UNIVERSITY of HOUSTON OFFICE OF THE PROVOST

Graduate School

Background and Motivation

Computational Screening

Catalysts Activity Trend from Microkinetic Models

Reaction Condition: P = 1 atm, 90 ppm NO, 4500 ppm CO, 10 ppm NO₂, 500 ppm CO₂, 10% O₂, balance N₂

Reaction Mechanism

 $CO(g) + * \leftrightarrow CO^*$ $NO(g) + * \leftrightarrow NO^*$ $O_2(g) + * \leftrightarrow O_2^*$ $O_2^* + * \leftrightarrow 2O^*$ Descriptors: *E_o* and *E_{co}*

Cu, Ag, Au with more reactive Pd, Pt, Ni metals populate the empty area with high predicted oxidation activity

Design of Better Performed Diesel Oxidation Catalysts at Reduced Temperature

Yuying Song and Lars C. Grabow* (grabow@uh.edu)

Low Temperature Combustion (LTC) Engines

- Higher fuel efficiency ($\eta_{max} = 1 T_L/T_H$)
- Lower NOx and particulate matters (PM) emissions

Disadvantages:

- Higher CO and hydrocarbon (HC) emissions
- Low exhaust temperature (~150°C) decreases diesel oxidation catalyst (DOC) activity

Improved catalyst needed:

- To increase DOC activity at low temperature
- To decrease emissions without sacrificing fuel efficiency

T = 600 K (traditional diesel engine)

by 70%, while still achieving identical CO oxidation performance.

References

[1] http://graphics.wsj.com/volkswagen-emission-scandal-charts/img/car.png [2]http://www.cdc.gov/niosh/mining/UserFiles/workshops/dieselaerosols201 2/BugarskiMVS2012Curtailment.pdf

- [3] J. K. Nørskov et al., Chem. Soc. Rev. 2008, 37, 2163-2171.
- [4] A. J. Medford et al., Top. Catal. 2014, 57, 135–142.
- [5] J. C. Bauer et al., Catalysis Today, 2014, 31, 15-21.

Acknowledgement

Computational Resources:

