PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

A Thesis
Presented to
The Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

by
James E. Howard January 1969

I would like to gratefully acknowledge the encourage $=$ ment and assistance of my advisor, Dr. J. D. Bargainer.

My deepest appreciation goes to my wife, Sara, for her encouragement and understanding.

I would also like to thank Mrs. Norma Turner for her excellent work in typing this thesis.

The research reported here was supported by National Science Foundation Grant NSF GP-1539.

PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

An Abstract of, a Thesis Presented to
the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

by
James E. Howard
January 1969

ABSTRACT

A threshold gate is a logic gate in which the output is determined by a weighted sum of the inputs compared to a threshold. If the weighted sum is less than the threshold, the output is a zero. If the weighted sum is greater than the threshold, the output is a one.

In general, the inputs, weights and threshold are correlated random variables. It is possible for the weighted sum and the mean of the weighted sum to lie on opposite sides of the threshold. This will cause an error in the output of the gate.

Techniques are derived for calculating the probability of error of single threshold gates and nonsequential threshold gate networks. It is assumed that the means, variances, and correlations of the inputs and weights are known, and that the probability of occurrence of the network input combinations is known.

Threshold gates with random inputs and weights are then studied by simulation. Each input and weight is replaced by the appropriately generated random number, thereby generating the density function of the weighted sum. The form of this density function is important in the calculation of the probability of error.

The techniques for calculating probability of error are implemented by digital computer programs. These are used as subroutines for an adaptive search technique to minimize the probability of error by adjusting the mean value of the weights. The dependence of probability of error on the variance and correlation of inputs and weights is examined for both optimal and non-optimal realizations.

TABLE OF CONTENTS

CHAPTER

PAGE
I. THRESHOLD LOGIC 1
Definition of a Threshold Gate 1
Geometric Interpretation 4
The Map Interpretation 6
Classes of Threshold Functions 8
II. STATISTICAL ANALYSIS OF THRESHOLD GATE CIRCUITS 11
Logic Systems 11
A Resistor-Transistor Threshold Gate 14
Transistor-Tunnel Diode Threshold Gate 19
Current Switching Threshold Gate 19
Probability Model of a Threshold Gate 22
III. PROBABILITY OF ERROR OF A THRESHOLD GATE 24
IV. PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS 32
V. SIMULATION OF THRESHOLD GATE NETWORKS 50
Generation of Correlated, Normally
Distributed Random Numbers 50
Simulation of a Threshold Gate 53
Simulation of Density Functions 56
VI. MINIMIZATION OF PROBABILITY OF ERROR 61
VII. RESULTS AND CONCLUSIONS 68
The Probability of Error Surface 68
Effects of Variance and Correlation on the Probability of Error of a Threshold Gate 71

TABLE OF CONTENTS

CHAPTER PAGE
Minimal Probability of Error Threshold Gate Networks 76
Conclusions 77
BIBLIOGRAPHY 79
APPENDIX A - COMPUTER PROGRAM FOR THRESHOLD GATE
SIMULATION 80
APPENDIX B - COMPUTER PROGRAM TO CALCULATE THE
PROBABILITY OF ERROR OF A THRESHOLD GATE 93
APPENDIX C - COMPUTER PROGRAM TO CALCULATE THE
PROBABILITY OF ERROR OF A THRESHOLD GATE
NETWORK 99
APPENDIX D - COMPUTER PROGRAMS FOR PATTERN SEARCH TO MINIMIZE PROBABILITY OF ERROR 107

CHAPTER I

THRESHOLD LOGIC

A logic gate is a system in which the output is related to the input by some logic function. Such a device need not be limited to realizing only the simplest logic functions, the AND and OR functions, although these are the easiest to implement. In fact, it is highly desirable that a single gate be capable of realizing more complicated logical functions. In this way, the number of gates needed in a logic circuit may be reduced significantly. It will be shown later that a threshold gate has this property.

Definition of a Threshold Gate

A threshold gate is a logic gate with binary inputs and a binary output. These binary variables can take on values of 0 or 1 . Associated with each input, $x_{1}, x_{2}, \ldots, x_{n}$, there is a weight, $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$. The output y of a threshold gate for any combination of n inputs can be expressed as

$$
\begin{array}{llll}
y=1 & \text { if } & & \sum_{i=1}^{n} w_{i} x_{i} \geq T \tag{1.1}\\
y=0 & \text { if } & \sum_{i=1}^{n} w_{i} x_{i}<T
\end{array}
$$

where T is a real number which is called the threshold. The notation

$$
\begin{equation*}
y=\left\langle\sum_{i=1}^{n} w_{i} x_{i}\right\rangle_{T} \tag{1.2}
\end{equation*}
$$

is used to represent Eq. 1.l.
By subtracting T from both sides of the inequality,
Eq. 1.l becomes

$$
\begin{array}{llll}
\mathrm{y}=1 & \text { if } & \sum_{i=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}-T \geq 0 \\
\mathrm{y}=0 & \text { if } & \sum_{i=1}^{n} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}-T<0
\end{array}
$$

If $x_{n+1}=1$ and $w_{n+1}=-T$ the inequalities become

$$
\begin{array}{lll}
y=1 & \text { if } & \sum_{i=1}^{n+1} w_{i} x_{i} \geq 0 \tag{1.3}\\
y=0 & \text { if } & \sum_{i=1}^{n+1} w_{i} x_{i}<0
\end{array}
$$

Using matrix notation this becomes

$$
\sum_{i=1}^{n+1} w_{i} x_{i}=\underline{x}^{T} \underline{w} .
$$

where $\underline{x}^{T}=\left\{x_{1}, x_{2}, \ldots, x_{n}, I\right\}, \underline{w}^{T}=\left\{w_{1}, w_{2}, \ldots, w_{n},-T\right\}$.

Finally,

$$
\begin{array}{lll}
y=1 & \text { if } & \underline{x}^{T} \underline{w} \geq 0 \\
y=0 & \text { if } & \underline{x}^{T} \underline{w}<0 \tag{1.4}
\end{array}
$$

or more compactly

$$
y=\left\langle\underline{x}^{T} \underline{w}\right\rangle_{0}
$$

Fig. 1.1. Threshold gate of Example 1.1

Example 1.1. For the threshold gate shown in Fig. 1.1, the output in terms of the separating function is

$$
y=\left\langle 2 x_{1}+x_{2}+x_{3}\right\rangle_{2.5}
$$

The output as a logic function is

$$
y=x_{1}\left(x_{2}+x_{3}\right)
$$

This is shown in Table l.l.

Table 1.1. Truth table for $y=\left\langle 2 x_{1}+x_{2}+x_{3}\right\rangle 2.5$

| x_{1}, | x_{2}, | x_{3} | $2 x_{1}+x_{2}+x_{3}$ |
| :--- | :--- | :--- | :--- |$\quad y=\left\langle 2 x_{1}+x_{2}+x_{3}\right\rangle 2.5$.

Geometric Interpretation

Switching space is an n-dimensional Euclidean space (n-space) where each coordinate axis corresponds to an independent binary input of a logic gate or system. Since each input can have only values of 0 or 1 , the input combinations are discrete points in the space. Each of the 2^{n} points corresponding to the $2^{\text {n }}$ possible input combinations lies on the vertex of a unit n-dimensional hypercube (n-cube) in n-space. Realizing a given logic function of n variables with a single threshold gate corresponds to passing an n-dimensional hyperplane through the n-cube so that the plane separates the points at which the value of the function is equal to 0 from
the points at which the value of the function is equal to 1. The equation of the plane is

$$
\sum_{i=1}^{n} x_{i} w_{i}=T
$$

where the domain of each x_{i} is the $i-t h$ coordinate axis. Functions which can be realized by a single threshold gate are called linearly separable (l.s.). The function

$$
f(p)=\sum_{i=1}^{n} x_{i} w_{i}
$$

is called the separating function, where p is the vertex of the n-cube corresponding to ($x_{1}, x_{2}, \ldots, x_{n}$). Figure 1.2 shows the n-cube and separating hyperplane for a two-variable function.

Not every partition of the vertices of the n-cube can be separated by a hyperplane as in Fig. $1.2 b$, hence not every logic function can be realized by a single threshold gate.

$Y=X_{1} X_{2}$
(a)

$Y=\bar{X}_{1} \bar{x}_{2}+x_{1} x_{2}$
(b)

Fig. 1.2. (a) l.s. function and (b) non-l.s. function

Notice that if the equation for the separating plane of a particular function

$$
y=\left\langle\sum_{i=1}^{n} w_{i} x_{i}\right\rangle_{T}
$$

is multiplied by any positive constant K exactly the same plane results. Therefore

$$
y=\left\langle K \sum_{i=1}^{n} w_{i} x_{i}\right\rangle_{K T}
$$

also realizes the function. Specifically

$$
y=\left\langle 2 x_{1}+2 x_{2}\right\rangle_{3}
$$

also realizes the function of Fig. 1.2a. Note that there can be other hyperplanes not necessarily parallel that separate the function such as $x_{1}+x_{2}=7 / 4$ or $x_{1}+2 x_{2}=5 / 2$. Thus the separating plane is not unique, therefore the values of the weights and threshold to realize a particular logic function are not unique.

The Map Interpretation

Every realization of a logic function with a threshold gate specifies a separating function f and a logic function F both of which are defined on the vertices of the n-cube. For
each vertex p, there exists an ordered triple ($p, f(p), F(p)$). The set $\{(p, f(p), F(p))\}$ of ordered triples for all vertices of the n-cube is called the map of F generated by f.

	P
40	(111)
$\cup 30$	(110), (101)
120	(100), (011)
10	(010), (001)
00	(000)

Fig. 1.3. The map of $F(p)=\left\langle 2 x_{1}+x_{2}+x_{3}\right\rangle_{2.5}$

For each p, there is a point on the real line at $f(p)$. This point is shown by O if $F(p)$ equals 0 or by if $F(p)$ equals 1. Figure 1.3 shows the map of Example 1.l.

A map is divided into two disjoint subsets called the zero and unit parts, those for which $F(p)=0$ and those for which $F(p)=1$. Let U be the smallest $f(p)$ such that $F(p)=1$ and let L be the largest $f(p)$ such that $F(p)=0$. A map is separated if U > L. It has been proved that a logic function F is l.s. if and only if there exists a function of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} w_{i} x_{i}
$$

that yields a separated map for F. (Lewis and Coates)

Consider an arbitrary logic function $F\left(x_{1}, \ldots, x_{k}, \ldots\right.$, x_{n}). The class of 2^{n} function obtained by replacing variables in F by their complements is called the complementary symmetry class corresponding to F. Suppose $F_{k}\left(x_{1}, \ldots, \bar{x}_{k}, \ldots x_{n}\right)$ is equivalent to F except that x_{k} is replaced everywhere by \bar{x}_{k}. If $y=\left\langle w_{1} x_{1}+\ldots+w_{k} x_{k}+\ldots+w_{n} x_{n}\right\rangle_{T}$ is a realization of F, then $y=\left\langle w_{l} x_{1}+\ldots+w_{k} \bar{x}_{k}+\ldots+w_{n} x_{n}\right\rangle_{T}$ is a realization of F_{k}. If F is l.s., then all members of the complementing symmetry class are l.s. In addition, there exists a logic function $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in the same complementing symmetry class as F such that the realization of ϕ has all positive weights when the inputs are $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$. Also, a realization for F can be obtained from the realization of ϕ by complementing some of the variables and changing the threshold. Therefore, a realization for F with all positive weights can be found.

A logic function is unate if and only if in the minimum sum of products (MSP) form no variables appear both complemented and uncomplemented. It has been proved that if a logic function F is l.s., then it is unate and if

$$
f(p)=\sum_{i=1}^{n} w_{i} x_{i}
$$

is the separating function for F, then for each $i, w_{i}>0$
(or $w_{i}<0$) if and only if x_{i} (or \bar{x}_{i}) appears in the MSP form for F. (McNaughton) A function that contains no complemented variables in the MSP form is called a positive unate function. Any other function F in the same complementing symmetry class can be obtained from the positive unate function F_{0} by a simple transformation. By replacing variables by their complements in F_{0} as needed, any function F in the same complementing symmetry class can be realized. The realization of F has the same realization as F_{0} except that some variables are replaced by their complements. This realization of F has all positive weights. In this thesis, only those realizations that have all positive weights will be considered.

For every logic function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, there corresponds a dual function $F^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which is defined as

$$
F^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)
$$

A function F is called self dual if $F=F^{d}$. It has been proved that if $y=\left\langle\underline{x}^{T} \underline{w}\right\rangle_{T}$ is a realization of F then $y=\left\langle\underline{\underline{x}}^{T} \underline{w}\right\rangle_{\sigma-T}$ is a realization of F^{d} where

$$
\sigma=\sum_{i=1}^{n} w_{i}
$$

and F is l.s. if and only if F^{d} is l.s. (Lewis and Coates)

Notice that the AND and OR functions of n variables are dual functions.

CHAPTER II

STATISTICAL ANALYSIS OF THRESHOLD GATE CIRCUITS

Threshold gate circuits are subject to input and weight variations. These variations may cause the gate to produce an erroneous output. In this chapter, three threshold gate circuits are examined in order to determine the nature of these variations.

Logic Systems

In the preceding chapter, threshold gates were considered as logic gates whose inputs were 0 or 1 . In practice, the inputs are voltage levels which are assigned the logical value of 0 or 1 according to the value of the voltage level. For example, a logical 0 may be a voltage in the range 0.0 v to 0.8 v and a logical 1 may be a voltage in the range 1.6 v to 5.0v. Positive logic is defined as a logic system in which the voltage level that represents a 1 is always greater than the voltage level that represents a 0 . Negative logic is defined as a logic system in which the voltage level that represents a 0 is always greater than the voltage level that represents a 1. Now the definition of threshold logic will be extended to such systems.

Consider the positive logic system in which a 0 is represented by a voltage level c_{1} and a 1 is represented by
a voltage level $c_{1}+c_{2}, c_{2}>0$. Let z_{i} be an input variable in this system. For the logic variable x_{i} defined on. $\{0,1\}$,

$$
\begin{equation*}
z_{i}=c_{1}+c_{2} x_{i} \tag{2.1}
\end{equation*}
$$

Let $y=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an arbitrary lis. logic function of n variables whose threshold gate realization is

$$
y=\langle f(p)\rangle_{T}=\left\langle\sum_{i=1}^{n} w_{i} x_{i}\right\rangle_{T}
$$

Consider $F\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. Define a new function

$$
f_{0}(p)=\sum_{i=1}^{n} w_{i} z_{i}
$$

Substituting $c_{1}+c_{2} x_{i}$ for z_{i} produces

$$
\begin{align*}
f_{0}(p) & =\sum_{i=1}^{n} w_{i}\left(c_{1}+c_{2} x_{i}\right) \\
& =c_{1} \sum_{i=1}^{n} w_{i}+c_{2} \sum_{i=1}^{n} w_{i} x_{i} \tag{2.2}\\
& =c_{1} \sigma+c_{2} f(p) \quad \text { where } \sigma=\sum_{i=1}^{n} w_{i}
\end{align*}
$$

Note that if $F=1, f(p) \geq T$ and $f_{0}(p) \geq c_{1} \sigma+c_{2} T$, and if
$F=0, f(p)<T$ and $f_{0}(p)<c_{1} \sigma+c_{2} T$. Thus $f_{0}(p)$ is a separating function of $F\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ if the threshold is. $c_{1} \sigma+c_{2}$ T. Therefore, $F\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is l.s. and equivalent to $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A realization of $y=F\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is given by

$$
\begin{equation*}
y=\left\langle\sum_{i=1}^{n} w_{i} z_{i}\right\rangle c_{1} \sigma+c_{2}{ }^{T} \tag{2.3}
\end{equation*}
$$

Thus any l.s. function F with positive logic input z_{i} can be realized with a single threshold gate and this realization can be obtained from the realization for inputs x_{i} defined on $\{0,1\}$ by changing the threshold.

Consider the negative logic system in which a 1 is represented by a voltage level d_{1} and a 0 is represented by a voltage level $d_{1}+d_{2}, d_{2}>0$. Let w_{i} be an input variable in the system. For the logic variable x_{i} defined on $\{0,1\}$,

$$
\begin{equation*}
w_{i}=d_{1}+d_{2} \bar{x}_{i} \tag{2.4}
\end{equation*}
$$

Hence each w_{i} can be made to correspond to the complement of a positive logic variable z_{i}. If $c_{1}=d_{1}$ and $c_{2}=d_{2}$, then

$$
\begin{equation*}
\bar{z}_{i}=c_{1}+c_{2} \bar{x}_{i}=d_{1}+d_{2} \bar{x}_{i}=w_{i} \tag{2.5}
\end{equation*}
$$

$$
\text { Let } y_{1}=F_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \text { and } y=F\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

be logic functions where y_{1} and $z_{1}, z_{2}, \ldots, z_{n}$ are in a positive logic system and y_{2} and $w_{1}, w_{2}, \ldots, w_{n}$ are in a negative logic system and the systems are related by $w_{i}=\bar{z}_{i}$ and $y_{2}=\bar{y}_{1}$. Converting from a positive logic system to a negative logic system requires complementing each input and the output

$$
\begin{equation*}
y_{2}=\bar{F}_{1}\left(\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{n}\right)=F_{2}\left(w_{1}, w_{2}, \ldots, w_{n}\right) \tag{2.6}
\end{equation*}
$$

Note that $\mathrm{F}_{2}(\mathrm{w})=\mathrm{F}_{1}^{\mathrm{d}}(\mathrm{z})$. Thus the conversion results in the realization of the dual function. If F_{1} is l.s., then $F_{1}{ }^{d}$ is l.s. and consequently F_{2} is l.s. Therefore, a threshold gate realization of a logic function F in a positive logic system realizes the dual function of F in a negative logic system.

A Resistor-Transistor Threshold Gate
One of the earliest threshold gate circuits is the resistor-transistor gate due to Rowe shown in Fig. 2.I. Each of the inputs, $v_{1}, v_{2}, \ldots, v_{n}$ is a voltage level v_{0} or v_{1} which represent a logical 0 or a logical l, respectively. The value of the weight w_{i} is inversely proportional to the value of the resistor R_{i}. The threshold is determined by the values of R_{t} and V_{t}.

Fig. 2. 1 Resistor-transistor Threshold Gate Circuit

Fig. 2. 2 Tunnel Diode-transistor Threshold Gate Circuit

Consider the inputs to be in a positive logic system and let $V_{1}>V_{0}>0$. Let V_{γ} be the base-emitter cutin voltage of the transistor. At cutin, the base current is given by

$$
\begin{aligned}
i_{B} & =\sum_{i=1}^{n} i_{i}-i_{t} \\
& =\sum_{i=1}^{n} \frac{v_{i}-v_{\gamma}}{R_{i}}+\frac{v_{t}-v_{\gamma}}{R_{t}}=f\left(v_{1}, \ldots, v_{n}\right) \\
= & \sum_{i=1}^{n} w_{i} v_{i}+c \quad \text { where } w_{i}=\frac{1}{R_{i}} \text { and } \\
& C=\sum_{i=1}^{n}-\frac{v_{\gamma}}{R_{i}}+\frac{v_{t}-v_{\gamma}}{R_{t}}
\end{aligned}
$$

For $f\left(v_{1}, \ldots, v_{n}\right) \leq 0, i_{B}=0$ and the transistor is cut off and $\mathrm{v}_{0}=\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{D}_{2}}$, where $\mathrm{V}_{\mathrm{D}_{2}}$ is the voltage drop across diode D_{2}. If $f\left(v_{1}, \ldots, v_{n}\right)>0, i_{B}>0$ and the transistor conducts. If i_{B} is large enough, the transistor will saturate and $\mathrm{v}_{0}=\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$. Let $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$ and $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{D}_{2}}$. Thus, the output will be a 0 for those input combinations for which the weighted sum of the input voltages is sufficient to cause the transistor to saturate. For those input combinations which are not sufficient to cause the transistor to conduct, the output will be a l. Ideally, the gate should be constructed so that no input combination can occur which causes
the transistor to remain in the active region, i.e., not saturated or cutoff.

In the foregoing analysis, it is assumed that the input voltage levels were at discrete values V_{0} or V_{1} and that the weights were constant. In practice, the inputs are not constant voltages but are perturbed by drift of their D.C. level, noise, and power supply variation. Generaily, these factors are statistically independent. It is therefore reasonable to assume that each input is a random variable which is normally distributed with mean V_{0} and variance $\sigma_{0}{ }^{2}$ or mean V_{1} and variance $\sigma_{1}{ }^{2}$, the inputs being a or a 1 , respectively. In this thesis, it will be assumed that the set of inputs to a threshold gate is a correlated set of jointly normal random variables.

In the resistor-transistor threshold gate, the weights are inversely proportional to resistor values. These resistors vary with temperature, thermal noise, and age. The weights, therefore, are also dependent upon these factors. The threshold is dependent on the values of the resistors R_{1}, \ldots, R_{n}, the resistor R_{t}, and the transistor switching characteristics. All these factors may be represented as random variables which will be correlated since they are all dependent upon temperature. It is therefore reasonable to represent the weights as a set of correlated, jointly normal random variables.

Consider the change in resistance with temperature

$$
\frac{\Delta R}{\Delta T}=\alpha R_{0}
$$

The resistance of a resistor at temperature $T_{0}+\Delta T$ is given by

$$
R=R_{0}+\Delta R=R_{0}(1+\alpha \Delta T)
$$

where R_{0} is the resistor at the temperature T_{0}. The change in a weight with temperature is given by

$$
\mathrm{w}_{0}+\Delta \mathrm{w}=\frac{1}{\mathrm{R}_{0}+\Delta \mathrm{R}}=\mathrm{R}_{0} \frac{1}{(1+\alpha \Delta T)}=\frac{1}{R_{0}}-\left(\frac{\alpha \Delta T}{I+\alpha \Delta T}\right) \frac{1}{R_{0}}
$$

therefore

$$
\Delta w=-\frac{\alpha \Delta T}{1+\alpha \Delta T} w_{0}
$$

Thus the change in the weights is proportional to the new value of the weight. A similar analysis may be done for noise and age variations which are proportional to resistance.

Variation in the inputs and weights causes variation in the separating function and the threshold of a gate. This can cause the transistor to enter the active region or to give a completely erroneous output. Thatis, the output may be a I (or 0) when the logic function is a (or 1). Due to
the large hysteresis of the switching characteristics of the resistor-transistor threshold gate (typically as large as 200 mV), functions of more than a few variables may possibly not be realized without a large probability of error.

Transistor-Tunnel Diode Threshold Gate
Another threshold gate circuit is the transistortunnel diode gate due to Canion shown in Fig. 2.2. The addition of the tunnel diode in series with the base-emitter junction of the input transistor results in a significant reduction in the switching hysteresis. Other than this, the operation of the circuit is similar to the resistor-transistor threshold gate discussed previously.

Reduction of the switching hysteresis results in more reliable gate operation for randomly varying inputs and weights. It is also possible to reliably realize functions with a greater number of input variables than with the resistor-transistor gate.

Current Switching Threshold Gate

One of the latest threshold gate circuits is that due to Amodei et al. shown in Fig. 2.3. Each input voltage $V_{I N_{1}}$ is compared to a reference voltage $V_{R E F}$ by a differential amplifier. A current I_{i}, given by

$$
I_{i}=\frac{V_{R E F}-V_{B E_{i}}}{R_{i}}
$$

is switched from the point V_{S} or the point V_{B} depending on whether $V_{I N_{i}}>V_{R E F}$ or $V_{I N_{i}}<V_{R E F}$, respectively. Note that unlike the other two gates considered, this gate does not require input voltages that are constant levels V_{0} or V_{1} for n inputs equal to 0 or 1 . For a positive logic system, a 1 may be any voltage greater than $V_{R E F}$ and a 0 may be any voltage less than $\mathrm{V}_{\mathrm{REF}}$ •

The two summed currents at V_{B} and V_{S} develop a
voltage difference across the output differential amplifier which causes the output to be a 0 or 1 according to whether $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{B}}$ or $\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{B}}$, respectively. The threshold is determined by the ratio of R_{S} and R_{B}. The weights w_{i} are determined by $R_{i}, V_{R E F}$, and the characteristics of the i-th input differential amplifier. The separating function may be written as

$$
f(p)=\sum_{i=1}^{n} w_{i} z_{i}
$$

where $w_{i}=\frac{l}{R_{i}}$ and $z_{i}=V_{R E F}-V_{B E}$. Let the z_{i} 's be called internal inputs. As in the resistor-transistor gate, the w_{i} 's and the z_{i} 's may be considered to be random variables. In the current switching gate, however, the variations in z_{i} are due to $V_{R E F}$ and the base-emitter voltage of the input amplifier, and not directly to the input variations. The variations
in $V_{R E F}$ and $V_{\mathrm{BE}_{i}}$ are generally much smaller than the input variations. Thus, this type of gate produces a decoupling of the inputs from the separating function. Note that $\mathrm{V}_{\mathrm{BE}_{\mathbf{i}}}$ will still depend slightly on the input voltage variation.

Probability Model of a Threshold Gate
In a threshold gate, the inputs and weights are random variables. Each weight w_{i} may be written as

$$
\begin{equation*}
w_{i}=n_{w_{i}}+w_{i}^{\prime} \tag{2.7}
\end{equation*}
$$

where ${ }^{\eta^{w}} w_{i}$ is the mean value of w_{i}, and w_{i} "is a random variable with zero mean. Likewise, each input x_{i} may be written as

$$
\begin{equation*}
x_{i}=\eta\left(x_{i}\right)+x_{i}^{\prime} \tag{2.8}
\end{equation*}
$$

where $n\left(x_{i}\right)$ is the mean value of x_{i} given the logical value of X_{i}, and X_{i} ' is a random variable with zero mean. Because each input and each weight is the sum of several independent random variables, the following are reasonable assumptions.

$$
\begin{aligned}
\text { a. }\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { is a set of jointly normal } \\
\text { random variables with covariance matrix } M_{x}
\end{aligned}
$$

b. $\left\{w_{1}, w_{2}, \ldots, w_{n}, w_{n+1}\right\}$ is a set of jointly normal random variables with covariance matrix M_{W}.
c. All x_{i} and w_{i} are independent.
d. The variance of a weight is proportional to the mean of that weight.
e. The variance of an input is constant.

CHAPTER III

PROBABILITY OF ERROR OF A THRESHOLD GATE

Due to variations in inputs and weights, a threshold gate may not always operate as designed. Associated with a threshold gate is the probability that it will not give the desired logical output for given logical inputs. This probability is the probability of error of the gate for a given input combination.

The total probability of error P_{E} of a threshold gate is the sum over all possible input combinations of the probability of error for a given input combination $\underline{x}_{j}, \operatorname{Pr}\left\{e r r o r \mid \underline{x}=\underline{x}_{j}\right\}$, multiplied by the probability of occurrence of that input combination $\operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\}$. Thus

$$
\begin{equation*}
P_{E}=\sum_{j=1}^{m} \operatorname{Pr}\left\{\text { error } \mid \underline{x}=\underline{x}_{j}\right\} \operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\} \tag{3.1}
\end{equation*}
$$

where m is the number of possible input combinations. For n input variables, the maximum value of m is 2^{n}. If all possible input combinations are equally probable the probability of error is

$$
\begin{equation*}
P_{E}=\frac{1}{2^{n}} \sum_{j=1}^{2^{n}} \operatorname{Pr}\left\{\text { error } \mid \underline{x}=\underline{x}_{j}\right\} \tag{3.2}
\end{equation*}
$$

The problem is reduced to finding the probability of error for a given input combination.

Consider any combination of n inputs \underline{x}_{j}. If the logic function $F\left(\underline{x}_{j}\right)$ equals 0 the probability of error is given by

$$
\begin{equation*}
\operatorname{Pr}\left\{y=\langle f(p)\rangle_{0}=1\right\}=\operatorname{Pr}\{f(p) \geq 0\} \tag{3.3}
\end{equation*}
$$

where $f(p)=\underline{x}_{j}{ }^{T} \underline{w}$. If the logic function $F\left(\underline{x}_{j}\right)$ equals I the probability of error is given by

$$
\begin{equation*}
\operatorname{Pr}\left\{y=\langle f(p)\rangle_{0}=0\right\}=\operatorname{Pr}\{f(p)<0\} \tag{3.4}
\end{equation*}
$$

Therefore, if the distribution of $f(p)$ is known, the probability of error may be calculated. The random variables \underline{x}^{T} and \underline{w} may be written

$$
\begin{align*}
& \underline{x}^{T}=\underline{\eta}^{T} x+\underline{x}^{\prime T} \quad \text { and } \tag{3.5}\\
& \underline{w}=\underline{\eta}_{w}+\underline{w}^{\prime}
\end{align*}
$$

where $\underline{x}^{T}=\left\{x_{1}, x_{2}, \ldots, x_{n},-1\right\}, \underline{n}^{T}=\left\{\eta_{x_{1}}, \eta_{x_{2}}, \ldots, \eta_{x_{n}},-1\right\}$, $\underline{x}^{\prime T}=\left\{x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x_{n}^{\prime}, 0\right\}, \underline{w}^{T}=\left\{w_{1}, w_{2}, \ldots w_{n+1}\right\}$, $\underline{n}_{w}^{T}=\left\{\eta_{w_{1}}, \eta_{w_{2}}, \ldots, \eta_{w_{n+1}}\right\}$,
and $\underline{w}^{\prime T}=\left\{w_{1}{ }_{1},^{\prime}{ }^{\prime}{ }_{2}, \ldots, w^{\prime}{ }_{n+1}\right\}$. Using this notation, the separating function can be written

$$
f(p)=\underline{x}^{T} \underline{w}=\underline{n}^{T} x \underline{n}_{w}+\underline{n}^{T} x^{w^{\prime}}+\underline{x}^{\prime T} \underline{n}_{w}+\underline{x}^{\prime T} \underline{w}^{\prime}
$$

or

$$
\begin{equation*}
f(p)=\sum_{i=1}^{n+1}\left(\eta_{x_{i}} \eta_{w_{i}}+\eta_{x_{i}} w_{i}^{\prime}+x_{i}^{\prime}{ }_{i} w_{i}+x^{\prime}{ }_{i} w_{i}^{\prime}\right) \tag{3.6}
\end{equation*}
$$

The expected value η_{f} of the separating function is given by

$$
\begin{aligned}
\eta_{f}=E\left(\underline{x}{ }^{T} \underline{w}\right)= & E\left(\sum_{i=1}^{n+1}\left(\eta_{x_{i}} \eta_{w_{i}}+\eta_{x_{i}}{ }^{\prime}{ }_{i}+x^{\prime}{ }_{i} \eta_{w_{i}}+x^{\prime}{ }_{i} w^{\prime}{ }_{i}\right)\right. \\
= & \sum_{i=1}^{n+1}\left[E\left(\eta_{x_{i}} \eta_{w_{i}}\right)+E\left(\eta_{x_{i}} w^{\prime}{ }_{i}\right)+E\left(x_{i}{ }^{\prime} \eta_{w_{i}}\right)\right. \\
& \left.+E\left(x^{\prime}{ }_{i} w^{\prime}{ }_{i}\right)\right]
\end{aligned}
$$

Since all $\mathrm{x}^{\prime}{ }_{i}$ and $\mathrm{w}^{\prime}{ }_{i}$ have zero mean values, and all $\eta_{\mathrm{x}_{\mathrm{i}}}$ and $\eta_{w_{i}}$ are constants,

$$
\begin{equation*}
n_{f}=\sum_{i=1}^{n+1} n_{x_{i}} n_{w_{i}}=\underline{n}^{T} \underline{n}_{w} \tag{3.7}
\end{equation*}
$$

Equation (3.6) may be rewritten as
$f(p)=\underline{n}^{T} x^{n}-{ }_{W}+\sum_{i=1}^{n+1} \eta_{x} w^{\prime \prime}{ }_{i}+\sum_{i=1}^{n} x^{\prime}{ }_{i} \eta_{w}+\sum_{i=1}^{n} x^{\prime}{ }_{i}{ }^{w^{\prime}}{ }_{i}$

For a non-trivial threshold gate $n \geq 2$. For a practical threshold gate $n \geq 3$ as the only gates realized for $n=2$ and the AND and OR gates. Thus, the last term in Eqn. 3.8 is the sum of at least three random variables. However, these random variables are not independent unless all inputs and weights are uncorrelated.

In general, the inputs $\underline{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and weights $\underline{w}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ are each normally distributed with covariance matrices M_{x} and M_{w}, respectively. There exists a nonsingular $n \mathrm{x} n$ matrix Q and a nonsingular $-n+1 \times n+1$ matrix P such that if

$$
y=Q^{-1} \underline{x}
$$

and

$$
\underline{z}=\mathrm{P}^{-1} \underline{w}
$$

The $\underline{y}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $\underline{z}=\left\{z_{1}, z_{2}, \ldots, z_{n+1}\right\}$ are each normally distributed with all terms independent. (Miller) If \underline{n}_{x} and \underline{n}_{w} are the means of \underline{x} and \underline{w}, respectively,

$$
\underline{n}_{y}=E(\underline{y})=Q^{-1} \underline{n}_{x}
$$

and

$$
\underline{\eta}_{z}=\dot{E}(\underline{z})=P^{-1} \underline{\eta}_{W}
$$

Let $\underline{y}=\underline{n} y+\underline{y}^{\prime}$ and $\underline{z}=\underline{n} \underline{z}^{\prime}+\underline{z}^{\prime}$. The separating function can be written

$$
f(p)=\underline{x}^{T} \underline{w}=\underline{y}^{T} Q^{T} P \underline{z}=\underline{y}^{T} H \underline{z}
$$

or

$$
f(p)=\underline{n}_{y}^{T} \underline{H}_{z}+\underline{n}_{y}^{T} \underline{H}^{\prime}+y^{\prime} T_{\underline{H}_{z}}+\underline{y}^{\prime} \mathrm{T}_{\underline{H} \underline{Z}^{\prime}}
$$

where $H=Q^{T} P$. Note that the sum $\underline{n}_{y}^{T} \underline{H z}^{\prime}+\underline{Y}^{\prime T} \underline{H}_{z}$ is the sum of independent normally distributed random variables and is therefore normally distributed. The term $\underline{\underline{\prime}}{ }^{\prime T} \mathrm{~Hz}^{\prime}$ is not normally distributed.

Assume that the standard deviation $\sigma_{w_{i}}$ of each weight w_{i} is small compared to its mean $\eta_{w_{i}}$, that is,

$$
\begin{equation*}
\sigma_{w_{i}} \ll \eta_{w_{i}} \tag{3.9}
\end{equation*}
$$

Since $z_{i}^{\prime}=\sum_{j=1}^{n+1} p_{i j} w_{j}^{\prime}$ and $n_{z_{i}}=\sum_{j=1}^{n+1} p_{i j}{ }^{n} w_{j}$, then $\sigma_{z_{i}} \ll n_{z_{i}}$ for for all z_{i}. Note that
and

$$
y^{\prime}{ }^{T} \underline{H}_{z}=\sum_{i=1}^{n} \sum_{j=1}^{n} y_{i}^{\prime} h_{i j}^{n} z_{j}
$$

$$
\underline{y}^{\prime T} \underline{H z}^{\prime}=\sum_{i=1}^{n} \sum_{j=1}^{n} y_{i}^{\prime} h_{i j}^{z} z_{j}^{\prime}
$$

Therefore, $y_{i}^{\prime} h_{i j} z_{j}^{\prime} \ll y_{i}^{\prime} h_{i j}{ }^{n} z_{j}$ for all $i=1, \ldots, n$ and $j=1, \ldots, n$. Hence $\underline{Y}^{\prime} \mathrm{T}_{\mathrm{Hz}}{ }^{\prime}$ is small compared to $\underline{Y}^{\prime} \mathrm{T}_{\mathrm{H} \underline{Z}_{z}}$ and $\underline{x}^{\prime T}{ }^{T}$ is small compared to $\underline{!^{\prime}}{ }^{T} \eta_{w}$. Now Eq. 3.8 becomes

$$
\begin{equation*}
f(p) \simeq{\underset{n}{x}}_{T}^{n_{w}}+{\underset{n}{n_{x}} \underline{w}^{\prime}}_{T}+\underline{x}^{\prime T} n_{w} \tag{3.10}
\end{equation*}
$$

The separating function is now a sum of normal random variables and is therefore normally distributed.

