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ABSTRACT

A threshold gate is a logic gate in which the output 

is determined by a weighted sum of the inputs compared to a 

threshold. If the weighted sum is less than the threshold, 

the output is a zero. If the weighted sum is greater than 

the threshold, the output is a one.

In general, the inputs, weights and threshold are 

correlated random variables. It is possible for the weighted 

sum and the mean of the weighted sum to lie on opposite sides 

of the threshold. This will cause an error in the output 

of the gate.

Techniques are derived for calculating the probability 

of error of single threshold gates and nonsequential threshold 

gate networks. It is assumed that the means, variances, and 

correlations of the inputs and weights are known, and that 

the probability of occurrence of the network input combina­

tions is known.

Threshold gates with random inputs and weights are then 

studied by simulation. Each input and weight is replaced 

by the appropriately generated random number, thereby generat­

ing the density function of the weighted sum. The form of 

this density function is important in the calculation of the 

probability of error.

v



The techniques for calculating probability of error 

are implemented by digital computer programs. These are 

used as subroutines for an adaptive search technique to 

minimize the probability of error by adjusting the mean 

value of the weights. The dependence of probability of error 

on the variance and correlation of inputs and weights is 

examined for both optimal and non-optimal realizations.
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CHAPTER I

THRESHOLD LOGIC

A logic gate is a system in which the output is related 

to the input by some logic function. Such a device need not 

be limited to realizing only the simplest logic functions, 

the AND and OR functions, although these are the easiest to 

implement. In fact, it is highly desirable that a single gate 

be capable of realizing more complicated logical functions. 

In this way, the number of gates needed in a logic circuit 

may be reduced significantly. It will be shown later that a 

threshold gate has this property.

Definition of a Threshold Gate

A threshold gate is a logic gate with binary inputs 

and a binary output. These binary variables can take on 

values of 0 or 1. Associated with each input, x^, 

there is a weight, w^, t The output y of a

threshold gate for any combination of n inputs can be ex­

pressed as

n
y = 1 if 2 w.x. > T 

i=l 1 1 -
(1.1) 

n
y = 0 if I w.x. < T 

i=l 1 1

where T is a real number which is called the threshold. The 

notation
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Cl.2)

is used to represent Eq. 1.1.

By subtracting T from both sides of the inequality.

Eq. 1.1 becomes

y = 1 if

y = 0 if

n
y w.x. - T > 0 

i=l 1 1

n
y w. x. - T < 0 

i=l 1 1

If x ,, =1 and n+1 wn+l = -T the inequalities become

y = 1 if
n+1

I wixi L 0 
i-1

y = 0 if
n+1

y w. x. < o 
i=i 1 1

(1.3)

Using matrix notation this becomes

T Twhere x = {xlz x2,..., xn, 1}, w = (w1, w2,..., wn, -T}.
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Finally,

y = 1

y = 0

T if x w > 0

T if x w < 0

or more compactly

(1.4)

Y

Fig. 1.1. Threshold gate of Example 1.1

Example 1.1. For the threshold gate shown in Fig. 1.1, the

output in terms of the separating function is

y = (2x^ + X2 + Xg
2.5

The output as a logic function is

y = x1(x2 + x3)

This is shown in Table 1.1.
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Table 1.1. Truth table for y = *\2Xj. + x2 +. x3/ 2.5

Xl/ X2/ X3. 2X1 + X2 + X3. y = ( 2Xy + X2 + 2.5

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 2 0

1 0 0 2 0

1 0 1 3 1

1 1 0 3 1

1 1 1 4 1

Switching space is an n-dimensional Euclidean space 

(n-space) where each coordinate axis corresponds to an inde­

pendent binary input of a logic gate or system. Since each 

input can have only values of 0 or 1, the input combinations 

are discrete points in the space. Eachcf the 2n points 

corresponding to the 2n possible input combinations lies on 

the vertex of a unit n-dimensional hypercube (n-cube) in 

n-space. Realizing a given logic function of n variables with

a single threshold gate corresponds to passing an n-dimensional 

hyperplane through the n-cube so that the plane separates the 

points at which the value of the function is equal to 0 from

Geometric Interpretation * a
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the points at which the value of the function is equal to

1. The equation of the plane is

n
V x,w. = T 

i=l 1 1

where the domain of eachx^ is the i-th coordinate axis.

Functions which can be realized by a single threshold 

gate are called linearly separable (l.s.). The function

n 
f(p) = y x.w.

i=l 1

is called the separating function, where p is the vertex 

of the n-cube corresponding to (x^, ,..., xn)• Figure 1.2

shows the n-cube and separating hyperplane for a two-variable 

function.

Not every partition of the vertices of the n-cube can 

be separated by a hyperplane as in Fig. 1.2b, hence not every 

logic function can be realized by a single threshold gate.

Fig. 1.2. (a) l.s. function and (b) non-l.s. function
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Notice that if the equation for the separating plane 

of a particular function

n

T

is multiplied by any positive constant K exactly the same 

w. x.
KT

plane results. Therefore

also realizes the function. Specifically

/ n

Every realization of a logic function with a threshold 

gate specifies a separating function f and a logic function F 

both of which are defined on the vertices of the n-cube. For

y =( K I
\ i=l

y = \ 2
\i=l

1 + 2x2 /
■L z / 3

also realizes the function of Fig. 1.2a. Note that there can 

be other hyperplanes not necessarily parallel that separate 

the function such as = 7/4 or + 2x^ = 5/2. Thus

the separating plane is not unique, therefore the values of 

the weights and threshold to realize a particular logic function 

are not unique.

The Map Interpretation
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each vertex p,there exists an ordered triple (p,f(p), F(p)). 

The set {(p,f(p),F(p))} of ordered triples for all vertices 

of the n-cube is called the map of F generated by f.

P
4 A (III)

U 3 i (I 10) (101)
----------- T

L 2 0 (100), (01 I)

i o (oio),(ooi)
0 0 (0 00)

Fig. 1.3. The map of F(p) = ( 2x. + x9 + x^ )
\ 1 2 J/ 2.5

For each p, there is a point on the real line at f(p).

This point is shown by O if F(p) equals 0 or by © if F(p) 

equals 1. Figure 1.3 shows the map of Example 1.1.

A map is divided into two disjoint subsets called the 

zero and unit parts, those for which F(p) = 0 and those for 

which F(p) = 1. Let U be the smallest f(p) such that F(p) = 1 

and let L be the largest f(p) such that F(p) = 0. A map is 

separated if U > L. It has been proved that a logic function 

F is l.s. if and only if there exists a function of the form

n
f(x1,x2,...,xn) = J wixi

that yields a separated map for F. (Lewis and Coates) 
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Classes of Threshold Functions

Consider an arbitrary logic function FCx^,...,x^f...f 

xn). The class of 2n function obtained by replacing variables 

in F by their complements is called the complementary symmetry 

class corresponding to F. Suppose F^(x^,...,x^,...xn) is 

equivalent to F except that x^ is replaced everywhere by x^. 

If y = (w^x, + ... + w,x, + ... + w x ) is a realization of \ jl J- k k n n/
F, then y = ( w. x, + . .. + w.x, + ... + w x ) is a realize- \ J- JL K k. n. XX/ ip
tion of F^. If F is l.s., then all members of the comple­

menting symmetry class are l.s. In addition, there exists a 

logic function <[> (x^ ,,.. . fxn) in the same complementing sym­

metry class as F such that the realization of <|> has all positive 

weights when the inputs are x^, x^,..., x^. Also, a realization 

for F can be obtained from the realization of <|> by complementing 

some of the variables and changing the threshold. Therefore, 

a realization for F with all positive weights can be found.

A logic function is unate if and only if in the minimum 

sum of products (MSP) form no variables appear both complemented 

and uncomplemented. It has been proved that if a logic function 

F is l.s., then it is unate and if

n
f(p) = w.x. 

i=l 1 1

is the separating function for F, then for each i, w^ > 0 
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(or < 0) if and only if (or x^) appears in the MSP 

form for F. (McNaughton) A function that contains no 

complemented variables in the MSP form is called a positive 

unate function. Any other function F in the same comple­

menting symmetry class can be obtained from the' positive 

unate function Fq by a simple transformation. By replacing
I

variables by their complements in Fq as needed, any function 

F in the same complementing symmetry class can be realized. 

The realization of F has the same realization as Fq except 

that some variables are replaced by their complements. This 

realization of F has all positive weights. In this thesis, 

only those realizations that have all positive weights will 

be considered.

For every logic function F (x^rXn), there corre­

sponds a dual function F^(x^,x^,•.•»xn) which is defined as

Fd(x17x2,. . . ,xn) = F(xlfx2,. . . ,xnl

A function F is called self dual if F = F^. It has been 
/ T \proved that if y =<x w) is a realization of F then \ / m

/ T \ . i • c T-,d ,y = / x w\ is a realization of F where 
\ /(y-T

n 
a = y w.iii 1

and F is l.s. if and only if Fd is l.s. (Lewis and Coates)
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Notice that the AND and OR functions of n variables are dual 

functions.



CHAPTER II

STATISTICAL ANALYSIS OF THRESHOLD GATE CIRCUITS

Threshold gate circuits are subject to input and 

weight variations. These variations may cause the gate to 

produce an erroneous output. In this chapter, three threshold 

gate circuits are examined in order to determine the nature of 

these variations.

Logic Systems

In the preceding chapter, threshold gates were consi­

dered as logic gates whose inputs were 0 or 1. In practice, 

the inputs are voltage levels which are assigned the logical 

value of 0 or 1 according to the value of the voltage level. 

For example, a logical 0 may be a voltage in the range O.Ov 

to 0.8v and a logical 1 may be a voltage in the range 1.6v 

to 5.0v. Positive logic is defined as a logic system in which 

the voltage level that represents a 1 is always greater than 

the voltage level that represents a 0. Negative logic is 

defined as a logic system in which the voltage level that 

represents a 0 is always greater than the voltage level that 

represents a 1. Now the definition of threshold logic will 

be extended to such systems.

Consider the positive logic system in which a 0 is 

represented by a voltage level c^ and a 1 is represented by
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a voltage level 0^+027 c2 > 0. Let be an input vari­

able in this system. For the logic variable defined on. 

{0,1},

zi = C1 + c2xi (2.1)

Let y = F (x-^ ,X2,.. . ,xn) be an arbitrary l.s. logic function 

of n variables whose threshold gate realization is

/ \ / n \
y = (f (p) ) = ( 2 wixi )

' / T \i=l T

Consider F(z^,Z2,...,zn). Define a new function

n 
f0(p) = .1 Vi 

1=1

Substituting c^ + 02^^ for z^ produces

n 
f0(p) = ,Z WitCi + c2x.) 

1=1

(2.2)

= Cj^a + c2f (p)
n 

where a = 7 w.
i=l T

Note that if F = 1, f (p) >_ T and fg (p) >_ c^a + C2T, and if
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F = 0, f(p) < T and fg(p) < 0^0 + c2T. Thus fg (p) is a 

separating function of F ,zn) if the threshold is

c^o + c2T. Therefore, F (z^,z2,...,zn) is l.s. and equivalent" 

to F (x-^,x2 ,. .. ,xn) . A realization of y = F (z^,z2,...,z ) is 

given by

/ n \
Y =( 1 wizi/ (2.3)

Si = C1 + c2*i = dl + d25i = wi

\i=l / c^a + c2T

Thus any l.s. function F with positive logic input z^ can be 

realized with a single threshold gate and this realization 

can be obtained from the realization for inputs x^ defined 

on {0,1} by changing the threshold. .

Consider the negative logic system in which a 1 is 

represented by a voltage level d-^ and a 0 is represented by 

a voltage level d^ + d2, d2 > 0. Let w^ be an input variable 

in the system. For the logic variable x^ defined on {0,1},

Wj, = d1 + (2.4)

Hence each w^ can be made to correspond to the complement of 

a positive logic variable z^. IE c-^ = d^ and c2 = d2, then S

(2.5)
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Let y1 = F1 (z1,z2,. .. ,zn) and y = F zw2 , .. . ,wn) 

be logic functions where y, and z, , z-,..., z are in a 

positive logic system and y2 and w^, w2,..., wn are in a 

negative logic system and the systems are related by 

= "z^ and y2 = y^. Converting from a positive logic 

system to a negative logic system requires complementing 

each input and the output

5^2 = = F2(w1,w2,...,wn) (2.6)

Note that F2(w) = F^^(z). Thus the conversion results in the 

realization of the dual function. If F^ is l.s., then F^ 

is l.s. and consequently F2 is l.s. Therefore, a threshold 

gate realization of a logic function F in a positive logic 

system realizes the dual function of F in a negative logic 

system.

A Resistor-Transistor Threshold Gate

One of the earliest threshold gate circuits is the 

resistor-transistor gate due to Rowe shown in Fig. 2.1. 

Each of the inputs, v^, v2'e*‘'vn •*‘s a volta9e level Vq or 

which represent a logical 0 or a logical 1, respectively. The 

value of the weight w^ is inversely proportional to the value 

of the resistor R^. The threshold is determined by the values 

of R. and V, .t t
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Fig.2.1 Resistor-transistor Threshold Gate Circuit

Fig. 2,2 Tunnel Diode-transistor Threshold Gate Circuit
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Consider the inputs to be in a positive logic system

and let V, > Vn > 0. Let V be the base-emitter cutin 10 y
voltage of the transistor. At cutin, the base current is

given by

1b = ill 11 ■

V0 = VCE(SAT)’ Let V0 = VCE(SAT) and V1 = VD + VD2* ThUS* 

the output will be a 0 for those input combinations for which 

the weighted sum of the input voltages is sufficient to cause 

the transistor to saturate. For those input combinations 

which are not sufficient to cause the transistor to conduct, 

the output will be a 1. Ideally, the gate should be con­

structed so that no input combination can occur which causes

c where w. = and
1 Ki

C =

For f(viz...,v ) < 0, i-. = 0 and the transistor is cut off x n — jd

and vn = Vn + Vn , where Vn is the voltage drop across diode 
u u u2 U2

D-. If f(v17...,v ) > 0, i^ > 0 and the transistor conducts. 2 1' ' n B
If iB is large enough, the transistor will saturate and
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the transistor to remain in the active region, i.e., not 

saturated or cutoff. - -

In the foregoing analysis, it is assumed that the 

input voltage levels were at discrete values Vq or and 

that the weights were constant. In practice, the inputs 

are not constant voltages but are perturbed by drift of 

their D.C. level, noise, and power supply variation. Generally, 

these factors are statistically independent. It is therefore 

reasonable to assume that each input is a random variable
2 which is normally distributed with mean Vg and variance o-g

2 or mean and variance , the inputs being a 0 or a 1, 

respectively. In this thesis, it will be assumed that the 

set of inputs to a threshold gate is a correlated set of 

jointly normal random variables.

In the resistor-transistor threshold gate, the weights 

are inversely proportional to resistor values. These re­

sistors vary with temperature, thermal noise, and age. The 

weights, therefore, are also dependent upon these factors. 

