

© Copyright by Wei Yao, May 2016

All Rights Reserved

METRICS ON CROWD CONTROL

WITH OVERHEAD VIDEO AND VOCAL COMMANDS

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

By

Wei Yao

May 2016

METRICS ON CROWD CONTROL

WITH OVERHEAD VIDEO AND VOCAL COMMANDS

Wei Yao

Approved:

Chair of the Committee

 Aaron T. Becker, Assistant Professor

 Electrical Engineering

Committee Members:

 Zhu Han, Professor

 Computer Engineering

 Yan Yao, Assistant Professor

 Electrical Engineering

Suresh K. Khator, Associate Dean Badri Roysam, Department Chair

Cullen College of Engineering Electrical and Computer Engineering

v

ACKNOWLEDGMENTS

This project would not have been possible without the support of many people. Many

thanks to my advisor, Professor Aaron T. Becker, for his guidance and strong support.

Professor Daniela Rus, who provides this fantastic umbrella project video. Thank you

to Professor Zhu Han and Professor Yan Yao, who give me extremely valuable advices

as member of my Thesis committee. Finally, thanks to all members in Robotic Swarm

Control Lab, An Nguyen, Arun Viswanathan Mahadev, Haoran Zhao, Li huang, Mary

Burbage, Shiva Shahrokhi, Srikanth Kandanuru Venkata Sudarshan you support me a

lot when I have challenge and face difficulties during this project.

vi

METRICS ON CROWD CONTROL

WITH OVERHEAD VIDEO AND VOCAL COMMANDS

An Abstract

of a

Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

in Electrical and Computer Engineering

By

Wei Yao

May 2016

vii

ABSTRACT

This thesis presents an agent-tracking framework for semi-structured, crowded

video. This framework is used to investigate how large numbers of people respond to

vocal commands with local feedback and an overhead camera video. We analyze a

video showing an overhead view of more than 200 people, each holding an umbrella

equipped with red, blue, and green LED lights. The crowd’s motion under the vocal

command formed a variety of patterns. We use k-means clustering to separate umbrella

from each other. Kalman filtering is used to estimate how each umbrella moves and

track their motion path. In particular, we present results on: (1) Automatic segmentation

and classification of each umbrella. (2) Swarm’s response time to a simple command.

(3) Time constant for a harder command. (4) Comparing accuracy. (5) “Shape-

matching” ability. (6) Documenting the position memory. (7) Distribution consensus

simulation.

Keywords—K-means clustering, vision tracking, Kalman filter

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... v

ABSTRACT ... vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES ... x

LIST OF TABLES ... xiv

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 FIELD TEST AND ANALYSIS .. 5

2.1 Verify each umbrella and collect data information .. 5

2.2 Tracking umbrellas’ motion path ... 7

2.3 Data analysis ... 9

 2.3.1 Crowd response to a command to change color 9

 2.3.2 The time constant for a harder vocal command 11

 2.3.3 Learning rate of the human swarm ... 12

 2.3.4 Comparing accuracy between similar commands 13

 2.3.5 Shape-matching abilities .. 15

 2.3.6 Forming a human swarm into a “snake” .. 16

 2.3.7 Accuracy of the “bullseye” configuration ... 18

 2.3.8 The accuracy of the human swarm’s memory 21

CHAPTER 3 SIMULATIONS ... 23

ix

CHAPTER 4 CONCLUSIONS AND FUTURE WORK ... 36

REFERENCES .. 37

APPENDIX .. 40

APPENDIX A: K-means algorithm support ... 40

APPENDIX B: Kalman filter algorithm support .. 41

APPENDIX C: Other equations applied .. 43

APPENDIX D: Code .. 43

x

LIST OF FIGURES

Figure 1.1 Umbrella equipped with A: blue, B: green, and C: red LED lights............. 1

Figure 1.2 A sketch showing an overview of scene ... 2

Figure 1.3 This thesis analyzes an overhead video showing illuminated umbrellas. (1)

Raw data, captured from overhead video. (2) Classified umbrellas in the

processed image. (3) Umbrella color count as a function of time is one form

of data that is generated ... 2

Figure 2.1 Centroids overhead on raw video data umbrellas’ position data was first

collected and stored, then it can be used in a Kalman filter to track the

motion paths... 6

Figure 2.2 How “assignment” and “update” steps help to find out each umbrella’s

center.. 7

Figure 2.3 Applying Kalman filter to tracking umbrellas. Two umbrellas A and B are

circled in red .. 8

Figure 2.4 Change of the two umbrellas’ shown in Figure 2.3 position and color as a

function of time.. 8

Figure 2.5 How crowd response to vocal command such as “I want everybody to turn

them red.” .. 10

Figure 2.6 Six aligned “color change” vocal commands reprsent human swarm’s

performance ... 11

Figure 2.7 For color-change vocal command such as “I want everybody to turn them

red,” “turn the red off turn the blue on” or “let’s go to green” the swarm

respond time tends to reduce, demonstrating that the swarm is learning .. 12

xi

Figure 2.8 Response time for command “when I say go I want you to turn them on and

I want this whole group, this group that's gathered tonight to be one color

but I'm not going to tell you what color that is” .. 13

Figure 2.9 Comparing the accuracy of three command “If you are red move”, “Let’s try

that with green go!” and “When I say go I want red to freeze and the blues

to move” In every 20 frames, if the umbrella’s new position is more than a

quarter of its radius, this umbrella is moving. ... 14

Figure 2.10 Calculating the circularity of the human swarm when commanded “Red

stop and bunch up, See how round you can be, keep circling around them

greens” There are three circles with different colors, values closer to one

means the swarm shape is closer to a true circle. 15

Figure 2.11 A definition of “snake” A definition of “snake”, a “snake” should consisted

of at least 5 umbrellas sequencely, distance between successive umbrellas

is less than four umbrella radius.. .. 16

Figure 2.12 Time required to form snakes, y-axis shows how long the snake is, and the

number of umbrellas are in (or not in) each snake. 17

Figure 2.13 Circularity of each circle in a bullseye given the command, “I would like to

see three stripes, you know, like in the middle one color”. 18

Figure 2.14 Best fit circles for human swarm’s performance. 19

Figure 2.15 Another equation applied to evaluate human swarm’s performance. 20

Figure 2.16 The distance between each two circles to evaluate the quality of bullseye

as a function of time. ... 20

Figure 2.17 Accuracy of a swarm’s position memory. It compares the mean distance

between everyone’s “original position” and the “returned position”. Smaller

xii

distances indicate better memory. When they heard the vocal command

“When I say go I want you to move”.. 21

Figure 3.1 Initialize 200 nodes randomly in a 2D space, each point selected a color from

red, green, blue randomly. Each point turn color based on 7 nearest points.

 ... 24

Figure 3.2 All nodes choose one same color finally, takes 205 iterations. 25

Figure 3.3 Initialize 200 nodes randomly in a 2D space, each point selected a color from

red, green, blue randomly. Each point turn color based on 8 nearest points.

 ... 25

Figure 3.4 All nodes choose one same color finally, takes 155 iterations. 26

Figure 3.5 Initialize 200 nodes randomly in a 2D space, each point selected a color from

red, green, blue randomly. Each point turn color based on 9 nearest points.

 ... 26

Figure 3.6 All nodes choose one same color finally, takes 643 iterations 27

Figure 3.7 Initialize 200 nodes randomly in a 2D space, each point selected a color from

red, green, blue randomly. Each point turn color based on 10 nearest points.

 ... 27

Figure 3.8 All nodes choose one same color finally, takes 301 iterations. 28

Figure 3.9 Initialize 200 nodes randomly in a 2D space, each point selected a color from

red, green, blue randomly. Each point turn color based on 11 nearest points.

 ... 28

Figure 3.10 All nodes choose one same color finally, takes 95 iterations 29

Figure 3.11 Result of 7 nearest neighbors run simulation 100 times, plot ratio of major

colors as a function of iteration times, also plot the “mean”, “mean + std”,

“mean – std.” ... 29

xiii

Figure 3.12 Result of 8 nearest neighbors run simulation 100 times, plot ratio of major

colors as a function of iteration times, also plot the “mean”, “mean + std”,

“mean – std.” ... 30

Figure 3.13 Result of 9 nearest neighbors run simulation 100 times, plot ratio of major

colors as a function of iteration times, also plot the “mean”, “mean + std”,

“mean – std.” ... 31

Figure 3.14 Result of 10 nearest neighbors run simulation 100 times, plot ratio of major

colors as a function of iteration times, also plot the “mean”, “mean + std”,

“mean – std.” ... 31

Figure 3.15 Result of 11 nearest neighbors run simulation 100 times, plot ratio of major

colors as a function of iteration times, also plot the “mean”, “mean + std”,

“mean – std.” ... 32

Figure 3.16 With k = 7, 8, 9, 10 and 11, mean plots after 100 times simulations 32

Figure 3.17 Exponential function fit with “1-Ratio of major color” for k=7 33

Figure 3.18 Exponential function fit with “1-Ratio of major color” for k=8 33

Figure 3.19 Exponential function fit with “1-Ratio of major color” for k=9 34

Figure 3.20 Exponential function fit with “1-Ratio of major color” for k=10 34

Figure 3.21 Exponential function fit with “1-Ratio of major color” for k=11 35

Figure 3.22 Comparsion of τ with k=7, 8, 9, 10, 11. ... 35

Figure A.1 Constituent parts of Kalman filter, how time update and measurement

update work together. .. 42

xiv

LIST OF TABLES

Table 1 Trial number and specific accuracy. ... 14

1

CHAPTER 1

Introduction

This thesis analyzes data from a crowd controlled by vocal commands and presents

a method to track the motion paths of multiple agents in semi-structured crowded scenes.

 The analysis uses video data from UP: The Umbrella Project [1], a beautiful

experiment conducted at night on a football field in which more than two hundred people

were each given an instrumented umbrella equipped with an RGB LED as shown in

Figure 1.1.

Figure 1.1: Umbrella equipped with A: blue, B: green, and C: red LED lights.

Using vocal commands from a director on an elevated platform, and an overhead

camera view projected on a large screen, the participants were divided into several

groups according to their major, gender, or grade and then directed to form different

shapes in various colors. The solution for vision tracking is coded in MATLAB, and is

available at [2].

In Figure 1.2 is a sketch showing the overview of scene. Which describes how the

system works. We can see it clearly and build a structure in our mind.

2

Figure 1.2: A sketch showing an overview of the scene.

Figure 1.3: This thesis analyzes an overhead video showing illuminated umbrellas. (1) Raw data,

captured from overhead video. (2) Classified umbrellas in the processed image. (3) Umbrella

color count as a function of time is one form of data that is generated.

In a semi-structured crowded scene, the motion of the crowd appears to be random,

with different participants moving in different directions at different times [3]. This

scenario has some structure because it is controlled by one person, the voice giving the

vocal commands, but errors cannot be avoided completely. Moreover, tracking is

challenging because the umbrellas switch colors rapidly and often overlap. Fig 1.3

3

shows a representative screenshot, the results after we processed the raw video, and a

plot showing umbrella color counts as a function of time.

Object tracking is a key problem in the field of computer vision, and is especially

challenging when tracking multiple objects in unstructured, crowded scenes. Tracking

moving objects in video has a variety of applications, including automated surveillance,

military guidance, traffic management system, robot vision and artificial intelligence [4].

This original video is available at [5]. Tracking multiple objects is more difficult than

tracking one object for several reasons. Data association, the matching between targets

and observations, from frame to frame in a video sequence, is one difficulty [6]. Because

objects are continually moving, they often overlap partially or completely. Sometimes

the objects disappear and occasionally new objects enter the frame. To address these

problems, this thesis uses Kalman filters to track multiple objects [7].

The first challenge is to segment individual umbrellas. The solution employed is to

erode all components to shrink to points. These points will not overlap and denote the

centroid of each object. In this thesis we apply data clustering to verify the centroids of

each object. Data clustering is frequently used in many fields, including data mining,

pattern recognition, decision support, machine learning and image segmentation [8]. In

this thesis we adapt one of the most widely used formulations to solve this problem, the

k-means clustering algorithm. Given a set of n data points in real d-dimensional space,

𝑅𝑑, and an integer k, the problem is to determine a set of k points in 𝑅𝑑, called centers,

so as to minimize the mean squared distance from each data point to its nearest center

[9].

The umbrellas in this project are not moving aimlessly. At one frame, all may be the

same color, but later the all umbrellas may change to another color and later form a

colorful image. In the video, umbrellas form a smiley face, and later change to a snake,

4

and finally form a word. All these transformation occurred under the direction of a vocal

command. This thesis presents an analysis on how the agents response to the vocal

command. This section, describes the approaches used: k-means clustering, Kalman

filter algorithm, and techniques to, monitor the transformation of umbrellas’ color and

pattern.

5

CHAPTER 2

Field Test and Analysis

This section describes measurements obtained from UP: The Umbrella Project. In

this thesis we will discuss lots of experiments during the time we doing research. Mainly

related to verifying every umbrella in the crowd, analyzing the data collected based on

human swarm, after that we also did simulations for a more complete thesis project, to

further prove that the analysis we did is correct, and then results we get can be applied

in the future.

2.1 Verify each umbrella and collect data information

The data is a video recorded by an overhead camera showing how umbrellas respond

to a vocal command. The first step is to identify the umbrellas, and record their positions

However, both the numbers and positions of umbrellas are not a constant, this number

changes as umbrellas enter and leave the field of view or lose battery power.

The aim of the k-means algorithm is to divide M points in N dimensions into K

clusters so that the within-cluster sum of squares is minimized [10]. K-means returns a

locally optimal clustering solution, and is dependent on a trustworthy initial value. We

use manual identification for the first frame, and use the centroids from the previous

frame as initial seed values for each successive frame.

In this research project, we analyzed the raw video every 15 frames to get the data

we want. Since all the umbrellas are changing their colors rapidly, moving quickly and

they will overlap with each other frequently, so the first step I’m going to do is identify

each umbrella from the raw video. And the basic thought here is erode all the

components shrink into points, which means each point represents one umbrella

respectively. As a solution, we use the k-means tool here. In the first frame, each

6

umbrella’s centroid was manually marked and those centroids were used as seeds for

the next frame. In the next frame, k-means was used refine the seeds’ position to ensure

they are in the middle of each umbrella.

This analysis is implemented using MATLAB, code is accessible at [11]. The resulting

data, saved as a video, is available at [12].

Figure 2.1: Centroids overhead on raw video data umbrellas’ position data was first collected and stored,

then it can be used in a Kalman filter to track the motion paths.

As shown in Figure 2.1, each umbrella is marked by at its centroid. The centroid data

and the average color of pixels in its neighborhood are stored to a file. The specific

algorithm will be showed in appendix section later, to further explain how the k-means

been applied here, I give the following figure.

Figure 2.2 shows how k-means algorithm worked in this thesis project in first step

to identify each umbrella from the raw video. This algorithm can be divided into two

groups, “Assignment” and “Update.” As shown in Figure 2.3, for example, we want to

find out where the centers of those two umbrellas are. So we assigned two points 𝑀1

and 𝑀2, which should be the centers of umbrellas, umbrellas here actually are clusters

composed with large quantities of pixels. Here all pixels are divided into two groups

7

based on their minimum distance to cluster’s center, this is the “Assignment” step, then

𝑀1 and 𝑀2 will move to the center of pixels “1” and “2”. After that, all pixels will find

the nearest cluster’s center to them, and they will be divided again, this is the “Update”

step.

Figure 2.2: How “assignment” and “update” steps help to find out each umbrella’s center.

So k-means will continue doing iteration between “Assignment” and “Update” until

all clusters find their centers, at which point the means will not move any more. Just as

what we can see in Figure 2.2, as one iteration.

2.2 Tracking umbrellas’ motion path

To detect umbrella positions and show how they moved, umbrellas are represented

as a set of circles with three parameters, the center of a circle, and the circle radius. The

user interface uses two circles to evaluate how the umbrellas move that are green and

red. The green circle is the observed position of umbrella and the red circle is the

estimated position which is calculated after applying the Kalman filter, giving the result

shown in Figure 2.3, which shows that the two circles overlap well, which indicates the

algorithm is working.

8

Figure 2.3: Applying Kalman filter to tracking umbrellas. Two umbrellas A and B are circled in red.

Figure 2.4 shows of x and y position of two umbrellas as a function of time with the

lines drawn in the correct colors of the umbrellas, in the plot we show the changement

of multiple umbrellas’ positions. Here we randomly pick two umbrellas.

Figure 2.4: Change of the two umbrellas’ shown in Figure 2.3 position and color as a function of time.

We tracked two umbrellas 78th and 175th from the beginning of the raw video until

800 frames. During the tracking process, we applied Kalman filter, which will introduce

P
o

si
ti

o
n

 i
n

 P
X

P

o
si

ti
o

n
 i

n
 P

X

Position and color of 78
th
 umbrella

Number of frame
Position and color of 175

th
 umbrella

Number of frame

9

more details in later sections. We got the x and y velocity as a function of time with the

lines drawn in the correct colors of the umbrellas too. However, the plot we get showing

the change of umbrellas’ velocity is not easy to read, so we chose not show it in this

section, and will show it in other forms later.

From the plot of x and y position, we used the umbrella’s position data, every time

the umbrella moves from this frame to another, there will be a displacement distance

on both x and y direction, so the x and y position are updated. Similarly, the x and y

velocities are obtained by approximating motion as a straight-line movement between

successive frames and dividing the distance travelled by time.