The variance of the separating function σ_{f}^{2} can now be calculated:

$$
\sigma_{f}^{2}=\sigma^{2}\left(\underline{\eta}_{x}^{T} \underline{\eta}_{W}+\underline{n}_{x}^{T} \underline{w}^{\prime}+\underline{x}^{\prime T} \underline{\eta}_{w}\right)
$$

Since \underline{x}^{\prime} and \underline{W}^{\prime} are independent and $\underline{\eta}_{x}$ and $\underline{\eta}_{w}$ are constant,

$$
\sigma_{f}^{2}=\sigma^{2}\left(\underline{n}_{x}^{T} \underline{w}^{\prime}\right)+\sigma^{2}\left(\underline{x}^{\prime T} \underline{\eta}_{w}\right)
$$

The variances of linear combinations of normal random variables, $\underline{n}_{x} \underline{w}^{\prime}$ and $\underline{x}^{\prime T} \underline{\eta}_{W}$, respectively are

$$
\begin{aligned}
& \sigma^{2}\left(\underline{n}_{x^{\prime}}^{T}\right)=\underline{n}_{x}^{T} w^{\underline{\eta}} \underline{x} \\
& \sigma^{2}\left(\underline{x}^{\prime T} \underline{\eta}_{w}\right)=\underline{n}_{-w}^{T} M_{x} \underline{\eta}_{w}
\end{aligned}
$$

where M_{w} and M_{x} are the covariance matrices of \underline{w}^{\prime} and \underline{x}^{\prime}, respectively. (Morrison) The variance of the separating function is then

$$
\begin{equation*}
\sigma_{f}^{2}=\underline{n}_{x}^{T} M_{w} \underline{n}_{x}+\underline{n}_{w}^{T} M_{x} \underline{n}_{w} \tag{3.11}
\end{equation*}
$$

The mean and variance of the separating function are now known; therefore the probability of error can be calculated. For those points of the n-cube where $F=0$, the probability of error is the probability that $f(p)$ is greater that or equal to zero.
$P(f(p)>0)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{f}} e^{-\left(t-\eta_{f}\right)^{2} / 2 \sigma_{f}^{2}} d t=P(\infty)-P\left(-\frac{\eta_{f}}{\sigma_{f}}\right)$
where $P\left(X_{1}\right)=\operatorname{Pr}\left\{X \leq x_{1}\right\}$, X is a normal random variable with zero mean and unit variance. Note that $P(-\infty)=0$, $P(\infty)=1$, and $P(-x)=1-P(x)$. Thus

$$
\begin{equation*}
P(f(p)>0)=1-P\left(-\frac{\eta_{f}}{\sigma_{f}}\right)=P\left(\frac{\eta_{f}}{\sigma_{f}}\right) \tag{3.12}
\end{equation*}
$$

For those points of the n-cube where $F=1$, the probability of error is the probability that $f(p)$ is less than 0.

$$
\begin{align*}
P(f(p)<0) & =\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi} \sigma_{f}} e^{-\left(t-\eta_{f}\right)^{2} / 2 \sigma_{f}^{2}} d t \\
& =P\left(-\frac{\eta_{f}}{\sigma_{f}}\right)-P(-\infty) \\
& =P\left(-\frac{\eta_{f}}{\sigma_{f}}\right) \tag{3.13}
\end{align*}
$$

The total probability of error P_{E} is given by
$P_{E}=\sum_{p_{i} \varepsilon P(0)} \operatorname{Pr}\left\{p_{i}\right\} P\left(\frac{\eta_{f}}{\sigma_{f}}\right)+\sum_{p_{i}} \sum_{f(1)} \operatorname{Pr}\left\{p_{i}\right\} P\left(-\frac{\eta_{f}}{\sigma_{f}}\right)$
where $P(0)=\left\{p_{i} \mid F=0\right\}$ and $P(1)=\left\{p_{i} \mid F=1\right\}$. For equally likely input combinations
$P_{E}=\frac{I}{2^{n}}\left(\sum_{p_{i} \varepsilon P(0)} P\left(\frac{\eta_{f}}{\sigma_{f}}\right)+\sum_{p_{i} \varepsilon P(1)} P\left(-\frac{\eta_{f}}{\sigma_{f}}\right)\right)$

Thus, when the means and variances of the weights and inputs are known, the probability of error for each input combination may be calculated. The total probability of error may be calculated if the probability of occurrence of the input combination is known.

CHAPTER IV

PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

An error in a threshold gate network is caused by the unreliability of the gates that comprise the network. In this chapter, nonsequential, single output networks are analyzed and a procedure for finding the probability of error is derived.

A network of logic gates can be subdivided into levels. The first level contains gates whose inputs are network inputs and not outputs of any gate in the network. Since the network is nonsequential, the $n-t h$ level contains gates whose inputs are network inputs, or outputs of any gates in any lower level. The output level is a gate whose inputs are network inputs, or outputs of any other gate in the network.

A general two-level threshold network consisting of m gates with n inputs is shown in Fig. 4.1. Note that in general every network input goes to every gate in the network. If a certain gate G_{j} does not require a network input x_{i}, the weight $w_{i j}$ is set equal to zero.

Let $G_{1}, \ldots, G_{k}, \ldots, G_{m}$ be threshold gates with weights $\left\{W_{i \cdot j} \mid l \leq i \leq n, l \leq j \leq m\right\}$ and thresholds T_{1}, \ldots, T_{m} such

Fig. 4.1. Two Level Threshold Gate Network
that the separating function $f_{k}(p)$ of the $k-t h$ gate is

$$
\begin{equation*}
f_{k}(p)=\sum_{i=1}^{n} w_{i k} x_{i}-T_{k} \tag{4.1}
\end{equation*}
$$

Let G_{m+1} be a threshold gate with weights $w_{1, m+1}, \ldots$, $w_{m+n, m+1}$ and threshold T_{m} such that its separating function $f_{m+1}(p)$ is

$$
\begin{equation*}
f_{m+1}(p)=\sum_{i=1}^{n} w_{i, m+1} x_{i}+\sum_{j=1}^{m} w_{n+j, m+1} y_{j}-T_{m+1} \tag{4.2}
\end{equation*}
$$

Let $x^{\prime}{ }_{i} \ldots . . x^{\prime}{ }_{m}$ be the inputs to G_{m+1} such that

$$
\begin{array}{ll}
x_{i}^{\prime}=x_{i} & 1 \leq i \leq n \\
x_{n+j}^{\prime}=y_{j} & 1 \leq j \leq m
\end{array}
$$

Eqn. (4.2) now becomes

$$
\begin{equation*}
f_{m+1}(0)=\sum_{i=1}^{n+m} w_{i, m+1} x_{i}^{\prime}-T_{m+1} \tag{4.3}
\end{equation*}
$$

The probability of error of the network is the probability of error of gate G_{m+1} for a given combination of its inputs, mulitplied by the probability of occurrence of that input combination. The probability of occurrence of the inputs to G_{m+1} depends upon the probability of occurrence of the
inputs to the network and the probability of occurrence of the outputs of gates G_{1}, \ldots, G_{m}.

The probability of occurrence of the output y_{k} of gate G_{k} for a given input combination \underline{x}_{j} is

$$
\begin{align*}
& \operatorname{Pr}\left\{y_{k}=0 \mid \underline{x}=\underline{x}_{j}\right\}=\operatorname{Pr}\left\{f_{k}(p)<0 \mid \underline{x}=x_{j}\right\} \tag{4.4}\\
& \operatorname{Pr}\left\{y_{k}=1 \mid x=\underline{x}_{j}\right\}=\operatorname{Pr}\left\{f_{k}(p) \geq 0 \mid x=x_{j}\right\}
\end{align*}
$$

Thus, the probability of occurrence of the output is

$$
\begin{align*}
& \operatorname{Pr}\left\{y_{k}=0\right\}=\operatorname{Pr}\left\{f_{k}(p)<0 \mid \underline{x}=\underline{x}_{j}\right\} \operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\} \tag{4.5}\\
& \operatorname{Pr}\left\{y_{k}=1\right\}=\operatorname{Pr}\left\{f_{k}(p) \geq 0 \mid x=x_{j}\right\} \operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\}
\end{align*}
$$

where $\operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\}$ is the probability of occurrence of the input combination \underline{x}_{j}. For any input combination \underline{x}_{j}, the distribution of $f_{k}(p)$ may be found from the statistics of the weights and inputs. Hence, $\operatorname{Pr}\left\{y_{k}=0 \mid \underline{x}_{\mathrm{x}} \underline{x}_{j}\right\}$ and $\operatorname{Pr}\left\{y_{k}=1 \mid \underline{x}=\underline{x}_{j}\right\}$ may be calculated without regard to the function to be realized by the network.

The probability of error of gate G_{m+1} for a given combination of its inputs $x^{\prime T}{ }_{i}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is

$$
\begin{equation*}
P_{E}=\operatorname{Pr}\left\{\operatorname{error} \mid \underline{x}^{\prime}=\underline{x}_{i}^{\prime}\right\} \operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i}\right\} \tag{4.6}
\end{equation*}
$$

For each combination of network inputs x_{j}, there are 2^{m} possible combinations of the outputs $Y_{1} \ldots, Y_{m}$. The probability of occurrence of a combination of inputs to G_{m+1} is

$$
\begin{equation*}
\operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}_{i}^{\prime}\right\}=\operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i} \mid \underline{x}=\underline{x}_{j}\right\} \operatorname{Pr}\left\{\underline{x}=\underline{x}_{j}\right\} \tag{4.7}
\end{equation*}
$$

Therefore the probability of error is
$P_{E}=\sum_{j=1}^{2 n} \operatorname{Pr}\left\{\operatorname{error} \mid \underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i}\right\} \operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}_{i}^{\prime} \mid \underline{x}=\underline{x}_{j}\right\} \operatorname{Pr}\left\{\underline{x}_{\left.\underline{x}=\underline{x}_{j}\right\}}\right\}$ (4.8)
where
$\operatorname{Pr}\left\{\operatorname{error} \mid \underline{x}^{\prime}=\underline{x}_{i}^{\prime}\right\} \operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i} \mid \underline{x}=\underline{x}_{j}\right\}$

$$
=\operatorname{Pr}\left\{f_{m+1}\left(\underline{x}^{\prime}\right) \geq 0 \mid \underline{x}^{\prime}=\underline{x}_{i}^{\prime}\right\} \operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}_{i}^{\prime} \mid \underline{x}_{\underline{x}}^{j} \underline{-}_{j}\right\} \text { if } F\left(\underline{x}_{j}\right)=0
$$

or

If $\operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i} \mid \underline{x}=\underline{x}_{j}\right\}$ is known, the probability of error can be calculated as shown in Chapter III.

For each network input combination \underline{x}_{j}, there are 2^{m} combinations of x_{i} corresponding to the 2^{m} combinations of the outputs of gates G_{1}, \ldots, G_{m}. Let

$$
\begin{equation*}
P_{b}=\operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}_{i}^{\prime} \mid \underline{x}=\underline{x}_{j}\right\} \tag{4.10}
\end{equation*}
$$

where b is a binary number $b_{m} b_{m-1} \ldots b_{1}$ such that b_{i} equals y_{i} given x equals \underline{x}_{j}. For m gate outputs, b lies in the range $0 \leq b \leq 2^{m}-1$. The 2^{m} probability P_{b} must now be found.

Although $\operatorname{Pr}\left\{\mathrm{y}_{\mathrm{k}}=0\right\}$ and $\operatorname{Pr}\left\{\mathrm{y}_{\mathrm{k}}=1\right\}$ can be found for each first level gate G_{k},

$$
\begin{equation*}
P_{b}=\prod_{k=1}^{n} \operatorname{Pr}\left\{y_{k}=b_{k}\right\} \tag{4.11}
\end{equation*}
$$

only if no input goes to more than one first level gate and the inputs and weights are all uncorrelated, thus making all the first level gate outputs independent.

In order to find the probability $P_{b}, 2^{m}$ independent equations relating the P_{b} 's can be found. Since all 2^{m} possible combinations of b are mutually exclusive and one b must occur,

$$
\begin{equation*}
\sum_{b=0}^{2^{m}-1} P_{b}=1 \tag{4.12}
\end{equation*}
$$

Each of the $\operatorname{Pr}\left\{f_{k}(p) \geq 0\right\}$ yields an equation

$$
\begin{equation*}
\operatorname{Pr}\left\{f_{k}(0) \geq 0\right\}=\operatorname{Pr}\left\{y_{k}=1\right\}=\sum_{b=1}^{2^{m}-1} b_{k} P_{b} \tag{4.13}
\end{equation*}
$$

for a total of m equations. Now consider all possible products of 2 of the m separating functions $f_{1} f_{2}, f_{1} f_{3}, \ldots$,
$f_{i} f_{j}, \ldots, f_{m-1} f_{m}$. There are $\binom{m}{2} *$ such products. Similarly, there are $\binom{m}{n}$ products $\pi(b)$ of n of the m separating functions, where

$$
\begin{equation*}
\Pi(b)=\prod_{i=1}^{m} \quad\left(b_{i}\left(f_{i}-1\right)+1\right) \tag{4.14}
\end{equation*}
$$

For example, if there are 5 gates in the first level, $\Pi(22)=\Pi(10110)=f_{5} f_{3}{ }^{\ddagger} 2$. Considering all possible combinations, there are $2^{m}-m-1$ possible products of 2 or more of the m separating functions. Therefore, there are $2^{m}-m-1$ probabilities

$$
\begin{equation*}
P_{o}(b)=\operatorname{Pr}\left\{\pi\left(b_{i}\right) \geq 0\right\} \tag{4.15}
\end{equation*}
$$

Note that $I(\mathrm{~b})$ is positive only if an even number r of the n separating functions in the product are negative, that is, when r of the n outputs are equal to zero. Thus, these probabilities are related to the P_{b} 's. In Eqn. 4.12, 4.13, and 4.14, there are 2^{m} equations in 2^{m} unknowns P_{b}. If this set of equations is linearly independent, we may solve for P_{b}.

* $\binom{m}{n}=\frac{m!}{n!(m-n)!}$ are the number of combinations of m objects taken n at a time, also known as binomial coefficients.

Three cases will now be considered. For m equal to two, there are four unknown $\mathrm{p}_{00}, \mathrm{p}_{01}, \mathrm{p}_{10}, \mathrm{p}_{11}$ which are related by the following set of linear equations.

$$
\begin{aligned}
\mathrm{p}_{00}+\mathrm{p}_{01}+\mathrm{p}_{10}+\mathrm{p}_{11} & =1 \\
\mathrm{p}_{01} & =\mathrm{p}_{0}(0) \\
+\mathrm{p}_{11} & =\operatorname{Pr}\left\{\mathrm{f}_{1} \geq 0\right\} \\
\mathrm{p}_{10}+\mathrm{p}_{11} & =\operatorname{Pr}\left\{\mathrm{f}_{2} \geq 0\right\}=\mathrm{p}_{0}(1) \\
+\mathrm{p}_{11} & =\operatorname{Pr}\left\{\mathrm{f}_{1} \mathrm{f}_{2} \geq 0\right\}
\end{aligned}
$$

or in matrix notation:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \tag{4.16}\\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{00} \\
p_{01} \\
p_{10} \\
p_{11}
\end{array}\right]=\left[\begin{array}{l}
p_{0}(0) \\
p_{0}(1) \\
p_{0}(2) \\
p_{0}(3)
\end{array}\right]
$$

For m equal to one, there are two unknowns, p_{0} and p_{1}, which are related by the following set of linear equations:

$$
\begin{aligned}
p_{0}+p_{1} & =1 \quad=P_{0}(0) \\
p_{1} & =\operatorname{Pr}\left\{f_{1}>0\right\}
\end{aligned}=P_{0}(1)
$$

or

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1}
\end{array}\right]=\left[\begin{array}{l}
p_{0}(0) \\
p_{0}(1)
\end{array}\right]} \\
B_{1} \underline{P}=\underline{P}_{0}
\end{gathered}
$$

For m equal to three, the equation may be written:

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
p_{010} \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{000} \\
p_{011} \\
p_{100} \\
p_{101} \\
p_{0}(2) \\
p_{110}(1) \\
p_{111}(3)
\end{array}\right]=\left[\begin{array}{l}
p_{0}(0) \\
p_{0}(4) \\
p_{0}(5) \\
P_{0}(6) \\
p_{0}(7)
\end{array}\right]
$$

The set of 2^{m} equations has a unique solution if B_{m} is nonsingular.

Notice that for each case the matrix B_{m} may be formed from a matrix H_{m-1} such that

$$
B_{m}=\left[\begin{array}{ll}
H_{m-1} & H_{m-1} \tag{4.17}\\
\bar{H}_{m-1} & H_{m-1}
\end{array}\right]
$$

where \bar{H}_{m-1} is formed from H_{m-1} by logically complementing each element. Thus,
$H_{0}=1 . \quad H_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=B_{1} \quad H_{2}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]=B_{2}$.

This reproducing property has been verified for m less than or equal to four.

The B_{m} matrices are related to the Hadamard matrix $H^{\prime}{ }_{q}$ where $q=2^{m}$. A Hadamard matrix $H^{\prime}{ }_{q}$ is a $q x q$ orthogonal matrix whose elements are the real numbers +1 and -1 . It is evident that

$$
H^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

It has been proved that if $H^{\prime}{ }_{q}$ is a $q \times q$ Hadamard matrix then,

$$
\mathrm{H}^{\prime}{ }_{2 \mathrm{q}}=\left[\begin{array}{cc}
\mathrm{H}^{\prime} & \mathrm{H}^{\prime} \tag{4.18}\\
-\mathrm{H}^{\prime} & \mathrm{H}^{\prime} \\
&
\end{array}\right]
$$

is a $2 q \times 2 q$ Hadamard matrix (Peterson). The existence of Hadamard matrices has been proved for $q=2^{k}$ where k is an integer. The matrix B_{m} is related to the Hadamard matrix $H^{\prime}{ }_{q}$ by

$$
\begin{equation*}
\mathrm{B}_{\mathrm{m}}=\frac{1}{2}\left[\mathrm{H}_{\mathrm{q}}^{\prime}+\mathrm{U}_{\mathrm{q}}\right] \tag{4.19}
\end{equation*}
$$

where U_{q} is a $q \times q$ matrix with every element equal to 1. Solving Eqn. 4.18 for $H^{\prime}{ }_{q}$ results in

$$
\begin{equation*}
H_{q}^{\prime}=2 B_{m}-U_{q} \tag{4.20}
\end{equation*}
$$

Since the first row of the B_{m} matrix always has all elements equal to one, subtracting the U_{q} matrix from $2 B_{m}$ is equivalent to subtracting the first equation from all the other equations multiplied by a constant. The resulting set of linear equations is independent, being related by the nonsingular matrix $H^{\prime}{ }_{q} H^{\prime \prime}{ }_{q}$ is orthogonal, hence, $H^{\prime \prime}{ }^{-1}=H_{q}^{\prime}$. Thus the original set of equations related by B_{m} are independent, therefore, B_{m} is nonsingular.

Since Hadamard matrices are orthogonal,

$$
\begin{equation*}
H^{\prime}{ }_{q^{\prime}}{ }_{q}^{T}=q^{-1} I_{q} \tag{4.21}
\end{equation*}
$$

where I_{q} is the $q x q$ identify matrix and q^{-1} is a normalizing factor. Substituting Eqn. 4.19 into Eqn. 4.20 results in

$$
\begin{gathered}
I_{q}=q^{-1}\left[2 B_{m}-U_{q}\right]\left[2 B_{m}^{T}-U_{q}^{T}\right] \\
I_{q}=q^{-1}\left[4 B_{m} B_{m}^{T}-2 B_{m} U_{q}-2 U_{q} B^{T}{ }_{m}+U_{q}^{2}\right]
\end{gathered}
$$

Note that $U_{q}^{T}=U_{q}$. Premultiplying the above equation by $\mathrm{B}_{\mathrm{m}}^{-1}$ yields:

$$
B_{m}^{-1}=q^{-1}\left[4 B_{m}^{T}-2 U_{q}\right]-q^{-1} B^{-1}\left[2 U_{q} B_{m}^{T}-U_{q}^{2}\right]
$$

Note that

$$
\mathrm{U}_{\mathrm{q}}^{2}=\mathrm{U}_{\mathrm{q}} \mathrm{U}_{\mathrm{q}}=\mathrm{q}_{\mathrm{q}}
$$

Notice that the first column of B_{m}^{T} has q elements equal to one and that all other columns have $q / 2$ elements equal to one. Hence,

$$
2 \mathrm{U}_{\mathrm{q}} \mathrm{~B}_{\mathrm{m}}^{\mathrm{T}}=\mathrm{q}\left[\begin{array}{llll}
2 & 1 & \ldots & \ldots \\
2 & 1 & & 1 \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
2 & 1 & \ldots & \ldots
\end{array}\right]
$$

Therefore,

$$
2 U_{q} B_{m}^{T}-U_{q}^{2}=q\left[\begin{array}{llll}
1 & 0 & \ldots & \cdots \\
1 & 0 & & 0 \\
\vdots & & & \vdots \\
1 & 0 & \ldots & \\
\vdots
\end{array}\right]
$$

Since $B_{m}^{-1} B_{m}=I_{q}$ and since all elements in the last column of B_{m} are equal to one,

$$
\mathrm{B}^{-1}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

and therefore

$$
A_{q}=B_{m}^{-1}\left[\begin{array}{lllll}
1 & 0 & \ldots & \cdots & 0 \\
1 & 0 & & 0 \\
\vdots & & & \\
1 & 0 & \ldots & \ldots & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & & & 0 \\
\vdots & & & \\
\vdots & & & 0 \\
0 & 0 & & 0
\end{array}\right]
$$

Finally,

$$
\begin{equation*}
B_{m}^{-1}=\frac{1}{2^{m-2}}\left[B_{m}^{T}-\frac{1}{2} U\right]-A_{q} \tag{4.22}
\end{equation*}
$$

Thus, B_{m}^{-1} may be easily calculated from B_{m}, even when m is large.

The $P_{0}(b)$'s must now be found. Eqn. 4.15 states

$$
P_{0}(b)=\operatorname{Pr}\{\pi(b) \geq 0\}
$$

$P_{0}(b)$ may be calculated if the distribution of $I I(b)$ is known. II (b) is a product of separating functions of the form

$$
f_{i}(p)=\underline{n}_{x_{i}}^{T} \underline{n}_{w_{i}}+\underline{n}_{x_{i}}^{T} \underline{w}_{i}^{\prime}+\underline{x}^{\prime} i^{T} \underline{n}_{i}+\underline{x}_{i}^{\prime T} \underline{w}_{i}^{\prime}
$$

For $\sigma_{w_{i}}^{2} \ll \eta_{w_{i}}$ the separating function may be written as

$$
f_{i}(p) \simeq \underline{n}_{x_{i}}^{T} \underline{n}_{w_{i}}+\underline{n}_{x_{i}}^{T} \underline{w}_{i}^{\prime}+\underline{x}^{\prime T} \underline{n}_{w_{i}}
$$

Consider the product of two separating functions f_{1} and f_{2} :
$\pi(b)=f_{1} f_{2} \simeq \eta_{1} \eta_{2}+\eta_{1} \underline{\eta}_{x_{2}}^{T} \underline{W}_{2}^{\prime}+\eta_{1} x^{\prime}{ }_{2}^{T} \underline{\eta}_{W_{2}}$
where $\eta_{1}=\underline{\eta}_{x_{1}}^{T} \underline{\eta}_{W_{1}}$ and $\eta_{2}=\underline{n}_{x_{2}}^{T_{W_{2}}}$. For $\sigma_{w_{1}}^{2}$ and $\sigma_{w_{2}}^{2}$ small compared to every component of $\underline{n}_{W_{1}}$ and $\underline{n}_{W_{2}}$, Eqn. 4.23 becomes

$$
\begin{equation*}
+\underline{x}^{\prime}{ }_{1} \underline{n}_{w_{1}}-\frac{x}{2}{\stackrel{n}{n_{w}}} \tag{4.24}
\end{equation*}
$$

With the exception of the last term, this is a sum of normal random variables. It is possible that under certain conditions this term is small compared with the other terms and can be neglected. The worst case occurs when all inputs are equal to zero. The separating function then becomes

$$
f \simeq-w_{n+1}+\underline{x}^{\prime T} \underline{n}_{w_{i}}+w_{n+1}^{\prime}
$$

and the product II (b) becomes

$$
\begin{aligned}
& +\underline{x}^{\prime}{ }^{T} \underline{n}_{w_{1}} \underline{x}_{2}^{T} \underline{n}_{w_{2}}
\end{aligned}
$$

where T_{1} and T_{2} are the thresholds for G_{1} and G_{2}, respectively. To be able to neglect the last term, the variance of $x^{\prime T}{ }^{T} n_{W_{1}}$ and $\underline{x}^{\prime}{ }^{T} \underline{n}_{W_{2}}$ must be small compared to T_{1} and T_{2}, respectively, that is,

$$
\begin{align*}
& \underline{\eta}_{W_{1}}^{T_{M}}{ }_{x_{1}-\eta^{-}}^{T} \ll T_{1} \tag{4.25}\\
& \underline{\eta}_{W_{1}}^{T} M_{x_{2}} \underline{\eta}_{W_{2}} \ll T_{2}
\end{align*}
$$

where $M_{x_{1}}$ and $M_{x_{2}}$ are the covariance matrices of \underline{x}_{1} and \underline{x}_{2}, respectively. The above conditions are met for small input variances $\sigma_{x_{1}}^{2}$ and $\sigma_{x_{2}}^{2}$. The product $\pi(b)$ is approximately

$$
\simeq n_{1} \eta_{2}\left(1+\frac{\underline{n}_{2}^{T}{ }^{w^{\prime}} 2}{n_{2}}+\frac{\underline{x}^{\prime}{ }^{T} \underline{n}_{w_{2}}}{n_{2}}+\frac{\underline{n}_{1} T_{1} \underline{w}_{1}^{\prime}}{n_{1}}+\frac{\underline{x}^{\prime} \underline{T}_{1} \underline{n}_{w_{1}}}{n_{1}}\right)
$$

In like manner, a product $\Pi(b)$ of n separating functions is approximately
$\Pi(b) \simeq \Pi_{n}\left(1+\sum_{i=1}^{m} b_{i} \cdot \frac{\underline{n}_{x_{i}}{ }^{W^{\prime}} i}{n_{i}}+\sum_{i=1}^{m} b_{i} \cdot \frac{\underline{x}^{\prime}{ }_{i} \underline{n}_{w_{i}}}{n_{i}}\right)$
where $\pi_{\eta}=\prod_{i=1}^{m}\left(b_{i}\left(n_{i}-1\right)+1\right)$. Now $\Pi(b)$ is approximately a sum of jointly normal random variables. Therefore, it is reasonable to assume that $\Pi(b)$ is normally distributed. Since $E\left(\underline{w}_{i}\right)$ and $E\left(\underline{x}_{i}\right)$ are both zero for all $i=1, \ldots, m$,

$$
\begin{equation*}
E(\pi(b))={\underset{i=1}{m}\left(b_{i}\left(n_{i}-1\right)+1\right), ~(1)}^{m} \tag{4.27}
\end{equation*}
$$

In general, every network input goes to every gate in the network. Therefore,

$$
\underline{n}_{x_{i}}=\underline{n}_{x} \text { and } \underline{x}_{i}^{\prime}=\underline{x}^{\prime}
$$

for all values of i. Eqn. 4.26 now becomes

$$
\begin{equation*}
\pi(b)=\pi_{n}\left(1+\underline{n}_{x} *^{T} \underline{w}^{*} \underline{x}^{\prime} \cdot \underline{\underline{n}}_{w}{ }_{w}\right) \tag{4.28}
\end{equation*}
$$

where $\underline{n}_{x}^{*} *^{T}=\frac{b_{1} n_{x}}{n_{1}}, \frac{b_{2} n_{x}^{T}}{n_{2}}, \ldots, \frac{b_{m} \underline{n}_{x}^{T}}{n_{m}}$

$$
\begin{aligned}
& \underline{w}^{T}=\underline{w}^{\prime} 1^{T}, \underline{w}_{2}^{\prime}, \ldots, \underline{w}_{n}^{\prime}{ }_{n}^{T} \\
& \underline{n}_{w}^{*}{ }^{T}=\sum_{i=1}^{m} \frac{b_{i} \underline{n}_{w_{i}}}{n_{i}}
\end{aligned}
$$

Since \underline{x}^{\prime} and \underline{w}^{*} are sets of jointly normal random variables, their covariance matrices M_{x} and M_{W}^{*} can be computed if the variances and correlations of the weights and inputs are known. The variance of Π (b) is given by

$$
\begin{equation*}
\sigma^{2}(\pi(b))=\left(\eta_{\Pi}\right)^{2}\left[\underline{n}_{x}^{*} M_{w}^{T} \underline{M}_{x}^{*}+\underline{n}_{W}^{*}{ }^{T} M_{x} \underline{\eta}_{W}^{*}\right] \tag{4.29}
\end{equation*}
$$

The distribution of $\Pi(b)$ is now known, hence $\operatorname{Pr}\{I(b) \geq 0\}$ can be calculated. Thus, $\operatorname{Pr}\left\{\underline{x}^{\prime}=\underline{x}^{\prime}{ }_{i} \mid \underline{x}=\underline{x}_{j}\right\}$ can be found for each input combination \underline{x}_{j}, and the probability of error can be computed.

For threshold gate networks with more than two levels, the probability of error can be calculated by successive applications of the techniques shown above. From the separating
functions of the gates in the second level, the probability of occurrence of the inputs to the third level can be calculated. It is then possible to calculate the probability of error of the third level or the distribution of the products of the third level separating function and proceed to the next level. The process is repeated for the remaining higher levels in the network.

For each network input combination, any level n may be considered as a system which transforms the probability of occurrence of its n_{i} inputs into the probability of oc- , currence of the n_{i+1} inputs to the next level. By successive transformations, the probability of occurrence of the inputs to the highest level can be found and thus the probability of error of the network.

CHAPTER V

SIMULATION OF THRESHOLD GATE NETWORKS

A threshold gate can be simulated by generating random numbers for the inputs and weights, computing the separating function, comparing it to the threshold, and computing the probability of error. A network of threshold gates can then be simulated by simulating each gate in the network. If the separating function of the output gate of a network is compared to its threshold, the probability of error of the network can be computed. It is also possible to examine the density function of the separating function of a single gate and the density function of the products of the separating functions of several gates.

Generation of Correlated, Normally Distributed Random Numbers The distribution of a sum of n independent random numbers approaches the normal distribution as n approaches infinity. In fact, if n independent, uniformly distributed random numbers are summed the distribution of the sum is approximately normal for $n \geq 3$. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n independent random numbers, uniformly distributed on the interval $\left\{0 \leq x_{i} \leq l\right\}$. The mean of any x_{i} is equal to $1 / 2$ and the variance is equal to $1 / 12$.

When $n=12$, the sum v

$$
v=\sum_{i=1}^{12} x_{i}
$$

is approximately normally distributed with mean

$$
E(v)=\sum_{i=1}^{12} E\left(x_{i}\right)=6
$$

and variance

$$
\sigma^{2}(v)=\sum_{i=1}^{12} \sigma^{2}\left(x_{i}\right)=1
$$

Thus,

$$
\begin{equation*}
y=\sum_{i=1}^{12} x_{i}-6 \tag{5.1}
\end{equation*}
$$

is approximately normally distributed with zero mean and unit variance.

The numbers x_{i} can be generated by a digital computer using a power residue method utilizing the following equation.

$$
n_{i+1}=m n_{i} \bmod w
$$

where $x_{i}=\frac{n_{i}}{w}, m$ is a constant, and w is the largest integer that can be stored on a word. For a.computer with a word length of k bits, the maximum integer that can be stored in a word is $2^{k}-1$. The constant m is selected to
give the longest possible sequence of numbers before repeating.

Note that $-6 \leq y \leq 6$. A polynomial correction can ${ }^{-}$. be applied to y in order to obtain a better approximation to the normal distribution. Thus if

$$
y=\frac{1}{4}\left(\sum_{i=1}^{12} x_{i}-6\right)
$$

we can find the constants $a_{1}, a_{3}, a_{5}, a_{7}, a_{9}$ so that

$$
z=a_{1} y+a_{3} y^{3}+a_{5} y^{5}+a_{7} y^{7}+a_{9} y^{9}
$$

is a better approximation to the normal distribution than y . By successive application of the techniques described above, a sequence of independent, approximately normal random numbers can be generated.

Let $\underline{Z}^{T}=z_{1}, z_{2}, \ldots, z_{n}$ be a vector of independent random variables each normally distributed with zero mean and unit variance. The random variables are jointly normal with covariance matrix M_{z} equal to the $n \times n$ identity matrix I_{n}. If $\underline{W}^{T}=W_{1}, W_{2}, \ldots w_{n}$ is normally distributed in n dimensions with zero mean and covariance matrix M_{x}, there exists a transformation such that

$$
\underline{W}=Q^{T} \underline{Z}
$$

and

$$
M_{W}=Q^{T} M_{z} Q=Q^{T} Q
$$

where Q is a nonsingular matrix (Miller). Thus, a correlated set of normal random numbers can be generated from an independent set of normal random numbers by a linear transformation. The matrix Q can be found by a Gauss elimination matrix inversion procedure which transforms M_{w} into the identity matrix such that

$$
\begin{equation*}
Q^{T-1} \underline{M}_{W} Q^{-1}=I \tag{5.2}
\end{equation*}
$$

Since Q is nonsingular, Q^{-1} always exists.

Simulation of a Threshold Gate
In a threshold gate, the weights \underline{w} and inputs \underline{x} are random variables which may reasonably be assumed to be correlated sets of jointly normal random variables. As shown above, these correlated sets can be generated from independent sets of normal random variables by a linear transformation. Let

$$
\begin{align*}
& \underline{x}^{\prime}=P^{T} \underline{y} \quad \text { and } \\
& \underline{w}^{\prime}=Q^{T} \underline{z} \tag{5.3}
\end{align*}
$$

where \underline{y} and z are sets of independent random variables with zero mean and unit variance. The matrices P and Q are related to the covariance matrices of the inputs and weights, M_{x} and M_{W}, respectively.

In order to simulate a threshold gate the means, variances, and correlations of the inputs and weights must be known. From this information, the covariance matrices can be calculated. In this thesis, simulations were carried out for threshold gates for which the following conditions are satisfied:
(a) The standard deviations of the inputs are all equal to σ_{x};
(b) The correlation coefficient $\rho_{\mathbf{x}}$ is the same for any two inputs x_{i} and x_{j}.
(c) The standard deviation of a weight w_{i} is equal to its mean $\eta_{w_{i}}$ multiplied by a constant σ_{W}.
(d) The correlation coefficient ρ_{W} is the same for any two weights w_{i} and w_{j} •
The covariance matrices are given by

$$
\begin{align*}
& M_{x}=\left[\rho_{i j} \sigma_{x}^{2}\right] \quad \rho_{i j}=\rho_{x}, i \neq j, \rho_{i i}=1 \tag{5.5}\\
& , M_{w}=\left[\rho_{i j} \eta_{w} \eta_{w_{j}} \sigma_{w}^{2}\right] \quad \rho_{i j}=\rho_{w}, i \neq j, \rho_{i j}=1
\end{align*}
$$

The transformation matrices are found from a Gauss elimination matrix inversion subroutine which calculates P and Q such that

$$
Q^{T-1} M_{X}^{-1} Q^{-1}=I
$$

and

$$
\begin{equation*}
P^{T-I_{M}-I_{W}} P^{T}=I \tag{5.4}
\end{equation*}
$$

The matrices P and Q can then be computed from P^{-1} and Q^{-1} by using the same subroutine. By generating the sets of independent normal random variables \underline{y} and \underline{z} and applying the transformation, \underline{x}^{\prime} and \underline{w}^{\prime} can be generated. Since the random variables in \underline{y} and \underline{z} have zero means, \underline{x}^{\prime} and \underline{W}^{\prime} have zero mean. The inputs and weights can be generated from \underline{x}^{\prime} and \underline{w}^{\prime} by adding the mean of the inputs and weights such that

$$
\begin{aligned}
& x_{i}=\eta_{x_{i}}+x_{i}^{\prime} \\
& w_{j}=n_{w_{j}}+w_{j}^{\prime}
\end{aligned}
$$

The separating function of the threshold gate can be calculated from

$$
f(p)=\sum_{i=1}^{n} w_{i} x_{i}-w_{n+1}
$$

where n is the number of inputs.
The simulation procedure was performed as follows:.
(1) Set up the covariance matrices M_{x} and M_{W}.
(2) Find the transformation matrices P and Q.
(3) Generate random numbers for \underline{y} and \underline{z}.
(4) Compute x and \underline{w}.
(5) Compute $f(p)$, compare to zero.
(6) Repeat steps 3 through 5 for N iterations. The probability of error is given by

$$
P_{E}=n_{e} / N
$$

where n_{e} is the number of times the output of the gate was in error.

Simulation of Density Functions
The density function of the separating function can also be determined from the simulation. Consider the set of values of the separating function $\left\{f_{i}(p)\right\}$ to be a sample from the distribution of $f(p)$. The sample mean η_{s} and variance σ_{s}^{2} can easily be calculated.

$$
\begin{align*}
& \eta_{s}=\frac{1}{N} \sum_{i=1}^{n} f_{i}(p) \tag{5.6}\\
& \sigma_{s}^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(f_{i}(p)-\eta_{s}\right)^{2}
\end{align*}
$$

An approximation $f(k)$ of the density function can be obtained by coursting the number N_{k} of $f_{i}(p)$ that lie in the interval $c k \leq \frac{f_{i}(p)-\eta_{s}}{\sigma_{s}}<c(k+1)$

$$
f(k)=\frac{N_{k}}{N}
$$

where $k=0, \pm 1, \pm 2, \ldots$ and c is a constant. The product of the separating functions of several gates can be studied by replacing $f_{i}(p)$ by the product.

The simulation program described in Appendix A calculates an approximation of the density function of the separating function. An approximation $n(k)$ of a normal density function $N(\eta, \sigma)$ with mean η and variance σ^{2} equal to η_{S} and σ_{S}^{2}, respectively, is also calculated, using the same interval as for $f_{i}(p)$. Both densities are plotted versus c_{k} for $c=0.2$ and $k=0, \pm 1, \ldots, \pm 25$. The mean square error d is then computed

$$
\begin{equation*}
d=\sum_{k=-25}^{25}(n(k)-f(k))^{2} \tag{5.7}
\end{equation*}
$$

Table 5.1 shows the result of a simulation study of the separating functions of several threshold gates. The values of the mean and variance are calculated using the techniques developed in Chapters III and IV including the approximation

TABLE 5.1. Results of Simulation Study

Function I	Input and Weight Variances	Input and Weight Correlations	Calcu- lated Mean	Simulated Mean	$\begin{gathered} \text { Calcu- } \\ \text { lated } \\ \text { Variance } \end{gathered}$	Simu- lated Variance	Mean Square Error with Respect to Normal Density
$\begin{gathered} \mathrm{f}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}-3.5 \\ \underline{x}=1,1,1,1 \end{gathered}$. 01	. 0	0. 5.00	0.502	0. 202.	0.198	1.1×10^{-4}
$\begin{gathered} f=x_{1}+x_{2}+x_{3}-1.5 \\ x=1,1,1 \\ \underline{x}=1,1,0 \end{gathered}$	$\begin{aligned} & .01 \\ & .01 \end{aligned}$	$\begin{array}{r} .9 \\ .9 \end{array}$	$\begin{aligned} & 1.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 1.497 \\ & 0.498 \end{aligned}$	$\begin{aligned} & 0.1095 \\ & 0.0905 \end{aligned}$	$\begin{aligned} & 0.1097 \\ & 0.0902 \end{aligned}$	$\begin{aligned} & 1.9 \times 10^{-4} \\ & 0.8 \times 10^{-4} \end{aligned}$
$\begin{aligned} & f=f_{1} f_{2} \text {, where } \\ & f_{1}=x_{1}+x_{2}-1.5 \end{aligned}$							
$\begin{array}{rl} f_{2}=x_{3} & +x_{4}-1.5 \\ \underline{x} & =1,1,1,1 \\ \frac{x}{x} & =1,1,1,1 \\ \frac{x}{x} & =0,0,0,0 \\ \frac{x}{x} & =0,1,0,0 \\ \underline{x} & =0,1,0,1 \\ \frac{x}{x} & =1,1,0,0 \\ \frac{x}{x} & =1,1,0,1 \\ \underline{x} & 1,1,1,1 \end{array}$.0 .9 .0 .0 .0 .0 .0 .0	$\begin{array}{r} 0.250 \\ 0.250 \\ 2.250 \\ 0.750 \\ 0.250 \\ -0.750 \\ -0.250 \\ 0.250 \end{array}$	$\begin{array}{r} 0.252 \\ 0.296 \\ 2.249 \\ 0.749 \\ 0.250 \\ -0.749 \\ -0.250 \\ 0.252 \end{array}$	$\begin{aligned} & 2.52 \times 10^{-2} \\ & 7.61 \times 10^{-2} \\ & 1.35 \times 10^{-3} \\ & 9.75 \times 10^{-4} \\ & 2.00 \times 10^{-4} \\ & 1.20 \times 10^{-3} \\ & 2.25 \times 10^{-4} \\ & 2.50 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 2.79 \times 10^{-2} \\ & 5.76 \times 10^{-2} \\ & 1.38 \times 10^{-3} \\ & 9.63 \times 10^{-4} \\ & 1.95 \times 10^{-4} \\ & 1.20 \times 10^{-3} \\ & 2.22 \times 10^{-4} \\ & 2.52 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 3.3 \times 10^{-3} \\ & 1.2 \times 10^{-2} \\ & 1.1 \times 10^{-4} \\ & 1.7 \times 10^{-4} \\ & 1.2 \times 10^{-4} \\ & 0.7 \times 10^{-4} \\ & 1.2 \times 10^{-4} \\ & 1.1 \times 10^{-4} \end{aligned}$
$f=f_{1} f_{2} f_{3}$ where $f_{1} \& f_{2}$ are as above and $\begin{aligned} f_{3} & =x_{5}+x_{6}-1.5 \\ x & =0,0,0,0,0,0 \end{aligned}$	$.0001$. 0	-3.375	-3.374	4.56×10^{-3}	4.60×10^{-3}	0.8×10^{-4}

of Eqn. 3.10 and Eqn. 4.26. The simulation means and variances are very close to the calculated values, indicating that the approximations can be made with little error.

A simulated density function is plotted in Figure 5.1. for $y=\left\langle x_{1}+x_{2}+x_{3}\right\rangle 1.5$ with $\sigma_{x}^{2}=\sigma_{w}^{2}=0.01$ and $\rho_{x}=\rho_{w}=0.9$ for the inputs $\underline{n}_{x}^{T}=\{1,1,1\}$.

Fig. 5.1. Simulated Density Function Compared with Normal Density Function

CHAPTER VI

MINIMIZATION OF PROBABIIITY OF ERROR

In the threshold gate realizations of a given logic function F, the weights are not unique. If the threshold is fixed, there are many combinations of the other weights that will realize F. By adjusting weights, it is possible to find a realization of F that minimizes the probability of error of the gate for a particular circuit. Minimization by adjusting weights can be implemented by a multidimensional search technique called "pattern search" developed by Hooke and Jeeves.

The pattern search is based on the premise that a set of parameter adjustments which has proved successful in minimizing a performance index will be worth trying again. The procedure is adaptive in the sense that prior success determines the next adjustment. The search begins at an initial base point $W(0)$, and small adjustments are made from this point with repeated movement in the direction of improvement until improvement ceases. At that point, a search for a new direction of improvement is conducted.

Two types of parameter adjustments are made by the pattern search, the exploratory move and the pattern move. The exploratory move establishes the direction of improvement from $\mathrm{a} b$ ase point of the performance index. No attempt
is made to estimate the gradients. The result of the exploratory move is a pattern of improvement. The pattern move utilizes the information gained in the exploratory move. ' . The adjustments which proved successful in the exploratory move are repeated in the pattern move. If the performance index is decreased, the pattern move is repeated. When the pattern move is no longer successful, a new base point ,is established.

The exploratory move is carried out as follows. A single coordinate is increased or decreased by a predetermined step size to determine which change, if any, will produce a decrease in the performance index. If there is an improvement, the change is included in the pattern. When all coordinates have been examined, a pattern is established. If no change produces an improvement, the step size is reduced and the exploratory move is repeated until the step size is reduced below a predetermined minimum at which point the search is terminated.

If a pattern move fails to produce an improvement, the coordinates are restored to their values before the last pattern move and a new base point is established. From this new base point, a new pattern is established and a new series of pattern moves is started. The search continues in this way until terminated.

An example of a two-dimensional pattern search is shown in Figure 6.1. In this example, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}!\mathrm{P}_{4}$, and P_{5} are contours of the performance index with $P_{1}>P_{2}>P_{3}>P_{4}>P_{5}{ }^{\circ}$. .

The search begins at an initial base point \underline{B}_{0}, where w_{1} and w_{2} are equal to $w_{1}(0)$ and $w_{2}(0)$, respectively. The initial step size s_{0} is chosen either arbitrarily or from some a priori knowledge of the performance index. A pattern move vector $I_{0}=\left\{i_{1}, i_{2}\right\}$ is now established. The first variable w_{1} is incremented by s_{0}, that is, $w_{1}(1)$ equals $w_{1}(0)+s_{0}$. If there is a decrease in the performance index, the increment i_{1} is set equal to s_{0}. If there is no decrease, $\mathrm{w}_{1}(0)-\mathrm{s}_{0}$ is tried. If this point produces a decrease in the performance index, i_{1} is set equal to $-s_{0}$. If neither move produced a decrease, i_{l} equals zero. In like manner, an increment i_{2} is found for w_{2}. The pattern move is now the vector I.

From the point \underline{B}_{0}, the pattern move is made n times until there is no further decrease in the performance index, that is,

$$
\underline{B}_{1}=\underline{B}_{0}+n \underline{I}_{0}
$$

where \underline{B}_{1} is a new base point. Note that the point $\underline{B}_{1}+\underline{I}_{0}$ has a greater value of the performance index than the point \underline{B}_{1}. From this new base point, a new pattern I_{1} is established. The pattern is used until a new base point \underline{B}_{2} is found.

Fig. 6.1. Example of a Pattern Search

If a pattern I_{n} is found such that every component of I_{n} is equal to zero, then the step size s_{0} is reduced to new step size s_{1} and an exploratory move is made. The search continues using successively smaller step sizes as needed until the step size is reduced below a predetermined minimum at which time the search is terminated.

In this thesis, the pattern search is used to minimize the probability of error of a threshold gate. The mean values of the weights $n_{w_{1}}, \ldots, n_{w_{n}}$ are adapted to find the combination η_{W}^{*} that minimizes the probability of error for a gate. with a given set of statistics. As discussed in Chapter II, the standard deviation of a weight $\sigma_{w_{i}}$ is set equal to the mean value of the weight $\eta_{w_{i}}$ multiplied by a constant σ_{w}

$$
\begin{equation*}
\sigma_{w_{i}}=\sigma_{w} n_{w_{i}} \tag{6.1}
\end{equation*}
$$

Theorem 6.1. If in a given threshold gate realization $y=\langle f(\dot{p})\rangle 0$ of a logic function F, the standard deviation of a weight $\sigma_{w_{i}}$ is proportional to the mean of the weight $\eta_{w_{i}}$, and every weight including the threshold is multiplied by a positive constant k, the resulting realization $y=\langle k f(p)\rangle 0$ has the same probability of error as $y=\langle f(p)\rangle{ }_{0}$.
, Proof. Let

$$
f(p)=\sum_{i=1}^{n+1} x_{i} w_{i}
$$

therefore

$$
k f(p)=\sum_{i=1}^{n+1} x_{i} k w_{i}
$$

Note that

$$
\begin{equation*}
\eta_{k f}=k \eta_{f} \tag{6.2}
\end{equation*}
$$

The variance of $k f(p)$ is given by Eqn. 3.11

$$
\sigma_{k f}^{2}=\underline{\eta}_{x}^{T} M_{w-\frac{\eta}{\prime}}^{\prime}+k \eta_{w}^{T} M_{x} k \eta_{w}^{T}
$$

where $M^{\prime}{ }_{w}$ is the covariance matrix of kw . Note that the elements of the covariance matrix are given by

$$
M_{w_{i j}}=\sigma_{w_{i}} \sigma_{w_{j}} \rho_{i j}
$$

Therefore,

$$
M_{w_{i j}}^{\prime}=k^{2} \sigma_{w_{i}} \sigma_{w_{j}} \rho_{i j}
$$

hence

$$
M_{W}^{\prime}=k^{2} M_{W}
$$

The variance is

$$
\sigma_{k f}^{2}=k^{2}\left[\underline{n}_{x}^{M}{ }_{w}^{T} \underline{n}_{x}+\underline{n}_{w}^{M} x_{x} \underline{n}_{w}\right]=k^{2} \sigma_{k f}^{2}
$$

therefore

$$
\begin{equation*}
\sigma_{k f}=k \sigma_{f} \tag{6.3}
\end{equation*}
$$

The probability of error given by Eqn. 3.15 becomes

$$
P_{E}^{\prime}=\frac{1}{2^{n}}\left[\sum_{p_{i} \varepsilon P(0)} P\left(\frac{\eta_{k f}}{\sigma_{k f}}\right)+\sum_{p_{i} \varepsilon P(1)} P\left(-\frac{\eta_{k f}}{\sigma_{k f}}\right)\right]
$$

or since

$$
\frac{n_{k f}}{\sigma_{k f}}=\frac{\eta_{f}}{\sigma_{f}}
$$

the probability of error is the same for both realizations. Therefore, in the adaption techniques developed in this thesis, the mean of the threshold can be held constant without any loss of generality.

Using the techniques developed in Chapters III and IV, digital computer programs for calculation of the probability of error of a single gate and of a network have been written. The single gate program is described in Appendix B and the network program in Appendix C. These programs are used as subroutines to a pattern search program for minimizing probability of error.

CHAPTER VII

RESULTS AND CONCLUSIONS

The Probability of Error Surface

The probability of error of a threshold gate is a function of the statistics of the inputs and weights of the circuits which will implement the gate. For a given set of variances and correlations of the inputs and weights, the probability of error depends on the mean value of the weights and inputs and the probability of occurrence of the inputs. In the pattern search used in this thesis, the means of the inputs are constants, $\eta_{i}(0)$ and $\eta_{x}(1)$, equal to zero and one, respectively, and the input combinations are equally likely. The probability of error is a function only of the mean of the weights for constant input variances and input and weight correlations. It is desirable to examine this function to obtain some information as to the feasibility of the pattern search. Because it is difficult to display directly a function of more than two variables, the probability of error is evaluated by varying one weight of a realization while holding the others at their optimal values. The probability of error of the function

$$
y=x_{1} x_{2}+x_{1} x_{3} x_{4}
$$

is plotted versus w_{1} in Fig. 7.la, versus w_{2} in Fig. 7.lb,

Fig 7.1. Contours of Probability of Error of $y=x_{1} x_{2}+x_{1} x_{3} x_{4}$
and versus w_{3} in Fig. 7.lc, for $\sigma_{x}=\sigma_{x}=0.0025$ and various . correlation coefficients. Because the function is symmetric with respect to the inputs x_{3} and x_{4}, and the variances and correlations of the inputs and weights are equal, w_{3} equals w_{4} in the optimal realization and the variation of the probability of error for a change in w_{3} is the same as for a change in w_{4}. In each instance, the other weights are held at their optimal values for the appropriate correlation coefficient. It is apparent from Fig. 7.la-c that probability of error is not a convex function with respect to the weights. However, in this case, it is highly likely that there is only one set of weights which minimizes the probability of error. For all single gate cases investigated in which the probability of error for a given input combination was less than 0.5 for every possible input combination, the pattern search converges to a single minimum. It is conjectured that for any single gate realization which satisfies the condition such that the probability of error for any given input combination is less than 0.5 , there is only one value of the weights such that the probability of error is minimized. Thus, if the starting point satisfies the above condition, the minimumobtained by the search should be the optimum realization of the function considered.

Effects of Variance and Correlation on the Probability of Error of a Threshold Gate
Changes in the variances and correlations of the
inputs and weights, $\sigma_{x}, \sigma_{w^{\prime}}, \rho_{x}$, and ρ_{w}, respectively,
produce changes in the variance of the separating function,
and thereby affect the probability of error. In order to
determine the dependence of probability of error on variances
and correlations, $\sigma_{x}, \sigma_{w}, \rho_{x}$, and ρ_{w} are varied and the
corresponding optimal realizations are found.
The functions
and

$$
\begin{gathered}
y_{1}=x_{1} x_{2} x_{3} x_{4} \\
y_{2}=x_{1} x_{2}+x_{1} x_{3} x_{4}
\end{gathered}
$$

are examined. These functions have the corresponding minimum integer realizations

$$
y_{1}=\left\langle x_{1}+x_{2}+x_{3}+x_{4}\right\rangle 3.5
$$

and

$$
y_{2}=\left\langle 3 x_{1}+2 x_{2}+x_{3}+x_{4}\right\rangle_{4.5}
$$

Table 7.1 and 7.2 show the variation of the probability of error of the optimum solutions with a change in ρ_{W} for constant σ_{x}, σ_{w}, and ρ_{x}.

TPBLE 7.1. Minimum Probability of Error of $y=x_{1} x_{2} x_{3} x_{4}$

Variance of Inputs	Variance of weights	Corre- lation of	Correlation of Weights $\rho_{\text {w }}$					
W		ρ_{x}	0	. 1.	. 3	. 5	. 7	. 9
. 0001	. 0001	0	2.48×10^{-30}	1.08×10^{-32}	7.35×10^{-39}	3.34×10^{-48}	-0-	-0-
. 0004	. 0004	. 9	7.67×10^{-7}	4.32×10^{-7}	1.12×10^{-7}	2.04×10^{-8}	2.19×10^{-9}	1.03×10^{-10}
. 0009	. 0009	0	2.25×10^{-5}	1.19×10^{-5}	2.28×10^{-6}	1. 88×10^{-7}	2.87×10^{-9}	5.50×10^{-13}
. 0025	. 0025	. 9	8.68×10^{-3}	7.80×10^{-3}	6.09×10^{-3}	4.46×10^{-3}	2.98×10^{-3}	1. 72×10^{-3}
. 01	. 01	0	3.14×10^{-2}	2.92×10^{-2}	2.42×10^{-2}	1.83×10^{-2}	1.16×10^{-2}	4.67×10^{-3}
. 01	. 01	. 9	4.17×10^{-2}	4.04×10^{-2}	3.75×10^{-2}	3.41×10^{-2}	3.01×10^{-2}	2.54×10^{-2}

TABLE 7.2. Minimum Probability of Error of $y=x_{1} x_{2}+x_{1} x_{3} x_{4}$

$\begin{gathered} \text { Variance } \\ \text { of } \\ \text { Inputs } \\ \sigma_{x}^{2} \end{gathered}$	$\begin{gathered} \text { Variance } \\ \text { of } \\ \text { Weights } \\ \sigma_{\mathrm{w}}^{2} \end{gathered}$	$\begin{aligned} & \text { Corre- } \\ & \text { lation } \\ & \text { of } \\ & \text { Inputs } \\ & \rho_{x} . \end{aligned}$	Correlation of Weights ρ_{W}					
			0	. 1.	. 3	. 5	. 7	. 9
0	. 0025	0	9.93×10^{-3}	7.99×10^{-3}	4.37×10^{-3}	1.53×10^{-3}	1.51×10^{-4}	4.55×10^{-9}
. 00,04	. 0004	0	3.06×10^{-5}	1.82×10^{-5}	5.02×10^{-6}	8.35×10^{-7}	5.81×10^{-8}	7.16×10^{-10}
. 0009	. 0009	0	1.94×10^{-3}	1.52×10^{-3}	8.32×10^{-4}	3.62×10^{-4}	1.06×10^{-4}	1.41×10^{-5}
. 0016	. 0016	0	9.13×10^{-3}	7.89×10^{-3}	5.51×10^{-3}	3.36×10^{-3}	1.63×10^{-3}	5.02×10^{-4}
. 01	. 01	0	6.73×10^{-2}	6.46×10^{-2}	5.88×10^{-2}	5.22×10^{-2}	4.43×10^{-2}	3.46×10^{-2}
. 01	. 01	. 9	*8. 24×10^{-2}	*8.06×10 ${ }^{-2}$	*7.68×10 ${ }^{-2}$	*7.33×10 ${ }^{-2}$	*7.08×10 ${ }^{-2}$	*6. 63×10^{-2}

		Corre- lation of Weights	Correlation of Inputs ρ_{x}					
		${ }^{\rho} \mathrm{x}$	0	. 1	. 3	. 5	. 7	. 9
. 0025	0	0	1.42×10^{-3}	2.82×10^{-3}	6.49×10^{-3}	1.07×10^{-2}	1.48×10^{-2}	1.88×10^{-2}

*Probability of Error for one or more input combinations is greater than 0.5 .

For both functions considered, the probability of error increases as the variance of the inputs and weights increases and the probability of error decreases as the correlation of the weights increases. The fact that the probability of error increased with increasing variances and input correlation is evident from Eq. 3.11. The elements of the covariance matrices increase as σ_{x}, σ_{w} and ρ_{x} increase, thus increasing the variance of the separating function for all input combinations. The decrease in probability of error with increasing correlation of the weights is due to the fact that the last element of η_{x} is negative and the fact that the standard deviation of a weight is proportional to the mean of that weight. As the correlation of the weights approaches one, the first term in Eqn. 3.11 approaches the difference of two highly correlated random variables. Thus, the contribution of the first term to the variance of the separating function is greatly reduced.

Table 7.3 shows the minimum integer and optimal realizations of $y=x_{1} x_{2}+x_{1} x_{3} x_{4}$ for several variances and correlations. The optimum weights are close to the minimum integer weights for small variances, but differ significantly for large variances. Note that the improvement obtained by using the optimal realization instead of the minimum integer realization is only about ten per cent. Thus, in

TABLE 7.3. Realization of $y=x_{1} x_{2}+x_{1} x_{3} x_{4}$

most single gate applications, the minimum integer realization would be a good compromise between reliability and the amount of work required to obtain the realization.

Minimal Probability of Error Threshold Gate Networks
The function $y=x_{1} x_{2}+x_{3} x_{4}$ is not linearly separable and therefore cannot be realized with a single gate. However, this function may be realized by the following two gate network

$$
y=\left\langle 2 y_{1}+x_{3}+x_{4}\right\rangle 1.5
$$

where

$$
y_{1}=\left\langle x_{1}+x_{2}\right\rangle_{1.5}
$$

or

$$
y=\left\langle 2\left\langle x_{1}+x_{2}\right\rangle 1.5+x_{3}+x_{4}\right\rangle_{1.5}
$$

The function y is realized for $\sigma_{x}=\sigma_{W}=0.1$ and $\rho_{x}=\rho_{w}=0$. The best realizations for the individual gates is

$$
y_{1}=\left\langle 0.995 x_{1}+0.995 x_{2}\right\rangle 1.5
$$

and

$$
y=\left\langle 2.239 y_{1}+0.986 x_{3}+0.937 x_{4}\right\rangle_{1.5}
$$

The probability of error of the network was calculated for the above gates and the minimum integer gates. These are compared to the optimal realization for the overall network found by the pattern search by adapting weights in both gates simultaneously. These results are summarized in Table 7.4.

TABLE 7.4. Probability of Error of $y=x_{1} x_{2}+x_{3} x_{4}$

Realization
Minimum Integer
$y=\left\langle 2\left\langle x_{1}+x_{2}\right\rangle 1.5+x_{3}+x_{4}\right\rangle 1.5 \quad 4.38 \times 10^{-2}$
Gates optimized individually
$y=\left\langle 2.239\left\langle 0.995 x_{1}+0.995 x_{2}\right\rangle 1.5\right.$

$$
\left.+0.986 x_{3}+0.987 x_{4}\right\rangle 1.5
$$

$$
4.57 \times 10^{-2}
$$

Optimal network

\[

\]

It is evident from Table 7.4 that the realization using the individual gates with least probability of error does not give the optimal realization. In fact, for this example, it is worse than the integer realization. The optimal realization requires the use of a five input gate in the second level and is slightly more reliable than the minimum integer realization.

Conclusions
The following conclusions may be drawn:
I) It is feasible to use a digital computer to find the realization which minimizes the
probability of error of a threshold gate.
2) Probability of error increases with increasing input variance, weight variance, and input ". correlation.
3) Probability of error decreases with increasing weight correlation.
4) In most cases, the single-gate minimum integer realization has a probability of error which is almost optimal.
5) In a threshold gate network, optimizing each gate in the network does not minimize the probability of error.
6) In any application, gates with the smallest possible input and weight variances should be used.
7) For given statistics, the current switching gate should be the most reliable of the circuits considered in Chapter II. This is due to the reduction of input variance and correlation produced by the isolation of the inputs from the separating function.

Amodei, J. J., D. Hampel, T. R. Mayhew, and R. O. Winder. "An Integrated Threshold Gate," Digest of the 1967 International Solid State Circuits Conference.

Canion, J. R. "Adaptive Threshold Logic" (unpublished Master's Thesis, University of Houston, Houston, Texas, 1968) .

Eriksen, C. E. "A Minimal Probability of Error Threshold Gate" (unpublished Master's Thesis, University of Houston, Houston, Texas, 1968).

Hooke, R. and T. Jeeves. "'Direct Search' Solutions of Numerical and Statistical Problems," Association for Computing Machinery Journal, Vol. 8, $\overline{\mathrm{Pt}}$, 2, April, 1966, pp. 212-229.

Lewis, P. M. and C. L. Coates. Threshold Logic. New York: John Wiley and Sons, 1967.

Miller, K. S. Multidimensional Gaussian Distributions.
New York: John Wiley and Sons, 1964.
Mcivaughton, R. "Unate Truth Functions," IRE Trans. Electron. Computers, Vol. EC-10, March, 1961, pp. $1-6$.

Morrison, D. F. Multivariate Statistical Methods. New York: McGraw-Hill Book Co., 1967.

Papoulis, A. Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill Book Co., 1965.

Peterson, W. W. Error-Correcting Codes. Cambridge, Massachusetts: The M.I:T. Press, 1961.

Rowe, W. D. "The Transistor NOR Circuit," IRE Wescon Convention Record, Pt. 4, 1957, pp. 231-245.

APPENDIX A

COMPUTER PROGRAM FOR THRESHOLD GATE SIMULATION

PROGRAM FOR SIMULATION OF THE PRODUCT OF THE SEPARATING FUNCTIONS OF SEVERAL THRESHOLD GATES

SETUP (A,C) Sets up plot intervals and normal distribution COVMAT ($\mathrm{M}, \mathrm{N}, \mathrm{V}, \mathrm{R}$) See subroutine THRESH
INVERS (A, B, N) Generates $B=A^{-1}$ when A is a nonsingular $\mathrm{N} \times \mathrm{N}$ matrix

EQUAL (A, B, N) Sets $B=A$ when A and B are $N X$ matrices NORMAL (X), Generates a normal random number X,

START (X) START sets up the subroutine initially
PROC (FX, EXS, VARS, ITT, B) Calculates VARS and the distribution of FX which is returned in B

PLOT2 ($N, A, B, C, A M A X)$ Plots B and C versus A for N values of A SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H

Flow Diagram of Threshold Gate Simulation Procram


```
\(C\) THIS PAOGRAN AIL SIMULATE THE DENSITY FUNCTION QF THE SEPARATING
5 FERNG (3IIC)
```



```
    D0 10 i \(=1,23\)
    \(\square(I)=1 I(I)+1\)
\(I=1\)
    \(\underline{p}=1\)
    \(J=0\)
    Ne 12 \(=1, N \dot{3}\)
    \(J=J+J(K)\)
    GEAn (5, 5) (A, (L), \(\dot{L}=\overline{1}, J)\)
    FAFMAT (天E!C.3)
    \(I=I+W_{i}(K)\)
    \(I=1\)
    \(j=\hat{0}\)
    2? \(44 \times=9\)
    \(J=\omega+V I(K)\)
```



```
\(14 \quad!=1+i!(<)\)
    \(\because=1=3-1\)
    IT1 = 2
    \(022 i=i, 01\)
    \(\because I T 1=\) VITI + YI(I)
    \(41=0\)
    Is \(22 I=1\), IT \(\overline{1}\)
    IF ( IX(I) GT. \(\because I): \bar{I}=I \times(I)\)
    \(\because T 1=A I T 1+31\)
    ХEA (
```



```
    QEAS (E, 5) ITT
    ConTlVE
    GEAC (5,G,EAY = 1) (AXX( \(\bar{I}) \bar{I}=1, M)\)
C SET UD PLET VALUES
    CALL GETUP \((A, C)\)
    SET LO CPVAFIACE AND TEA:SFAFMATIGN NATRICES
    GALL CحVVAT ("X;"I, VARX,CERX)
```

```
    CALL INVFRS (MX,NMX,MI)
    CALL FSUAL (DEOT,MI\
    CALL I\VERS (D,PT,MI)
    CALL COVMAT (Nw,NNT1,VARM,COPN)
    CALLL INVERS (M&, whmsinT1)
    CALL EGUAL (D,OT,NMT1)
    CALL INVERS (O,P,N听1)
    EXS = O.
    C SIMULATION LEGP
    OQ 100 J = 1,ITT
    C SENERATE RINDEA vAGIABLES
    DE 40 I = 1, NTI
    40 CALL N.gRMAL (Z(I))
    DE 42! = 1,MI
    42 CALL IORMAL (Y(I))
    DE 44 I = 1,NI
    x(1) = 0.
    D44 衣= i,Mi
    44 X(I)=X(I)+PT(I,K)*Y(K)
    0046 I = 1,N㫙品
    I(I) = 0.
```



```
    FP = 1.
    < %! = 1
    <x = 1
    DO 50 i = I,NG1
    F(I) = C.
    ! = U!(I)
    0e43k=1,N
    F(I)=F(I)+(\overline{A}(KK)+N(KN))*(\dot{A}X(KX)}+XX(KX)
    <! = K" + 1
    48 <\lambda = KX + ?
    F(I)=F(I)-(AO(KW)+A(K:N))
```



```
    EXS = EX5 + F%
    FX(J) = FF
    Ioc SBNT]:LE
    C CALCULATE SIMLLATIEN MEAN: ANO VARIANCE
    FYS = EXC/FLPAT(ITT)
    CHLL PQRC (FX,EXS,VARS,ITTIB)
    nIFF=0.
    29 430 1 = 1, 5j
#3O כIFF= DIFE+(E(I)-C(I))**2
    #&fT STMULATEZ DENSITY
    CALL FLETZ (E1,A,B;C,O1)
    FPINT MESLl.TS
        .RITF (G.150) VAFN,CERNJ,\ARX,CARX;NJ,ITT
```



```
    GITE (6,16,C) EXS, VARS, EXF, VARF
160
    FFRUAT (/3X,'EXS = ',E15.8,3X,VVARS = 1,E15.8.3X,'EXF = ',E15.8,
    i 3X,MVAFF = 1,F15,R1
```

－．
SRITE（6：170）OIFF．
17C FORMAT $(1,1,1$ EAN SQUARE ERRAR $=1, E 15.8)$

180 FORMAT（1／ 1,1 THE BEIGHTS ARE！；／88（ix，F14．7））
～RITE（6：182）（A：i（1） $1=1, M 1)$
182 FORNAT（／／／，THE INPUTS ARE1，／，8（1X，F14．7））
39 Te 25
99 RRITE $(7,5)$
END

C GALSS ELIMINATIA：MATRIX IAVERSION
？IS THE IAVERSE OF A NASSIVQULAR REAL SOUARE MATRIX Ä
IF THERE IS A ZEQA ON THF DIAGONAL OF A，ER IF A IS SINGULAR，
3 IS SET ERUAL TE THE IDENTITY MATRIX
－ANT ZT ATE SIMILARITY TRANSFQRMATION MATRICES
FEF：NATFIX，EQUAL PROIAG
CIMESTON $A(2 C, 20), B(20,20), 0(20,20), O T(20,20), P(20,20), P T(20,20)$,
$\overline{1}$ O（r0，20）

$L=1$
$\overline{1} \quad 2951=1,1$
0e $4 \mathrm{~J}=1 \mathrm{l}$
$3(I, J)=0 . C$
$G T(I . J)=0.0$
$4 \quad 3(I, J) \equiv A(I, j)$

TT $(1.1)=10$ ？
$5 \quad 3(I, I)=1 . C$
$u=\because=i$
$2050 j=1, "$
うe $101=1$,
no ？$K=1, N$
$a T(1, K)=200$
$8 \quad P(1, k)=0.0$
$\begin{array}{ll}\mathrm{i} & \mathrm{FT}(1,!)=1.0 \\ \mathrm{D}(1, I)=1 . C\end{array}$
jx $=15{ }^{2}+1=j x, N$
$b(J, 1)=-3(1,1) / 3(J, j)$
$15 \quad a T(I, J)=-8(1, j) / 3(J, J)$
CALL WATEIX（PT，OT，DN）
CALL ETLAL（ST，OMA
CALL＊ATAX（ニ，D，L，N）
CALL EJUAL（ニ，D，N）
CALL シATEIY（OT，J，D，N）
CALL ESUAL（3，？）
CALL＂ATPIX（BCD，D，M）
CALL EGLAL（B，コ，D）
50 EATTIUE

IF（L．ES． 1 ）TO TO 52
CALL PODIAG（DA，B，M）
$\theta(1.1)=\mathrm{DA}$
RETUFN
$5 ?$
$55 \quad 0(1, j)=0.0$
if（3（i）1） 5 5，70，56
56 OT（I， 1$)=1 \cdot 3 / \operatorname{Sa}^{-9 T}(B(\mathrm{I}, \bar{I}))$
$P(i, I)=1 . E /$ SART（ $\mathrm{S}(1,1))$
$58 \quad 3(1,1)=1,0 / 8(1,1)$
so cANTIVE
CALL MATEIX（OB，D，N）
CALL VATPIX（D，GT，Q，N）
CALL NATRIY（DT，JT，CON）
CALL ESUAL（OTADIN）
CALL MATPIX（G，R，D，N）
CALL ESUAL（0，D，N）
OETURS
70 AITE（6．72）
FSRMAT（／／1＊＊＊ERRAR：invERSE EF SINGULAR MATRIX＇／／）
$0971=1,0$
$\therefore P I^{\top} E(6,75)(A(1, j), j=1,0)$
FafMAT（2（1X－514－7））
$\begin{array}{ll}75 & \text { FAENAT } \\ 76 & \text { CSUTAUE }\end{array}$
\therefore ПITE $(6,77)$
FSOM4T（1／1）
$0 \therefore 79 \quad i=\overline{1}, N$
คITE $(6,75)(3(1, j), j=i, v)$
78 C3：TlLE
73 RITE（6．77）
CALL FDUMF．
？ITE（6，7ㄱ）
$\begin{array}{ll}2201 & =1, \therefore \\ 29 & =1,0\end{array}$
$79 \quad \exists(I, j)=0$.
$\ddot{2} \quad \underset{\sim}{2}(1,1)=1$ ．
\therefore Tu：
90 FITF（S．Oi）
71

$30 \exists^{2} 1=1$,
（RIT：$(6,7 B)(A(1, j): j=1 ; N$
30 GGVIVLE
¢я T： 73
－HLEAATE ETPY，n（1；1）＝TEI
ETTRY SETERY（A．F，N）
$\dot{i}=?$
与－T9 $\overline{1}$
が笑

```
SDEPNTINE MATEIX I A, EB C, N )
\(C \quad C=A R, ~ A H F F E A, B\), AND \(C\) ARE SOUARE MATRICES
OINE'SION A(CO,22), B(20,20), C(20,20)
CA 10 I \(=10 \therefore\)
D5 1 ? \(\mathrm{J}=1 \mathrm{~m}\)
\(C(I, N)=O \cdot C\)
DO \(10<=1, \because\)
\(10 C(1,1)=C(I, j)+\dot{A}(I, K) * B(K, j)\)
「FTUPD
\(5: 5\)
```

