
AN EMPIRICAL STUDY OF THE SUITABILITY OF

CLASS DECOMPOSITION FOR LINEAR CLASSIFIERS

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Francisco Ocegueda-Hernandez

December 2012

AN EMPIRICAL STUDY OF THE SUITABILITY OF

CLASS DECOMPOSITION FOR LINEAR CLASSIFIERS

Francisco Ocegueda-Hernandez

APPROVED:

Dr. Ricardo Vilalta, Chairman
Dept. of Computer Science

Dr. Stephen Huang
Dept. of Computer Science

Dr. Kam-Hoi Cheng
Dept. of Computer Science

Dr. Zhigang Deng
Dept. of Computer Science

Dr. Klaus Kaiser
Dept. of Mathematics

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

This dissertation would not have been possible without the support of many people

throughout my years at University of Houston. I owe a great debt of gratitude to

each of them.

My greatest thanks are for my parents, my mother who has always been the

support for my development and my father who taught me the values of honesty,

loyalty, and integrity that lead my life.

I am extremely grateful to Dr. Ricardo Vilalta, who as advisor had the difficult

task of guiding my efforts to obtain a Ph.D. degree. I would like to highlight that

many times he was more than an advisor. He always provided me with his support,

inspiration, encouragement, and guidance, even in situations that were outside his

academic responsibility. Most importantly, his spiritual approach to life inspired

me immensely to be a better human being. I feel truly privileged to have had the

opportunity to work with him.

I would like to express a special thanks to Dr. Stephen Huang, Dr. Kam-Hoi

Cheng, Dr. Zhigang Deng, and Dr. Klaus Kaiser for agreeing to be members of my

dissertation committee and for their time reviewing this dissertation.

Teamwork is an essential in research work. This dissertation was enriched by dis-

cussions and collaborations with other members of the Pattern Analysis Lab (PAL)

of the Department of Computer Science. My gratitude goes to each PAL’s mem-

ber for its support. In particular, I give warm thanks to Roberto Valerio for his

friendship.

Emotional stability is an important aspect to achieve the goal of obtaining a

iii

doctorate. Without the help of my girlfriend, family, and friends would not have

enough courage to deal with the various difficulties that arose throughout the past

five years. My thanks go to all them.

My very heartfelt thank you goes to my girlfriend, Rebeca Parra, for her uncon-

ditional love and for being so helpful in times of disappointment, personal pain, and

hopelessness.

My special gratitude goes to my friends who has helped me along the way:

Eduardo Saucedo, Roberto Coronado, Nayeli Coronado, Juan Urquiza, Federica

Sanchez, Gerardo Mendizabal, Efren Ballesteros, and Barbara Vazquez.

Last, but definitely not the least, I would like to thank the Department of Com-

puter Science of University of Houston for providing students with an extraordinary

academic environment. In particular, I appreciate the efforts of those professors who

contributed to many of my learning experiences. Also, I am grateful to Yvette Elder

for being kind and helpful every time I needed help in processing any paperwork.

iv

AN EMPIRICAL STUDY OF THE SUITABILITY OF

CLASS DECOMPOSITION FOR LINEAR CLASSIFIERS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Francisco Ocegueda-Hernandez

December 2012

v

Abstract

The presence of sub-classes within a data sample suggests a class decomposition

approach to classification, where each subclass is treated as a new class. Class decom-

position can be effected using multiple linear classifiers in an attempt to outperform

a single global linear classifier; the goal is to gain in model complexity while keeping

error variance low. In this dissertation, we propose a study aimed at understanding

the conditions behind the success or failure of class decomposition when combined

with linear classifiers. We identify two relevant data properties as indicators of the

suitability of class decomposition: 1) linear separability; and 2) class overlap. We use

well-known data complexity measures to evaluate the presence of these properties in

a data sample. Our methodology indicates when to avoid performing class decompo-

sition based on such data properties. In addition we conduct a similar analysis at a

more granular level for data samples marked as suitable for class decomposition. This

extra analysis shows how to improve in efficiency during class decomposition. From

an empirical standpoint, we test our technique on several real-world classification

problems; results validate our methodology.

vi

Contents

1 Introduction and Motivation 1

1.1 Contributions . 4

1.2 Dissertation Outline . 5

2 Preliminaries 6

2.1 Basic Notation in Classification . 6

2.1.1 The Classifier Model . 7

2.1.2 The Loss Function and Risk 7

2.1.3 Empirical Risk Minimization 8

2.2 Linear Classifiers . 9

2.2.1 Linear Support Vector Machines 12

2.3 Clustering . 12

2.3.1 K-means . 14

2.4 Class Decomposition Algorithm . 17

2.5 Data Complexity Measures . 19

3 Literature Review 22

4 An Empirical Study of the Suitability of Class Decomposition for
Linear Models 26

4.1 Related Work . 26

vii

4.2 Empirical Study . 27

4.2.1 Experimental Datasets . 28

4.2.2 Experimental Setup . 31

4.2.3 Evaluation of Classification Performance 40

4.2.4 Evaluation of Data Complexity Measures 47

4.2.5 Data Complexity Analysis on the Suitability of Class Decom-
position . 48

5 Summary, Conclusions, and Future work 59

5.1 Summary . 59

5.2 Conclusions . 60

5.3 Future Work . 61

Bibliography 63

viii

List of Figures

1.1 XOR dataset. 2

1.2 Data distributions not suitable for class decomposition 3

2.1 Maximum-margin hyperplane. 12

4.1 WEKACD GUI . 33

4.2 Classification performance comparison using different clustering algo-
rithm for Vowel, Vehicle, PenDigit, and SatImage datasets 38

4.3 Classification performance comparison using different clustering algo-
rithm for Image, Heart-c, and Credit-g datasets 39

4.4 Classification performance comparison using different linear classifiers
for Vowel and Vehicle datasets . 41

4.5 Classification performance comparison using different linear classifiers
for PenDigit and SatImage datasets 42

4.6 Classification performance comparison using different linear classifiers
for Image and Heart-c datasets . 43

4.7 Classification performance comparison using different linear classifiers
for Credit-g dataset . 44

4.8 Cumulative classwise classification performance for Vowel and PenDigit
datasets . 57

ix

List of Tables

4.1 Datasets and characteristics . 30

4.2 Classification performance comparison for class decomposition using
three different clustering algorithms. 35

4.3 Classification accuracy . 46

4.4 Averages on data complexity measures (per dataset) 49

4.5 Data complexity measures and performance per class (Vowel dataset) 55

4.6 Data complexity measures and performance per class (PenDigit dataset) 58

x

Chapter 1

Introduction and Motivation

There is a broad spectrum of successful applications where the learning algorithm

employed for a classification task is limited to linear classifiers, e.g. document class-

ification [4, 32], biomedical work [22], face recognition [5], chemistry [15], bioin-

formatics [23], etc. Linear classifiers have the advantage of keeping the variance

component of error low, but may result in high bias (e.g., under non-linear class

distributions). One approach that has been extensively studied in recent years is

the use of a combination of linear classifiers to replace a single global linear classifier

[30, 16, 31, 10, 11, 6, 33, 9, 29]. Such an approach increases model complexity, while

keeping variance under control.

One instance of compound linear classifiers is that of class decomposition via

clustering; here classes are separated into clusters as a pre-processing step to classi-

fication. As an illustration, Figure 1.1 depicts a two-dimensional input space where

examples belong to two classes. The dotted line is the decision boundary built by

1

a single global linear classifier. Now, assume a clustering algorithm separates each

class into two clusters, whereby we relabel every example to encode class and cluster

label; the resulting dataset has now four different classes. The dashed lines are the

decision boundaries correctly separating the new four classes. The added flexibility

gained by combining linear models does not come with a drastic increase in variance.

Figure 1.1: XOR dataset.

Several successful case studies employing class decomposition in conjunction with

linear classifiers can be found in the literature [30, 31, 9, 29]. Despite promising re-

sults, there is a large number of classification problems where a combination of linear

classifiers through class decomposition comes unwarranted. For example, Figure 1.2

depicts two distributions where a combination of linear classifiers does not bring an

advantage over a single linear classifier. Both distributions are two-dimensional and

have two classes. The data distribution shown in Figure 1.2(a) is linearly separable;

2

although one class (class “x”) can be divided into two sub-classes, a single linear

classifier suffices to separate both classes. Figure 1.2(b) shows the case where high

Bayes error (i.e., high class overlap) obviates any type of class decomposition.

(a) (b)

Figure 1.2: Data distributions not suitable for class decomposition. (a) Data is

linearly separable. (b) Classes overlap significantly, i.e., data exhibits high Bayes

error.

Given the potential use of class decomposition in scenarios where linear classifiers

have proved effective (e.g., text mining, bioinformatics applications, etc.), but where

data abounds, it is important to avoid the extra computational cost incurred by the

pre-processing (i.e., clustering) step, especially when the problem is not a good fit

for class decomposition. Moreover, among problems that do indeed need the pre-

processing step, it would be desirable to automatically select the classes that need

such decomposition, instead of blindly applying the step to all classes.

3

Two important questions are as follows: (1) when is a distribution suitable for

class decomposition? (i.e., when does the combination of linear classifiers produced

by class decomposition outperform a single global linear classifier?); and (2) if a data

distribution is suitable for class decomposition, which classes should be decomposed?

This dissertation attempts to answer the questions above by extracting data

characteristics from samples by means of data complexity measures; we wish to un-

derstand the conditions for success or failure during class decomposition (when used

in conjunction with linear classifiers). Specifically, we address the limitations of a

combination of linear classifiers obtained by means of class decomposition that re-

veal two data properties: 1) linear separability between classes; and 2) high overlap

between classes.

1.1 Contributions

In general, this dissertation contributes to increasing the understanding of the ap-

plicability of linear class decomposition in order to provide systematic user guidance

on model selection. Specifically, this dissertation contains the three following contri-

butions:

1. A WEKA-based framework that allows performing empirical model selection

analysis for class decomposition in conjunction with any algorithm available in

4

WEKA. This framework will be publicly available to any end-user who wishes

to access it.

2. The use of well-known data complexity measures to identify the presence of

data properties in a data sample for the analysis of suitability in the use of

class decomposition in conjunction with linear classifiers.

3. A set of practical rules to determine the suitability of class decomposition in a

data sample.

1.2 Dissertation Outline

This dissertation is organized as follows. Chapter 2 provides the basic technical

background and notation needed to understand the remainder of this dissertation.

Chapter 3 presents a literature review on the use of combination of linear classifiers.

Chapter 4 introduces our WEKA-based framework for class decomposition. Also, it

reports on our experimental analysis and explains our methodology to determine the

suitability of class decomposition. Finally, Chapter 5 contains our conclusions and

future work.

5

Chapter 2

Preliminaries

2.1 Basic Notation in Classification

Statistical learning can be effected in various ways. We may be given a set of obser-

vations with the aim of establishing the existence of clusters in the data. Or we may

know for certain that there are certain number of classes, and the aim is to establish

a rule decision whereby we can classify a new observation into one of the existing

classes. The reliability of the rule decision usually is measured by the proportion

of correct classifications. The former type is known as Unsupervised Learning (or

Clustering), the latter as Supervised Learning [19]. In this work when we use the

term classification, we refer to Supervised Learning.

6

2.1.1 The Classifier Model

Let (A1, A2, ⋅ ⋅ ⋅ , An) be an n-component vector-valued random variable, where each

Ai represents an attribute or feature; the space of all possible attribute vectors is

called the input space X . Let {y1, y2, ⋅ ⋅ ⋅ , yk} be the possible classes, categories, or

states of nature; the space of all possible classes is called the output space Y . A

classifier C receives as input a set of training examples T = {(x, y)}, ∣T ∣ = N , where

x = (a1, a2, ⋅ ⋅ ⋅ , an) is a vector or point of the input space and y is a point of the out-

put space. We assume T consists of independently and identically distributed (i.i.d.)

examples obtained according to a fixed but unknown joint probability distribution in

the input-output space X ×Y (P (x, y)). The outcome of the classifier C is a function

ℎ (or hypothesis) mapping the input space to the output space, ℎ : X → Y . Let

HC (hypothesis class) be the set of possible output function of C and let F denote

the set of all functions from the input space X into the output space Y . Due to the

inherent bias learning of any classifier, we note that HC ⊂ F .

2.1.2 The Loss Function and Risk

In the search for an appropriate function ℎ from the hypothesis class HC , we need

to evaluate the reliability of the output of classifier C. We perform this evaluation

by using a loss function L : Y ×Y → ℛ; that identifies mistakes made by ℎ, that is,

cases where the output of ℎ (predicted value) and the actual value are different. For

7

example in classification, we employ the following 0-1 loss function:

L0−1(ℎ(x), y) =

⎧
⎨
⎩

0 if ℎ(x) = y

1 if ℎ(x) ∕= y

(2.1.1)

Where ℎ(x) is the predicted value and y is the actual value. In order to evaluate

how well hypothesis ℎ would predict in average over any sample drawn from P (x, y),

we define a measure known as expected loss or risk associated with ℎ as follow:

R(ℎ) = E[L(ℎ(x), y)] =

∫
L(ℎ(x), y)dP (x, y) (2.1.2)

2.1.3 Empirical Risk Minimization

In classification problems the learning goal is described by a loss function L and its

associated risk R. This learning goal is to find a hypothesis t∗ (target hypothesis)

from F that has an minimal risk R:

t∗ = argmin
t∈F

R(t) (2.1.3)

Given that a classifier C is restricted to use HC ∈ F , we actually look for:

ℎ∗ = argmin
ℎ∈HC

R(ℎ) (2.1.4)

Due to the fact that P (x, y) is unknown, the risk R(ℎ) cannot be computed.

Therefore, we have to use an approximation to R in order to allow the learning goal

8

to be accomplished. We can approximate R by its empirical counterpart (empirical

risk) based on the training set T :

Remp(ℎ) =
1

N

N∑
i=1

L(ℎ(xi), yi)) (2.1.5)

Now, we replace the unknown true risk R by Remp reformuling our learning goal

to:

ℎ∗ = argmin
ℎ∈HC

Remp(ℎ) (2.1.6)

This reformulation for the learning goal is known as the empirical risk minimiza-

tion (ERM) method.

2.2 Linear Classifiers

Linear classifiers are probably one of the most popular simple algorithms for clas-

sification. Numerous works have shown its usefulness in a broad spectrum of ap-

plications (e.g. document classification [4, 32], biomedical [22], face recognition [5],

chemistry [15], bioinformatics [23], etc). A key aspect of this success is its simplicity

due to the utilization of linear functions to distinguish classes by building decision

surfaces that are linear functions of the input vector x. Consequently, they produce

simple and interpretable models. Moreover, their training have shown to be very

efficient in large-scale data in terms of time [4] and memory space [32].

We define a linear classifier Cl as the learning algorithm that has the following family

9

of functions as hypothesis space HCl
[8, 2]:

ℎ(x) = wTx+ w0 (2.2.1)

For classification purpose, the following indicator function is used over ℎ(x) output:

I(ℎ(x)) =

⎧
⎨
⎩

1 if ℎ(x) ≥ 0

−1 if ℎ(x) < 0

(2.2.2)

In supervised classification, there exists many algorithms for building linear clas-

sifiers, the following three algorithms are among the most popular:

∙ Perceptron. These algorithms are well-known by their ample use in the context

of neural networks. They are the basic component (neuron) on these nets which

is composed of a set of entries (xi) with an associated weight (wi). The entries

and their corresponding weights are linearly combined to obtain a value. This

value is used as input for a threshold function to generate the predicted class

for an example. If the true class is different than the predicted class the weights

are adjusted until the thresholded linear combination of the inputs matches the

true class.

∙ Logistic Regression (LR). From a statistical perspective, these methods model

the conditional probabilities of the class given the data and use these proba-

bilities to classify examples. The idea is to use linear regression for predicting

the outcome of a categorical variable. In order to perform such an analysis

they utilize a logistic function to transform the output to a probability score.

10

In this type of method, the linear model coefficients (w and w0) are usually

estimated using maximum likelihood estimation.

∙ Support Vector Machines (SVMs). This classification algorithm has its origin in

research conducted within the scope of statistical learning theory [27]. The idea

behind this learning mechanism is to transform the input space to a new space

where the classification problem is linearly separable. This procedure is possible

by using non-linear transformations. Although non-linear transformations can

be computationally expensive, SVMs are feasible by using the so-called kernel

trick (i.e., the utilization of a kernel function in a reproducing kernel Hilbert

space to avoid performing explicitly the required data transformation [26]).

SVMs search for a special type of linear model in the transformed space, namely,

the maximum-margin hyperplane. This hyperplane is defined as the hyperplane

that has the largest separation (margin) between the classes. The distance from

this hyperplane to the nearest data point on each class, which are known as

support vectors, is maximum. The importance of these support vectors is that

they are sufficient to define the maximum-margin hyperplane which reduces

the amount of computations to perform. The graph in Figure 2.1 displays an

example of a maximum-margin hyperplane. In this graph there are two sets of

points that belong to either dark or white class. The line that separates these

classes is the maximum-margin hyperplane.The support vectors are enclosed

in circles.

A more detailed explanation of these algorithms can be found in [8, 2].

11

Figure 2.1: Maximum-margin hyperplane.

2.2.1 Linear Support Vector Machines

Linear Support Vector Machines are a special case of SVMs where the employed

kernel is a linear kernel. The solution to the classification problem (Equation 2.2.1)

is reformulated as:

ℎ(x) =
N∑
i=1

®iK(xi,x) (2.2.3)

where {®i} is a set of real parameters, index i runs along the number of training

examples, and K(x1,x2) = (x1 ⋅ x2) is a linear kernel function in a reproducing

kernel Hilbert space [26].

2.3 Clustering

Clustering is a form of unsupervised classification where the goal is to partition a

dataset into data groups based on similarity. This similarity is usually defined as

a measure of proximity in a multidimensional space. A clustering algorithm works

12

by finding data groups whose inter-elements similarity values are large compared

with the similarity values to elements outside of the data groups. The obtained data

groups represent a classification that naturally underlie in the dataset [8, 2]. There

exists a plethora of clustering algorithms which can be grouped as follows:

∙ Partition-based. These algorithms build an user-defined number k of clusters

where each cluster has at least one element and each element belongs exclusively

to a single group. These methods initially select or compute k-representative

elements, then they create k-clusters by assigning each element to its nearest

cluster. This assignation is based on a distance measure between the elements

and the k-representatives. Once all the elements were assigned to a cluster, a

re-estimation of the representative element is performed for each cluster. These

last two steps are iterated until a stopping criterion is met. The most popular

algorithms in this group are k-means, k-medians and k-medoids.

