A BATCH OPERATING SYSTEM FOR A MICRODATA 1600/30 :

Intercammmnication between processes

A Thesis
presented to
the Faculty of the Department of
Computer Science

University of Houston

o

—
[

[
e In partial fulfillment

of the requirements for the Degree ‘of

Master of Science

By
Jean-Luc Konrat

June, 1975

ACKNCWLEDGEMENTS

I would like to express my gratitude to my friend Xavier Mangin
for his obstinacy, understanding and constant help, which made possible
the design and implementation of a coherent Operating System. Thanks are
extended to Professor J. Rhyne and the department of Camputer Science for

the financial support provided during the time of my studies.

A BATCH OPERATING SYSTEM FOR A MICRODATA 1600/30 :

Intercammunication between processes

A Thesis
presented to

the Faculty of the Department of
Computer Science

University of Houston

In partial fulfillment
of the requirements for the Degree of

Master of Science

By

Jean-Luc Konrat

June, 1975

A BATCH OPERATING SYSTEM FOR A MICRODATA 1600/30 :

Intercammnication between processes

@

Part of the implementation of a general purpose batch Operating
System for a MICRODATA 1600/30 is presented in this thesis. This Operating
System, with a resident of 4K bytes only, works in a minimum configuration
of 16K bytes. It may be used both in a batch configuration, with a spool-
ing system, and in stand-alone configuration. In this thesis, the system
is described in terms of its decomposition into processes ; a general
scheme for intercammunication between processes is presented, and the con-
trol language is viewed as a tool for the description of the processes in
the system. The memory constraints are solved by a: succession of overlays,
and the linkage to the caontext of a user program is dewonstrated.

The description of the rest of the system may be found in the
thesis bf Xavier Mangin [June,1975]. Both theses are needed to get a full

understanding of the Operating System.

TABLE OF CONTENTS

CHAPTER I : INTRODUCTION

Available Hardware/Firmware
Available software

The requirements

Main results

The contents of this thesis

CHAPTER IT : REQUIREMENTS

Extensibility Yequirements
Storage requirements
Con.figuration requirements
Protection requirements
Reliability requirements

Efficiency requirements

CHAPTER ITII : SYSTEM OVERVIEW

Contents
Disk management
Input/Output configurations

The overlay system

Processors available in the system

> W N e

n

12
13
14
16
21
29

CHAPTER IV : DEFINITION OF DATA CHAINS
Processes and contexts
Objects
Structure- of data-chains
Accessing objects
Change of context
Creation of data chains
CHAPTER V : IMPLEMENTATION OF DATA CHAINS
Processes in the system
Implementation of data chains
Objects and obJ:ect types
Accessing objects
Change of context
Creation of data chains
CHAPTER VI : APPROACHES TO THE DESCRIPTION OF THE OPERATING SYSTEM
Description by process
Description by objects
CHAPTER VII : AN EXAMPLE OF CHANGE OF CONTEXT BY LINKING DISCIPLINE
THE SWAPPER PROCESS

The overlay system

The swapper program

31
32
33
35
39
41
43
47
48
49
58
61
67
69

71
72

76
77
81

CHAPTER VIII : GENERAL SCHEME FOR THE EXECUTION OF A PROCESSOR 83

Effects through the processor data chain 84
Effects through the communication area 85
Effects through requests to other processes 91

CHAPTER IX : THE REAI~TIME CLOCK PROCESS AND ERROR INTERRUPT ROUTINES 95

Stack overflow, power fail, power restart 96
Console interrnupt 97
Real-time clock . 97
CHAPTER X : THE MONITOR PROCESS AND THE CONTROL IANGUAGE 100
Functional description 101
Determination of the processor information area] 102
Creation and binding of swapper and processor data chains 104
Allocation of processor data chains 124

Initialization of the cammunication area and arguments for swapperl25

Normal return from processor sequence 126
Buffering and requests upon other processes 127
Error cases and error routines. Abort conditions 130
Syntactical definitions of the control language 137
Error messages 140
Properties of the control language 143

Example of use of the control language 153

CHAPTER XT : THE LINKAGE TO A USER PROGRAM : THE EXECUTE PROCESSOR
General description
Control cards and options
The swapping process
Verifications and protection before user execution
Un protection and verifications after user execution
CHAPTER XII : PROCESSOR EXTENSION AND TATIORING : THE PROC PROCESSOR
Processor definitiéns
The PROC processor
Tailoring a processor
Addition of new processors in the system
The PROC processor defualt data chain
CHAPTER XIIT : CONCLUSIONS
Satisfaction of the requirements
Extensions

APPENDIX : MEMORY MAPS

159
160
162
166
169
171
173
174
175
176 -
179
182
188
189
192
194

CHAPTER I :

INTRODUCTTON

The design of operating systems on minicamputers is generally faced
with the challenge of providing users with the generality of large ope-
rating systems in a limited envirormment. It is generally considered to
be. an.important. task which may require many man-years of work.

Two ‘man-years were spent to design and implement the Operating Sys-
tem described in this thesis. The basic goal was to create a general

purpose batch-oriented operating system.

‘1. AVATIABIE HARDWARE/FIRMWARE

The MICRODATA machine of the Computer Science department of the U~
niversity of Houston, on which the system was implemented, has the fol-
lowing configuration :

(1) A MICRODATA 1600/30 CPU ; the CPU features include variable pre-—
cision instructions, character string manipulation, stack pro—
cessing (256 bytes) with stack overflow interrupt, six opera-
tional registers, a set of 110 different instructions, 8 operand
addressing modes, a variable word length (1, 2, 3, 4 bytes),
I/0 facilities including programmed mode transfer, concurrent
buffered I/0, direct memory access, detection of power fail,
real-time clock.

(21 Two boards with 16K bytes of core each.

(3] The following devices ; |
. a dual disk drive with two disks, each of them camposed of a

fix and of a removable platter.

. a parallel teletype ;

. a card reader ;

. @ line printer ;

. an asynchronous camunication controller ;
. a synchronous cammnication controller ;

. an alterable control memory (2K words) ;

. a magnetic tape controller with a 9 tracks transport.

2. AVATIABLE SOFTWARE

The following software was available at the time of the creation

of the operating system :

(1)

21

A disk -~ Teletype Operating System ; the disk version of TOS
camprises a main program (formerly the TOS operator input
program) and a set of utility programs organized in overlays.
The main program contains a main operator control loop, a disk
roll-in and roll-out routine and a number of routines handling
the console teletype ; the set of utility programs mainly include
a memory dump, a disk dump, a disk protect and wnprotect, a me—
mory and register display and update programs.

A machine language symbolic assembler ; this assembler is a

two pass assembler handling 3 character long labels ; it produ- |
cesalist:ﬁgonateletypeoralineprinter ; the code gene—~

rated is punched on a paper tape ;

3

(3] a relocatable link loader ; the relocatable link loader loads,
links and initiates the execution of relocatable programs pro—

duced by the assembler on a paper tape.

37 THE REQUIRENMENTS™
The first step was to replace the paper tape by the disk as an in-
termediate form of storage. This provisional version was tested during
two semesters by studénts using the MICRODATA machine in a Computer
Science course.
The next step was to develop a true batch operating system. The
following requirements had to be satisfied :
(1} the system should be available in a 16K configuration ; as much
as possible should be actually available to a user program.
(2) A software scheme should be developed to campensate for the lack
of any software or hardware protection.
(3) The system should be extensible, in order to meet the research
needs of the Computer Science departxﬁent.
(4) The system should be available under two different configura-
tions ;
. a batch configuration, to provide standard users with an ef-
ficient and autamated use of the camputer ;
« @ stand-alone configuration, in which a particular user is
able to interact with his program during its execution.
(5] The use of the system should be as s.;[mple as possible in the

standard cases.

4, MAIN RESULTS

The following are felt to be the strong points of the resulting
Operating System :

(1) A very general file system ; both random access and sequential
access files cna be created, and referenced by symbolic names ;
temporary and permanent files can be created ; files are dy-
namically extended by the use of an allocation map in memory ;
several disk operations can be concun_:'renfly performed.

(2) A sound scheme for the handling of contexts and the intercom-
munication between processes ; the control language can be
viewed as a tool by which a user defines the particular con-
text of a processor. |

(3) Simplicity in the stmﬁard usage of the system, by a set of
well chosen default options.

(4) The system holds in 16 K and 12 K are available to a user
program.

In addition to these main features, the following facilities are

provided :

(1) efficient use of the input/output devices in batch configura-
tion, by the implementation of a spooler ;

(2] possibility to dynamically redefine the input/output media of
the system ; inparticular, provision for the execution of por-

tion of control streams stored on the disk file systenm ;

(3] implementation of a reasonable protection of the system against
unintentional destruction by a user program.
No real evaluation of the reliability of the programs is possible,
since, at the time this thesis is submitted, the system has not been put

into use.

5. THE CONTENTS OF THIS THESIS

The operating system was developed in close collaboration with
another student, also working in a master thesis. Only part of the
Operating System is described in the present thesis. In spite of the
fact that a general description of the system is given in chapter III,
it is felt that both theses are needed to understand fully the opera-
ting system. Frequent references to the thesis of my friend Xavier
MANGIN will be found in the following chapters.

The parts of the system specifically described in this thesis include
the following :

(1) the intercammmnication between processes ;

(2) the monitor and the control 1angua§e ;

(3] the linkage to a user program.

Two conflicting factors were faced in the writing of the present
material, specifically that (1) the size of the material had to be kert
within reasonable limits and (2) the thesis should give a sufficient

insight of the system.

The program listings were not kept as part of the thesis, and no
detailed flow-chart was included. However, an internal approach to
the description of the operating system was preferred to a super-
ficial "user manual" approach. This ranark'holds for the description

of the control language as well,

CHAPTER II :

REQUIREMENTS

1. EXTENSIBILITY REQUIREMENTS

The first requirement for the Operating System is that it should be
extensible. This Operating System is not an end product in itself, but
rather a starting point for future research in the Camputer. Science De—
partment. The extensibility requirement is two-fold :

(1) Minor extensions in the Operating System.

This type of extension should be performed without a need for an
extensive knwlédge of the system. It includes the addition of
new processors, adaptation of existing processors to specific uses,
and adaptation of the system to new peripherals. These extensions
should occur at a high frequency, following the needs of the Cam—
puter Science Department.

(2) Major extensions of the Operating System.

This type of extension should occur in the develomment of new soft-
ware. The present Operating System is camposed of independant mo-
dules ; some of the modules may be kept as part of future software
on the Microdata.

2. STORAGE REQUIREMENTS

The Microdata of the Camputer Science Department is a machine with
32K bytes of memory. However, the Operating System is required to fit
in a 16K machine. An extensive use of the disks is thus done. Disk sto-

rage includes two disks, each of them camposed of a fix platter and a rem—

\}

ovable platter, with a capacity of 2.5 million bytes per platter.
The use of the disk must provide the following facilities :
(1) some parts of the disks must be usable out of the context of the
operating system ;
(2) the user must be provided with the possibility of coming with his

own removable platter.

3. OONFIGURATION REQUIREMENTS

The system is to be used by two categories of users : the batch users

and the stand-alone users.

(1) batch users. The system is to be usable by elementary Camputer
Science courses (FORTRAN and Assembly Language courses) ; this
usage is characterized by a high number of I/Os and simple control
streams (compile-load-execute) ; this calls for :

. buffering of the I/0's in order to obtain a continuous input and
output for the physical devices, independant, as much as possible,
of the execution flow ; this may be achieved by a spooling system.

. choosing a system of well organized default options, in order to
make the standard use of the system as simple as possible.

(2) stand-alone users. The system must be available, most of the time,
to graduate students and faculty members, for them to perfomm :

. extension and maintenance of the system itself ;

. research involving the development of new software.

10

These stand-alone users may need to reserve the camputer for their

exclusive use during large periods of time, create personal files

on ane of the system disks or on a personal removable disk. They

need a more sophisticated system, involving in particular the fol-

lowmirng—factiities:

. debugging tools ;

. facilities to handle personal files on the disks ;

. facilities to create new processors or to adapt existing proces-—
sors to a particular user needs ; |

. possibility of choosing an input or output medium different fram

the standard ones.

4. PROTECTION REQUIREMENTS

The Microdata machine does not provide any tool to implement protection
in an operating system (memory boundaries, supervisor mode). The only
protection that may then be provided is a protection against unintentional
errors. |

(1) Memory protection : the system has to provide a facility to res-

tore the context of the system in the case of an alteration of sys-
tem remories by a user program.

(2) Disk protection ; a reasonable disk protection must be implemented }

to protect files of a user against access or destruction by another
user.

(3) System protection : a recovery processor must be implemented.

11

5. RELIABILITY REQUIREMENTS

A reasonable reliability must be respected concerning the standard
use of the system (compile-load-execute). Nothing more can be achieved
since. the nser may by program. zero thewwhole-memory and/or the.whole disk

at any time.

6. EFFTICIENCY REQUIREMENTS

In the spool configuration, the speed of the system is required to
be as close as possible to the maximum speed of the card reader (300 cards
per minute .) . In other words, efiiciency does not concern the CPU utili-
zation but rather the card reader servicing rate.

No efficiency is required in the stand-alone configuration case.

CHAPTER IIT :

SYSTEM OVERVIEW

12

13
1. CONTENTS

A general description of the system is given in this chapter, with
respects to the requirements giyen in chapter IT. The first part is a
description of the system fram the point of view of its communications
with the outside ; it describes the file system and associated drivers,
the input and output of the system in spool and stand-alone configura-
tions, The second part deals with the intercammmication between pro-—
cesses, and includes memory organization, cammnications via the me—
mory, and samples of the control language. Only the second part will
be described in greater details in the subsequent chapters of this the-
sis ; the first part is fully explained in the thesis of Xavier MANGIN
I1]1 ; however, the short description given in this part should enable
one to understand fully the rest .of the material in the present thesis.
A third part in this chapter gives a list of the processors currently

available in the system. Only some of them are described in this thesis.

2. DISK MANAGEMENT

A. THE MICRODATA DISK SYSTEM
A disk platter is divided into 203 cylinders (for a density of
100 tracks/inch) ; each cylinder is camposed of two tracks, one on each
side of the platter ; each track contains 24 sectors ; the sector is
the smallest addressable part of the disk. and contains 256 bytes of
information.
B FILE TYPES AND FILE STRUCTURE
The files in the system belong to one of the two following cate-
gories.: (1) random and (2) sequential access files.

14

(1) Random access files : they are accessible by sectors and are ge—
nerally of type 'A' (such as an absolute program).

(2) Sequential access files : they are arranged in the form of records
of variable length. A record does not necessarily start at the
beginning of"a sector ; thus, sequential access files are not nor-
mally accessed on a sector basis. Sequential access files are di-
vided into two main types : source file types ('S') contain records
of ASCII characters such as card images, source programs or lis—
tings. Relocatable files ('R') contaip records of binary values
such as relocatable programs created by the Assembler.

Each file is characterized by a complete file-name which is unique

in the system. A <;om;_>1ete file-name is composed of the following items :

(1) a file-id part, normally associated with a user in‘ the system ;

(2) a user—defined name, to dlifferentiate various files of a user ;

(3) a type ('s', 'R', or 'A').

Each platter posseses a track map and a directory. the directory

and track map give the physical location of permanent files on the platter.

C. FILE ACCESS
Randam access to a file is done through a routine located in the re—
sident part of merory (.DR). Sequential access to a file is done through
the Variable Iength Record Driver routines ; the Variable Iength Record
Driver routines use .DR as a subroutine.
A file reqﬁest block is set by the calling program and the address

of this file request block is transmitted to the routine called (.DR or

15

relevant Variable Length Record Driver routine) through the (X) register.
The File Request Block contains the following :

(1} an internal name ;

(2) same additional routine-dependant information.

The internal name is different fram the file-name. the association
between internal name and file name is done by means of a special struc-
ture called "Data Chain", which is presented later in this overview. All
files required by a processor or user program need to be declared on the

control card under the form :
internal name = file-name

The monitor is then-able to create the corresponding association in the
data chain. The trace in memory of a file contains the informations nee-
ded by the disk driver routine to process the request ; this trace is cal-

led File Control Block.

D. ASSIGNMENT OF FILES TO A RUN

All files needed by a user have to be assigned to the Run before
any I/0 may take place. A structure contains the informations relative
to all the files currently assigned to a Run ; this structure is called
Current Assigned File List. Files cannot be used on a control card be-
fore being placed in the Current Assigned File List.

Two categories of files may be found in the Current Assigned File
List :

(1) permanent files, the definition of whlch is found in one of the

disk directories ;

I/0 MODES

CONCURRENT I/0

BYTE 1/0 D.M.A.
WITHOUT WITH WITHOUT WITH
INTERRUPT | INTSRRUPT | INTERRUFT | INTERRUPT
TELETYPE #*
CARD
3 ¥* ¥* E-3
READER
LINE
A ¥* * ¥* *
PRINTER -
DISK *
MAGNETIC
3* 3 - ¥* ¥*
TAFE
AROM #
SYNCHRONOUS
3% 3% * +*
INTERFACE
ASYNCHRONOUS
3 *
INTERFACE

16

(2) temporary files, created by a user to store temporary informa-
tions ; these temporary files will no longer exist after termina-

tion of the current RWN.

3. INPUT/OUTPUT CONFIGURATIONS.

A. PERTPHERALS 01\1 THE MICRODATA MACHINE

There are two ways of handling an input or an output on the Microda—
ta ; in the byte I/0 mode, a byte is sent or received at each input or out-
put operation ; in concurrent I/O mode, blocks of memory are transferred
between execution of the instructions. Interrupts may be enabled in each
mode.

Another mode, the Direct Memory Access, also exists in the case of
disk transfers. A table (3.1) gives the available modes of transfer

for each device.

B. USE OF PERTPHERALS BY THE SYSTEM

In the standard configuration of the system, only the teletype, the
card reader, the line printer and the disk are used. The dedicated firm-
ware memories for the other devices (magnetic tape, AROM, Synchronous in-
terface) are left unused by the system and may thus be made available to
a particualr processor or user program. The teletype is normally used by
the system as a "system teletype" and is used for cammnications with the
console operator, in initialization and error handling cases. However, a

"user teletype" is also defined in the system, which is physically the sa-

1

17

me as the system teletype, but is used as an input/output medium. This
particular usage of the teletype is nommally restricted to stand-alone
configuration only. Thus, the list of input media for the system include
the following devices :

(1) the~card reader-;

(2) a sequential access disk file ;

(3) the user teletype.
The output media are :

(2) the line-printer ;

(2) a sequential access file ;

(3) the user teletype.

C. THE STAND-AIONE CONFIGURATTCN

In the stand-alone configuration, the system may be viewed as a com—
puting process, that may request input from an input medium via a call to
a READ process, and that may send output to an output medium via a call
to a PRINT process. |

It should be noted that the "system teletype" and the "user teletype"
have two different drivers, and, hence, constitute separate entities in
the system. The system teletype has always priority over the user tele—
type driver. All these drivers wait for campetion of the transfer since
no buffering is possible (the input or output medium may be changed bet-
ween two inputs or outputs).

18

>D. THE SPOOL CONFIGURATION

In the spool configuration, the input flow fram the card reader and
the output flow to the line-printer are buffered through a list of spooled
files. Two independant processes, activated by interrupts, perform the
following functions :

(1) Read cards fram the card reader and store them on a spool input

file.

(2) Print the contents of a spool output file onto the line printer.

In this configuration, the READ process described previously normal-
ly takes its input from a spool input file ; the PRINI' process produces
its output on a spc?oled output file. These READ and PRINT processes may
be broken up in two parts :

(1) a resident part ;

(2) an overlay area.
The resident part of the READ/PRINT process is independant of the parti-
cular input/output medium used. The overlay part chr each input/output
medium is constituted of a specific device driver and of a storage area.
The input media area:

(1) the card reader ;

(2) the user teletype ;

(3) one of the user sequential access files ;
The output media are :

(1) the line printer ;

(2) the user teletype ;

(3] one of the user sequential access files.

19

Spooled input and output files are organised in two independant cir-
cular lists. When a spooled input file is full, the spool input process
requests the next spooled input file on the list. The freed input file is
then available for use by the READ process. In the same way, when a spool-
ed input file has been emptied by the READ process,. it .becomes available a-
gain for the spool input process. The same considerations are true in the
case of spool output files.
| In addition, a change of spool input file is forced in the following
cases :

(1) a disk error occurred in writing in a spool file ;

(2) a card, with two double quotes ("") is encountered by the input

spooling process.

The READ fram the spooled input files and PRINT on the spooled output
files are the default options for the READ and PRINT processes. The user
may force these processes to be directed, for a portion of his RUN, to/
fram another input/output media by a stacking discipline. The stackable
input media include :

(1) one of the user sequential files ;

(2) the user teletype.

The stackable output media are :

(1) one of the user sequential files ;

(2) the user teletype.

The stacking and unstacking disciplines of input and output media are ex~
plained in section 5. In error cases (e.g. devices not ready or swapping
out and in}), a real time clock program handles the restart of the sleeping

spool input or output processes.

20

E. CHANGE OF INPUT OR OUTPUT CONFIGURATION

The system does not provide the user with a way of passing fram the
stand—élone configuration to the spool configuration or vice-versa. The
configuration is.to be chosen. at system.creation.. On.the other hand, a
special processor, called IO processor, enable the user to direct the READ
or PRINT processes to take input from or produce output onto one of the
overlay mediums, different from the current one. The old medium overlay
is stacked on the disk, and the new medium overlay is loaded in memory.
A stacking is done for each call to the IO processor in its stacking func-
tion. An unstacking is done when one of the following conditions occur :

(1) reference to the IO processor in its unstacking function by user ;

(2) end of device condition ;

(3) error condition.
2An end of device cordition is defined for each device in input or in out-
put, and may be one of the following :

(1) end-of-file for an input file ;

(2) special card for the card reader ;

(3) "file full" condition for an output spool file.
A more detailed description of these end of device conditions can be found
in J1]. A change of user must occur when the stack is empty. This occurs
in teletype-to—teletype configuration (stand-alone case) or spool-input-

file~to-spool-output-file configuration (spool case).

21

4. THE OVERLAY SYSTEM

The memory conflicts are solved by a succession of overlays. A spe-
cial system file (or scratch file) is used to hold temporary images of
memory. The memory is divided into two classes :

(1) - the resident part, mostly in low core, contains mainly the swapper ;

(2) the overlay area successively contains the monitor, the processors

and the users.

A, MAJOR OVERLAY

The input stream, as encountered by the read process, is camposed of
a succession of control cards, each of them followed by their input data
(if any). Each control card enables a user to call a processor in the
system. In addition to the processor name, the control card may specify :

(1) a list of files needed by the processor,

(2) a list of parameters directing the action of the processor.

The monitor is responsible for the processing of the control cards.
After the processing of a control card relative to a processor, the moni-
tor is overlayed by the processor. The action takes place via a request
to the swapper in low core. The image of the overlayed area is tempora-
rily saved in the scratch file. The processor then executes and upon com~
pletion returns control to the swapper. The swapper restores the monitor

program in memory for the processing of the next control card.

22

B. COMMUNICATIONS VIA THE MEMORY
Transmission of information from the monitor to a processor is done
via a fixed size area, in low core, constituting the "Communication area",
and of a variable size structure, allocated by the monitor in high core,
constituting the"processor-data-chain".

(1) Processor data chain. The processor data chain is defined to be
the result of the processing of a control card by the monitor. It
includes the definition of the disk files needed by the user, and
of the input parameters specified by the user. The specification
field on a control card is camposed of a list of identities of the

form :

internal name

file name(s) or
internal name = value(s)

The internal name is a FORTRAN identifier that is known to the pro-—

cessor. For instance, in the case of the ASSEMBIE processor, we

may decide that :

. IN defines the source input file of the assembler ;

. OUT defines the object output file for the assembler ;

. LIST is a boolean value indicating whether a listing is required.

Standard input and output files are normally used, and are the de-

fault values of IN and OUT if the user does not specify any par-

ticular file. A default value for LIST may have been defined to

be YES. The default options can be'overpassed on the control card:

"ASM IN = MYFILE, LIST = NO ;

(2)

23

This redefines the standard input file to be the user file MYFILE
and specifies that no listing is to be produced.

The processor data chain defines the association between the in-
ternal anames known by the processor, and the files and values
assigned-to~thesr by the user. Seweral routines-in the resident
enable a processor to get the value assigned to an internal name
or to perform a disk operation on the file corresponding to an in-
ternal name ; since several files or values may be associated with
a single ’internal name, a sequence nmumber is added to the internal
name to characterize the file or value' uniquely. The number of
internal names, as well as the number of values or files associa-
ted with a'give.n internal name varies fram processor to processor

and from processor call to processor call. Thus, {:he processor

data chain is a structure of variable size, allocated by the mo-

nitor in high core. This structure is not ovérlayed.
Coammunication area. A fixed size area is defined in the low re-
sident, and contains same fixed variables in the system, such as :
. statuses ard semaphores ;

. user identification and user-related variables (password...) ;
. sector addresses of priviledged information and tables on disk.
It contains in particular a pointer to the top of the current data

chain for use by the resident chain manipulation routines.

24

C. THE RESIDENT

(1) The minimum resident of the system is camposed of the following

(2

constituents :

Iow core indirections and fimware dedicated memory. This area,
wostly in page zero and begimning of page 1, contains the memory
boundaries for concurrent I/0s, the interrupt address of the I/O
routines and finmware conditional interrupts, the stack pointer
and real-time clock counter, the definition of the system files
and indirection relays for resident routines.

Conditional interrupt handling routines.

A system stack.

The disk driver routine (.DR) and associated routines and tables.
The data chain manipulation routines (.FCA, FETCH, LINK, UNLINK,
TYPE,...). .

The swapper and its data chain.

. A system buffer necessary for swapper execution.

The extended resident. The resident area may be extended by addi-~

‘tion of some of the following routines :

The Variable Length Record Driver routines.
The READ and PRINT processes.
The spooling processes (in spool configuration only).

A system file handler.

The READ and PRINT processes and the spool process are normally

A

!

(3)

(4)

25

part of the resident. However, same processors needing a large
memory area for storage of programs or tables will try to use the
smallest possible resident.

READ and PRINT areas. The READ and PRINT processes, with the sys-—
temr file handler; constitute-a particular-area-of the memory (X'
1000" to X'2000'). Nommally a processor needing some input data
flow and/or producing some output data flow (such as the ASSEM-
BLER) would thus begin at memory location X'2000' ; if the pro—
cessor is too big to hold in the rest of the memory (X'2000' to
X'3FFF'), the data following the control cards are copied by the
monitor in a special file CR$; the processor then executes fram
the CRS$ file, producing output onto a special file PR$S. The mo—
nitor, after campletion of the processor, then copies the con-
tents of the PRS file on‘ the current system output medium via re—
quests to the PRINT process.

The spooling process area. In spool configuration, the spooling
programs are normally part of the resident. They occupy the high
memories (X'3980' to X'3FFF'). However the same considerations
as in (3) above may hold, and a processor may execute the follo—
wing serie of operations :

. halt the spooling process ;

. swap out the spooling programs and buffers ;

. use the freed area for its own storage.

Upon campetion, the spooling programs are reloaded and started

‘again. A processor may be declared to be working without the

26

spooling programs, and then the above steps are carried out by

the monitor before processor execution.

D. OVERALL MEMORY PICTURE AND EXAMPIE OF PRPGRAM

An overall memory picture may be drawn from the above considerations.
The overlay area always excludes the minimum resident. Depending upon the
characteristics of the processor (with spooling process or without spool-
ing process), the monitor allocates data chains from the top memory avai=
lable dowrwards (X'3980' or X'3FFF'). The processor data chain is al-
ways excluded from the overlay and defines an upper boundary for alloca-
tion of storage to a processor. The lower boundary of the overlay may be
one of the following :

(1) Top of minimum resident (X'OBFF') ;

(2) Top of variable length record driver (X'1000') ;

(3) Top of the EXTENDED resident (X'2000').
An overall memory picture, together with details abc?ut camponents of both
minimm and extended residents, is shown in the appendix.

An example of a program may be :

"RUN PASS = 1000 ;

"ASM;
(program to assenble)
"ASM QUT-R = REIAS$, LIST = NO ;
(progranm to assemble)
"LOAD IN = (RELS$, REIAS);

"EXECUTE CHAIN = (IN=CR$, OUT=PR$, NUM-I =
(-1,544);
(data cards of user program)

"FIN

27

The execution of such a program may be described as follows :

(1) Monitor in : the monitor analyses the RUN . card and creates the
corresponding data chain in high core, indicating in particular
that the value of PASS is 1000.

(2) RUN processor in : the RUN processor initializes a user, verifies
that the password PASS is valid, creates the standard temporary
files associated with the password (in particular CRS,PRS$,RELS,
REIAS) .

(3) Monitor in : the monitor processes the next control card and de-
termines that the assembler is to be called. The processor data
chain is created with all default options ; the input of the as-
sembler is set to be the standard input file CR$, and the monitor
copies into CR$ the program to assemble following the control card.
The output file is set to be REL$. The listing file is set to be
PRS, and a listing is effectively required.

(4) Assembler in : the assembler executes, taJd.fxg input fram CR$, pro—
ducing output into RELS$, generating a listing in the PR$ file.

(5) Monitor in : the monitor copies the contents of PRS to f.he current
system output medium via the PRINT process. It processes the next
control card, which is a call to the assebbler processor with CR$
as an input file, REIAS as an output file ; data following the con-
trol card is copied into CR$; no listing is to be produced.

(6) Assembler in : the assembler executes with its input caming fram

the CR$ file, generating output in REIA$, producing no listing.

A}

28

(7) Monitor in : the monitor copies the contents of PRS (which is emp-
ty) on the current system output medium. The next control card
defines a call to the loader with input files RELS and RELAS, the
output file being given by default (ABSS).

(8¥ Loader—imr: the loader executes and combines the two input files
RELS$ and REIAS into an absolute program stored on the disk file
ABS$. Listing is generated directly on the current system output
medium via requests to the PRINT process.

(9) Monitor in : the file PRS$ is not in the loader data chain, and
thus no copy has to be done by the monitor. The control card de-
fines a call to the EXECUTE processor. The default files and op-
tions are generated in the data chain (input from ABSS$), the
user data are copied into CRS.

(10) Execute processor in : the execute processor prepares the memo-
ries before giving control to the user program. It verifies that
the program to execute is a valid program, saves all the memory,
gives to the user access to the user program data chain (defined
on the control card by IN-S = CR$, OUI-S = PRS, NWM-I = (-1, 544)),
loads the user into core and gives control to the user program.

(11)User program in : The user has access to CR$ and PR$ for reading
input and producing listing. It can retrieve the two values as-
sociated with the array NUM by use of the resident chain manipu-~
lation routines.

(12)Execute processor in ; The execute processor is able to swap out

the whole user memory and to reload the memory saved at the begin-

29

ning of execution of the EXECUIE processor. It then analyses the
effect of the user program (here contents of PR$) and copies the
contents of PR$ (listing produced by the user program) on the
current output medium. .

(13)Monitor in : the monitor processes the next control card, which
is a call to the FIN processor, and generates the data chain.
(14)Fin processor in : the Fin processor takes all campletion actions

necessary to terminate execution of the current run.
(15)Monitor in : the monitor is then able to analyse the next control
card.
The above description does not seek to be accurate about the exact
action of each processor, and associated control cards, but only wants to

give an example of execution of a simple program.

5. PROCESSORS AVAILABLE IN THE SYSTEM

A. PROC processor
The PROC processor is mainly a maintenance processor ; certain op-
tions are not available to all users. Its function is to create new pro—
cessors in the system, or modifying existing processors by freezing some
parameters, changing processor names, chaﬁging defaults or reordering pa-

rameter lists.

B. IO processor
The IO prc;cessor handles the change of system input or output medium,

as described in previous sections.

30

C. FIIE processor

The FILE processor deals with the assignment, creation, deletion, re-

call of files (permanent or temporary).

D_ASSEMBLER. processor.
The ASSEMBLER processor creates a relocatable and absolute output

fram a source program.

E. IOAD processor
The LOAD processor creates an absolute output, ready to be executed,
from several relocatable files, result of the ASSEMBIE or FORTRAN proces-—

sSOrs.

F. EXECUTE processor
The function of the EXECUTE processor is to protect the system against

mistakes occurring during execution of a user program.

Only the PROC and EXECUTE processors are desrcribed in detail in this
thesis. The reader is referred to [1] for description of the other proces-

SOrs.

CHAPTER IV

DEFINITION OF DATA CHAINS

31

32

1 . PROCESSES AND CONTEXTS

One approach to the description of an Operating System is to view
it-in-terms-of®its decomposition into processes. Each of the processes
constituting the Operating System is associated with a context. The con-
text of a process is the part of the system that the process is able to
access and/or modify.

With respects to this definition, the context of a Fortran subrouti-
ne consists of the program itself, local memories, parameter list and
return address.

The context of a process (such as the Fortran subroutine) clearly
contains two classes of elements :

(1) Same elements are strictly bound to the process, i.e they do not have
any meaning for any other process (the program, the local memories).

(2) Some elements can be accessed or modified by at least two different
processes in the system (parameter list and return address) ; these
elements are called OBJECTS in the following discussion ; the effect
of a process is campletely determined by the set of all objects that
the process is able to access ; the effect is measured through the
set of objects the process is able to modify.

The idea here is to force each given process in the system to use a
standard pattern to cammmnicate with the outside world (by accessing and/
or modifying the cbjects). A structure was designed to accamplish this

purpose, and is defined below under the name of DATA CHAIN.

33

For each given process, a unique Data Chain is defined, which cont-
ains pointers to each cbject that the process is able to access and/or
modify. In a uniprocessing system, only one process may be executing at
any-givenctimes; thusy only-one-Data-Chaisr may be-accessed at any given
time ; this particular Data Chain is called CURRENT DATA CHAIN. A fixed
memory location in the resident part of the memory defines at each inst-
ant the Current Data Chain. It is called the CURRENT DATA CHAIN POINTER.
A set of routines in the resident enable the currently executing process
to access and/or modify the set of objects accéssi.ble through the Current

Data Chain Pointer.

2. OBJECTS

2An Object is an element of the Operating System which is meaningful
for at least two processes in the system. According to this definition,
the following items are adbjects :
(1) Parameters in a subroutine call
(2) Shared buffers
(3) Devices
(4) Files in the Disk File System.
Objects may be classified into three classes :
(1) Memory-bound .objects :
(2) File dbjects ;
(3) "item" objects.

Parameters in the subroutine call, shared buffers are memory-bound

34

objects, devices and files in the Disk File System are file cbjects ;
"item" cbjects are discussed in the following sections.

Each Object is here formally defined as an association of two cons-
tituents. :

(1) an ACCESS INDICATOR ;
(2) a VALUE AREA.

The Access Indicator is a simple switch that can be turned on and
off ; if the switch is off, the value area cannot be changed. The pro—
tection header of a sector may be considered as the Access Indicator of
the sector ; in the case of a buffer shared by two processes, a Semapho-
re may be created as an Access Indicator for the buffer.

A process may then take four types of "actions" with respects to a
given object :

(1) READ action (read the current value of an dbject) ;

(2) PROTECT action (reset the access indicator of the object) ;

(3) UNPROTECT action (set the access indicator of the cbject) ;

(4) WRITE action (write into the value part of the dbject if the access

indicator is ON, return in error otherwise) .

35

3. STRUCTURE OF DATA CHAINS

A. ITEMS

A Data Chain consists of a linked list of ITEMS, each of them being
able to reférence one or several Objectss

Each Item within a Data Chain possesses an identification called
INTERNAL NAME. The Internal Name of an Item must be unique within the
Data Chain in which it is found.

All the Objects referenced by a given Item have the same nature
(MEMORY-BOUND objects, FILE cbjects, ...). A TYPE represents this nature,
and is part of the item definition. This type is associated with the
Item as well as wit'-_h the referenced objects.

Thus, an item is the way for the process to referencé a particular
set of objects. As seen in the .preceding section, fqur types of actions
may be taken by the process with respects to one of the cbjects (READ,
WRITE, PROTECT, UNPROTECT). The Item Definition specifies which actions
the process is allowed to perform on any of the Objects referenced by the
Item. Four bits, corresponding to each of the actions, are RESET if the
process is not allowed to perform the corresponding action upon the re-

ferenced bjects.
B. BINDING OBJECTS TO ITEMS

The Items described above are characteristic of a process : the in-

ternal names, types and action bits do not change from one execution to

1

36

another. However, the actual dbjects referenced by an Item may vary fram
one execution to another. The action of establishing the linkage from
Item to Objects is calied BINDING objects to the Item.

The linkage fram Item to Objects is done via a linked list of point-
ers, as shown in fig. 1. VAL points to a linked list ; each element in
the list is able to reference a single Object. Binding cbjects to an item

consists in creating this linked list.

We already mentioned in the Object classification that Items could
be considered as Cbjects. A special type is associated with such Cbjects.
In the case of an Ttem of type Item, the VAL pointer points to an
entire Data Chain (see fig. 2).

The process associated with the data chain containing an item of
type item is called PARENT PROCESS. The Data Chain pointed at by the VAL
pointer is called DEPENDANT DATA CHAIN ; the associated process is a
SUBPROCESS of the parent process. In this definition, an Item is viewed
as an Object of a Parent process. The value field of the Item cbject is
defined to be the binding of the item. Perform a WRITE action upon such
an Item cbject consists in binding cobjects to the item. An additional bit
had to be introduced in the Ttem definition to represent the access indi-
cator of the item as an object of a parent data chain ; if this bit is
reset, the current binding of the item cannot be changed.

The binding of cbjects to items thus becames the responsibility of

the parent process. A process can modify the access indicator or value

NEXT POINTER TO NEXT IN DATA CHAIN

/ VAL POINTER TO OBJECT LIST

ACT ACTTON BITS
INTERNAL NAME INTERNAL, NAME OF THE ITEM
YRR TYPE OF THE ITEM
NNEXT
TO NEXT IN 7 X\ 10 oeECT
DATA CHAIN VALPTR 81
TO NEXT IN
OBJECT LIST
T
4
0
VALPTR

ACC. VALUE
IND. AREA
AN OBJECT

R Fig 1: AN ITEM AND LINKAGE TO OBJECTS

INTERNAL NAME
NNEXT
TYPE VALPTR
TTEM
ACC.
D.
TO NEXT IN
DATA CEAIN
TO NEXT IN
DEPENDANT
DATA CHAIN
TO OBJECT LIST
OF DEPENDANT
I TTEM
|
< > | < >-
|
PARENT ! ' DEPENDANT
DATA CHAIN " DATA CHAIN

Fig 2 : CASE OF AN TTEM OT TYPE ITEM

38

39

field of all objects accessed through its Data Chain ; it cannot change
the actual binding of any Item in its own data chain. This situation is

very similar to the above example of a Fortran subroutine call. The sub-
routine can change the value of any parameter in the parameter list.
However, it is the responsibility of the main program to associate each
parameter in the formal list with a specific address, and this address
cannot be changed by the subroutine. ‘

This definition of Items as particular objects adds the power of
recursion to the definition of data chains. The nurber and addresses of
the dbjects associated w:.th the items become dynamic for the parent process.
The Internal Name, Type and action bits of the items in a data chain can-
not be changed by either the parent or dependant processes., They are
characteristic of the process itself , and enable the process to access the
cbjects in a standard fashion. In the Fortran example, they are similar

to the formal parameter list in the subroutine definition.

4. ACCESSING OBJECTS

Reference to an object for a READ, WRITE, PROTECT or UNPROTECT ac-
tion is done through the Current Data Chain.

A set of routines, located in the resident part of the memory, en-
able a process to use the current data chain. The particular Name and
address of the ;:outine may depend upon the TYPE of the Item referenced,

and the action required by the process. All routines have a standard

40
calling sequence, specifically :
IDX= Request block address
CAL Subroutine needed
The REQUEST BLOCK is set by the calling process. It always includes
the following information :
(1) an IDENTIFICATION of the dbject within the current data chain ;
(2} same subroutine—depepdant information.
The Identification part may be standard between all the routines in
the package ; it includes the following :
(1) INTERNAL NAME of the Item ;
(2) a relative OBJECT NUMBER identifying the particular object desired
within the list of objects referenced by the Item ;
(3) the TYPE of the Ttem.
For the routine to be successfully executed, at least five conditions
must be met :
(1) the Internal name exists within the current data chain ;
(2) the Type specified in the Request Block matches the type of the Item
determined by the Internal Name ;
(3) The Object Number specified in the Request Block is less than or equal
to the number of objects associated with thé item ;
(4) the action required is valid, i.e the correéponding bit in the item
definition is ﬁot reset ;
(5) if the particular action requested is a WRITE, the Access Indicator

of the dbject. referenced is not reset.

. . 41
~ Each of the actions (READ, WRITE, PROTECT, UNPROTECT) is defined

below for each object category (MEMORY-BOUND cbjects, FILE objects, ITEM
objects). According to the definitions in Table 1, READ (PARAM(4)) cons-
ists in reading the fourth cbject associated with the Item defined by the
Internal Name PARAM ; SEMON (MEM(2)) consists in turning ON the Access
Indicator of the second cbject associated with the Memory-bound item de-
fined by the internal name MEM ; BIND (DATCHN(3)) consists in defining

a binding for the third Item of a subchain of the current data chain.

5. CHANGE OF CONTEXT

A change of context in the system merely consists in altering the’
value of the CURRENT DATA CHAIN POINTER. This can be done by three dif-
ferent disciplines :

(1) Queueing discipline ;
(2) Preeamptive discipline ;
(3) Linking discipline.

The Queuing discipline implies an identity of priorities between
the processes, and may be used to handle multiprogramming situations.

The Preemptive discipline is used to handle interrupts or inter-
rupt-like situations when a process has to be serviced in priority. The
preampting context is fully independant of the preempted context. The
chain of the pJ::e;empting context is generally of a fixed-binding nature.

The Linking discipline makes use of the ITtems of type Item, as defin-

OBJECT

‘MEMORY "— 'BOUND FILE ITEM
TYPE " OBJECT OBJECT OBJECT
ACTION
FETCH READ UNBIND
—_— The value of a set A file on the disk %et the value of the
of memory locations file system pointer to object list
SET WRITE BIND
WRITE . . .
—_— memory locations on the %n object list to a
to a given value disk file system dependant item
SEMON PROTECT SECURE
PROTECT turn a semaphore a portion of the an item against
on disk file system ulterior binding
SEMOFF UNPROTECT RELEASE
UNPROTECT

turn a semaphore
off

a portion of the
disk file system

reset the protect.

indicator of an item

Table 1: DATA CHAIN MANIPULATION PRIMITIVES

43
ed above. The parent context "contains as a value" the entire Data Chain
of the dependant context. This scheme correspords to orderly situations
such as a call to a subroutine. It is the responsibility of the parent
process to make sure that all items in the dependant data chain are pro-
pexly -baund before-the-subprocess is.enabled. Linking the new context
is in this case the responsibility of the parent process, and the sche-
me makes use of a stack to store successive values of the current data
chain pointer.

The preemptive and linking disciplines are sketched in fig 3.a,b.

6. CREATION OF DATA CHAINS

The question arises of when data chains should be created. It was
already mentioned that the Items in a data chain and their identification
(Internal Name, Type, READ/WRI'I‘E/PRQI'ECI‘/UNPROTECI‘ bits) cannot be chan-
ged, since they are characteristic of the process V;rith which the Data
Chain is associated. Thus, a permanent image of a data chain may be kept
on the Disk for each process defined in the system. The creation of the
Data Chain is done merely by mapping the permanent image in memory. The
binding for the items of the permanent images is called DEFAULT BINDING.
The permanent image is itself called DEFAULT DATA CHAIN. An Access In-
dicator is defined for each item in the DEFAULT DATA CHAIN, and specifies

whether or not the default binding can be modified.

A

I
|
|
Y

Process interr.

during execution

l

PROCESS IN
WATTING STATE

Process resumes

execution

Vv

PREEMPTED PROCESS

Stack current
data chain ptr.

]

Process enables
itself

v

PROCESS
EXFCUTION

Unstack current
data chain ptr.

PREEMPTING PROCESS

Fig 3.a CHANGE OF CONTEXT, PREEMPTIVE DISCIPLINE

Stack current
data chain ptr.

Enable depen-

dant process

L.

—

Disable depen

dant process

y

Unstack current
data chain ptr.

A

<__

Deperdant Pro-—

cess execution

Process may mo—-
dify data chain

prd
<

" DEPENDANT PROCESS

\

PARENT PROCESS

'~ Fig 3.b CHANGE OF CONTEXT, LINKING DISCIPLINE

v

46
A process that has no parent in the system is called MASTER process.

Its Data Chain is necessarily of a fixed-binding nature, and is created
at the same time that the process itself is brought in memory.
Processes with variable bindings must be enabled by a parent process

after their associated Data Chain are created.

CHAPTER V

IMPLEI‘EN’I‘ATICN OF DATA CHAINS

47

48

1. PROCESSES IN THE SYSTEM

In the description of the implemention, we will call process any
program associated with a Data Chain. As will soon be seen, the imple-—
mentation of Data Chains is costly nermry—wisé. The nunber of processes
in the system was thus reduced to the minimum.

The MASTER processes (i.e the processes having no parent) are defin-

ed to be :

(1) the MONITOR process ;

(2). the SPOOLING process ;

(3) the SYSTEM INPUT process ;

(4) the SYSTEM OUTPUT process ;

(5) the SYSTEM FILE HANDLER process ;
(6) the REAI~TIME CLOCK process.

Only the MONITOR and the REAL~TIME CLOCK processes will be describ-
ed in detail in this thesis. The other processes (SPOOLING, SYST. INPUT,
SYST. OUTPUT, SYST. FIIE HANDIER) concern the input/output of the system,
and are described as such in [MANGIN, (1)].

The other processes in the system are all subprocesses of the MO~
NITOR process. They will be described in this thesis. These DEPENDANT

processes include in particular :

(1) the SWAPPER subprocess ;
(2) the PROCESSORS ;

(3) the USER-DEFINED PROGRAMS ..

49

The creation of the Data Chains for these subprocesses is done by
the MONITOR upon user's request ; the mechanism is described together

with the MONITOR's description.

2. IMPLEMENTATION OF DATA CHAINS

A. ITEM DEFINITION

As specified in the preceding chapter, a DATA CHAIN consists in a
linked list of ITEMS, each of them being able to reference one or seve-
ral objects. All pointers in Data Chains are absolute ; the last ele-
ment in a chain has a zero pointer.

The INTERNAL NAME of items is implemented as a FORTRAN identifier,
i.e at most 6 letters or digits, beginning by a letter ; characters are
stored as ASCII characters (1 byte per character) ; the INTERNAL NAME
is campleted to 6 characters by trailing blanks on the right.

In the implementation, TYPES consist in a unique ASCII character.

The possible types are :

1) 'z','c','w','rF','B' (MEMORY-BOUND objects)

(2) ' *,'s'",'rR",'A" (FILE objects)

(3) 'D' (ITEM cbjects)

The ACTION BITS are stored together in a whole byte, though only

5 bits of this byte are used. Each of the lower 4 bits corresponds to
a different action, as shown in Fig. 4 ; the bit is set if the process
is allowed to perform the action on the cbjects associated with the

item, reset otherwise. The fifth bit is the Access Indicator of the

50
item considered as an object of a parent chain ; it is set if the process

can change the binding of the item, reset otherwise.

B. LINKAGE OF OBJECTS TO ITEMS

The linkage of objects to items was defined as a linked list in
order to preserve the full recursivity of the structure, in particular
with respects to items considered as objects of a parent data chain,
via an item of type ITEM.

The linked list was kept in the particular case of items of type
ITEM. For cases involving Memory-bound cbjects and File objects, the
pointers to objects (VALPTR in fig. 1) were stored as a linear list
starting from the. memory location pointed at by the VAL pointer. An
additional byte had to be introduced to specify the number of objects
in the linear list. Thus, from 0 to 255 objécts may be referenced by

a single item. For N objects, the savings in temms of memory is :
2 x N bytes of core.

a) another simplification was done in the case of memory-bound
items, and is detailed below. In almost all instances, one of the
two following conditions was met :

(1) Many processes can read or alter a given cbject, but this
object is of a fixed binding nature, such as a system va-
riable ;

(2) Once bound, the dbject can only be read by a single process
in-the system, and cannot be written into (input parameter

. for a processor) .

51
Gbjects in class (1) were simply blocked in a dedicated area in
low core, called the COMMUNICATION AREA. The Communication Area in-
cludes thus such variables as RUN variables, fixed memory addresses,
sector numbers, status bytes, semaphores, a.s.o. A description of
the cammmnication area is contained in appendix A. This simplifi-
cation presents at least two major drawbacks :

(1) it becames difficult to see which process in the system "pos-
sesses" (i.e is able to access and/or modify) a given varia-
ble in the commmication area ;

. (2) processes beocome sensitive to modifications in the camunica-
tion area structure.
These drawbacks were partially overcame by :

(1) grouping the cammunication area objects so that the variables
relevant to a given family of proéesses be stored consecuti-
vely in memory ;

(2) forcing all processes to access each object in the communi-
cation area in the following standard fashion :

. fetch the address of the top of the relevant group in page
zero of memory ;

. access the desired by an offset from this address.

The scheme is sketched in fig. 5 case b.

Since cbjects in class (2)interest only one process in READ-
ONLY fashion, their value is placed within the data chain before

activation of the process ; no pointer at all need to be stored

Al

52

, and this results in non-negligible savings in terms of storage :

in the case of an cbject that can be stored in one byte of core,

this simplification cuts the storage needed in a factor of one to
three (1 byte needed for storage of object instead of 1 byte for the

object-and- 2 bytes for the pointer-) .

b) the same scheme could not be extended to the case of FILE ob-
jects. Files are shared objects in the system, and are used exten-
sively in all READ/WRITE/PROTECT/UNPROTECT cases. Two simplifica-
tions were made in order to ease the implementation and usage : .

(1) the sharing of the same FILE OBJECT by two different items
belonging to the SAME data chain was simply forbidden in the
system, as a safeguard against errors ; this is not really
a restriction, since DIFFERENT processes can access and/or
modify the same fiie object (see fig. 5, cases d and e).

(2) very few cases were met where the need was felt to use
multiple file dbjects aésciated with a single item (however
see LOADER data chain example, in [1]) ; the idea was kept
but merely implemented as several different items, each of
them pointing onto a single file cbject. The internal names
of the items differ only by their OBJECT # byte. The be—
haviour of the resulting structure is defined to be as if
a single item was associated with all the file dbjects.
However, the new scheme is more costly memory-wise, since
repeated storage of the internal name is required (see fig.

5,case c).

1 2 3
&> > >
OBJECTS IN LIST ARE
NEXT FOUND BY A
D NEGATIVE
VAL OFFSET
ACC.
INTERNAL
NAME
#
OBJ.
OBJECT 1
TYPE
OBJECT 2
! !
[f
t I
TO NEXT IN
DATA CHAIN
TA OBJECT N

Fig 5 : IMPLEMENTATION OF DATA CHAINS
Case a : MEMORY-BOUND CBJECT, READ - ONLY,
ACCESSIBILE BY ONE PROCESS ONLY

BIT 4|BIT 3|BIT 2|BIT 1|BIT ©

rFr 17T 7T 17 77

PROTECTION| PROTECT READ V
INDICATOR | ACCESS ACCESS ~
UNPROTECT - WRITE
UNUSED ACCESS ACCESS
e T

—_

Fig. 4 : ACTION BITS AND PROTECTION INDICATOR

VALPTR

|

FIXED PAGE ZERO LOCATION
OBJECT 1
OBJECTS IN LIST ARE OBJECT .2
FOUND BY A
POSITIVE

OFFSET ' |
| |

OBJECT N

Fig 5, case b : MEMORY-BOUND OBJECT, FIXED-BINDING CASE

1 2 3
& > > >
OBJECTS IN LIST ARE
NEXT FOUND BY A
A NEGATIVE
VAL OFFSET
ACC.
INTERNAL
NAME,
#
OBJ.
OBJECT 1
TYPE
L
OBJECT 2
i !
[} 1
! |
TO NEXT IN
DATA CHAIN OBJECT N

Fig 5 : IMPLEMENTATION OF DATA CHAINS
Case a : MEMORY~BOUND OBJECT, READ - ONLY,

ACCESSIBLE BY ONE PROCESS ONLY

]
INTERNAL
NAME
1
TYPE
V4
7/
7
Ve
NEXT [—"

TYPE

NEXT

ACC FILE #

INTERNAL

TYPE

Fig 51 case C :
FILE OBJECT,
MULTIPLE VALUE CASE

_/\
VAL NEXT
INTERNAL ACC|
NAME
INTERNAL
NAME
OBJ
TYPE #
OBJ
TYPE
FILE
OBJE . TO NEXT IN
CcT DATA CHAIN

Fig 5, case 4 :
FORBRIDDEN SHARING OF A FILE OBJECT BY
ITEMS IN THE SAME DATA CHAIN

VAL NEXT
ACC \mL
INTERNAL ACC
NAME
INTERNAL
NAME
OBJ
TYPE #
) OBJ
TYPE
TO NEXT IN
DATA CHAIN
1 4, ¥ TO NEXT IN
DATA CHAIN
2
FIIE
ORJECT

Fig 5, -case e
ALIOWED SHARING OF A FILE OBJECT BY
DIFFERENT PROCESSES

58

3. OBJECTS AND OBJECT TYPES

A. OBJECTS IMPLEMENTED
Among the list of possible objects mentioned in the formal presen-—
tation, the-following were-implemented .through use-of-data chains :
(1) read-only parameters in subroutine calls ;
(2) objects of type item .
The items listed below were implemented by use of the commmnication area
through page zero indirection :
(1) buffer shared between processes (by placing the semapf.lore
in the cammunication area) ;
(2) devices (by the spooling system) ;
(3) READ/WRITE only memory-bound cbjects of fixed binding type.
General READ/WRITE/PROTECT/UNPROTECT memory-bound cbjects of variable

binding were not implemented in the 16 K version of the system.

B. PROTECTION MECHANISMS
The formal presentation insisted on a protection mechanism for each
object ; the idea was maintained throughout the implementation.

(1) Cbjects of type ITEM : The additional bit "protecting"
each item was implemented as will be seen in the descrip-
tion of the monitor .

(2) File dbjects : a suitable protection mechamsm was imple-
mented by use of the hardware header on each sector of the
éisks ; an additional software protection, on the basis of

a file in the disk file system, was implemented to prevent

59

a use to destroy another user's or a system file.

(3) Memory-bound dbjects : no hardware protection is offered
by the computer microprograms over any specific memory lo-
cation. Memory-bound items treated through use of data-
chains need no protection indicator since they are READ -
ONLY by definition. Protection of objects in low core, and
in particular in the communication area, was insured by two
mechanisms :

. implementation of a relocating loader "filtering" a pro-
cess's requests for indirections in page zero, depending
on the degree of reliability of the process ;

. implementation of an "execute program" processor to exe-—
cute a user's program ; the entire menmory image is saved
before (and restored after) the user's program execu-
tion.

A description of the relocating loadér can be found in [1],

and the EXECUTE processor is described in details in this

thesis.

It can be noted that no specific PROTECT/UNPROTECT routine

was implemented.

C. ITEM OBJECTS
The associated item type is 'D'. BAn item object can be shared by
several different processes, though no exam@le of this was actually tried.
No recg.rsion ié possible in the 16 K version of the Operating System,

and thus no process can have itself or a parent process as a sub-process.

60

D. MEMORY-BOUND OBJECTS

The types associated with memory-bound objects treated through use

of data chains include :

'I' INTEGER OBJECT, FULL WORD Core used : 2 bytes
'H' HALF-WORD INTEGER OBJECT Core used : 1 byte
'C' ASCII CHARACTER OBJECT Core used : 1 byte
'B' BOOLEAN OBJECT Core used : 1 byte
'F' FILE-NAME OBJECT Core used : 8 bytes.

No routine to READ/WRITE/PROTECT/UNPROTECT was written, since a copy

of the value of the dbject is done each time the process is activated.

E. FILE-BOUND OBJECTS
The types associated with FILE objects include the following :

' ' ANY FILE IN THE DISK FILE SYSTEM
'S' FILE OF TYPE 'SOURCE' (TYPE 'S')
'R' FILE OF TYPE 'RELOCATABIE' (TYPE .R.')
'A" FILE OF TYPE 'ABSOLUTE' (TYPE 'A').

The trace in memory of a File dbject is a FILE CONTROL BLOCK, succintly

presented in the overview ; the File Control Block is described in details

in [1].

61

4. ACCESSING ORJECTS

Reference to an dbject for a READ, WRITE, PROTECT or UNPROTECT ope-

ration is done by use of the CURRENT DATA CHAIN or the COMMUNICATION AREA.

A. ACCESS VIA THE COMMUNICATION AREA
Accessing an cbject within the Commnication Area is done via an

indirection relay in page zero of memory.

READ action : IDX Indirection relay

IDA+ Offset to object required

WRITE action : DX Indirection relay

STA+ Offset to object required

No explicit Protect or Unprotect can be done by a process, and the

objects in the cammmnication area remain constantly unprotected.

B. ACCESS VIA THE CURRENT DATA CHAIN
As defined in the formal presentation, the process sets-up a REQUEST
BLOCK, and calls the relevant routine in the resident part of the memory.
The beginning of a request block is standard between all the routines,
and is shown in fig. 6. It identifies a unique object within the Current
data chain. A different appendage may be necessary, depending on the rou-

tine called.

62

A single routine (.FCA) is used by all routines to fetch the ad-
dress of a particular item within the current data chain. The calling

sequence for this routine is :

IDX= Request Block address

CaL. .FCA

The output is stored in the registers of the calling program as follows :
(X) remains unchanged
(B) points to the top of the object list or is equal to zero ; a zero
value of the (B) register means that no-item in the current data
chain satisfies all of the following conditions :
(1) Internal name matches internal name specified in R.B.
(2) Type matches type specified in R.B.
(3) # OBJ. byte in item definition is greater than or equal to
the OBJ # specified in the R.B.
(A) is undefined if (B) is zero, otherwise (A) contains the address of
the matching item.
The routine is flowcharted in fig. 7.
Other chain manipulation routines make use of .FCA as a subroutine,
and are succintly described below.

a) Case of FILE objects : A single routine (.DR) may be used to
perform all actions (READ/WRITE/PROTECT/UNPROTECT) . The
appendage needed to the Request Block is shown in fig. 6.

The OP.. REQ. byte must be set to 1,2,3,4 in order for the rou-

tine to perform respectively a Read, Write, Protect or Unpro-

63

tect operation ; no multiple operation can be done at a time.
Several routines in the resident constitue the Variable Length
Record Driver and make use of .DR. The File Request Block need-
ed in the calling sequence is campatible with the general Request
Block format. All these routines are described extensively in
[11 .

Case of Memory-bound abjects : only the READ operation was imple-
mented. The routine FETCH in the resident can be called by a
process and is able to match the current value of a single object

into the area of the calling process. The calling sequence is :

IDX= Request Block address
IDB= address to store the aobject's value

CAL - FETCH

The output of the routine is in the (B) register : (B) is zero
if the request is in error (bad return from .FCA) , non-zero
otherwise. The other registers are unmodified.

Case of jtem objects : The four actions (UNBIND, BIND, SECURE,
RELEASE) were formally thought as part of the resident. How-
ever, these constitute camplex operai';ions that cannot be kept
permanently in memory. The solution adopted is that all bin-
ding of chains are to be done at the time the Data Chain is
éreated (i.e brought in memory) ; this can be :

. at system gemeration time for MASTER processes ;

"+ . at control-card processing time for the other processes.

The corresponding actions are thus éerformed by the MONITOR.

Y
(P) « Current
data chain
top
Pointer

YES : \ NO
— -0

NEXT) —

(B) + 0 (P) < NEXT (P)

Fig 7

FIOWCHART .FCA

NAME OBJECT # TYPE

LS

4 Bytes

Fig 7
REQUEST BLOCK FORMAT

OP. REQ. STATUS BYTE ow CORE ADDRESS

HIGH CORE ADDRESS SECTOR # WITHIN FILE

4 Bytes

Fig 8
FILE REQUEST BLOCK APPENDAGE FOR
USE BY .DR ROUTINE

v

OBJECT MEMORY~BOUND MEMORY-BOUND
TYPE OBJECT OBJECT
THRU THRU FILE-BOUND ITEM
COMMUNICATION DATA OBJECT OBJECT
ACTION AREA CHATN
REQUEST.
IDX= Request Bl. |IDX= File Req.
READ LDX I:Eigfrczacelf:ioon address Block addr. by MONITOR
IDB= Core addr. only
LDA+ Offset AL DR
CAL FEICH (OP. REQ. = 1)
IDX Page zero IDX= File Req.
WRTTE Indirection not Block addr. by MONITOR
implemented only
STA+ Offset AL DR
(OP. REQ. = 2)
LDX= File Req.
PROTECT not not Block addr. by MONITOR
implemented implemenyed CAL .DR only
(OP.REQ. = 3)
IDX= File Req.
UNPROTECT not not CaL, Bél‘fk add. by MONITOR
4 implemented implemented (OP. 'REQ. = 4) only

Table 2 : TABLE OF IMPLEMENTED PRIMITIVES AND CALLINGSEQUENCE

AR

67

5. CHANGE OF CONTEXT

Among the possible change of context described in the formal presen—
tation, two were implemented :
(1) the PREEMPTIVE discipline ta handle. interrupts ;

(2) the LINKING discipline otherwise.

A, CHANGE OF CONTEXT BY LINKING DISCIPLINE
The data chain to be linked is a subchain of the current data chain.
A small stack (for storage of current data chain pointers) and two
routines in the resident (LINK and UNLINK) accamplish the purpose.
A Request Block is set—-up by the parent process ; its format is
given by the general request block format. The parent process then exe-

cutes the following code :

IDX= Request Block address
CAL LINK ‘
The routine LINK then stacks the current value of the current data chain
pointer and updates it to the top of the dependant data chain. The out-
put is indicated in the (B) register of the calling program, and is zero
if an error occured ; this error return may be caused by : |
(1) bad return fram .FCA (i.e no item in the current data chain meets
the specifications in the request block)
(2) stack overflow. '
The parent process then jumps to the start address of the dependant pro-

cess, and waits for its campletion.

1

68

Upon return fram the subprocess, the parent process executes a call to

the UNLINK routine :
CAL UNLINK

The. INLINK. rauti ne-resets. the-current-data_chain pointer to the value

on the top of the stack, placed by the LINK operation.

B. CHANGE OF CONTEXT BY PREEMPTIVE DISCIPLINE

In this case, the preempting context is fully independant of the
preempted context ; the preempting process is a MASTER process (it has
no parent in the system) .

Since the data chain of a process is not a subchain of any parent
chain, the MASTER process is always assumed to know the address of the
top of its own data chain ; two routines in the resident (PREEMP, RELEAS)
allow such a MASTER process to preempt the currently executing process
without disturbing its execution. An additional difficulty was met in
implementing the scheme, as will be seen in the REAL—’I‘IME: CLOCK PROCESS
description chapter.

The calling sequence for the two resident routines is respectively :

IDB= Top of chain pointer address

RTX PREEMP
and : RTX RELEAS

The routines have no output.

69

6. CREATTON OF DATA CHAINS

Data chains of MASTER processes are of a fixed binding nature. They
are mapped in memory together with the process.

Other- processes are-all subprocesses of-the Monmitor process. Only
the SWAPPER data chain is permanently in memory, since it is a part of
the resident. The processor and user program data chains are created by
the Monitor at control-card processing time ; the binding for these
chains is permanently determined by the Monitor at the same time.

DEFAULT PROCESSOR DATA CHAINS are kept permanently on the disk.
They are nﬁpped in memory by the monitor at control-card processing time.
The algorithms to create and bind data chains from the processing of a
control card and a default processor data chain are described together

with the Monitor description.

CHAPTER VI :

APPROACHES TO THE

DESCRIPTION QF THE OPERATING SYSTEM

70

71

In viewing the system as composed of processes and subprocesses,

we can follow two approaches ;

~1 ~DESCRIPTTON BY~PROCESS

The first approach is to describe each process existing in the
system. Processes are considered with respects to the following :
(1) initial presentation of what the function of the process
is in the overall system.
(2) external behaviour describing a pméess by looking at all
the objects that the process is able to manipulate ; this in-
cludes the following :
. behaviour with respects to the pracess data chaln
. behaviour with respects to the cammumication area ;
. behaviour with respects to subprocesses ;
. behaviour with respects to system files ;
(3) internal behaviour of the program itself.
In this thesis, the following processes are described with
various level of details :
(1) the SWAPPER subprocess (chapter 7);
(2) the REAL-TIME CLOCK process (chapter 8) ;
(31 the MONITOR process (chapter 10), with the control language ;
(4) the PROCESSOR subprocesses general format (chapter 9) ;
(5] the EXECUTE processor-, and linkage to a user program (chapt. 11);

(6) the PROC processor (chapter 12 }.

72

A description of the other processes in the system (READ and
WRITE procesess, SPOOLER process, IO, FILE, ASSEMBLE, LOAD processors)

can be found in (1) or (2).

2.~ DESCRIPTTON BY OBJECTS

The second approach is to describe the system by looking at the
objects. The description is three-fold :

(1) contents : general description of what the function of the
process is as a means of camunications between processes.

(2) structure : description of the objects in temms of its com-
ponents and formatting.

(3] usage : this involves a description of the standard routine (s)
accessing the object and a cross reference table of the pro—
cesses accessing or modifying the object.

A desciption by objects may incluse the following :

A. MEMORY DESCRIPTION
The memory can be described as a serie of invariant areas (re-
sidents) and overlay areas. A description of the various overlays
of the memory is present in appendix to this thesis.
(1) Data chains. The contents, structure and usage of data
chains is described abundantly througout this thesis.
(2] Page zero. The first page of the memory (page zero } con-
tainé indjrections to access the commnication area and

routines of the various residents, as well as fixed sector

73

addresses within system files.

(3] Cammnication area. The camunication area is divided into
several sub-areas, each of them being defined by an indirec—
tion in page zero. The sub-areas include the following :

. I/0 subarea ; this area contains information relative to
the current system configuration, and is described in [1].

. RUN subarea ; this area contains information relative to
the current user of the system, such as his password, file-
id... It contains in particular the RUN byte, giving the
current status of the current RUN ; the RIN byte is des~
cribed in the MONITOR chapter.

. .FC subarea ; this area is a general commmication area for
such processes as the SPOOLER procéss , the READ and PRINT
processes, and the REAI~TIME CLOCK process. It also con-
tains the current data chain top pointer.

. PROC sub-area ; this area constitutes a provision for trans-
mission of fixed arguments between monitor and processor.
A detailed description of this sub-area can be fourd in the

processor general description chapter.

74

B.DESCRIPTION OF THE FILE OBJECTS
A general description of the disk file system is not done in
this thesis, but is present in J1]. A short description can be found
in the system overview chapter. Files include the following :

(1) files of type 'S' (normally sequential access, ASCII charac-

ters) ;

(2) files of type 'R' (nommally sequential access, binary records);

(3) files of type 'A' (normally random access) ; the format of

absolute files is described in [1].
A particular attention should be placed onto system files. Sys-—
tem files are particular files that are not directly available to a
user program. A special handler for these files is part of the ex-
tended resident, and constitute the SYSTEM FILE HANDLER process ;
it is succintly described in the processor general description chap-
ter. System files are not described in this thesis, but can be found
in [2]. Basically, the system files are :
(1) a scratch file (SCR$) ; this file is used by the system as
a virtual extension of the men'ory,~as mentioned in the desc-
ription of the swapper (chapter 7), the EXECUTE processor
(chapter 11) and the READ-PRINT processes (in [1]) ;

(2) processor and library files respectively containing the ab-
solute and relocatable programs available in the system.
A particular processor file is PRO$, containing the monitor

and the major processors ; PRO$ also contains the particular

75

input-output drivers, as fetched by the IO processor (see [1]) ;
(3) directory files ; these files contain for each disk a per—

manent track map and a directory of all the files on the disk ;
(4) spooled files ; these files are used as a buffer in the system

by the SPOOLER process ;
(51 the RUNS file, describing :

. the current status of the system (processors, file-ids...)

. and information concerning the current user of the system.

This file contains in particular the CURRENT PROCESSOR TAPIE,

CURRENT ASSIGNED FILE LIST and PROCESSOR INFORMATION AREA

CHAPTER VIT :

AN EXAMPLE OF CHANGE OF CONTEXT BY LINKING DISCIPLINE :

THE SWAPPER PROCESS

76

77

1. THE OVERLAY SYSTEM

The sysbem makes an extensive usagé of the technique of the change
of context by linking discipline. We have seen in the overview that the
system involves a continuous overlay pattern, following the alternance :

(1) MONITOR/PROCESSOR/MONITOR or

(2) MONITOR/EXECUTE PROCESSOR/USER/EXECUTE PROCESSOR/MONITOR.

The SWAPPER is the program that actually performs this alternance. It

has its own Data Chain, and thus constitutss a particular process. The
SWAPPER and its chain are entirely located in the resident part of the

menory.

A more accurate description of the overlay pattern would involve in
the case (2) =

I‘DNI'KR/SWAPPER/EXECUTE PROCESSOR/SWAPPER/USER/SWAPPER/
EXEXUTE PROCESSOR/SWAPPER/MONITOR
At least four contexts would have to be created :

(1) the MINITOR context ;

(2) the SWAPPER context ;

(3) the EXECUTE PROCESSOR context ;

(4) the USER-DEFINED context(s) .

As will be seen in the description of the EXECUTE PROCESSOR, the swapper
bringing the user program in core must possess special properties, in
order to protect the system against destruction by the user. For this
reason, it was decided to use a particular routine different fram the

general SWAPPER ; this routine does not have a context of its own, but

t

78

rather is a part of the EXECUTE PROCESSOR program ; it is described as
such in this thesis.

Thus, in terms of contexts, the system involves one of the two fol-
lowing patterns : |

(1) MONITOR context/SWAPPER context/PROCESSOR context/

SWAPPER context/MONITOR context/...

(2) MONITOR context/SWAPPER context/EXECUTE PROCESSOR context/
USER-DEFINED context (s)/EXECUIE PROCESSOR context/
SWAPPER context/lVDNI'IOli context/...

Such a loop is associated with each call to a processor.

Assuming that the monitor is able to create and bind all data chains
involved, one execution of the loop can be handled simply by use of the
linking mechanism ; the part of the memory that is not overlayed must
include at-least :

(1) the COMMUNICATION AREA and SWAPPER in low core

(2) the PROCESSOR DATA CHAIN in high core.

Diagrams in Fig 9 and 10 describe one execution of the loop in terms

of change of context and show the Data Chains involved.

MONITOR CONTEXT

MONITOR MONITOR
CREATES D.C ANALYSES DC
MONTTOR™ , SWAPPER: CONTEXT™
1\ & - >
SWAP IN SWAP IN
EXEC. PROC MONITOR
DER < EXECUTE PROCESSOR CONTEXT s
v A SWAP IN SWAP OUT
USER USER
EXECUTE
PROCESSOR
v _USER CONTEXT
M
USER EXECUTION
Y 7 N
\
-
' \
\1)
) 4 \\. /l

Fig 9 : LINKAGE TO A USER PROGRAM

DIAGRAM SHOWING THE CHANGES OF CONTEXT

] SWAPPER CHATN
EXECUTE
TTEM # 1 PROCESSOR CHAIN
T USER
{ CHAINS
] r TO MORE
¥ - USER CHAINS
p——— TTEMF #=1 . .
TYPE ITEM '
¢ ITEM # 1 l
' : ' [
: v : y ,
(TYPE ITEM ¥ ITEM # 1)
v { ITEM OF " :
: TYPE ITEM ; l
ITEM # N l : i ! |
: I ITEM OF | |
{’ { TYPE ITEM
1
\ t X
;;;}7- ITEM # N ‘1, {
t
t
—_— ITEM # N t
LINK [
7777 !
IINK; 1
7fﬂ ITEM # N
i E—
Fig 10 : LINKAGE TO A e

USER CONTEXT

A
Y

N
y

N

81

2. THE SWAPPER

The SWAPPER subprocess is entirely part of the resident. It enables
the MONITOR to load a processor in memory, and is able to restore the
monitor-image- upon returnr fram the processor.

The effect of the Swapper program can be described internally by :

(1) save the current monitor image on the SYSTEM SCRATCH FILE ;

(2) load the processor in memory ;

(3) link the processor data chain ;

(4) jump to the processor start address ;

(5) wait for processor campletion ;

(6) unlink the processor data chain

(7) reload the last monitor image fram the SYSTEM SCRATCH FILE ;

(8) return control to the monitor program .

The SWAPPER DATA CHAIN is entirely in low core. Except for the item
of type ITEM defining the PROCESSOR DATA CHAIN for the LINK operation,
all bindings of the swapper data chain are also in low core.

The swapper data chain is camposed of the following items :

(1) an item of type 'D' (CHAIN) bound by the monitor to the pro-

cessor data chain in high core ;

(2) a read-only file-bound item, bound by the monitor to the File
Control Block of the file where the processor absolute program
is to be found ;

(3) a read-write file-bound item of fixed_binding (MONI) defining

"+the System Scratch File where the monitor image is to be saved

temporarily during the processor execution .

82

In addition to the dbjects reached via its data chain, the swapper

objects include the following :

(1) the value of the registers upon input :

(2)

(3)

. (A) contains the start address for the monitor swap ;

. (B) contains the end address for the monitor swap ;

. (X) contains the sector # within file where the processor ab-
solute program is to be found .

a single byte within the PROC section of the cammunication area.

This byte is set to zero by the monitor before execution of the

swapper ; the swapper program may change the value of the byte

in case of.errors, as is shown below :

. SWP = 1 (error in swapping monitor out) ;

. SWP

= 2 (error in reading the processor dictionary) ;
"« SWP = 3 (error in reading the processor program into core) ;
. SWP = 4 (error in trying to reload the last monitor image) ;

. SWP =7 (errors 3 and 4 carbined) .
a fixed address in page zero, defining the sector address with-
in the System Scratch file where the monitor image is to be

temporarily saved.

CHAPTER VIII :

GENERAIL, SCHEME FOR THE

EXECUTION OF A PROCESSOR

83

84

As explained in the system overview chapter, each processor consti-
tutes a separate process in the system. A single processor is called for
each processing of a control card by the monitor. The processor absolute
image file, sector number within file, and PROCESSOR DATA CHAIN are found
by the monitor on the disk (PROCESSOR INFORMATION AREA WITHIN RUN$ FILE).
The bindings of the processor data chain and the core boundaries for the
overlay are determined by the monitor ; the swapper chain is also bound
by the monitor program.

Thus, a processor can have effects on the system by the following :

(1) the Processor Data Chain ;

(2) the Ccmmmi.cation area ;

(3) requests upon other processes (SYSTEM FILE HANDLER PROCESS,

READ, PRINT processes, SWAPPER subprocesses) .

1 EFFECTS THROUGH THE PROCESSOR DATA CHAIN

The Processor Data Chain is the normal way for a processor to :
(1) read input parameters set by t;he monitor fram the processing of
the control card;

(2) LINK and UNLINK subprocesses ;

(3) act upon user files on the disk (READ, WRITE, PROTECT, UNPROTECT).
The processor data chain typically is used for processor-dependant effects
on the system, apd thus is not described further in this chapter. A des-
cription of processor data chains and meaning of each item is found in

the description of each particular processor.

85

_2 EFFECTS THROUGH THE COMMUNICATION AREA

A. VARIABIE EFFECT
Variable effects upon the commmication area can be expected fram
a=preeesser; depending-upon- the sub-areas that the processor is able to

access and/or modify.

B. COMMUNICATION WITH THE MONITOR
A special sub-area (the 'PROC' sub—area) is reserved for cammmni-
cation of special fixed-size information between the monitor and the’ pro-
cessors. A detailed description of this sub-area follows ; each object
in the sub-area is considered.

(1) MAXMEM : The maximum address actually available to a processor
may change fram execut:Lon to execution, since processor data
chains in high core are of variable binding. This memory loca-
tion contains the high core address available to the processor ;
the processor may read this value to optimize buffer sizes, or
define upper boudaries for variable-size tables.

(2) PROTIM : This memory location contains at-zach instant the time
remaining before a processor time-out occurs (see REAL~TIME
CLOCK process in following chapter) ; this value is initialized
by the monitor, and is decremented by the REAL-TIME CLOCK process
every time period.

(3) sWwP : This byte is used by the swapper to signal abnormal swapper

. behaviour to the monitor, and has already been described.

(4)

(5)

(6)

86

ERRFRB : 16 memory locations are reserved to the handling of ab-
normal disk errors by the processor. When an abnormal return
fram the disk handler (.DR) occurs, the processor is able to pla-
ce the File Request Block in this area for subsequent interpre-
tation by the monitor ; since at the time the File Request Block
is copied the OP.REQ byte in the FRB has been set to zero by the
.DR routine (see [1]) , an additional byte (OPREQ) is needed
to hold the value of the OP.REQ byte before execution of the disk
handler.

INTADD : This address is a special entry in the processor program
to which the REAL-TIME CLOCK process may jump if one of two con-
ditions hold :

. A console interrupt has been recognized ;

. A processor time-out condition occux\r/ed..

This address is initialized by the MONITOR to a value specified
in the PROCESSOR INFORMATION AREA of the processor called ; the
processor may update it during its execution. The address is
typically the one of a closing sequence of the processor (see
fig. 11).

PROC : This byte is initialized to zero by the monitor before
control is given to the processor. A normal execution of a pro—-

cessor is characterized by a zero value of this byte upon return.

87

Each bit contains a one value if a specific error occurs, as de-

tailed below :

. bit 0 (low order bit) : set to 1 if an abnormal return fram .DR
occured and the File Request Block corresponding to the erro-
neous disk operation has been placed in ERRFRB and following.

. bit 1 : set to 1 if an abnormal return fram .DR occured and the
status of all files not in read-only is not guaranteed; this
means typically that a disk error occured in the midst of the
closing sequence of the processor (see fig 11).

. bit 2 : set to 1 if an error occured in the manipulation of a
SYSTEM FILE ; this bit is set to 1 autamatically if the opera-
tion in error occured via a request to the SYSTEM FILE HANDLER
process. ‘

. bit 3 : set to 1 by the REAL-TIME CLOCK process if a processor
time—out condition was detected.

. bit 4 : set to 1 by the REAT-TIME CLOCK process if a console
interrupt was recognized during the execution of the processor.

. bit 5 : set to 1 if a STACK OVERFLOW interrupt was processed
during the execution of the processor.

. bit 6 : set to 1 if a POWER FAIL interrupt was processed during
the execution of the processor.

. bit 7 (high-order bit) : set to 1 by the processor to signal
the monitor that the processor execution was not successful.

If this bit is the only non-zero bit in the PROC byte, the er-

ror will be interpreted by the monitor as a user error.

88

To each bit set to one upon return corresponds a special action
fram the monitor ; these actions are described in the ERROR section
of the monitor description chapter.

Jumps to the. interrupt entry of the processor (INTADD) can be pre-
vented by the processor during execution of critical sections (i.e sections
of program that must be executed "at once"). A special byte in the .FC
sub~area of the commnication area can be set to zero (interrupts dis—
abled condition). If this byte is zero, the processor time-out and
the console interrupt conditions will not cause any action to be taken
in addition to the setting of the PROC byte third or fourth bit to one ;
if the byte is equat to one, a jump to the interrupt address of the pro-
cessor will occurr ; the value of the byte is checked periodically by the
REAL-TIME CLOCK process. |

In addition to the bytes described above, the PROC sub—-area contains
a small routine that takes the following actions successively :

(1) set the PROC byte to the inclusive OR of the old value of the Proc

byte with the contents of the (A) register.

(2) jump to the processor interrupt address (INTADD).

This routine is used by the REAL-TIME CLOCK process ; however, it
may be used by the processor itself, and the calling sequence is :

IDA= OR mask for the PROC byte
IDX .CA (top of the PROC subarea address)
JMP+ 7

The PROC, sub-area physical structure is shown in fig 12.

I CONSOLE+ ,
ON CONSOLE: — L PROCESSOR
INTERRUPT OR UTE —_—
ouT DIgI}éEREQUEST NORMPL
TIVE -
SEQUENCE
INTERRUET . L
ENTRY
NO ERROR YES
, _
1 / I
|
. OPREQ - OP.REQ.
\ PIACE F.R.B.
| IN ERRFRB
[}
|
\ |
ERROR !
ROUTINE X SET BIT 0 of
. | NORMAL ENTRY TO
(, _CIOSTNK SEQUENCE
S l 1'% .
(oo f
INTERRUPT ENTRY il " ERROR ENTRY
TO CILOSING SEQUENCE EXECULE TO CLOSING SEQUENCE
DISK REQUEST
PROCESSOR
CLOSING
ON STACK OVERFLOW SEQUENCE

INTERRUPT - RETURN
_ TO SWAPPER

Fig 11 : GENERAL SCHEME

FOR PROCESSOR EXECUTION

MAXMEM High core address

.CA
PROTIM Current time before time-out
Iow core ind.
SWP Swapper status byte
OPREQ Operation requested found in error
* unused
RO1 entry point for error routine
IDB *+3]
POWER SYSTEM FILE
FATL ERROR
ORA PROCESSOR | STACK - OPERATOR |OUTPUT FIIES
UNSUCCESSFUL OVERFIOW INTERRUPT | IN BAD STATUS
PROCESSOR DISK
STv= TIME-OUT | ERRORl
PROC BIT 7|BIT 6|BIT 5{BIT 4|BIT 3|BIT 2|BIT 1|BIT O
JMP/
PROCESSOR STATUS
BYTE
INTADD Interrupt entry for processor

FILE REQUEST BLOCK

m .R Fig 12 : THE PROC SUB-AREA

91

3. EFFECTS THROUGH REQUESTS TO OTHER PROCESSES

A. REQUESTS TO THE SYSTEM FILE HANDLER ROUTINE
Processors desiring to execute any I/O upon system files normally

do it via a special routine called the SYSTEM FILE HANDLER PROCESS.
This routine possess its own data chain, and thus constitutes a parti-
cular process in the system ; in this data chain are defined all the
camonly used system files, including :

(1) the RUNS$ file

(2) the SCR$ file (system scratch file)

(3) the PROS file (particular processor file containing the monitor)

(4) the disk directories DIRS (1-2-3-4).
The routine is called via the fpllowing sequence :

IDX= File Request Block address

IDA= 6
ADA .HPROG
STA *+3
RIJ= **

The INTERNAL NAME of a system file is equal to its external name (file-
name) .

The output is in the register (A) : A non-zero value of (A) indica-
tes to the processor that the disk request was in error. The REQUEST BLOCK
and FIIE CONTROL BLOCK in error have been copied on the system teletype

by the routine, and the bit # 2 of the PROC byte has been set to 1.

92

B. REQUESTS TO THE INPUT AND OUTPUT PROCESSES
Processors needing same input fraom the current system input medium or
producing some listing on the current system output medium normally do it
by placing requests on the READ (SYST. INPUT case) or PRINT (SYST. OUTPUT
case) processes.
A print request is obtained by the following sequence :
IDX= address of message to print
RTJ* PRINT
The message is terminated by a zero byte.
As in. the case of the SYSTEM FILE HANDIER process, a non-zero value of
the (A) register on output indicates that an error occurred during exe—
cution of the process. The RUN byte (see MONITOR) bit 2 is set to one
and a message is printed-out on the system teletype ; however, no action
is taken upon the PROC byte by ‘the PRINT process.
A read request is obtained by a :
RTJ* READ
A positive value of (A) upon return indicates that the card read was a
control-card ; a negative value is associated with error cases similar

to the PRINT case above.

C. DATA FIOW INPUT AND DATA FLOW OUTPUT FILES
However, we mentioned in the informal presentation in Chapter 3
that the READ, PRINT processes (as well as the system file handler)
are part of the "extended resident". Same processors are either too big

or requ:%re large tables (such as the ASSEMBI.ER, see [1]. to be kept per-

93

manently in memory together with the extended resident ; an additional
buffering is done by the monitor in the particular case of these processors.

Two additional files, of names CR$ and PR$ are always temporarily
assigned to the current RUN ; these files are dedicated to hold :

(1) data—f¥owe input-as=read-from: the-current. input medium (CRS) ;

(2) data flow output as to be printed later on the current output

medium (PRS) .