2.3 Data analysis

Finding the motion path of each umbrella is just the first step toward understanding

the swarm response. We want to know more details about the crowd, whether they

performed well under the vocal command, and whether the swarm learns to better

follow the directions of the vocal commands. This part is one of the most interesting

experiments in the research.

2.3.1 Crowd response to a command to change color

In the video, there are several vocal commands which required people to change

their umbrellas’ color. Commands included “I want everybody to turn them red”, and

“Now turn the red off. Turn the blue on!”

This test analyzes how people responded to eight color change commands. Those

vocal commands mentioned above can be seen as a serious of basic vocal commands,

in the raw video there are more harder commands, we will show how human swarm did

following the vocal command step by step. Results for this set of vocal commands are

summarized in Figure 2.5.

10

Figure 2.5: How crowd response to vocal commands such as “I want everybody to turn them red.”

In the raw video, there are a series of vocal command can be seen as “color-change”

commands, in Figure 2.5, we comparing the first vocal command as “I want everybody

to turn them red” and the command “Now turn them blue.” As shown in the figure, for

example, after the vocal command “I want everybody to turn them red,” people began

to switch their umbrellas’ color at t=1 seconds, and at t= 5.8 seconds, 90% of the

umbrellas’ color changed to red. The accuracy here is defined as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑗𝑜𝑟 𝐶𝑜𝑙𝑜𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝑐𝑜𝑙𝑜𝑟𝑠
 . We define the response time as the time of the first response to

when more than 90% of the umbrellas’ color change. In this case, the time constant is

4.8 seconds. During successive color change commands, it takes less time for 90% of

the swarm to turn their umbrellas to one color. For next command as we can see in the

figure, everybody was required to turn blue, people begin to change color at t=6.4

seconds, and until the moment 90% umbrellas change to blue, it takes 3.6 seconds only,

obeviously human swarm is improving their performance in this kind of experiments.

Time (s)

A
cc

u
ra

cy

11

2.3.2 Learning rate of the human swarm

In the video, totally six vocal color-change commands were recorded. All data is

aligned so the command begins at t=0 second. This means the swarm’s performance is

increasing. The result we get is shown in Figure 2.6.

Figure 2.6: Six aligned “color change” vocal commands reprsent human swarm’s performance.

To further prove our conclusion, we display human swarm’s learning rate, with a

best fit. The human swarm was asked to change colors six times. Figure 2.7 displays

the time required for 90% of the swarm to achieve the desired value.

Figure 2.7 shows the time for accuracy to reach 90%. One experiment inserted a new

vocal command before 90% of the human swarm achieved the desired color, so this

analysis defined a successful convergence as when the ratio of major color reach 80%.

The overall trend for human swarm is to take less time, showing that the human swarm

is learning.

Time (s)

A
cc

u
ra

cy

12

Figure 2.7: For color-change vocal command such as “I want everybody to turn them red,” “turn the red

off turn the blue on” or “let’s go to green” the swarm respond time tends to reduce,

demonstrating that the swarm is learning.

2.3.3 The time constant for a harder vocal command

For simple color-change vocal command, people were able to achieve the goal in a

short time. This section analyzes the time response to more complex commands, For

example, at time 01:23, the vocal command was “When I say go I want you to turn them

on and I want this whole group, this group that's gathered tonight to be one color but

I'm not going to tell you what color that is.” So actually we will see how long exactly

it will take human swarm to accomplish the vocal command they heard.

This experiment is a classic distributed consensus problem. In this experiment, all

people in the crowd must adjust their own color with their neighbors, but since the vocal

command, is not specific on which color they need to turn, the process takes about 10

seconds. For this analysis, color umbrellas’ amount is changing every frame, then we

can find out which color the human swarm going to change. At the same time we can

get the ratio of major color. Figure 2.8 shows the response and the time constant.

13

Figure 2.8: Response time for command “when I say go I want you to turn them on and I want this whole

group, this group that's gathered tonight to be one color but I'm not going to tell you what

color that is.”

People start to switch colors around t=82 seconds, and by t=94 seconds, all people

turn to same color. The red dotted line shows an exponential fit with a time constant of

3.125 seconds.

2.3.4 Comparing accuracy between similar commands

There are several very similar vocal commands. We want to know in those kinds of

commands, which one they performed better. For example, for the command “if you're

red Move!” how accurate were they? Compared to “When I say go I want the red to

freeze and the blue's to move … Go!” And “Let's try that with the green Go!” An

analysis is shown in Figure 2.9.

Figure 2.9 shows that the swarm accuracy increased in response to “When I say go I

want red to freeze and the blues’ to move.” An exponential function fit shows when the

swarm achieved 0.9 accuracy, which means more than 90% of the umbrellas are

14

following the vocal command. Each respond has an exponential function fit, for “red

move” is 0.92(1 − 𝑒−1.61𝑡) for “red freeze blue move” is 0.95(1 − 𝑒−1.06𝑡) which is

same with “green go.”

Figure 2.9: Comparing the accuracy of three command “If you are red move”, “Let’s try that with green

go!” and “When I say go I want red to freeze and the blues to move” In every 20 frames, if

the umbrella’s new position is more than a quarter of its radius, this umbrella is moving.

Through this figure, we can see the difference between the red’s velocity and blue’s

velocity. Before the vocal command “Go” red umbrellas are moving, blue umbrellas

are not moving, after that the command, reds freeze and blues move instead.

Table 1: Trial number and specific accuracy

In Table 1, we show the accuracy for each trial, it is apparently that human swarm

is improving their performance during this period. Which means they spend less time

to change their colors, move faster.

Accuracy Comparing

Trial Accuracy

Red Move 0.92

Blue Move 0.95

Green Move 0.95

15

2.3.5 Shape-matching abilities

Later in the video, the human swarm was given harder commands including to form

circles. The accuracy of circle formation of the human swarm is shown in Figure 2.10.

The equation 𝐶2/4𝜋𝐴 is used to evaluate the circularity, where C is the circumference

and A is the area of the convex hull. Values close to 1 indicate a more accurate circle.

The smaller the value, the more round the circle is, otherwise if the value is larger than

1, we can make a conclusion that the circle is not real round. Three circles were formed

by the three different colors, and each color became increasingly more round.

Figure 2.10: Calculating the circularity of the human swarm when commanded “Red stop and bunch up,

see how round you can be, keep circling around them greens” There are three circles with

different colors, values closer to one means the swarm shape is closer to a true circle.

Figure 2.10 illustrates that at t=485 seconds, the human swarm was given the vocal

command “Red stop and bunch up. See how round you can be, keep circling around

them greens.” and then they began to move. The human swarm followed this command

until t=540 seconds, when a new command was announced. By calculating the

circularity, human swarm is not able to perform a perfect circle obviously, and the green

Time (s)

16

umbrellas is more unstable comparing to other two colors. But during this period,

human swarm did improve their performance gradually, and until t=540 seconds the

circlularity is close to 1, which means circles became increasingly round.

We can say that comparing with “color change” vocal commands, human swarm

does not perform so accurate when matching the specific shape. However, human

swarm can still improve, human can learn at the same time.

2.3.6 Forming a human swarm into a “snake”

In this small section we will show the results how human swarm perform “snakes”.

The human swarm was told to form a “snake”, which means they were divided into

three groups based on their color, and asked to connect with their neighbors to move

like a snake. To evaluate whether the “snake” is good or not, the number of umbrellas

in the snakes as a function of time, and how many umbrellas were not in a snake is

shown in Figure 2.11.

But how can we define it is a snake or not? We need a rule to evulate whether human

swarm had form a real snake or not. For this experiment, a snake is defined as: there

should be at least five same-colored umbrellas, they are connected with each other one

by one, where each successive umbrellas is within four umbrella radius of a neighbor.

Figure 2.11: A definition of “snake” A definition of “snake”, a “snake” should consisted of at least 5

umbrellas sequencely, distance between successive umbrellas is less than four umbrella

radius.

17

The results of how human swarm performed are shown in Figure 2.12. At first

umbrellas are moving aimlessly, but they begin to form “snakes” after command.

Figure 2.12: Time required to form snakes, y-axis shows how long the snake is, and the number of

umbrellas are in (or not in) each snake.

There are three different colors of snakes in the video. For example, we know that

there are around 200 umbrellas in the frame, let’s see at time t=414 seconds, there are

two green snakes with 25, 35 people, one 19-member red snake, two 33, 28 blue snakes,

and 18 undefined people who are not in any snake.

The human swarm began to form snakes at the moment they heard the vocal

command, at t= 385 seconds, and this command completed at t=435 seconds. During

this period, the number of people in snakes are increasing, while the number not in a

snake decreased. At the end there are four snakes in the image.

Based on mentioned above, human swarm still able to perform a “snake” as required

in the vocal command, and its performance is improving. So we can get the conclusion

18

that human swarm is a good learner in this experiment, even it is harder than “color

change” commands.