The threshold is dependent on the values of the resistors R^,..., 

Rn, the resistor R^., and the transistor switching characteristics. 

All these factors may be represented as random variables which 

will be correlated since they are all dependent upon temper­

ature. It is therefore reasonable to represent the weights 

as a set of correlated, jointly normal random variables.
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Consider the change in resistance with temperature

AR
AT aR0

The resistance of a resistor at temperature Tq + AT is given

by

R = Ro + AR = Rq(1 +aAT)

where Rq is the resistor at the temperature Tq. The change 

in a weight with temperature is given by

Ar, — 1 — 1  1  t aAT / 1Wq + Z\w - + AR - Rq + aAT) “ Rq “ + aATJ Rq

therefore ^w = ctAT wflW 1 + aAT 0

Thus the change in the weights is proportional to the new 

value of the weight. A similar analysis may be done for noise 

and age variations which are proportional to resistance.

Variation in the inputs and weights causes variation 

in the separating function and the threshold of a gate. This 

can cause the transistor to enter the active region or to 

give a completely erroneous output. That is, the output may 

be a 1 (or 0) when the logic function is a 0 (or 1). Due to 
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the large hysteresis of the switching characteristics of the 

resistor-transistor threshold gate (typically as large as 

200 mV), functions of more than a few variables may possibly ' 

not be realized without a large probability of error.

Transistor-Tunnel Diode Threshold Gate

Another threshold gate circuit is the transistor­

tunnel diode gate due to Canion shown in Fig. 2.2. The 

addition of the tunnel diode in series with the base-emitter 

junction of the input transistor results in a significant 

reduction in the switching hysteresis. Other than this, the 

operation of the circuit is similar to the resistor-transistor 

threshold gate discussed previously.

Reduction of the switching hysteresis results in more 

reliable gate operation for randomly varying inputs and 

weights. It is also possible to reliably realize functions 

with a greater number of input variables than with the 

resistor-transistor gate.

Current Switching Threshold Gate

One of the latest threshold gate circuits is that due 

to Amodei et al. shown in Fig. 2.3. Each input voltage' 

is compared to a reference voltage by a differential 

amplifier. A current 1^, given by

VREF
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is switched from the point Vg or the point Vg depending on 

whether VTM > V™- or VT.T < V---, respectively. Note thatIN^ REF IN^ REF i
unlike the other two gates considered, this gate does not 

require input voltages that are constant levels Vq or 

for n inputs equal to 0 or 1. For a positive logic system, 

a 1 may be any voltage greater than Vggp and a 0 may be any 

voltage less than Vnur1.

The two summed currents at VB and Vs develop a 

voltage difference across the output differential amplifier 

which causes the output to be a 0 or 1 according to whether 

Vg > Vg or Vs < Vg, respectively. The threshold is deter­

mined by the ratio of Rg and Rg. The weights w^ are de­

termined by Rj , V^^-and the characteristics of the i-th-1 1' REF'
input differential amplifier. The separating function 

may be written as

n
f(p) =2 wizi 

i=l 1 1

where w. = and z. = . Let the z. 1 s be called
1 1 Khr 1

internal inputs. As in the resistor-transistor gate,the w^’s 

and the z^’s may be considered to be random variables. In 

the current switching gate, however, the variations in zare 

due to Vpgg and the base-emitter voltage of the input ampli­

fier, and not directly to the input variations. The variations
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in V_.„„ and are generally much smaller than the input KiSr idi!j

variations. Thus, this type of gate produces a decoupling

of the inputs from the separating function. Note that

VBE will still depend slightly on the input voltage varia- 
^i

tion.

Probability Model of a Threshold Gate

In a threshold gate, the inputs and weights are random 

variables. Each weight w^ may be written as

wi = nWi + * wi' (2*7)

where nw, is the mean value of w^, and w^1' is a random 

variable with zero mean. Likewise, each input may be 

written as

= nCXj^) + x±’ C2.8I

where n (x^) is the mean value of given the logical value

of x., and x.* is a random variable with zero mean. Because i' i
each input and each weight is the sum of several independent 

random variables, the following are reasonable assumptions.

a. (x^, ...! xn) is a set of jointly normal

random variables with covariance matrix M .
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b. {Wjj W2,..., wn, wn+i^ is a seb °f jointly normal 

random variables with covariance matrix M .w
c. All x^ and are independent.

d. The variance of a weight is proportional to the 

mean of that weight.

e. The variance of an input is constant.
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PROBABILITY OF ERROR OF A THRESHOLD GATE

Due to variations in inputs and weights, a threshold 

gate may not always operate as designed. Associated with 

a threshold gate is the probability that it will not give 

the desired logical output for given logical inputs. This 

probability is the probability of error of the gate for a 

given input combination.

The total probability of error PE of a threshold 

gate is the sum over all possible input combinations of

the probability of 

xj, Pr {error |x = 

occurrence of that

error for a given 

Xj }, multiplied by 

input combination

input combination 

the probability of

Pr {x = XjJ• Thus

m
PE = .L Pr

J=1
(3.1)

where m is the number of possible input combinations. For 

n input variables, the maximum value of m is 2n. If all 

possible input combinations are equally probable the prob­

ability of error is

!■ 211
p„ = — 2 Er {error |x = x.> (3.2)E 2n >1 i- -J
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The problem is reduced to finding the probability 

of error for a given input combination.

If the

logic error is

Consider any combination of n inputs Xj. 

function F(x) equals 0 the probability of

given by

Pr {y =(f(p)) 0 = 1} = Pr {f(p) >_ 0} (3.3)

where f(p) T x. w -J -
If the logic function F(x.) equals 1

the probability of error is given by

Pr {y =^f(p)y o = 0} = Pr (f(p) < 0} (3.4)

Therefore, if the distribution of f(p) is known, the proba­

bility of error may be calculated.
T The random variables x and w may be written

T T Tx = n, x + x1 and

(3.5)

w = n + w*— ^^7 —

T Twhere x = (x, ,x9,... ,x ,-l), n = (n ,n ,...,n 
12 n

T Tx — {x , x w — (Wj,W2,«.. f
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Tand w*  = {w’,w'2 / • • • ,w,n+j}'• Using this notation, the 

separating function can be written

rn m • rp rp rp
f(p) = X w = n nw + n Yw*  + x*  n + x*  w’

—- —1 2V-"W A.— — —W —

or

f (P)

(3.6)

The expected value of the separating function is given 

by

Tnf = E(x w)

+ Etxtw1 ■)]

Since all x1^ and wV have zero mean values 

and nw are constants,
wi

and all nx
xi

T
21 xHw

n+1 
n£ = Jl nx.nw. (3.7)

Equation (3.6) may be rewritten as
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For a non-trivial threshold gate n 2. For a practical 

threshold gate n >_ 3 as the only gates realized for n = 2 

and the AND and OR gates. Thus, the last term in Eqn. 3.8 

is the sum of at least three random variables. However, 

these random variables are not independent unless all inputs
i

and weights are uncorrelated. 
I

In general, the inputs x = (Xj,x2' * *• ,xn^ and 

weights w =•{w^,W2,•••are each normally distributed 

with covariance matrices Mx and M , respectively. There 

exists a nonsingular n x n matrix Q and a nonsingular

-n+l x n+1 matrix P such that if

and 

z = P w

The ='{yizy2 ,. . ,yn) and £ = {z1 ,z2 , .. ,zn+1l are each 

normally distributed with all terms independent. (Miller) 

If ti_x and are the means of x and w, respectively, 

nv = E(y ) = Q"1)! 
y — -a-

and

= E(z) =

Let y = Uy + X.1 an<l £ = Jlz + £*  • The separating 

function can be written



m m m m
f (p) =■ X W =' Q P£ = H£

or 
m m m m

f(p) = n.yHnz + n^Hz- + y;' Hnz + y/^Hz'

T T Twhere H = Q P. Note that the sum n.yHz/ + y*  Hr^z is the sum 

of independent normally distributed random variables and is
T therefore normally distributed. The tem y_’ Hz_' is not 

normally distributed.

Assume that the standard deviation a of each w.i
weight w^ is small compared to its mean nw / that is.

n+1 n+1
Since z! = V p.,w! and n = V p..n t then a„ << n„ for 1 J1/!] 1 z. .tirl] w. Z. 'Z.3=1 J J i 3=1 J 3 ii
for all z.. Note that i

and

T
HHZ

n
= I
i=l

n
7 y!h..n .L, Ji 13 z.3 = 1 J 3

n n
= I 
i=l

J y! h. . z 13 3

Therefore, y .* h. .z 1 . << y .'h. .n for all i = 1,... ,n and* Ji 13 3 2i 13 z.
T qi

3 = l,...,n. Hence y,1 Hz*  is small compared to y,*  Ht^z

T Tand x’ w is small compared to x*  n^. Now Eq. 3.8 becomes

T T HP
f(P> “ +■ r^w' + X' (3.10)



29

The separating function is now a sum of normal random var­

iables and is therefore normally distributed.
2The variance of the separating function can now 

be calculated:
2 2, T , T , , ,T .oc = a (n n + n w + x n ) f —x—w —x— — —w

Since x1 and w*  are independent and and are constant.

2 2, T 2, ,Tof = o (jLxw ) + a (x*

The variances of linear combinations of normal random var-
T lables, n^w* T and x* respectively are

2 / T , , T..o (n w ) = n M n —x— —x w—x

2 , ,T . o (x1 n ) T n M n —W X—w

where M and M are the covariance matrices of w*  and x* , w x — —
respectively. (Morrison) The variance of the separating 

function is then
2 T To- = n M n + n M nf —x w—x —w x-^w (3.11)

The mean and variance of the separating function are now 

known; therefore the probability of error can be calculated.

For those points of the n-cube where F = 0, the 

probability of error is the probability that f(p) is 

greater that or equal to zero.

P(f(p)>0) = f e"lt"nfJ /20f dt = P(«) - P(- -i)
v y/ira, o
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where P(x1) = Pr {X £ x^}, X is a normal random variable 

with zero mean and unit variance. Note that P (-=») = 0, 

Pt”) = 1, and P (-x) = 1-P (x) . Thus

I P(f(p)>0) = 1 - P(~) = P(-i) (3.12)

For ।those points of the n-cube where F=l, the probability 

of error is the probability that f(p) is less than 0.

P(f(p)<0) = / V^iF V" e"(t"nf)/2af dt
-co U f

The total probability of error P£ is given by

P = Pr{p.}P(-i) + 1 Pr{p.}P(--^) (3.14)
b p.eP(O) 1 °f P.eP(l) 1 °f 

1 1

where P(0) = {p^|F=0} and P(1) = {p^|F=l}. For equally 

likely input combinations

(3.15)
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Thus, when the means and variances of the weights and inputs 

are known, the probability of error for each input combination 

may be calculated. The total probability of error may be 

calculated if the probability of occurrence of the input 

combination is known.



CHAPTER IV

PROBABILITY OF ERROR OF THRESHOLD GATE NETWORKS

An error in a threshold gate network is caused by the 

unreliability of the gates that comprise the network. In 

this chapter, nonsequential, single output networks are 

analyzed and a procedure for finding the probability of error 

is derived.

A network of logic gates can be subdivided into 

levels. The first level contains gates whose inputs are 

network inputs and not outputs of any gate in the network. 

Since the network is nonsequential, the n-th level contains 

gates whose inputs are network inputs, or outputs of any 

gates in any lower level. The output level is a gate 

whose inputs are network inputs, or outputs of any other 

gate in the network.

A general two-level threshold network consisting of

m gates with n inputs is shown in Fig. 4.1. Note that in 

general every network input goes to every gate in the net­

work. If a certain gate Gj does not require a network

input the weight w^j is set equal to zero.

Let Gq ,Gj<,...,Gm be threshold gates with weights

{W. . | 1 < i < n 1 < j < m} and thresholds T^ ,T such m
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Fig. 4.1. Two Level Threshold Gate Network
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that the separating function f^(p) of the k-th gate is

n
fk(P) = .ywlkx. - t (4.D

1=1

Let Gm+i be a threshold gate with weights w^

w„, and threshold T such that its separating functionm+n,m+l m =

fm+ltP’ ls

n m
^m+1wi,m+lxi + wn+j,m+l^j ^m+l (4.2)

1=1 ' j=l J* J

Let x‘.,...,x' be the inputs to G ,. such thati m m+1

x'i = xi 1 <_ i £ n

x'n+j = Yj 1 S j S.™

Eqn. (4.2) now becomes

n+m
W0’ = .L Ki,m+lx'i - Tm+1 <4-3’

The probability of error of the network is the probabi­

lity of error of gate Gm+j_ for a given combination of its in­

puts, mulitplied by the probability of occurrence of that input 

combination. The probability of occurrence of the inputs 

to Gm+i depends upon the probability of occurrence of the
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inputs to the network and the probability of occurrence of 

the outputs of gates

The probability of occurrence of the output y^ of

gate for a given input combination is

Pr = Pr I

Pr {yk=0 | x=Xj} = Pr {fk(p)<0 | x=x}

x=x j }

(4.4)

Thus, the probability of occurrence of the output is

Pr ^k=Q -* ’ = Pr I j Pr 1

Pr {yk=1} = Pr I Pr {x=Xj}

(4.5)

where Pr {X=Xj} is the probability of occurrence of the

input combination x.. For any input combination x., the 

distribution of fk(p) may be found from the statistics of 

the weights and inputs. Hence, Pr {yk=0 | x=xj} and

Pr ^k”^ । —=—j Inay be calculate^ without regard to the 

function to be realized by the network.

The probability of error of gate Gm+^ for a given
T combination of its inputs x* = (x^,...,xn,y^,...,yn} is

(4.6)P„ = Pr {error I x’=x'.} Pr {x^x1.}1 — — J_ — — J.
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For each combination of network inputs Xy there are 2m 

possible combinations of the outputs The

pb = P:c ,=—'i I—=—j (4.10)

probability of occurrence of a combination of inputs to 

Gm+1 ls

Pr {x' = xk} = Pr {x*  = x’ | x = x} Pr {x = x^}

(4.7)

Therefore the probability of error is

2n
= 7 Pr {error I x*  = x*.}  Pr {x*  = x1. I x = x_. }Pr {x=x.}t - -i - -i1- —j ----- 3

(4.8)

where

Pr {error | x'-xk} Pr {x*  =x*  |x=Xj }

= Pr {fm+j(x1)^0|x'=x*i}  Pr {x*=x ’|x=Xj} if F (xj) = 0 

or

(4.9)

= Pr {f (x* ) <0 [x^x1 . } Pr {x'^x1 . |x=x . } if F (x .) = 1 • l*  • J*  J*  1 j

If Pr (x^x'j^ |^=Xj} is known, the probability of error can 

be calculated as shown in Chapter III.

For each network input combination x, there are 

2m combinations of x^ corresponding to the 2m combinations 

of the outputs of gates Let p



37

where b is a binary number b b ,..,b, such that b. equals y. 

given x equals x. For m gate outputs, b lies in the range 

0 < b < 2m-l. The 2m probability must now be found.

Although Pr {y^ = 0} and Pr {y^ = 1} can be found for 

each first level gate G^,

pb" Pr = bk}

only if no input goes to more than one first level gate and 

the inputs and weights are all uncorrelated, thus making all 

the first level gate outputs independent.

In order to find the probability P^, 2m independent 

equations relating the P^’s can be found. Since all 2m 

possible combinations of b are mutually exclusive and one 

b must occur,

2m-l
I Pb = 1 (4.12)

b=0

Each of the Pr (f}.(p) > O yields an equation

2m-l
Pr {fk(0)>0} = Pr (yk=l} = Z bkpb (4.13)

b=l

for a total of m equations. Now consider all possible 

products of 2 of the m separating functions f^f,f^fg,..., 
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fj,...,There are (2)*  such products. Similarly, 

there are (^) products n(b) of n of the m separating func­

tions, where

* (™) = —^4------n- are the number of combinations of m objectsn' n!(m-n)! J
taken n at a time, also known as binomial coefficients.

m 
n(b) = n (b. (f .-i)+i) (4.14)

i=l 1 1

For example, if there are 5 gates in the first level, 

11(22) = 11(10110) = f5fgf2- Considering all possible combi­

nations, there are 2m-m-l possible products of 2 or more 

of the m separating functions. Therefore, there are 2m-m-l 

probabilities

PQ(b) = Pr' {n (bi) > 0} (4.15)

Note that n(b) is positive only if an even number r of the 

n separating functions in the product are negative, that is, 

when r of the n outputs are equal to zero. Thus, these 

probabilities are related to the In Eqn. 4.12, 4.13,

and 4.14, there are 2m equations in 2™ unknowns P^. If this 

set of equations is linearly independent, we may solve for 

Pb-
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Three cases will now be considered. For m equal to 

two, there are four unknowns Pqq'Pqifwhich are 

related by the following set of linear equations.

p00 + p01 + p10 + P11 1 Po(°)

P01 + PH = Pr {fl - °} = Po(1)

p10 + pll = Pr {f2 > = Po(2)

p00 + P11 = Pr {f1f2 1 0} = Po(3)

or in matrix notation:

B2P = PQ (4.16)

For m equal to one, there are two unknowns, Pq and p^, which 

are related by the following set of linear equations:
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or

Po + Pi = 1 = po(0)

P1 = Pr' {^>0} = Po(l)

"1

0

1

1

Po _ Po(0)“

-pJ ~ Lpo(1)-

Bl£ =

For m equal to three, the equation may be written:

B3B = B0

"1 1 1 1 1 1 1 1 pooo "po(0)"

0 1 0 1 0 1 0 1 P001 Pod)

0 0 1 1 0 0 1 1 P010 po(2)

1 0 0 1 1 0 0 0 p011 Pod)

0 0 0 0 1 1 1 1 p100 Po(4)

1 0 1 0 0 1 0 1 p101 po(5)

1 1 0 0 0 0 1 0 p110 Po(6)

_0 1 1 0 1 0 0 1 -plll- po(7)-
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The set of 2m equations has.a unique solution if Bm is non­

singular.

Notice that for each case the matrix B may be m 1
formed from a matrix n such thatm-1

(4.17)

where H , is m-1 formed from H ^7 logically complementing

each element. Thus,

"1 1 1 1

'1 1 0 1 0 1
Ho = 1

__
__

_I
I

0 1

II
 to
 

H
IIC

N 
to

0 0 1 1
II
 to
 

!s
>

.1 0 0 1

This reproducing property has been verified for m less than

or equal to four.

The B matrices are related to the Hadamard matrix m
H*  where q = 2m. 

q
A Hadamard matrix H*  is a q x q ortho­

gonal matrix whose elements are the real numbers +1 and -1.

It is evident that

1 1

1
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It has been proved that if H1
q

is a q x q Hadamard matrix

then.

(4.18)

is a 2q x 2q Hadamard matrix (Peterson). The existence of 
Jr

Hadamard matrices has been proved for q = 2 where k is an 

integer. The matrix Bm is related to the Hadamard matrix

H'q by

Bm = 5'H,q + Uql <4-19>

where U is a q x q matrix with every element equal to 1.

Solving Eqn. 4.18 for H*  results in 
q

H' = 2B - U (4.20)q m q

Since the first row of the B^ matrix always has all "elements 

equal to one, subtracting the matrix from 2Bm is equivalent 

to subtracting the first equation from all the other equa­

tions multiplied by a constant. The resulting set of linear 

equations is independent, being related by the nonsingular 
. —1 Tmatrix H*  . H*  is orthogonal, hence, H* = H*  . Thus 

q q q q
the original set of equations related by B^ are independent, 

therefore, Bm is nonsingular.
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Since Hadamard matrices are orthogonal,

T -1H' H’ = q ■LI (4.21) '

TNotice that the first column of Bm has q elements equal to 

one and that all other columns have q/2 elements equal to

one. Hence,

q q q

where I is the q x q identify matrix and q is a normaliz­

ing factor. Substituting Eqn. 4.19 into Eqn. 4.20 results 

in

-IT T 7I = q [4B B -2B U -2U B +U ] q m m m q q m q

T Note that U = U .
q q

B yields:

Premultiplying the above equation by

B-1 = q 1[4BT-2U ] - q 1B“1[2U BT-U2] 
m ^ m q q m q

Note that
2U = U U = qU . 
q q q q

T 2U B„ = q q m

2 1
2 1

L
1
1

i
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Therefore,

0
0

0

Since = I and sincemm q all elements in the last column

of Bm are equal to one,

and therefore

q

O'

0

Finally,

B-1 = —[BT - i U] - A 
m 2m-2 m 2 J q (4.22)

Thus. B may be easily calculated from B , even when m is m m
large.
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The P (b)1s must new be found. Eqn. 4.15 states o .

PQ(b) = Pr' {n (b) >_ 0}

Po(b) may be calculated if the distribution of n(b) is known.

II (b) is a product of separating functions of the form

T T T Tf. (p) = n n + n w*  . + x1. n + x ’ . w' .

T T 2 2where n, =' n n and n-> = n n • For a and a , small
1 ""xl^l 2 “x2"2 W1 w2

compared to every component of and , Eqn. 4.23 becomes

1 —X.-W. —X.— 1 — 1 —W. —1—1111 1

2
For o <<n the w. w. separating function may be written as

T T Tf• (p) - t) n + n w'.+ x'.n 1 ' —X . AaZ . —X . — 1 - — l-W .11 1 1 1

Consider the product of two separating functions f^ and f2:

n(b) = f1f2 = T T
+ nl—x2—'2 + "li'22«2

m T T T T
+ n w’,rin + n w'qTi w’o + n w'^x’^n'—x^— 1 '2 ~xi— 2 "^l” 2J" T * * W2

rn mm mm
+ x'Sw n9 + x'lTi ni W*  + x'^n x'^n' (4.23)J_—2. — J_——Wj-—2*~  J---2«— ^2
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T ,T T T ‘n(b) = ,i1f2 « nin2 + n^w'2 + + 2Xiw'1n2 +

,T ,T+ x', n x1 on— 1-w^— 2A?2 (4.24)'.

With the exception of the last term, this is a sum of normal 

random variables. It is possible that under certain condi­

tions this term is small compared with the other terms and 

can be neglected. The worst case occurs when all inputs are 

equal to zero. The separating function then becomes

Tf - -w ,, + x1 n + w1 ,, n+1 — —w. n+1i

and the product n(b) becomes

T n(b) = £1t2 - T1T2 - T1x'2nW2 T T9x'S 2— l-w1 - T1T2 " T2Ti

,T ,T + x'.n xl n— l-^Wj—2 —

where T, and T~ are the thresholds for G, and G respectively.
T of x* In— 1—w^

must be small compared to T-^ and T2, respectively

To be able to neglect the last term, the variance
T and x122^ 

that is,

n TM n T 
-w1 x]_-w1 << T1

Tn M n-w2 x2-w2 T2

(4.25)
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where M and M are the covariance matrices of X-I and x9,
X1 x2

respectively. The above conditions are met for small input
• 2 2variances and . The productXb) is approximately

n(b) = f1f2 = nln2

nln2

T T T T
+ + + n2llx1!i,l +

T T T T
. Hx W'2 — ’ 2—w9 H-x^'l ^'1^,

1+ —f-----  + ---------£ + — -----  + --------- =-
n2 n2 nl nl

In like manner a product n(b) of n separating func­

tions is approximately

(4.26)

m
where n = n (b. (n,--l) +1). Now 11(b) n i=i i i
sum of jointly normal random variables.

is approximately a

Therefore, it is

reasonable to assume that n(b) is normally distributed.

Since E(w\) and E(x^) are both zero for all i=l,...,m.

m
E(n(b)) = n (b. (n.-l) +D 

i=l 1
(4.27)

In general, every network input goes to every gate in the

network. Therefore,

nx, = nx and xV = x'
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for all values of i. Eqn.-4.26 now becomes

[m rp
1+n*  w*+  x' n*  —x — — — w

where *T n*  —x

biiLxT b2n.xT 

nl * "2 nm

(4.28) "

Since x’ and w*  are sets of jointly normal random variables.

their covariance matrices and M*  can be computed if the

variances and correlations of the weights and inputs are 

known. The variance of n(b) is given by

2 *) T T
o (n(b)) = (nJ [n*  M*n*  + n*  M n*l  (4.29)' ' 'll' —x w—x -Av x-^w '

The distribution of 11(b) is now known, hence Pr {H(b)>_0} can 

be calculated. Thus, Pr (x*  = x'jjx = xj} can be found for 

each input combination x, and the probability of error can 

be computed.

For threshold gate networks with more than two levels, 

the probability of error can be calculated by successive 

applications of the techniques shown above. From the separating 
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functions of the gates in the second level, the probability 

of occurrence of the inputs to the third level can be 

calculated. It is then possible to calculate the probability 

of error of the third level or the distribution of the pro­

ducts of the third level separating function and proceed to 

the next level. The process is repeated for the remaining 

higher levels in the network.

For each network input combination, any level n 

may be considered as a system which transforms the probability 

of occurrence of its n^ inputs into the probability of oc­

currence of the inputs to the next level. By successive 

transformations, the probability of occurrence of the inputs 

to the highest level can be found and thus the probability 

of error of the network.



CHAPTER V

SIMULATION OF THRESHOLD GATE NETWORKS '

A threshold gate can be simulated by generating 

random numbers for the inputs and weights, computing the 

separating function, comparing it to the threshold, and 

computing the probability of error. A network of threshold 

gates can then be simulated by simulating each gate in the 

network. If the separating function of the output gate of 

a network is compared to its threshold, the probability of 

error of the network can be computed. It is also possible 

to examine the density function of the separating function 

of a single gate and the density function of the products 

of the separating functions of several gates.

Generation of Correlated, Normally Distributed Random Numbers 

The distribution of a sum of n independent random 

numbers approaches the normal distribution as n approaches 

infinity. In fact, if n independent, uniformly distributed 

random numbers are summed the distribution of the sum is 

approximately normal for n >_ 3. Let {x^,X2,. . . ,xnJ be a 

set of n independent random numbers, uniformly distributed 

on the interval {0 <_ x^ 1}. The mean of any x^ is equal 

to 1/2 and the variance is equal to 1/12.



51

When n = 12, the sum v

12
V = Z Xi

1=1 1

is approximately normally distributed with mean

12
E(v) = f E(x. ) = 6 

i=l 1

and variance

9 12 9
a2 (v) = a2 (x. ) = 1 

i=l 1
Thus,

12
Y = . 1 x. - 6 (5.1)

i=l

is approximately normally distributed with zero mean and 

unit variance.

The numbers x^ can be generated by a digital computer 

using a power residue method utilizing the following equation. 

ni+l = m ni mo^ w

niwhere x^ = —, m is a constant, and w is the largest integer 

that can be stored on a word. For a-computer with a 

word length of k bits, the maximum integer that can be

stored in a word is 2 -1. The constant m is selected to
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give the longest possible sequence of numbers before re­

peating.

Note that -6 <_ y _< 6. A polynomial correction can 

be applied to y in order to obtain a better approximation 

to the normal distribution. Thus if

we can find the constants .a-, ,ac ,a-, ,an so that± j d / y

3 -l 5 7 9z = a-j^y + a3y + a5y + a?y + agy

is a better approximation to the normal distribution than y. 

By successive application of the techniques described above, 

a sequence of independent, approximately normal random 

numbers can be generated.
TLet = z^,Z2,... ,zn be a vector of independent 

random variables each normally distributed with zero mean 

and unit variance. The random variables are jointly normal 

with covariance matrix Mz equal to the n x n identity matrix
TIji* if W = w^,W2,...wn is normally distributed in n di­

mensions with zero mean and covariance matrix M , there 

exists a transformation such that

TW = Q Z
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and
T TMw = QXMzQ = QXQ

In a threshold gate, the weights w and inputs x 

are random variables which may reasonably be assumed to 

be correlated sets' of jointly normal random variables. 

As shown above, these correlated sets can be generated 

from independent sets of normal random variables by a linear 

transformation. Let

T x* = P y and

where Q is a nonsingular matrix (Miller). Thus, a corre­

lated set of normal random numbers can be generated from 

an independent set of normal random numbers by a linear 

transformation. The matrix Q can be found by a Gauss elim­

ination matrix inversion procedure which transforms M^ 

into the identity matrix such that

T-l -1Q = I (5.2)

Since Q is nonsingular, Q always exists.

Simulation of a Threshold Gate

(5.3)
Tw’ = Q z
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where and £ are sets of independent random variables 

with zero mean and unit variance. The matrices P and Q 

are related to the covariance matrices of the inputs and 

weights, and respectively.

In order to simulate a threshold gate the means, 

variances, and correlations of the inputs and weights must 

be known. From this information, the covariance matrices 

can be calculated. In this thesis, simulations were carried 

out for threshold gates for which the following conditions 

are satisfied:

(a) The standard deviations of the inputs are 

all equal to a^.

(b) The correlation coefficient px is the same 

for any two inputs and Xj.

(c) The standard deviation of a weight w^ is 

equal to its mean nw multiplied by a
wi 

constant o w
(d) The correlation coefficient pw is the same 

for any two weights w^ and wj.

The covariance matrices are given by

2
Mx = pij = px' 1 i' I’ll = 1

(5.5)
2

'MW = [pijnw.nw.aw] pij = pw' 1 * pii = 1
13
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The transformation matrices are found from a Gauss 

elimination matrix inversion subroutine which calculates 

P and Q such that

and
T-l -1 TP M XP = I w

qt"1m~^q"1 = i
(5.4)

The matrices P and Q can then be computed from P and Q~^ 

by using the same subroutine. By generating the sets of 

independent normal random variables y and £ and applying 

the transformation, x*  and w' can be generated. Since 

the random variables in y and £ have zero means, x1 and 

w*  have zero mean. The inputs and weights can be generated 

from x*  and w’ by adding the mean of the inputs and weights 

such that

n
t (P) = y wiXi - »

1=1

The separating function of 

lated from n * *

the threshold gate can be calcu-
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where n is the number of inputs.

The simulation procedure was performed as follows:

(1) Set up the covariance matrices and M .x w
(2) Find the transformation matrices P and Q.

(3) Generate random numbers for y and z.

(4) Compute x and w.

(5) Compute f(p), compare to zero.

(6) Repeat steps 3 through 5 for N iterations.

The probability of error is given by

PE = ne/N

where ne is the number of times the output of the gate 

was in error.

Simulation of Density Functions

(5.6)

The density function of the separating function can 

also be determined from the simulation. Consider the set 

of values of the separating function (f^(p)} to be a sample 

from the distribution of f(p). The sample mean ns and
2variance a can easily be calculated.

ns = N . f *i
1=1

2 1 va s = N 2 (fi(p) * ns)
1=1
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An approximation f(k) of the density function can be ob­

tained by counting the number N, of f.(p) that lie in the 
fi(P)-ns

interval c k < --------------  < c(k+l)
as

Nk 
f(k)

where k = 0, ±1, ±2Z ... and c is a constant. The product 

of the separating functions of several gates can be studied 

by replacing f^(p) by the product.

The simulation program described in Appendix A 

calculates an approximation of the density function of the 

separating function. An approximation n(k) of a normal
2

density function N(n/a) with mean n and variance a equal
2to n and o gf respectively, is also calculated, using the 

same interval as for f^(p). Both densities are plotted 

versus c^ for c = 0.2 and k = 0, ±1,..., ±25. The mean 

square error d is then computed

d = (d * * * n (k) - f (k))2 (5.7)
k= -25

Table 5.1 shows the result of a simulation study of the

separating functions of several threshold gates. The values 

of the mean and variance are calculated using the techniques

developed in Chapters III and IV including the approximation



TABLE 5.1. Results of Simulation Study

Function
Input and 
Weight 

Variances

Input and 
Weight 
Correla­
tions

Calcu­
lated

Me an ’

Simu­
lated 
' Mean '

Calcu­
lated 

Variance

Simu­
lated 

Variance'

Mean Square Error 
with Respect to1 
Normal Density '

f=x^+x2+Xg+x^-3.5 
x=l,1,1,1 . . . .01 . . .0 . . . 0.5,00. . . 0.502. . .0.202. . 0.198 l.lxlO"4

f=x^+X2+Xg-l.5 
x=l,l,l .01 .9 1.500 1.497 0.1095 0.1097 1.9X10-4

x=l,l,0
.1 . ............

.01 .9 0.500 0.498 0.0905 0.0902 — 4 0.8x10

f=f^f2, where 
f^=x^+x2“l.5

f2=x3+x4"1'5
x=l,1,1,1 .01 .0 0.250 0.252 -22.52x10 — 22.79x10

-33.3x10 J
x=l,1,1,1 .01 .9 0.250 0.296 -27.61x10 z 5.76X10"2 -21.2x10

1

0 0 0 0 .0001 .0 2.250 2.249
-3

1.35x10
-3

1.38x10 l.lxlO"4

x 1 11
 0 H
 

O
 

O .0001 .0 0.750 0.749 9.75X10-4 9.63X10"4 1.7xl0-4

x=0,1,0,1 .0001 .0 0.250 0.250 -42.00x10 1.95xl0-4 -41.2x10

0 0 .0001 .0 -0.750 -0.749
-31.20x10 ° -31.20x10 J 0.7X10-4

x=l,1,0,1 .0001 .0 -0.250 -0.250 -42.25x10 -42.22x10 -41.2x10
x=l,1,1,1 .0001 .0 0.250 0.252 2.50X10-4 2.52xl0"4 l.lxlO-4

f=f^f2fg where
& f2 are as above ■ 

and f2=Xg+Xg-1.5
x=0,0,0,0,0,0 .0001

. Ln— 3 —3 —4 00.0 -3.375 -3.374 4.56x10 0 4.60x10 0 s0.8xl0
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of Eqn. 3.10 and Eqn. 4.26. The simulation means and variances 

are very close to the calculated values, indicating that the 

approximations can be made with little error.

A simulated density function is plotted in Figure 5.1.

for y = x^+X2+Xg with = 0.01 and
TPx = Pw = 0.9 for the inputs = {1 ,1,1}.
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NORMALIZED
MAGNITUDE

XXX SIMULATED DENSITY

• • ♦ NORMAL DENSITY

Fig. 5.1. Simulated Density Function Compared with Normal

Density Function



CHAPTER VI

MINIMIZATION OF PROBABILITY OF ERROR • -

In the threshold gate realizations of a given logic 

function F, the weights are not unique. If the threshold 

is fixed, there are many combinations of the other weights 

that will realize F. By adjusting weights, it is possible 

to find a realization of F that minimizes the probability 

of error of the gate for a particular circuit. Minimiza­

tion by adjusting weights can be implemented by a multi­

dimensional search technique called "pattern search" de­

veloped by Hooke and Jeeves.

The pattern search is based on the premise that a 

set of parameter adjustments which has proved successful 

in minimizing a performance index will be worth trying 

again. The procedure is adaptive in the sense that prior 

success determines the next adjustment. The search begins 

at an initial base point W(0), and small adjustments are 

made from this point with repeated movement in the direction 

of improvement until improvement ceases. At that point, a 

search for a new direction of improvement is conducted.

Two types of parameter adjustments are made by the 

pattern search, the exploratory move and the pattern move. 

The exploratory move establishes the direction of improve­

ment from a base point of the performance index. No attempt 
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is made to estimate the gradients-. The result of the explora­

tory move is a pattern of improvement. The pattern move 

utilizes the information gained in the exploratory move.

The adjustments which proved successful in the exploratory 

move are repeated in the pattern move. If the performance 

index is decreased, the pattern move is repeated. When 

the pattern move is no longer successful, a new base point 

-is established.

The exploratory move is carried out as follows. A 

single coordinate is increased or decreased by a predeter­

mined step size to determine which change, if any, will 

produce a decrease in the performance index. If there is 

an improvement, the change is included in the pattern. 

When all coordinates have been examined, a pattern is es­

tablished. If no change produces an improvement, the step 

size is reduced and the exploratory move is repeated until 

the step size is reduced below a predetermined minimum at 

which point the search is terminated.

If a pattern move fails to produce an improvement, 

the coordinates are restored to their values before the last 

pattern move and a new base point is established. From this 

new base point, a new pattern is established and a new series 

of pattern moves is started. The search continues in this 

way until terminated.
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An example of a two-dimensional pattern search is 

shown in Figure 6.1. In this example, P^,P2,P2,P^f and P5 

are contours of the performance index with P^>P2>Pg>P^>P^•

The search begins at an initial base point Bq, where 

w^ and w2 are equal to w^(0) and w2(0), respectively. The 

initial step size Sq is chosen either arbitrarily or from 

some jl priori knowledge of the performance index. A pattern 

move vector = {i^,i2J is now established. The first 

variable w^ is incremented by Sq, that is, w-^(l) equals 

Wj(0)+Sq. If there is a decrease in the performance index, 

the increment i^ is set equal to Sq. If there is no decrease, 

w^(0)-Sq is tried. If this point produces a decrease in 

the performance index, i^ is set equal to -Sq. If neither 

move produced a decrease, i^ equals zero. In like manner, 

an increment i2 is found for w2- The pattern move is now 

the vector I_.

From the point Bq, the pattern move is made n times 

until there is no further decrease in the performance index, 

that is,

Bj == Bo + nig 

where B^ is a new base point. Note that the point B^ +I_q 

has a greater value of the performance index than the point 

B^. From this new base point, a new pattern is established. 

The pattern is used until a new base point B2 is found.
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Fig. 6.1. Example of a Pattern Search
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If a pattern I is found such that every component 

of £n is equal to zero, then the step size sQ is reduced to 

new step size s^ and an exploratory move is made. The 

search continues using successively smaller step sizes as 

needed until the step size is reduced below a predetermined 

minimum at which time the search is terminated.

In this thesis, the pattern search is used to minimize 

the probability of error of a threshold gate. The mean values 

of the weights n , ...,n are adapted to find the combi-
W1 n

nation that minimizes the probability of error for a gate - 

with a given set of statistics. As discussed in Chapter II, 

the standard deviation of a weight is set equal to the 

mean value of the weight nw> multiplied by a constant

o = o n (6.1)w. w w. 'r i

Theorem 6.1. If in a given threshold gate realization 

y = ( f(p) ) Q of a logic function F, the standard deviation 

of a weight is proportional to the mean of the weight 

n , and every weight including the threshold is multiplied 
wi 

by a positive constant k, the resulting realization 

y = k f(p) q has the same probability of error as 

y = ( f(p) ) 0.

Proof. Let
' n+1

£(p) = 1 x.wi
i=l
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therefore

Note that

The variance of

where M*  is the w

aw.aw.pij
i 3

elements of the

Therefore,

hence

The variance is

n+1
k f (p) = 7 x.kw. i£i 1 1

Hkf = kn£ (6

k f(p) is given by Eqn. 3.11

2 T T Ta. , = n M1 n + kn M kri kf —x w—x 'w x 'w

covariance matrix of kw. Note that the 

covariance matrix are given by

k a a p . •Wj 13

M' = k2M 
w w

w. .

M' w. .

2)
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2 , 2 r T.. , .22o3 , = k [n M n + n M n J = k o , , kf —x w—x -iw x-w kf

therefore

— j= (6.3)

The probability of error given by Eqn. 3.15 becomes 

or since

nkf =
°kf af

the probability of error is the same for both realizations. 

Therefore, in the adaption techniques developed in this 

thesis, the mean of the threshold can be held constant 

without any loss of generality.

Using the techniques developed in Chapters III and IV, 

digital computer programs for calculation of the probability 

of error of a single gate and of a network have been written. 

The single gate program is described in Appendix B and the 

network program in Appendix C. These programs are used as 

subroutines to a pattern search program for minimizing prob­

ability of error.



CHAPTER VII

RESULTS AND CONCLUSIONS . ,

The Probability of Error Surface

The probability of error of a threshold gate is a 

function of the statistics of the inputs and weights of 

the circuits which will implement the gate. For a given 

set of variances and correlations of the inputs and weights, 

the probability of error depends on the mean value of the 

weights and inputs and the probability of occurrence of 

the inputs. In the pattern search used in this thesis, the 

means of the inputs are constants, nx(0) and nx(l)/ equal 

to zero and one, respectively, and the input combinations 

are equally likely. The probability of error is a function 

only of the mean of the weights for constant input variances 

and input and weight correlations. It is desirable to 

examine this function to obtain some information as to the 

feasibility of the pattern search. Because it is difficult 

to display directly a function of more than two variables, 

the probability of error is evaluated by varying one weight 

of a realization while holding the others at their optimal 

values. The probability of error of the function

y = + X1X3X4

is plotted versus w^ in Fig. 7.1a, versus w2 in Fig. 7.1b,
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(O

Fig 7.1. Contours of Probability of Error of y = xjx2 + X1X3X4
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and versus Wg in Fig. 7.1c, for = 0.0025 and various ■

correlation coefficients. Because the function is symmetric 

with respect to the inputs and x^,and the variances and ' 

correlations of the inputs and weights are equal, Wg equals 

w^ in the optimal realization and the variation of the prob­

ability of error for a change in Wg is the same as for a change 

in w^. In each instance, the other weights are held at their 

optimal values for the appropriate correlation coefficient.

It is apparent from Fig. 7.1a-c that probability of 

error is not a convex function with respect to the weights. 

However, in this case, it is highly likely that there is 

only one set of weights which minimizes the probability of 

error. For all single gate cases investigated in which 

the probability of error for a given input combination was 

less than 0.5 for every possible input combination, the 

pattern search converges to a single minimum, it is con­

jectured that for any single gate realization which satisfies 

the condition such that the probability of error for any 

given input combination is less than 0.5, there is only one 

value of the weights such that the probability of error is 

minimized. Thus, if the starting point satisfies the above 

condition, the minimum obtained by the search should be the 

optimum realization of the function considered.
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Effects of Variance and Correlation on the Probability of 
t

Error of a Threshold Gate

1 Changes in the variances and correlations of the
i

inputs and weights, a^, px, and p^, respectively, 

produce changes in the variance of the separating function, 

and thereby affect the probability of error. In order to 

determine the dependence of probability of error on variances 

and correlations, o , a , p , and p are varied and the। X W X w
Corresponding optimal realizations are found. I 

? The functions

yi = x1x2x3x4

and i
I 'll = xlx2 + X1X3X4

are examined. These functions have the corresponding mini- 
!

mum integer realizations
i

Yl = ( x1+x2+x34.x4 ) 3 5

and

y2 = ( 3x1+2x2+x3+x4 ) 4>5

Table 7.1 and 7.2 show the variation of the probability of 

error of the optimum solutions with a change in pw for 

constant a^, o^, and px«



TMLE 7.1. Minimum Probability of Error of y =

Variance 
of 

Inputs

Variance 
of 

Weights 
2

Corre­
lation 

of
Correlation of Weights

*" 2 Inputs
. . . px. . .Gw aw ............ 0 . . ...........1........... . .3 . . ................5 .7 .9

.0001 .0001 0 2.48X10-30 -321.08x10 -397.35x10 y 3.34X10"48 -0- -0-

।.0004 .0004 .9 7.67xl0"7 4.32X10"7 1.12X10-7 2.04X10"8 2.19X10"9 1.03X10"10

.0009 .0009 0 -52.25x10 -51.19x10 D 2.28X10"6 1.88xl0"7 -92.87x10 y -135.50x10 ■L'3

.0025 .0025 .9
-38.68x10 ° 7.80xl0~3 6.09X10-3 -3

4.46x10
-32.98x10 J 1.72X10"3

.01 .01 0 3.14xl0~2 -22.92x10 2.42xl0-2 1.83xl0-2 1.16X10"2 4.67X10-3

.01 .01 .9 -24.17x10
-24.04x10 3.75X10-2 3.41X10"2 -23.01x10

-22.54x10 z



TABLE 7.2. Minimum Probability of Error of y = x1x2 + x^XgX4

Variance 
of 

Inputs 
2 a X

Variance 
of 

Weights 
2 a w

Corre­
lation 

of
Inputs 

px .