The monitor copies into CR$ all "data" cards (i.e cards following
the processor control cards, up to the next control card excluded) by
placing requests on the READ process. The processor may then use the
standard disk driver (.DR) or the variable length record driver routines
to perform the foliowing :

(1) read input from the CR$ file ;

(2) produce listing onto PR$ file ;

Upon return from the processor, the monitor copiés the contents of
the PR$ file onto the current output medium of the system, using the va-
riable length record driver and placing requests on the PRINT process.

Though clearly inefficient, this scheme can be justified by the fol-
lowing considerations :

(1) memory storage, as described above ;

(2) flexibility : the "data flow input" medium is now defined in the
processor data chain ; thus a simple change in the binding of the cor-
responding item redefines the data flow input for a particular execu-

tion of a processor ; for instance, by simple modification of the bin-

1

94

ding, the ASSEMBIER will execute on a program stored in any file in the
disk file system ; this binding can be done by the monitor upon user

request on the processor call control card.

D. RETURN TO THE SWAPPER
The normal termination sequence for a processor is :
JMP STOP

STOP is an address in page zero of memory executing a jump to the begin-
ning of the part of the swapper that reloads the monitor. Before
reloading the monitor, an additional checking is done that the fol-
lowing conditions are satisfied :

(1) all disk I/0Os are campleted

(2) the LINK/UNLINK stack is in a correct status.

Recursive calls on the swapper are not possible in the current ver-
sion of the system. Thus, a processor must manage its own overlays if

necessary (see EXECUTE PROCESSOR example).

CHAPTER IX :

THE REAIL~TIME CLOCK PROCESS AND THE

ERROR INTERRUPT ROUTINES

95

96

An " interrupt entry " was defined for each processor in the
preceding chapter. A jump to this entry point is executed an the
case an error condition is detected. The MONITOR program posseses
such an entry point as well. A process activated by the REAL~TIME
CLOCK provided by the microprograms is in charge of the treatment
of these error conditions. The microprograms are able to detect
the following interrupts (in addition to the normal device inter-
rupts } :

(1) console interrupt

(2). power fail and power restart interrupts ;

(3) stack overflow interrupt ;

(4) real-time clock interrupt ;

1, STACK OVERFLOW; POWER FATL,~ PONER RESTART

It was decided that the stack overflow and power fail interrupts
were to be considered as fatal errors in the system. A jump to the
error analysis programs of the monitor is executed, and the operator
is able to specify which action to be taken, among the following :

Q) continue execution ; only the last processor is in error ;

(2) abort the current RUN ;

(3] reload the system.

In the case of .a power fail or stack overflow, the third of these
actions is recamended, since the stack overflow and power fail prog-—

rams do not guarantee that the statuses of the files is correct.

The power fail program executes the following :

(1) disable the real-time clock ;

(2) reset the power fail bit in the system stack ;

(3) halt ;
The power restart program sets the sixth bit of the PROC byte to
one (PROC = X'40') and executes a jump to the STOP routine to re-
load the monitor if necessary (JMP STCP).

The stack overflow interrupt program sets the fifth bit of the
PROC byte to one (PROC = X'20') and executes a jump to the STOP

routine as above.

2. CONSOLE~INTERRUPT

The only action taken by the console interrupt program is to
set the fourth bit of the " inferrupt requested " byte to one for

ulterior treatment by the real-time clock process (see below) .

3. REAT~TIME CLOCK

The Operating system makes use of the real-time clock provided
by the microprograms to execute the following :
(1) update the time couters : two time counters are existing in
the system, specifically :
. a count of the RN time ; the RUN time is decremented by
one every second fram a value set by the RUN processor.
A value of zero of the RUN time causes the RUN time to be

' reset to a large value and the bit 1 of the RUN byte to

97

(2)

(3)

98

be set to one ; after camwpletion of the current processor,
the RUN will be aborted by the monitor,

. a count of time for the current processor, as defined in
the preceding chapter ; this time is used to detect a loop
in execution of a processor ; the initial value set by the
monitor does not cofrespond to the average time of execu-
tion of the processor, but rather to a maximum time, after
which one can be sure that the processor was not executing
normally. Upon a zero value of this time, the time is reset
to a large value, and the third bit of the " interrupt
requested " byte is set toone (X ' 08').

The above times include CPU time, disk I/O times and input/

output time. They do =-nt constitue any representation of the

CPU time. '

restart the concurrent spooler routines if they need to be

restarted (see [1] for specific descriptibn of the cases).

check whether a special condition (CONSOLE INTERRUPT, MAX

TIME for current processor) occured since the last jnfer~

rupt by checking the value of the " interrupt requested "

byte defined in the .FC sub-area of the communication area.

If a non—-zero value of the byte is detected, a check upon

the " interrupt enabled " byte (in the same sub-area) is

done ; if the byte has a zero value, it means it has been

set by’ a processor, currently executing a critical section.

No action is then taken immediately. If the interrupts are

enabled, the following steps are executed :

. update each corresponding bit of the PROC byte to the
value of the " interrupt requested " byte ;

. zero—the-""interrupt requested " byte ;

. wait for the queue of disk operations to be empty ;

. jump to the interrupt address of the currently executing
program, as defined in the PROC sub-area of the communi-
cation area.

This sequence gives a chance to the currently executing

process to take appropriate action of recovery.

99

CHAPTER X :

THE MONITOR PROCESS

AND THE CONTROL LANGUAGE

100

101

1. FUNCTTONAL DESCRIPTION

Given the general scheme of execution of a processor, the functions

of the monitor process can be readily described by the following :

(1) Determine the processor to be called.

(2) Create the processor data chain ; bind swapper chain, processor
chain and subchains.

(3) If PRS is in the processor data chain or any subchain, initiali-
ze PR$ to empty ; if CRS is J.n the processor data chain or any
subchain, initialize CR$ to contain the set of cards separating
the current control card from the next, excluded.

(4) Initialize the communication area for processor execution.

(5) Link the swapper chain. |

(6). Wait for swapper completion.

(7) Unlink the swapper chain.

(8) Analyse "results" of processor execution through cammmnication
area and chains.

(9) If PR$ is in the processor data chain or any subchain, copy the
contents of PRS onto the current systém output medium.

(10) Go to step (1).

One execution of the monitor will be defined as a single execution of
steps (1) through (10). It involves the execution of a single proces—

SOor.

102

The MONTITOR program will be examined successively with respects to the
following :

(1) Determination of the processor information area.

(2) Creation and binding of the swapper, processor data chains and
subchains.

(3) Initialization of the cammunication area, transmission of argu-
ments to the swapper.

(4) Normal return from processor sequence.

(5) Error conditions and routines.

(6) CR$-PR$ files management.

A sample of the control language will be studied ; the syntactical

definitions and error messages are also presented in this chapter.

_2. DETERMINATION OF THE PROCESSOR INFORMATION AREA

As mentioned in the general processor description chapter, the in-
formation necessary to build the processor chain(s) is held within an
area of the RUNS$ file called PROCESSOR INFORMATION AREA. The first step
for the monitor is thus to establish the correspondence between the PRO~
CESSOR NAME specified on the control card and.the sector address of the
particular processor information area needed within the RUNS file.

For each RUN is specified a list of processor names available to
the user. This list is kept in a particular area of the RUNS$ file cal-
led CURRENT PROCESSOR TABLE. A user can dynamically add, modify or de-

lete processors from the current processor table by use of the PROC pro-

103

cessor (see PROC processor description chapter).

The current processor table establishes the correspondence bet-
ween processor identification and sector address of processor informa-
tion area. It is defined within 3 consecutive sectors of the RUNS file,
and the-address of the-first-sector-fraw the begiming of the RUN$ file
is found by the monitor in the RUN sub-area of the cammunication area.
The format of the current processor table is given in fig 13.

A processor identification, as defined in the current processor table,
is composed of the following elements :

(1) a NAME field (up to 8 letters or digits, eventually campleted

to 8 by trailing blanks) ;

(2) an OPTIN field (one single letter or blank).

The processor identification characterizes the processor within the cur-
rent processor table.

A "oontrol card" in the system consists in any number of physical
records on the current system input medium. The first character of the
first of these records need to be a " character, in order for the moni-
tor to be able to separate control cards fraom data cards ; as a con-
sequence, no data card may begin by a " character ; the same considera-
tion holds for the second, third,... records o-f a control card, if se-
veral physical records are needed.

The programmer must specify both the NAME field and the OPTION
field for a correct processor call to be executed. The processor NAME
must immediately follow the " character on the control card ; it may be

abbreviated to the smallest subset of characters that determine the pro-

AVATL

K_\/ FIRST

NEXT IAST
PROCESSOR
NAME PROCESSOR
IDENTIFICATION
OPT
ADDRESS OF
SECTOR PROCESSOR INFORMATION
ARFA
unused NEXT
unused
1
\
\
AN
0 : AVATIABLE
: ELEMENT
PROCESSOR
NAME
OPT
' Fig 12 :
SECTOR CURRENT PROCESSOR TABLE FORMAT
unused
' 1AST

PROCESSOR IN TABLE

104

cessof name completely within the names in the current procéssor table.
In the case of a non-blank option, a comma must immediately follow the
NAME field, itself immediately followed by the letter constituting the
OPTION field ; in the case of a blank option, the comma may be amitted.
Irall cases, AT I'EAST ONE- BLANR must-follow the processor identification
sequence.

An exception occurs in the case of the processor "FIN terminating
a RUN. The processor "FIN is not defined within the current processor
table. The sector number of the processor information area of the "FIN
processor is a constant in the system, and is defined in page zero of
memory. A checking for the sequence of character "FIN is done by the
monitor before any search in the current processor table. Thus, any con-
trol card beginning by thé character sequence "FIN will be interpreted

as a call to the "FIN processor.

3. CREATTON AND BINDING OF SWAPPER AND PROCESSOR DATA CHAINS

A. PROCESSOR INFORMATION AREA

The processor identification field on the control card had the only
function of enabling the monitor to load into memory the processor infor-
mation area defining a particular processor in the system.

A processor information area is created on the disk via use of the
PROC processor (see corresponding chapter). "Permanent" processor in-
formation areas correspond to standard use of the processors in the sys-
tem and are con-stantly defined within the RUN$ file ; same "temporary"

processor information areas may be tailored by a user .

105

The processor information area is described in fig. 14. It contains

the following basic elements :

(1)

(2)

The definition of the processor program absolute image. This
includes a file-name and a sector number ; file name and sector
nurber define an address in the disk file system where the dic-
tionary of the processor program's absolute image can be found ;
the file-name must either be PRO$ (particular system file con-
taining the monitor) or be defined in the CURRENT ASSIGNED FILE
LIST as a user file.

The definition of the processor default data chain. For each
item in the processor default data chain are defined the fol-
lowing :

. INTERNAL NAME of the item ;

"« TYPE of the item ;

. ACTION BITS of the item ;

. # DEFAULT OBJECTS associated with the item ;

. MINIMUM expected number of objects to be bound to the item ;

. MAXTMIM expected number of objects to be bound to the item ;

. DEFAULT BINDING of the item.

The default binding may be empty (in this case # DEFAULT OBJECTS
= 0) ; it may be outside of the MIN/MAX range. The forma£ of
an item in the default processor data chain is campatible with
the general format of an item, as defined in the Data Chain Im-

plementation chapter ; MIN and MAX (Minimum and Maximum expec-

"ted number of objects to be bound to the item) are appended at

(3)

106

the end of the item definition.

Three additional bytes defining the Default Processor Data Chain
(D.P.D.C.) as an dbject (of the swapper chain via an item of
type item) are to be found within the Processor Information A-
rea (P.I.A.). They are the minimm, maximm and access bytes
relative to the D.P.D.C. as an object of the swapper chain.

An additional difficulty comes from the fact that pointers in
data chains are absolute ; it was thus decided that all data
chains held on the disk were to be stored as if the area were to
be loaded into page zero of core (Note : the same convention -
was adopted for all structures involving absolute pointers if
they were to be stored on the disk ; this includes in particu-
lar DIRECTORIES, the CURRENT ASSIGNED FIIE LIST and the CURRENT
PROCESSOR TABLE) . Consequently, a traversing of data chains

is needed (to update pointers) each time a disk operation oc-

"curs. In addition, the FILE-ID zero on the disk is interpreted

by the monitor as the file-id of the current RUN, as defined in
the RUN sub-area of the commmnication area.

The definition of the MEMORY REQUIREMENTS of the processor.

A minimm memory requirement (interval MAXMIN-MINMAX) and a
maximum memory requirement (interval MINMIN-MAXMAX) are defined
for each processor in its Processor Information Area. The moni-
tor makes sure that the MINIMUM requirements are satisfied, and

will allocate the maximum memory available within the MAXTMUM

1

107

required. The upper memory available to approcessor may change
from processor call to processor call, and is placed by the mo-
nitor in the PROC sub-area of the oampnication area for the pro-
cessor. information..
(4) A definition of a special entry (INTERRUPT ENTRY) for the pro-
cessor. This entry is used by the REAI-TIME CLOCK process in the
case where an abnormal interrupt is detected (see REAL-TIME CLOCK
PROCESS chaptei).
(5) A PROMPT message to be printed by the monitor upon the processor
call ; this message consists of ASCII characters,:and is termi-
nated by a zero byte.
(6) Some additional "PROCESSOR CONSTANTS" to be used by the monitor.
. A PROCESSOR NUMBER ; as shall be seen in the description of the
PROC processor, a user may change the name of a processor in
the system ; the processor number is thus the only way for the
monitor to tell the console operator that a given processor
was found in error. |

. A "CONCURRENT I/0O ACCEPTANCE INDICAE[‘OR". This byte is SET if
the SPOOLING process is allowed to run during the processor
execution, reset otherwise.

. A PROCESSOR LEVEL. To each processor is associated a level,
which is attempting to estimate the degree of importance that
a failure of this processor has with respects to the current !

user of the system ; the current values of the IEVEL are :

FILE -

Processor
NAME program
definition
SECTOR #
MAXMAX
MINMAX Memory
requirements
MAXMIN
MINMIN
PROTIM Abnormal Default Processor
conditions data chain header
INTADD
PRO #
CONC
Processor
constants
LEVEL
Fig 14 :
MIN PROCESSOR
INFORMATION
AREA
MAX Definition of DPDC
as an objcet of the
SWAPPER chain
ACC.
PROMPT 0

AVAIL

FIRST

LAST

- NEXT

VALPTR

TO OBJECT LIST
ACT.

INTERNAL NAME

TO NEXT IN

- DEFAULT DATA

CHAIN FYPE
MIN Minimum # objects to be bound to item
MAX Maximum # objects to be bound to item

AN ITEM IN THE DEFAULT PROCESSOR DATA CHAIN

110

IEVEL = -1 : a processor error does not abort the RUN
IEVEL = +1 : a processor error always aborts the RUN
IEVEL = 0 : a processor error aborts the RUN if the sys-
tem is in BATCH configuration, does not abort
the RUN otherwise.
Examples of processor default data chains ca;n be found in the des-

cription of each processor, both in this thesis and in [1].

B. SPECTFICATION FIELD ON THE CONTROL CARD

The control card specification field enables the user to specify
the Processor Data Chain for the processor to be called. Reference to
a particular item in the processor data chain can be done either by ex-
plicit mention of the internal name of the item (EXPLICIT field) or by
position in the control card (IMPLICIT field). Recursion for the treat-
- ment of subchains of the processor data chain is obtéined 'by enclosing
the subchain within parenthesis. Same processors may call for the cre-
ation of user-defined items which are not in the Default processor data
chain.

a) The control card specification field consists in a number of .
fields (fram zero to 255) separated by cammas, terminated by a closing
delimiter (" , ; or)). A control card specification field may spread
over any muber of physical records on the input medium ; it must be sep-
arated fram the processor identification field by at least one blank.

The closing delimiter terminating the specification field also termi-

nates the control card ; thus, no closing delimiter is needed if there

111

is no data card following the control card (the " character at the be-
ginning of the next control card will terminate the current one).
However, since it is needed if any data card(s) is present, systematic
usage of the termination character can be considered good practice.

b) Each field corresponds EXPLICITLY or IMPLICITLY to a single item
in the processor data chain. The correspondence is EXPLICIT if mention
is done of the internal name on the control card. If no internal name
is specified in the Nth field of the control card, the programmer is as-—
suned to refer to the Nth parameter in the Default Processor Sata Chain,
and the correspondence is said to be IMPLICIT. If the internal name spec-
ified (EXPLICITLY) is not found in the default processor data chain,
the user is assumed to declare a new item (USER-DEFINED ITEM) in the
chain. Whether the parameter be defined EXPLICITLY, IMPLICITLY or be
a USER-DEFINED ITEM, the programmer may (or may not) specify a bind-

ing for the item by means of an cbject list.

field := implicit field explicit field
explicit field := item definition = object list

implicit field := object list

Note : the monitor, in order to be able to make the distinction bet-
ween explicit or implicit field, "looks ahead" for a '=' character to
the next ',",' (' or closing delimiter WI'I'HIN THE LIMITS OF THE CURRENT
PHYSICAL RECORD ; this causes a restriction to be done to the general

rule of free formatting of the control-card, since the item definition

and the '=' character must be on the same physical record, inorder for

112

the field to be interpreted correctly ; however, this seems to be no real
restriction in practice, since programmers tend to group the internal
name and '=' character on the same physical record anyway.

cYy ITEM DEFINITION
When an implicit reference is made of an item (by position on the control
card), the TYPE, ACCESS, MIN and MAX of the item are defined to be the
default TYPE,ACCESS,MIN and MAX bytes of the relevant item in the DPDC.
When the reference is explicit, the same rule normally applies ; for a
user-defined item (i.e. an item that is not in the DPDC), the defaults
for the TYPE, ACCESS, MIN and MAX are defined to be the following :

(1) blank tyre (any file in the disk file system) ;

(2) X'11' access (open to READ and BIND only) ;

(3) MIN = 0 (minimum number of objects expected = 0);

(4) MAX = X'FF' (maximum number of objects expected = 255) .
However, for explicit reference to an item, and in the case of user—de-
fined items, the user may override the defaults by explicit mention of
all of the TYPE, ACCESS, MIN and MAX, or by mentioning only scme of them.

A 'user—defined type may be mentioned explicitly by appending a '-'
character to the internal name of the item ; the type (one of the cha-
racters 'D',*' ','S','R','A','T','H','C','B' or 'F'): Must immediately
follow the '~' character without intervening blanks. However, if the
item referenced is defined in the default processor data chain, the u-
ser—-defined type must match the type of the corresponding item in the

DPDC, otherwise an error results and the processor will not be executed.

113

The MAX,MIN and ACCESS bytes may be redefined by the user according

to the following rules :

item definition := internal name item specificetion

item specification := [type] [numaxacc]
type :=- SRABCIF blank
numaxacc = ([max][,[min][,[access 1]1])

The min , max and access are considered by the monitor as objects

of type 'H' and must be explicited accordingly on the control card (see

objects of type 'H' section later in this chapter).

If any of these is explicitly mentioned, the following rules hold :

(1)

(2)

(3)

(4)

the MIN of the resulting item will be in all cases taken to be

equal to the maximum of the user-defined MIN and of the default

MIN ; -

the MAX of the resulting item will be in all cases taken to be

equal to the minimum of the user-defined MAX and of the default

MAX ;

if the item is a user-defined item, the resulting access will be .

obtained by applying the following rules :

.« a temporary access is created by taking the user-defined item ;

. a logical AND is taken between this temporary access and the
ACCESS of the data chain in which the item is defined, con—
sidered as an object of a parent chain ;

if the item exists in the default processor data chain, the re-

_sulting item will be cbtained by application of the following :

114

. the four lower bits are temporarily taken to be equal to their
DEFAULT definition (i.e. their definition in the chain) ;

. the fifth bit (BIND access, allowing the user to redefine the
default binding of the item) is temporarily taken to be equal
to the logical AND of the fifth but in the data chain (default
value) and of the user definition for the fifth bit of the
access byte ;

. finally, the resulting item is obtained by applying the same
rule as above in case (3), specifically a logical AND is taken
between the temporary access and the access byte of the data
chain in which the item is defined.

d) OBJECT LIST
The cbject list enables the user to redefine the bind:ihg of the current
item. The list of objects is ;pecified as a succession of subfields
separated by commas, enclosed within parentheses ; if there is only one
object in the list, the parentheses may be left ouﬁ , except in the case
of an item of type item ('D' type).
If no object is specified, the binding is assumed to be equal to the
default binding, i.e. :

(1) the binding defined in the Default Processor Data Chain for the

items already defined in the DPDC ;

(2) the empty binding for user-defined items.

115

<object list»> := <empty list> ‘:single object listsy \
«qmultiple cbject listy

<empty list» := «nil»

¢single object list» := <«object> o

<multiple object list> := (<«dobject> g ’ ‘dobjectv})
When one of the subfields is left out, the corresponc{i_ng default ob~
ject fram the DPDC is assumed, if any ; if none, an error results and

the processor is not executed.
<dobject» := <nil> | <cbjects>

If the number of subfields explicitly or implicitly specified within an
object list is greater than the MAX of the corresponding item, an error
results and the processor is not executed.

If the number of subfields specified within an object list is smaller
than the MIN of the corresponding item, the monitor will attempt to com-
plete with default objects, until the mumber of objects is equal to MIN ;
if the number of default dbjects is strictly less than MIN, an error
will result and the processor will not be executed.

For each subfield which is explicitly specifiad, one of three conditions
must hold :

(1) the ACCESS fifth bit (bit # 4) of the relevant item is set

-e

(2) no default binding is specified for the subfield in the DPDC ;
(3) the default object for the subfield is equal to the object spe-

cified by the user.