2.3.7 Accuracy of the “Bullseye” configuration

In the overhead video, at t =613 seconds the human swarm was directed to form a

“bullseye”. To evaluate their performance, we have two standrads, first of all,

circularity was again evaluated using the equation 𝐶2/4𝜋, and second, by calculating

the mean distance between each circle’s centers. In a perfect bullseye, all circles’ are

concentric.

Figure 2.13: Circularity of each circle in a bullseye given the command, “I would like to see three stripes,

you know, like in the middle one color.”

As we can see from Figure 2.13, there are total four circles, which green circle and

blue circle is closer to be a real circle, red and yellow circle are not so good, while

human swarm did make circles. Theory applied to evaluate human swarm’s

performance mentioned above maybe is not visual enough. To display the result we got

19

more directly, we made “circle fit” for the “bullseye”. In the overhead video, human

swarm are directed to form a “bullseye” which should be consisted by four concentric

circles which are blue, green, yellow and red.

We find out the best fit circle human swarm formed to see whether human swarm

did a good job. In next image, we find out human swarm’s best fit circle to see whether

it’s a good bullseye or not by applying the Circle fit code [13].

Figure 2.14: Best fit circles for human swarm’s performance.

This plot show clearly how far away for human swarm to form a beautiful real

“bullseye”. Blue, green, yellow and red circles are best fit circles, arrows represent the

“error lines” means the distance between umbrellas center to best fit circles’ boundary.

To evaluate the bullseye, besides calculate how round the circle is like shown in

Figure 2.14, as another standard, we calculate the distance between every two circles’

center too. If the bullseye is good enough, the distance should be small enough. Based

on these two standards, let’s see how human swarm performed.

20

Figure 2.15: Another equation applied to evaluate human swarm’s performance.

Uses the equation√(𝑟𝑥 − 𝑔𝑥)2 + (𝑟𝑦 − 𝑔𝑦)
2
 for example,𝑟𝑥, 𝑟𝑦is x, y position of red

circle, 𝑔𝑥, 𝑔𝑦 is x, y position of green circle. Then we get the distance between circles.

Figure 2.15, shows the theory we used, calculating the distance between centers.

Figure 2.16: The distance between each two circles to evaluate the quality of bullseye as a function of

time.

The two figures above demonstrate that the human swarm was unable to improve

their bullseye. At first, according to the vocal command, it was required to form three

21

kind colors of circles, which are red, green and blue. However, as we can see from the

figure, started at t= 610 seconds, there are four different colors: red, green, blue and

yellow. This situation may be caused by the LED light itself, so it may not be human

swarm’s fault.

However, in the second figure, we did not count in the yellow circle. But the mean

distance between each two circle centers did not reduce or stay constant, giving a

second metric indicating the bullseye was not improving.

2.3.8 The accuracy of the human swarm’s position memory

This experiment analyzes the accuracy of human swarm when was commanded to

return back to known position. In this experiment, we want to see how good human

swarm’s memory is.

Figure 2.17: Accuracy of a swarm’s position memory. It compares the mean distance between everyone’s

“original position” and the “returned position.” Smaller distances indicate better memory.

When they heard the vocal command “When I say go I want you to move.”

22

How to evaluate their memory? We compare the original position, which is before

the swarm moves to follow the vocal command, and the final position, when they

finished the command that ordered them to move back.

In Figure 2.17, from t=539 seconds, the human swarm spread out slowly, and at

t=590 seconds they were commanded to return to their original position. During this

period, the distance between current position and original position is increasing, which

reflects the reality. After that moment, human swarm began to go back, so the distance

is decreasing. Finally, until t=605 seconds before next command, the distance is almost

same with original one.

23

CHAPTER 3

Simulation

Previous work aims at analyze how large quantity of people respond to vocal

commands with local feedback and overhead camera video. We talked about how

human swarm performed under instructions such as “color change”, “shape match” and

“position memory.” This analysis proved that they human swarm is good at simple

vocal commands. While it is obvious that people are able to learn, it is encouraging to

know that a swarm of people can also improve in performance.

When it comes to harder vocal command, the human swarm did not perform as well

as for simple commands. They may even fail to improve their performance, as

demonstrated by the “bullseye test”. In this chapter, we ran many simulations to explore

how swarm robots perform under distributed decision-making.

In the simulation, there are 200 agents randomly placed on a 2D region, each agent

initially selects a color from the red, green, and blue. The goal for this simulation is all

these agents agree on one same color finally, but it does not matter what kind of color

it is. At each turn, agents will decide whether to change color or not, or which color

they need to change by checking their nearest k neighbors. This is a classic consensus

problem for distributed agents. What makes it interesting is that, unlike a having a

swarm agree on a leader or on a mean, there is no deterministic algorithm. Every agent

is indistinguishable, each agent follows the same rules, and no agent is a leader.

Since no deterministic algorithm exists, in our algorithm each node selects its color

from a probability distribution weighted according to the colors of its k-nearest

neighbors, update their color based on neighbors, their own colors. There are a number

of caveats: Turns are synchronized, and each robot must run the same algorithm, each

24

robot has a unique random number generator, the set of potential colors is randomized,

no algorithm such as “everyone choose red” is allowed.

In the simulation, we choose k-nearest neighbors, with k=7, 8, 9, 10, 11 to see how

good robots are at this simulation, comparing different values of k, see how it influences

the simulation. In Figure 3.1, we set each point check 7 nearest neighbors’ color, 200

nodes select color from red, green, and blue randomly.

Figure 3.1: Initialize 200 nodes randomly in a 2D space, each point selected a color from red, green, blue

randomly. Each point turn color based on 7 nearest points.

In Figure 3.1, we can see that each point is connected with its nearest points. After

iterations, all 200 nodes will finally change to one same color, in Figure 3.2, we show

the result, show how many times iterations it took.

During the time of iteration, all nodes we initialized will change the color at same

time, they check k nearest neighbors’ color and then decide which color they will turn,

k is the value we set up before. It just like when 200 people are trying to find out which

color they should turn. They cannot talk with each other, all communication allowed is

checking their neighbors’ umbrella. Maybe they can do a better performance if they are

able to check more umbrellas’ color, just like we set value of k in the simulation.

25

In first experiment, when k=7, it takes 205 iterations to reach one same color. How

many times iteration will k=8 take? We change the value of k and evaluate nodes

performance in this section.

Figure 3.2: All nodes choose one same color finally, takes 205 iterations.

In Figure 3.3, we change the value of nearest neighbors to 8, see how robots

performed in this situation. Each umbrella is connected with their nearest neighbors as

we can see from the figure.

Figure 3.3: Initialize 200 nodes randomly in a 2D space, each point selected a color from red, green, blue

randomly. Each point turn color based on 8 nearest points.

26

In Figure 3.4, show the result when all points get same color. The iteration times is

different because the color change is randomly and depend on neighbors’ colors, in this

experiment, all nodes change to green finally.

Figure 3.4: All nodes choose one same color finally, takes 155 iterations.

In Figure 3.5, we change the value of nearest neighbors to 9, see how robots

performed in this situation. And we can see the results shown in the figure. In Figure

3.6, show the result when all points get same color.

Figure 3.5: Initialize 200 nodes randomly in a 2D space, each point selected a color from red, green, blue

randomly. Each point turn color based on 9 nearest points.

27

Figure 3.6: All nodes choose one same color finally, takes 643 iterations.

Figure 3.7: Initialize 200 nodes randomly in a 2D space, each point selected a color from red, green, blue

randomly. Each point turn color based on 10 nearest points.

In Figure 3.7, we change the value of nearest neighbors to 10, see how robots

performed in this situation. And we can see the results shown in the figure. In Figure

3.8, show the results when all points get same color.

28

Figure 3.8: All nodes choose one same color finally, takes 301 iterations.

Figure 3.9: Initialize 200 nodes randomly in a 2D space, each point selected a color from red, green, blue

randomly. Each point turn color based on 11 nearest points.

In Figure 3.9, we change the value of nearest neighbors to 11, see how robots

performed in this situation In Figure 3.10, show the results when all points get same

color for checking nearest 11 neighbors’ colors.

29

Figure 3.10: All nodes choose one same color finally, takes 95 iterations.

As Figures shown above, different value of nearest neighbors may influence the

simulation, however only one experiment cannot help us draw a certain conclusion.

Then we run the experiment 100 times with k=7.

Figure 3.11: Result of 7 nearest neighbors run simulation 100 times, plot ratio of major colors as a

function of iteration times, also plot the “mean”, “mean + std”, “mean – std.”

30

We can see in the Figure 3.11, in the background there are light green, blue, and red

lines which represent the major color in each simulation, and there are totally 100 times

simulations.

Besides, we also get other three plot lines. The black solid line shows the “mean plot

for k = 7” which means the average ratio of major colors as a function of iteration times.

And there are other two dash lines.

The top one is “mean + std plot for k = 7”, the bottom one is “mean - std plot for k

= 7”, these two dash lines represent the range of major colors’ ratio as a function of

iteration times. We change the value of k-nearest neighbors and get other plots show

ratio of major colors as a function of iteration times.