Correlation of Weights pw

. 0 .1 . . . . . .3 . . . . . .5.............. .7 .9

0 .0025 0
-3

9.93x10
-37.99x10 5 -3

4.37x10
-31.53x10 J 1.51X10"4 -94.55x10 y

.0QX)4 .0004 0 -53.06x10 -51.82x10 5.02X10-6 8.35X10-7 5.81X10-8 7.16X10-10

.0009 .0009 0
-31.94x10 ° -31.52x10 8.32X10"4 -43.62x10 1.06X10-4 -51.41x10 3

.0016 .0016 0
-39.13x10 J -3

7.89x10
-35.51x10 ° -3

3.36x10
-31.63x10 ° -45.02x10

.01 .01 0 -26.73x10 -26.46x10 -25.88x10 -25.22x10 -24.43x10 -23.46x10

.01 .01 .9 -2*8.24x10 -2*8.06x10 -2*7.68x10 -2*7.33x10 -2*7.08x10 z -2*6.63x10 z

Corre­
lation 

of

Correlation of Inputs px

Weights ________

px . 0 .1 . . .3...................... .5.............. ...........7 . . .9

.0025 0 0
-3

1.42x10
-3

2.82x10 ° -3
6.49x10 -21.07x10 -21.48x10 -21.88x10 z

*Probability of Error for one or more input combinations is greater than 0.5.

w
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For both functions considered, the probability of 

error increases as the variance of the inputs and weights 

increases and the probability of error decreases as the 

correlation of the weights increases. The fact that the 

probability of error increased with increasing variances 

and input correlation is evident from Eq. 3.11. The elements 

of the covariance matrices increase as and px

increase, thus increasing the variance of the separating 

function for all input combinations. The decrease in proba­

bility of error with increasing correlation of the weights 

is due to the fact that the last element of is negative 

and the fact that the standard deviation of a weight is 

proportional to the mean of that weight. As the correlation 

of the weights approaches one, the first tearm in Eqn. 3.11 

approaches the difference of two highly correlated random 

variables. Thus, the contribution of the first term to the 

variance of the separating function is greatly reduced.

Table 7.3 shows the minimum integer and optimal reali­

zations of y = xqx2 + X1X3X4 f°r several variances and cor­

relations. The optimum weights are close to the minimum 

integer weights for small variances, but differ significantly 

for large variances. Note that the improvement obtained 

by using the optimal realization instead of the minimum 

integer realization is only about ten per cent. Thus, in



TABLE 7.3. Realization of y =

Variance 
of 

Inputs & 
Weights 
2 2o ' = a x w

Correlation 
of 

Inputs and 
Weights

Mean Value of Weights 
(w5 = 4.5)

. . . w„..........
Probability of Error

px pw W1 . . . . W -. .w2 3 4

.0001 0 3.000 2.000 1.000 1.000 3.10xl0“14

3.001 2.018 0.999 0.999 -14*1.78x10

.0001 .9 3.000 2.000 1.000 1.000 -131.29x10

3.004 2.001 0.996 0.996 -13*1.17x10 -1-5

.0004 0 3.000 2.000 1.000 1.000
-5

3.31x10

3.011 2.021 0.988 0.989 -5*3.06x10

.0004 .9 3.000 2.000 1.000 1.000 5.44X10"5

3.018 2.000 0.981 0.981 -5*4.87x10 D

.0025 0 3.000 2.000 1.000 1.000 -22.14x10

3.064 2.047 0.917 0.918 -2*1.96x10

.0025 .9 3.000 2.000 1.000 1.000 -22.38x10

3.096 2.000 0.890 0.890 -2*2.08x10

.01 0 3.000 2.000 1.000 1.000 -27.53x10

3.151 2.219 0.679 0.680
-2*

6.73x10

.01 .9 3.000 2.000 1.000 1.000 -27.96x10

3.212 2.192 0.584 0.584 -2*  +6.63x10 T CH
*0ptimum Realization tFunction not realized for one input combination.



most single gate applications, the minimum integer reali­

zation would be a good compromise between reliability and 

the amount of work required to obtain the realization.
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Minimal Probability of Error' Threshold' Gate Networks

The function y = + x-^x^ is not linearly separable

and therefore cannot be realized with a single gate. How­

ever, this function may be realized by the following two 

gate network

y - ( 2yi + x3 + x4^ 15 

where'
= ( X1 + x2) 1.5 

or
y = ( 2 (x1 + x2) 15 + x3 + x4) 15

The function y is realized for a = a =0.1 and p = p = 0.2 X w Hx Hw
The best realizations for the individual gates is

y, = ( 0.995 x, + 0.995 xo / , c 
J- \ / J- •

and

y = 2.239 y^ + 0.986 Xg + 0.937 x4 q 5

The probability of error of the network was calculated for 

the above gates and the minimum integer gates. These are 

compared to the optimal realization for the overall network 

found by the pattern search by adapting weights in both gates 

simultaneously. These results are summarized in Table 7.4.
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TABLE 7.4. Probability of Error of y = x.x- + x^x

Realization
Probability 
. of Error

Minimum Integer

4.38x10

Gates optimized individually 
y = 2.239 ^0.995x^0.995x

+ 0.986Xg+0.987x^ \

Optimal network

816 < 0.995xn+0.996xo ) , c\ 1 2 / 1 • D
0.085xn+0.085xo+0.952x0+0.952x/l 7 1 cJ- 2 e) 4 ! J. e O

4.57x10

4.26x10

It is evident from Table 7.4 that the realization 

using the individual gates with least probability of error 

does not give the optimal realization. In fact, for this 

example, it is worse than the integer realization. The op­

timal realization requires the use of a five input gate in 

the second level and is slightly more reliable than the 

minimum integer realization.

Conclusions

The following conclusions may be drawn:

1) It is feasible to use a digital computer to 

find the realization which minimizes the 
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probability of error of a threshold gate.

2) Probability of error increases with increasing 

input variance, weight variance, and input 

correlation.

3) Probability of error decreases with increasing 

weight correlation.

4) In most cases, the single-gate minimum integer 

realization has a probability of error which 

is almost optimal.

5) In a threshold gate network, optimizing each 

gate in the network does not minimize the 

probability of error.

6) In any application, gates with the smallest 

possible input and weight variances should be 

used.

7) For given statistics, the current switching 

gate should be the most reliable of the circuits 

considered in Chapter II. This is due to the 

reduction of input variance and correlation 

produced by the isolation of the inputs from 

the separating function.
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APPENDIX A

COMPUTER PROGRAM FOR THRESHOLD GATE SIMULATION
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PR0GRA14 FOR SIMULATION OF THE PRODUCT OF THE 
SEPARATING FUNCTIONS OF SEVERAL THRESHOLD GATES

NG = Number of gates in a two level network

NG1 = Number of gates in the first level

NI(I) = Number of inputs to the I-th gate 

NW(I) = Number of weights in the I-th gate 

ITT = Number of simulation iterations

AW = Weight vector,

AX = Input vector,

IX = Input distribution vector

MI = Number of independent inputs

NWT1 = Total number of weights in the first level 
2VARW = Variance of weights, aw 

2VARX = Variance of inputs, ax

CORW = Correlation of weights, pw

CORX = Correlation of inputs, Px

MW = Covariance matrix of weights (NWT1 x NWT1)

MX = Covariance matrix of inputs (MI x MI)

Y = Independent random vector for inputs, Y1 

Z = Independent random vector for weights, Z_*  

F(I) = Simulated value of I-th separating function 

FP = Simulated product of separating function 

EXS = Simulation mean of FP

VARS = Simulation variance of FP

DIFF = Mean square error of distribution of FP with respect 
to a normal distribution with mean EXS and variance 
EXS
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SETUP (A,C) Sets up plot intervals and normal distribution

COVMAT (M,N,V,R) See subroutine THRESH

INVERS (A, B, N) Generates B = A when A is a nonsingular 
N x N matrix

EQUAL (A, B, N) Sets B = A when A and B are N X N matrices

NORMAL (X)# Generates a normal random number X,

START (X) START sets up the subroutine initially

PROC (FX, EXS, VARS, ITT, B) Calculates VARS and the distri­
bution of FX which is returned 
in B

PLOT2(N,A,B,C,AMAX) Plots B and C versus A for N values of A

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram of Threshold Gate Simulation Program
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C THIS 'aTLL SI'^UUATr T E,DENSnY FUNCT16K’ SF jHe SEPARATINGM
C FUNCTION A THPESH6LD GATE 8R THE pR9DUCT 9F T^E SEPARATING •
C FUNCTIONS ?F THr FIRST LEVEL GATES 6F A.THRfSHQLD GATE NETWeRK, 
C NG = NUNEEP SR GATES IN THE TV;8 LEVEL NETU3RK
C N,I ( I ) - NU'-'SEP GF INPUTS T9 THE I-TH GATE
c A!-i = '•.'eight vector ■ ■'
C IX = INPUT DISTRI3UTI9N VECTOR
C VARX',VARX,CeRv,c-2RX ARE THE STATISTICS 6F THE GATE 3R GATES
C ITT = NUNBeR 8F SIHULATIPN ITERATIONS 
C AX = ISPUT VECTOR
C ref: SETUP, C9VMA1, INVEPS, EQUAL/ N9RMAL, Pr9C/ PL.8T2; Pr9B 

REAL ^X . .
_CI^E^SI9N NV(Pj,^0)/ MX(?0/2j)/ NMV,.(20/20># ^MX(20/20)/ P(2Q/2o)7
1 PT(2G,2C), 0I2Q,20),_QT(20,20), X(20), Y(20), Z(2o), W(20),
1 D(?Q,2C), A(101), BllQl), C(101), AX'IPO), AX(2O)7 FX(IOOOO),
i IX (29), NHll), NH(ll), F(ll)

C 9 Y v c’ N Q« 2 T
CALL START (1.0)

1 continue
reap (^/E, El D = 99) NG

S F^MAT (Sl'lC)
reap (S,F) (Ni(i), i = i,'nG)
De 10 i = i/RQ 

10 S N( I) = NI( I) + 1
i = 1 T
u = 0 . _
98 IE < = i,v;3
J = J + NNCO
REA? (5,6) (A>(l), L = I#J) 

fc p«Rmat (kE'10.3)
12 1 = 1+ K!v; (K)

I = 1
J = V
r)n 14 < = 1,\G
j = J + v I ( <)
REA? (5,5) .( IX(L), L = T»U) 

14 I = I + \I(<)
vGl = \G - 1
NITI = 0
D8 2? I = j/Nni.

20 NITI = \'IT1 + NI ( I )
NI = 0 _ .
08 22 I = 1,NITI .

22 IF ( IX( I ) .GT*  . VJ ) si = IX( I )
V-Tl = NIT? + NG!
REA? (5/ A) VAR-«, VARX
REA? (6,6) Cep’, C 8 R X
REA? (5,5) ITT

25 CONTINUE
RFAr (5,a,EN? =..l) (Ax(I)J I = 1,NI)

C SET UD PLOT VALUES
CALL GETUP (A,C)

C SFT Ld C°yAElANCE AND TRANSFORMATION MATRICES
CALL C^V^AT (VX/VI, VARX,C9RX)
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CALL i\VFRS (MX/)
CALL ECU AL
CALL IWFRS (D^PT^MI) "
CALL COV^.AT ( v -1,'vaT1 > VAR*/CSR'ft  )
CALL IxVFR.S (XX, VaTI)
CALL EQUAL ( D,*.QT^  LXT1) ' "
CALL IWFRS (DjP/LxTl) 
EXS = 0.

C SP'UL.ATI^N LC-c;P
D9 ICC J = 1> ITT .. . . '

C GENERATE .RaNCp-'I VARIABLES
D 6 A O I = J / X T1

AC CALL NORMAL (£< I ) )
D6 4? I = 1/MI 
CALL NORMAL (Y(I)) 
DC AA i = 1,MI 
X ( I ) = 0 .
D5 A4 K = i/MT

44 X( I ) = X( I ) + PT ( l7K) *Y('<)
DO A A J = 1/\>.'T1

( I ) = 0 •
DO A6 K = i/vXTl

^6 n ( I ) = W(I) + p( I/K)►ZfK)
FP = 1.
■<v: = 1
XX = 1 .
DO 50 I = l/NGl 
F( I ) = C» 
N = XT(f)
DC A3 '< = 1/N
F(I) = F(I) + (A-'KW) + X(k:>i) )*(  aX(KX) + X(KX)) 

+ 1
48 <X = KX + 1

F( I ) = F( I.) - (A V(Xk') + » (KVJ ) 
= ■<'>■ -*■  i

rxS = rye; 4- Fn 
FX(J> = FP

IOC CONTIXUE . .
C CALCULATF SIY'JLATIpN YE'Av: A\D VARIANCE 

FXS = EXq/FLPAT(ITT)
CALL PROC (FX,FXS,VARS,ITT^Q) 
CIFF = 0»
DO I = 1/51

130 OIRF = DIFF + (2(1) - C(I))**2
C fL4T SIMULATED DENSITY

CALL PLOTS.(Si^A/a,C/.i)
C print RESULTS

.RITE (6,15c) VaRW,CCiRX,vaRX#C9RX,MI/ITT _ . _ _
150 FQRr'AT (XSX/'VAR'n = '/E1O3A3X/f CORK = * / E10*3,3X/t  yARX = •/E10.3,

[ pX/fCORX = 1 1 FiC • 3/5X , ' MI = 1 > 110/4X/ 1 I TT = '/IiO 
.RITE (6,160 EXS/ VArS/ EXF/ VARF

160 .FSRVAT (/3xOFxS = • / E15 • 8/3X/ 1 VARS = 1 / E15 • 8/3X' ' ExF = ’/E15.8/
1 3X#।VARF = 1,515,8)
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< RIT E (6/170) DIR F
170 FORMAT (/IX/'vEA^ SQUARE ERROR = '^.15*8)  

•RITE (6/180) (A<(i)./ I = IaKWTD
180 FORMAT ,(//// ' TNE '.'EIGHTS ARE /. 8 (‘1X/F14.7 ) ) 

aRITE (6»1R2) (AX(i)# I = 1>MI)
182 FORMAT (////' THE INPUTS ARE'>/* B(1X/Fi4«7 ) )

•39 TO 25
99 '.RITE (7/5)

FND

Su^R^UTj.NE INVERS { A, B7.N )
C GaLSS fLP'INATION MATRIX INVERSieN
C B IS the INVERSE of A NfiNSINGULAR.RpAl SQUARE MATRIX A
C IF TMfRE IS A ZE^O ON JMiE DTAG3NAL OF A, OR IF a IS SINGULAR,
c a is set equal to the identity matrix
C Q A><D ST A^E SIMILARITY,TRANSFORMATION MATRICES
c efF! matrix, equal," prdiag

-DIMENSION A(?C,20);B(?0,20),Q(20,20),QT(20,20),P(20,20),PT(20;20);
1 D(?0/20)

COMMON Q, FT 
L = 1

1 05 5 I = 1,1!
DO 4 J = 1/N 
0(I>J) = 0.0 
QT(I,J).= 0,0

4 y ( I» J ) = A ( I , j )
IF ( B( 1/ I ) .EQ, 0. ) GO TO 90 
0T(I,I ) = 1,0

5 Q(D I ) = 1.0 
m = N - 1
Dn 50 J = I/" 
DO 10 I = 1;V
E n ? X = 1 / N 
DT(I/X) = o.c

8 ? ( I / < ) = C . C
P T( I • I ) = 1’0 

IO p(I / I ) = 1.0
JX = J.+ 1 
09 15' I = jX/\
P( J/ I ) = -9 (J/ I )./□( J/J)

15 PTd/J) = "-B( I,"J)/3( J/J)
CALL MATRIX (PT/QT/D/N)
CALL EQUAL ( QT/P/L)
CA Ll- matrix (O/P/C/N)
CALL EQUAL ( Q/DjN)_
CALL VATRI Y (OT/R/D/N)
CALL EQUAL ( 3/D/N)
CALL N4TPIX (5,'P/D/N)
CALL EQUAL ( B/DJn)
C?NT I N'JE
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IF ( L .EQ*  1 )_G0 TO 52 
CALL PRDIAG (DA,9,^) 

= DA
PETtr-^:, 
0= 60 i = i'N.
D fi 55 J = 1 ?
PT<I»J) = 0«0
o ( I > J1 = C . 0
IF (-3(1/ 1)) 58/ 70/56
PJ( I • I ) .= I-0/S^T(B( T/I ) ) 
P(I/I) = 1,0/SCRT(2( I, I ) ) 
•5(1/1) = 1,0/9 (i:>I) 
CALT I X'CE
CALL MATRIX (C,B,D/M
CALL MATRIX (D/DT,Q,N)
CALL MATRIX (DT/OT/D/N)
CALL ECU AL (CT/D/N)
CALL MATRIX (gTP/DTn)
CALL EGUAL (G/D/N)
-ftup.v
-RITE (6/72) . . ..
FrPMiT (//'***  EPR6R1 Inverse PF SINGULAR MATRIX’//)
DO 76 J = i.N
/■PITE (6/75) ( A( !/j)/ J = l,v)

(8( 1X/E1A-7) ) v
COXTPUE
•'RITE (6/77)
RO-'^AT (//)
D? 7'1 I = l/\'
•RITE (6/75) (3(I/J)/ J = iiV)
C5-T’'IE
•'RITE (6/77)
CALL PRU’-'P
PITE (6,77)

DO 80 I = 1/N
DO 79 J = L/\
5 ( I» J ) = 0 .
P(1/I) = 1 .
-TUF-,
•■FITE (6,31) . - .
rpR-'AT U/'***  ERROR; ZF^O P’i DIAGONAL, INVERSE ^T CeMPUTEDV/)- 
00 97 I = l/N. .
xRITE (6,75) (A(1/J)/ J = l/N)
CONT I NEE

T.' ?3
alte^ate entry , RdJi) = Tri
rr\TRY RETERM ( A- 5/ N )

GO TO T,
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SU^^^UTINE MATRIX ( A, Bj C' N >
C C = AR,' ViHEFE A7 B? AND C ARE SQUARE MATRICES 

DP'EvsieV hVcr',2'DV, B(Ro;26)» C(20^2C) 
DB 10 I = 1j\ 
do 10 j = 
c (i / J) = o. c 
OB 10 < . = l/\

10 C(I^J) = C(l/j) + .A(IjK) * 
RRT'JRX
RND

SUORBUTIVE equal ( A/ F»; N }
C A IS SET EQUAL Tp F3, WHERE A AND B ARE SQUARE MATRICES 

DI'VE''SI9N A(?0>c0)> B(2C/20) 
0 9 5 I = l ',N 
DO 5 J = l.,N

5 A ( I / J ) = B ( I > J ) 
RETURN 
END

SUBROUTINE PRDIA.3 ( PRAjf A, N )
C T'Ra IS T^'E PRODUCT PF THE DIAG6NAL TERmS 6F T'He SQJaRe MATRIX A, 

DIvEN?iON a(B0/20)
ERA = 1,0
09 10 i = 1/N

10 D^A = DRA * A(i, I)
return

r

10

SUBROUTINE SETUP ( k> r )
SETS up PLpT VALUES FOR EMULATION
CALCULATED DEASITY FUnCtI&n IS ST9ReD"IN C 
DIMENSION A(51), C(51) 
09 10 I.= 1/51
A( I ) = -5*0  + .2*F l6AT( "l-l )
Cd) = pr,p?, (A(i) + .1/O.,l*)  - PROB(A( I )-•l/Ce, 1. ) 
NET1J-Xs 
r\:D
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SUPR^JUXE ( PXj EXS, VARS, ITT, 9 ) 
C CALCULATES simui atign varian.ce
C SIMULATED DEXSiTY_FUN;CTi0\'-IS STGReD IN B

r)IvE-<SI9\’ 9(51), FX(lQOOO)
VApS = O»
De 10 J = bilT

13 VARS = VARS + (FX(J) - FXS)**2
VARS =.VARS/FL?AT(ITT)
D9 20 I = 1/51

20 I) = Or
35 30 j = 1/ITT,
3 = (FX(j) - EXS)/SQRT(VARS) 
3 = 5, *3  + 26,5
I = Kfx(G)
IF ( I ,LT. 1_) I = 1
IF ( I ,GT, 51 ) I =51 

33 :3( I ) = B( I ) +_1
33 43 I = 1,51

40 3(I) = B(I)/^L3AT(iTT)
=,-ETURV

SU9R?UTI\.E PLOTS X,.Y, Z, AMAX )
C Y AND Z ARr PLOTTED VERSUS x
C - = VjMtirR pr INCREMENTS, X = X(T),_Y = FKT), Z = F2(T) 

Ol^ENSlGN 11^5(103), SCAl'E(6)/ X(101)/ Y(10D/ ZdOD 
DATA OLNK, <STAR, KPLUS, KMlNU, KAEYE/ ' «, '#•/ ' + ’
A^ IN = 0 *
D5 14 Ik.= 1 / K'
IE ( Yd) • 3 T, A'^AX ) am AX = Yd)
K ( V( I ) ,LT, A‘dM ) A MIN = Y( I )
T r ( 7.(1) ,GT. A VAX ) AM AX = Zd)
IF ( Z ( I ) • LT, an l\ ) AMIN = Z( I )

14 CO\ti vijE
C j T TpR SCALF:s and rBORDER

•’RITE (6/A02) 
aC2 p?R''AT (Ihl)

= AVAX - Avi\i 
m!2 = 0,2 * Hl 
’-•I = lOO./ul 
SCALE(l) = ANIN 
03 10 I = 2/6

10 SCALE(I) = SCALE(Ird.t_^12.
•; P I T r ( 6 > 4. ? C ) ( S C A L E ( I ) i I = 1 / 6 )

600 -£)PmAT ( 19,<,E10.3/5dOX,E10.3) )
Da 12 I- = 1/103

12 Lr E( i) = <minu_
05 13 I = 2,102710

13 LINE(I) = XAEYE
•.rITE (6,.6Q1) (lINE(I)» I = 1/103)

601 F ® R A T ( 2 5 y / 1 0 3 A 1 )
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C PLST nF
33 I =

21 LT'Etl) = KBLN<
D5 23 I = 1^103,51

?.3 lK>E( I ) = KARYE
09 22 J = 1,K
Lt = (Y(j) - +2*5
L? = (Z(j) - Ayi\)* h1 + 2,5
Cl^EtLl) = KSTA.R
L10E(L2) = KPLUS
•<RITF (6,603) X(J)_, Y(j), Z(J)/ (LINECK)/ 

6C3 FORMAT (lX..r71P,lX,F7,A,lX..F7,4,lX,103Al)
LIXE(Li) = K3Lv:<
LINE(L2) = K5l\K
LI\=E(52) = XAEYE

22 CO^TIXUE
C PRIXT LIX'E AND SCALFS

DO 31 I = i/193
31 LINE(I) = '<NI\U

DO 32 T = 2/102,10
32 LIDE(I) = <AEY-:_

2 I(6/601) ( l 1 'YE ( I ) » I = 1/103)
•.RITE (6.600) (SCALE(I)/' I = 1/6)
^rpjRv
END

1/103)

10

SJSR^JTINE C3vvAT ( M," V/ R ) 
PEAL M(1P/12) 
On 10 [ = 1 , 
On 10 J = 1/x, 
>PI/J) = R
IF ( I ,E0. J ) '‘(I/J) = i.o
Y( 1/J) = Y(!,J) » v 
xfturx 
r-.ir>

SUBROUTINE NORMAL ( X )
0 FAC^I Call GENERATES a NORMAL RAND9M NUMBER X
C START vUST r^LLF-D ppriALLY
C 'S' IN CnLUY- 1 DENOTES SYMBOLIC SDS SIGMA 7 ASSEMBLY LANGUAGE
C_ INSTRUCT IOy

1 CONTINUE
S LI/11 , X’43030'
C SU'M 1? UN IF6P'' .RA^D9M NL'YRERS
S SLS/11 12
5 L'-'/S ?•!
S -I I, 5 6 55 OS
S L,?/9' 5
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20

STW/5 M
GlS> 9 -P,
AU. 9 11
LI, 1 2
V! 1,5 63539
L . 3 5
GLS, 3 -3
A .-U 3 11
FAS, 9 3
Al * 1 1
CI> 1
;3LE _S20
adply prlyvdmtal Correction
CSS, 9 six
FMS, 9 Fourth
STU,^ Y1
L-.U3 Y1
cms, 3 Yi
S T a / 9 Y2
F'^S, 3 AR
CAS, 3 A7
cvS, 3 Yp
CAS, 3 A5
FS13,3 Y?
FAS, 3 A3
CMS, 3 Y?
FAS, 3 Al
CMS, 3 Y1
LV,13 X
ST'<. 3 *13
RETURN
entry start ( X )
six = A,
cpLRTR = • r 5
Al = 3 .9A93A-S1 33
A s • 25?A3?.73.4
'A 5 = • 3765^2912
i 7 = • D0fj3c?5D6-x
A *J ” i D29Sn?776
T> ( .cq, 3 ) -a - 1
GO T?
F^D

i

0 r r O o
» tuts CALCULATES THE PRP3ABIL. IT Y THAT A- RANDOM X IS LESS THAN
* (X - EX)/St5
* rj'iCTIH-.. pros ( x. Ex", STD ) . . ..
* SOURCE LANGUAGE IS SDS SIGMA 7 ASSEMBLY LANGUAGE--SYMBOL

SOUND S.
AQ DATA'S FL’1 1
Al DATA'S FL’O.OA9R673470'
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A2 DATA,8 FL'0,0211410061
A3 DATA,8 FLi0.0032776263
A4 data,8 FL * 0 • 0000380036.
A5 DATA, 8 FL’0«0000483906
A6 DATA, 8 Fl, 1 0.0000053830
uAl> Data,? FL’0.5'

Al, 13 i
L x', 1. *13
Al, 13 L
L 2 >13
Al,13 1
L'--', 3 *13
L’x, <t *1
FS9,A *2
L , 3 *3
FDS,'4 3
LI,2 1
CI,4 Q
BGE7 YAIX
LI,? 0
LC\’,4 4
L1,5 0
LD, A 4
F"''L, 6 A 6
FAL,6 A 5
F'L,6 .'x
FAL.6 A 4
p '■'L, 6 4
rAL, 6 A3
F^L,6 4
pal,6 A?
F?iL,6 4
F A L , 6 Al
ppi ,6 4
FAL,6 AO
LI ,3 i

L??P F ‘ L, 6 6
AT,3 1
CI, 3 4
BLE Lap?
LD,4 AO
FDLM A
FPL, 4 half
CI,2 0
D,r PPTURX
LD,6 AO
FSL,6 4
LD,4 6

PETUPX L-x, 3 4
Al, 13 1
R *13
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SUBROUTINE TO CALCULATE PROBABILITY OF ERROR 
OF A THRESHOLD GATE - THRESH

AW = Weight vector,

AX = Input vector,
2VARW = Variance of weights,

2VARX = Variance of inputs,

CORW = Correlation of weights, pw

CORX = Correlation of inputs, px

N = Number of inputs, n

PE = Total probability of error for equally likely inputs, pE

CW = Covariance matrix of the weights (N+l x N+l)

CX = Covariance matrix of the inputs (N x N)

EXF = Expected value of f(p)

VARF = Variance of f(p)

PF = Probability of error given AX

PROB (X,EX,VAR) = Probability that a random, normally 
distributed X <_ (X-EX)//VAR

FN(X)= Value of the logic function FN(X)

COVMAT (M, N, V, R) generates an N x N covariance matrix

M. . = cov(x. ,x.) = p. a o , where p.. = 1 J-J X J Xj Xj XX
and p.. = R, i j, and a = a = /v13 Xj^ Xj

MATRIX (A,B,C,N) forms the product C = AB where A, B, and 
C are N x N matrices.

STEP (X,N) considers X as an N place binary number and returns 
X + 1, neglecting any high order carry. Thus entering 
X = 1101, N = 4, returns X = 1110.

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram of Subroutine THRESH
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SL'RR^UtInE j A'..-; VARW, CBRW/ VArX-i CSrXj Nz pE, JEN )
C this Sl.3R9UTI':F CALCULATES TUE P30BA0ILITY OF eRR8R SF.aN N-INPUT.
C THPFSH5L0 GATE WITH 'WEIGHTS .A'aH AND STATISTICS VARw;C8RW, VARXyCDPX
C TEN IS the NU^:3FR Dp POINTS RF THE N-CUQE WHERE PE > 0»5
c the lrgic fuhctign realized is specified in functiqn subprsgray fn
C BEGIN wUST Bl CALLED iNITlALLY - -
c RFF: CnV^AT/ •-'AT’IX/ STEP, PRSEh FN _ ,.‘

_DP'ENSI8N c-'d. 2,12),CX( 12, 12 ) , Q( 12, 12 ) , GT (1?, 12 ) , Rw (1 ?; 12) , 
1 RX( 1 12) >Vw( 12/1 2) , VX( 12> 12), A;s'( 12) #AX( 12)

1 continue
AXd-IP) = -1,

C GENERATE
do 1? i = i,lp
DR 10 j = 1/NP

10 vX(!,J) = 0*
12 V'-'d.I) = ABS( AN ( I ) ) xSTD-s*

CALL MATRI\' (VHjR'a/'QTjNP) 
call Matrix (st,va/cnVnp) 
D^ 20 I =

20 AX(D = 1»
-2 = 0,
IF-' = 0 . _ .

C STEp TmRU ALL POSSIBLE P PUT C6NBI \'AT I BNS
D? 100 j = 1,Y
CALL STEP (AX,v) . . v

C CALCULATE VARIANCE BE SEPARATING FUNCTION
VARF = 0*
DO P2 I = 1,VD
DO 22 < = 1,ld

22 >/ARF = V“RR + Ay ( I ) *Cvi ( 11 X ) * Ax ( X ) 
rjo P,'! J _ ip.:

7ARF = VARC + Az! ( I ) *CX  ( T , X ) * AX ( K )
C CALCULATE vEA'_ fiF SEPARATING FU\CTlOi\

Ey- ' 0*
DO 2-, I = i,\

P3 EXF = EXE + A<(!)*AX(i)
Y = EXc - Aa'(vP)

r rvAL'JATE LOGIC. FLNCTIB'-
f = r\ (AX)

C CALCULATE PROBABILITY OF ERROR
IF ( X ) 3^30>31

30 PR = 0-5
30 T° 36

31 IF ( v ,f2. 1. ) x = -x
D'- = p-n^ (X,o-,',ARF)

36 PF = °E + PR
IF < X tC-E, 0, ) IFN = IF\ + 1

ICO CO'zTr.sJE
D F s D r / Y
RETURN . ...
ENTRY BEG!;. ( VAR>/ CORN, VARX# CBRX," N, PE, IFN )
f.P = *.  + 1
'' - 2 * x \
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C 3E^EKATE Cp-PRELATIa’n AND VARIANCE MATRICES 
STDX = S.^RT(VARX) 
STDW = SQRT(VARW)
CALL C^VMAT (RN,^.PX 1 .JCfiRW)
CALL CHVMAT (RX.N/l ./CGRX)

C GENERATE NX 
P? 52 I =
D9 50 j = 1/K

50 VX(I-'J) = C*
52 VX(I-I) = STDX

CALL MATRIX (7X,VX^Q,N)
CALL UATRIX (VX/G^CXjiN) 
GO T8 1
ENO

-L!xCTI?\i Fc ( X )
DIMENSION Xd?)