116

e) COMPLETION CONDITIONS
Not all items in a default processor data chain need to be explicitly or
implicitly mentioned by the user on its control card. If an item of the
DPDC is left unspecified, it will be appended to the (memory) processor
data chain at the end of the processing, and its binding will be assumed
to be equal to the default binding, as specified in the DPDC. This re-
mark holds for subchains of the PDC as well.

This can be considered as an exception to the campletion rule for
objects as explained in the preceding paragraph ; in the case where the
item . is of type item, all itemsobjects in the DPDC will be present in
the final chain ; in the case of items of other types, the completion
© rulw will hold only until the final number of objects reaches the MIN
value.

f) OBJECTS
The adbjects specified in the value list must have the type expected fram
the item definition. The different ébject types are examined below suc-
cessively.

g) FIIE OBJECTS (TYPES 'S','R','A' or ' ')

A file 6bject is defined on the control card by a FILE-NAME and a FILE-
TYPE, |

The file-name is constituted of two parts : the FILE-ID part and
the USERNAME part. The file-id part is characteristic of a user or a
group of users in the system ; it is constituted of from 1 to 4 hexade-

cimal characters ; if the file-id part is left out of the control card,

117

it is assumed to be equal to the CUURENT USER FILE-ID, as defined within
the RUN sub-area of the cammunication area. The file-id part, if expli-
cited on the control-card, is separated from the usemame part by the
special character : '*' ; since the monitor "iooks forward" for a '*' in
order to know if the file-id is explicited, the file-id and username parts
must belong to the same physical record ; however, any number of blanks
may be left before and after the '*' character. The username part is
constituted of up to 8 letters or 'S$', eventually completed on the right
by trailing blanks.

The FILE-TYPE may be explicitly mentioned on the control card, and
is this case must immediately follow the character '-', itself appended
to the end of the file-name. If the type is explicit, it must be equal
to the type of the corresponding item if the type is one of the three
types 'S','R','A' ; if the type is not explicited, it is assumed to be
equal to the type of the corresponding item if the type of the item is
'S', 'R' or 'A' ; an error results in all the other cases.

The complete identification of a file in the disk file system con-
sists in the file-id, username and file~type. Two files with the same
file-id and username but different types (such as CR$-S and CR$-A) may
coexist in the system. A demonstration of the actual way a file-name is
stored internally by the system is shown in fig. 15.

The monitor is in charge of constructiné the file control block for
the file required. The file must be defined in the current assigned file

list, containing the list of the files currently assigned to the RUN.

118

The current assigned file list format is described in fig.116. the in-
formations relevant to the construction of the FIILE CONTROL BLOCK inclu-
de the following items :

(1) file-name ;

(2) current END-OF-FIIE ;

(3) disk/platter byte ;

(4) offset to first allocation of file within platter ;

These elements are to be placed in the file control block by the monitor
for later use by the disk driver routine (.DR).

In addition to these,elements, the "STATUS 1" byte contains 8 bits
defining the type.of access allowed to a user upon the file concerned ;
the four lower bits define the possible ways in which a user with the same
file-id as the file-id of the file concerned iray access the file (READ,
WRITE, PROTECT, UNPROTECT accesses in this order fram bit 0 [lower bit]);
the four high-order bits apply to all the other users in the system.

If the file-id of the current user is the same as the particular
file-id, the four lower bits areaconsidered ; otherwise, the four higher
bits are considered. If, for each of the four lower bits in the access
byte of the current item which is set to one, the corresponding bit a-
mong the four chosen is also set to one, the required access upon the
file is acknowledged ; otherwise, an error results and the processor call
is ignored.

The "STATUS 2" byte of the current assigned file list contains in

particular the following bits :

119

(1) a "in use" bit (bit 1), set to 1 when the file is currently in use

(2) a 'file possibly in bad status" bit (bit 6), set to one when the

contents of the file are doubtful ;

(3) a "file in hardware error" bit, set to one when a disk error oc-

cured when reading, writing, protecting or unprotecting the file ;
When the file control block is created by the monitor, the "in use" bit
of the status 2 is set. When the file control block is destroyed (upon
return fram the processor) , the monitor resets it. Upon error returns
from the processor, the monitor may set the "file possibly in bad status”
and "file in hardware error" bits of the status 2.

Normally, when a file is requested by a processor, the "in use" bit
must be reset ; however, a file may be requested by different subchains
of the processor data chain. In this case, the file control block is
not created, but the VAL pointer of the new item is set to point onto
the file control block already created. A specific check is made that
the file is not requested from two different items belonging to the same
data chain (see fig.3, case d). N

F:Lnally, the binding of a file object by the monitor can be explai-
ned by the following steps :

(1) check that the file requested is in the current assigned file list ;

return in error otherwise.
(2) check that the access required (in the item definition) is ac-—
knowledged by the definition of the file in the current assigned

. file list ; return in erxor otherwise ;

120

(3) look-up in all chains and subchains created to this point whether

a file control block was already created with the same file-name.

. If found, check whether a reference to the FCB is done from
an item in the same data chain as the current item ; return in
error if so ; otherwise simply set the VAL pointer of the cur-
rent item to point onto the FCB found ;

. If not found, check that the file is not in use (i.e. that
the "in use" bit in the assigned file list definition for the
file is not set) ; return in error if the file is found already
in use ; otherwise set the file to "in use" and create the File
Control Block in memory from the definition of the file in the
Current Assigned File IList.

h) ITEM OBJECTS (TYPE 'D')
Chain objects enable a prooess-or to define subprocesses. On the control
card, it is simply a recursion over the syntactical definition of the
" specification field " within parentheses ; the maximum recursion depth
has been arbitrarily set to 5, which is more than sufficient for all prac-
tical purposes.

Aé noted before, here the parentheses cannot be left-out, for rea-
sons of ambiguity of the control language.

The access of an item of type item is used as a mask for all items
in the dependant chain ; this is used in the system to prevent any sub-

process from having more power than its parent.

121

Another exception has already been noted for the case of items of
type item : in the case where some items of the dependant chain are left
unspecified, all items in the chain of the DPDC corresponding to the de-
pendant chain are appended (as explained under e) of this paragraph),
instead of only those necessary to camplete the number of objects to MIN
as in the case of items of other types (see b) of the present paragraph).

i) MEMORY~-BOUND OBJECTS (TyPES 'I','B','H','C','F')

Objects of type 'I' correspord to full-word integer values, and are
thus held in two bytes of core ; on the control-card, they can be writ-
ten in one of two forms :

(1) decimal form (normal signed or unsigned integer value) ;

(2) hexadecimal form, format campatible with the ASSEMBLER hexadeci-

mal form .

Objects of type 'H' oorresi:ond to half-word integer values, and are
thus held in one single byte of core ; on the control-card, they can be
written in one of three forms :

(1) decimal form, as above;

(2) hexadecimal form, as above;

(3) character form, format compatible with the ASSEMBLER character
format; the single quote character has been added, and may be
written as two consecutive quotes.

Objects of type 'C' correspond only to characters ; on the control

card, they must be written in the character form specified above ; the

character 'C' preceding the quote may be left out.

1

122

Objects of type 'B' are meant to hold boolean values ; they are,
however, held in a whole byte of core as a binary 0 or 1 ; on the con-
trol card, they can be written either as a 0 (resp : 1) or as one of
the words NO or YES.

Objects of type 'F' are file-names considered by the system as me-
mory-bound objects. No file control block is created, no search in the
current assigned file list is done by the monitor. They cannot be used
to actually execute disk I/Os on the file, but rather seek to trans-
mit a file-name as a simple parameter (see example of use in the "EILE
processor, in [1]) ; they are stored in the packed 8-bytes version cam-
patible with the format of file-names in the file control block , on the
control-card, they are written exactly as an dbject for an item of file
type # if no explicit type is mentioned on the control card for the file,
the type is implicitly assumed to be 'S' ; if a type is explicited, it
must be equal to one of the file-types 'S', 'R' or 'A'.

j) MULTIPLE CONSTRUCTS
A writing convention was designed to simplify the writim_:; of multiple
object lists in the following cases :

(1) objects of type 'C' or objects of type 'H' written in character

format ;

(2) objects of type 'H' or 'I' written in hexadecimal form.

The "multiple construct" :

'MESSAGE : '

will be interpreted by the monitor as the more complex :

123

('™','E','s','s', A" 'GY'EY, Y N,)
If the item is of type 'H', the following expression :
X'01011'

will be interpreted as if the following had been written :

(x'01',X'01',X'1")or (1,1,1)
If the item had been of type 'I', the previous expression would have béen
interpreted by tee monitor as the following :

(X'0101' ,X'1'") or (257, 256)

Note that the result in both cases would have been radically different
if one had written X'1011' instead of the above.

These multiple expressions cannot spread over several physical re-
cords ; however, this is not a limitation since such constructs can be
found within multiple dbject lists ; to split the above character for-
mation, one could have written for instance :

("MESSAGE ' ,

'l: f).

124

4, ALIOCATION OF PROCESSOR DATA CHATNS

Processor data chains are allocated by the monitor in high core
DOWNWARDS. When a new item is allocated, it is allocated the first emp-
ty storage below the items already allocated ; a consequence ot this al-
location scheme is that successive objects in an object list are to be
found by negative offsets from the first one (the actual value of the
offset depends on the item TYPE according to the memory requirements for
each object).

The higher address for storage of the processor data chains depends
on whether or not the processor allows the spooling process to be running
during its execution, as defined by the "concurrent I/O indicator" byte
defined in the processor information area. If the byte is reset, the
spooling process is put in a wait condition by the monitor before the
beginning of the chain allocation phase ; the image of the spooling pro-
cess area is temporarily stored in an area of the SCR$ file. The proces-
sor data chains may then be allocated fram the top of memory dowrwards.
Otherwise, they are allocated fram the bottam of the spooling process
area.

In allocating the data chains, the mm'_f.or makes sure that the MI-
NIMUM requirements of the processor are satisfied (as defined by the
variable MINMAX of the processor information area) ; otherwise, an er-
ror will result, and the processor will not be executed.

Adiitional memory constraints for the allocation process are the

minimun requirements of the monitor itself, as described in section 7.

125

5 INITTALIZATION OF THE COMMUNICATION AREA AND ARGUMENTS FOR SWAPPER

Additional information for transmission of information to the proces-

sor and to the swapper include the following :-

(1) printing of the prampt message included in the processor infor-

(2

(3

mation area (a bit enables a user to prevent the printing of

this prompt, as well as the printing of control cards ; it can

be reset and set via calls to the "IO processor, see [1]).

initialization of various parts of the cammmication area, inclu-

ding the following :

reset PROC and SWP bytes (in the PROC sub-area) ;

initialize PROTIM and INTADD (in the PROC subarea) to the
corresponding values defined within the processor information
area ;

set the MAXMEM location in the PROC sub-area to the maximum
address available to the processor, as resulting from the da-

ta chain allocation process explained in the preceding paragraph.
set the "processor number" byte in the .FC sub-section of the
camunication area to be equal to the correspording byte def-

ined within the processor information area.

transmission or the arguments necessary to correct swapper execu—

tion . The File Control Block of the file where the processor

program absolute image is to be found is created in low core with-

in the swapper data chain ; the name of the file is found in the

' 'processor information area ; the name may be FFFF*PROS$, in which

126

case the file control block is found within the chain of the MASTER pro-

cess (see general processor description chapter, section 3.A)

~e

otherwise, the file must be defined within the current assigned file
list, and the file control block is created bi/ following the steps spe-
cified in section 3.B.) of this chapter.

The sector number within the file is to be found in the processor
information area, as well as the low core address for the swap-out pro-
cess (= MINMIN).

The high core address for the swap-out is computed from both :

. the memory requirements of the processor and
. the first address not used for storage of the processor data chains,

as resulting fram the allocation process.

6 NORMAL RETURN FROM PROCESSOR SEQUENCE

The steps followed by the monitor after a normal execution of a
processor include the following :

(1) reset the cammunication area relevant cbjects, test for errors ;

(2) copy the data flow output fram PR$ onto the current system out-
put medium, if PR$ is present in any of the processor chains ;

(3) update the current assigned file list ;

(4) if necessary, reload the spooling process area from the scratch
file ; if necessary, enable the spooling process.

Step (1) : the cammmication area (PROC subsection) is interro-

gated with respects to processor errors and swapper errors ; the PROC

127

and SWP bytes are reset ; the INTADD is set to point on the monitor in-
terrupt address ; the PROTIM location is reset to the monitor time-out
condition ; the interrupts are enabled ; the processor number byte in the
.FC sub-area is reset to zero (MONITCR IN).

STEP 3 : the current assigned file list, both in memory and on the disk,
is updated as follows : each file in the current assigned file list is
tested for the "in use" condition ; if the file is found to be in use,

a search for the file control block corresponding to the file definition
is done through the swapper and processor chains ; if the file is found,
the "in use" bit is reset and the END-OF-FIIE is updated to the current

value of the END-CF-FILE in the File Control Block.

7 BUFFERING AND REQUESTS UPON OTHER PROCESSES

The monitor executes requests upon the following processes :
(1) the SYSTEM FILE HANDLER ROUTINE (MASTER process) in order to
execute the following disk operations :
. load the current processor table in memory ;
. load the processor information area in memory ;
. load the current assigned file list in memory ;
. store the current assigned file list on the disk.
The last of these operations is normally done twice per execution of the
monitor, once before the processor execution, and once after return fram

the processor. -

128

(2) the READ process, in order to perform the following operations :
. read the successive physical records constituting the control
card ;
. copy the data flow output, if any ;
. skip to the next control card, in error cases ;

(3) the PRINT process, in order to perform the following operations :

. print the control cards images (unless specific user request,
see "IO processor, in [1]) ;

. print the procesocor prampt (same remark as above) ;

. copy the data flow output from PR$, if any ;

. print error messages, if any ;

The formatting of the two dedicated files PRS and CR$ is done by
records ; the monitor is thus able to use the variable length record
driver routines in order to ez'»{ecute the necessary COPY operations.

After each cycle of execution of the monitor, both of these files
are reset by the following operations : |

(1) write an end-of-file mark onto the first two bytes of the first

sector of the file (sector zero) ;

(2) reset the END-OF-FIIE location to zero in the current assigned
file list definition of the file ;

(3) return to the available list all allocations.of the'£ile except

for the first allocation.

129

The monitor makes use of a single buffer for all disk operations.
The buffer is successively overlayed by the following structures :

(1) the current processor table ;

(2) the processor information area ;

(3) the buffer necessary to the eventual OOPY operation of the input

data flow ;
(4) the buffer necessary to the eventual COPY operation of the out-
put data flow ;

In addition, the buffer holds the error messages loaded fram the PROS
file, if loading them ever becames necessary.

The buffer is located in high core, above all the monitor programs.
The buffer size is necessarily 3 pages during the (1) and (2) stages ;
however, the variable size structure of the processor information area
implies that not all the buffér may actually be used for the storage of
pertinent information ; the first unused location is defined by the first
two bytes of the processor information area (see fig. 14) . Thus, the
remaining of the buffer may be allocated by the monitor to the storage of
the processor data chains ; however, at least one page must be kept to
meet the minimum buffer size requirements fram the copy operations. the
actual buffer size during the stage 4 depends on whether the system is
in BATCH configuration ; the buffer size during the stage (3) depends
upon the size of the processor data chain allocated and upon whether the

system is in batch configuration or not.

130

As a consequence of both the section 4 considerations and the above
discussion, the monitor will allocate the processor data chain (from
the top of memory dowrwards) until one of the three following conditions
does not hold :
(1) the minimum processor memory requirements are not met ;
(2) the monitor buffer size becomes less than one single page of core ;
(3) the processor data chains begin to overwrite the processor infor-
mation area.
If one of these conditions does not hold, an error results and the pro-

cessor call is ignored.

8.ERROR CASES AND ERROR ROUTINES. ABORT CONDITIONS

The following will be examined successively :

(1) Errors during control card processing ;

(2) Errors occurring during disk transfers ;

(3) Swapper errors ;

(4) Processor errors ;

(5) Run abort conditions and routines ;

A. ERRORS DURING OONTROL CARD PROCESSING

A variety of user errors may occur during control-card processing.
A list of the specific errors can be found in a later section of the pre-
sent chapter. |

'I‘.t?.e error messages are located within a particular area of the PROS

file ; the sector address is defined in low core. All errors result

131

in a non-execution of the current processor call ; the actual penalty
may include abortion of the current RUN if the user is in BRATCH con-
figuration. OtherWise, the cards are skipped until the next control card
is met, and normal execution continues from this point.

An indication is given to the user of where on the control-card the
monitor was able to detect the error ; however, this is simply an indi-

cation that may well not reveal where the true mistake was.

B. ERRORS DURING DISK TRANSFERS
Any error occurring during a disk transfer will cause a jump to the

RUN byte analysis routine, and the RUN will normally be aborted.

C. SWAPPER ERRORS

Any swapper error will cause the printing of the message :
'SWAPPER ERROR :'

on the system teletype ; following this message, the SWP byte will be
dumped ; the file request block and the file control block relative to
the disk operation found in error will be dumped on the éystem teletype.
The PROC byte high order bit (BIT 7) will be set to 1, as well as the
RUN byte third bit (BIT 2) ; thus, any swapper error causes abortion

of the current RUN.

132

C. PROCESSOR ERRCOR ANALYSIS
In the case of a non-zero PROC byte upon return fram processor execu-
tion, the following actions are taken by the monitor in this orxder :
(1) if the seven low-order bits of the PROC byte are zero, GO TO step
(11) ;
(2) print upon the system teletype the following message :
'ABNORMAL RETURN FROM PROCESSOR : '
followed by the contents of the PRONUM bytes of the .FC sub-area
of the commmication area (processor number) ; print :
'PROCESSOR STATUS BYTE : '
upon the system teletype, followed bytthe contents of the PROC
byte ; print upon the current system output medium (i.e. for
user information) the following message :
'SYS':[‘EM OR DISK ERROR'
(3) if the BIT 6 of the PROC byte is set (POWER FAIL), print :
'"POWER FATIL' |
on the system teletype ; set the bit 3 of the RUN byte to one ;
set the bit 1 of the PROC byte to 1.
(4) if the BIT 5 of the PROC byte is set (STACK OVERFLOW), print :
'STACK OVERFLOW'
on the system teletype ; set the bit 3 of the RUN byte to one ;
set the bit 1 of the PROC byte to one.
(5) if the bit 3 of the PROC byte is se£, print :

'TIME-OUT'

(6)

(7)

(8)

(9)

133

on the system teletype ; set the bit 3 of the RUN byte to one.
if the bit 4 of the PROC byte is set (CONSOLE INTERRUPT), print :
'OP. INT.'
on the system teletype ; if the IEVEL of the processor is positive,
or if the LEVEL is equal to zero and the system is in batch conf-
iguration, set the bit 4 of the RUN byte to one.
if the bit 2 of the PROC byte is set, set the bit 2 and the bit 0
of the RUN byte to one.
if the bit 0 of the PROC byte is set, print the file request block
and the operation requested byte of the disk operation found in
error on the system teletype ; these are found respectivelt in the
ERRFRB and OPREQ areas of the PROC sub—area of the C.A. ; traver-
se all processor data chains in search for the internal name in
ERRFRB ; if a file control block is found, dump it on the system
teletype ; if it is not fouﬁd, print : ‘
'NOT' FOUND' -
on the system teletype ; set the "file in hardware error" bit in
the status 2 of the current assigned file list definition for
the file.
if the bit 1 of the PROC byte is set, take the following action
with respects to all files in the current assigned file list :
. if a file is not "in use", ignore it ;
. if a file is not defined in any of the swapper, processor data
chains, ignore it ;

134

. if a file is found within at least one of the chains, but the
corresponding items pointing to the file have READ-ONLY access
bytes, simply reset the "in use" bit in the status 2 of the
assigned file list definition for the file ;

. if a file is found and at least one item points to it in either
WRITE, PROTECT or UNPROTECT access, reset the "in use" bit and
set the "file possibly in bad status® bit (BIT 6) in the status
2 of the assigned file list definition for the file.

(10) print on the current system output medium :
'PROCESSOR IN ERROR'

(11) print on the current system output medium :
"PROCESSOR NOT SUCCESSFUL'

if the IEVEL of the processor is positive OR if the IEVEL is

zero and the system is in BATCH configuration, set the high-or-

der bit of the RUN byte.

E. ABORT CONDITIONS. RESTART ROUTINES

An abort condition is characterized by a non-zero value of the RUN
byte. The bits constituting the RUN byte have the following meaning :
(1) bit 0 (low—-order bit) : this bit is set to one if a disk error
occured during the current RUN ;
{2) bit 1 : set to one if a RUN time-out condition was detected by
the REAI-TIME CLOCK process.
(3) bit 2 : set to one if a disk error occurred during the current

' RUN upon one of the system files.

135

(4) bit 3 : set to one if a system fatal error or an abnormal inter—

rupt occurred during execution of the current RUN.

(5) bit 4 : set to one if a console interrupt was recognized and the

system is in BATCH configuration. |

(6) bits 5 and 6 : unused.

(7) bit 7 : set to one if the RUN is to be aborted because of a user

error other than the occurence of the max RUN time.

