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ABSTRACT

A threshold gate is a logic gate in which the output
is determined by a weighted sum of the inputs compared to a
threshold. TIf the weighted sum is less than the threshold,
the output is a zero. If the weighted sum is greater than
the threshold, the output is a one.

In general, the inputs, weights and threshold are
-correlated random variables. It is possible fof the weighted
sum and the mean of the weighted sum to lie on opposite sides
of the threshold. This will cause an error in the output
of the gate.

Techniques are derived for calculating the probability
of error of single threshold gates and nonsequential threshold
gate networks. It is assumed that the means, variances, and
correlations of the inputs and weights are known, and that
the probability of occurrence of the network input combina-
tions is known.

Threshold gates with random inputs and weights are theh
studied by simulation. Each input and weight is replaced
by the appropriately generated random number, thereby generat-
ing the density function of the weighted sum. The form of
this density function is important in the calculation of the

probability of error.



The techniques forx calculafing probability of error
are implemented by digital computer programs. These are
used as subroutines for an adaptive search technique to
minimize the probability of error by adjusting the mean
value of the weights. The dependence of probability of error
on the variance and correlation of inputs and weights is

examined for both optimal and non-optimal realizations.

vi



TABLE OF CONTENTS

CHAPTER
I. THRESHOLD LOGIC . . . . . ; o e e e
Definition of a Threshold Gate . .
Geometric Interpretation . . . . .
The Map Interpretation . . . . . .

Classes of Threshold Functions . .

II. STATISTICAL ANALYSIS OF THRESHOLD GATE CIRCUITS

Logic Systems . . . . .« . ¢ « . .

A Resistor-Transistor Threshold Gate

Transistor-Tunnel Diode Threshold Gate

Current Switching Threshold Gate .

Probability Model of a Threshold Gate

IIT. PROBABILITY OF ERROR OF A THRESHOLD GATE

IV. PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

V. SIMULATION OF THRESHOLD GATE NETWORKS . . . . .

Generation of Correlated, Normally
Distributed Random Numbers . .

Simulation of a Threshold Gate . .
Simulation of Density Functions .

VI. MINIMIZATION OF PROBABILITY OF ERROR
VII. RESULTS AND CONCLUSIONS . « ¢ ¢« o « &

The Probability of Error Surface .

Effects of Variance and Correlation on

Probability of Error of a Threshold

vii

11
11
14
19
19
22
24
32

50

50
53
56
61
68

68

71



TABLE OF CONTENTS

CHAPTER
Minimal Probability of Error Threshold
Gate Networks N
Conclusions « « « « o ¢ ¢ o o ¢« o o o o
BIBLTIOGRAPHY . ¢ ¢ o o o o o o o o s o o o o s o =«

APPENDIX A - COMPUTER
SIMULATION
APPENDIX B - COMPUTER
PROBABILITY
APPENDIX C - COMPUTER
PROBABILITY
NETWORK . .
APPENDIX D - COMPUTER

‘TO MINIMIZE

PROGRAM FOR THRESHOLD GATE
PROGRAM TO CALCULATE THE

OF ERROR OF A THRESHOLD GATE
PROGRAM TO CALCULATE THE

OF ERROR OF A THRESHOLD GATE
PROGRAMS FOR PATTERN SEARCH

PROBABILITY OF ERROR . . . .

viii

PAGE

.107



CHAPTER I
THRESHOLD LOGIC

A logic gate is a system in which the output is related
to the input by some logic function. Such a device need not
be limited to realizing only the simplest logic functions,
the AND and OR functions, although these are the easiest to
implement. In fact, it is highly desirable that a single gate
be capable of realizing more complicated logical functions.

In this way, the number of gates needed in a logic circuit
may be reduced significantly. It will be shown later that a

threshold gate has this property.

Definition of a Threshold Gate

A threshold gate is a logic gate with binary inputs
and a binary output. These binary variables can take on

values of 0 or 1. Associated with each input, X110 XoreeerXyy

there is a weight, Wir Woyp Wareee, Wi The output y of a

threshold gate for any combination of n inputs can be ex-

pressed as

n
y=1 if Z w.x, > T
i=1 *1?
(1.1)
n
y =20 if .Z wix; <T
i=1

where T is a real number which is called the threshold. The

notation



is used to represent Egq. 1.1.
By subtracting T from both sides of the inequality,

Eq. 1.1 becomes

If x = 1 and w = =T the inequalities become

n+1l n+l
n+l
y=1 if ) wix, > 0
i=1
(1.3)
n+l
y =0 if ) WX < o .
i=1
Using matrix notation this becomes
n+l 7
Lowix; =xw
i=1
: T
where .)i - {Xl, X2,.o', Xn, l}, !\I_ {wl, W2'-oo’ wn' "T}.



Finally,

y =1 if x'w > 0
(1.4)
y =0 if x'w < 0
or more compactly
T
y=. (xu« .
0
X 2
X2 I 2.5 Y
X3 1

"Fig. 1.1, Threshold gate of Example 1.1

Example l.1. For the threshold gate shown in Fig. 1.1, the

output in terms of the separating function is

vy =<?x + x, + x >
1 2 3 2.5

The output as a logic function is
Y =_x1(x2 + x3)

This is shown in Table 1.1.



Table 1.1. Truth table for y = <2xl + x2‘+.x3> 2.5

X1r Xpr X3 2x) + Xy x5 ¥ = < 2%y + Xy + X,3> 2.5.
0 0 o0 0 0
o o 1 1 0
0o 1 o0 1 0
0 1 1 2 0
1 0 o0 2 0
1 0 1 3 1
1 1 0 3 1 ’
1 1 1 a 1

Geometric Interpretation

Switching space is an n-dimensional Euclidean space
(n-space) where each coordinate axis corresponds to an inde-
pendent binary input of a logic gate or system. Since each
input can have only values of 0 or 1, the input combinations
are discreté points in the space. Eachcof the 20 points
corresponding td the 2" possible input combinations lies on
the vertex of a unit n-dimensional hypercube (n-cube) in
n-space. Realizing a given logic function of n variables with
a single threshold gate corresponds to passing an n-dimensional
hyperplane through the n-cube so that the plane separates the

points at which the value of the function is equal to 0 from



the points at which the value of the function is equal to

1. The equation of the plane is

- where the domain of eachxj is the i-th coordinate axis.
Functions which can be realized by a single threshold

gate are called linearly separable (l.s.). The function
n

f(p) = ] =x,w,
Cif1

is called the separating function, where p is the vertex
of the n-cube corresponding to (xl, Xopeony xn). Figure 1.2
shows the n-cube and separating hyperplane for a two-variable
function.

Not every partition of the vertices of the n-cube can
be separated by a hyperplane as in Fig. 1l.2b, hence not every

logic function can be realized by a single threshold gate.

Xz

. Y = XXt XX,
(a) . “(b)

Fig. 1.2. (a) l.s. function and (b) non-1l.s. function
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Notice that if the equation for the separating plane

of a particular function

(]
y= wW.X.
i=1 * 1>T

is multiplied by any positive constant K exactly the same

plane results. Therefore

also realizes the function. Specifically

y =<2xl + 2x2>3

also realizes the function of Fig. 1l.2a. Note that there can
be other hyperplanes not necessarily parallel that separate
the function such as Xy + X, = 7/4 or X, + 2X2 = 5/2. Thus
the separafing plane is not unique, therefore the values of

the weights and threshold to realize a particular logic function

are not unique.

The Map Interpretation

Every realization of a logic function with a threshold
gate specifies a separating function f and a logic function F

both of which are defined on the vertices of the n-cube. For
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each vertex p,there exists an ordered triple (p,f(p), F(p)).
The set {(p,f(p),F(p))} of ordered triples for all vertices

of the n-cube is called the map of F generated by £.

P
4 (i)

u 3 (r1o),(ro1)

L 2 T(loo),(on)
| (010), (001)
0 - (000) |

Fig. 1.3. The map of F(p) =( 2x; + x, + X
—_— 1 2 3 2.5

For each p, there is a point on the real line at f(p).
This point is shown by 0 if F(p) equals 0 or by © if F(p)
equals 1. Figure 1.3 shows the map of Example 1l.1.

A map is divided into two disjoint subsets called the
zero and unit parts, those for which F(p) = 0 and those for
which F(p) = 1. Let U be the smallest f(p) such that F(p) =1
and let L be the largest f(p) such that F(p) = 0. A map is
separated if U > L. It has been proved that a logic function

F is 1l.s. if and only if there exists a function of the form

o~
=
~

f(xl’xZ,...’Xn) = i i i

that yields a separated map for F. (Lewis and Coates)



Classes of Threshold Functions

Consider an arbitrary logic function F(xl,...,xk,...,

xn). The class of 2" function obtained by replacing variables
in F by their complements is called the complementary symmetry
class corresponding to F. Suppose Fk(xl""'§£""xn) is
equivalent to F except that Xy is replaced everywhere by §k.
If y = <w1x1 + ...+ Wy Xy + ... F wnxn>T is a realization of
F, then y = < w + oo.. + wk§k + ...+ wnxn>T is a realiza-

11
tion of Fp. IfF is 1.s., then all members of the comple-
menting symmetry class are l.s. In addition, there exists a
logic function ¢(xl,x2,...,xn) in the same complementing sym-
metry class as F such that the realization of ¢ has all positive
weights when the inputs are Xyr Xpreeeq X0 Also, a realization
for F can be obtained from the realization of ¢ by complementing
some of the variables and changing the threshold. Therefore,
a realization for F with all positive weights can be found.

A logic function is unate if and only if in the minimum
sum of’products (MsP) form no variables appear both complemented

and uncomplemented. It has been proved that if a logic function

F is l.s., then it is unate and if

f(p) =
1

| >~ 3
5
]

is the separating function for F, then for each i, W, > 0



(or W, < 0) if and only if X, (or Ei) appears in the MSP
form for F. (McNaughton) A function that contains no
complemented variables in the MSP form is called a positive
unate function. Any other function F in the same comple-
menting symmetry class can be obtained from the positive
unat? function F0 by a simple transformation. By replacing
vari%bles by their complements in F0 as needed, any function
F in the same complementing symmetry class can be realized.

The realization of F has the same realization as F, except

0
that some variables are replaced by their complements. This
realization of F has all positive weights. In this thesis,

ohly those realizations that have all positive weights will

be considered.

For every logic function F(xl,xz,...,xn),there corre-

sponds a dual function Fd(xl,xz,...,xn) which is defined as

Fd(xl,xz,...,xn) = P&y Kyreen E)

A function F is called self dual if F = Fd.> It has been
proved that if y =<§?y> is a realization of F then

T T d
y = <§ ﬂ> is a realization of F~ where
a-T

and F is 1l.s. if and only if Fd is 1.s. (Lewis and Coates)



10

Notice that the AND and OR functions of n variables are dual

functions.



CHAPTER II
STATISTICAL ANALYSIS OF THRESHOLD GATE CIRCUITS

Threshold gate circuits are subject to input and
weight variations. These variations may cause the gate to
produce an erroneous output. In this chapter, three threshold
gate circuits are examined in order to determine the nature of

these variations.

Logic Systems

In the preceding chaptér, threshold gates were consi-
dered as logic gates whose inputs were 0 or 1. In practice,
the inputs are voltage levels which are assigned the logical
value of 0 or 1 according to the value of the voltage level.
For example, a logical 0 may be a voltage in the range 0.0v
to 0.8v and a logical 1 may be a voltage in the range 1l.6v
to 5.0v. Positive logic is defined as a logic system in which
the voltage level that represents a 1 is always greater than
the voltage level that represents a 0. Negative logic is
defined as a logic system in which the voltage level that
represents a 0 is always greater than the voltage level that
represents a 1. Now the definition of threshold logic will
be extended to such systems.

Consider the positive logic system in which a 0 is

represented by a voltage level c1 and a 1 is represented by
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a voltage level C) *+ cyy cy 0. Let z, be an input vari-
able in this system. For the logic variable X3 defined on,

{0,11},
z; = cq + CoX; | (2.1) )

Let y = F(Xl’XZ""’xn) be an arbitrary l.s. logic function

of n variables whose threshold gate realization is
l’zl ’ rd
y = <f(p)> = W, X,
T i=1 Yt/
Consider F(Zl'ZZ""'Zn)' Define a new function

W, 2,
i%i
1

It~

fop) = 5

Substituting cy + cyx.

i for z; produces

n
folp) = 1 wjleg + cpxy)
i=1
n n
=cy ) W, +oc, WX, (2.2)
i=1 i=1
n
= co + c,f(p) where o = z Wy

Note that if F = 1, f(p) > T and fo(p) > ¢y0 + ¢, T, and if
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F=0, f(p) < T and fo(p) <.cy0 + c,T. Thus fo(p) is a

separating function of F(Zl'ZZ""'zn) if the threshold is

+ -

c,0 + c2T. Therefore, F(Zl’ZZ""’zn) is l.s. and equivalent-

to F(xi,xz,...,xn). A realization of y = F(Zl’ZZ""'zn) is

given by

n
y ={ } w.z.> (2.3)
-<i=l 1 cy0 + c,T

Thué any l.s. function F with positive logic input z, can be
realized with a single threshold gate and this realization
can be obtained from the realization for inputs X4 defined
on {0,1} by changing the threshold. .

Consider the negative logic system in which a 1 is
represented by a voltage level dl and a 0 is represented by
a voltage level dl + d2, d2 > 0. Let Wy be an input variable

in the system. For the logic variable x; defined on {0,1},
w, = d; + d,x, (2.4)

Hence each w; can be made to correspond to the complement of

a positive logic variable Z; . If cy = dl and c, = d2, then

z; = Cy + CoX; = dl + d2xi =Wy (2.5)
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,Let Yy, = Fl(zl’ZZ""'zn) and y = F (Wl’WZ""’Wn)
be logic functions where ¥y and Zyr Zpresss Z, are in a
positive logic system and Yo and Wir Woseeo, W oare in a
negative logic system and the systems are related by
w, = Ei and Yy = ?1. Converting from a positive logic

system to a negative logic system requires complementing

each input and the output
Yy = Fl(zl,zz,...,zn) = Fz(wl’WZ”"’wn) (2.6])

Note that Fz(w) = Fld(z). Thus the conversion results in the
realization of the dual function. If F1 is 1l.s., then Fld
is 1.s. and consequently F2 is 1l.s. Therefore, a threshold
gate realization of a logic function F in a positive logic

system realizes the dual function of F in a negative logic

systemn.