C y^IS ELNCTION EVALUATES.THE F3LL0XING L6GIC FUNCTleN 
FN = X(1)*X(2)  + X(1)*X(3)*X(A)
IF ( FN .GT*  0- ) FN = l-C 
return 
END

C

20
10

SUPROUTINE STfp ( X/ N ) ,
SUS ROUT IRE STEPS THRU T^E POINTS OF T^E N-C'JRe 

D I Nrx s 15 X(20) 
carry = l', 
DO 10 I = 1/N 
n = N - I + 1 
IF ( CARPY .EG.-O.) 33 T3 lu 
K ( X(M) .EG, 1.) GO TO 2C 
X ( ) = 1 . 
CARRY = c. 
Gn Th 10 
X(N) = 0- 
CONT I N'lJE 
RETURN

SU3RPUTINE MATRIX ( A, Q, C< N )
r r = Ax-o, XHERf R, AND C ARE N X N MATRICES 

DINEVSI9N A(12>1^), 5(12/12). C(12/12) 
■DO 1'3 I = i,\

10 j = 1/N
C (I, J1 = c. c
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00 13 K = !/>•_
1C Cd,J) = C(I,J) + A(IA) * B(K,J)

■^ETU^X
FXD

SUBROUTINE Cr’Vs’AT ( M, N, V, R )
C THIS SUBROUTINE GENERATES AN N X N COVARIANCE MATRIX M WITH
C variance V AND CORRELATIBH R

REAL K'(20/20)
C = R*V
DO 12 I = UN
DO 1C J = l/.N

ic v(i,j) = c
12 v( u I ) = V

prTURN
END

FUNCTInN PRqB ( X, EX, VAR )
C PPOBASILITY That A_RANDRN X IS LESS THAN (x - EX>/StD 

DOUBLE PRECIsiON S,T
T = C » EDO
T = DELE((X-EX)/SORT(VAR))
IF ( T .LT. -4.ODO ) GO T6 20
I = 1
IF (T) 5»"1C,1O

5 T = -T
1 = 0 . _ .

10 S = 0•OCCCCE3SSODC»T + C•0000^8890600
3 = S*T  + 0*0000^8003600
G = S*T  + C.»0O.32776263D0
S = S*T  + C*0211^1006100
G = S* t + C •043367347000
G = ?*T  + l.OD'J
Q = S » * 1 A
D^-=P = 1 .GD0/( 2,:D0*S)
IF (I.EC.l) PR.?B = 1»ODC - PR9B
RETURN

20 CENTPuE
IF ( T »lt» -16.000 ) GO TO 30
T = -T
S - 0 *:?D0*T*> ,2
RT = nEXP(S)
PR^q = p,39?S422:;*0»31783C?3/(0e334580S4»T*ET)
RETURN

3C PR®B = 0.
return
END
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SUBROUTINE TO C2VLCULATE PROBABILITY OF ERROR OF 
A THRESHOLD GATE NETWORK - THRESM

AW = Weight vector, n

AX = Input vector, nx
2VARW = Variance of weights,

2VARX = Variance of inputs,

CORW = Correlation of weights,

CORX = Correlation of inputs, px

NI = Total number of network inputs

NO = Number of inputs that go only to output gate

NG = Number of gates in network

PE' = Total probability of error for equally likely inputs, pE

CW = Covariance matrix of the weights (N+l x N+l)

CX = Covariance matrix of the inputs (N x N)

P = Probability of occurance of outputs of first level gates

NG1 = Number of gates in first level

Nil = Number of inputs to each first level gate

EXF2 = Mean of output gate separating function

VARF2 = Variance of output gate separating function

GENP (AW, VARW, CORW, VARX, CORX, NG1, N, P) generates the 2NG1 
probabilities of occurance of the outputs of NG1 first 
level gates

GENB (B, N) generates an n-th order B matrix

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram of Subroutine THE1ESM
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SUBPnUT j\F THRESH ( A'-*-'VARw/cf'RVi,  VaRX, C9RX, \ I, Nq, MG)"PE)
C THIS SUBR6UTIKF CALCULATES THE PROBABILITY OP ERROR OF A TWB-LEVEL
C TRREGHOLB GATE NFTkORK VjITH \'G GATES AND Nl INPUT$« (NI-N0) INPUTS
C GO TO EVERY Gate* (n9) INPUTS GO only TO THE OUTPUT GATE, aw
C CONTAINS THE '/E.IGHtS/ fJRST.THe Nl-NO + 1 WEIGHTS OF EACH„FIRST LEVEL
C GATE, THEN THe NI-N6 WEIGHTS CORRESPONDING TO THE INPUTS THAT G9 TO
C EACH FIRST LEVEL GATE? FPLLO-TD BY THE NG WEIGHTS CORRESPONDING
C TO THr OUTPUTS OF THE FIRST. LEVEL GATES, THE NO WEIGHTS OF THe
C INPUTS that go only to the OUTPUT GATE, AND THE OUTPUT gate THRESHOLD.
C THE LOGIC FUNCTION REALIZED IS SPECIFIED in FUNCTION SUBPROGRAM fn
C BEGIN?' .MUST Be called INITIALLY
C REF: COVMAT, vATFIY, step, genp, fn, PROB

. DI HENS ion AL ( 20 ) , AX ( 1 0 ) ,"cw ( 20,20 ) , ex ( 2g, BO ) , D ( 20,2o ) , RW ( ?0,20 ) 7
1 pX(2C,2C),vw(20,20),VX(20,20),P(20)>X(10)

C SET up CONSTANTS 
NG1 = NG - 1 
Ml = n"i - NO 
NW1 = Nil + 1 
nJ2 = \I + \G1 
NWT1 = NW1*NG1  
NWT2 = NI2 + 1 
NWT = NWT1 + NI-T2 
MO = 2**\i9  
Mil’= 2**Nll  
vQ-! = 2**NG1  
NC = Nil + N-j1 
NCP = NC + 1

.C CALCULATE COVARIANCE MATRICES
STOW = SORT(VA^w)
stdx = sort(Vary)
CALL COVMAT (RW,NXT,1.,CPRW)
OP 1? I = 1,N.;T
De 10 j = 1,NWT

10 VW(I/J) = 0»
12 VW( 1,1) = A.BS( AW( I ) ) *STD I'':

CALL MATRIX (VW,RW,D,NWT)
call matrix (d,v',:,cw,nwt)
CALL C-3VMAT ( RX, M 2i 1. , Cr'RX )
DP 22 I = 1/Ni2
DO 20 j = 1,N'I2

20 VX(I•J) = 0.
22 VX(I/I) = STDX

call Matrix (vx,rx,D/M2)
call matrix (d,vx,cx,m2) 
DO 30 I = 1,N[2
X( I ) = o»

30 AX(D = c>»
AX(V>'T2) = -1, 
PE = C«

C STEP THRU all POSSIBLE CBMpiNATiONS 9F yHE INPUTS THAT G9 TS B9TH LEVEL 
DO IOC JI = l,Mil . . _ . „ . _

c GENERATE the PRpBABILI TIES fiF PCCURaN'Ce OR THp FIRST LEVEL OUTPUT
C C^'PlN'ATieAS for the GIVEN IVPUT COMBINATION

CALL GFNP (A/,VaRwJcPRN,AX,VARX,C3RX,NGl,Nil,P)
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PF = 0. . . . • ■- . .
C STCP Tu.ru ALL PC.SSIRLE Cg-<RIn:ATIgsjS 0F FIRST LEVEL GATE gUTPUTS 

RP 90 J? = 1/MG1
PF1 = C*  ... _ - - -

C STE.r THRU all POSSIBLE CPHBINATI0\S 3F INPUTS THAT GB RNLY T? THe 
C BUTPUT GATE

DP BP U3 = - -
c calculate variance rf the output gate separating function 

vapf? = Q,
D9 5? I = 1/N'':T?
DC SR K = l/UV'TE

5P VARF? =• VARFE + Ax(I)*CW (KNT1+I>NNT1+K)*Ax (K) 
DP 5A j = t/NT?
DO 5A K = l/NIS ......................

^4 VA.RFP = VARF2 + AL(NNT1 + I )*CX(  I? K ) *AW  < NWT1+K ) ..
c calculate ,vean of the output gate separating function 

EXFP = 0.
CO 96 I = 1/NUT2

56 EXF? = EXFP + AX< 1 )*AW(N' ‘:T1 + I )
C EVALUATE LpGlC FUNCTION

F = FN(X) .. . .
C CALCULATE PROBABILITY BF ERROR

FX = EXF2
IF- ( F .EC. 1, ) FX.= -FX
PF? = praB (FX/0*/VARF2)
PF1 = PF1 * PFS^
CALL STEP (AX,NI2)
call STEP (X^NI)

SO CBNTIN'JE
PF1 = PF 1 /FLOAT ('-’3) 
pp = PE + PF1*P(J2)  
DO 85 I.= i/NTl

P,5 x( O = Ayt I >
90 CONTINUE

pE = DE +.PF
loc continue:

PF = PP/FL^AT(HI 1)
RETURN

SUBROUTINE GENP ( A'a'j VaRN JcpRAU AX/VARX/CORXi NG, N/R ) . _
c THIS SURFOUT INF.. GENERATES P, A VECTOR CONTAINING THE 2**NQ
C pr-tp AS ] LJ T (ES PF BCCURANCE OF THE OUTPUTS OF NG, N-lNPUT _ ......
C THPFSpOLD GATrS -ilTH STATISTICS VAR'X, C9RW, VARX/ AND CQRX, H'ElGPT
C VECTr-D An/a^-D I^PUT VECTOR AX« _

DIF'E-iS ipf- A ( 6, A ) , AU (?0 ) , AX ( 10 ) / C'X ( 20/20 ) / CX (20/20) ,C (20 / 20 )./
1 RXF ( i 1) / TP ( 5 ) ,p ( 20) / p3< 20 ) 'R1?<( 2o*20>  /RX ( 2o<2o ) > VUj ( 2q / 20) /
i VX(PO/20)/R(20»20)/C(PO,2C)/AU,'X(10)#AXUj(20),X(10)

NP = v + 1
NNT1 = N5*KP
-I = ?**NG
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P(l) = 1.
!F ( »LT» 1 ) RETURN
POd) = le

C CALCULATE the MEANS OF THE separating functions
L = o _
DO I = l/NG
F = 0.
do no j = i/K.

"ilO F = F + AW( J+L) *AX(  j)

L = 0 . .
DO 220.1 = l/NG 
CONST = X(i)/FXF(I) 
DO 210 K = 1/N

210 AXN('< + C) = AX ('<)* CONST
L = L +.NP

220 AX X (I.) = -CONST
L = 0
D 0 225 K = n \|

225 ANX(<) = 0«
DO 2^0 i = nxs
IF ( X( I ) .EQ. 0«- ) GO TO 240
DO 230 K = n\

230 AWXUO = A;-;X(<) + AW ( K + L )/EXE ( j)
240 L = L + VP ..
C CALCULATE COVARIANCE MATRICES 

STOW = SQRt(VaRW)
STDX = SQRT(VARX)
CALL COVMAT (R'-JjNXTnn^CORN) 

312 j = l/NNTl
DO 310 K = n\v.'Tl

310 V<(Iz<) = 0. . . 
312 V'>;(!»I) = A3S( AX( I) )*STD‘-i

CALL vATRlX (VV/R-^D^NNTl ) 
CALL MATRIX (D/V-bCA'/NNTl ) 
CALL COVMAT (R <?-/1. »C°RX)

322 I « n\

L = L + \P
ISO EXF(I) = F - A'.-!(L)

F = 1 «
DO 130 I = 1/NG

130 e = F*EXE ( I )
EXF( N'G + 1 ) 
DO 5 I = 1

= F
;ng

5 X ( I ) = 0 .
C STEP THRU 

DO 20 j =
all possible input cbnbinatIOns 
2/N

CALL STEP ( X # NG ),
c

10
c

CALCULATE MEAN fiF PRODUCT 6F SEPARATING FUNCTIONS 
EXFI = 1.
DO 10 i_= i/NG
IF ( X(h -EQ. o» ) Go TO 10
EXFI = EXFi*EXF(I )
CONTINUE . _
CALCULATE ^EAN VECTORS
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D9 320 K,= l/N
320 VXd/K) = Ot
322 VX( IH ) = 5TDX

CALL MATRIX (VX/'-'X/'D/N)
CALL MATRIX (Q,VX,CX>N) . ..

c calculate variance er product bf separating functions
VARFI =_o»
DO 250 i = 1,N
DB 250 .K = 1,N

250 VARFI =_VARFI + Aa'X( I ) *CX(  i A)*ANX(K)
DO 260 I = 1/N>’T1
po 260 K = l/N'.-Hl

260 VARFI = vARFI + AXW ( I) *C  ( I » K ) *AXW  ( K )
VARFI = VARFI^EX^HEXFI

C CALCULATE PROBABILITY THAT PRODUCT IS GREATER THAN ZERO
PC(J) = PRO3 (EXFlVo*/VARFj )

20 CONTINUE
C GENERATE B MATRIX

CALL GENB (B^NG)
C F5RM C4 THF INVERSE OF BCONST = A */FLOAT(M)

DO 30 I = 1/M
DO 30 j = 1/M

30 C(I/J) = (P(J/1) - .5)*C5NST
C(M/D = C(M# j ) - {« , , ...

C CALCULATE THE PROBABILITY OF 0CCURANCE OF THE BUTPUT COMBINATION
DO vt0 I = 1/M
P( I) = o.
DO 4'0 j = 1/M

40 P( I ) = P( I ) + c(DJ)*P0(J)
return
END

SUBROUTINE GENB ( B/ N )
C THIS SUBROUTINE GENERATES AN N'TH ORDER B.MATRIX USpD BY THE
c mijltigate threshold network probability of error Routine--thresm
c ref: step