Figure 3.12: Result of 8 nearest neighbors run simulation 100 times, plot ratio of major colors as a

function of iteration times, also plot the “mean”, “mean + std”, “mean – std.”

In Figure 3.13, we change the value of k-nearest neighbors to k=9 to see whether

there are any differences between different values of k. Also, we will change the value

to k=10, 11 in the following sections, and make a comparison.

31

Figure 3.13: Result of 9 nearest neighbors run simulation 100 times, plot ratio of major colors as a

function of iteration times, also plot the “mean”, “mean + std”, “mean – std.”

.

Figure 3.14: Result of 10 nearest neighbors run simulation 100 times, plot ratio of major colors as a

function of iteration times, also plot the “mean”, “mean + std”, “mean – std.”

Figure 3.14 shows 10 nearest neighbors and get other plots show ratio of major

colors as a function of iteration times. Figure 3.15 shows 11 nearest neighbors and get

other plots show ratio of major colors as a function of iteration times.

32

Figure 3.15: Result of 11 nearest neighbors run simulation 100 times, plot ratio of major colors as a

function of iteration times, also plot the “mean”, “mean + std”, “mean – std.”

.

Figure 3.16: With k = 7, 8, 9, 10 and 11, mean plots after 100 times simulations.

After all, in Figure 3.16 we comparing the mean plot after 100 simulations with k =

7, 8, 9, 10 and 11. We get the time constant for each k, we will comparing 𝜏11, 𝜏10,

𝜏9, 𝜏8, 𝜏7 in following section. And we can see whether value of nearest neighbors will

influence the time to reach distribution consensus.

33

In the following section we will show plots fit mean plots of k=7, 8, 9, 10, 11 fit

with exponential function. Figure 3.17 shows k=7, exponential function fit with ratio

which is not the major color, it is reduced as iteration times increased.

Figure 3.17: Exponential function fit with “1-Ratio of major color” for k=7.

Figure 3.18: Exponential function fit with “1-Ratio of major color” for k=8.

34

Figure 3.18 shows k=8, exponential function fit with ratio which is not the major

color, we can see from the picture it is reduced as iteration times increased. To further

prove our conclusion, we need more experiments.

Figure 3.19 Exponential function fit with “1-Ratio of major color” for k=9.

Figure 3.20: Exponential function fit with “1-Ratio of major color” for k=10.

35

Figure 3.20 shows k=10, exponential function fit with ratio which is not the major

color, we can see from the picture it is reduced as iteration times increased. Comparing

to k=7, it changes more quickly as shown in the figure, After all, we comparing the

different time constant 𝜏. We can see 𝜏 is decreasing with k increasing.

Figure 3.21: Exponential function fit with “1-ratio of major color” for k=11.

Figure 3.22: Comparison of 𝜏 with k=7, 8, 9, 10, 11.

36

CHAPTER 4

Conclusions and Future Work

Because the main contribution of this thesis is data analysis, the accuracy of data

collecting is very important. In the first part, tracking, if the observed data matches the

estimated data, this model for tracking umbrella seems good. While tracking the

objects, the initial state and noise covariance influence a lot, maybe more than that, we

need to tune the estimation functions to speed up our tracking system cause when

tracking many objects, speed up is important. Tuning of the Kalman filter refers to

estimation of covariance matrix, if it is not tuned properly, it leads to divergence of

expected value from the actual value [14]. In this project, the number of umbrellas are

not constant all the time, it may change, and we need to track all the umbrellas.

Kalman filter has wide applications in many fields, including object tracking. Our

tracking system can track multiple objects which have similar appearance, more than

two hundred umbrellas were tracked simultaneously. The system detected umbrellas

disappearing or adding quickly and continued tracking. Data analysis revealed the

human swarm was learning and that the human swarm performed well at forming

snakes, but poorly at forming concentric circles.

The experiment is an exploration of the power of groups and the idea that groups are

more capable than the sum of their parts. The umbrella projects allows the exploration

of theories on collaboration in the context of crowds and enables the extraction of

hypotheses for future biologically-grounded approaches to robot control.

37

References

[1] Rus, D. (2013, May 19). “Robots and Art: The Umbrella Project.” Retrieved May

06, 2016, from http://danielarus.csail.mit.edu/index.php/2015/10/robots-and-art-

the-umbrella-project/.

[2] Yao, W. (2015, November 20). “Vision Tracking.” Retrieved May 7, 2016, from

https://www.dropbox.com/s/0zvompid7dnzbxf/detectupdate1121_3.m?dl=0

[3] Betke, M., Hirsh, D. E., Bagchi, A., Hristov, N. I., Makris, N. C., & Kunz, T. H.

(2007, June). “Tracking large variable numbers of objects in clutter.” In Computer

Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on (pp. 1-8).

IEEE.

[4] Yang, H., Shao, L., Zheng, F., Wang, L., & Song, Z. (2011). “Recent advances and

trends in visual tracking: A review.” Neurocomputing, 74(18), 3823-3831.

[5] Becker, A. T. (2014, December 20). “First10MinVideo.” Retrieved May 06, 2016,

from https://www.dropbox.com/s/97h3jp4ist5tlvv/First10Min.mp4?dl=0

[6] Jeong, J. M., Yoon, T. S., & Park, J. B. (2014, September). “Kalman filter based

multiple objects detection-tracking algorithm robust to occlusion.” In SICE Annual

Conference (SICE), 2014 Proceedings of the (pp. 941-946). IEEE.

[7] Cuevas, E. V., Zaldivar, D., & Rojas, R. (2005). “Kalman filter for vision tracking.”

[8] Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). “Data clustering: a review.” ACM

computing surveys (CSUR), 31(3), 264-323.

[9] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu,

A. Y. (2002). “An efficient k-means clustering algorithm: Analysis and

implementation.”Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24(7), 881-892.

38

[10] Hargrave, P. J. (1989, February). “A tutorial introduction to Kalman filtering.”

In Kalman filters: Introduction, Applications and Future Developments, IEE

Colloquium on (pp. 1-1). IET.

[11] Becker, A. T. (2015, July 29).“ColorizeUmbrellaData”Retrieved May 06,

2016,from:https://www.dropbox.com/s/n0xiimufsp552pl/colorizeUmbrellaData.m

?dl=0

[12] Becker, A. T. (2015, July 29). “Processed Umbrella.” Retrieved May 01, 2016,

from https://www.dropbox.com/s/e3f22ouoqj5r17p/ProcessedUmbrella.mp4?dl=0

[13] Bucher, L. (2004, July 26). “Circle fit. Retrieved.” April 15, 2016, from

http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit

[14] Wei, L., Zeng, W., & Wang, H. (2010, August). “K-means Clustering with

Manifold.” In Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh

International Conference on (Vol. 5, pp. 2095-2099). IEEE.

[15] Esteves, R. M., Hacker, T., & Rong, C. (2013, December). “Competitive k-means,

a new accurate and distributed k-means algorithm for large datasets.” In Cloud

Computing Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on (Vol. 1, pp. 17-24). IEEE.

[16] Rodriguez, M., Ali, S., & Kanade, T. (2009, September). “Tracking in unstructured

crowded scenes.” In Computer Vision, 2009 IEEE 12th International Conference on

(pp. 1389-1396). IEEE.

[17] Hartigan, J. A., & Wong, M. A. (1979). “Algorithm AS 136: A k-means clustering

algorithm.” Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1), 100-108.

39

[18] Zhao, T., & Nevatia, R. (2004). “Tracking multiple humans in complex situations.”

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9), 1208-

1221.

[19] Cai, Y., de Freitas, N., & Little, J. (2006). “Robust visual tracking for multiple

targets.” Computer Vision–ECCV 2006, 107-118.

[20] Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.

[21] Ramakoti, N., Vinay, A., & Jatoth, R. K. (2009, December). “Particle swarm

optimization aided Kalman filter for object tracking.” In 2009 International

Conference on Advances in Computing, Control, and Telecommunication

Technologies (pp. 531-533). IEEE.

40

Appendix

The appendix provides specific algorithms and equations we applied as math tools

when analyzing data during the thesis project. It also provides part of codes used during

analyzing the thesis project.

Appendix A: K-means algorithm support

The k-means method uses K prototypes, the centroids of clusters, to characterize the

data [15]. Data clustering is widely used in many fields, including data mining, pattern

recognition, decision support, machine learning and image segmentation. k-means

seeks to minimize, it can be expressed by

𝐽𝐾−𝑚𝑒𝑎𝑛𝑠 = ∑ ∑ (𝑥𝑖 − 𝑚𝑘)2
𝑖∈𝐶𝑘

𝐾
𝑘=1 . (1)

Here (𝑥1, … , 𝑥𝑛) = 𝑋 is the data matrix, 𝑚𝑘 = ∑
𝑥𝑖

𝑛𝑘
𝑖∈𝐶𝑘

 is the centroid of cluster𝐶𝑘,

and 𝑛𝑘 is the number of points in 𝐶𝑘.