∙ Hierarchical-based. These type of clustering methods create a hierarchy of

clusters based on a tree data decomposition. Each level of the tree is itself a

clustering. Hence, each element belongs to as many clusters as levels have the

tree, but each element belongs to a single cluster per level. The tree can be

build in a either top-down or bottom-up fashion. Top-down method begins with

all points in a single cluster (root node) and repeatedly split the clusters until

all the leaf nodes have only a singleton cluster or another stopping criterion is

met.

∙ Density-based: This clustering utilizes a density measure instead of distance

13

measure where clusters are defined as areas of higher density. The algorithm

works by grouping those elements inside a pre-determined neighbourhood area

having a density value above certain density threshold. DBSCAN and OPTICS

are examples of this kind of clustering.

∙ Model-based. Clustering algorithms in this group assumes that there is a data

distribution model behind the dataset. Therefore, this clustering technique fo-

cus on finding the most likely model from a distribution family (e.g. Gaussian

distributions) to explain the data. Given a fixed number of distributions (one

per cluster) to model the dataset, these algorithms look for the distribution

parameters that fit better to the dataset. This is done by an iterative opti-

mization process that runs until convergence or a stopping criterion is met.

Elements are assigned to the model distribution they most likely belong to. A

popular density-based clustering algorithm is Expectation-Maximization(EM).

2.3.1 K-means

k-means is a partition-clustering algorithm which owes its increasing popularity to

both its simplicity and interpretability. This method is easy to understand and to

implement it. And it is interpretable because this algorithm produces a cluster-

ing with k disjoint clusters which are convex (i.e. clusters which are very roughly

spherical or elliptical), non-empty and non-overlapped. Moreover, k-means may be

computationally faster than other more complex clustering algorithms. In fact, some

clustering algorithm implementations uses k-means for initialization purpose (e.g.

14

EM WEKA implementation) or as a part of them (e.g. Spectral clustering).

k-means works by comprising a group of data points whose inter-point distances

are small compared with the distances to points outside of the cluster. This group of

data points is obtained as follows: i) A set of k-prototypes ci ∈ ℛn, where i = 1, ..., k,

is randomly selected, and in which ci is a prototype associated with the i-th cluster;

ii) data points are assigned to their nearest clusters based on the distances of each

data point to its closest vector ci; and iii) a re-estimation of the k-prototypes ci

is performed based on the minimization of the sum of the squares of the distances

of each data point to its assigned cluster in step (ii). This minimization procedure

obtains the centres of the clusters (i.e. the mean vector ¹i for the data points that

belongs to cluster i) as the new k-prototypes ci. Algorithm 1 displays a typical

pseudocode for k-means algorithm.

Some k-means drawbacks are: i) its need for a pre-determined number of clusters

which can make it difficult to know the most appropriate k value to use; ii) its

dependency on the initialization (i.e. different initial partitions or values can generate

different clusters); and iii) its lack of ability to deal with non-convex clusters.

15

Algorithm 1 k-means algorithm Pseudocode
Input: Dataset T = {x1, x2, ..., xm} where xj ∈ ℛn and j = 1, ...,m, Number of cluster k ≥ 1

Output: Clusters C1, C2, ..., Ck

1: Initialization

2: Select k data points (c1, c2, ..., ck) from T randomly

3: Let Ci ⇐ ∅ where i = 1, ..., k

4: for j = 1 to m do

5: I = argmini∈{1..k} distance(xj , ci)

6: CI ⇐ CI ∪ {xj}
7: end for

8: cℎange = true

9: Main Loop

10: while cℎange do

11: cℎange = false

12: New k-prototypes estimation

13: for i = 1 to k do

14: ci = ComputeMeanV ector(Ci)

15: end for

16: Assignation to clusters based on new k-prototypes

17: for j = 1 to m do

18: I = argmini∈{1..k} distance(xj , ci)

19: if xj ∈ Ci and i ∕= I then

20: cℎange = true

21: Move xj from Ci to CI

22: end if

23: end for

24: end while

25: return C1, C2, ..., Ck

16

2.4 Class Decomposition Algorithm

Class decomposition via clustering is a pre-processing step that has been successfully

used to enhance the performance of linear models [29, 9]. It works by partitioning

each class into clusters, and by relabelling examples comprised by each cluster with

a new class. This decomposition attempts to discover the intrinsic local distribution

of subclasses for each class, which can be seen as an indicator of problem complexity.

Knowledge about problem complexity can then lead to selecting an appropriate clas-

sifier, and has proved to be particularly useful for linear models. In particular, class

decomposition allows increasing the capacity of linear classifiers through a piecewise

model-building approach. Let’s revisit Figure 1.1, where we show a two-dimensional

input space with two classes, and where each class has two subclasses; the subclass

distribution follows the XOR concept. Clearly, a simple linear classifier is inappropri-

ate here. In contrast, the combination of linear models, where each model separates

a subclass from the rest, allows the construction of a more flexible (compound) de-

cision boundary. Class decomposition enable us to cope with distributions where

classes spread over disparate regions of the input space.

The mechanism for class decomposition used in this study comprises the following

steps: 1) separate the training data T into sets of examples of the same class. That

is, T is separated into subsets T = {Tj}, where each Tj comprises all examples in T

labelled with class yj , Tj = {(x, y) ∈ T ∣ y = yj}. 2) for each subset Tj, a clustering

algorithm is applied to find clusters of examples grouped together according to some

distance metric over the input space. Let cji be the set of such clusters. We map

17

Algorithm 2 Algorithm for Class Decomposition using Linear Classifiers
Input: Training dataset T = {(x, y)}, M number of classes, Clustering algorithm CL, Linear Classifier LC, Integer

k ≥ 2

Output: CDℒC: Classifier built by applying class decomposition using linear classifiers to T

1: Class Decomposition

2: Let T ′ ⇐ ∅

3: for j = 1 to M do

4: Let Tj = {(x, y) ∈ T ∣ y = yj}
5: Let cj1, c

j
2, ..., c

j
k be the partition of Tj into k clusters by using CL.

6: Let T ′
j ⇐ ∅

7: for i = 1 to k do

8: for each (x, yj) ∈ cji do

9: Rename yj to (j, i)

10: Let T ′
j ⇐ T ′

j ∪ cji

11: end for

12: end for

13: Let T ′ ⇐ T ′ ∪ T ′
j

14: end for

15: Training

16: Train LC using T ′ and assign the built classifier to CDℒC

each Tj into a new set T ′
j by renaming every class label to indicate not only the class,

but also the cluster for each example. One simple way to do this is by making each

class label a pair (a, b), where the first element represents the original class, and the

second element represents the cluster. In that case, T ′
j = (x, y′j), where y′j = (yj, i)

whenever example x is assigned to cluster cij. Finally each new subset T ′
j is simply

the union of all sets of examples of the same class relabelled according to the cluster

to which each example belongs, T ′ =
∪k

j=1 T
′
j . See Algorithm 2 for a pseudocode

description of class decomposition algorithm.

18

2.5 Data Complexity Measures

Complexity analysis applied to classification has been extensively studied from a

theoretical perspective. Recently, an empirical approach has generated considerable

research interest [14, 1, 24, 13, 17, 20]. Much of this research has employed a set

of measures to characterize data complexity during classification by means of geo-

metrical and topological properties. The idea is to establish a connection between

data characterization and classifier performance. In [14], three data complexity mea-

sures are introduced: (1) class overlap measured according to feature discriminatory

power; (2) class separability measured according to the length and linearity of the

class boundary; and (3) geometry, topology and density of classes, which assume the

problem is composed of several manifolds spanned by each class; the shape, position,

and interconnectedness of these manifolds provide hints on how well the classes are

separated, and on the density or population of each manifold. The complexity of a

task is characterized by these measures. Such characterization provides a quantita-

tive perspective to study the learnability of class boundaries, and is of great relevance

for operational guidance during model selection. When datasets are characterized by

these measures, similar properties are expected to correlate with problems of similar

complexity.

In this paper, we employ data complexity measures to analyze the conditions un-

der which class decomposition via clustering improves predictive performance (using

linear classifiers). We briefly describe the set of complexity measures employed for

19

our experiments.

Training error of a linear classifier (L2). Linear class separability can be es-

timated by computing the training error of a linear classifier. Let g(x) be a linear

classifier, we define L2 as:

L2(T) =
1

N

N∑
i=1

I{g(xi)∕=yi} (2.5.1)

where I{⋅} is an indicator function. A value of zero in L2 indicates the problem is

perfectly linearly separable.

Ratio of average intra/inter class nearest neighbor distance (N2). We

compare the within-class example separation with the example separation across

classes. For each input instance (xi, yi), we compute the following:

DI(xi, yi) = min
(x,y)∈T∣y=yi

dist(xi, x) (2.5.2)

DO(xi, yi) = min
(x,y)∈T∣y ∕=yi

dist(xi, x) (2.5.3)

N2(T) =

N∑
i=1

DI(xi, yi)

N∑
i=1

DO(xi, yi)

(2.5.4)

where dist() is a distance function. Low values for N2 suggest examples of the same

class lie closely in the feature space. High values indicate high dispersion among

examples of the same class.

Leave-one-out error rate of the one-nearest neighbor classifier (N3). We

capture the relative closeness of examples from different classes, by computing the

20

leave-one-out error rate of the one-nearest neighbor classifier (the kNN classifier with

k = 1, or 1NN). Low values point to a large margin.

21

Chapter 3

Literature Review

Recently, there has been growing interest in the utilization of different forms of class

decomposition to employ combination of local linear classifiers for classification. In

this chapter, we review state-of-the-art methods inside this approach.

