Background

Ultrafiltration (UF) membranes are used in diffe

UF membranes lack uniform pore sizes leading to poor selectivity ${ }^{1}$

Experimental Methods

PS-b-PMMA (80k-80k) membranes were prepared in a 50:50 ratio of Toluene and THF solution giving 2.5% (wt/vol) with 10% lonic Liquid (IL)

1. Flow Coat
2. Float Film

3. Ultrafiltration Pressure Cell

— Polystyrene

- Polyethersulfone
- Polymethylmethacrylate

PS-b-PMMA 80k-80k Morphology

The morphology of the membranes were characterized by our Atomic Force Microscope (AFM)

AFM scan of lamellar morphology of PS-b-PMMA (80k-80k) 50:50 Tol:THF 10\%

Flux and Filtration Results

Flux measurements at a pressure of 7.5 psi were recorded for different molecular weights (MW) of dextran as well for gold (Au) nanoparticles and nanorods.

Dextran contains a fluorescein (dye) which aids in permeability tests.

Dextran 4k, 250k, \& 2000k solutions were filtered.

Flux for dextran 4 k is higher relative to other MW.

Dextran 2000k and filtrate

Gold nanoparticles and nanorods solutions were filtered.
Flux for nanorods are higher than nanoparticles.

Filtration fluxes of Au nanoparticles and nanorods

Au nanoparticles and filtrate

Rejection Analysis

Section tool of Nanoscope Analysis Software was used to determine the slit width of our membrane: $\underline{\sim} \mathbf{2 0} \mathrm{nm}$.

Rejection rates are determined via UV-vis Spectroscopy which measures how much a sample absorbs/reflects light.

The UV-vis spectra of feed and filtrate are compared to determine rejection percentage thus membrane efficiency.

Cutoff Size of Different MW of Dextran

	Mean Diameter (nm)
Nanoparticle	40
Nanorod	10 (D) $\times 40(\mathrm{~L})$

Conclusions and Future Work

Successful fabrication of BCP lamellar membranes
Cutoff size was determined to be $\sim 25 \mathrm{~nm}$.
Lamellar slit membranes are more selective to nanorods compared to nanoparticles.

Extend shape-selective filtration to biological matter such as viruses, proteins, and pathogens

References and Acknowledgements

would like to thank the Office of Undergraduate Research and Major Awards for

 funding my research experience through SURF \& PURS. This work was also supported by NSF DMR 1905996. I extend my gratitude to Dr. Alamgir Karim, Dr. A Ammar, Maninderjeet Singh, Damian Gonzalez, and Jhaniece Gay-ya for assisting me through the project.Nicholas Hampu, Jay R. Werber, Wui Yarn Chan, Elizabeth C. Feinberg, and Marc A.
Hillmyer ACS Nano 2020, 14, 12, 16446-1647
${ }^{3}$ Armstrong et al. Biophysical Journal. 2004, 87(6) 4259-4270