A Resistor-Transistor Threshold Gate

One of the earliest threshold gate circuits is the
resistor-transistor gate due to Rowe shown in Fig. 2.1.
Each of the inputs, Vir VoreeesVy is a voltage level V0 or Vl
which represent a logical 0 or a logical 1, respectively. The
value of the weight Wy is inversely proportionai to the value
of the resistor Ri' The threshold is determined by the values

of Rt and Vt‘.



Fig.2.1 Resistor-transistor Threshold Gate Circuit

fc
Vi
VZ
Q2
' Vo

3

Fig.2.2 Tunnel Diode-transistor Threshold Gate Circuit

15
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Consider the inputs to be in a positive logic system

and let vy > V> 0. Let VY be the base-emitter cutin

voltage of the transistor. At cutin, the base current is

given by
]
i, = i, - i
B~ L, i t
n v, -V v, =V
- 1 Y t Y
= Z =+ = f(V geee sV )
i=1 Ri Rt 1 n
‘z’ 1
= w.v., + C where w. = = and
i=1 1 1 Ri
? VY Vt - VY
C = - = +
iZ1 &y Re
For f(vl,...,vn) < 0, iB = 0 and the transistor is cut off
and v, = V_ + VD , wWhere V is the voltage drop across diode

0 D 2 D2

D,. If f(vl,...,vn) > 0, i, > 0 and the transistor conducts.

B

If iB is large enough, the transistor will saturate and

Vg = VCE(SAT)‘ Let V0 = VCE(SAT) and Vl = VD + VDZ. Thus,

the output will be a 0 for those input combinations for which
the weighted sum of the input voltages is sufficient to cause
the transistor to saturate. For those input combinations
which are not sufficient to cause the transistor to conduct,

the output will be a 1. 1Ideally, the gate should be con-

structed so that no input combination can occur which causes
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the transistor to remain in the active region, i.e., not

saturated or éutoff. ' PR
In the foregoing analysis, it is assumed that the

or V, and

0 1

that the weights were constant. 1In practice, the inputs

input voltage levels were at discrete values V

are not constant voltages but are perturbed by drift of

their D.C. level, noise, and power supply variation. Generaily,
these factors are statistically independent. It is therefore
reasonable to assume that each input is a random variable

which is normally distributed with mean V, and variance ¢

0

or mean Vl and variance 012, the inputs being a 0 or a 1,

0

respectively. In this thesis, it will be assumed that the
set of inputs to a threshold gate is a correlated set of
jointly normal random variables.

In the resistor-transistor threshold gate, the weights
are inversely proportional to resistor values. fhese re-—
sistors vary with temperature, thermal noise, and age. The
weights, therefore, are also dependent upon these factors.
The threshold is dependent on the values of the resistors Rireeos
the resistor R

R and the transistor switching characteristics.

tl

All these factors may be represented as random variables which

nl

will be correlated since they are all dependent upon temper-
ature. It is therefore reasonable to represent the weights

as a set of correlated, jointly normal random variables.
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Consider the change in resistance with temperature

I
H|

= aRo

The resistance of a resistor at temperature Ty + AT is given

by

R =R

Ry + AR = Ry (1l +aAT)

where Ry is the resistor at the temperature To- The change

in a weight with temperature is given by

1 1 1 ' aAT 1

Wy + AW o= ot = =L eaT 1

0 R, + 4R R0§1 + aAT) Ry 1 + oAT" R,
therefore Aw = adT

T TT ¥ aAT 0

Thus the cﬂange in the weights is proportional to the new

value of the weight. A similar analysis may be done for noise

and age variations which are proportional to resistance.
Variation in the inputs and weights causes variation

in the separating function and the threshold of a gate. This

can cause the transistor tb enter the active region or to

give a completely erroneous output. Thatis, the output may

be a 1 (or 0) when the logic function is a 0 (or 1). Due to
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the large hysteresis of the switching characteristics of the
resistor-transistor threshold gate (typically as large as

200 mV), functions of more than a few variables may possibly

not be realized without a large probability of error.

Transistor-Tunnel Diode Threshold Gate

Another threshold gate circuit is the transistor-
tunnel diode gate due to Canion shown in Fig. 2.2. The
addition of the tunnel diode in series with the base-emitter
junction of the input transistor results in a significant
reduction in the switching hysteresis. Other than thié, the
operation of the circuit is similar to the resistor-transistor
threshold gate discussed previously.

Reduction of the switching hysteresis results in more
reliable gate operation for randomly varying inputs and
weights. It is also possible to reliably realize functions
with a greater number of input variablés than with the

resistor-transistor gate.

Current Switching Threshold Gate

One of the latest threshold gate circuits is that due

to Amodei et al. shown in Fig. 2.3. Each input voltage'VIN
1

is compared to a reference voltage VREF by a differential

amplifier. A current Iy given by




Ly
* o -
V.
]Nz Van
7T . © VReF
RZ Rn
-— 3
o
-5
Fig. 2.3. Current Switching Threshold Gate Circuit S
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is switched from the point Vs or the point Vg depending on

whether V or V. <V respectively. Note that

> V ’
INi REF INi REF

unlike the other two gates considered, this gate does not
require input voltages that are constant levels V0 or Vl
for n inputs equal to 0 or 1. For a positive logic system,

a 1 may be any voltage greater than VRE and a 0 may be any

F
voltage less than VREF*
The two summed currents at Vg and Vg develop a
voltage difference across the output differential amplifier
which causes the output to be a 0 or 1 according to whether
Vg > Vg or Vg < Vg, respectively., The threshold is deter-
mined by the ratio of Rs and Ryp- The weights w; are de-
termined by Rj, Vppp,and the characteristics of the i-th

input differential amplifier. The separating function

may be written as

f(p)

i
e
)
N

_ 1 - '
where wi = ﬁz and z; = VREF VBEi‘ Let the zi s be called

internal inputs. As in the resistor-transistor gate, the wi's
and the zi's may be considered to be random variables. 1In
the current switching gate, however, the variationsin.zi are

due to VREF and the base-emitter voltage of the input ampli-

fier, and not directly to the input variations. The variations
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in VREF and VBEi are generally much smaller than the input
variations. Thus, this type of gate produces a decoupling

of the inputs from the separating function. Note that

Vig will still depend slightly on the input voltage varia-
i

tion.

Probability Model of a Threshold Gate

In a threshold gate, the inputs and weights are random

variables. Each weight w; may be written as

W, = 1 + w,! (2.7)

where Ny is the mean value of LI and wi‘ is a random
i
variable with zero mean. Likewise, each input X, may be

written as

X, = n(xi) + xi' (2.8)

where n(xi) is the mean value of xivgiven the logical value

of Xs and xi' is a random variable with zero mean. Because

each input and each weight is the sum of several independent

random variables, the following are reasonable assumptions.
a. '{xl, Xys-++, X } is a set of jointly normal

random variables with covariance matrix Mx'



'{wl, Woreeosr Wos Woog
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} is a set of jointly normal
random variables with covariance matrix Mw.

All Xy and w; are independent.

The variance of a weight is proportional to the

mean of that weight.

The variance of an input is constant.



CHAPTER III
PROBABILITY OF ERROR OF A THRESHOLD GATE

Due to variations in inputs and weights, a threshold
gate may not always operate as designed. Associated with
a threshold gate is the probability that it will not give
the desired logical output for given logical inputs. This
probability is the probability of error of the gate for a
given input combination.

The total probability of error P, of a threshold
gate is the sum over all possible input combinations of
the probability of error for a given input combination
7
occurrence of that input combination Pr'{§ = §j}. Thus

Pr {error |§ = EjL multiplied by the probability of

P =

E Pr {error |x = x3} Pr {x = x:} (3.1)

J

i3

j=1

where m is the number of possible input combinations. For
n input variables, the maximum value of m is 2. If all
possible input combinations are equally probable the prob-
ability of error is

1

on
Py = _ﬁ jzl Pr {error [x = x.} (3.2)

[\S]
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The problem is reduced to finding the probability
of error for a given input combination.

Consider any combination of n inputs Ej’ If the
logic function F(§j) equals 0 the probability of error is

given by

Pr {y =<f(p)> 0 1} = Pr {f(p) > 0} (3.3)

where f(p) = EjTE' If the logic function F(ij) equals 1

the probability of error is given by
Pr {y =<f(p>> o = 01 = Pr {£(p) < 0} (3.4)

Therefore, if the distribution of f(p) is known, the proba-
bility of error may be calculated.

The random variables §? and w may be written

T T T

X =p_x+_>_{_ and
(3.5)
—_ |
w=n, +Ww
where xT = {x.,x x_ 1} nT = {n n n. 71}
o l' 2"“' n’ r __x X r X 7 %%y X r I 4
1 2 n
T . T :
x'" = {x'l,x'z,...,x‘n,o}, W= {wl'WZ""wn+l}’
T
.r.].w = {nwl,r nW r---rnw }I

2 n+1l



and E'T ='{w'l,w'2,...,w' }. Using this notation,

n+l

separating function can be written

7T T T , T WT
f(p) =x  w=n,n, +nw +x""'n_+x'"W
oxr
n+l
f(p) = z ("x.”w + nx wli + xlinw + xliwi)
i=1 i i i i

26

the

(3.6)

The expected value ng of the separating function is given

by
T n+l
= — : 1 ' 1
ng E(§ E) E( izl (nxinwi + nxiw i + x inwi + x'.
n+l
= ' '
izl [E(nxinwi) + E(nxiw l) + E(xl nwi

+ E(x'iw'i)]

Since all x'. and w'. have zero mean values, and all nq
i i ! X.

and n,. are constants,
i

n+l T

nf= z n, n =n

. X. W, xy
i=1 i i

Equation (3.6) may be rewritten as

n+l

T ° °
f(p) n.n. + z n., w'. + Z x'.q +'.z X'iw'i

I
=

. X. 1 .
i=1 i i

1

(3.7)

(3.8)
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For a non-trivial threshold gate n > 2. For a practical
threshold gate n > 3 as the only gates realized for n = 2
and the AND and OR gates. Thus, the last term in Egn. 3.8
is the sum of at least three random variables. However,
these random variables are not independent unless all inputs
and weights are uncorrelated.

| In general, the inputs x ='{xl,x2,...,xn} and
weights E»=:{W1’W2’°"’Wn} are each normally distributed
with covariance matrices M and Mw' respectively. There

exists a nonsingular n x n matrix Q and a nonsingular

n+l X n+l matrix P such that if
Yy =0°x
and

-1
w

z=P'w
The y ='{yl,y2,..,yn} and z ='{zl,zz,..,zn+l} are each
normally distributed with all terms independent. (Miller)

If D and n,, are the means of x and v, respectively,

- _ A1
Ny = E(y ) =Q "n,
and
n, = E(E) = P—lgw
Let y = Dy +y' and z = n_ + 2'. The separating

function can be written
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£(p) = x'w=yQPz=yHs
or
_ T o T T T '
f(p) = ﬂyHﬂz + ﬂyHE + y'"Hn, + y' Hz
T Ty o ,T :
where H = Q" P. Note that the sum ﬂy z' +y Hﬂz is the sum

of independent normally distributed random variables and is
therefore normally distributed. The term X'THE' is not
normally distributed.

Assume that the standard deviation O of each

i
weight Wy is small compared to its mean Ny . s that is,
i
o, << M. (3.9)
i i
n+l n+l
since z! E plJ J and n, ='Z Py v then o, << n, for
i j=1 | i i
for all zl Note that
n n
T
y''Hn, =] I yih;.n
z 421 =1 ivij 'z
and
Thgr = ] ]
X|HE|= y'h
j=1 521 * 1] 3

1) 1] -R—
Therefore, ylhlJ ; << ylhl__J z. for all i =1,...,n and
j=1,...,n. Hence y' HE' is small compared to Z'THEZ
and §'Tﬂ is small compared to §YTn . Now Eg. 3.8 becomes

T . T ,
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The separating function is now a sum of normal random var-
iables and is therefore normally distributed.

The variance of the separating function 02 can now

f
be calculated:

2
f

Since x' and w' are independent and U and n,, are constant,

T
Dyl

T ,T
+ nw' + x'n )

o, = 02(

_ 2, T 2,.,T
= o (nyw') + o7 (x""n)

o2
f
The variances of linear combinations of normal random var-

iables, ﬂiy' and §'Tﬂw, respectively are

2, T ,. _ T
° (—n--xE ) = MMl
2, ,T o
o (X' ng) = nMeny

where MW and Mx are the covariance matrices of w' and x',
respectively. (Morrison) The variance of the separating
function is then

2 + nIM 1 (3.11)

C. = M
f D wix —W X-W

The mean and variance of the separating function are now

known; therefore the probability of error can be calculated.
For those points of the n-cube where F = 0, the

probability of error is the probability that £ (p) is

greater that or equal to zero.

“. . T 2 2 .m
P (£ (p)>0) =f /7,1[-0 e (t nf) /Zof at = p(=) - P(- B_E)
0 £
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where P(x;) = Pr {X < x;}, X is a normal random variable
with zero mean and unit variance. Note that P(-») = 0,
P(«) =1, and P(~x) = 1-P(x). Thus
} nf g
P(f(p)>0) =1 - P(_E_) = P(E—) (3.12)
/ f £
For those points of the n-cube where F=1, the probability

of error is the probability that f(p) is less than 0.

0 1 e 2,, 2
n
- p(- Iy = plow
= P( B—E) P (-=)
n
= P(~ gﬁ) (3.13)
f

The total probability of error P_ is given by

B

n , N
pp= Pr{pi}P(E£) + ] pripip(- ) (3.14)
p.eP (0) £ p,eP (1) f
i i
where P (0) ='{piIF=0} and P(1) = {p,|F=1}. For equally
likely inpﬁt combinations
1 £

n

£
p_ = —% p(-L) + p(- —1) (3.15)
B on pigP(O) Ig pigP(l) g
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i

Thus, when the means and varianceg of the weights and inputs
are known, the probability of error for each input combingt%on
may be calculated. The total probability of error may be
calculated if the probability of occurrence of the input

combination is known.



CHAPTER IV
PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

An error in a threshold gate network is caused by the
unreliability of the gates that comprise the network. 1In
this chapter, nonsequential, single output networks are
analyzed and a procedure for finding the probability of error
is derived.

A network of logic gates can be subdivided into
levels. The first level contains gates whose inputs are
network inputs and not outputs of any gate in the network.
Since the network is nonsequential, the n-th level contains
gates whose inputs are network inputs, or outputs of any
gates in any lower level. The output level is a gate
whose inputs are network inputs,'or outputs of any other
gate in the network.

A general two-level threshold network consisting of
m gates with n inputs is shown in Fig. 4.1. Note that in
general every network input goes to every gate in the net-
work., If a certain gate Gj does not require a network
input X5 the weight wij is set equal to zero.