K-means, has two steps: assignment and update. The first assignment step uses

observed data to assign data points to the cluster which yields the minimum within-

cluster sum of squares. The sum of squares is squared Euclidean distance, so this is the

nearest mean [4]

𝑆𝑖
(𝑡)

= {𝑥𝑝: ‖𝑥𝑝 − 𝑚𝑖
(𝑡)

‖
2

≪ ‖𝑥𝑝 − 𝑚𝑗
(𝑡)

‖
2

∀𝑗, 1 ≪ 𝑗 ≪ 𝑘} and (2)

𝑚𝑖
(𝑡+1)

=
1

|𝑆
𝑖
(𝑡)

|
∑ 𝑥𝑗𝑥𝑗∈𝑆

𝑖
(𝑡) . (3)

Equation (2) is used for assign objects, each 𝑥𝑝 is assigned to exactly one 𝑆𝑖
(𝑡)

.

Equation (3) is used to calculate new means to be the new centroids of the observations

in the new clusters.

41

Appendix B: Kalman filter algorithm support

In this section, describes tracking umbrellas using the Kalman filter algorithm. It is

a recursive algorithm so that new measurements can be processed when they arrived,

then a new round of calculating begin [16]. It can be filtering out the noise during the

time finding out the best estimate data, and a Kalman filter not only just clean up the

data measurements, but also projects those measurements onto the state estimate [17].

The Kalman filter maintains both an estimate of the state

𝑋(𝑛|𝑛) Estimate of 𝑋(𝑛) given measurements 𝑍(𝑛), 𝑍(𝑛 − 1)

𝑋(𝑛 + 1|𝑛) Estimate of 𝑋(𝑛 + 1) given measurements 𝑍(𝑛), 𝑍(𝑛 − 1)

And the error covariance matrix 𝑃 of the state estimate is given by

𝑃(𝑛|𝑛)-covariance of 𝑋(𝑛) given𝑍(𝑛), 𝑍(𝑛 − 1)

𝑃(𝑛 + 1|𝑘)-estimate of 𝑋(𝑛 + 1) given𝑍(𝑛), 𝑍(𝑛 − 1)

The Kalman filter recursive processing is separated into several stages [18]. The first

part consists of two equations is called “Time Update (Predict)” can be expressed as

𝑋(𝑛 + 1|𝑛) = 𝐴𝑋(𝑛|𝑛) + 𝐵𝑢(𝑛 + 1) and (4)

𝑃(𝑛 + 1|𝑛) = 𝐴𝑃(𝑛|𝑛)𝐴′+ 𝑄 . (5)

Equation (4) represents the predicted state, (5) represents the error covariance ahead.

And the second part “Measurement Update (Correct)” are given by

𝐾(𝑛 + 1|𝑛) = 𝑃(𝑛 + 1|𝑛)𝐻′(𝑛 + 1)[𝑅(𝑛 + 1) + 𝐻(𝑛 + 1)𝑃(𝑛 + 1|𝑛)𝐻′(𝑛 + 1)]′, (6)

𝑋(𝑛 + 1|𝑛 + 1) = 𝐴𝑋(𝑛 + 1|𝑛) + 𝐾(𝑛 + 1[𝑍(𝑛 + 1) − 𝐻(𝑛)𝑋(𝑛 + 1|𝑛)]), and (7)

𝑃(𝑛 + 1|𝑛 + 1) = [𝐼 − 𝐾(𝑛 + 1)𝐻(𝑛 + 1)]𝑃(𝑛 + 1|𝑛) . (8)

Equation (5) represents the Kalman Gain computed, (7) means update the estimate

with measurement𝑍(𝑛 + 1), (8) represents the update of error covariance.

When apply the Kalman filter in this project trying to track the umbrellas’ motion

path, we need to do is initialize the algorithm at first, and also need to define the main

42

variables that will be used in the equation [19]. According to the practical situation,

umbrellas are moving in the whole video with an un-constant velocity, the noise should

be considered. Here I define the measurement noise R in the horizontal direction both x

axis and y axis, and the process noise covariance Q, the estimate of initial umbrella

position variance [20]. Then we defined the update equations which also is the

coefficient matrices, can be seen as a physics based model, so that we can make an

estimation where the umbrella will be for the next moment. We have another figure to

further explain how Kalman filter works.

Figure A.1: Constituent part of Kalman filter, how time update and measurement update work together.

In the update equations, all matrix variables need to be defined. Initialize A represents

the state transition matrix; B represents the input matrix, which is optional; H represents

the observation matrix, K represents the Kalman Gain [21]. After that, we can call the

Kalman filter. As mentioned before, each iteration of Kalman filter will update the

estimate of state vector of a system based upon the information in a new observation. In

this project, the data which had already been collected is the x, y location of each

umbrella at each frame. Although these location data have some error but they are

43

reliable enough and they are used as measurement data. To track the motion path of the

umbrella, we set an empty matrix “centroids” to store the x, y locations of each umbrella,

so this matrix can represents the real locations of umbrella.

Appendix C: Other equations applied

To predict where the umbrella is in the next frame, my thought is to calculate the

distance between two centroids of the umbrella, the first centroid is the observed

location of umbrella at this frame, the second centroid is the estimated x, y location of

umbrella, which will be updated. What we need is to calculate the distance between two

central points, pick up the one which is nearest with observed umbrella’s position, then

this is the next position of the umbrella in the next frame, equation is given by

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √[(𝑐(𝑖, 1) − 𝑐(𝑥))]
2

+ [(𝑐(𝑖, 2) − 𝑐(𝑦))]
2
.

Because in a very short time between each frame, umbrella’s moving could be seen

as move towards a straight line and with a constant velocity. After that, the estimated

umbrella’s position at this frame can be used as observed position to estimate the next

position of umbrella at next frame.

Appendix D: Code

Appendix D.1: Classify umbrellas code

function colorizeUmbrellaData

% Aaron T. Becker

% Takes data of umbrella positions

% 1. Get list of files that have data

% 2. For each data file:

% 3. Load the x, y locations of the umbrellas

% 4. Load the corresponding image from the video

44

% 5. Call k-means to get all pixels associated with each x, y location

% 6. Get the mean color of these pixels for each x, y location

% 7. Save the data [x, y, color, num pixels]

% 8. Save the image to make a movie

vidName = 'First10Min.mp4'

dataFileName = 'manualPointsLowRes/';

meanGreen = 2.577;

meanGreen2 = -3.14;

meanRed = -0.4808;

meanBlue = -2.094;

meanPurple =-1.544;

meanOrange =-0.05;

meanCyan = -2.50;

meanColors =

[meanGreen,meanGreen2,meanRed,meanBlue,meanPurple,meanOrange,meanCyan];

colorNames = ['g','g','r','b','m','y','c','k'];

% setup instructions

 MOVIE_NAME = 'ProcessedUmbrella';

 G.fig = figure(1);

 clf

set(G.fig,'Units','normalized','outerposition',

[0 0 1 1],'NumberTitle','off','MenuBar','none','color','w');

 writerObj = VideoWriter(MOVIE_NAME,'MPEG4');

 set(writerObj,'Quality',100,'FrameRate', 30);

 open(writerObj);

45

% 1. Get list of files that have data

% 1.a: Try to load points from a data file.

filenames = dir([dataFileName,'*.mat']);

% 1.b: Load the video:

tic

display(['Loading video: ',vidName])

vidBirdseye = VideoReader(vidName);

toc

colorcount = NaN(numel(filenames),numel(colorNames));

frameNums = NaN(numel(filenames),1);

% 2. For each data file:

for i = 1:numel(filenames)

% 3. load the xy locations of the umbrellas

 fileStr = filenames(i).name;

 data = load([dataFileName,fileStr], 'pointLocations');

 xy = data.pointLocations;

% 4. load the corresponding image from the video

 frameNumber = str2double(fileStr(1:end-4));

 cdata = read(vidBirdseye,frameNumber);

% convert rgb to YCbCr color space

 YCBCRim = rgb2ycbcr(cdata);

 Ythreshim = YCBCRim(:,:,1)>32;

 bw = bwareaopen(Ythreshim,100);

% 5. call k-means to get all pixels associated with each xy location

 [xcoord,ycoord] = ind2sub(size(bw), find(bw>0));

46

 nonBackgroundPx = [xcoord,ycoord];

nonBackgroundPx = [nonBackgroundPx(:,2) nonBackgroundPx(:,1)];

% 6. get the mean color of these pixels for each xy location

 [aveHue, numPixels,colors,imageClassified] = measureColor(xy,

nonBackgroundPx, cdata); %#ok<ASGLU>

% 7. save the data [x,y,color, num pixels]

 imsz = size(cdata);

 save([dataFileName,'/Hue/Hue',num2str(frameNumber,'%07d')],

'xy','aveHue','numPixels','colors','imsz','frameNumber');