In class decomposition approach, the goal of data decomposition is to find sub-

classes for the use of a composite classifier. The problem to be addressed is that of

determining the optimal number of subclasses and how these subclasses are obtained.

Cheng et al. [7] proposed a Profile Support Vector Machine (PSVM) which is a lo-

calized approach to Support Vector Machine. The idea is to decompose the training

set into clusters by employing a supervised clustering algorithm which produces bal-

anced class clusters. For each cluster, a local linear SVM model is built. During

testing phase, an example is classified by finding the nearest cluster and invoking

its corresponding local linear SVM model. This work demonstrated its effectiveness

22

on both temporal and spatial data. A similar method to [7] was proposed in Segata

et al. [25]. This method is based on a different decomposition of the training set,

namely, k-nearest neighborhoods. A k-nearest neighborhood, which enclosed the k-

nearest neighbors for a given point, is constructed for each element of the training

set. In order to decrease the number of neighborhoods, a set C of k-nearest neighbor-

hoods covering the whole training set is obtained by a post-processing step. A local

SVM model is built for each element in C. In this work, the local models present a

level of redundancy (i.e., some models share training points) which is tuned by the

parameter k. For a test point, the model centered on the training point which is

the nearest in terms of the neighborhood is used. This work differs from [7] in two

aspects: i) the neighborhood construction, it does not take into account the class

label, consequently, some of the elements of C could contain only points belonging

to one class, and then its corresponding local model is just the majority rule avoid-

ing the training of a SVM; and ii) a local model selection mechanism is introduced

which allows building of local models with higher complexity of linear models. Lo-

cally linear classification by pairwise coupling (LLC-PC) is another method in this

area. This compound method works by decomposing complex classes into linearly

separable subclasses, learning a linear classifier for each pair, and combining these

pairwise classifiers into a single classifier. A study of three different combination

schemas for LLC-PC is introduced in Chen et al. [6]. It also proposed several global

criterion functions for measuring the goodness of subclasses, and presents a super-

vised greedy clustering algorithm to optimize the proposed criterion functions. This

23

work emphasizes the importance of having an appropriate criterion function for clus-

tering when it will be used for LLC-PC while works in [7] and [25] do not optimize

an explicit criterion function for partitioning data. [29], [31], [30], and [9] are similar

in using the concept of class decomposition via clustering as a pre-processing. This

process works by decomposing the classes into sub-classes by clustering as a pre-

processing step. The original dataset is relabeled to consider the new classes, and

then a linear classifier is trained using the relabeled dataset. This increment in the

number of classes allows the use of a combination of linear classifiers at more gran-

ular level. Vilalta et al. [29] proposed the use of class decomposition via clustering

to improve the performance of low-variance classifiers (e.g., linear classifiers). Frad-

kin [9] presented a empirical study on this technique to evaluate the impact of the

number of cluster per class and analyze effects of the training set size on the results

of the class decomposition via clustering. Wu and Chen [31] utilized this method

for dealing with class imbalance problem. They performed the class decomposition

via clustering within each large class to produce sub-classes with relatively balanced

sizes. They also provided a systematic analysis of time and space complexity of this

approach. A different decomposition perspective is presented by Chang et al. [3].

This method uses a decision tree to decompose the dataset. They showed that this

decision tree decomposition based is valuable because it can classify some data points

by its own means and it is efficient in determining the parameter values that maxi-

mize the validation accuracy. This work derived generalization error bound for the

compound classifier which is a missing component in all the aforementioned works.

The works presented in [28] and [33] utilize an ensemble perspective to the class

24

decomposition approach. Verma and Rahman [28] presented a novel cluster-oriented

ensemble classifier. The proposed ensemble classifier is a two layers algorithm. The

first layer contains a set of base classifiers to learn the cluster boundaries, while the

second layer is a fusion classifier used to classify based on the cluster confidences

(first layer output). A key aspect of this work is its use of multi-clustering. Zhou et

al. [33] presented a different ensemble technique for decomposing the classes, namely,

Data-driven Error Correcting Output Coding (DECOC). The idea is based on using

a code matrix to decompose a multi-class problem into multiple binary problems.

25

Chapter 4

An Empirical Study of the

Suitability of Class Decomposition

for Linear Models

4.1 Related Work

Several studies have demonstrated that using linear classifiers and class decompo-

sition via clustering together, can improve predictive accuracy when compared to

the use of a single global linear classifier. In [29], an empirical study of class de-

composition shows a couple of clear successful cases when using linear classifiers. A

similar study reported by [9] elaborates deeper on the effect of the number of clusters

employed during class decomposition, but results are not conclusive to determine if

increasing the number of clusters is beneficial. More recently, [30, 31] successfully

26

applies class decomposition to deal with the class imbalance problem; however, the

analysis lacks insight about data properties that favor the decomposition of a single

majority class to eliminate class imbalance.

A common conclusion among these studies is that class decomposition hardly im-

proves performance when used in conjunction with complex classifiers (e.g. decision

trees, support vector machines with radial basis functions or high order polynomials

as kernels, etc.). Class decomposition is useful to enhance low variance classifiers

exclusively (e.g., naive Bayes, linear classifiers).

Previous work fails to elucidate data properties that favor the utilization of class

decomposition with linear classifiers. Moreover, there are no guidelines pointing to

the classes that seem more favorable for decomposition; in almost all cases, class

decomposition is applied indiscriminately over all classes. In this study we address

these challenges by exploiting information that lies in the data itself, using a set of

well-known data complexity measures.

4.2 Empirical Study

We begin our study by first describing an empirical analysis of the use of class decom-

position in conjunction with linear classifiers using several real-world datasets. We

postpone analysis of the suitability of class decomposition to Section 4.2.5. We de-

scribe a number of experiments to compare the classification performance of several

27

classifiers, including a single global linear classifier, a classifier with high capacity,

and several composite classifiers obtained through different settings during class de-

composition. We also compute data complexity measures (i.e., L2, N2, and N3) to

correlate data properties with classification performance.

4.2.1 Experimental Datasets

In the experiments, we use several datasets from the UCI Machine Learning Database

Repository1. Among them two data sets, Heart-c and Credit-g, are binary classifica-

tion datasets. The Heart-c (the c stands for the Cleveland database) dataset contains

results from real-world heart disease diagnosis where the goal is to distinguish pres-

ence from absence of heart disease in a patient. The Credit-g (the g stands for the

German credit database) dataset is about the information of whether the customer

shows to be a good or bad according to information related to its credit history. The

rest five datasets are multi-classification datasets from different real-world problems

which were tackled by the pattern recognition community. PenDigit, SatImage, Im-

age and Vehicle datasets are from computer vision application domain. The aim for

these datasets is to detect objects or segments in an image using image processing

features (e.g., the SatImage dataset contains the multi-spectral values of pixels in

3×3 neighborhoods in a satellite image). The Vowel dataset is from voice recognition

area. This dataset was designed for the task of speaker independent recognition of

the eleven steady state vowels of British English.

1UCI Repository is available at http://www.ics.uci.edu/mlearn

28

Table 4.1 displays the datasets and their characteristics. As can be seen in this

table, Vehicle, SatImage, PenDigit, and Image datasets contain only numeric at-

tributes; while Vowel, Heart-c and Credit-g datasets use a mixed of nominal and

numeric attributes. The datasets show in Table 4.1 stand as representative examples

of success and failure in the use of class decomposition for linear classifiers based on

results reported in [29, 9, 31, 30]. Vowel, Vehicle, Pendigit, and SatImage datasets are

reported as successful cases. On the contrary, Image, Heart-c and Credit-g datasets

are reported as failed cases.

29

T
ab

le
4.
1:

D
at
as
et
s
an

d
ch
ar
ac
te
ri
st
ic
s

Id
.

D
at
as
et

E
x
am

p
le
s

N
u
m
.
A
tt
ri
b
u
te
s

T
y
p
e
of

A
tt
ri
b
u
te
s

C
la
ss
es

S
u
cc
es
s

R
ep

or
te
d
in

1
V
ow

el
99
0

13
M
ix
ed

11
Y
es

[2
9,

9,
31
]

2
V
eh
ic
le

84
6

18
N
u
m
er
ic

4
Y
es

[2
9,

9]

3
P
en
D
ig
it

10
99
2

16
N
u
m
er
ic

10
Y
es

[9
,
31
]

4
S
at
Im

ag
e

64
35

36
N
u
m
er
ic

6
Y
es

[9
,
31
]

5
Im

ag
e

23
10

19
N
u
m
er
ic

7
N
o

[9
]

6
H
ea
rt
-c

30
3

13
M
ix
ed

2
N
o

[2
9]

7
C
re
d
it
-g

10
00

20
M
ix
ed

2
N
o

[2
9]

30

4.2.2 Experimental Setup

4.2.2.1 Class Decomposition Implementation in Weka

Despite multiple previous work in class decomposition, there is no a publicly avail-

able implementation of this general algorithm. Providing a public and common

implementation may help researchers to create their own use of class decomposition

method and compare their results. In order to fulfill this need, we have developed our

own implementation of class decomposition algorithm inside the well-known WEKA

machine-learning class library [12]. WEKA is a complete experimental framework

amply used by the machine-learning community, therefore the inclusion of the class

decomposition algorithm inside WEKA provides both researchers and practioners

with a working implementation, which they can use in their research. Moreover,

this WEKA-based implementation allows using all the features and funcionalities of

WEKA as data pre-processing and visualization tools, a broad collection of algo-

rithms for feature selection, classification and clustering and several enviroments for

experimentation. We have made our modified WEKA tool (WEKACD) available at

http://www2.cs.uh.edu/˜ocegueda/tools/clsdcomp.htm/.