Let Gl""’Gk""'Gm be threshold gates with weights

{Wij | 1 <i<n, 1< 3j<m} and thresholds Tyreee Ty such
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Xl Wl,m-u
|
i
|
xn Wn.mn Y
Tm+l M+l
Wh+:,m+t
I
i
Wn+m,m+|
G ma|
r

Fig. 4.1. Two Level Threshold Gate Network
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that the separating function fk(p) of the k-th gate is

n

£, (p) 1

1

Let Gm+l be a threshold gate with weights Wl,m+l""’

Wﬁ+n,m+1 and threshold Tm such that its separating function
fm+1(p) 18
n m
fr1 ®) = 1 Wy pg%; v ) Yn+g,m+1Y3 T Tmel (4.2)
i=1 j=1
¥ 1] "
Let x jreeesXy be the inputs to Gm+l such that
x'l = Xy l <ic<n
' _ .
X n+y = yJ l<j<m
Eqn. (4.2) now becomes
n+m
— ! -
£ (0) = igl Wime1¥ i T Tmel (4.3)

The probability of error of the network is the probabi-

lity of error of gate Gl for a given combination of its in-

+
puts, mulitplied by the probability of occurrence of that input
combination. The probability of occurrence of the inputs

to Gl depends upon the probability of occurrence of the
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inputs to the network and the probability 6f occurrence of
the outputs of gates Gl""’Gm'
The probability of occurrence of the output Y of

ate G, for a given input combination x. is
g k g %5

Pr'{yk=0 | §;§j} _Pr'{fk(p)<0 l §?§'}

J
(4.4)

I
{%
et
|

= Pr {f} (p)>0 | _;Ej}

Thus, the probability of occurrence of the output is

Pr {y;=0} = Pr (£, (p)<0 | x=x4} Pr {x=x4}
(4.5)

Pr {y,=1} = Pr {f, (p)>0 | §=§j} Pr'{gégj}
‘where Pr‘{§;§j} is the probability of occurrence of the
input combination ij' For any input combination §j’ the
distribution of fk(p) may be found from the statistics of
the weights and inputs. Hence, Pri{yk=0 | E?Ej} and
Pr {y, =1 | §F§j} may be calculated without regard to the
function to be realized by the network.

The probability of error of gate Gl for a given
combination of its inputs E'Ti =-{Xl""’xn'yl”"’yn} is

Pp = Pr {error | x'=x';} Pr {x'=x';} (4.6)
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For each combination of network inputs §j,there,are 2™
possible combinations of the outputs Yqreser¥pye The

probability of occurrence of a combination of inputs to

Gm+l 18
’ | - ' = E  J— t - ' -
Pr {x' = x';} = Pr {x x'; | x= §j} Pr {x = §j}
(4.7)
Therefore the probability of error is
2n - . -
-— | J— v —_ . —_ _
P, = jzl Pr {error | x' = x';} Pr {x' = Eii X = §j}Pr {x=x,]1
| (4.8)
where
| | ’ | | =
Pr {error | x'=x',} Pr {x'=x i|§7§j}
= Pr (£, (x")20|x"=x";} Pr {x'=x'; |x=x;} if F(x;) = 0
or
(4.9)
=1

= Pr {f ) (x")<0[x'=x";} Pr {x'=x';[x=x,} if F(x;)

If Pr {§-=§-i|§;§j} is known, the probability of error can
be calculated as shown in Chapter III.

For each network input combination ij' there are

2™ combinations of X corresponding to the 2™ combinations
of the outputs of gates Gl”"’Gm’ Let
—_ ' | QU | =
Py, = Pr {x'=sx il§7§j} (4.10)
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where b is a binary number bmb b, such that bi equals Y;

m-1°"°°1

given x equals Ej‘ For m gate outputs, b lies in the range

0 <b < 2™1. The 2" probability Pb must now be found.

Although Pr {yk = 0} and Pr {yk = 1} can be found for

each first level gate Gk’

P =

b (4.11)

Pr {y, = by}

[ I==]

k=1

only if no input goes to more than one first level gate and
the inputs and weights are all uncorrelated, thus making all
the first level gate outputs independent.

In order to find the probability P 2" independent

b’

equations relating the Pb's can be found. Since all 2"

possible combinations of b are mutually exclusive and one

b must occur,

P =1 (4.12)

Each of the Pr {fk(p) > 0} yields an equation

=

2 -1

Pr {£,(0)>0} = Pr {y =1} = bzl b, Py (4.13)

for a total of m equations. Now consider all possible

products of 2 of the m separating functions flfz'f1f3""’
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i

f'f‘,l..'f

m, . . -
if5 m—lfm' There are (2) such products. Similarly,

there are (2) products II(b) of n of the m separating func-

+ -

tions, where

m
n(b) = I (bi(fi—l)+l) (4.14)
For example, if there are 5 gates in the first level,

n(22) = n(10110) = f5f3f2. Considering all possible combi-
nations, there are 2™-m-1 possible products of 2 or more

of the m separating functions. Therefore, there are 2Mep-1 -

probabilities
Po(b) = Pr {H(bi) > 0} (4.15)

Note that I (b) is positive only if an even number r of the
n separating functions in the product are negative, that is,
when r of the n outputs are equal to zero. Thus, these
probabilifies are related to the Pb's. In Egn. 4.12, 4.13,
and 4.14, there are 2M equations in 2™ unknowns Pb. If this
set of equations is linearly independent, we may solve for

Pb.

m!

BT o) T are the number of combinations of m objects

* () =

taken n at a time, also known as binomial coefficients.
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Three cases will now be considered. For m equal to
two, there are four unknowns Poo'Po1/P10’P11 which are

related by the following set of linear equations.

Poo ¥ Po1 * P1g * P13 =1 = P, (0)
P + py; = Pr (£, > 0} = Po(l)
P1p + Ppy = Pr {f, > 0} =P _(2)
Poo + py, = Pr {£;f, > 0} = P_(3)
or in matrix notation:
(1 1 1 1] [pge] [P (O)]
0 1 0 1} {py P, (1)
0 0 1 1] ip, P_(2)
L o o 1 {p;yl [p (3
B,P = P, (4.16)

For m equal to one, there are two unknowns, Po and pl,.which

are related by the following set of linear equations:



or

T

pO

For m equél to three, the equation may be written:

BsP =

I

—
]

Py

Pooo)
Poo1
Po1o
Po11
Pio0
Pio1

Py10

1P, (2)

(P111

P (0)]

Po(l)

P, (3)
Po(4)

Po(5)

40
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The set of 2™ equations has a unique solution if B is non-
singular.
Notice that for each case the matrix Bm may be

formed from a matrix H _, such that

m~-1 m-1
Bm = (4.17)
Hp-1 Hp-1

where H__, is formed from H _, by logically complementing

each element. Thus,

This reproducing property has been verified for m less than
or equal to four.

The Bm matrices are related to the Hadamard matrix
H'q wherg q = 2™, A Hadamard matrix H'q is a q x g ortho-

gonal matrix whose elements are the real numbers +1 and -1.

It is evident that
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.

It has been proved that if H'q is a g x g Hadamard matrix

then,

H'. = q ! (4.18)

is a 2q x 2q Hadamard matrix (Peterson). The existence of
Hadamard matrices has been proved for q = 2k where k is an
integer. The matrix B, is related to the Hadamard matrix
H' b

q Y

= g
B, = >[H q + Uq] (4.19)
where Uq is a g x g matrix with every element equal to 1.

Solving Egn. 4.18 for H'q results in
H' =2B_ - 1U (4.20)
m

Since the first row of the B matrix always has all elements
equal to one, subtracting the Uq matrix from 2Bm is equivalent
to subtracting the first equation from all the other equa-
tions multiplied by a constant. The resulting set of linear
equations is independent, being related by the nonsingular
matrix H'q. H'q is orthogonal, hence, qu‘l = H'qT. Thus

the original set of equations related by B, are independent,

therefore, Bm is nonsingular.
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Since Hadamard matrices are orthogonal,

s

H' H' T = q'll (4.21) -

where Iq is the g x g identify matrix and q—l is a normaliz-
ing factor. Substituting Egqn. 4.19 into Egn. 4.20 results

in

-1 T T
I_ = 2B_- 2B _"-U
g = @ (2B -U ) (2B 7-u "]

_ -1 T_ _ T .2
Ig = q [4B B, "=2B U -20 B +U ]

Note that Ug = Uq' Premultiplying the above equation by

1

B_m yields:
-1 _ -1,,.T_ R s | T 2
B, =da [4B-2U ] - q "B [20 B U]
Note that
v2 = U U = qu
a- “gq  Yg°

Notice that the first column of Bi has g elements equal to
one and that all other columns have gq/2 elements equal to
one. Hence,

l......

T _
2Uqu = q

DNyeeee DN
—t
= o000 |t

10.-..-

-



Therefore,

Since B—lB = I
m m q

44

L= |
N
It
Q
‘—lo.co'—l'—l
o
Qe OO

2U B -U
g m g

and since all elements in the last column

of Bm are equal to one,

and therefore

Finally,

Thus, B.-l
m

large.

may be

1 0

1 :

s 1] = |:

: 0

1 1
1 00uunn. 0 0 0
o170 ol _ |t |
mofs. 00 0
10...... 0 10...... 0

-1 1 T 1 _ ,
B " = e (B, - 3 Ul - A (4.22)

easily calculated from B, even when m is



The Pé(b)'s must now be found. Eqgn.

Pr {I(b) > 0}

P (b) =

Po(b) may be calculated if the distribution of I (b)

I(b) is a product of separating functions of
£;(p) = n,

For 05 << the

T
fiw)'lkf%.+n

Consider the product of two separating functions fl

I(b) = f£,f

3

T, T
2 % MyNgy + myn, Wiy + nyXiHhny

1 2 2

+ n_, w'an, + n_ w'an_, w'y, + n_ w'.x' n

—Xq= 1'2 —X,= l—xz— 2 —Xq= 1= 2—-

T T T T T
+ x'I’n_n, + x'7n_ nw'y, + xX'Jn X" n'

= l—wl 2 = l—wl—xz— 2 = l—wl— 2—

where n; =.ﬂxTﬂw and n, ='HxTﬂm . For o and cé
171 2 "2 1 2

compared to every component of‘ﬂ_W and Nyt Egn.
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4,15 states

is known.

the form

as 4

and f.:

(4.23)

small

4.23 becomes



With the exception of the last term, this is a sum of normal
random variables. It is possible that under certain condi-
tions this term is small compared with the other terms and
can be neglected. The worst case occurs when all inputs are

equal to zero. The separating function then becomes

.~ ' T Y
£ = Ve T X ﬂwi T Wi
and the product I (b) becomes
n(p) = £, £, = 7.7, - T X'Tn - T X'Tn - T. 7T} - T, T!
172 172 1= 2—w2 2= 1 1 172 271
T T
+ xX'"Tn.. xX7n
—-l—wl—2 W,

where Ty and T, are the thresholds for Gy and Gy respectively.

To be able to neglect the last term, the variance of §'§ﬂw

1
and‘x'Tn must be small compared to T, and T,, respectively,
that is,

T T
n.. M_n << T
—W, Xy-wWy 1
(4.25)
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.
i

where M. and M_ are the covariance matrices of x) and x,,
Xq X, =1 =2
respectively. The above conditions are met for small input

2

. 2
variances cxl and cxz. The product Mb) is approximately

_ N T LT LT T
I(b) = £,f, = nyny + nlgxzw'z + nyx'on, + ”2ﬂxlﬂ'1 + nyx'in,

- 2
T T T o T
D W Zohy Iy ¥y E10y
N 2 1 1
~ nln2 1+ - + - + . + ;
2 2 1 1

In like manner, a product I (b) of n separating func-

tions is approximately

T , T
m D‘x._—' 1 m 5 iDW-
I(b) = I_{1+ ) b, + ———+ ) b+ —= (4.26)
nooi=1 *t i i=1 * ni
m
where Hn = 'Hl (bi(ni—l) +1). Now I (b) is approximately a
1=

sum of jointly normal random variables. Therefore, it is
reasonable to assume that N (b) is normally distributed.

Since E(yi) and E(§i) are both zero for all i=1l,...,m,

E(n(b)) =

: (bi (ni—l) +1) (4.27)

=3

1

In general, every network input goes to every gate in the

network. Therefore,

Y



for all values of 1i.

LT T
—_ % k4 LN
I (b) Hn(l+ﬂx w*+ x'"'n
. , T
T Pily Paly
where ﬂ§ = ’ Feoe
N1 12
E*T = W_'lTI y-l I"'IE
m b.n
n*T - X 1wy
W i=1 n
i

14
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Eqgn. -4.26 now becomes

Since x' and w* are sets of jointly normal random variables,

their covariance matrices M, and Mx'can be computed if the

variances and correlations of the weights and inputs are

known.

o? (1 (b)) = (n)

2 *T**
[ng Mong +

>4 ~W

n*TM

%y

*]

The variance of N (b) is given by

(4.29)

The distribution of N(b) is now known, hence Pr {I(b)>0} can

be calculated.

Thus, Pr {x'

x'.

il

X

§j} can be found for

each input combination §j’ and the probability of error can

be computed.

For threshold gate networks with more than two levels,

the probability of error can be calculated by successive

appliéations of the techniques shown above.

From the separating
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functions of the gates in ;he second level, the probability
of occurrence of the inputs to the third level can be
calculated. It is then possible to calculate the probabiiiEy
of error of the third level or the distribution of the pro-
ducts of the third level separating function and proceed to
the next level. The process is repeated for the remaining
higher levels in the network.

For each network input combination, any level n
may be considered as a system which transforms the probability
of occurrence of its n; inputs into the probability of oc- .
currence of the n;Lq inputs to the next level. By successive
transformations, the probability of occurrence of the inputs
to the highest level can be found and thus the probability

of error of the network.



CHAPTER V
SIMULATION OF THRESHOLD GATE NETWORKS oo

A threshold gate can be simulated by generating
random numbers for the inputs and weights, computing the
separating function, comparing it to the threshold, and
computing the probability of error. A network of threshold
gates can then be simulated by simulating each gate in the
hetwork. If the separating function of the output gate of
a network is compared to its threshold, the probability of
error of the network can be computed. It is also possible
to examine the density function of the separating function
of a single gate and the density function of the products

of the separating functions of several gates.

Generation of Correlated, Normally Distributed Random Numbers

The distribution of a sum of n independent random
numbers approaches the normal distribution as n approaches
infinity. In fact, if n independent, uniformly distributed
random numbers are summed the distribution of the sum is
approximately normal for n > 3. Let {xl,xz,...,xn} be a
set of n independent random numbers, uniformly distributed
on the interval {0 < X; 2 1}. The mean of any X5 is equal

to 1/2 and the variance is equal to 1/12.
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12
E(v) = ] E(x;) =6
i=1
and variance
12
o2 (v) = ) cz(xi) =1
i=l
Thus,
12
y='2 Xi—6 (5-1)
i=1

is approximately normally distributed with zero mean and
unit variance,
The numbers X; can be generated by a digital computer

using a power residue method utilizing the following equation.