GUBRMUTIVE EGUAL (A, B, N)
C A.IS SET EUUAL TP R, BHERE A AND B ARE SQUARE MATPICES
EIMEVSIOXA(20,20), B(2C,20)
De $51=1, N$
$D 05 \mathrm{~J}=1, \mathrm{~N}$
$A(1, J)=E(1, J)$
;25Tリスツ
$5 \because 0$
SJPRZUTIVE PROIAS i PRA, AS Y
C FRA IS THE FRADUET AF THE DIAUQNAL TERMS OF THE SQUARE MATRIX A

ロマA $=1.0$
Se 121 = $1, \mathrm{~N}$
10 ont $=$ ora * A(i; I)
\&ETU゙N:
Fis
SU3RPUTIVE S!TMP (A) C
C GETS OLST VALUES FOR SIVULATIEN
C GALCLLTEF EESSITY FLNCTIEV IS STGREOIN C
aINF: VTGM $A(51), ~ C(51)$
20 $101 .=1,51$
$A(I)=-5, \hat{C}+\cdot \hat{E} * F \operatorname{CAT}(I-1)$

なくない
512

```
    GURRFIJTINE PROE ( \ddot{EX, EXSS, VARS, ITT, 5)}
    C CALGULATES SIMUNATTON VA?IANCE
    C SIMLATFD EEYSITY FUNCTIGN-IS STORED IN B
        \I`E`SIO\:F(5i), FX(10000)
        VARS = O.
        OQ 10J= \,ITT
    10 UARS = VARS + (FX(J) = F
        VARS = VAFS/FLOAT(ITT)
        09 23 I = 1.51
    20 3(I)=0:
        J93MJ=T1,1TT
        Z = (FX(J) EXS)/SORT(VARS)
        S=5**5 + 26.5
        I= IFIX(S)
        IF (I !LT. 1_) I=1
        IF (I MT, 5\overline{1},) I= 5\
30 }\quad3(1)=E(I)+
30 }\quad3(1)=E(I)+
40 3(I)= B(I)/FLGAT(ITT)
    ๕ETUマ:
    ENO
```

SUBPTUTIVE PIGTP（＿N，Xe，Y＇Z，AMAX ）
C Y 小NE Z ARF PLETTED VERSUS x

ZIMENSIGY LI＇5（103），SCAIE（6），X（101），Y（101），2（101）

$A N I!=0$.
3A 14 I＝ 1,
IF（Y（I）SI，A－AX）AMAX $\bar{B} A Y(I)$
IF（ $Y(I) \cdot L T \cdot A Y I A) A M I V=Y(I)$
IF（ $7(I)$ ，GT．A＂AX）AMAX $=Z(I)$
IF（2（I）LT，A＇IN）AMIN＝Z（I）
14 ¢בNTVUE
C DAT TOP GCALES ANO AERDER
QITE（5．602）
GOE FORMAT（1Hi ）
$\rightarrow 1=A \vee A X-A 以 I V$
$-12=3.2 * H i$
$\operatorname{lin}_{1}=100 \cdot / 41$
STALE（1）＝AMIV
39171 ± 20
iS $\quad \operatorname{CHLE}(1)=S C A L E(I=1)++12$.

2＊ $12 \mathrm{~F}=111 \mathrm{~B}$
$12 \quad L I E(I)=$ KNYU
？1．3 $1=$ ？，122，10
13 LIVE（1）＝$\angle A E Y$ ：
URITE（6，EO1）（LINE（1），I＝1，103）
501 FEマNAT（？5x，10341）

```
C DLPT GAOY OF G2AOH
2921 I =2,13%
21 LIME(I) = KQ!.vK
    วी 23 I = 1.123,51
23 LINE(I) F YAF.YE
    \02 J =1,N
```



```
    L? (Z(J)-AMIN)*H1+2.5
    LIE(1_1)=KSTAQ
    LIE(L2)= KPLUS
SC3 FORMAT (IX,F7,2,1X,F7,4,1X,F7,4,1X,103A1)
    GNE(LT})=\times34,
    LINE(LQ) = K?L:K
    LIVE(S?) = KAEYE
22 CONTINUE
C PRINT 3OTTG:LINE AND SCALES
    931 1 = i,123
    LINE(I) = KNIN!
    3Q 32 I = 2,102,10
32 LTI,E(I) = KAEYF
    ATFF(6,6O1) (LINF(I), I = 1,103)
    QITE (5.600) (SEALE(I); I = 1,6)
    RETUFV
    Eソ!
    BMORIUTIVE COYNAT (M, N, V'R (
    OELL U(12,12)
    OF 1? I= 1,0
    OE 10 1 = 1,%
    A(1,J)=R
    !F(! !Q. J. U(i,j)=i.j
    *I,J)=M(I!J)*V
    #ETG#`
    E?n
```


SUSQUTINE NEPMAL $(x$,
FAGHEALL GE E?ATES A RAZMAL RANDGV NUMBER X
ЭTAPT VUST BE CALLED IUTTIALLY
'S' IU CALU:A 1 DEAOTES SYYOELIC SUS SIGMA 7 ASSEMBLY LANGUAGE
E
conTlue
L1.11 , X14.32091
SUM 12 Un IFOON RA, ODON NEMZERS
5LS:11 1?
LU, \because
$11,5 \quad 65537$
L. $49^{\circ} 5$

```
    \(\begin{array}{ll}5 T 4,5 & 4 \\ 5 L S: 9 & -8\end{array}\)
    A.4. 9
        11
    \(111 \quad 2\)
2761.56539
    LA3 5
    3LS,3 -3
    A. 23
        11
    FAS.
    A1:1
    CI:1
    \(\because L E\)
    ADPLY PRLY QNTAL CORRFCTIGN
    ESS.? SIX
    EMS. 3 FIURTH
    ST:2 \(\quad Y!\)
    Lit 3 Y1
    ENS, 3 Yi
    STM, \(\quad Y E\)
    F-1S, 3 A?
    FAS, 3 A7
    ■VS.3 Y?
    FAS. 3 AS
    FAS, \(3 \quad Y 2\)
    FAS. 3 A. 3
    FMS, \(3 \quad Y ?\)
    FAS, 3 AI
    「MS.3 Y!
    I413 \(X\)
    ST: * * 3
    "上Tリス2
    EYTRY START ( \(x\) )
    \(3 I X=\leq\).
    COLPTH = - 25
    \(11=3.349245132\)
    \(\therefore 3=25242724\)
    \(45=.075542912\)
    \(\Delta 7=.90355252\)
    A \(=\) - 229803775
    Ir ( \(\%\) FG. \() \quad 4=1\)
    3白 TO 1
    「!
```

＊tuts rugtion calrulates the prezability that a randgm x ís less thán
＊（x－Ex）／STi
＊5uctio 2ra3（ y Ex：STD）
＊SAUREE LASGUAGE IE SOS SIGMA 7 ASSEMBLY LANGUAGE－SYMBAL
CATA；S
FL＇I＇
FL！ 5.0438673470^{\prime}

42	DATA,	FL'0.021-1410061'
A3	DATA,	$F!12.0032775263!$
A 4	CATAs ${ }^{\text {CATA }}$	$F L 10.000038 .0036^{\prime}$
A 5	DATA, 3	$F L i 0.000049: 906!$
46	ПATA, 5	$F L: 9.0000053830^{\prime}$
HALF	OATA,	FLio.51
PR日 3	A1,13	1.
	L 1,1	*13
	AI:13	$\ddot{1}$
	L4, 2	* 13
	AI:13	1
	L\%, 3	*13
	Livi4	*1
	FSS,4	*?
	L+ ?	* 3
	F?S,4	3
	LI, 2	1
	CI. 4	0
	3SE2	MAI'V
	L1, ${ }^{\text {L }}$	0
	LC^:4	4
MA1	L1.5	$?$
	LT, 5	4
	$F \cdots, 6$	A
	FAL, 6	A5
	$F: L, S$	4
	FAL. 6	14
	F'I, 5	4
	FAL, 6	43
	$F \cdot 1-16$	4
	FAL,S	42
	FH, 5	4
	FAL, 6	A1
	$F \because \cdot 1,6$	4
	FAL, 6	AO
	L1, ?	9
Lep	Fil, 5	6
	41,3	1
	S1:3	4
	枵	Lapp
	L-24	AD
	F:L,4	6
	F:L. 4	$H A L F$
	C1, 2	0
	Pr	RETURA
	L3, 6	A)
	$F S L: S$	4
	LC.4	6
TETUPA	L*, 3	4
	A1,13	1
	Q	* 1.3
	EV	

APPENDIX B

COMPUTER PROGRAM TO CALCULATE THE PROBABILITY
OF ERROR OF A THRESHOLD GATE

SUBROUTINE TO CALCULATE PROBABILITY OF ERROR OF A THRESHOLD GATE - THRESH

```
AW = Weight vector, n}\mp@subsup{|}{W}{
AX = Input vector, 師
VARW = Variance of weights, }\mp@subsup{\sigma}{\textrm{W}}{2
VARX = Variance of inputs, \sigma }\mp@subsup{}{x}{2
CORW = Correlation of weights, \rho
CORX = Correlation of inputs, \rho
N = Number of inputs, n
PE = Total probability of error for equally likely inputs, }\mp@subsup{P}{E}{
CW = Covariance matrix of the weights (N+1 x N+l)
CX = Covariance matrix of the inputs (N x N)
EXF = Expected value of f(p)
VARF = Variance of f(p)
PF = Probability of error given AX
PROB (X,EX,VAR) = Probability that a random, normally
    distributed X \leq (X-EX)/\sqrt{}{VAR}
```

$F N(X)=$ Value of the logic function $F N(X)$
COVMAT (M, N, V, R) generates an $N \mathrm{x}$ N covariance matrix $M_{i j}=\operatorname{cov}\left(x_{i}, x_{j}\right)=\rho_{i_{j}} \sigma_{x_{i}}{ }^{\alpha_{x_{j}}}$, where $\rho_{i i}=1$ and $\rho_{i j}=R, i \neq j$, and $\sigma_{x_{i}}=\sigma_{x_{j}}=\sqrt{V}$
MATRIX (A, B, C, N) forms the product $C=A B$ where A, B, and C are $N \mathrm{x}$ N matrices.

STEP (X,N) considers X as an N place binary number and returns $\mathrm{X}+\mathrm{l}$, neglecting any high order carry. Thus entering $\mathrm{X}=1101, \mathrm{~N}=4$, returns $\mathrm{X}=1110$.

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H

Flow Diagram of Subroutine THRESH

SURROUTIVE THRESंH \＆AU，VARW，CORN，VARX，CORX，N，PE；IFN， C THIS SUBROUTIYF CALCULATES THE PROBABILITY OF ERROR OF AN NGINRUT C THRESHALD GATE WITH WEIGHTS AN，AND STATISTICS VARW，CORW，VARX，COFX IF：IS THE NUMBET AE PQINTS OF THE N－CUBE WHERE PE >0.5
C THE LGOIC FUNCTION REALIZED IS SPECIFIED IN FUNCTIGN SUGPRAGRAM FN C GeGIV MUST BE GALLED INITIALLY
C REF：COVMAT，＂ATVIX，STEP，PTQB，FN DIFESI日：C， 12,12$), C \underline{x}(12,12), Q(12,12) \& Q(12,12), R W(12,12) ;$
$\overline{1}$ P $\times(12,12), V(12,12), V \times(12,12), A(12), A x(12)$
\bar{i} GOCTINLE
$A X(Y P)=-\overline{1}$.
C SINERATE M：
$20121=1,0$
$2010=1,0$
$\because(1, j)=0$
$12 \quad \forall \because(1, I)=A Q S(A N(1)) \times \dot{S} T D$
CALL MATRIX（VGON，QTAP
CALL MATRIX（ST，Vn，CH，NP）
2A $2, ~ i=1, r$
$20 \quad A \times(1)=1$ ．
$=E=0$ ．
$1 F^{:}=2$
C STEP TMRU ALL POSSIBLE IAPUT COMBILATIONS
$29102 \mathrm{~J}=1 \mathrm{~K}$
CALL STEF（AX，
C CALCULATE VARIASE OF SEPARATING FLNCTIGN
$V A P F=0:$
$09231=100$
292 $2=1$ 小又
$V A R^{F}=V A C F+4 \times(I) * C_{V}(I, K) * A \times(K)$

c

？ $3 \quad E X F=F X F+A G(I) * \bar{A} X(I)$
$x=E x E-A \dot{A}(x)$
C＝VALJATE LEGIC FUNCTIO
$E=E(A X)$
c．GALCHATE EASBABLLITY O F EQRAR

100 CATTIUE
$2 E=D E M$
2ETUF：
ETGY BEGI：（ ÁA，VARA，CERA，VARX，CORX：N，PE，IFN 1 $10=0+1$

C GEAEHATE CARRELATIÖN ÄNO VARIANCE NATRICES
STEX $=$ STRT（VARX）
STEU＝SnfT（VARも）
CALL CAVMAT（RN，PP：FACORN）
CALL CAVMAT（RX，N，1，CGRX）
GEAEPATE MX
กO $52 \mathrm{I}=10$
$0950 \mathrm{~J}=1, \mathrm{~N}$
50

EvCTIONF：（ x ）
DIMENSIQN x（1？）
－THIS FLVCTIS EVALUATES THE FELLAWING LBGIC FUNCTIEN $F \because=X(1) * x(2)+X(1) * x(3) * x(4)$
IF（FA．GT． 2.$) \mathrm{FN}=1.0$
2ETUF
EAD

SURPSGTAE STER（ X ，N．）
C THIS SUSRELTIGE GTEPS THRU THE PGINTS OF THE N－CURE

CAREY $=1$.
OP $10 \mathrm{I}=1 \mathrm{I}$
$\mu=\because-1+1$
if（ E4REY，Es．O．）6与 TG io

$X(N)=1$.
GABRY＝C．
30 TA 10
20
10
$\square \quad C=4 * 2, W E R E A, A N B C$ ARE N X N MATRICES

$29101=1$
ค色 $10 \mathrm{j}=1 \mathrm{n}$
$C(I, J)=C, C$

```
\(10 \quad \begin{aligned} & \text { 29 } 10 K=1,1 \\ & C(I, J)=C(1, j)+\bar{A}(1, K) * B(K, J)\end{aligned}\)
    RETURT
    EAD
```

SUSFFUTINE CTVAT（ MíN；Vi R）
c THIS SLBRELTIUE SENERATES AN NX N COVARIANCE MATRIX M WITH C VAFIGNCE V AND CORRELATIGHR TEAL M（20，20）
$C=F * V$
De $121=1, N$
DE $10=1 \%$
10
12
$\because(1, J) \equiv C$
$v(I, 1)=V$
BETURE
「ごに

Flictlan page（ x ，Ex，var ）
C FOAEABILITY TRAT A RANDAK X IS LESS THAN $(X=E X) / S T O$ DAUSLE PRECISION S；T
$T=C, C 00$
$T=\operatorname{DRLE}(X-E X) / S E A T(V A R))$
IF（T．LT，-4.000 ）GGTE 20
$!=1$
IF（T）5，10，10
5
10

1
\vdots
5

$3=5 * T+0.200028003500$
$\sigma=\sigma * T+2.0 n 3277625300$
$S=5 * T+C .221141005100$
$S=S * T+C .047247347000$
$S=5 \times T+1.009$
$S=S * 1 h$

IF（I．EG．1）PROE＝1．ODC－PRGB
PETLE：
20 ENTIUE
$\overline{I F}(T \cdot L T,-16.000)$ GOTS 30
$T=-T$
$\varsigma=\check{-5 ラ 0 * T * * ? ~}$
ET $={ }^{\mathrm{r}} \operatorname{EXP}(S)$

FETUR：
FFOS $=0$ ．
$\because E T$ UR：
EV

APPENDIX C

COMPUTER PROGRAM TO CALCULATE THE PROBABILITY OF ERROR OF A THRESHOLD GATE NETWORK

```
AW = Weight vector, n
AX = Input vector, 的
VARW = Variance of weights, \sigma
VARX = Variance of inputs, \sigma }\mp@subsup{\mathbf{x}}{2}{2
CORW = Correlation of weights, \rho
CORX = Correlation of inputs, \rho
NI = Total number of network inputs
NO = Number of inputs that go only to output gate
NG = Number of gates in network
PE` = Total probability of error for equally likely inputs, }\mp@subsup{p}{E}{
CW = Covariance matrix of the weights (N+1 x N+l)
CX = Covariance matrix of the inputs (N x N)
P = Probability of occurance of outputs of first level gates
NG1 = Number of gates in first level
NIl = Number of inputs to each first level gate
EXF2 = Mean of output gate separating function
VARF2 = Variance of output gate separating function
GENP (AW, VARW, CORW, VARX, CORX, NGl, N, P) generates the 2NGl
        probabilities of occurance of the outputs of NGl first
    level gates
GENB (B,N) generates an n-th order B matrix
SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
```

Flow Diagram of Subroutine THRESM

STDW = SORT(VABA)
STEX $=\operatorname{SORT}\left(V_{A Q X}\right)$
GALL CFIV:AT (Ry, NAT, 1 , CORV)

$V \omega(I, J)=0$.
Wh(I,I) = ABS(AN(I))*STDW
CALL NATEIX (VN, RL, D,NWT)
CALL NATRIX (D, Y : CW,NWT)
CALL COVMAT (?X,NI2,1, CARX)
Do 22 I $=1,112$
$0020 \mathrm{~J}=1, N 12$
$V X(I \cdot J)=0$.
$V X(I, I)=S T O X$
CALL NATFIX (VX,FX,C,Nİ)
CALL MATRIX (D,VX,CX,NI2)
0 3 $0.1=1,12$
$x(I)=0$.
$A \times(A \because T E)=-1$.
$A E=C$.
C STEP thru all possible compinations of the inputs that ge to beth lível 2 2 $10 \mathrm{Cl}=1$ MI1
C CAEARATE THE PRORABILITITS GF ECCURANCF OF THE FIRST LEVEL OUTPÜT
CALL SFAD (AN,VAFW, CPRU, AX, VARX,CORX, NG1, AII,P)
 ne 90 j2 $=1, \mathrm{MO}$
STE = CPU THRUL POSSIBÏE CEMBINATIGNS OF INPUTS THAT GE ONLY TE THE SUTFUT GATE
D9 8 C - $33=1,49$
CALCULATE VARIA:CE QF THE OUTPUT GATE SEPARATING FUNCTION
VAFF? $=0$.
DE $52 \mathrm{I}=1$ M, T2
DE 5. $\mathrm{K}=1 \mathrm{HATR}$
$5 ?$