Figure 4.1(a) shows the location of our class decomposition implementation (Clas-

sificationViaClassDecompClustering) inside WEKA Explorer tool (i.e., Classify tab

- meta folder). In contrast, Figure 4.1(b) displays the graphical user interface (GUI)

of this implementation. In order to use ClassificationViaClassDecompClustering, we

describe the required options to set as follows:

31

∙ classIndices. Range of classes to be used for class decomposition. This is an

useful feature for running class decomposition only for a subset of classes (e.g.,

2,5,7). The default range value is: first-last (This range value implies that class

decomposition will be applied to each class).

∙ classifier: Base classifier to be used for classification after decomposing the

classes. Although our study is limited to linear classifier, our implementation

allows using any available classifier in WEKA. The default classifier is a support

vector machine implementation (SMO).

∙ clusterer: Clustering algorithm to be used for decomposing the classes. The

default clustering algorithm is k-means.

∙ numClustPerClass: Comma-separated list of number of cluster per class (e.g.,

3,2,6). The number of elements in this list must match the number of selected

classes (classIndices option). The elements list will be used according to the

order provided in the classIndices option. For example, if the selected classes

were (2,5,7) and the list was (3,2,6) then class with index 2 is decomposed

using 3 clusters, class with index 5 is decomposed using 2 clusters and class

with index 7 is decomposed using 6 clusters.

The rest of the funcionalities for Figure 4.1(b) work as any classifier inside WEKA

Explorer-Classify framework (see for details [12]). Moreover, ClassificationViaClass-

DecompClustering is available for all the frameworks part of WEKA.

32

(a)

(b)

Figure 4.1: Class Decomposition Algorithm in WEKA: (a) Location in WEKA Ex-

plorer Classify Tab; (b) GUI - Class Decomposition Algorithm;

33

4.2.2.2 The Clustering Algorithm Selection

Three different clustering algorithms have been employed for class decomposition

among the works presented in Section 4.1, namely, Expectation-Maximization (EM)

[18], k-means [8] and x-means[21]. Our aim in selecting a clustering algorithm for

class decomposition is to choose an algorithm that compromises between simplic-

ity and performance to facilitate the analysis of our results. k-means algorithm is

the simplest one among the aforementioned clustering algorithms. In order to ver-

ify that this simplicity does not incur in a high penalty in terms of classification

performance for class decompostion, we run our class decomposition algorithm over

the datasets using the three clustering algorithms implemented in WEKA: i)EM;

ii)SimpleKMeans; and iii) XMeans. We fix both the number of cluster to 2 and the

classifier to be a linear classifier. On each dataset, we report the average of a 10-fold

cross validation.

Table 4.2 displays the results of a classification performance comparison in using

the three different clustering algorithms for class decomposition. The first column

describes the dataset used for our experiments. The second column reports on the

accuracy of the class decomposition using k-means (CD-k). The third column shows

accuracy for the use of EM (CD-EM). The fourth column shows the accuracy of the

utilization of x-means (CD-x). Numbers enclosed in parentheses represent standard

deviations. A significant difference with respect to the linear classifier (SMO) is

shown in bold. Our tests of significance assume a t-student distribution with a 95%

confidence level. NA stands for not applicable.

34

Table 4.2: Classification performance comparison for class decomposition using three

different clustering algorithms.

Dataset CD-k CD-EM CD-x

Vowel 73.03(6.53) 76.57(4.41) NA

Vehicle 72.47(4.14) 72.58(3.76) 71.99(3.71)

PenDigit 99.1(0.23) 99(0.34) 99.15(0.34)

SatImage 86.31(0.92) 85.66(1.13) 87.8(0.54)

Image 91.73(1.78) 91.73(1.42) 91.43(1.67)

Heart-c 80.18(5.84) 83.48(6.58) NA

Credit-g 73(3.68) 74.6(3.53) NA

As can be seen from Table 4.2, there is only one dataset with significant difference

between k-means and x-means, namely, SatImage. Because k-means shows a good

compromise between simplicity and performance, we employ k-means as the clus-

tering algorithm for class decomposition in all our experiments. Moreover, k-means

algorithm deals with both types of attributes (i.e., numeric and mixed), whereas

x-means algorithm only works with numeric datasets.

The success in the use of class decomposition depends on an appropriate selection

of the number of cluster k for decomposing classes. Unfortunately, there is no method

for setting an optimal value a priori, therefore, an empirical evaluation is required

in order to choose an appropriate value for k. This evaluation is limited to a set of

35

values where the value with the highest classification performance is selected. For

our empirical study, we are interested in analyzing classification results in function

of k within a range of values. This range of values is where the classification perfor-

mance changes from an improvement to a loss or vice versa. The idea is to capture

the classification performance behavior along as we move from a lower number of

clusters to a higher number of clusters. Accordingly, an appropriate set of values for

k for our study should contain values for both success and failure conditions.

In order to determine such a set of values for k in our experiments, we run our

class decomposition algorithm for each dataset setting the k parameter to values

from 2 to 15. Figure 4.2 and Figure 4.3 depict the classification accuracies obtained

by the 14 class decomposition evaluations on each of the 7 datasets. As can be seen

from these figures, an appropriate subset of values is the set {2, 3, 4, 6, 10} which

contains in all cases the highest classification accuracy and keeps the graph trends

showing cases for deterioration in performance. For example, in Vowel dataset (see

Figure 4.2(a)) the highest accuracy is achieved by two clusters, and the graph trend

shows that when the number of cluster increases, the classification accuracies de-

creases along with this increment in the number of clusters. On the other hand, in

SatImage dataset the classification accuracies improve along with increments in the

number of clusters up to reach the highest classification accuracy in k = 10 and then

the graph trend remains steady along the rest of value.

In our experiments, we limit the value of k to the set {2, 3, 4, 6, 10} which provides

36

useful information to characterize the behavior of class decomposition in the datasets.

Morevover, this set avoids the extra computational cost incurred by the use of an

unnecessary larger set.

4.2.2.3 The Linear Classifier Algorithm Selection

An important consideration in selecting an appropriate linear classifier for our study

is its stability over the selected datasets. That is, it should be well-behaved in terms

of classification performance avoiding to be the worst classification performance for

any dataset. Among the different linear classifier options, the research work in class

decomposition has focused on three types: i) SVM-based implementations that use

an SVM classifier with a linear kernel as its linear classifier; ii) Logistic-Regression-

based methods which utilize a ridge logistic regression model for the linear classifier;

and iii) Bayesian-based approach that uses a Bayesian logistic regression model as

its linear classifier. In order to select a linear classifier for our experiments, we run

our class decomposition algorithm on each dataset using a 10-fold cross validation.

We utilize three implementations present in weka of linear classifiers (one for each

type): i) SMO; ii) SimpleLogistic (LR); and iii) Bayesian Logistic Regression (BLR).

We employ the set of values {2, 3, 4, 6, 10} for k and use the default settings for

the classifiers. We also include the classification performance of the base classifier

without class decomposition for analysis purposes by means of k = 1. In order to

make feasible the utilization of LR algorithm for PenDigit and SatImage, we employ

a stratified sample of 10%.

37

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(a)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(b)

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(c)

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(d)

Figure 4.2: Classification performance for class decomposition using k-means (k takes

values from 2 to 15) : (a) Vowel dataset; (b) Vehicle dataset; (c) PenDigit dataset;

and, (d) SatImage dataset.

38

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(a)

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(b)

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

(c)

Figure 4.3: Classification performance for class decomposition using k-means (k

takes values from 2 to 15) : (a) Image dataset; (b) Heart-c dataset; and, (c) Credit-g

dataset.

39

Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 show classification accuracy

comparison using the three different linear classifiers as base classifiers for each

dataset. LR* in graphs (Figure 4.5(a) and Figure 4.5(b)) means that this algo-

rithm was evaluated using a sample of 10% for those datasets. We observe from

these graphs that the classifier (BLR) usually leads to the worst performance in all

cases. Moreover, the use of class decomposition does not help improving enough to

be competitive against the other two classifiers. Whereas SMO and LR classifiers

compete against each other in getting the best performance in all datasets. SMO

classifier does better than LR in PenDigit and SatImage datasets, while performing

worse in Vowel and Vehicle datasets. For Image, Heart-c, and Credit-g datasets,

both algorithms LR and SMO show similar performance behavior. Although SMO

and LR give comparable results in almost all cases, it should, however, be noted that

LR is a more computationally demanding algorithm. Given these observations, we

opt for using SMO as base classifier in our study. This selection is supported by its

stability over the selected datasets.

4.2.3 Evaluation of Classification Performance

We report on a series of experiments to identify datasets suitable for class decomposi-

tion. We evaluate predictive accuracy for each dataset using the following classifiers:

i) a single global linear classifier using Support Vector Machines with a linear kernel

(SMO); ii) five composite linear classifiers generated by the use of class decomposi-

tion with k = 2, 3, 4, 6, 10 (CD2, CD3, CD4, CD6, and CD10 respectively); and iii)

a high-capacity classifier using kNN with k = 1 (1NN). On each dataset, we report

40

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR

BLR

(a)

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR

BLR

(b)

Figure 4.4: Classification performance for class decomposition using three different

linear classifiers (k takes values 2,3,4,6 and 10) : (a) Vowel dataset and (b) Vehicle

dataset.
41

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR *

BLR

(a)

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR *

BLR

(b)

Figure 4.5: Classification performance for class decomposition using three differ-

ent linear classifiers (k takes values 2,3,4,6 and 10) : (a) PenDigit dataset and (b)

SatImage dataset.
42

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR

BLR

(a)

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR

BLR

(b)

Figure 4.6: Classification performance for class decomposition using three different

linear classifiers (k takes values 2,3,4,6 and 10) : (a) Image dataset and (b) Heart-c

dataset.
43

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11

Number of Clusters per Class (k)

C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

SMO

LR

BLR

Figure 4.7: Classification performance for class decomposition using three different

linear classifiers(k takes values 2,3,4,6 and 10) : Credit-g dataset.