Ny, =W ny mod w

n.
i . . .
where x; = —;’ ™ 1s a constant, and w is the largest integer

i
that can be stored on a word. For a.computer with a
word length of k bits, the maximum integer that can be

stored in a word is 2k—l. The constant m is selected to
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give the longest possible sequence of numbers before re-
peating,

Note that -6 <y < 6. A polynomial correction can

be applied to y in order to obtain a better approximation

to the normal distribution. Thus if

1 12
y=7 |1 % -6
i=1

we can find the constants ajs23,8g5,a35,29 SO that
3 5 7 9
z = a;y + agy + agy” + a5y + agy

is a better approximation to the normal distribution than y.
By successive application of the techniques described above,
a sequence of independent, approximately normal random
numbers can be generated.

Let E? = 27125700412 be a vector of independent
random variables each normally distributed with zero mean
and unit variance. The random variables are jointly normal
with covariance matrix M, egual to the n x n-identity matrix

I.- If H? = WiWore..W, is normally distributed in n di-

mensions with zero mean and covariance matrix Mx' there

exists a transformation such that
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and

where Q is a nonsingular matrix (Miller). Thus, a corre-
lated set of normal random numbers can be generated from
an independent.set of normal random numbers by a linear
transformation. The matrix Q can be found by a Gauss elim-
ination matrix inversion procedure which transforms M,

into the identity matrix such that
Q M Q =T (5.2)

Since Q is nonsingular, Q'-l always exists.

Simulation of a Threshold Gate

In a threshold gate, the weights w and inputs x
are random variables which may reasonably be assumed to
be correlated sets’ of jointly normal random variables.
As shown above, these correlated sets can be generated
from independent sets of normal random variabies by a linear

transformation. Let

and

1%
[
g
<

(5.3)
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where y and z are sets of independent random variables
with zero mean and unit variance. The matrices P and Q
are related to the covariance matrices of the inputs and
weights, Mx and Mo respectively.

In order to simulate a threshold gate the means,
variances, and correlations of the inputs and weights must
be known. From this information, the covariance matrices
can be calculated. .In this thesis, simulations were carried
out for threshold gates for which the following conditions
are satisfied:

(a) The standard deviations of the inputs are
all equal to e

(b) The correlation coefficient Py is the same
for any two inputs X5 and Xj'

(c) The standard deviation of a weight Wi is
equal to its mean Ny . multiplied by a

i
constant o_..

w
.(d) The correlation coefficient Pw is the same
for any two weights w; and wj.

The covariance matrices are given by

MX = A[QijUX] Dij = Pgr i# jr Dii =1
' (5.5)

2 . .
My = loggng g 0yl Py T ey 17 Jepyy =1
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The transformation matrices are found from a Gauss
elimination matrix inversion subroutine which calculates

P and Q such that

‘and (5.4)

The matrices P and Q can then be computed from P_l and Q-l
by using the same subroutine. By generating the sets of
independent normal random variables y and z and applying
the transformation, x' and w' can be generated. Since

the random variables in y and z have zero means, X' and

w' have zero mean. The inputs and weights can be generated
from x' and w' by adding the mean of the inputs and weights

such that

The separating function of the threshold gate can be calcu-

lated from

f(p)

]
~
=
%
|
e



where n is the number of inputs.
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The simulation procedure was performed as follows:

(1)
(2)
(3)
(4)
(5)
(6)

Set up the covariance matrices M and Mw'

Find the transformation matrices P and Q.

Generate random numbers for y and z.

Compute x and w.

Compute f(p), compare to zero.

Repeat steps 3 through 5 for N iterations.

The probability of error is given by

PE = ne/N

where ng is the number of times the output of the gate

was in error.

Simulation of Density Functions

The density function of the separating function can

also be determined from the simulation.
of values of the separating function'{fi(p)} to be a sample

from the distribution of f£(p).

variance ¢

The sample mean g and

g can easily be calculated.

Consider the set

(5.6)

-
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An approximation f(k) of the density function can be ob-

tained by counting the number N, of fi(p) that lie in the

. s
interval ¢ k <

< ¢c(k+1)
S

N
f(k) =

]

where k = 0, 1, #2, ... and c is a constant.

of the separating functions of several gates can be studied

by replacing f; (p) by the product.

+

The product

The simulation program described in Appendix A

calculates an approximation of the density function of the

separating function. An approximation n(k) of a normal

density function N(n,o¢) with mean n and variance 02 equal

to Ng and ozs, respectively, is also calculated, using the

same interval as for fi(p). Both densities are plotted

versus cp for ¢ = 0.2 and k =0, #1,..., 25,
square errxor d is then computed
25 .

a= 7 (n(k) - £(k))?
k= 225

The mean

(5.7)

Table 5.1 shows the result of a simulation study of the

separating functions of several threshold gates.

-

The values

of the mean and variance are calculated using the techniques

developed in Chapters III and IV including the approximation



TABLE 5.1. Results of Simulation Study

Input and Input and Calcu- Simu- Calcu- Simu- Mean Square Error
Function Weight Weight lated lated lated lated with Respect to:
" Variances  Correla- Mean = Mean ' Variance ' Variance ' ' Normal Density -
tions
‘f=x1+x2+x3+x4—3.5 4
x=1,1,1,1 .01 .0 . ...0.500... 0.502 .. 0.202 ...0.198 1.1x10
f=xl+x2+x3—l.5 iy
x=1,1,1 .01 : 1.500  1.497 0.1095  0.1097 1.9x10
x=1,1,0 01 0.500  0.498  0.0905  0.0902 0.8x10™%
f=flf2, where
fl=xl+x2—l.5
f2=x3+x4—l.5 5 » 3
x=1,1,1,1 .01 .0 0.250  0.252 2.52x107% 2.79x10 3.3x10
x=1,1,1,1 .01 0.250  0.296 7.61x107% 5.76x10™2 1.2x1072
x=0,0,0,0 .0001 .0 2.250  2.249 1.35x107° 1.38x107° 1.1x10"%
x=0,1,0,0 .0001 .0 0.750  0.749 9.75x10™% 9.63x107¢ 1.7x10 %
x=0,1,0,1 .0001 .0 0.250  0.250 2.00x10”% 1.95x107% 1.2x10*
x=1,1,0,0 .0001 .0 ~0.750  -0.749 1.20x107> 1.20x107° 0.7x10 %
x=1,1,0,1 .0001 .0 ~0.250  -0.250 2.25x10°% 2.22x107% 1.2x107*
x=1,1,1,1 .0001 .0 0.250  0.252 2.50x10” 7% 2.52x107% 1.1x10%
f=flf2f3 where
fl & f2 are as above
and f. =x_+x_-1.5
. 3=¥5¥g 3 3 ~ s
=0,0,0,0,0,0  .0001 .0 -3.375 -3.374 4.56x107° 4.60x10 0.8x10

89
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of Egn. 3.10 and Eqn. 4.26., The simulation means and variances

are very close to the calculated values, indicating that the

+ -

approximations can be made with little error.

A simulated density function is plotted in Figure 5.1.

2 2

for y = < xl+x2+x3‘> 1.5 with o x =% w = 0.01 and

_ _ . LT
Py = Py = 0.9 for the inputs Ng = {1,1,1}.
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NORMALIZED
MAGNITUDE

A0 7T

-50 -40 -30 -20 -0C O O 20 30 40 50

X x X SIMULATED DENSITY

e NORMAL DENSITY

" Fig. 5.1. Simulated Density Function Compared with Normal

Density Function



CHAPTER VI
MINIMIZATION OF PROBABILITY OF ERROR -

In the threshold gate realizations of a given logic
function F, the weights are not unique. If the threshold
is fixed, there are many combinations of the other weights
that will realize F. By adjusting weights, it is possible
to find a realization of F that minimizes the probability
of error of the gate for a particular circuit. Minimiza-
tion by adjusting weights can be implemented by a multi-
dimensional search technique called "pattern search" de-
veloped by Hooke and Jeeves.

The pattern search is based on the premise that a
set of parameter adjustments which has proved successful
in minimizing a performance index will be worth trying
again. The procedure is adaptive in the sense that prior
success determines the next adjustment. The search begins
at an initial base point W(0), and small adjustments are
made from this point with repeated movement in the direction
of improvement until improvement ceases. At that point, a
search for a new direction of improvement is conducted.

Two types of parameter adjustments are made by the
pattern search, the exploratory move and the pattern move.
The exploratdry move establishes the direction of improve-

ment from a base point of the performance index. No attempt
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is made to estimate the gradients. The result of the explora-
tory move is a pattern of improvement. The pattern move
utilizes the information gained in the exploratory move.

The adjustments which proved successful in the exploratory
move are repeated in the pattern move. If the performance
index is decreased, the pattern move is repeated. When
the pattern move is no longer successful, a new base point
'is established.

The exploratory move is carried out as follows. A
single coordinate is increased or decreased by a predeter- .
mined step size to determine which change, if any, will
produce a decrease in the performance index. If there is
an improvement, the change is included in the pattern.
When all coordinates have been examined, a pattern is es-
tablished. If no change produces an improvement, the step
size is reduced and the exploratory move is repeated until
the step size is reduced below a predetermined minimum at
which point the search is terminated.

If a pattern move fails to produce an improvement,
the coordinates are restored to their values before the last -
pattern move and a new base point is established. From this
new base point, a new pattern is established and a new series
of pattern moves is sfarted. The search continues in this

way until terminated.
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An example of a two-dimensional pattern search is

shown in Figure 6.1. In this example, Py+P,,P and P

31FPyr 5

are contours of the performance index with P1>P2>P3>P4>P51

The search begins at an initial base point‘EO, where
Wy and w, are equal to wl(O) and w2(0), respectively. The
initial step size S is chosen either arbitrarily or from
some a priori knowledge of the performance index. A pattern
move vector £0 ='{il,i2} is now established. The first
variable Wy is incremented by S that is, wl(l) equals
wl(0)+so. If there is a decrease in the performance index, -
the increment il is set equal to Sg- If there is no decrease,
wl(O)—so is tried. If this point produces a decrease in
the performance index, il is set equal to -s4- If neither
move produced a decrease, il equals zero. In like manner,
an increment i2 is found for Wy The pattern move is now
the vector I.

From the point Bys the pattern move is made n times
until there is no further decrease in the performance index,
that is,

B

=1
where B, is a new base point. ©Note that the point'gl +I,

= By + nip

has a greater value of the performance index than the point

B; .

The pattern is used until a new base point B, is found.

From this new base point, a new pattern I is established.
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Fig.

6.1.

Example of a Pattern Search
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If a pat’(:ern'_{_n is found such that every component
of‘;n is equal to zero, then the step size Sg is reduced to
new step size Sy and an exploratory move is made. The )
search continues using successively smaller step sizes as
needed until the step size is reduced below a predetermined
minimum at which time the search is terminated.

In this thesis, the pattern search is used to minimize
the probability of error of a threshold gate. The mean values
of the weights nwl,...,nwn are adapted to find the combi-
nation g& that minimizes the probability of error for a gate
with a given set of statistics. As discussed in Chapter ITI,
the standard deviation of a weight owi is set equal to the
mean value of the weight nwi multiplied by a constant O

o = g.n (6.1)

Theorem 6.1. If in a given threshold gate realization

y = < f (p) > 0 of a logic function F, the standard deviation

of a weight O is proportional to the mean of the weight
i

Ny, ? and every weight including the threshold is multiplied
i

by a positive constant k, the resulting realization

< k £(p) > 0 has the same probability of error as

< f(p)> 0"

) Proof. Let

y

y

n+l

i-z—.l A

£ (p)



therefore

n+l
k f(p) =4l£1 x kv,
Note that
nke = Kng

The variance of k f(p) is given by Egn. 3.11

+ kanq M kn;:ls

= 1
Okg = 1 M wl X

—X —X

where M'w is the covariance matrix of kw. Note that the

elements of the covariance matrix are given by

Therefore,
2
M' = k"0 0 p:x
wij Wi wj ij
hence
2
1 —_—
M w = k Mw

The vqriance is

(6.2)
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2 _ .2, T , .22
k£ k [anwnx + ﬂwa-w] = ko kf
therefore ‘ . -
Opg = kcf (6.3)

The probability of error given by Egn. 3.15 becomes

T . n n
P'e = n ZEP(O) p(——okf) £ 7 P (- -—okf
Py kf p; P (1) kf
or since
ke _ g
ks 9f

-
1

the probability of error is the same for both realizations.
Therefore, in the adaption techniques developed in this
thesis, the mean of the threshold can be held constant
without any loss of generality.

Using the techniques developed in Chapters III and 1V,
digital computer programs for calculation of the probability
of error of a single gate and of a netwofk have been written.
The single gate program is described in Appendix B and the
network program in Appendix C. These programs are used as
subroutines to a pattern search program for minimizing prob-

ability of error.