% 8. save the image (to make a movie)

 indx = numPixels>5;

 colorcount(i,:) = sum(bsxfun(@eq, colors(indx),1:numel(colorNames)));

 colorcount(i,2) = colorcount(i,1)+colorcount(i,2);

 frameNums(i) = frameNumber;

 %display the image

 figure(1)

 subplot(2,2,1)

 imshow(cdata)

 subplot(2,2,2)

 imshow(imageClassified)

 subplot(2,2,3:4)

 set(gca,'FontSize',16)

 for ik = 2:numel(colorNames);

47

plot(frameNums(1:i),colorcount(1:i,ik),'color',colorNames(ik),'linewidth',2,'Linewidth

',1.5);

 hold on

 end

 hold off

 title('umbrella colors')

 xlabel(['frame ', num2str(frameNumber)])

 ylabel('count of each color')

 axis([0,2000,0,220])

 makeMovie()

 drawnow

end

close(writerObj);

title('FINISHED')

 function makeMovie()

 figure(G.fig)

 set(gcf,'renderer','painters')

 tfig = myaa;

 F = getframe(tfig);

 writeVideo(writerObj,F.cdata);

 close(tfig)

 end

 function rgbC = getRGBfromName(charN)

 rgbC = bitget(find('krgybmcw'==charN)-1,1:3);

48

 end

 function [aveHue, numPixels,colors,imageClassified] = measureColor(xy, data,

cdata)

 % x, y is the locations of the center of each umbrelladata is the x, y locations of

the non-background pixels. cdata is the color image r*c*3 find the pixels associated to

each x, y location returns the average hue 'aveHue' for each x, y location, numPixels:

the number of associated pixels, the classified 'colors', and an rgb image

'imageClassified' with all the classified objects recolored.

 %convert the image to HSV

 ImageHSV = rgb2hsv(cdata);

 imHUE = ImageHSV(:,:,1);

 imVAL = ImageHSV(:,:,3);

 hueAngle = imHUE*2*pi;

 imageClassified = 0.2*ones(size(cdata));

 num = size(data,1);

 k = size(xy,1);

 aveHue = zeros(k,1);

 aveVal = zeros(k,1);

 numPixels = zeros(k,1);

 colors = zeros(k,1);

 tempx = repmat(data(:,1),1,k) - repmat(xy(:,1).',num,1);

49

 tempy = repmat(data(:,2),1,k) - repmat(xy(:,2).',num,1);

 distance = (tempx.^2 + tempy.^2);

 [~,cluster_index] = min(distance.');

 for ii = 1:k

 thisUmbrellaxy = data(cluster_index == ii,:);

 % figure out the average color

 linearInd = sub2ind(size(imHUE), thisUmbrellaxy(:,2), thisUmbrellaxy(:,1));

 hueSin = sum(sin(hueAngle(linearInd)));

 hueCos = sum(cos(hueAngle(linearInd)));

 aveHue(ii) = atan2(hueSin,hueCos);

 aveVal(ii) = mean(imVAL(linearInd));

 % count number of pixels associated with this mean

 numPixels(ii) = numel(thisUmbrellaxy(:,1));

 % classify the color

 [~,colors(ii)] = min(abs(meanColors - aveHue(ii)));

 if (colorNames(colors(ii)) == 'b'|| colorNames(colors(ii)) == 'c') &&

aveVal(ii) < 0.5

 colors(ii) = numel(colorNames);

 end

 rgbVal = getRGBfromName(colorNames(colors(ii)));

 for iii = 1:numPixels(ii)

 imageClassified(thisUmbrellaxy(iii,2), thisUmbrellaxy(iii,1),:) = rgbVal;

 end

 end

 figure(2)

50

 imshow(imageClassified)

 for ii = 1:k

 text(xy(ii,1), xy(ii,2),num2str(aveHue(ii),'%.2f'),'color','w')

 end

 end

set(gcf,'PaperPositionMode','auto','PaperSize',[8,4], 'PaperPosition',[0,0,8,4]);

print(gcf, '-dpdf', 'fig1.pdf');

end

Appendix D.2: Distribution consensus simulation codes

function [colorHist, color] = colorconsensusRand(k,IndexRepeat)

% N agents (N=200) are randomly placed on a 2D region. Each agent initially

selects a color from the set {R,G,B}.

% Goal: all agents to select the same color

% Process:

Turns are synchronized. At each turn the robots check the current color of their k-

nearest neighbors. Update their current color based on the neighbors, their own color,

and (perhaps) generating a random number Caveats: each robot must run the same

algorithm, each robot has a unique random number generator, all turns are synchronized,

the set of potential colors is randomized -- no algorithm "everyone choose red" will

work.

L = 100; %size of workspace

N = 200;%number of nodes

if nargin<1

 k = 7; %number of nearest neighbors

51

end

maxIter = 10000; %number of iterations to try to get consensus

colorHist = zeros(maxIter,3); %record the ratios of different colors

bShowNN = true;

Xpos = rand(200,2)*L;

Xcol = randi(3,N,1);

%set up figure

figure(1); clf;

IDX = knnsearch(Xpos,Xpos,'K',k);

% This code draws the nearest neighbors

if bShowNN

 for i = 1:N

 for j = 2:k

 hl = line([Xpos(IDX(i,1),1) Xpos(IDX(i,j),1)],[Xpos(IDX(i,1),2)

Xpos(IDX(i,j),2)]);

 set(hl,'color',[0.8,0.8,0.8],'LineWidth',1);

 end

 end

end

hold on

h = scatter(Xpos(:,1),Xpos(:,2),ones(N,1)*140,Xcol);

set(h,'marker','o','LineWidth',1.5)

hold off

%simulate

for i = 1:maxIter

52

 Xcoli = Xcol;

 for j = 1:N % loop over each node

 vc = histc(Xcol(IDX(j,:)),[1,2,3])/k;

 %randomly assign with probability proportional to most likely color

 r= rand(1);

 if r<vc(1)

 Xcoli(j) = 1;

 elseif r<vc(1)+vc(2)

 Xcoli(j) = 2;

 else

 Xcoli(j) = 3;

 end

 end

 Xcol = Xcoli;

 vc = histc(Xcol,[1,2,3])/N*100;

 colorHist(i,:) = vc;

 title({['Round ',num2str(i)];['[bgr]=',num2str(vc')]})

 %update the figure

 set(h,'CData',Xcol);

 drawnow

 if max(vc) >= 100

 %find the major color and save the ratios of the major color

 colorHist = colorHist(:,vc == max(vc));

 color = find(vc == max(vc));

 saveas(h,['colorconsensus/myfig_',num2str(k),'_',num2str(IndexRepeat),'.fig']);

53

 break

 end

end

Appendix D.3: Mean plot of simulation codes

Appendix D.3.1: k = 7

k = 7;

RepeatTime = 100;

maxIter = 10000;

colorRecord = zeros(RepeatTime,maxIter);%record the ratios of the major color

colorArray = zeros(1,RepeatTime);

MaxIndex = 0;

for IndexRepeat = 1:RepeatTime

 [colorRecord(IndexRepeat,:), colorArray(IndexRepeat,:)] =

colorconsensusRand(k,IndexRepeat);

 colorRecord(IndexRepeat,:) = colorRecord(IndexRepeat,:)/100;

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 MaxIndex = max(MaxIndex,LastIndex);

end

for IndexRepeat = 1:RepeatTime

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 colorRecord(IndexRepeat,LastIndex + 1:MaxIndex) = 1;

end

54

colorRecord = colorRecord(:,1:MaxIndex);

MeanValueArray = mean(colorRecord,1);

StdArray = std(colorRecord,1,1);

for IndexRepeat = 1:RepeatTime

 if colorArray(IndexRepeat,:) == 1

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 0.8

1],'linewidth',0.5);

 else

 if colorArray(IndexRepeat,:) == 2

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 1

0.8],'linewidth',0.5);

 else

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[1 0.8

0.8],'linewidth',0.5);

 end

 end

 hold on

end

MeanMinusStd = MeanValueArray - StdArray;

55

MeanPlusStd = MeanValueArray + StdArray;

plot(1:MaxIndex, MeanValueArray(1:MaxIndex),'k','linewidth',2);

hold on

plot(1:MaxIndex, MeanMinusStd(1:MaxIndex),'k--','linewidth',2);

hold on

plot(1:MaxIndex, MeanPlusStd(1:MaxIndex),'k--','linewidth',2);

hold on

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

saveas(gcf,'myfig7.fig');

save('MeanValueArray7.mat','MeanValueArray');

Appendix D.3.2: k = 8

k = 8;

RepeatTime = 100;

maxIter = 10000;

colorRecord = zeros(RepeatTime,maxIter);%record the ratios of the major color

colorArray = zeros(1,RepeatTime);

MaxIndex = 0;

for IndexRepeat = 1:RepeatTime

 [colorRecord(IndexRepeat,:), colorArray(IndexRepeat,:)] =

colorconsensusRand(k,IndexRepeat);

 colorRecord(IndexRepeat,:) = colorRecord(IndexRepeat,:)/100;