DIMENSION 2(20,20), X(4), V(4)
M = 2 * * N
DO 5 I = iJn

5 y(I) = 1 ,
DO 100 j = l/M
CALL STEP (Y*N)
X = 0
DO 10 I = j/N

10 K = K + IF IX <Y( I ) + «1 )
DO 20 I = 1,M

20 X(I) = 1.
DO 80 L = 1/M
CALL STEP (XfN)
□(J/L) = 0.
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30

80
100

F = 0.. , .
00 30 1 = 1,N
r = F +_X(I)*Y(I  )
C A = IFIX ( F + «1 ) + K .
I,.A = (LA + l)/2 - lA/2 
IF ( LA .GT*  0 ) GO T9 80 
3(J/L) = 1*
COKT^C'E
C9\TI\UE
pftuwn
E^D



APPENDIX D

COMPUTER PROGRAMS FOR PATTERN SEARCH

TO MINIMIZE PROBABILITY OF ERROR
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COMPUTER PROGRAMS FOR PATTERN SEARCH TO 
MINIMIZE PROBABILITY OF ERROR

N = Number of inputs

W = Initial weight vector, rj

DWF = Initial step size

DWL = Minimum step size
2VARW = Variance of weights,

2VARX = Variance of inputs, ax

CORW = Correlation of weights,

CORX = Correlation of inputs, px

WW = Adjusted weight vector

INC = Pattern vector

PE = Probability of error given WW

BEST = Minimum probability of error

IFN = Number of points at which PE > 0.5

KA = Number of iterations

THRESH (WW, VARW, CORW, VARX, CORX, N, PE, IFN),
BEGIN (W, VARW, CORW, VARX, CORX, N, PE, IFN) calculates the 

propability of error PE of an N-input threshold gate 
with weight vector WW and statistics VARW, CORW, VARX, 
and CORX. IFN is the number of points of the n-cube at 
which the probability of error is greater than 0.5. The 
initial call is made to BEGIN and subsequent calls are 
made to THRESH (see Appendix B).

THRESM (WW, VARW, CORW, VARX, CORX, N, 0, 2, PE),
BEGINM (W, VARW, CORW, VARX, CORX, N, 0, 2, PE) calculates 

the probability of error PE of a two gate, N-input thres­
hold network with weight vector WIV and statistics VARW, 
CORW, VARX, and CORX. The initial call is made to BEGINM 
and subsequent calls are made to THRESM (see Appendix C).

SOURCE LANGUAGE: SDS Sigma 7 FORTRAN IV - H
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Flow Diagram for Optimal Threshold Gate Search Program
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c
c
c

c

c
c

1
2

5

io

u 

c

12

13

14

15

16

17

is
20

29

gDTI'-'AL THRESm?Cd GATE SEARCH PROGRAM . „„
THIS PROGRAM a:ILL SEARCH T9 El ND THE 'A'ElGHTS WHjCH WILL MINIMISE 
THE PReRABiLlTY ERROR QP -AN N-INPUT THReSHSLD GATE WITH 
statistics var,.-; ceRw; varx," and corx. the initial weight vectbr 
IS W-. the Initial step size is DWF, and the MINIMUM STEp SIZE 
IS D <L, the THRESHBLD IS W'(N+1). IFN IS THE NUMBER QF POINTS'OF THE 
N-CUSr F9R WHICH THE PROBABILITY OF erR6R > 0.5, 
REFi THRESH 
DIy-EvSf9v INC(1?)/ W(12)"> WW(12) 
READ (5/2^END=99) N 
FOr-R-.AT (15) 
M s N +_1
READ (55Jy ) (-•. ( I ) , i =
FORMAT (EE10.3)
REAR (5/5) D’-F, DWL _ •
READ (5/5/ERD=l) VARW? VARX 
continue 
READ (5/5/END,i) CORN'/ C9RX 
CrRX = 3, 
DO 11 I = i/’’’
;/(I) = I)

DWV = DWF
RRINT IN'RUT Data AND INITIAL PRQBAEHLlTY OF ERRBR 
a RIT E (6/12)
F P R M A T ( 1 H1 ) v
TRITE (6,13) VA-r-'/CRRWiVARX/CORX 
rOPyAT (/'INITIAL VARIANCES AND CORRELATIONS ।,4(2X/E10*3))  
-.RITE (6/1**)  > DV:L

FORMAT (/r tht itteRAtIRN LIMITS ARE '/E10•3/2X/ElQ,3) 
^ITE (6/1R) (-.'n(J)/ J = i/M) 
FORMAT (/,' INITIAL WEIGHTS ARE ',/,(1X,1CE13.6)/)
NO •: = 1
-D*  = D-<^
DO 1A I = 
I NC ( I ) = c 
<F.rr = 0 
CALL REGIN ('•-.<, VARW/C9R-'.jVARX/C8RX,N/pE/IFN) 
■RITE (6»17) -E

ftc-'AT (/,• INITIAL PRORABILITY OF ERROR IS '/E15«R) 
.3 r s T - D c 
z A. = 1
IF ( IFN .EC*  0 ) GB TB 20
«RITE (6/18) IFN
FORMAT (/,! THE FU^CTIe^: IS N'BT REALIZED AT f/lA/*  
c^tixCe
PXpLriPATcFY ‘'OVF
•..*•(  V^W) = >:(N = X) + DW
IF ( W'..(New) .LT*  0*  ) GO TO 29
CALL THRESH ("r^VAPW/CORW, VARX/CBRX, N/PE/ IFN)
IF ( nr ,LT. BEST ) GB TO 36
;;W(NO',) - k'„:(v<T,.i) L D'W
D z ~ •*'  0 .*i
<9DE = <°De + 1
IF ( XhDP .ED. 2 ) NOW = N"• X + 1

PBINTS।)
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36
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40
42

44

45
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50
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65

67

70
74
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IF ( '<=>05 *E0,  2 )_K3DE = 0
IF ( \3W »GT« ) GO TO 30
GO TO 50
NO1."' = 1
JG = 0^'
Do 3? J = T/\
JG = JG + iAq3(lNC( J) ).
IF ( JG .EG. 0 ) GO T9 52
GO T'S 33
3EST = P£ 
IF ( ■<9D£ .EQ, 6 ) JNCIN^a) = 1 
IF ( '<?DF ,EQ, 1 ) INCINGa) = -1
vON- = \A.; + 1
<5DE = 0
D'.-.' = D*y  . ..
IF ( .GT*  N ) 39 T9 33
GO TO 50
Da' = D'-.y
\e’A = 1
PATT£c-\ move
De AO J = |,V
■<a'(J) = A-W(J) + Dai*FLOAT  ( l\c.( J))
<A = <A + 1
oe 44 j = 1?^ 
IF ( ’AA(J) .Lt. 0. ) GO TO 4?
CALL ( a'^VAR'a'/CORNJ VaRX/CSRX/N/PE# IFN)
IF ( P£ .GE. BEST ) GO TO 47
BEST =_de
•DO 45 j =lr-'
•:W( J) = X"A:(J) + D.oFLgAT ( I\C( J) )
Gn T4 4j 
09 4S j = i,v
-.-'(J) = v'V(J) - DW*FL3AT(I\C<J) )
T\C(J) = C

<A = <\ + 1.
3 p’ T •_' ? 0
FFDUCF STEP SIZE

IF ( .lJ, 3/!_ ) Go TO 70
O'?;' = ?\M
PRpT INTEF.'FDI ATE RESULTS
-RITE (6#65) (aa( J) > J = I'M)
C-ORA-AT (//, ' AFTER »'I4,' ITTERATIONS'THf WEIGHTS APp ’» 

\ (IX,{CE13.4 ) )
-RITE (6/67) BEST
PG"V--T (/,t A\D ThF PROBABILITY OF FRR3R IS ’/F15.8//)
IP ( IP\ .EO. 0 ) G9 T9 20
-RITE (6,18) IFN
GO T? 20
PRI-J ri\AL RESULTS
•RITE (6,74) <A
F9RN4T (//;» AFTER ’,14,' ITTERATI8NS,')
-RITE (6'76) ( W4(J), j = 1,M )
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76 (/,i THE 3EST HEIGHTS ARE f.(1X,10E13«6 ) )
xRITE (6/7R) 3EST

78 FE-RHAT (//i THE LEAST PR^BAB.ILITY 6F ERR9R IS I > El 5.3,////) 
IF ( IFN .EC».C ) G9 Tg 10
*<' R IT E (6/18) IF \j
G? TO 10

=3 STEP
F\'D

C
C
c
c
c
c

c
c

1
2

5

10

11

c

12

13

14

15

16

-^TL’-'AL THRES'-'-~CD GATE SEARCH PROGRAY# T^B GATE
THIS PRSGRAY htlL SEARCH TB FIVD Th'E ^'EIGHTS WHICH WILL HlNlHlZE 
THE P^BBAQiLlTY BF^ERRBR BF A TWB-GATE THReSHBLD NETWORK WITH 
\ I\pL'TS ALD STATISTICS VARW.. CBR'a'/ VARX/ AMD CB^X, THE INITIAL 
■■EIGHT VECTOR IS a, THE THReSHBLD BF THf FIRST GATE IS W(N + 1"), AND 
THF TR'SESHBLD SF THE SECOND GATE IS ^(?*N  + 3). W(2*N+2)  IS T'r'E 
<EIGht GIVeN The OUTPUT BF THF FIRST GATE, THE INITIAL STEP SIZ 
IS D-R, AND THE VINIMU'V: STEP SIZE IS OWL, 
PE.Rt THRLSV
Dr'ENSIBN rC(12), W(12), WW(12) 
READ (5/2>EkD=29) w 
FttRvAT (T5)
'll = \
N'/l = N +

\I2 = \ +

\'<? = X t

NET = V'A'l

READ (5/5) (<(!)# I = l/NWT)
rgr-vvAT (8E1C.3)
READ (5/5) DaF/ D>;C ..
READ (5/5/EN0 = l) VaRa, V A R X
^“NTIX^E
READ (5/5/E D =1) C5RA« C O Ry
Oc; 11 $ = 1/NVT

( I ) = ( T ')
D’-"- = D'aF
5RI“T IN^UT Data and initial PRSGADILITY BF ERRBR
•RITE (6/12)
ca=vAT (jhi)
<t>ITE (6/1?) VA--.,/ceR>-vVARX,'c9RX
EBR^AT (/’ INITIAL VARIANCES AND CBRRELATI BNS ’,4(2X»ElO.3))
-RITE (6/14) D'/y/D'/L
r2Rv4T (/! THE iTTFRATIBN LP'ITS. ARE ’ » E10 * 3/2X/E1Q , 3 }

\ yT
L = N'-'T - 1
- P I T E ( 6115 ) ( - ( J11 J . = 1 / m )
r=RviT (Z/, p-iTiAL WEIGHTS ARE '///(IX/10E13.6)/)
N3.‘- = 1
DX = O'-M
D2 16 I = 1/M
I\C(I ) = 0

m
 •
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c

?9

30

32

36

3 8

C

^0
^2
^4

45

47

48
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CALL 3231 \'s' (>-"-!,VA^W»CeR>-"/VA^x7ce9X,\l/O/2/PE)
*' P I T L ( 6 * 17 ) D E
F?PV:AT Ut' INITIAL PROBABILITY OF EPRDR IS UE15.S)" 
BEST = PE
<A = 1
CO' T J \'C‘E
EXPLRRATORY ^OVF
■<a ( \q A’) = W(\Rx) + DW
IF ( >S(X0'<) .LT. 0. ) GO TO
CALL ThR^SY (:<A?/A^kL COR'.-;, VARX, COrX, N# 0, 2, PE )
IF ( DE -LT. BEST ) GO TO 36

L Da'
D>; = -dw
<BOF = K^Dr + 1
IF ( KODE Teo. ? ) NOW 7 Mow + 1
IF ( .fQ. } rgw = mow + 1
IF ( <ODE .EO, 2 ) K0DE = 0
JF ( .CdE. N’a'T ) GO TO 30
GO TO 50
\i o i.i = |

CO = bL
JG = JG + IABS(ixC(J))
IF ( JG .EC. 0 ) GO TO 53
3? TO 38 T
BEST = PE
ir ( YoDE .EC. D ) iM'C(MpA) = 1
IF ( '<502 .EQ, 1 ) INC(KC'W) = -1
\ov = \ew +1
IF < MOW ,EC. \wl ) N9!x = NfiW + 1
<0DE = C
31/ = D*M
yr ( X'ow . GE» \"a'T ) GO T? 38
G? TO 50

= r-'.-.Y
\-B-' = 1
r.c(‘Yi) = c
PATTCRX Y“VE
C *3  4 G J = 111
-..-(J) = L<(J) + DA'*FLfiAT(  I\C( J) )
<A = zA + 1
D0 44j={,l_
IF ( •”* ( j) -LT. O._ ) GO. TO V ...
CALL T^RESn (-‘/a, VAP>.bc2R,//VARX,c9RX, N#0/2,PE)
IF ( PR ,3E. BEST ) GO TO 47
BEST = PE
TX'C(*-.vt)  =_C
D^ 45 J =1,L
v.l-(J) =,-':W(J) + Da*FL0AT(  I\C( J) )
GO Tr*  42
V'Ct'.Vl) = 0
■DO 4? j = i,l_ . .. _ .
A>(J) = '.!>.'(J) - Da*F!_9AT(  I\c( J) )
ISC<J) = 0
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DV = D'^M
50 KA = KA + 1

Ge Te 20
C REDUCE STED SIZE
52 DWf' = DWrVlC*

IF ( O;am ,lT, ryi;L } Gfi- T? ?5 
n= r>j-j

c prin;t intermediate resui’ts.
••.RITE (6/65) KA/( Als ( J) ", J s.I/N'a'T)

65 FeRyAT(//'AFTER '/I4,f ITERATI6NS, THE HEIGHTS ARE *,/,
i 11(1X/F1O’7) )

A?ITE (6/67) BEST
67 FORNAT ('/,« A\D THE PROBABILITY 6F ERROR IS '/ElS.g/Z)

SB TD 20
c yRiNT final, results
70 .'RITE (6/74) KA
74 FSR^'AT (///' AFTER '/I^/’ I HERAT IONS/ ' )

lpHE (6/76) ( ;</(J)/ J = l/NWT )
76 rnr-YAT (/• Tl-E BEST WEIGHTS ARE ' ,11 ( 1X, Fl 0 e 7 ) )

•/’RITE (6/7>3) 3EST
78 FORMAT (/,i The LEAST PRP8A3ILITY 0F ERROR IS 1 , E15. -3,////)

30 TO 13
99 STO0

END