56 EXF? $=E X F ?+A X(1) * A X I N T 1+1$
C EVAluate leolc function
$F=F \therefore(X)$
C CALCULATE PROBABILITY Ë̈F ERROR
$F X=E X F ?$
IF (F.EO. 1,) F $\bar{X}=-\ddot{F} X$
$P F ?=P R A Q$ (FX,O4, VARFZ)
PF1 $=P F 1+P F 2$.
CALL STED (AX, NID)
CALL STEP (X,VI)
CARTISIE
PF1 = PF1/FLEAT("G)
$P F=P F+F F 1 * 5(J 2)$
$0885 I=\dddot{1}, N 1$
$x(1)=A X(I)$
COSTINUE
$P E=P E+P F$
PE = PE/FLAAT(:I1)
RETURA:
FAD

```
GQROUTINE GENF (AN,VARN,CORN,AX,VARX,CGRXING,NIP)
    THIS SURFOUTINE GENERATFSP, A VECTOR CONTAINING THE Z**NG
    pRAEA?ILITTES QF ECCURAACE GF THE QUTPUTS OF NG, N-INPUT
    THPESWGLD GATES NITH STATISTICS VARW, CORW, VARX, AND CGRX, WEIGHT
    VECTFO AU, ANS INPUTT VECTGR AX.
    DINE.4SIOR A(6,4),AW(20), AX(10),CN(20,20),CX(20,20),D(20,20),
    { FYF(11),TE(5),P(20),PO(20),R4(20,20),QX(20.20),VW(20,20),
    i vx(20,20),7(20,20),C(20,20),AWX(10),AX,(20), X(10)
    *P=N+1
    \becauseT1=NT*NF
    | = 2**NG
```

```
    P(1) = 1.
    IF(NG LTT. \ ) RETURN
    PO(1) = 1.
    c calculatF the means of the sfparating functions
    L =0
    O# 120 i = 1, va
    F=0.
```



```
    L}=L+N
    120 FXF(I) = F: A!(L)
    F = 1.
    20:32 i = 1NG
    130 F=F*EXF(I)
    EXF(N:G+1) =F
    DA 5 1 = 1,NG
    X(I) = OU ALL PAESTBLE TNPUT COMBINATIONS
    DO 20 J = 2,v
    CALL STEP (X,NG)
    C CALCULATE MEANAF PRODUUCT GF SEPARATING FUNCTIQNS
    EXFI = 1:
    09101 =10NO
    IF, (X(I), ET. O., GQ TG 10
    EXFI = EXFI*EXF(1)
    jo centivue
    C EALCULATE NEAN: VECTGREZ
        LOO 2en.i=1,NG
    CQNST = X(I)/EXF(I)
    D0 210K = 1,V
    210 AXN(K+L)=AK(<)\timesCONST
    L}=L+N
    220 AX:(L)=-CONST
        i}=
        OA 225 K = 1N
        AW\times(<) =0.
        OO 240 I = 1,NG
        IF (x(I) EEQ.O:, GO TO 240
        OA 23CK=1.N
    230 ANX(K)=AHX(K) + AW(K+L`/VEXF(I)
    C40 L E LCULATE COVARTAVCE MATRICES
    STO., = SORT(VAR#)
    GTEX = SMRT(VAZX)
    CALL CHVMAT (RU,A,NTI,I.,CORW)
    Mal2 I = 1,NT1
    OO 31% K = 1,N准
    310 vi(I,K) = 0.
    31? va(I.I) = ASS(A)(i))*ST\overline{O}
    CALL MATRIX (VA,RA,D,NAT1)
    CALL NATRIX (O,VU,CW,NUT1)
    CALL COVUAT (R\,`,1.,CORX)
    2a 3?? 1 = 1, '
```

$320 \quad D \operatorname{B20} K=1, V$
$320 \quad v \times(1, k)=0$.
322. $V X(I, I)=$ STCX

CALL MATPIX (VX,OX,D,N)
CALL MATRIX (DEX, CX:N)
C CALELIATE VARIANE OF PRODUCT OF SEPARATING FUNCTIENG
$V A D F I=0$.
$09250 \overline{1}=10 N$
DO $250, K=1.2$
$250 \quad V A A F I=V A R F I+A W X(\bar{I}) * C X(I, K) * A W X(K)$
DO 260 I $=1$ VNTI
OE 250 K = 1,NT1
260 VARFI $\because V A F F I+A X N(\bar{I}) * C N(\bar{I} ; K) * A X N(K)$
VAAFI = VAFFI*EXEI*EXFI
C CALCULATE PRABABILITY THAT PRQDUCT IS GREATER THAN TERA

20 CENTINUE
C GENELATE B MATRTX
CALL GENB (B, VG)
C FGRM CI THF INVFRSE GÖ B
CANST = F./FLAAT(M)
D9 $301=1 \times 1$
$0330 \mathrm{~J}=1, M$
$30 \quad C(1,1)=(P(\sqrt{1} 1)=.5) * \operatorname{const}$ $C(4,1)=C(M, \bar{j})-1 . \quad$.
C CALCULATE THE PROBABILITY AF OCCURANCE OF THE OUTPUT CGMBINATION De $40 \mathrm{i}=1, \mathrm{M}$
$n(I)=0$.
De $40 \mathrm{j}=1,1$
$40 \quad \ddot{0}(1)=P(1)+E([, j) * P O(j)$
RETURN
END

SUBRGUTJNE GEMB (E, N)
C THIS SLBROUTIYE GENERATFS AN NITH GRDER B MATRIX USED BY THE
C MULIGATE THRESHGLD NFTWORK FRQBABILITY OF ERRGR RRUTINE=-THRESM
C FEF: STEP
DINENSION $9(20,20) ; X^{\prime}(4), Y(4)$
$y=2 * * N$
DA $5 I=1 N$
$5 \quad Y(I)=1$.
OQ 100 J $=1, \mathrm{x}$
CALL STEF (Y,U)
$k=0$

$00 ? 01=1, \because$
$20 \quad x(1)=1$.
09 $83 \dot{L}=1, M$
CALL STEF (XPV)
$\grave{j}(\mathrm{~J}, \mathrm{~L})=0$.

APPENDIX D

COMPUTER PROGRAMS FOR PATTERN SEARCH TO MINIMIZE PROBABILITY OF ERROR

COMPUTER PROGRAMS FOR PATTERN SEARCH TO MINIMIZE PROBABILITY OF ERROR

```
N = Number of inputs
W = Initial weight vector, 的
DWF = Initial step size
DWL = Minimum step size
VARW = Variance of weights, }\mp@subsup{\sigma}{W}{2
VARX = variance of inputs, \sigma
CORW = Correlation of weights, \rho
CORX = Correlation of inputs, \rho
WW = Adjusted weight vector
INC = Pattern vector
PE = Probability of error given WW
BEST = Minimum probability of error
IFN = Number of points at which PE > 0.5
KA = Number of iterations
```

THRESH (WW, VARW, CORW, VARX, CORX, N, PE, IFN),
BEGIN (WW, VARW, CORW, VARX, CORX, N, PE, IFN) calculates the
propability of error PE of an N -input threshold gate
with weight vector WW and statistics VARW, CORW, VARX,
and CORX. IFN is the number of points of the n-cube at
which the probability of error is greater than 0.5. The
initial call is made to BEGIN and subsequent calls are
made to THRESH (see Appendix B).

THRESM (WW, VARW, CORW, VARX, CORX, N, 0, 2, PE),
BEGINM (WW, VARW, CORW, VARX, CORX, N, 0, 2, PE) calculates the probability of error PE of a two gate, N-input threshold network with weight vector WW and statistics VARW, CORW, VARX, and CORX. The initial call is made to BEGINM and subsequent calls are made to THRESM (see Appendix C).

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H

Flow Diagram for Optimal Threshold Gate Search Program

OPTMAL THFESHGED GATE SEAFCH PRGGRAM
THIS RRAGFAM MILL SEARCH TG FIND THE WEIGHTS WHICH NILL MINIMIZE THE PRORASILITY AF ERROR GF AN N－INPUT THRESHSLD GATE WITH STATISTICS VASA，CERN，VAEX，AND CQRX．THE INITIAL NEIGHT VECTQR IS M THE I ITIAL STEP SIZE IS DAF，AND THE MINITUM STEP SIZE IS DUL．THE THRESHGLD IS W（A＋1）．IFN IS THE NUMBER GF PGINTS OF THE AㄷCUTE FGR AHICH THE PRORASILITY GF ERROR >0.5.
REF：THRESH
OIMFASTO：INC（i2），W（12）；WW（12）
二EA？（5，2，FAD＝99）M
FARMAT（IE）
$\because=\because+1$
QEA！（5，5）（ $\because(I), \bar{I}=\overline{1}, M)$
Fgficat（SE10．3）
REAn（5，5）BiF，BLL
AEAD（5，5，EAD＝í）VARḦ；VANX
CONTIVIE
EEAN（5，5，EVR＝1）CERiN，CPRX
$\cos x=0$ ．
no $11 \quad 1=1,0$
$\because(I)=4(I)$
On $=$ ENF
刀RINT INPUT BATA AAD INITIAL PRQRARILITY OF ERRGR
＊RITE（6．12）
FARッAT（1Hi）
\therefore RITF（5，13）VAG：CRRHz VAFXACORX
3 ERPNT 1,1 I ITIAL VARIA：CES AND（ORRELATIENS 1，4（2XE10．3））

```

```

PITE（GTMIS ARE ME10．3．2X，E10．3）
थRITE（5，㝍）（＊v（J），J．$=1, \mathrm{M})$
FORMAT．（／，IVITIAL NEIGHTS ARE 1，／，（1X，10E13．6）／）
$\because 0:=1$
$\because 1=2 M^{M}$ ．
$\because 1$ 1～1＝1．＂
$1 \because C(!)=C$
くs？$=0$

```

```

习1TE（5，17）TE
FEEAT（／，IUITIAL PQOAABILITY GF ERSOR IS 1，E15．8）
\therefore EST＝DC
$\langle A=1$
TF（IFN．EC．O，$\overline{6} 0$ TO 20

```

```

FGT1NE
EXPLrightary＂nvir

```

```

IF．（ \because（VOi）LT．O．）G TG 29
CALL THRESF（U，VAFN，CPRV，VAEX，CQEX，N，PEIIFN）
IF（DF LT． $2 E S T$ ）GOTO 36
$\therefore\left(N_{A_{i}}\right)=1 \cdot x\left(A^{\prime} 9,1\right)-D W$
$\because \dot{n}=-\dot{N}$
$\angle Q E E=\angle Q D E+1$

```


PATTEP MOVE
Ce \(40 \mathrm{~J}=1, \mathrm{~N}\)
\(40 \quad * *(J)=A N(N)+D_{N} F \operatorname{LGAT}(I N(J))\)
\(\angle A=\langle 4+1\)

CALL THRFSH（AN：VARN，CORY，VARX，CORX，NPPE，IFN）
IF（ IE •GE．3EST ）GA TS 47
TEST＝DE

－
52
\(c\)
リタ：＝ 1
\(J_{2}=2\).
09 32 ј \(=1\)
IF（ JG．ES． 3 ）GQ TG 5 ？
re TG 33

IF（KZDE ．EE， 1 ）INC（NGn）\(=-1\)
\(\theta^{\prime}=\lambda \theta^{\prime}+1\)
\(\angle S O E=0\)
\(3 \%=5 x\)
1F（ N ヨ ，GT•N）GOT日 3ล
97 TS 50
\(2 x=0 \times\)
\(\lambda e^{*}=1\)

万n 9742.
20 4 § J＝i，
\(\because \because(J)=\) N（J）－ONFFLgAT（IVC（J））
！C（1）\(=0\)
\(\partial x=2 x\)
\(\langle A=x A+1\)
30 T：20
TESUE STEF SIZE
＂が＝ \(3 \times 116\) 。

2H：KMTMTEFNDIATE RESULTS
RITE（ 6,65 ） \(\mathrm{KA},(\mathrm{nc}(\mathrm{J}), \mathrm{J}=1, \mathrm{M})\)
FQRUAT（／／，AFTER \(1,14,1\) ITTEPATIONS，THE WEIGHTS ARE \(;\) ，
\(i(1 x, 10513,6))\)


－ITE（6，18）IF：
39 TS 20
FQI：T EIAAL RESULTS
－2ITi（ 6.74 ）＜


IF（ \(\because A D E \cdot E \therefore \cdot \dot{2}) \hat{K O D E}=\dot{3}\)
IF（ Y．TW GT：N）GE TE 30
50 T 50


FEDNAT ('/, THE BEST AEIOHTS ARE 1, (1X110EI3.6)) VRITE \((5,79)\) 3EST
FER:AAT (/, I THE LEAST PRABABILITY OF ERROR IS 1;E15.3, \%///) IF (IFN •EC. O , GQ TE 10
जITE (6:18) IFN
G9 TO 10
STE
ENO

APTIUAL THAESUALO GATE SEACOCH PRSGRAV, TNE GATE
THIS DRQGRAM UILL SEARCH TG FIUD THE WEIGHTS WHICH NILL MINIMIZE THE PRABASILITY RF ERRER OF A TWOEGATE THRESHOLO NETNORK WITH \(\therefore\) INOTS AAE STATISTICS VARA, CER*, VARX, AND CQRX. THE INITIAL, UEIGHT VECTEF IS N. THE THEESHGLD OF THE FIRST GATE IS W(N+1), AND THE THRESHRLO SF THE SECTND GATE IS \(N(? * N+3)\) E W(2*N+2) IS THE. VEIGHT GIVEN THE EUTPUT GF THE FIRST GATE THE INITIAL STEP SIZE IS E.F, AND THE WINIMUM STEP SIZE IS DNL.
REF: THRESN

EEA (5, 2, ENC= 59 )
FOENAT (15)
\(\cdot 11=V\)
\(\dot{\lambda} 1=v+i\)
\(\cdots \bar{C}=1+1\)
\(\because \bar{c}=1+2\)
\(v a T=V a \underline{1}+\cdots 2\)
\(\overline{\operatorname{HEA}}(\Xi, 5)(\because(I), \bar{I}=\overline{1}, \hat{N} T)\)
FENMAT (EE10.3)
\(\because F A G(\Xi, \bar{E}) D \times F, \vec{A}\)
XEAE (E, S, EAF=i) VAFM; VARX
COTTME

Mc. \(11 \mathrm{I}=1\)
\(\therefore \rightarrow(!)=\infty(!)\)

\(\therefore\) FTE ( \(6 \cdot 1 \hat{c})\)
ᄃのニVAT (1Hi)
\(\rightarrow\) ITE (5,13) viax, cencivipxiçzx



\(u=\because i T\)
\(i=\because T i j\)
คOTE (6,i5) (:A(J), J=1,M)

\(\because \therefore=1\)
\(\operatorname{Sin}_{x}=\mathrm{SAM}^{\prime}\)
in \(161=\overline{1}, 4\)
\(\angle E O E=0\)

WEITE (5:17) DF
 2EST = PF
\(\langle A=1\)
cotive
EXFLPGATARY MAVE


CALL THRES: (:H,VARW,CGRサ, VARX,CERX,N,O,2,PE)
IF \& DE LT. REST ! GO TO 36

OH=-3N
KDOE \(=\) KAEE +1


IF ( KODE .E?. 2 ) KQDE \(=0\)
if ( None GE. NNT ) G日 TA 30
95 T9 50
\(V E=1\)

\(J O=J G+14 E S(\bar{S} C(j))\)
IF! JG, ER. O, Gg TG 5 ?
39 T4.38
\(B E S T=P E\)

\(\operatorname{Sr}=1 \mathrm{E} 4+1\)
iF (Nav, EC. N1, Now = NAN +1
\(5 O E=C\)
\(56=24\)
If (NEM TE, NTT, GO TE 38
26 TO 50

De \(40 \mathrm{~J}=1,1\)
\(40 \quad \because(J)=A+(J)+2 N * F L A T(I N C(J))\)

CALL THRESN (NAVARM, COR'AVARX,CORX, V, D, Z, PE)
If ( DE. SE. SEST, GA TO 47
\(\because E S T=P E\)
INC(Yi) \(=0\)

Q T 42
\(\operatorname{lc}(\because 1)=0\)
20
\(\therefore(J)=U(J)-D N F L \theta A T(I N C(J))\)
48
\(n C()=\).
\(50 \quad\)\begin{tabular}{l}
\(\mathrm{DW}=\mathrm{DWM}\) \\
\(K A=K A+1\) \\
\(\mathrm{CA}=20\)
\end{tabular}

C RECUCE STED SIZE
52
OWH = \(\mathrm{Dmp/ic}\).
IF (EMM.LT. DUL , GE TG \(70^{\circ}\)
DN \(=\) OMM
C PRIAT INTEREEDATE RESUITS
QPITE (6,65) KA, (min(J), J = . 1 NHT)
FERMATI/'AFTER \(, 14,1\) ITERATIGNS, THE VEIGHTS ARE \(1, \% ;\)
1 11(1x,F10.7)).
APITE \((6,67)\) EEST

39 T2 20
C orint final. resultts
70 जRITE \((6,74)\) KA
74 FERUAT (//,' AFTER, 1,İ4, ITTERATIONS,')

76 FORUAT (/1 THE BEST VEIGHTS ARE 1, 1,11(1X,F10.7))
MITE (6.78) 3EST
78 FEFMAT (/,1 THE LEAST PREBABILITY OF ERRGR IS \(1, E 15.2 ; / / / /\) 3STO 10
93
STED
EAD```