56

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 MaxIndex = max(MaxIndex,LastIndex);

end

for IndexRepeat = 1:RepeatTime

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 colorRecord(IndexRepeat,LastIndex + 1:MaxIndex) = 1;

end

colorRecord = colorRecord(:,1:MaxIndex);

MeanValueArray = mean(colorRecord,1);

StdArray = std(colorRecord,1,1);

for IndexRepeat = 1:RepeatTime

 if colorArray(IndexRepeat,:) == 1

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 0.8

1],'linewidth',0.5);

 else

 if colorArray(IndexRepeat,:) == 2

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 1

0.8],'linewidth',0.5);

 else

57

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[1 0.8

0.8],'linewidth',0.5);

 end

 end

 hold on

end

MeanMinusStd = MeanValueArray - StdArray;

MeanPlusStd = MeanValueArray + StdArray;

plot(1:MaxIndex, MeanValueArray(1:MaxIndex),'k','linewidth',2);

hold on

plot(1:MaxIndex, MeanMinusStd(1:MaxIndex),'k--','linewidth',2);

hold on

plot(1:MaxIndex, MeanPlusStd(1:MaxIndex),'k--','linewidth',2);

hold on

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

saveas(gcf,'myfig8.fig');

save('MeanValueArray8.mat','MeanValueArray');

Appendix D.3.3: k = 9

k = 9;

58

RepeatTime = 100;

maxIter = 10000;

colorRecord = zeros(RepeatTime,maxIter);%record the ratios of the major color

colorArray = zeros(1,RepeatTime);

MaxIndex = 0;

for IndexRepeat = 1:RepeatTime

 [colorRecord(IndexRepeat,:), colorArray(IndexRepeat,:)] =

colorconsensusRand(k,IndexRepeat);

 colorRecord(IndexRepeat,:) = colorRecord(IndexRepeat,:)/100;

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 MaxIndex = max(MaxIndex,LastIndex);

end

for IndexRepeat = 1:RepeatTime

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 colorRecord(IndexRepeat,LastIndex + 1:MaxIndex) = 1;

end

colorRecord = colorRecord(:,1:MaxIndex);

MeanValueArray = mean(colorRecord,1);

StdArray = std(colorRecord,1,1);

for IndexRepeat = 1:RepeatTime

 if colorArray(IndexRepeat,:) == 1

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

59

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 0.8

1],'linewidth',0.5);

 else

 if colorArray(IndexRepeat,:) == 2

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 1

0.8],'linewidth',0.5);

 else

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[1 0.8

0.8],'linewidth',0.5);

 end

 end

 hold on

end

MeanMinusStd = MeanValueArray - StdArray;

MeanPlusStd = MeanValueArray + StdArray;

plot(1:MaxIndex, MeanValueArray(1:MaxIndex),'k','linewidth',2);

hold on

plot(1:MaxIndex, MeanMinusStd(1:MaxIndex),'k--','linewidth',2);

hold on

plot(1:MaxIndex, MeanPlusStd(1:MaxIndex),'k--','linewidth',2);

hold on

60

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

saveas(gcf,'myfig9.fig');

save('MeanValueArray9.mat','MeanValueArray');

Appendix D.3.4: k = 10

k = 10;

RepeatTime = 100;

maxIter = 10000;

colorRecord = zeros(RepeatTime,maxIter);%record the ratios of the major color

colorArray = zeros(1,RepeatTime);

MaxIndex = 0;

for IndexRepeat = 1:RepeatTime

 [colorRecord(IndexRepeat,:), colorArray(IndexRepeat,:)] =

colorconsensusRand(k,IndexRepeat);

 colorRecord(IndexRepeat,:) = colorRecord(IndexRepeat,:)/100;

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 MaxIndex = max(MaxIndex,LastIndex);

end

for IndexRepeat = 1:RepeatTime

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

61

 colorRecord(IndexRepeat,LastIndex + 1:MaxIndex) = 1;

end

colorRecord = colorRecord(:,1:MaxIndex);

MeanValueArray = mean(colorRecord,1);

StdArray = std(colorRecord,1,1);

for IndexRepeat = 1:RepeatTime

 if colorArray(IndexRepeat,:) == 1

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 0.8

1],'linewidth',0.5);

 else

 if colorArray(IndexRepeat,:) == 2

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 1

0.8],'linewidth',0.5);

 else

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[1 0.8

0.8],'linewidth',0.5);

 end

 end

 hold on

62

end

MeanMinusStd = MeanValueArray - StdArray;

MeanPlusStd = MeanValueArray + StdArray;

plot(1:MaxIndex, MeanValueArray(1:MaxIndex),'k','linewidth',2);

hold on

plot(1:MaxIndex, MeanMinusStd(1:MaxIndex),'k--','linewidth',2);

hold on

plot(1:MaxIndex, MeanPlusStd(1:MaxIndex),'k--','linewidth',2);

hold on

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

saveas(gcf,'myfig10.fig');

save('MeanValueArray10.mat','MeanValueArray');

Appendix D.3.5: k = 11

k = 11;

RepeatTime = 100;

maxIter = 10000;

colorRecord = zeros(RepeatTime,maxIter);%record the ratios of the major color

colorArray = zeros(1,RepeatTime);

MaxIndex = 0;

for IndexRepeat = 1:RepeatTime

63

 [colorRecord(IndexRepeat,:), colorArray(IndexRepeat,:)] =

colorconsensusRand(k,IndexRepeat);

 colorRecord(IndexRepeat,:) = colorRecord(IndexRepeat,:)/100;

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 MaxIndex = max(MaxIndex,LastIndex);

end

for IndexRepeat = 1:RepeatTime

 LastIndex = find(colorRecord(IndexRepeat,:)>0);

 LastIndex = LastIndex(end);

 colorRecord(IndexRepeat,LastIndex + 1:MaxIndex) = 1;

end

colorRecord = colorRecord(:,1:MaxIndex);

MeanValueArray = mean(colorRecord,1);

StdArray = std(colorRecord,1,1);

for IndexRepeat = 1:RepeatTime

 if colorArray(IndexRepeat,:) == 1

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 0.8

1],'linewidth',0.5);

 else

 if colorArray(IndexRepeat,:) == 2

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

64

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[0.8 1

0.8],'linewidth',0.5);

 else

 IndexTmp = find(colorRecord(IndexRepeat,:) < 1);

 IndexTmp = IndexTmp(end) + 1;

 plot(1:IndexTmp, colorRecord(IndexRepeat,1:IndexTmp),'color',[1 0.8

0.8],'linewidth',0.5);

 end

 end

 hold on

end

MeanMinusStd = MeanValueArray - StdArray;

MeanPlusStd = MeanValueArray + StdArray;

plot(1:MaxIndex, MeanValueArray(1:MaxIndex),'k','linewidth',2);

hold on

plot(1:MaxIndex, MeanMinusStd(1:MaxIndex),'k--','linewidth',2);

hold on

plot(1:MaxIndex, MeanPlusStd(1:MaxIndex),'k--','linewidth',2);

hold on

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

saveas(gcf,'myfig11.fig');

save('MeanValueArray11.mat','MeanValueArray');

65

Appendix D.3.6: Comparing k = 7, 8, 9, 10, 11

MeanValueArray7 = load('MeanValueArray7');

MeanValueArray7 = MeanValueArray7.MeanValueArray;

MeanValueArray8 = load('MeanValueArray8');

MeanValueArray8 = MeanValueArray8.MeanValueArray;

MeanValueArray9 = load('MeanValueArray9');

MeanValueArray9 = MeanValueArray9.MeanValueArray;

MeanValueArray10 = load('MeanValueArray10');

MeanValueArray10 = MeanValueArray10.MeanValueArray;

MeanValueArray11 = load('MeanValueArray11');

MeanValueArray11 = MeanValueArray11.MeanValueArray;

MaxIndex = length(MeanValueArray7);

plot(1:MaxIndex, MeanValueArray7,'r','linewidth',2);

hold on

MaxIndex = length(MeanValueArray8);

plot(1:MaxIndex, MeanValueArray8,'r','linewidth',2);

hold on

MaxIndex = length(MeanValueArray9);

plot(1:MaxIndex, MeanValueArray9(1:MaxIndex),'b','linewidth',2);

hold on

MaxIndex = length(MeanValueArray10);

plot(1:MaxIndex, MeanValueArray10,'r','linewidth',2);

hold on

MaxIndex = length(MeanValueArray11);

66

plot(1:MaxIndex, MeanValueArray11(1:MaxIndex),'g','linewidth',2);

hold on

set(gcf,'color','w');

set(gca, 'YLim', [0,1]);

xlabel('time(s)');

ylabel('ratio of the major colors');

legend('Mean for 7','Mean for 9','Mean for 11');

saveas(gcf,'myfig_ratio.fig');

67