44

the average of a 10-fold cross validation.

Table 4.3 displays our results. The first column describes the dataset used for

our experiments. The second column reports on the accuracy of the linear classifier

(SMO). The third to seventh columns show accuracy for the composite classifiers

(CD2, CD3, CD4, CD6, and CD10). The eight column shows the accuracy of the

high-capacity classifier (1NN). Numbers enclosed in parentheses represent standard

deviations. A significant difference with respect to the linear classifier (SMO) is

shown in bold. Our tests of significance assume a t-student distribution with a 95%

confidence level.

45

T
ab

le
4.
3:

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Id
.

S
M

O
C
D
2

C
D
3

C
D
4

C
D
6

C
D
1
0

N
N

1
71

.4
1
(2
.9
8)

73
.0
3
(6
.5
3
)

6
6
.2
6
(4
.2
9
)

6
1
.6
2
(2
.8
6
)

5
4
.6
5
(3
.6
7
)

4
2
.8
3
(7
.3
6
)

9
9
.2
9
(0

.8
3
)

2
74

.3
6
(5
.4
8)

72
.4
7
(4
.1
4
)

7
2
.7
1
(3
.5
0
)

7
1
.7
6
(3
.1
8
)

6
7
.7
4
(6
.2
7
)

6
1
.9
5
(5
.3
0
)

6
9
.8
6
(4
.4
7
)

3
97

.9
6
(0
.3
6)

9
9
.1
0
(0

.2
3
)

9
9
.1
8
(0

.2
4
)

9
9
.2
2
(0

.3
2
)

9
9
.2
0
(0

.3
1
)

9
9
.2
4
(0

.3
2
)

9
9
.3
6
(0

.1
7
)

4
86

.8
5
(0
.6
2)

86
.3
1
(0
.9
2
)

8
7
.1
2
(0
.7
4
)

8
8
.0
0
(1
.0
0
)

8
8
.8
6
(0

.9
8
)

8
9
.4
8
(0

.9
3
)

9
0
.2
1
(1

.1
6
)

5
93

.0
7
(1
.6
6)

91
.7
3
(1
.7
8
)

9
3
.2
5
(0
.9
8
)

9
3
.4
6
(1
.0
5
)

9
3
.2
0
(1
.1
9
)

9
2
.4
7
(1
.2
9
)

9
7
.1
4
(0

.6
2
)

6
83

.8
0
(6
.8
0)

80
.1
8
(5
.8
4
)

8
2
.1
6
(5
.3
0
)

8
1
.4
7
(8
.2
4
)

7
9
.8
5
(8
.9
5
)

7
7
.5
5
(7
.1
2
)

7
5
.8
8
(5
.0
6
)

7
75

.1
0
(3
.4
5)

73
.0
0
(3
.6
8
)

7
0
.9
0
(3
.4
8
)

7
1
.3
0
(3
.9
5
)

7
1
.1
0
(5
.0
4
)

7
2
.3
0
(4
.6
0
)

7
2
.0
0
(3
.0
9
)

46

Our results show only two datasets suitable for class decomposition, namely,

PenDigit and SatImage. In these cases, class decomposition shows a significant gain

in performance with respect to the linear classifier. For the PenDigit dataset, class

decomposition using k = 2 is sufficient to achieve a significant gain. For the SatIm-

age dataset, a significant improvement is obtained using k = 6. No performance

improvement is observed in all other datasets. The high-capacity classifier (1NN)

significantly outperforms the linear classifier (SMO) on 4 datasets, namely, Vowel,

PenDigit, SatImage and Image. We observe that in the two datasets where 1NN out-

performs SMO but CD does not (i.e., Vowel and Image), there is an inflection point

(k∗) in the k value (i.e., maximum performance). k values greater than k∗ showed

a decrease in performance. For the Vowel dataset k∗ = 2 and for the Image dataset

k∗ = 4. This result may seem counter-intuitive, because the greater the k, the more

similar the behavior of the composite classifier to 1NN. That is, if 1NN is able to

outperform the linear classifier, then we would expect that increasing k during class

decomposition would produce a corresponding increase in performance. Finally, we

observe that in two datasets (Heart-c and Credit-g), neither class decomposition nor

1NN outperforms the linear classifier.The loss in classification performance between

SMO and 1NN serves as an indicator of data properties that lead to failure in the

use of class decomposition.

4.2.4 Evaluation of Data Complexity Measures

Our experiments aim at identifying the presence of two data properties: linear sepa-

rability and class overlap. Complexity measures are obtained through two steps: i)

47

transformation of a multi-class classification problem into a set of 2-class classifica-

tion problems (pairwise coupling). If there are k-classes, we build k×(k−1)
2

two-class

datasets. ii) computation of data complexity measures for each two-class problem

generated in step (i); we compute L2, N3, and N2 described in Section 2.5, and an

estimation of the difference in classification performance between a linear classifier

(SMO) and a higher complexity classifier (NN),computed as L2−N3.

Table 4.4 displays our estimations. The first column describes the dataset used

for our experiments. The next columns (2-5) report on average values for L2, N3,

L2−N3, and N2. The sixth column captures the presence of linear separability; if

L2 = 0 then Yes, otherwise No. The seventh column indicates low or high presence

of class overlap; if N2 <= 0.5 then Low, otherwise High. The eighth column (CD)

is marked as (+) if there is presence of both non-linear separability and low overlap,

otherwise it is marked as (−). The (+) mark suggests the use of class decomposition.

4.2.5 Data Complexity Analysis on the Suitability of Class

Decomposition

We now analyze the suitability of class decomposition under linear classifiers, using

the results from our empirical study (see Section 4.2).

48

Table 4.4: Averages on data complexity measures (per dataset)

Dataset L2 N3 L2-N3 N2 LS Overlap CD

Vowel 0.1021 0.0000 0.1021 0.2070 No Low +

Vehicle 0.2423 0.1208 0.1215 0.5760 No High −
PenDigit 0.0086 0.0011 0.0075 0.2141 No Low +

SatImage 0.0410 0.0217 0.0193 0.3839 No Low +

Image 0.0229 0.0067 0.0162 0.1773 No Low +

Heart-c 0.1820 0.2570 -0.0750 0.7570 No High −
Credit-g 0.2970 0.3390 -0.0420 0.8690 No High −

4.2.5.1 Dataset Suitability

We focus first on dataset properties, and introduce a set of relevant definitions for

our analysis. Let T be a data sample (T ⊂ X × Y), let M(T) be the optimal

(along parameter k) compound model that arises from using class decomposition

in conjunction with linear classifiers in T , and let L(T) be a single linear classifier

obtained from T .

Definition 4.2.1 T is class decomposable, if R(M(T)) < R(L(T)) where R(⋅) is the
risk or generalization error of a classifier.

Definition 4.2.2 T is linearly separable, if L2(T) = 0.

49

We start our analysis through a concrete example. Let us denote the sample

shown in Figure 1.2(a) as Tl; it is clearly linearly separable2 (i.e., L2(L(Tl)) = 0),

but it is not class decomposable (i.e., R(M(Tl)) ≥ R(L(Tl))). In general, we should

avoid the use of class decomposition for linearly separable classification problems

because there is no guarantee of classification improvement.

We now turn to another concrete example where the data sample is not linearly

separable. Let us represent as Tl the sample shown in Figure 1.1. Here L2(Tl) > 0),

but the sample is class decomposable (i.e., R(M(Tl)) < R(L(Tl))). We observe in

Figure 1.1, that the data is separable, meaning Bayes error is negligible. This fact

allows us to gain insight about the conditions for success in the use of class decom-

position. Specifically, when a sample is not linearly separable, but it is separable

through increased model capacity, then the use of class decomposition is beneficial.

Following the analysis above, we now look into class separability without the

restriction for linearity. We make use of the Nearest Neighbor(NN) algorithm, par-

ticularly, data complexity measure N3. We introduce the following definition:

Definition 4.2.3 T is said to be separable, if N3(T) = 0.

We can now state that Tl is not linearly separable (i.e., L2(Tl) > 0) but it

is separable (i.e., N3(Tl) = 0); and as expected Tl is class decomposable (i.e.,

2We note that our definition for linear separability is limited to T ; the training error is frequently
an optimistic approximation to the true error.

50

R(M(Tl)) < R(L(Tl))).

The example above enables us to move forward to the general case where L2(T) >

0 and N3(T) > 0. We stated that when a sample is not linearly separable, but Bayes

error is negligible, an opportunity exists for improvement using class decomposition.

We argue such scenario can be captured by looking at a positive difference in the

classification performance between a linear classifier and a high-capacity classifier.

We make the following definition:

Definition 4.2.4 The complexity error gap when using class decomposition in T is

E(T) := L2(T)- N3(T).

In our definition, we take the performance of a nearest neighbor algorithm (1NN)

as an approximation to the classifier with best case performance using class decom-

position. The rationale behind this is to establish an optimistic upper bound in

performance improvement.

