavelet was derived by Chung

and Lawton [1995] which can be calculated in Eq. 5.1.

tp−t =

√
6

2πfdom
(5.1)
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Figure 5.5: 1/4 predominant period of separation versus derivative of convolving
wavelet

The tuning thickness I refer to is always relating to Rayleigh’s criterion from now

on.

5.3.5 Below Tuning

5.3.5.1 Amplitude Method

From Figure 5.4, we can see that below tuning thickness, the amplitude decrease with

the decrease of bed thickness, and the trend is almost linear. So Widess suggests

that we can use this linear relationship to estimate the thickness of thin beds.
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Figure 5.6: Illustration of relationship between bed thickness and periodic notches
in frequency [Partyka et al., 1999]

5.3.5.2 Spectral Method

Frequency representation is analogous to time representation of a signal. From fre-

quency, we can extract coded information of time properties. Partyka [Partyka et al.,

1999] had discovered one which revealed the relationship between bed thickness and

periodic notches in frequency as shown in Figure 5.6.

Partyka had compared these methods in his paper [Partyka, 2001], he had discussed

the pros and cons of different methods in thickness estimation. However, in my

point of view, spectral method is left to be further explored. I believe, in the future

research, spectral method would show promising results in thickness estimation.
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Appendix A

Comparison Results of MPD and

FMPD on Dickman Dataset:

Vertical Section
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Figure A.1: MPD and FMPD results of vertical section inline 10 at 50Hz

 

Figure A.2: MPD and FMPD results of vertical section inline 20 at 50Hz
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Figure A.3: MPD and FMPD results of vertical section inline 30 at 50Hz

 

Figure A.4: MPD and FMPD results of vertical section inline 40 at 50Hz
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Figure A.5: MPD and FMPD results of vertical section inline 50 at 50Hz

 

Figure A.6: MPD and FMPD results of vertical section inline 60 at 50Hz
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Figure A.7: MPD and FMPD results of vertical section inline 70 at 50Hz

 

Figure A.8: MPD and FMPD results of vertical section inline 80 at 50Hz
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Appendix B

Comparison Results of MPD and

FMPD on Dickman Dataset: Time

Slice
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(a) MPD result

 

(b) FMPD result

Figure B.1: MPD and FMPD results of timeslice 868ms at 50Hz
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(a) MPD result

 

(b) FMPD result

Figure B.2: MPD and FMPD results of timeslice 820ms at 50Hz
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(a) MPD result

 

(b) FMPD result

Figure B.3: MPD and FMPD results of timeslice 848ms at 50Hz
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(a) MPD result

 

(b) FMPD result

Figure B.4: MPD and FMPD results of timeslice 880ms at 50Hz
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(a) MPD result

 

(b) FMPD result

Figure B.5: MPD and FMPD results of timeslice 972ms at 50Hz
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Appendix C

Mathematical Definitions and

Illustrations of Wavelets

C.1 Ricker wavelet

Formula:

S(t) = (1− 2π2f 2t2)e−π2f2t2 (C.1)

C.2 Morlet wavelet

Formula:

S(t) = a0e
−β2t2 cos(ω0t+ φ0) (C.2)

where in my application,

β = f ; ω0 = 2πf ; a = 1; φ0 = 0
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Figure C.1: Illustration of Ricker wavelets
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(f) Complex σω of Morlet

Figure C.2: Illustration of Morlet wavelets
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C.3 µ and pseudo µ wavelets

Formula: µ and pseudo µ wavelets are generated from Hermite polynomials. Hermite

Polynomials:

Hn(t) = (−1)net
2 dn

dtn
e−t2 (C.3)

It is easier to code using the following recursion formula,

Hn+1(t) = 2tHn(t)− 2nHn−1(t)

H0(t) = 1 and H1(t) = 2t

(C.4)

Then, we have µ wavelets,

µλ,σ
n (t) = NnHn(x)e

−x2

(C.5)

And pseudo µ wavelets,

µλ,σ
n (t) = NnHn(x)e

−x2√n (C.6)

where,

x =

√
λ(t− τ)

σ
& Nn =

1

σ(
√
2n ⋆ n!

√
n)
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Figure C.3: Illustration of µ wavelets
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Figure C.4: Illustration of pseudo µ wavelets

54



Appendix D

Various Wavelets in Temporal and

Spectral Domain

D.1 Ricker wavelets

D.2 Morlet wavelets

D.3 µ wavelets and pseudo µ wavelets
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Figure D.1: Ricker wavelets in time

Figure D.2: Ricker wavelets in frequency
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Figure D.3: Morlet wavelets in time

Figure D.4: Morlet wavelets in frequency
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Figure D.5: µ wavelets in time

Figure D.6: µ wavelets in frequency
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icnivad 1 

Figure D.7: Pseudo µ wavelets in time

Figure D.8: Pseudo µ wavelets in frequency
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Appendix E

Extra

E.1 Hermite µ and pseudo-µ

E.2 Wiggle plot of 30Hz Ricker wavelets at differ-

ent phases

E.3 Spectral amplitude versus RC
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Figure E.1: First five orders of Hermite µ and pseudo-µ function
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Figure E.2: Wiggle Plot of 30Hz Ricker wavelets at different phases
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