CHZ}PTER VII

RESULTS AND CONCLUSIONS R

The probability of error of a threshold gate is a
function of the statistics of the inputs and weights of
the circuits which will implement the gate. For a given
set of variances and correlations of the inputs and weights,
the probability of error depends on the mean value of the
weights and inputs and the probability of occurrence of
the inputs. 1In the pattern search used in this thesis, the
means of the inputs are constants, Px(o) and nx(l), equal
to zero and one, respectively, and the input combinations
are equally likely. The probability of error is a function
only of the mean of the weights for constant input variances
and input and weight correlations. It is desirable to
examine this function to obtain some information as to the
feasibility of the pattern search. Because it is difficult
to display directly a function of more than two variables,
the probability of error is evaluated by varying one weight
of a realization -while holding the others at their optimal

values. The probability of error of the function
Y = XX, + X X3X,

is plotted versus Wy in Fig. 7.la, versus W, in Fig. 7.1b,
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(c)

Fig 7.1. Contours of Probability of Error of y = xlx2 + X X X,
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and versué wé in Fig. 7.1lc, for Oy = Oy = 0.0025 and various
correlation coefficients. 'Because the function is symmetric
- with respect to the inputs X3 and x4,and the variances and .
correlations of the inputs and weights are equal, Wa equals
Wy in the optimal realization and the variation of the prob-
ability of error for a change in W is the same as for a change
in.w4. In each instance, the other weights are held at their
optimal values for the appropriate correlation coefficient.
It is apparent from Fig. 7.la-c that probability of
error is not a convex function with respect to the weights.
However, in this case, it is highly likely that there is
only one set of weights which minimizes the probability of
error. For all single gate cases investigated in which
the probability of error for a given input combination was
less than 0.5 for every possible input combination, the
pattern search converges to a single minimum. It is con-
jectured that for any single gate realization which satisfies
the condition such that the probability of error for any
given input combination is less than 0.5, there is only one
value of the weights such that the probability of error is
minimized. Thus, if the starting point satisfies the above

condition, the minimumobtained by the search should be the

optimum realization of the function considered.
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|
|
inputs and weights, o

Changes in the variances and correlations of the

O 1 P

<! % and Py respectively,

xl
p&oduce changes in the variance of the separating function,
and thereby affect the probability of error. In order to
determine the dependence of probability of error on variances

nd correlations, o o
a’ o 1 ’ <’ w’ pX'

and p, are varied and the
ﬁorresponding optimal realizations are found.
! The functions

Y1 T ¥1¥2%3%

Yo = X3Xy + XyX3X,

are examined. These functions have the corresponding mini-
1

!

mum integer realizations

i

Y1 < < x1*"‘2*"3J”‘4> 3.5
and
vy = (ampramyemgg ) 4
Table 7.1 and 7.2 show the variation of the probability of

error of the optimum solutions with a change in Py for

constapt Oyt Oy and Oy



TABLE 7.1. Minimum Probability of Error of y = X XpX X, '

Variance Variance Corre-

of _of lation Correlation of Weights 0y
Inputs Weights of L
2 2 Inputs :
OW Uw 0 .
. e e e e x ......... O . . v e e e e e ..l ...... . . .3 ~~~~~~~ . . . A..5. - . . . . .7 . .9
.0001  .0001 0  2.48x107°0 1.08x10732 7.35%x10737 3.34x10748 ~0- -0-
.0004 .0004 .9 7.67x1077  4.32x10”7  1.12x10”7  2.04x10"%  2.19x10"7 1.03x10"10
.0009 .0009 0 2.25x10"°  1.19x10”>  2.28x10"° 1.88x10”7 2.87x10"° 5.50x10” 13
.0025 .0025 L9 8.68x107°  7.80x107°  6.09x107°  4.46x10”°  2.98x107° 1.72x10°°
.01 .01 0 3.14x1072  2.92x107%  2.42x107%  1.83x10"% 1.16x107% 4.67x107°
.01 .01 L9 4.17x1072%  4.04x10"%  3.75x107%  3.41x10"%  3.01x10"% 2.54x10 2

ZL



TABLE 7.2. Minimum Probability of Error of y = XXy + X XaX,
Variance Variance Corre- Correlation of Weights Oy
of of lation
Inputs Weights of .
2 2 Inputs
o—X OW
Px o I A .3 .5 Ry B .9
-3 -3 -3 -3 -4 -9
0 .0025 0  9.93x10 7.99x10 4.37x10 1.53x10 1.51x10 4.55%10
.0004 .0004 0 3.06x10"°  1.82x10”°  5.02x10°°  8.35x10”7 5.81x10"° 7.16x10 10
.0009 .0009 0 1.94x10”3  1.52x107°  8.32x10"%  3.62x10"% 1.06x10”% 1.41x107°
.0016 .0016 0 9.13x10">  7.89x10">  5.51x10"°  3.36x10"°  1.63x107° 5.02x10”%
.01 .01 0 6.73x107%  6.46x10"2  5.88x10 %  5.22x10°%  4.43x1072% 3.46x10 2
.01 .01 L9 *8.24x10"% #8.06x10"2 #7.68x10"% #7.33x10"2 #7.08x10"2 *6.63x10 2
Corre- Correlation of Inputs p
lation X
O
Weights
Px 0 I A 3. . 5 . 7 .9
.0025 1.42x1073 =3 6.49x1073  1.07x107%  1.48x10"2 1.88x1072

0 0

*Probability of Error for one or more input combinations is greater than 0.5.

€L
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For both functions considered, the probability of
error increases as the variance of the inputs and weights
increases and the probability of error decreases as the o
correlation of the weights increases. The fact that the
probability of error increased with increasing variances
and input correlation is evident from Eg. 3.11. The elements

of the covariance matrices increase as Oyt © and Py

w
increase, thus increasing the variance of the separating
function for all input combinations. The decrease in proba-
bility of error with increasing correlation of the weights ’
is due to the fact that the last element éf Ny is negative
and the fact that the standard deviation of a weight is
proportional to the mean of that weight. As the correlation
of the weights approaches one, the first term in Egn. 3.11
approaches the difference of two highly correlated random
variables. Thus, the contribution of the first term to the
variance of the separating function is greatly reduced.

Taﬁle 7.3 shows the minimum integer and optimal reali-
zations of y =-xlx2 + X X3X, for several variances and cor-
relations. The optimum weights are ¢lose to the minimum
integer weights for small variances, but differ significantly
for large variances. Note that the improvement obtained

by using the optimal realization instead of the minimum

integer realization is only about ten per cent. Thus, in



TABLE 7.3. Realization of y = X Xy + XX3X,

Variance Correlation

of of Mean Value of Weights
Inpgts & Inpu?s and (w5 = 4.,5)
Weights Weights )
0}% = 057 pX = pW . W . .. o WA W, . . oW PrObability Of .Error.
1 2 3 4 ,
.0001 0 3.000 2.000 1.000 1.000 3.10x10” 14
3.001 2.018 0.999 0.999 1.78x10 4"
.0001 .9 3.000 2.000 1.000 1.000 1.29x10" 13
3.004 2.001 0.996 0.996 1.17x10” 3%
.0004 0 3.000 2.000 1.000  1.000 3.31x107°
3.011 2.021 0.988 0.989 3.06x107°"
.0004 .9 3.000 2.000 1.000 1.000 5.44x10°
3.018 2.000 0.981 0.981 4.87x107°"
.0025 0 3.000 2.000 1.000 1.000 2.14x10"2
3.064 2.047 0.917 0.918 1.96x10 2"
.0025 .9 3.000 2.000 1.000 1.000 2.38x10"2
3.096 2.000 0.890 0.890 2.08x10” %"
.01 0 3.000 2.000 1.000 1.000 7.53x10"2
3.151 2.219 0.679 0.680 6.73x10" %"
.01 .9 3.000 2.000 1.000 1.000 - 7.96x10"2
3.212 2.192 0.584 0.584 6.63x10°2" T

*Optimum Realization t+Function not realized for one input combination.

SL
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most single gate applications, the minimum integer reali-
zation would be a good compromise between reliability and

. -

the amount of work required to obtain the realization.

Minimal Probability of Error Threshold Gate Networks

The function y = XXy + X3X, is not linearly separable
and therefore cannot be realized with a single gate. How-
ever, this function may be realized by the following two

gate network

y = <2Y1+x3+x4> 1.5

where
Yy = <x1+x2> 1.5 _
or
y = <2<X1+X2> 1.5+X3+X4> 1.5
The function y is realized for O = 0 = 0.1 and Py = Py = 0.

The best realizations for the individual gates is

Yy = < 0.995 Xy + 0.995 X, > 1.5

and

y = < 2.239 y; + 0.986 x5 + 0.937 x4> 15

The probability of error of the network was calculated for
the above gates and the minimum integer gates. These are
compared to the optimal realization for the overall network
found by the pattern search by adapting weights in both gates

simultaneously. These results are summarized in Table 7.4.
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TABLE 7.4. Probability of Error of y = X X, + X3X,
Probability
................ Realization . .. ... ... ... .. .....of Error
Minimum Integer
y = <2 <xl+x2> 1.5 * X5+ x4> 1.5 4.38x1072
Gates optimized individually
y = <2.239 <0.995xl+0.995x2> 1.5 .
-2
+ 0.986x3+0.987x4> 15 4.57x10
Optimal network
y = <.l.816 <‘0.995xl+0.996x2> 1.5
2

+ 0.085xl+0.085x2+0.952x3+0.952x4‘> 1.5 4,26x10

It is evident from Table 7.4 that the realization
using the individual gates with least probability of error
does not give the optimal realization. In fact, for this
example, it is worse than the integer realization. The op-
timal realization requires the use of a five input gate in
the second level aﬁd is slightly more reliable than the

minimum integer realization.

" Conclusions

The following conclusions may be drawn:
1) It is feasible to use a digital computer to

find the realization which minimizes the



2)

3)

4)

5)

6)

7)
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probability of error of a threshold gate.
Probability of error increases with increasing
input variance; weight variance, and input .
correlation.

Probability of error decreases with increasing
weight correlation.

In most cases, the single-gate minimum integer
realization has a probability of error which

is almost optimal.

In a threshold gate network, optimizing each .
gate in the network does not minimize the
probability of error.

In any application, gates with the smallest
possible input and weight wvariances should be
used.

For given statistics, the current switching

gate should be the most reliable of the circuits
considered in Chapter II. This is due to the
reduction of input variance and correlation
produced by the isclation of the inputs from

the separating function.
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APPENDIX A

COMPUTER PROGRAM FOR THRESHOLD GATE SIMULATION



NG
NG1
NI(I)
NW(I)
ITT

AW

IX
MI
NWT1
. VARW
VARX
CORW

CORX

]

F(I)
FP
EXS
VARS

DIFF
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PROGRAM FOR SIMULATION OF THE PRODUCT OF THE
SEPARATING FUNCTIONS OF SEVERAL THRESHOLD GATES

= Number of gates in a two level network

= Number of gates in the first level

Number of inputs to the I-th gate

= Number of weights in the I-th gate

= Number of simulation iterations

= Weight vector, Ny

= Input vector,'ﬂx

= Input distribution vector

= Number of independent inputs

= Total number of weights in the first level

= Variance of weights, 05

2

= Variance of inputs, Oy

= Correlation of weights, Py

= Correlation of inputs, e,
= Covariance matrix of weights (NWT1 x NWT1)
= Covariance matrix of inputs (MI x MI)

= Independent random vector for inputs, Y'
= Independent random vector for weights, Z'

= Simulated value of I-th separating function
= Simulated préduct of separating function

= Simulation mean of FP

= Simulation variance of FP

Mean square error of distribution of FP with respect
to a normal distribution with mean EXS and variance
EXS
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SETUP (A,C) Sets up plot intervals and normal distribution
COVMAT (M,N,V,R) See subroutine THRESH

INVERS (A, B, N) Generates B = A"l when A is a nonsingular
N x N matrix

"EQUAL (A, B, N) Sets B = A when A and B are N X N matrices
NORMAL (X), Generates a normal random number X,
START (X) START sets up the subroutine initially

PROC (FX, EXS, VARS, ITT, B) Calculates VARS and the distri-
bution of FX which is returned
in B

PLOT2 (N,A,B,C,AMAX) Plots B and C versus A for N values of A

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram of Threshold Gate Simulation Program

[%ead data.

y

Compute number of
indepsndent inputs.

1

Compute covariance matrices MW and MX

and transforumation matrices P and PT.
Set J = 1.

X

Set I =1 and FP = 1.=

i
Generate random numbsrs

Y and Z. Compute ¥ and X.

v
Compute F(I) = XTW,
FP = FP*F(I),

(N) - J=J +1

Compute mean and variance; plot density function.
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L]
+

e~~~
ST UY e
— (7Y T
~4D 1
- U A

1T

I AL T~

(Ss42END = 1) (Ax(1Ya 1 = 1M
UJP PLET VALUES

L O2ETUR (A,2)

ET Lo CRVARTANCE AND TQH chRvATlﬁ“ NATRICES

CAVMAT (¥X,¥1,VARX,CBRX)

8

T e T MY D N
= >

(YWD DY XD AL

by
—
—



call I\YERS (MK, MY, M)

CALL ESUAL (D,7T2M1)

CALL INVERS (D2,PTaM1)

CALL CaVMAT (Vﬁ,”NleVABW)CBQW)
CALL INVERS (M, v NWTL)

CALL TgUsL (D, n7h%T1)

CALL INVERE (D,P,NwTl)

EXS = Q¢
C SIMULATIAN Lesp

oA 1CC J = 1,177 .
c CENERATE RANDE VARIABLES

De 43 1 = 1,847y
0 CALL NARMAL (Z(1))
DR 472 1 = {aM1
42 CALL MORMAL (Y(T1))
DB A4 ] = 1M1

X(I) = Cf . _
o ng bk g oz 1,M1
L2 ¥(I) = X(I) + FI(I K)*Y(()
DA &6 1 = 12NUTHE .
H1)Y = 0o _
D8 bk K o= 1aVuTH :
hé S UT)Y = W(DY + Plax)eZ(K)
FP = 1
Ky o= 1
KXe= 1oL
nDe 50 1 = 1,0MG1
F(1) = Qo
RTIIT
Se 43 X = 1.t . _ L .
FOIY = FUI) + (AYMIKWY + w (k) ) (AX(KX) + X(KX))
o= N 1
48 KX = KX + 4
(1) = (1) = (AY({kW) + w(Kw))
P VIS |
3o FBo= EOxE (1)
TYS = EXS + FPR
- e (Jd)y = FP
1G6C TANTINUE .
C CALCULATE SIMULATIan MEAM AND VARIANCE
EXS = OXS/FLBAT(ITT)
CALL PROC (FYX,EXS,VARS, I1TT,3)
RIFF = Q. .
~ ne RN 1 = 1,51
530 DIFF = DIFE 4+ (3(I) - C(1))=x2
C erT Q1*‘IL»T” DF?SITY_
cAaLL PLeTZ (CliAl3)Cl|1)
C pRIMT RESULTS

RITE (6,180) VARW,CORNVARK/CORXIMILITT - -
150 FORMAT (/2% 'WARN = '5E103,3X21CARW = ',E10343Xs1VARX = '2E1043,
AL PCARY = 1,F10a2,5% ML = 1110, 8X, VITT = 's140)
RITE (6,16C) EXSs VARS, EXFs VARF o .
160 FERVAT (/3x2'FXS = '4E£158,3X%s '"VARE = 1JE154843%2'ExXF = ',E15. 2,
I 3XsVVARF = 1,E15.8)
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sRITE (6,170) DIFF_ .