We now introduce the definition of reducible error, to understand when to expect

a performance gain using class decomposition.

Definition 4.2.5 T is said to have a reducible error, if E(T) > 0.

The definition enables us to understand the advantage that comes when generat-

ing a combination of linear classifiers through class decomposition. Specifically, linear

51

classifiers exhibit high bias and low variance, and as such are less affected by noisy

data, i.e., they are stable. If the error difference between a linear classifier and 1NN

is negative, then the likelihood of noisy data increases, producing an irrecoverable

error for 1NN. Class decomposition is not appropriate here. As an illustration, Fig-

ure 1.2(b) shows a two-dimensional sample characterized by a high degree of overlap

between the two classes. Class decomposition does not result in any improvement

because of high Bayes error. To avoid the use of class decomposition in this type of

scenario, we will say that T has low class overlap, if N2(T) < °, where 0 < ° < 1

will be a user-defined constant.

We are now ready to define data properties favorable for class decomposition.

Previous work [29, 9, 31] suggests the presence of a heterogeneous class distribution

(i.e., a distribution where sub-classes are widely spread over the feature space) as

a condition for the success in the use of class decomposition. Previous work fails

to detect the presence of this condition in a sample. We propose a simple and

measurable condition to identify the success of class decomposition by verifying the

presence of two data properties: i) there is a positive difference between the error

of a linear classifier and the error of a high-capacity classifier (i.e., there is room for

improvement when we increase model complexity by means of class decomposition);

and ii) class overlap or Bayes error is minimal. We formalize these conditions with

the following proposition:

Proposition 4.2.1 A data sample T is class decomposable if T meets the following

two conditions:

52

(i) T has reducible error.

(ii) T has low class overlap.

We now return to our empirical study to validate our proposition. The eighth

column (CD) in Table 4.4 marks as (+) those samples that are class decomposable,

and as (-) otherwise. Vowel, PenDigit, SatImage, and Image datasets are marked as

(+); these datasets are characterized by having both a reducible error and low class

overlap (° was set to 0.5). Under these two data conditions, class decomposition

showed to be beneficial when compared to a single linear classifier, as shown in Ta-

ble 4.3. We note that only in two datasets (PenDigit and SatImage) is this difference

significant. Samples marked as (-) are rejected for various reasons. Vehicle dataset

is rejected because N2 > 0.5, regardless of the difference in L2 − N3. For Heart-c

and Credit-g datasets, the difference L2−N3 is indeed negative.

Results show the value of Proposition 4.2.1 for the successful use of class decom-

position. Specifically, when omitting significant differences, sensitivity and specificity

are 100% for (+) and (-) classes; under significant differences, sensitivity is 100% for

class (+) but there is a decrease in the specificity for class (-) to 60%. From a prac-

tical standpoint, Proposition 4.2.1 can be employed to identify the cases where no

decomposition is recommended. For cases when it is recommended, an additional

analysis can be effected to improve in computational efficiency as described next.

53

4.2.5.2 Class Suitability

In this section we deepen our analysis by looking at learning performance on in-

dividual classes. Our methodology follows the next steps: i) for each class Ci, we

define a new set of subproblems, one for every pairwise coupling of Ci and all other

classes; subproblems are stored under the set SCi
; ii) compute averages for L2, N3,

L2 − N3, and N2 in SCi
; iii) for each sub-problem in SCi

, create the correspond-

ing k-decomposition via clustering using the following values for k = 2, 3, 4, 6, 10,

and evaluate predictive accuracy for a single global linear classifier and a compos-

ite linear classifier generated through class decomposition (with k clusters per class).

For each sub-problem, report on accuracy estimated through 10-fold cross validation.

Table 4.5 displays results for the Vowel dataset (a dataset reported as a successful

case for decomposition in two previous reports [29, 9]). The first column describes

the class under analysis. The 2nd-5th columns report on the average value of L2, N3,

L2−N3, and N2 respectively. The sixth column reports on the accuracy of the linear

classifier (SMO). The seventh column reports on the accuracy for the best composite

classifier obtained among the different values of k using class decomposition (CD*).

The eighth column reports the difference in accuracy between (SMO) and (CD*).

The ninth column shows the number of clusters employed by the best linear composite

classifier.

54

T
ab

le
4.
5:

D
at
a
co
m
p
le
x
it
y
m
ea
su
re
s
an

d
p
er
fo
rm

an
ce

p
er

cl
as
s
(V

ow
el

d
at
as
et
)

Id
(C

la
ss

N
a
m
e
)

L
2

N
3

L
2
-N

3
N
2

S
M

O
C
D
*

D
iff
.

#
C
ls
.

1
(h
id
)

0.
09
79

0.
00
00

0.
09
79

0.
15
48

98
.5
0

99
.5
6

1.
06

2

2
(h
Id
)

0.
12
74

0.
00
00

0.
12
74

0.
19
68

95
.2
2

98
.6
1

3.
39

3

3
(h
E
d
)

0.
10
02

0.
00
00

0.
10
02

0.
20
00

97
.0
0

99
.3
3

2.
33

3

4
(h
A
d
)

0.
08
37

0.
00
06

0.
08
31

0.
19
14

98
.2
8

99
.3
9

1.
11

2

5
(h
Y
d
)

0.
09
39

0.
00
06

0.
09
33

0.
21
39

96
.5
0

96
.7
8

0.
28

2

6
(h
ad

)
0.
14
88

0.
00
18

0.
14
70

0.
24
27

93
.2
2

96
.3
9

3.
17

2

7
(h
O
d
)

0.
13
31

0.
00
06

0.
13
25

0.
21
77

96
.3
9

98
.7
2

2.
33

2

8
(h
o
d
)

0.
06
12

0.
00
06

0.
06
06

0.
19
46

97
.9
5

98
.5
6

0.
61

3

9
(h
U
d
)

0.
09
45

0.
00
00

0.
09
45

0.
25
73

95
.8
3

97
.3
9

1.
56

2

10
(h
u
d
)

0.
06
88

0.
00
00

0.
06
88

0.
19
08

98
.4
4

99
.0
0

0.
56

3

11
(h
ed
)

0.
11
45

0.
00
06

0.
11
39

0.
21
68

96
.7
8

99
.0
0

2.
22

2

55

If for each class in Table 4.5 we apply Proposition 4.2.1 to predict the suitability

of class decomposition, we would observe all classes labeled as (+) (i.e., all sub-

problems are suitable for class decomposition). The eighth column shows a positive

value on every class. This type of analysis can be employed to select just a sub-set of

classes for decomposition. We can, for example, sort all sub-problems in descending

order based on the value of the eighth column (i.e., the difference in performance be-

tween SMO and CD*), and iteratively add classes until we reach an inflection point.

Specifically, we begin by decomposing the class with highest performance difference

(8th column, Table 4.5), and keep adding more classes (in decreasing order, 8th col-

umn) until all classes are included.

Figure 4.8(a) shows accuracy when incorporating this iterative approach. As a

reference, we also show performance for both the single linear classifier (SMO) and

the best class decomposition classifier (CD*). As can be seen in Table 4.5, class 2

corresponds to the highest performance difference. In principle, we could decompose

this class only and still achieve good results (Figure 4.8(a)). In summary, a simple

analysis can show a reduced number of classes in true need for decomposition.

In order to verify that these results are consistent with our previous analysis, we

report on the same type experiment for the PenDigit Dataset. Results are given in

Table 4.6 and Figure 4.8(b). We observe in Figure 4.8(b), that the maximum per-

formance value is reached using only 6 classes, namely, 1, 2, 6, 8, 9, 10. This analysis

saves on the computational cost of decomposing four additional classes.

56

60

65

70

75

80

1 2 3 4 5 6 7 8 9 10 11

Num. Added Classes

(%
)
C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y

CD-CLS

SMO

CD*

(a)

97

98

99

100

1 2 3 4 5 6 7 8 9 10

Num. Added Classes

(%
)
C
la
s
s
if
ic
a
ti
o
n
 A
c
c
u
ra
c
y

CD-CLS

SMO

CD*

(b)

Figure 4.8: Cumulative classwise classification performance for: (a) Vowel Dataset;

(b) PenDigit Dataset.

57

T
ab

le
4.
6:

D
at
a
co
m
p
le
x
it
y
m
ea
su
re
s
an

d
p
er
fo
rm

an
ce

p
er

cl
as
s
(P

en
D
ig
it
d
at
as
et
)

Id
(C

la
ss

N
a
m
e
)

L
2

N
3

L
2
-N

3
N
2

S
M

O
C
D
*

D
iff
.