The monitor checks the value of the RUN byte after execution of each
processor. A non-zero value of the RUN byte causes the following se-
quence to be executed :

(1) if the bit seven is the onlt one to be set, go ABORT the RUN (

call to the FIN processor);

(2) if the bit one is set, go ABORT the RN via a call to the FIN

processor ;

(3) if the bit zero is set, and the bit four is set, print on the

system teletype the following message :
'FATAL SYSTEM FIIE ERROR'
(4) if the bit three is set, print on the system teletype the fol-
lowing message :
'FATAL SYSTEM ERROR'

(5) disable the spooling process, and wait that the queue of opera-

tions on the disk be empty.

(6) type :

'"PLEASE ENTER SENSE SWITCHES'

on the system teletype.

136

(7) halt ; wait for operator to press the RUN switch on the console.

(8) enter sense switches ;

(9) if the switches are all mset, go back -to step (6) ;

(10} if the leftmost switch is up, jump to the beginning of the TOS
program ; upon return fram TOS, jump back to step (6) ;

(11) if the next switch is up, go abort the current RUN by executing
a call to the FIN processor ;

(12) otherwise, if the next switch is not up, go back to step (6) ;

(13) if the next switch is up, set the RUN byte back to zero, and

continue the execution normally.

137

9. SYNTACTTCAL DEFINITIONS OF THE CONTROL LANGUAGE

The syntactic equations defining the control language are grouped
together below. An "extended" notation is used to express the sintac-

tic rules, where in particular :

b
{< 6> stands for repetion fram a to b times of G ;
a 4
{<‘7} stands for {4 67 }
(-] “4
{ } stands for "indefinite repetition, at least a times";
Q
.'
[1] stands for g ¢ 6y g
<nil> stands for the null element ;
(1) <control card> := <identification> <blank > <chain 'definiti.on >
(2) <identification» := " <processor name> [, «processor options]
2
(3) < Processor name?» :=, {letter
{

(4) < processor option> := <letter -

L4

(5) < chain definitions := [<item sequence>]), ¢item sequence >
< closing delimiter >

(6) <closing delimiter» := ; \ " \)

(7) <item sequence > := <explicit field » | <implicit field »

(8) <explicit field » := <item definitions = <cbject list »
(9) <implicit fields := <object list>

(10) <object' listy := <default list » ‘4 single object list »
’ <multiple object list >

(11) 's4default list> := <nils»

138

(12) ¢single cbject list » := <object> («<data chain object s
¢closing delimiter >
(13) <multiple object list » := (<dobject-> |}, dobject
«closing delimijjter »
)]
(14) tdobjects := «default cbject Jcobjectv
(15) < default cbject» := <nil>
(16) <objects := <«memory-bound object > | < file object »

a7 ¢item definition » := <internal name» <item specification >

(18) < itemspecification» := [«type>] [< numaxacc >]

(19) <types = - {SlR]A(B!blank{ClI{HlFfD }

(20) <numaxace? = (+maxs [, <min> [,<access>]]<closing delimiter »
(21) <max> := <ni1>'<hexal>

¢eminy := znil> }zhgxal>

(23) daccessy := <¢nil>)<hexal> 5
(24) ¢internal names> := <letter » 4 «letter > [<digit~ }
o
(25) ¢data chain cbject> := ¢chain definition »
(26) < file object>:=file identification~ <file type »
(27) <file identification~» := [< fileidy *] <user-defined name >
(28) <fileidy := <hexa2>
(29) < user-defined name s := <¢letters | $

(30) <file type» = [-jSIR}AIblank}]

(31)

(32)
(33)
(34)
(35)
(36)
(37)
(38)

(39)

(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

139

<memory-bound cbject> := <Fobject>‘ <«Iobject~ <Hobject>]<Cobject >]

<Bobject s

¢file jdentifications

<Fobjects :

<Icbject> :

<decimal> } < multvalhex?2 »

<Hobjecty := <decimal »)<multvalhexl7 I € <multvalchar »

[C] ¢<multvalchar »

<cobject > :
< Bobject ¥ := <true boolean » } <«false boolean -

f
{multvalhex2» = X ! {<hexa2>} [<hexal »] !

¢multvalhexl» := X '“{(hexab} '
-4

o .
¢<multvalchar» = ! { ' l <non—quote ASCII character »

<decimaly := <positive » , <negative >

¢positive> := [+] s«integer 5

t¢negative » := - «<integer >

¥
< true boolean> := 1 {«iigit;g \ Y %letter%
[-]

o

o,
< false booleanr := 0 g’,‘<digit>} N {detter?

b o
<chexaly := {<hexa7‘g
3
<hexals := z{ hexa ~g

< hexar = A‘lB,C}D)E]F | <aigit >

}

10.

140

ERROR MESSAGES

The error messages occurring during control card processing are lis-

ted below as they can be found in the FFFF*PROS file.

(1)

(2)

(3)

(4)

(5)

(6)

(7

UNKNOWN PROCESSOR IDENTIFICATION : the processor name and option fields
as specified on the control card do not match any of the processors in
the current processor table.

III~DEFINED PROCESSOR IDENTIFICATION : the processor name and option
fields do not determine the processor uniquely within the current
processor table. Hint : do not abbreviate the processor name too much.
CHAIN RECURSION LEVEL TOO DEEP : the level of embraced parentheses

is too deep (greater than 5).

BINDING CAMNOT BE OBTAINED BY DEFAULT : no default value can be bound
to the item in this position. Hint : praobably a comma too many.
DUPLICATED INTERNAL NAME : The same internal name was used twice in
the same data chain. Hint : check items generated by default in
processor data chain and their associate positions on the control
card.

TOO MANY ITEMS FOR THIS DATA CHAIN : the number of items in the cur-
rent data chain is greater than the MAX of the chain as an object.
Hint : one of tha internal names specified in the chain was mispelled.
TOO FEW OBJECTS FOR THE CURRENT ITEM : The number of objects bound

to the item is less than the MIN specified for the item. Hint : one

of the objects was forgotten.

t

141

(8) TOO MANY OBJECTS FOR CURRENT ITEM : the number of objects bound to
the item is greater than the MAX specified. Hint : probably a
cama too many, or check definition for item.

(9) ATTEMPT TO CHANGE THE BINDING OF A PROTECTED ITEM : the item is
'frozen' to its default value, and an attempt was made to bypass
the default.

(10) UNCORRECT FILE-TYPE : either an explicit file type was incorrect,

or the file type was not explicited and the item is of type ' '.

(11) ILIEGAL FIIE-ID : The file-id field in the file-name is incorrect.

(12) UNVALID BOOLEAN : uncorrect spelling of a boolean object.

(13) QUOTE ERROR : a quote was forgotten or the expression within quotes

is incorrect. '

(14) OVERFILOW : too large a value for an integer or half - word object

expressed in decimal form.

(15) '=' SIGN FOUND MISSING : self explanatory. Hint : the internal

name may be incorrect, or an cbject list was mispelled.

(16) UNCORRECT TYPE : The type explicited for the itsm is incorrect

(17) UNABLE TO ALIOCATE DATA CHAIN : self-explanatory.

(18) ACCESS ERROR : the file required is not available for the access

required.

(19) FIIE STATUS ERROR : the file requested is already in use. Hint :

a file requested for processor execution (eventually by default)
is used as input or.output medium for the system.

1

142

(20) DUPLICATED FILE CONTROL BLOCK WITHIN CHAIN : an attempt was made
to request the same file from two differmnt items of the same data
chain. Hint : check default assigmments for items of file type.

(21) FILE NOT FOUND WITHIN RUN$: the file requested is not currently
assigned to the current RUN.

(22) END OF FIELD NOT MET : a camma or termination character was expec-
ted by the monitor program at this point of the processing. Hint :
this error message can be printed-out in reason of many different
errors ; however, the error can be located precisely fram the

monitor indication.

A general remark need to be done concerning the error diagnostics
generated by the monitor : a '*' character is printed to indicate to the
user the point in the processing where the monitor was able to recog-
nize the error ; however, it should be understood that this indication
may not always be meaningful ; for instance, the character will be in
many cases located in front of the semicOlon terminating the control
card, since most of the default processing is done at that time ; the
error (6), for instance, will in most cases be printed at the end of
the processing of the control card, though it was caused by an error
occurring generally much before this point.

Improvements are needed in the precision of the above messages ;
a scheme has to be found to be able to give more precise indication

of which particular - field of the control-card was erroneous. .

t

143

11l. PROPERTIES OF THE CONTROL LANGUAGE

A. EQUIVALENCE BETWEEN CONTROL CARD AND INTERNAL REPRESENTATION
This approach taken in the beginning of this chapter for the des-
cription of the control-card processing mechanism was an internal ap-

proach. An identity such as :
item specification := object list

, on.the control card, was described in terms of its internal equi-
valent, i.e in terms of such concepts in the system as items, objects
and data chains.

Conversely, each item in any data chain for any process may be
described in terms of its expression on a control card ; each default
processor data chain is equiv_alent to a “defa.ult control card" ;

a call to the "PROC processor (see this chapter) enables a user to
list the "default control card" of a processor in his processor table.

This equivalence can be demonstrated by examining the case of the
ASSEMBLER processor in the system ; the case is not chosen because of
its generality but rather because it is a simple and typical example
in the system.

The Assembler processor data chain contains the following four
items (MIN = MAX = 4 , ACCESS = X!11' for the processor data chain as

an abject of the swapper chain) :

144

(1) item # 1 : internal name : IN; type : 'S' (expects a file of type
source); MIN = MAX = 1; access required : X'1ll' (read only) ;
default binding : 0000*CR$ (standard data flow input file for the
current user). This item is used by the program to read the input
source assembly language program.

(2) item # 2 : internal name : OUT ; type ¢ 'R' ; MIN=MAX =1 ; ac-
cess required : X'12' (write only) ; default binding : 0000*RELS$S-R
(standard relocatable file of the current user).

This item defines the file where the relocatable output éf the As-
sembler is to be put.

(3) item # 3 : internal name : FIAG ; type : 'B' ; MIN = MAX = 3 ; ac-—
cess required : X'11l' (read-only) ; default binding : YES,YES,YES ;
This item let a user specify if listing of the assembled program is
wanted (first boolean) , if a listing of the symbol table is wan-
ted (second boolean), and if a relocatable output is to be ef-
fectively written onto the output file (third boolean) .

(4) last item : internal name : PRINT ; type : 'S' ; MIN = MAX = 1 ; ac-
cess : X'12" ; default binding : 0*PR$ (standard output data flow
file). This item defines the file where the listing is to be
produced ; this file is by default the standard output file, to
be copied by the monitor onto the current system output medium.

The "default control card" correspanding to this default proces-

sor data chain will be the following :

145

"ASSEMBLE IN-S(1,1,X'11') = CRS,
OUT-R(1,1,X'12') = RELS,
FLAG-B(3,3,X'11') = (YES, YES, YES),

PRINT-S(1,1,X'12') = PRS ;

The above control card constitutes a valid call to the ASSEMBLER.
However, it is not always the case that a default control card is a
valid call to the processor ; for instance, we can define fram the a-
bove processor another processor called "ASSEMBLE,Z having the same
data chain, except for the second item (OUT-R(1,1,X'12') } , which,
on the disk, does not have any object bound to it (empty binding).

Then, the equivalent control card :

"ASSEMBIE,Zz IN-S(1,1,X'1l') = CRS,

OoUT-R(1,1,X'12') =,

FIAG-B(3,3,X'11') = (YES, YES, ¥YES),

PRINT-S(1,1,X'12') = PRS ;
will no longer constitute a valid call to the assembler, since the
second item is associated with an object list containing a number of
objects (0) outside the MIN - MMX range (1 -~ 1). 1In the above
case, the monitor program will, immediately after processing the second

line, produce the following :
OUT-R(1,1,X'12') =,
*

ERROR : TOO FEW OBJECTS FOR CURRENT ITEM — PROCESSOR IGNORED
CARDS SKIPPED

146

B. SIMPLICITY OF USAGE
The expressions given as an example in the previous paragraph should
not _ cause one to believe that the control language is not easy to use.
they were shown in ﬂﬁs form for the sake of example only.

Actually, the two following cards would produce exactly the same
calls as in the preceding paragraph :

(1) "ASSEMBLE ;

(2) "ASSEMBIE,Z ;

By the very definition of the default card, the same effect can be ac;hieved
by specifying the processor name only, since the resulting processor data
chain is to be identical to the default processor data chain.

| In fact, in the case of the second call, the error indications
given by the monitor become samewhat less clear than they were in the
previous paragraph :

"ASSEMBLE,Z ;

*

ERROR : TOO FEW OBJECTS FOR CURRENT ITEM - PROCESSOR IGNORED
CARDS SKIPPED

This example corrcborates the judgments given at the end of the section
10 of the current chapter.

The programmer is allowed to be even less verbose

"ASSE;

147

More abbreviation would be erronecus :

"ASS;
*
ERROR : ILI~DEFINED PROCESSOR NAME — PROCESSOR IGNORED

CARDS SKIPPED

It was kept as a general rule to the definition of processor data
chains that standard use of the system should be as simple as possible ;
the following sequence will assemble, load and execute a single program

using the standard input/output files :

"ASSEMBLE ;
"1OAD

"EXECUTE ;

If the assembly of a program stored permanently on the disk file
system is needed, the programmer need to specify the file-name in order
to overrule the default given :

"ASSEMBIE IN-S(1,1,X'11l') = (MYFILE-S) ;
the specifications for the item may be left out, since they are not

different fram the specifications in the D.P.D.C. :
"ASSEMBLE IN = (MYFILE-S) ;

since a single object is needed, and since the file is expected to be
of type 'S' from the item type, both parentheses and file-type can be
left out :

]

"ASSEMBIE IN = MYFIIE ;

148

Finally, the internal name itself can be taken out, since it corresponds
to the first item of the DPDC :
"ASSFMBIE MYFIIE ;
If the item is not the first in the DPDC, the programmer may opt for

any of the following :

(1) "ASSEMBIE ,, (,NO) ;

(2) "ASSEMBIE FLAG = (,NO) ;

which in either case stands for :

" Assemble the following program, list the assembled program but do not
list the symbol table " ; note that the first and third object of the

FLAG item need not -be explicited ; for an asserbly with no listing at all,

the following is valid :
"ASSEMBIE FLAG = NO ;
Note that the following expression is erroneous :

"ASSEMBLE ,,,FLAG = NO ; |
since it leads the monitor to try to define the item FLAG twice in the
same data chain.

It is understood that the specification of a parameter located far
in the list can be tedious for the programmer. Thus, the following ac-
tions are recaommended when defining processor cards :

(1) use of standard "natural" internal names ; in the present state

of the system, the following are camonly used :

149

. IN to define the natural input of the processor ;

. OUT to define the natural output of the processor ;

. LIST to define the various listing options ;

. PRINT to define the printing medium ;

« SPEC to define the cammand medium (specification file).
(2) block the parameters that programmers are more likely to mo—

dify at the beginning of the control card (IN, OUT, LIST) ;

an option in the "PROC processor enables a user to "reorder"

a default processor data chain (see corresponding chapter).
(3) provide the user with different default control caxds for each

given program in the system ; for instance, create a proces-

sor called "}xSSEMBLE,N, so that the following call :
"ASSEMBLE ,N ;

be interpreted as the px:'evious call :
"ASSEMBLE LIST = NO ;

The facility of tailoring a control card already existing to a
particular user's needs is given by the "PROC processor.
A standard use of options for these alternate default control
cards should be recommended when declaring the control cards.
In conclusion to this paragraph, it appears that standard use of
the system may involve very simple control card usage, if care is taken

in the setting of the default options. No knowledge at all should be

150

necessary, to the average user of the system,of the internal representa-
tion of control cards ; it is felt that the object types have been kept
sufficiently basic and simple, so that no difficulty should be met in
the setting of more camplex control cards.

The item specification field (MAX, MIN, ACCESS, TYPE) is expec-
ted to be little used, and its existence should be ignored by most pro-
grammers. However, the creation of processors, the declaration of con-
trol cards, or extensive use of the control card as a device (see later
in this paragraph) may require the understanding of this feature, and.
thus a minimum understanding of the underlying structures behind the

control language.

C. GENERALITY OF THE CONTROL LANGUAGE
The monitor program processes the control cards in a strict move-
forward fashion. The two following exceptions were made to this rule :
(1) a "look ahead" was done to determine whether a particular field
is explicit or implicit ;
(2) a lock ahead was done to determine if a file-id is explicited
or not.
In these forward moves, the monitor does not cross record boundaries
(i.e it will not pass fram one ctard to another) ; two restrictions

result fram this fact, but should be of minor concern to a programmer.

151

The choice of the basic dbjects was mainly governed by a desire for
simplicity ; in a few cases, the need was felt for a WORD object type,
so that names be considered as dbjects in themselves, rather than as
carbinations of character dbjects.

On the whole, the control language was felt to be sufficiently
general for the needs of the system ; the opposite effect was actually
feared, specifically that the full power of the language be never put
into use ; only one processor in the actual configuration, the EXECUTE
processor (and, in a certain measure, the PROC processor), actually
justify the existence of items of type item (i.e, the recursive defi-
nition of chain definitions). However, the full generality of the
control language is hoped to find its justification in later system

developments.

D. THE USE OF THE CONTROL CARD AS AN INDEPENDANT DEVICE

Emphasis is put here on the use of the control card as an inde-
pendant device in the system. As shall be seen in the description
of the EXECUTE processor, the user data chain is declared by the
programmer on his control card, as a subchain of the EXECUTE proces-
sor data chain ; this particular chain (or eventually subchains) is
meant to hold two classes of cbjects : |

(1) file objects, in order to enable the user to use the disk driver

to execute I/0Os on files in the disk file system. The two stan~

152

dard input and output files (CR$ and PR$) are bound by de-
fault to two items defined for the user (IN-S and OUT-S) ;
the files are given in read-only and write-only respectively.
Thus, without any specification of the. data chain, the user
program may read data input from the current input medium,
and produce output on the current output medium, by setting
file request blocks with names IN-S and OUT-S and calling one
of the resident or library driver routines. If any different
file is needed, the user may override the default association
for the items IN and OUT, or create any item of his choice.
However, no request for PROTECT or UNPROTECT accesses will be
satisfied.

(2) memory-bound objects ; any user program has access to the resi-
dent routine FEICH, and is thus enabled to read memory-bound
objects within his data chain. The user may define items on
his control card, and place requests to the routine FETCH to
read one of the associated dbjects into the area of his program.
A user program is entitled to the same facilities than a pro-
cessor for commnication with the control card. This may be
used for one of the following reasons :

. it permits the isolation fram the standard input stream of
certain control parameters for clarity purposes ;
. it gives readability to the data by associating a name and

type to each variable, array or string imput ;

1

153

. it transfer the task of conversion to binary format from the
user program to the monitor ; this should be particularly use-
ful in the debugging of assembly language programs.

. it saves disk transfers.

However, the following inconvenients should be understood :

. it is not possible to declare arrays or strings whose di-
mensions are bigger than 255 ;

. the physical storage of data chains diminishes the total area
available to the user program.

In conclusion to this paragraph, it appears that the control card
is an elegant and convenient way for a user program to acquire a limited
amount of data ; the tool should be particularly valuable in the debug-
ging of assembly language programs. Standard read/write operations on
system files are made possible'by the declaration of items of file type

on the EXECUTE processor control card.

12. EXAMPLE OF USE OF THE CQONTROL LANGUAGE

No user manual was included in this thesis as such, for the reasons
specified in the introduction. A short program is given in the overview
chapter ; simple examples for the ASSEMBLER card were analysed in the
preceding section. The default control card of each processor is given
at the beginning of the description of the processor, both in the pre-
sent thesis and-in [1].

A

154

The following examples are given below in order to clarify the
most complex default rules given in the section 3 of the present chap-
ter. They are in no measure typical of average use of the control
language.

An item in a (fictive) default processor data chain is defined
by the following :

(1) internal name : ANITEM ;

(2) type ¢ ' ' (file-type, particular type of file not specified) ;

(3) MIN = 2 ; MAX = 4 ; ACCESS = X'1F"' ;

(4) number of default cbjects : 3 ; default ocbjects as found on the

disk : 0*CR$-S,0*PR$-S,0*ABSS-A ;

In addition, the item ANITEM is found in a data chain, the access
byte of which is equal to X'13' ; it is the third item of the chain.
The current file-id, as defined within the RUN sub-area of the con-

munication area, is equal to X'1000'.

(1) Equivalent control card : if no explicit or implicit mention
of the item ANITEM is done on the control card, the item ge-
nerated will behave as if the following explicit mention had
been done : '

ANITEM(4,2,X'13') =
Note that the protect, unprotect accesses get masked by the

access of the chain as an dbject, and that the zero file-ids

' gett set to the current file-id.

155

The default generation will also be caused by any of the fol-

lowing implicit declarations :

ANITEM = ,

ANITEM = (PR$,CRS,ABSS),

ANITEM = (,,),

(rs)s (on the third field).