FERMAT (/1X%s '~EAN QQUAPF EQRHR = 1,E15.8) .
“RITE (6:120) (A“(I)s_ 1 = 1,MWT1)

FORMAT (///,' THE WETGHTS ARE' /18 (1%sF 147y

ARITE (6]1«() («\(l)qu_ 1AM i -

FEQNAT (//77+' THY INPUTS ARE'2/538(1XsFl4a7)) i

39 T8 25 .
SRITE (7.8)

END

QUDDQUTI\E I* VER@ ( A, Bn'N )

GALSS gLIMINATIAN MATRIX INVERSIEN

R 15 THE IAVERSE 8F A NANSINGULAR RpaAl SQUARE MATRIX A _

IF THERE 1S & 2¢R8 BN THE D}AFQNAL 6F A, BR IF A 1S QI\GULAR,

IS SET EQUAL T9 THE IDENTITY MATRIX

“MOORT ARE SIMILARITY T~A\SFePVAT10\ MATRICES

! OVATRIW, £RUAL, PRDTAG B _ ] L

ENSIAN A(20,22),R(20,20),0(20,20),087(20,20),P(20,20),PT(20,20},

W(P0a20)
n

'y N

EFIFE ROV

[
D

"
>

—

ey ou
) > =

e~ D WD

§-n

09 15 [ = J¥oN

P(Jal) = -“(u;I)/d(J:')
PT(I,d) = =B(1,4)/30JsJ)
caLl ”ATRIX (ﬁI,CT DaN)
CALL ERUAL (CT.000)
CALL “ATRIX (2,PsC,N)
Call Z2yal (J,D,N)_
CALL “aTRIv (PT,73,0aN)
CAaLL £ruaL (3)?1\)

CALL MaTRIN (2,2,D,MN)
CALL E7UAL (5,2,N\)
CANTINUE
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IF (L «F2« 1 ) 38 T8 B2

CALL PROIAG (DA,3,N) ‘
R(1s,1) = DA

RETURN )

58 60 1 = 1N

nA 5% g o= 1N v
PTLI2J) = 0.0

©(1sd) = CC

I (3(121)) D8272:56 _ _

ST(1+1) .= 1+2/32°T(B(1,1))

PLIAT) = 140/S73T(8(1,1))

SU1a1) = 1.0/78(10 1)

cANTIN(E

CALL MATRIX (5,B8+D,N)

CALL MATRIX (D,37s8,N)

CA@L VAIQIY (BT, 2Ts0aN)

CaLL ERUAL (5T4DsN)

TAaLL MATRIX (5,P,C,N)

CALL EZUAL (0Q,0,N)

TETURN

RITE (8,720 L . o ’
FERMAT (//'#%x ERRARY INVERSE BF SINGULAR MATRIX'//)

D9 74 1 = 14N

CRITE (6272) (A(la)s J = 1)

FarMaT (2(1X,E1447)) T

CAENTINUE

SRITE (6477)

3VAT (/7))

o= ot .
f(6475) (3(1s0)s J

RTINUE

™

L)

1:N)

[ 3]

o
-

A
[ T

I A DO
- ot
~ 4 4~

- Y »

LEEUES ST

~a 73 4 = 1o
StIsdy = G
SHILY = 1,

SOTUR

FITE (6.21) , . S
FARMAT (//rv#*« £RRER; ZF5S 0% DIAGONAL, INVERSE NOT CBMPUTED'//y
52 97 1 = 14N - .-

WRITE (6473) (Allad)r J = 1a8)

CANTINLE

~“e THA 73 _ o

ALTESNATE £r7RY , s({1,1) = IR

ENTRY SETIRN ( As By N )

{ =

R ]

T 1.

[V

[ 21
FAD
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SUSRIUTINE MATRIX ( Ay Br cs N ) , ..

€ = AR, WHEFE A, B, AND _C ARE SQUARE MATRICES ‘
DIwEVSIﬂy ALZD,;27), Q(QOJEA)J C(EO:EO)

02 10 [ = 14

NG 10 g = 1

c(led)y = 0LC ¢ -

5O 10 < =2 1sN o o
ClIsd) = CUIru) + ACILKY) * A(X,d)
RETURN

At
END

QUARSUTINE ESUAL ( As 71 N ) o .
IS SCT ESUAL TR R, WHERE A AND B8 ARE SQUARE MATRICES
MIIAEN A(?JJL))) B(2C:20)

1.N

1,8

B(l,4)

o ¢

[ ' B 5 BS O
(Wil SIS ) IR 2 I A

n u-n

1
J
3 1

4

[

CND

\\[

AJ

1
9
o
{

VI

I
T

WTINE PRIIAS | PRA, As_N )

IJ THZ PRa%3(CT BF THE DIAGENAL TERMS 8F THE SQUARE MATRIX A
19\ 4(23,20)

1.0

I = 1o

= SRA % AL],])

X ’J»(LJ
1’1

D3 e A2

V3V T
i
o

L7 A)

31 =
Ton
Cd

TP AL

YITINE C'*wn ( A:_C y _
UP PLAaT VALUES FBR SIVULATION

TES PF*SITV FUNCTIENY 1S STSRED 'IN C
AN A(S1), C(51)

(1) PEEY (A{[)+elsDe,1e) = PRAR(A(I)=e1;0a,14)
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SURRFUTINE PRAC _( £Xy £X3, VARS, 177, B )

CALCULATES SIMULATIBN VA«IA\CE : ‘
CSIMULATED DENSITY. FU%CTIG” 1S STBRED IN B

nNIYE~STIAN ’1(‘31 | FX(iOJOu)

VARS = O,

28 10 J
VARS
VARS
59 29 1 s
A401) =
ne 3% 4 ’
3 o= (FX(J) -
50f5'+ 26
IFIX(5) _

IF (1 «lTe 1 ) 1 =1
!F ( ! 'GTQ 51_) 1 =.51
(1) = 5(1) + 1

P 17T L
+ (FA(J) - FXG)*x2
S/FLPATCITT)

4
~ A

tt o
< <

‘g - 1 3> 3~ Al

a2
HLDU)“I
~

O

D L
ft un

29 43 1 = 1,51
%(I) = B(I)/VLQAT(ITT)
ETURY ,

SURRAUTING PLET2 ( Ns X4 Ys Zs AMAX )
Y AND 72 ARS PLAETTEND VERSUS x : - SO

vos MUMBER AF INTREMENTS, X = XU(T),_ Y = FI(T), Z = F2(T)
?IMENSIBH LI*E(133), SCAL:( Yo X{(101)s YC101) Z(lgl)_ . - .
DATA <3LNK, KSTAR, KPLUS, KMINU, KAEYE/Z 'V 1, 'xty 14ty 1at, 1ty

S U e

PLEE R SN PR .

IF O YD) «GTa A4AX ) AMAX = Y(I1)

[F O YD) LTy AMIN ) AMIN = Y(I)

TE 0 Z201) 2GTe AMAX ) AMAX = Z(])

T Z(TY WLTe AMIN ) AMIN = Z(])

CANTINVLE ] -

~RINT 1AR qCALTS AND RBRDER

RITE (6,602)

FAR¥AY (1H1)

Ll = AVAX - AMIN

12 = D92 % W1

vl o= 130./u‘ )

STALE(1) = AMIN

59 1Y 1 2 Pab i

SCALECT) = SCALE(I=1) ,_#12.

RITE (4287 2) (STALE(IY, I = 1:6)

TATMAT (194sE17.3:5(10X,E12,.3))

D8 12 = 14103

LIYE(IY = MINU

e 13 1 = 2,172,10

LINE(1) = <AEYT o

RITE (6,601 (LINE(DY, T = 1,103
RMAT (P5ys12341)
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PLRAT 82nY AF GRAPH

D9 21 1 = 2,137

LINE(D) = KBLNK

D5 7?3 1 = 1,123,51

LINE(D) = ®AFYE

ng 22 J = 14~ N v -
L1 = (Y(J) = AMIN)IxHY + 25

L2 = (Z(J) = AMIN)xH1 + 2,5

Lx*:(:1) = KSTAR

LINE(L2) = KPLUS

ZRITE (6{ 03) XDz Y(J): Z(D)s (LINE(K)Z ® = 1,103)
FARMAT (1X. ,!p 1XsF7 e i¥aF7e4,1X21034A1)

iIkE(Li) = KRNK
LINECLZ) = XBLanK
LINE(S2) = KACYE

CONTINUE L
PRINT 22TTSM LINE AND SCALES

53 311 = 12123

LINZOT) = XMINU

5% 2 1 = 2,102,140

LINELD) = ZAEYS L
RITE (A,601) (ﬂlng(ll,”1_=.1:103)
RITE (5,600) (SCTALE(IY, I = 1.6)

-3

SURRIJTINE CHyMAT (M, Ny v, R
REAL M(12,12)
DITIED SRR ST I
F; f\' \..l = 1’.‘1
{

1,0y = R

3
( - .
TR (1 WES. Jy Y1sdy = 10
“1ad) = M{Ied) ¥V
TETURY
gqﬁ
FUBRAYTINE NARMAL ¢ X )
FACH TaLL [ENZRATES A Nq«“Al RANDOM NUWBLR X
ITART ~MUST 25 CalLLED IJ!TIALLY . L
Y30 Iv CeLUM 1 DENPTES SYMaRLIC SUS SIGMA 7 ASSEMBLY LANGUAGE
INSTRUCT AN
CoNTINGE
L1.11 X143775¢ i
SUM 12 UNIFEPY RANDAM \U“?EQS
SLSs11t 12
LS M
4145 655373
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ST,
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4145
L3
5L5:3
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FAS9
Alsl
C1s1
3L
ADFLY
£G5S, 7
FM3,9
ST "
LAs33
FMG, 3
STi‘L[Q
F15,3
FASsR
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FM3
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FMSy
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>
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&2 .
PALYVEMTAL CaRRECTISN

S1X

FaURTH

vy

Y1

Y4
Yz
AS ,
A7
Y2
AS
Y2
A3
Yz
Al
Y1
X<
*13
START ( X )
oY)
o= ::—‘5
3¢94924451 33 -
«2E2LTRYRY
«074542%12 )
JOR3EETLR
DRO802774
Y eERe 3) 4 o2l
1
A 2353 N . . ..
‘CT1eN CALZULATES THE PREBABILITY THAT A RANDIM X 15 LESS THAN
/3TD .
PRH3 ( X, EX» STD ) . ) , ] y
ANGUAGE 18 SDS SIGMA 7 ASSEMBLY LANGUAGE==-SYMRBRARL
UAD R
Ta,% FL' ! .
T1,8 FL'DeN4384673470"
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A3

Al

AS

A6
LJALF
PRAZ
MA TN
Leap
2ETURN

DATA;%
D—\Tégg
CATALR
DATALR
TATA, S
DATéJS
Als13
LYs1
Alsf1{3
Lw,?2
Als13
Lw,3
Lived
FSS,4
Lﬁ;g
FCQ,4
LIs2
Clsu
2GE7
Li,2
LCxa 4
L1,5
Ley4
FMLeh
FAalL,5
FrLs6
FAL b
Fyis6
Falsb
FML, 6
FAlL, %
FiL, 4
F&‘\L,é
Frie, 6
FAL,5
Ll,2
Fi't, 6
AT,3
T1.3
RLE
Lt

FL1D:02114100C61"
FL10+0032775263!
FL!'De0000387036"
FL13e0C00483906¢
FL,'2:000005383C"
FL1D+5!

4

-

*13
1.
¥13
1.
*»13
*1

%7
*3

x>
-
£

(920

PN S I T A R B G I TR

&
) 4=

[AY)

>

>
RY)

®HE D X DD TN BT e N o >
NP AL > ) D WD
—. ‘
[l M
X
g

-
w

92



APPENDIX B

COMPUTER PROGRAM TO CALCULATE THE PROBABILITY

OF ERROR OF A THRESHOLD GATE
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SUBROUTINE TO CALCULATE PROBABILITY OF ERROR
OF A THRESHOLD GATE - THRESH

AW = Weight wvector, Ny
AX = Input vector, e
VARW = Variance of weights, oi

. . 2
Variance of inputs, Oy

VARX

I

CORW Correlation of weights, p

w

CORX = Correlation of inputs, p

X

N = Number of inputs, n

PE = Total probability of error for equally likely inputs, Pg
CW = Covariance matrix of the weights (N+1 x N+1)

CX = Covariance matrix of the inputs (N x N)

EXF = Expected value of f(p)

VARF = Variance of £f(p)

PF = Probability of error given AX

PROB (X,EX,VAR) = Probability that a random, normally
distributed X < (X-EX)/V/VAR

FN(X)= Value of the logic function FN(X)

COVMAT (M, N, V, R) generates an N x N covariance matrix

Mij cov(xi,xj) = pijoxioxj, where p;; =1

and pij =<R,‘i 'r‘( j, and Gxi = O'Xj = }/v
MATRIX (A,B,C,N) forms the product C = AB where A, B, and
C are N x N matrices.

STEP (X,N) considers X as an N place binary number and returns
X + 1, neglecting any high order carry. Thus entering
X = 1101, N = 4, returns X = 1110.

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H



Flow Diagram of Subroutine THRES!

Initial call ——» BEGIN

Compute input
covariance matrix CX,

Subsequent calls-——— THRESH

Y
Compute weight covariance
matrix CW, set AX = 1,

J =1, and PE = 0,

v

Step AX, compute
VARF and EXF.

o

4
Compute PF,
PE = PE + PF

SetJ=J+1.

RETUBN
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SURRAUTINE THRESH ({ A4, VARW CORWs VARXs CBRXs Ns PE, IFN )

THIS GURRAUTIN p ’ALcuLArgq THE PROSARILITY 6F ERROR 8F AN Na 1\pu
THRESHSLD GATE wlTH WEIGHTS AW, AND STATISTICS VARw,ceRw VARX,CBRX,
TFEN 1S Thrl\U‘ IER BF PAINTS 8F THE N=CUBE WHERE PE > 045

THE LA3IC FUNCTION REALIZED_IS SPECIFIED IN FUNCTISN SUBPRBGRA” FN
AECIN MUST BE CALLED INITIALLY -
REFL CaAaVVAT, MATRIX, STEP, PRBB, FN ‘
CDINENSIAN C¥(12,12),CX(12,12),6(12, 12),01(12, 12),Rw(12;12),
1 RX(12;12)1V#(191]2)1VX(1° 12YrA0(12) 2AX(12)

CasTINLE ‘
AXINPY = =1, -
GENERATE Mw

e 12 ] = 1,0

100
Qe .o
( ARS(AN(IY) xSTD Y
C)\LI VATQIX (V )‘pr.T;\P)
CALL MATRIX (2T,Va, Cy,NP)
DA 20 1 1M

2
D
—
[
.
#-u-n n

1]

AX(D)
Dt: = °
[Fe = 0 o _

QTEP THARU ALL PESSIBLE IVPUT CEMBINATIENS
D8 102 J = 1M

cALL STEPR (AX,N)

CALCULATE VARTANCE OF CFPA?ATING FUNCTIBN
\.,’AQ\.': = OQ

1

~ ’
&

na 22 1 = 1,°

n 22 K o= 1aN

JARE = yaRF + ax(l)*gm(I:K)*AA(<)

neo ?.‘4 I = .1’P‘

nA 24 K o= 1Y . .