#
C
ls
.

1
(0
)

0.
00
86

0.
00
08

0.
00
78

0.
16
81

99
.4
8

99
.9
3

0.
45

6

2
(1
)

0.
02
10

0.
00
15

0.
01
95

0.
22
32

99
.4
9

99
.7
8

0.
28

6

3
(2
)

0.
00
66

0.
00
17

0.
00
49

0.
22
49

99
.8
2

99
.8
9

0.
07

6

4
(3
)

0.
00
45

0.
00
20

0.
00
25

0.
23
68

99
.7
2

99
.7
8

0.
06

10

5
(4
)

0.
00
31

0.
00
05

0.
00
26

0.
21
44

99
.8
9

99
.9
5

0.
06

3

6
(5
)

0.
01
46

0.
00
08

0.
01
38

0.
20
90

99
.3
3

99
.8
8

0.
55

10

7
(6
)

0.
00
10

0.
00
06

0.
00
05

0.
20
47

99
.9
5

99
.9
6

0.
02

6

8
(7
)

0.
00
71

0.
00
13

0.
00
58

0.
22
26

99
.7
4

99
.8
9

0.
15

3

9
(8
)

0.
01
05

0.
00
05

0.
01
00

0.
21
61

99
.3
6

99
.9
5

0.
60

6

10
(9
)

0.
00
91

0.
00
11

0.
00
79

0.
22
09

99
.6
8

99
.8
2

0.
14

10

58

Chapter 5

Summary, Conclusions, and Future

work

5.1 Summary

A central aim in machine learning and data mining is to facilitate the use of learning

algorithms to a vast comunity of practioners and researchers. This goal is achieved

when both tools and guidelines are available for end-users. The major original con-

tribution of this thesis is to facilitate the use of the class decomposition algorithm

providing practioners with both an implementation and guidelines of the conditions

for the suitability of this algorithm. The implementation is strongly supported by

the fact of being part of a widely used and consolidated experimental framework

(WEKA), while the guidelines were conceived as a set of practical rules.

59

5.2 Conclusions

In this dissertation, we describe a study aimed at understanding under what con-

ditions a data sample is suitable for class decomposition (using linear classifiers).

We focus our methodology in the identification of two data properties: 1) linear

separability using L2 and N3 measures; and 2) class overlap using N2 measure.

Our analysis is based on experiments performed on seven real-world domains; results

support the following conclusions:

1. if the classification problem is linearly separable (L2 = 0), then class decom-

position should be avoided;

2. if the classification problem is not linearly separable (L2 > 0), and a high-

capacity model is able to separate the classes (N3 = 0), then this sample is

suitable for class decomposition;

3. if the classification problem is not linearly separable (L2 > 0) and a high-

capacity model is not able to separate the classes (N3 > 0), then we propose

using the difference L2−N3 as an indicator for the use of class decomposition.

If L2 − N3 <= 0 then class decomposition should be avoided because there

is no room for performance improvement. If L2 − N3 > 0 the use of class

decomposition can be effected when such a difference is above an user-defined

threshold value (defined by °).

4. If there is high overlap between classes (i.e., N2 is above a threshold), then class

60

decomposition should be avoided because there is no guarantee for improve-

ment. In addition, the proposed method can be applied at a more granular

level to identify those classes specifically suitable for decomposition. This last

method adds in computational efficiency by avoiding class decomposition when

unnecessary.

5.3 Future Work

Our research exhibits the following limitations:

1. The use of a nearest neighbor algorithm carries high computational cost.

2. The threshold values are chosen empirically.

3. There is a lack of a time-consuming analysis for the used data complexity

measures.

These limitations suggests a number of possible directions for future work that

builds on our work:

1. To use an approximation to N3 with a lower computational cost, by computing

the fraction of examples lying along the class boundary by means of a minimum

spanning tree.

2. To perform a similar analysis of N2 as in [24] to set the N2 threshold according

to the dimensionality and the type of attributes (e.g., nominal, numeric or

mixed).

61

3. To elaborate a study about the computational cost for the data complexity

measures employed in our method.

4. To perform a similar empirical study including feature selection.

5. To develop a parallel implementation for improving the computational cost of

computing the data complexity measures.

62

Bibliography

[1] Mitra Basu and Tin Kam Ho, editors. Data Complexity in Pattern Recognition.
Springer-Verlag, London, 2006.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
1st edition, 2006.

[3] Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, and Chi-Jen Lu. Tree Decompo-
sition for Large-Scale SVM Problems. Journal of Machine Learning Research,
99:2935–2972, Oct 2010.

[4] Kai-Wei Chang and Dan Roth. Selective block minimization for faster conver-
gence of limited memory large-scale linear models. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, August 21-24, 2011, pages 749–754, 2011.

[5] Nitesh V. Chawla and Kevin W. Bowyer. Designing multiple classifier systems
for face recognition. In Proceedings of the 6th International Conference on Mul-
tiple Classifier Systems, Seaside, CA, USA, June 13-15, 2005,, pages 407–416,
2005.

[6] Feng Chen, Chang-Tien Lu, and Arnold P. Boedihardjo. On locally linear clas-
sification by pairwise coupling. In Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM), December 15-19, 2008, Pisa, Italy, pages
749–754, 2008.

[7] Haibin Cheng, Pang-Ning Tan, and Rong Jin. Efficient algorithm for localized
support vector machine. IEEE Trans. Knowl. Data Eng., 22(4):537–549, 2010.

[8] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley New York, 2nd edition, 2001.

63

[9] Dmitriy Fradkin. Clustering inside classes improves performance of linear clas-
sifiers. In Proceedings of the 20th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), November 3-5, 2008, Dayton, Ohio, USA, vol-
ume 2, pages 439–442. IEEE Computer Society, 2008.

[10] Zhouyu Fu, Antonio Robles-Kelly, and Jun Zhou. Mixing linear svms for non-
linear classification. IEEE Transactions On Neural Networks, 21:1963–1975,
December 2010.

[11] Kun Gai and Changshui Zhang. Learning discriminative piecewise linear models
with boundary points. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence (AAAI), Atlanta, Georgia, USA, July 11-15, 2010,
pages 444–450, 2010.

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD
Explor. Newsl., 11(1):10–18, 2009.

[13] Tin Ho. Data complexity analysis: Linkage between context and solution in clas-
sification. In Niels da Vitoria Lobo, Takis Kasparis, Fabio Roli, James Kwok,
Michael Georgiopoulos, Georgios Anagnostopoulos, and Marco Loog, editors,
Structural, Syntactic, and Statistical Pattern Recognition, volume 5342 of Lec-
ture Notes in Computer Science, pages 986–995. Springer Berlin / Heidelberg,
2008.

[14] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification
problems. IEEE Trans. Pattern Anal. Mach. Intell., 24(3):289–300, 2002.

[15] Hong-Dong Li, Yizeng Liang, and Qing-Song Xu. Support vector machines and
its applications in chemistry. Chemometrics and Intelligent Laboratory Systems,
95(2):188–198, february 2009.

[16] Yujian Li, Bo Liu, Xinwu Yang, Yaozong Fu, and Houjun Li. Multiconlitron:
A general piecewise linear classifier. IEEE Transactions on Neural Networks,
22(2):276–289, 2011.

[17] Julian Luengo and Francisco Herrera. Domains of competence of fuzzy rule
based classification systems with data complexity measures: A case of study
using a fuzzy hybrid genetic based machine learning method. Fuzzy Sets and
Systems, 161(1):3–19, 2010.

64

[18] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions (Wiley Series in Probability and Statistics). Wiley-Interscience, 2nd
edition, March 2008.

[19] Donald Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, editors.
Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper
Saddle River, NJ, USA, 1994.

[20] Yusuke Nojima, Shinya Nishikawa, and Hisao Ishibuchi. A meta-fuzzy classifier
for specifying appropriate fuzzy partitions by genetic fuzzy rule selection with
data complexity measures. In Proceedings of the IEEE International Conference
on Fuzzy Systems (FUZZ), pages 264 –271, june 2011.

[21] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with effi-
cient estimation of the number of clusters. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00, pages 727–734, 2000.

[22] Erinija Pranckeviciene, Richard Baumgartner, and Ray L. Somorjai. Using
domain knowledge in the random subspace method: Application to the classifi-
cation of biomedical spectra. In Proceedings of the 6th International Conference
on Multiple Classifier Systems, Seaside, CA, USA, June 13-15, 2005,, pages
962–971, 2005.

[23] Franck Rapaport, Emmanuel Barillot, and Jean P. Vert. Classification of array-
cgh data using fused svm. Bioinformatics, 24(13):i375–i382, july 2008.

[24] Jose S. Sanchez, Ramon A. Mollineda, and Jose M. Sotoca. An analysis of how
training data complexity affects the nearest neighbor classifiers. Pattern Anal.
Appl., 10:189–201, July 2007.

[25] Nicola Segata and Enrico Blanzieri. Fast and scalable local kernel machines. J.
Mach. Learn. Res., 99:1883–1926, August 2010.

[26] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[27] Vladimir N. Vapnik. The Nature of Statistical Learning Theory (Information
Science and Statistics). Springer, 1999.

[28] Brijesh Verma and Ashfaqur Rahman. Cluster-oriented ensemble classifier:
Impact of multicluster characterization on ensemble classifier learning. IEEE
Trans. on Knowl. and Data Eng., 24(4):605–618, April 2012.

65

[29] Ricardo Vilalta, Murali-Krishna Achari, and Christoph F. Eick. Class decompo-
sition via clustering: A new framework for low-variance classifiers. In Proceed-
ings of the 3rd IEEE International Conference on Data Mining (ICDM), 19-22
December 2003, Melbourne, Florida, USA, pages 673–676, 2003.

[30] Junjie Wu. K-means based local decomposition for rare class analysis. In Ad-
vances in K-means Clustering, Springer Theses, pages 125–153. Springer Berlin
Heidelberg, 2012.

[31] Junjie Wu, Hui Xiong, and Jian Chen. Cog: local decomposition for rare class
analysis. Data Mining and Knowledge Discovery, 20(2):191–220, 2010.

[32] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large lin-
ear classification when data cannot fit in memory. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI), Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 2777–2782, 2011.

[33] Jie Zhou, Hanchuan Peng, and Ching Y. Suen. Data-driven decomposition for
multi-class classification. Pattern Recognition, 41(1):67–76, 2008.

66