JATF = VARE + Aax(I)#*CX{T1X)#a%W(K)

CALTULATE MEA AF SEPARATING FUNCTIEN

T¥E 3 G

79RO = iaN ) )

IXE = IXE 4+ AG{IYEAX{T)

Y oz ENT o« Aw (D)

SYALUATE LAGIC FLNCTIE

o= PN (AX)

TALCULATE PR2ZABILITY oF £RRAOR

IF (X ) 31232:31

oF = 745

32 TR 36 .

1€ (¥ -E:- 1 ) X% =¥

3¢ = DRAR (X, Ve, VARF)

pros O, pE o

T { A «=E, :\9 Yy IFN = IFN + 1

ganTiug

PR = DOy

RETURS ] . . . .
CANTRY SESDL (A4, VARW, C8Rws VARXs CBRX, Ny PE, IFN )
R '
s P\
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SENMERATE CeRRELATISN AND VARIANCE MATRICES
STOX SaRT(VARY)

STOW = SORT(VARH) .

CALL CAVMAT (R4, Ps1+,CaRW)

CALL TAVMAT (RX,N;1¢2008RX)

GELVERATE MX

nA 52 1 = 1.8
nA HA g =z 1N
yx(led) = Co
VX(Ts1) = STDX

CALL MATRIX (RY,VX,GsN)
CALL MATRIX (VX,%,0XaN)
5o T8 g

2

SUNCTIAN Fr (%X )
DIMENSTAN x(1P2) , _ . N N
THIS FUNCTIAON gVALUGATES THe FALLAWING LBGIC FUNCTIEN

Faro= X1 *X{2) + X(1)#X(3)=xX(4)
IF { FN «GTe 5 ) FN = 1.0
RETUIN
gD
SUARSUTINE STEP ( Xs N ) _ o A )
TS SUBREUTINE STEPS THRU THE PBINTS BF THE N-CURE
crvensIes x(2z)
CARRY = 1,
N 121 = 1y
R I ' B
IF ( CARPY LE%. Ce) 38 T2 10
2 ¢ X(M) IE:Q 1) GE T8 EC
¥iv) o= 1.
CARRY = L.
e Ty 10
(M) = (e
COLTINUE
RETURYN ‘
SU3RBUTINE MATRIX (A, By Cy N ) )
£ o= A%, WEERE Ar B, AND C ARE N X N MATRICES
DIVENSIAN A(12,17), Bl12:12) C(12,512)
2910 1 = 1.
RIS RO BRI I

Cl{IsJ) = C.C
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N 10 K = 1
Ctl,J) = C(
RETURN

END

' - - —
I Jy o+ A(I)K) * B(K;J’

SURRRUTINE COYMAT ( Mz Ny Vs R )

THIS SUBRSUTINE 3ENERATES AN N X N COVARIANCE MATRIX M wiTH
UARTANCE V. AND CORRELATIAH R

RCAL M(20,20)

C = R*V _

e 12 1 = 1™

DR 10 0 s 1aN

M{Is,d) = C

METEREERRS

RETURN

D

FLUCTIan PraB { X2 EXs VAR ) ) ‘
PRABAZILITY ThAT A RA\PPV 'x 15 LESS THAN (x = EX)/STD
naL8LE PRECISIAN 6,7

T = Cv?CC

T = DRLE((X~EX)/SGRTIVAR))

IF (7T LT, =4+000 ) G5 15 20

1 = 1

IF (T 5,10s17

T = =T

1 = 7 _

S = D.20CC0E383000xT 4 Ce 4R890600
3= ST CvSDCCQEOOBSDC

S = S*7 + 0003277626300

o= SxT 4+ O ??11“1“Cslf0

3 = 5xT 4 CsCA43RATIATIDC

Doz SFT 4 1e220)

Q = SsxiA

2a223R =z 1.00C /( !JDA*Q) o

IF (].2C.1) PR28 = 1.0DC - PRGB
RETLRN

CONTINUE . ,

IF (7 -LT’ ~16.000 ) GB T8 30

T = =7

S = C.«;”*T*xﬂ

£T = TEYP(S)

PRER = (. °93¢t9¢2*3.?17933?3/(0 3345%”84!T&ET)
JETURN

SE?B = Co

DETURS

™
-
.



APPENDIX C

COMPUTER PROGRAM TO CALCULATE TEE PROBABILITY

OF ERROR OF A THRESHOLD GATE NETWORK
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SUBROUTINE TO CALCULATE PROBABILITY OF ERROR OF
A THRESHOLD GATE NETWORK - THRESM

AW = Weight vector, n,

AX = Input vector, n,

VARW = Variance of weights, 05

VARX = Variance of inputs, ci

CORW = Correlation of weights, P

CORX = Correlation of inputs, Py

NI = Total number of network inputs

NO = Number of inputs that go only to output.gaté

NG = Number of gates in network

PE- = Total probability of error for equally likely inputs, Py
Cw = Covariance matrix of the weights (N+1 x N+1)

CX = Covariance matrix of the inputs (N x N)

P = Probability of occurance of outputs of first level gates

NGl = Number of gates in first level
NI1 = Number of inputs to each first level gate

EXF2

Mean of output gate separating function

VARF2 = Variance of output gate separating function

GENP (AW, VARW, CORW, VARX, CORX, NGl, N, P) generates the oNGL
probabilities of occurance of the outputs of NGl first

level gates
GENB (B, N) generates an n-th order B matrix

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H



Flow Diagram of Subroutine THRESH

THRESH

>

Compute input and weight
covariance nmatrices CX and CW.
Set A Y =0, J1 =1, and PE = O,

.

:
Generate P, the ZRGl probabilities

of occurance of the outputs of the

NGl first level gatss. Set J2 =1
and PF = O,

4

For all possible combinations of inputs
that go only to the output gate,
calculate the probability of error PF1,

PP = PF + PF1*P(J2).

Step AX. Set J2 = J2 + 1,

Set PE = PE + PF and J1 = J1 + 1,

PE = PE/2NI1,

Y
RETURN.
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f‘L/'”p"l.TI'\f" THREG™ (A%,VAhm;r°R~;VA?X;C”RX hI,hS,VG,DF) .
THIS SURRBUTINE CALCULATFS THE PROBRABILITY BF ERRER 6F A TWB- LFVFL
THRESHILD GATE MFTWORK WITH NG GATES AND NI INPUTS.  (NI=NB) INPUTS
5 TA EVERY JATE C(NB)Y INpuTQ GE ANLY T0 THE 6UTPUT GATE. _AW
CANTAINS THE VEI1GHTS, FI“ST THE NI« NB+ 1 WEIGHTS BF FACH _ FIRST LEng
GATE, THEN T‘E NI=NB wEIGHTS CORRESPINDING T6& THE INPUTS THAT G8 T8
FACH FIRST LUVEL GATE, FELLA-ED BY THE NG wEIGHTS CARRESPANDING
TA THY BUTPLTS #F THF FIRST LEVEL GATES, THE N8 WEIGHTS_8F THEg
TNPUTS THAT GA BYLY Te _THE AUTPUT GATE, AND THE BUTPUT GATE THR[SH@LD.
THE LAGIC FUNCTION REALIZED 1S SPECIFIED IN FUNCTIEN SUBPRBGRAM FN
BEGINM MUST RE CALLED INTTIALLY
REFT CAVMAT, MATFEIX, STFEP, GENP, FN, PRpB . -
DIMENSIEN An(EO);AX(jo);CJ(?O 20),CX(2C,20),D(20,20),RW(20,20),
PXLZ2C220) sV (P70 aVX(204,20)2P(20)2X(10)

SET Up CANSTANTS !
NG o= '\G - ]

NIl = .’\'I“‘-. NG

AW = NTY 4+

N2 o= N1+ NG1

NeT1 = NWlxNGY

h\."'/‘:'TE = NIZ + 1‘_

MAT = AWTL + NkT2

M = 2xenA

MI1 = PxxNTl

MGl = 2xsNGL

WO o= NI o+ NGB

‘(‘P:\C-}-l» L
CALCULATE CEVARTANCE MATRICES
STDW = GORT(VARA)

STEX = QFRT(VAQX)

CALL CAVMAT (R™,;NaTs1esCPRY)
oR 12 ] = 1;~,T

De 1C U = 1,047

ViiltIsJd) = Qe

wW(ls1) ABS( 4 4(1))*aTDw
caLlL MATRIX (Vw,w g DaNWT)
CALL MATRIX (D,yY,CWaNWT)
CALL CAVMAT (RX,NI2 llaquRX)

Be P2 1 = 1,112
Do 20 J = 1sN12
VX(I'J) = O: X
VX(Is1) = STDY

CALL MATRIX (VX,RX,0eNID)
CALL MATRIX (D,VXsCXsNIP)
DO 3G 1 = 1,N12

X{]) = Qo

AX{I) = 0o

AX(MNYT2) = =1,

P = 0. i - - . - : . S e e
STEP THRU ALL PASSIBLE CAMRINATIONS 8F THE INPUTS THAT g3 78 BOTH LgvelL
!J 1“\. \Jl = ljkll - . -
SENERATE TRE PRAAARILITIFS aF BCCURANCE 9F THE FIRST LpVEL BUTPUT
CEMRIVATIENS FAR THE GIVEN INPUT CAMBINATIAN

CALL BFND (As, VARW, CPRYN,AY, VAPx,CSRx,NG1,hI1,P>
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PFE = 0. .

gTED TMRU ALL PCQSIBLF Cp”FIhATlgws gF FIROT LEVEL GATE BUTPUTS
ne S5 42 = 1sM6G1

PFl = Cq ) o - .. . Li Ce,
STEP THRU ALL PpSSIBLE CEMBINATIONS OF INPUTS THAT GB BNLY TO THE
AUTPUT GATE

DY AC U3 = 1svg - . N
CALCULATE vARIANCE BF THE AUTPUT GATE SEPARATING FUNCTIGN

VARF? = 0o

DA 52 [ = 1,NwT2

DE 57 K = 1sawT2

VARF? = VAKRF2 + Ax(l)*CN(R&T‘*I:NWT1+K)*AX(K>

ne 541 = XI”T?

Ne 54 K = 1,M12 )
VAPF? = VARF2 + An(h 11+T)*CX(I;K)*AV(NWT1+K) -
CALCUCATE MEAy AF THE BUTPUT GATE SEPARATING FLNCTIBN
EXFZ2 = Qo

09 B4 1 = 1T,NKT

EXFP = EXFR + AX(I)*A (NWT1+1)
EVALJATE LRGIC FUNCTIBN

F o= FMN(X)

CALCULATE PRORARILITY BF LRROR
FX = EXF2 L
IF- ( F «F0. 14 ) FX_ = =FX
PF2 s PRaB (FX,0+sVARF2)
PF1 = PF1 + PF2

CALL ¢TER (AX N I“)

CALL STEP (XsNI)

CANTINUE .

PF1 = PF1/FLAAT(M3)

PE = PF + PF1D(J2)

ne 25 1 = 1.N11

(1Y = Ay(1)

cANTINUE

PE = PE o+ PP

CanTINUE

PE = PE/FLRAT(M11)

RETURN

FND

SUBRILTINE GIAP [Al, VARW, CORW, AXs VARXs CARXING, N, P)

THIS SURRAUTING GENERATFS P, A VECTER CBNTAINING THE 2#xNG

PRABATILITIES fF BCCURANCE 8F THE B8UTPUTS OF NG, N-INPUT

THRESHALD GATES 4ITH STATISTICS VARW, CORW, VARX, ANMD CORX, WEIGHT

VECTR® Ak, AND INPUT VECTSR AXe

DINESSION A(6,4) s AW(P0),AX(10)2CN (2022811 CX(20,20)10(20,20)s
FYF(11),I»<5).p(co),Pq<Lq)‘R4(23'90"QX(fO'EO"V“<?O'20"

X(PD,20),3(20:20),C(P0,2C) s ANX(10) 2 AXW (2002 X (10)
\D = N o4+ 1
“wT1 = NGeEANP

4 E RN
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CALL STEP (Xp\q)

CALCULATE MEAN 6F PRODUCT 6F SEPARATING FUNCTIENS

EXFT = 1. _

NT 10 T_= 106 .
IF { X(I) «EZ¢ 09 )y GB TA 10
EXF1 = EXFI*EXF(1)

CANTINVE

CALCULATE MEAN VECTBRS

L =0 .

Do 220 1 =_1;YG

CONST = X(I1)/E%F (1)

DO 210 K = 1Y

AXW(K+L) = AX(XK )'CHNcT

L = L + KNP .

AXNIL) = =CONST

L= 0

na 225 K = 1y

@wX(<) z Co

08 240 1 = 1:2NG .o -

IF ( X({I) +«£35. 0« ) GB T 24C
DA 230 K = 1aN . . - .
ARXIK) = AuX(K) + AW(K+U)/ZEXF (D)
L o= L+ \P

CALCULATE CEVARTANCE MATRICES
STCW = SART(VARY)

STCX = SNRT(VARX)

CALL CHYMAT (RY,NAT1214,C8RY)
~a 312 1 = 1,NwTl

59 310 K o= 1,NwTd

vellsexX) = Co . I
Va{Tel) = ABS(AA(I))*STDH
CALL MATRIX (V,Ru,DsNUTL)
CALL MATRIX (C,ViaCWsNdTY)
CALL CaVAT (R<,',1erCRY)
o 322 1 5 1.y

LCULATF THE MEANS BF THE SFPARATING FUNCTIBNS

ALL PASSTBLE TNPUT COMBINATIONS

104
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D8 320 K. = 1,%

VX{TsK) 3 Do

vX(I.1) = STOX =

CALL MATRIX (VX,2X,DaN)

CALL MATRIX (U;VX;CX:N) .

CALTULATE VARIANCE BF PRADUCT 13 SEPARATIhG FUNCTIBNSG
VARFL = O

D8 252 1 = 1N

0B 250 K = 1N

VARF] = VARFI + AfX(I)*CX(I SR *AWX(K)

NnR 260 I = 1[\ T1

N8 263 K = 1.Nwttd o . _

VARFL = yARFI + AXW(I)*Cw{1.K)%AXW(K)

VARF] = VAFFI*F\CI*EXFI , L , .

CALCLLAT[ PREBARTILITY. TH»T PRADUCT 1S GREATER THAN 7ERSB

Pa(J) = PROB (EXF1,0+,)VARFI) '

CGNTINLE -

GENERATE B MATRIX

CALL GENB (RAVJ)

FARM C, THE INVERSE 8F B

CANST = La/FLAAT(M)

Ny 30 1 = 1M

D8 30 J = 1M N

CeIrdy = (P(Jal) = o5)% CANST

C(Ma1) = C(Meg) = To ., . : L e
CALCULATE ThHE PR2BABILITY AF BCCURANCE BF THg sUTPUT CaMB3INATIAN
DA 40 1 = 1M

O(]) = 0O

ng 49 J = f.t
P(TY = PLI) + C(1a0)%PB())
RETURN

END

SU399UTINE, Y% ( Re N )

THIS SUBRE TI\: “EMEQATFS AN N'TH 8RDER B MATRIX USED RY THE
’”LTIuATF TFPEGH”LD rTNR“K PRBBABILITY HF ERRAR RPUTINE--TPQESM
REF! STEP . .

DIMENSION Q(20,20), X(4), Y(4)

M= 2**& L

DA 5 1 = 1N

Y(I) s 3_.!

na 130 J = 1,V

CALL STEp (ysN

w = C .

ne 10 1 = 1aN -
K = K + TFIX(Y(T) + «1)
DA 23 [_= 1%

X(1) = 1.

53 80 L = 1M

CALL STERP (xreN)

Sdal) = Ce
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CaNTINUE
Ca~TINUE
RETURN
END



APPENDIX D

COMPUTER PROGRAMS FOR PATTERN SEARCH

TO MINIMIZE PROBABILITY OF ERRCR
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COMPUTER PROGRAMS FOR PATTERN SEARCH TO
MINIMIZE PROBABILITY OF ERROR

N = Number of inputs

W = Initial weilght vector, I,
DWF = Initial step size

DWL = Minimum step size

VARW = Variance of weights, 05
VARX = Variance of inputs, oi

CORW = Correlation of weights, Py
CORX = Correlation of in?uts, Py
WwW = Adjusted weight vector

INC = Pattern vector

PE = Probability of error given WW
BEST = Minimum probability of error

IFN = Number of points at which PE > 0.5
KA = Number of iterations

THRESH (WW, VARW, CORW, VARX, CORX, N, PE, IFN),

BEGIN (WW, VARW, CORW, VARX, CORX, N, PE, IFN) calculates the
propability of error PE of an N-input threshold gate
with weight vector WW and statistics VARW, CORW, VARX,
and CORX. IFN is the number of points of the n-cube at
which the probability of error is greater than 0.5. The
initial call is made to BEGIN and subsequent calls are
made to THRESH (see Appendix B).

THRESM (WW, VARW, CORW, VARX, CORX, N, 0, 2, PE),

BEGINM (WW, VARW, CORW, VARX, CORX, N, 0, 2, PE) calculates
the probability of error PE of a two gate, N-input thres-
hold network with weight vector WW and statistics VARW,
CORW, VARX, and CORX. The initial call is made to BEGINM
and subsequent calls are made to THRESM (see Appendix C).

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram for Optimal Threshold Gate Search Program

IRead data.

f

Calculate iniltial probability
of error PE. Set BEST = PE.

:

Exploratory move.

Reduce step gize.

B Pattern move.,

Print results.
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APTIMAL THRESHalD GATE SEARCH PRpGRAM

THIS PRAGRAM WILL SEARCH T8 FIND THE WEIGHTS WHICH WILL MINIMIz¢
THE PR QQAQILIT\ ar Em?%R 6F AN N«INPUT THRESHSLD GATE WITH .
STATISTIFS VEQH CQP\' VAQ/ AND C8RX. THE INITIAL “EIGHT VECTBR
1S . THE INITIAL STEP. S1Z¢ 1S DWF, AND THE MINIMUM STEP SIZE

15 DNL. THE THRESHBLD Iq W(M+1)s IFN IS THE NUMBER 6F POINTS BF THE
MaCUZE FAR WHICH THE PRERBABILITY 9F ERRBR > 0.5,

REF! THRFSH

DIMENSTaN INC(12)s W(12)) WW(12)

READ (5,2,FND=99) N ’
FARMAT (18) )
Mo N + 1 ] - - '
READ (5s5) (W(I)e 1 = 1,M)

FaARMAT (2E10.3)

REAN (3,5) DWF, DWL .
RELD (5,5,EMD=1) VARW, VARX

Cﬁle\!F ) ) N .

SEAD (5,5,5ND=1) CSRW, CARX

CoRX = 0, A

na 1Y 1 = 1

ALY = o) ‘
55 N T WF o - _

DRI, rv"'r DATA AND INITIAL PRBBABILITY 8F gRReR

SRITE (6412)

FARMAT ({H1) .

(4,123) VA5, CORW;VAPX,CORX o
(/' INITIAL VARIASCES AND (CARRELATIENS 1,4(2%,E104+3))
(6pla) Dvm,2WL

.jH
£
..'

_l
TP 2 (TE 3T 3o T o e

]

"
A2 O
Py
e
£

F T (/' ThZ TTTERATIEN LIMITS ARE 1,E10.3:2%X,E10,3)

ARITE (4, 18) (wald)s J = 1sM)

FARMAT (/,' INITIAL WEIGHTS ARE ',/,(1X,10E13.4)/)

RANDUE T |

NeoE D

RN T O O

I¥C(1Yy = ¢

£elTF = 0 . . 3

CALL REGIN (W8, VARWLCRRY, VARX, CBRY, NspEs IFN) :
SRITE (6,17) TE - oL .

FEEAT (/20 1 ITIAL PRARABILITY 3F ERROR IS ',E15:8)

ArsT = PO

<a = 1

IF O IFN +ECe 2 ) GB T8 20

SRITE (£,18) IFw - i - .
FRRMAT (/a0 ThRE FULNCTIEN IS NBT REALIZED AT ', 140" PGINTSY)
TENTINLE

CXPLOSATRRY Mevr

N AR S "}:(‘if-d) + W )

1€ ( Wa(NOWy 4LTe Doy GA TG 29 )

CALL TeRESH (;;;\AQN)CQN\JVAQXICGRX)NIPEQIFN, .
I£ ( P LT, 3EST ) GB TR 26

S ANAYY = LWiMIY) - Dy

NAE T

Al = L=elRp o+

IF { 4aDF «£3.e 2 ) NAS = Naw + 1



W -
[

Ta)
O

™

N#(J)}

IF ( X9DE .ES. 2 )_K8DE = o

IF ( %3W «GTe N ) g8 TB 3C

59 T4 30

f_‘iq"'-' = i

n =0

De 32 J = 1sn

J5 = J3 + TARSLINCII),

IF (UG +Ef. 3 y G8 19 52

AR Ta 38

2EST = PE . .
IF ( <9DE +E%, 0 ) INC(NAa) =
IF ( X3DF LET, 1 ) INC(NGa) = ~1
N R N T |

K80E =

oe o= Dad ;

IF ( N3W «GTe N ) GB TH 32

53 T3 50

T4 D

\Nex = 1

PATTERY MOVE

nR 4T g = 1. : o

$Ald) = AWJ) o+ DaxFLAAT(INC(J))
<A = <4 + 1

nG b4 o= 1M .

IF C %ald) «LTe Se. ) G872 47
CALL TRRESH (w9, VARW,CAOR Y, VARX,C2RX, \)pE;IFr)
1IE (B2 .GFEe« 3FQT ) GA T2 &7
3gST = of

TR 4L g =1,

S 0d) = wWWd) o+ CV*FL@AT(I C(d))
36 TR 4

D2 A4S g s 1N -

A (D) = W () - DWxFLAAT(INC(UY)
INC(DY = C

LA = A4+ 1

18 T 21

FECUCE STER SIgE

;u"‘. £ /1& . ' L X

IF | ”MM eLTe DLy 3B TS 70

T TM ) .-

RRIPT OINTEFMEDTATE RESULTS

SRITE (4,658) KA, (wwldY, J = 1M
UF2RMAT(/ /0 AFTER 1,14, 1TTERA
1 (1Xs10E134))

PRITE (6,67) REST

CERVAT (/,1 AND Tmp PRABAZILITY SF pRR2R IS 1,
I8 (15N <82« 5 ) 68 T3 20

SRITE (46,18) 1FN

38 T2 20 ..

PRl T FINAL REZSULTS

RITE (62748) <A _
FORNMAT (//,' AFTER 1,1& ' LTTFQATISMS:')
RITE (g576) ( Jo= 1M .

) -
TIONS, THE WEIGHTS ARE 1,

15-8;/)
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FEOMAT (75t THE 3EST WEIAGHTS ARE 1, (1X:110E13:6))

WRITE (4,78) 1EST . o ‘
FERMAT (/,1 THZ LEAST PRABARILITY 8F ERRSR IS 1,E15,8,////)

IF ( IFN «EC+. 0 ) GB T8 10

WRITE (6:18) IFN

59 T8 10 B

gTEP .
END

OTIMAL THRESHSLD GATE SEARCH PRAGRAY, TWB GATE

THIS PREARAM wILL SEARCE T& FIND Tk” WEIGHTS WHICH WILL MINIMIZE
THE p°,dAn1LITv fF _ERRER BF A TWEB-GATE THRESHOLD NETwBRK WITH

N OINPUTS AMD STATISTICS VARs: CEBRY, VARX, AND CORX, THE INITIAL
d€IGHT VECTSR 1S &, THE THRESHILD BF THE FIRST GATE IS W(N+{), AND
THE THRESHALD SF THE SQECTSND GATE 1S #(2xN43)e W(2xN+2) IS THE
vEIG5T GIVEM Tz BUTPUT SF THE FIRST GATE, THg INITIAL STEP Sizg
» AND THE MINIMUM STEP SI1ZD 1S LWL,

-

MDD OO0

N -y

Ll (]
IAV

bt
W

16

NSTAN IND
(2524:E00
(YR)

Z €2 e

LU LR { N T 1 I

e D Y e T ) [T
4

o —

R AV ANV IV D S a8
LSS

MY LS ST NI D T e

DAY MY D Iy
B YD R

N L B I 5
St

T Y T i e e

b

~ e~ e~
>
TN i+ 4

Aoy .0
o
vt O3
- MW = o~~~
'
™ e [T} ~—
s

S A

)
Iow— OV C

I I )

~
—

wF
2T O
(61 g)
T (17-11)
(5,13)
T (/7' IN
(4r14)
T ThE
T . .
NWT - g
TE (6215)

LIRS R ¢ IV B
‘DN
A e ) o~ T

t3 3D i)

RYNES]

[ B P
o

¢ N> M

PRI I |

AT (/a0 ]
1
I

~
-

7o >ty DA
IJ\

A\ J 27 e T

[N ]
17 o~ o= )
[T

On

(12), W12y, w«(12)

=329) N

12NKT)

) VAR, VARX

) CoRdAs

E?RX

ATA AND INITIAL PRBJA

VA“'ILE«A/‘J!\“XJg,S X
ITTAL YARTANCES
r\A’j U_.'L

Z 1TTER

ATISN LIMITS. ARE

(ld)s .=
NITTAL

THRESY .

AILITY BF ERRAR

AND CSRRELATISNS 1,4(2%sE1043))

'1E1043:2X,51043)

) )
Gr ARE ',/ {1X210E13+4)/)
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(@ IV

~9

()
(@]

)
n

9%
10

40

42

"

E-
n

47

L8

CALL BEGINM (W, VARW,CERY, VARXs CORX, N2 02, PE)

SRITE (6,17) PR

FSOYMAT (/4' INTTIAL PRORAZTLITY 8F ERRBR IS 'yE15eg)

AEST = PR

<A = 1

CerTINCGE ,

CXPLRRATAERY Mave

WWINAWY) = wR(NEA) o+ DW

IF ( ¥w(NBY) JLTe Qs ) GA TY 29

CALL T%RESM (#N;VAQWICG@H;VAQX)CGQXJNlOIEiPE)

IF ( PE +LT« BEST ) G& TA 35
ARNEY 2 W (NEY) o« bW

NYoE AW

KeDFE = KADE + _

IF ( <aDE +E7. 2 ) NBW = Nguw + 1

[F € ANAY «FDe w1 ) M8W = NBW + 1
IF ( <aDE «E7e 2 ) KODE = 0
SIF ( NaW WGE. NWT ) GA TO 30

539 T2 50

NEW = ]

JG o= D

R R g o= 1IL.._ ..

JG = UG o+ TAES(INC(J))

1IF { UG EnNe. 0 ) Gg Tp &2

532 T8 3R T
BEST = PE o -
[ ( ¥aDE «ETe O ) INCINPWY) = 1
1IF ( “8DF JEG, 1 ) INCI(NAW) = <%
Nah o= AR 4+ . .

IF ( Nay 4ECe Ml ) NBW = NawWw + 1
43TE =

mwom M '

1F ( Naw #RE. NWT ) GH TP 38

A& T2 B0

Swozm PuM

S|

vy = 2

BATTERN MBVE

ne Ln J = 1,1 o
A = WD)+ DErFLaATIING (D))
<A = wA o+ 1

pe &L o= L _ ‘.

IF ( w(d) sLTe S ) GR.TS 47 . -
CALL THRESMN (4, VARWICORY 1 VARXSCORX,N20,2,PE)
18 ( Pg LG, BEST ) GA T2 47

EST = PE

INC(NYY) = ©

me LT 4 o=1,L S .-

A 0Y =, NWY) + DRxFLAAT(INC(U))
ae Teo42

IVCOny = 0

2o AR s 1.L -

A ) = wWd) - DwsFLAATHING(JY)

INC(Y = Q



50

70
74

76

[$4
W

1

Dy
KA
Ge
RED

Y4
Dyl

DwM

KA + 1
& 20
'Ce sTER

('_—-{" i

S1Z€

n!fl‘/lCl

1F Da“ LT+ DLy GB T8 70
e

Nw =

PRINT I\TFQ”E’YATE RESU[TQ

SRITE (6,465) <A,(w\(J); 14NUWT) .
FERv ﬂ*(//'AF WREYR ITEQATISN84 THE WEIGHTS ARE
11(1¥,F 1ﬁ97))

WRITE (6,67
FOQMAT (/!
38 T3 20

DRINT FINAL
ARITE (6,74

FaRYAT (//,!
WRITE (6,764) . )
T-E REST WEIGHTS ARE ', /,11(1X,F10.7))

FARMAT (/!
ARITE (&7
FORNAT (/)1
38 T2 1)
gTES

END

) REST

114

Va/s

AND THE nRagAqxley BF ERRAR 1S ',E1548,/)

RESULTS

) KA . } .

AFTER ') 14,'" ITTERATIBNS:')
( wald)e J = LaNWT )

5) 3557
T“F LEAST PRPBASILITY BF EQRSR IS

1,E15

.8;}}/))