However, by application of default rules, the following calls :

ANITEM = (,) ,
ANITEM = () ,

will behave as the more explicit following call :

ANITEM = (PR$-S, CR$-S),
The third default object is not bound to the final chain, sin-
ce only MIN defaults are generated ; this rule would not hold

if the item was of type 'D'. Note that the two calls :

ANITEM = ,

and :

ANITEM = (),
are not, in this particular case, equivalent.
(3) Modifications of the default bindings 'may be obtained by the
following calls :

ANITEM = (PR$-S, ABS$-A) ,

ANITEM = (PR$-S, 1000*ABS$-A)

(4)

156

Combinations of explicit and default values can be obtained :

ANITEM = (,ABS$-A) ,

Modification of the item characteristics are demonstrated be—

low :

ANITEM (X'FF',0,X'13') =,

will behave as the equivalent control card given by default.
ANITEM(2,0,X'13') =,
will behave as the more explicit :

ANTTEM(2,2,X'13') = (PR$-S, CR$-S),

since the MAX has been changed.
ANITEM(,3) = (),

will generate the camplete default binding as in :
ANITEM = ,

and by opposition to :
ANITEM = (),

, since the MIN is now equal to 3.
The following call :

ANITEM "\"(__ ',3) = WF'II.E-S,
is in error, since the default binding can no more be redefined

from the change in the access byte fifth bit.

157

(5) the following calls are in error and are shown together with
the error messages produced by the monitor :

ANITEM = (, , ABS$-A,) ,

*

ERROR : BINDING CANNCT BE OBTAINED BY DEFAULT - PROCESSOR IGNORED

ANITEM = (, , , PR$-S) ,

*

ERROR : DUPLICATED FILE CONTROL BLOCK WITHIN CHAIN

ANITEM = (, , , TEMPS-S,TEMPS-A) ,

*

ERROR : TOO MANY OBJECTS FOR THE CURRENT ITEM

ANITEM(3)=(IIITEMP$—S)I
ERROR : *
ERROR : TOO MANY ORJECTS FOR THE CURRENT ITEM

ANITEM-S = ,

*

ERROR : UNCORRECT TYPE

ANTTEM(,4) = (, , TEMP$-S) ,

3 *

ERROR : TOO FEW OBJECTS FOR THE CURRENT ITEM

158

ANITEM = PRS ,

ERROR : TLLEGAL FILE-TYPE

ANITM = PRS-S ,
may not be an error since it may be the creation of a user-
defined item, if the MIN and MAX of the chain are not equal.
It will be considered so at the time the above identity is
processed, and thus the error will not be immediately recog-
nized ; however, at the end of the processing of the chain,
ANITEM will be created, together with its default binding ;
if for the chain MIN = MAX, the total number of items in the
chain will eventually became greater than MAX, and the monitor
will print :
ERFOR @ T(DMANYI'I‘EMS.FOR’IHISCHAIN
, with the '*' character in front of the closing delimiter ter-

minating the chain (and eventually the control card).

"WHATEVER ANITEM=,,;

*

ERROR : DUPLICATED INTERNAL NAME- PKXjESSOR IGNORED
ANITEM(_' ,3) = Ams—A,
*
ERROR : ATTEMPT TO CHANGE THE BINDING OF A PROTECTED ITEM

THE LINKAGE TO A USER PROGRAM : THE

- THE EXECUTE PROCESSOR

159

160

1.~ GENERAL DESCRIPTION

In many systems, a user program can be considered as a parti-~
cular processor in the system. However, this scheme was not pos—
sible in the present Operating System, since no protection mecha-'
nism is offered by the microprograms ; no hardware or firmware pro-
tection is present to prevent a program from accessing any part of
the memory, of any of the devices. A special processor, the EXECUTE
processor, had thus to be implemented to limit, as far as possible,
the destructive action that a user program may have on the system ;
an additional memory overlay (see SWAPPER chapter) is thus neces-
sary to bring the user program in core,

Protection is particularly needed for the following objects :

(1) system files ; files that are not in the current assigned

file list are protected (see [1]) ; however, such system
files as SCR$ and RUN$ are not protected when control is
given to the EXECUTE processor ; the EXECUTE processor thus
needs to protect such files to prevent accidental writing

by a user program. The user does not have access to the
PROTECT and UNPROTECT actions, sincé the corresponding bits
are reset in the access byte of the user data chain (see next
section }. However, accidental execution of disk cammands
may not be prevented.

(2] memory ; the effects of a user program on the memory can only

"+ be one of the following :

161

. extensions of files in the track maps ;

. changes in the definition of end-of~files in the data chain.
The entire manory is thus swapped out before the user is brought
in memory ; the user is given only a copy of the resident part
of the system that he is entitled to use, specifically :

. disk driver and track maps, device tables ;

. Swapper and its chain ;

. chain manipulation routines ;

. sequential access disk driver routines ;

At the end of the user program execution, the user context (the
whole memory) will be swapped-out (if possible) ; the old
context (of the EXECUTE processor) will be swapped in. then
the modifyable part of the old context will be updated accor-
ding to the saved user context, if the changes are legitimate.
However, destruction of the necessary swappér by the user prog-
ram cannot be prevented. Thus, the EXECUTE processor sets a
bit in the RUNS file before control is given to the user prog-
ram ; a message is also printed out on the system teletype.

In the case when a user program is in a dead loop, or halts,
the operator can take one of the following actions ;

. press on the interrupt key ; if the swapper is not destryed,

control will be given to the entry point of the swap—out prog-

ram, and normal execution of the EXECUTE processor will continue.

162

. load a special processor in memory (if the above method

fails) ; this processor looks up the RUN$ file for the

bit set by the EXECUTE processor ; if this bit is set,

the processor is able to reload the context of the EXECUTE

processor, and execution can continue normally from this

point.

2.~ CONTROL CARD AND~ OPTTONS

The default control card for the EXECUTE processor can be written

as follows :

"EXECUTE
ABS-A(1,1,X'13') = ABS-A,
SECTOR-I (1,1,X'11') = 0,
CHAIN-D (X'FF',2,X'13") = (
IN-S (X'FF',1,X'11') = CRS,
OUT-S (X'FF',1,X'12') = PR$
DUMP-A(1,0,X'13"') =,
TIME-I(1,1,X'11") = 60,
MODE-B(1,1,X'11') = NO,
TOS-B(1,1,X'11') = NO,

LIST-S (1,1,X'01') = PR$-S ;

)

The successive jitems and their meaning are examined successively below.

1

€8]

(21

(3)

163

Internal name : ABS ; type : A ; MIN=MAX=1 ; ACCESS = X'11' ;

default binding : ABSS$-A.

This parameter defines the file where the absolute program

ocan be found by the swapper.

Internal name : SECTOR ; type : I ; MIN=MAX=1 ; ACCESS = X'l1' ;

default binding : 0.

This item defines the sector number within the file ABS where

the program dictionary can be found.

Internal name : CHAIN ; type : D ; MIN = 2 ; MAX = @%% ;

ACCESS = X'13' ; default binding : the items :

. IN-S (MIN = 1, M&X = X'FF', ACCESS = X'11', default binding :
CR$ (standard input data flow)) ;

. OUT-S (miN = 1, MAX = X'FF', ACCESS = X'12', default binding :
PR$ (standard output data flow)).

This item defines the user data chain. Any number of items can

be user-defined (255) ; the accesses giveﬁ include READ and

WRITE accesses, but not the PROTECT and UNPROTECT accesses

(ACCESS = X'13') ; the user may thus define any item of

his own, including items of type item and memory-bound items

(for use of the control card as a device, see preceding chap—
ter, section 11.,D). However, the two following items are
given by default ;

« IN-S is nommally associated with the standard input data file

(CR$) ; however, the user may redefine this item to any read—

(41

(5)

l64

only file among the files in the current assigned file list ;
any number of files needed in READ-CNLY by his prdgram can
actually be bound to this particular item (MAX = X'FF') ;

. OUT-S is normally associated with standard output data file
(PRS)] ; however, the user may redefine this item to be
bound to up to 255 files to be accessed in WRITE-ONLY by
his program.

DUMP ; type ¢ 'A' ; MIN=0 ; MAX = 1 ; ACCESS = X'12'; de-

fault binding : empty binding.

If any file is specified by the user, the swapper will swap—

out the memory image of the user on this file, instead of

the standard SCR$ file ; this particular file will then be

availéble to the user for :

. taking a post-mortem dump ;

. executing the output (CHECKPOINT facility).

MODE ; type ¢ 'B' ; MIN=1 ; MAX = 1 ; ACCESS = X'11l! ;

default binding : NO ;

This parameter is transparent to slave users (i.e, the access

byte is set to X'11l' for this category of users). If the

value of this item is YES, (MASTER mode), the system files

will not be protected, and more entry points in memory will

be available to the user program.

(6] TOS ; type ; 'B' ; MIN = MAX = 1 ; ACCESS = X'11' ; default

binding : NO .

165

This parameter is "frozen" (by setting the access byte to X'01')
for the users of the system in spool configuration. If this
parameter is equal to YES, the EXECUTE processor will make the
Teletype Operating System available to the program by :
. replacing the concurrent I/0 area by TOS before giving con—
trol to the user program ;
. setting the trap location so that a TRP instruction or a
console interrupt execute a jump to the beginning of the
TOS programs.
A user in stand-alone configuration is thus able to use TOS
for the debugging of his program. However, the EXECUTE pro-
cessor then needs the concurrent I/0 area for the storage of
TOS (in the 16K configuration), and this area is thus ne-
cessarily not available to the user program.
(7) LIST ; type : 'S' ; MIN = MAX = 1 ; ACCESS = X '01l'; default
binding : PRS.
This parameter is completely "frozen" for all categories of
users. It is used by the EXECUTE processor to be able. to
list the eventual user program output on the current system
output medium after execution of the user program ; the EXECUTE
processor is actually given the file in write-only access, since
PRS is normally a write-only file ; it actually updates the
access to be sble to read the file.

(8] TIME ; type : 'I' ; MIN = MAX = 1 ; ACCESS = X'11' ; default bin-

166

ding ; 0.

This parameter defines a max—time for the user program ; this
time is initialized by the EXECUTE, and decremented every se-—
cond by the real-time clock process during execution of the
user program ; a minute is standard. If a max time occurs,

a jump to the beginning of the swapper is executed.

3, THE SWAPP]I_\IG_ PROCESS

As mentioned in chapter VI, the EXECUTE processor doos not use
the system swapper, but rather a specialized swapper carrying out the
following operatigns :

(1) swap the user in ;

(2) swap out all the user context ;

(3) swap the old context back in memory.

A. SWAPPING IN OF THE USER
At the beginmning of this phase, the dictionary of the user prog-
ram is already in core, and the verifications concerning the validity
of the loading addresses are already done (see following section).
The control is given to the swapper to swap the user in, and the
swapper gives control to the user with the values of the registers
defined in the dictionary (A,B,X,W/O,P}.

167

B. SWAP OUT OF THE USER CONTEXT
The conditions for campletion of the user program are the following :

(1) execution of a :

JMpP STOP

is the nommal completion sequence.

(2) power fail, power restart and stack overflow will cause also
execution of the above sequence.

(3) max time (see previous section) ;

(4) oconsole interrupt ; however, if TOS was required, a jump to
TOS is executed instead of the previous sequence.

Upon ccmpletipn of the user program, the control is given to the

swapper, which performs the following operations :

(1) stop and disconnect I/0Os upon the devices (card reader, line
printer, disk) ;

(2) disable the interrupts and the real-time clock ;

(3) swap out the whole memory on the system scratch file ; this
image will be eventually copied by the EXECUTE processor on

a user file if a DUMP was required (see previous section).

C. SWAP IN THE OLD CONTEXT
The swapper then reloads the context of the EXECUTE processor-
(the whole memory)} from the SCR$ file in a single call to the .DR

routine. This operation requires the following conditions to be met :

(1)

(2)

(3)

(4)

(5)

(6)

168

the disk interrupt has to be the only interrupt that can occur
during the operation ;

the queue of disk operations must contain only one operation

(the swap operation) ; .

the current context and the SCR$ context must have in common
the following piece of program (waiting loop for the disk

interrupt and return from .DR routine)}

CAL .DR
IDV+ 8
NAZ *-2

so that, when the piece of program is loaded from the disk, the
execution flow stay undisturbed ;

the byte defining the operation requested in the file control
block in the SCRS cc;ntext, needs to be non-zero ;

upon reception of the end-of-transfer interrupt, the SCRS con—
text (now fully loaded into core) must be campatible (stack,
device queue, FCB) with the configuration of a program awaiting
the end-of-transfer interrupt fram the disk ;

the disk image in the SCR$ file must be within one single al-
location, in order for the .DR routine to be able to execute

the transfer in one single step.

169

In order to avoid as much as possible the number of system crashes
and their severity, the EXECUTE processor does as much verification of
the user program as possible, and also tries to protect the system against

unintentional mistakes in the user program.

A, VERTFICATTION PROCESS
Verification is done that the file declared by the ABS item of the
control-card is formatted correctly ; more precisely, the sector defined
by the item SECTOR of the control card needs to be formatted as an ab—
solute program dic.tionary. Reference is done to MANGIN, [1] for a des-
cription of the absolute program dictionary. The specific verifications
are :
(1) nurber of segments 59
(2) for each segment,
low program limit segment start address | segment end address
high program limit
(3) low program limit execution address high program limit
(4) first location available to user low program limit
(5) high program limit top memory available to user program
(6) stack location = system stack location or
low program limit stack location high program limit
If all of the above conditions hold, the file is considered as correct ;
otherwise, en error message is printed and the user program is not execu-

1)

ted.

170

B, PROTECTION PROCESS
The protection process seeks to protect the system against mista-
kes in the user program. The entire memory is swapped out on the system
scratch file (SCR$] and the disk image is updated for the swap back by
the swapper. As said in the last section, the waiting loop for the two

swappers is the same :

SDR DC *%

IDV+ 8
NAZ *-2

JMP* SDR

The swap out process is executed by a return jump to SDR.

This provides the SCR$ context with the property of campatibility
for the swapping back process (configuration of program awaiting an
end-of-transfer interrupt from the disk).

In order to be able to distinguish between the return from the
SDR program at swap out time and at swap (back) in time, the contents
of the locations SDR and SDR+l of the DISK image are updated, so that
a jump to the proper part of the EXECUTE processor be executed at the
end of the execution of the swapping process.

Furthermore, a byte in the current user area of the RUN file is set
to one to indicate that, in case of a camplete crash of the user program,

a memory image on the disk is ready to be restarted.

t

171

The other protection steps are relative to the protection of sys—-

tem files,

C. OTHER ACTIONS
The other actions performed by the EXECUTE processor before gi-
ving control thethe swapper include the following :

(1) write on the system teletype the expected time of execution of
the user program (as specified on the control card) ;

(2] load the Teletype Operating System in the concurrent I/0 area
if the TOS option on the control card is set ;

(31 set the PROTIM location of the PROC subarea of the communica-
tion area to be equal to the user maxtime ;

(4) set the interrupt address defined in the PROC area to the start
of the swapper program ;

(5) set the console interrupt address to the TOS execution address

if the TOS option on the control card is set.

5. UNPROTECTION AND VERIFICATIONS AFTER USER FXECUTION

After the swap back of the EXECUTE processor context, the system

files are unprotected. The message :
USER QUT

is printed on the system teletype. The byte set to one in the RUN$ file

is reset.

1

172

The EXECUTE processor needs to record the legitimate changes to
the memory done by the user.

Files extensions involve modification of the EOF byte in the FCB
definition, and modification of track maps. A traversing of all the
File Control Block is done to check that the corresponding first allo-—
cation offset has not been modified ; the eventually added allocations
are compared with the allocations bound to the file in the previous
context. The following properties must be true :

(1} the chain (starting fram the first allocation) of the allo-
cations already bound before must still exist after execution
of the program.

(2) The extensions must belong in the AVAIL list of the original
context.

(3) No allocation may be shared betwwen several different files.

(4) The End-Of-File defined in the File Control Block must be
smaller or equal to 192 x N, where N is the total number of
allocations bound to the file.

If all the conditions are true, the file extensions are reported on
the track maps and file control block of the EXECUTE processor. In
the opposite case, the original definition of the file is kept and

a warning message is printed out on the current system output medium,

If the list file was not found in error by the previous algorithm,
it is copied by the EXECUTE processor onto the current system output
medium_ (via the PRINT process }. All characters are checked to be
ASCIT, and, if not, replaced by the character @. The printing is

aborted when too many non—ASCII characters have been encountered.

CHAPTER XIT :

PROCESSOR EXTENSION AND TATILORING 3

THE PROC PROCESSOR

173

174

I, PROCESSOR ‘DEFINITIONS

In the description of the MONITOR, two aspects have been overlooked,
specifically how current processor table and processor information area
are created.

Normally, the current processor table is initialized at RN time to
one of several DEFAULT PROCESSOR TABLES on the disk. The pariicular de-
fault processor table may be selected by the user among a list of default
processor tables available to his password.

The set of processor information areas that can be reached through
at least one default processor table constitute the set of "permanent”
processor information areas. They are defined permanently in the RUNS
file, and define standard options for the processors in the processor
files. There may be several processor information areas associated with
a single program, corresponding to different default control cards or
menory requirements. Moreover, certain items may be "blocked" to their
default bindings. For instance, we may decide that the TOS option in
the EXECUTE processor be given only to a certain class of users ; for the
other users, the access byte fifth bit of the TOS item is set to zero, so
that the users cannot change its value ; only the new EXECUTE processor
(which may have another name, such as EXECUTE,T } would be placed in one
(or several) of the default processor tables available to the class of
users. Another example would be that we decide that a "big" Assembler is

needed for the éssanbling of large programs, A larger symbol table would

A

175

be made available by setting the "concurrent I/O acceptance indicator"
byte of the processor information area to zero, and modify accordingly
the maximm memory requirements (MAXMAX]} of the new processor.

Thus, many processor information areas may be associated with a gi-
ven processor. Only one copy of the program need to be kept on the disk,
and, in a multiprogrammed envirorment, the absolute programs can be writ-
ten as a pure code, each user accessing the unique copy mapped in memory
via a separate data chain. Very general processors can be created, and
adapted to particular needs by creating different processor informaticn
areas relative to the program.

Since the current processor table is initialized at each RUN, a user

‘may tailor a processor defined in the system to his own needs. For ins-
tance, a user working regularly on a given program may create a version
of the EXECUTE processor with all the argunents needed to the execution
of his program, such as absolute file name, sector address, standard pa-
rameters in the data chain of the program, a.s.o. The modified default
_ control card would be kept in an vailable area of the RUNS file (a "user"
processor information area is thus created). At Run campletion, the used
areas are returned to a free list, so that the changes pertain to a user

only.

2. THE PROC PROCESSOR

The PROC processor enables a user to create new processors in the

.~ system, tailor exeisting processors to his own needs, and make libraries

176

of absolute programs available to his RUN,

The creation of new processors is a MASTER option, since it enables
a user to execute one of his own programs without the system files and
the resident memories being protected as in the case of a program execu-~
ted via the EXECUTE orocessor. The successive phases needed to intro-
duce a new processor in the system are desribed in section 4.

On the other hard, the option of tailoring a processor to a user's
needs is available to all users ; the process is described in section 3,
of this chapter.

The PROC processor data chain is described in section 5. Since it
is a camplex chain, several processor information areas should be cre-

- ated ; an ACTION byte decides which option is demanded ; the ACTION byte

is "frozen" for slave users.

3. TATIORING A PROCESSOR

Tailoring a processor is defined as a user-available option. A new
processor information area is created from ‘n'odifications of a processor
information area already existing and accessible through the current pro-
cessor table. Controls are provided that the new processor is more "res-—
tricted than the ol processor. |

Mention of the processor to be modified is done by the processor na-~
me, A user is entitled to the following changes ;

(1} the processor name itself. If no processor name is explicitly

" . mentioned, the processor name is assumed to be unchanged.

177
(2) the prampt message printed out by the monitor ;
-» (3] if the "concurrent I/O indicator" is _et, it can be reset by
the user ;
(4) the TOP memory requirements can be incréased (but not dimi-
nished] ; the LOW memory requirements cannot be changed ;
(5] the default processor data chain can be modified with respects
to the following :

. & MIN can be specified ; the resulting MIN will be taken to
be the maximum of the user MIN and the previous MIN ;

. @ MAX can be specified ; the resulting MAX will be taken to
be the minimum of the user MAX and the previous MAX ;

. an ACC.’E‘SS may be specified ; the fifth bit of the resulting
access will be taken to be the logical AND of the two cor-
respording bits ;. the other bits cannot be changed, and the
user specifications will be ignored ;

These considerations are valid for the definition (MIN, MAX

and ACCESS) of the default processor data chain as an object.

If the resulting access bit is set, the default binding of the

resulting item is taken to be equal to the binding specified

for the item on the control card. However, no mixing of de~
fault and user-defined objects is possible on the contmi-
card.

New items can be created by a user ; all the user created i-

tem will be appended at the end of the default processor data

178

chain, in the order in which they appear on the control card ;
the user is responsible for the modifying of the MIN and MAX
of the data chain in which the item is inserted, so that the
resulting number of items be still correct ; the access byte
of the newly created item is masked by the access of the data
chain in which it is inserted.

The order of the items in default processor data chains can also be
modified. This constitutes a separate option (ACTION = 12) ; the user
need not specify any of the item types, characteristics, or default bin-
dings of the items referred, since they will not be modified. The order
of items in subchains can also be changed by use of this option.

The name and prampt message associated with the resulting new pro-
cessor can be redefined by the user as in the previous case (ACTION = 9).

The two above actions can be cambined (ACTION = 13). 1In this case,
as might be expected, the modifications are carried out before the reor-
dering is done.

The additional option is given to a user to delete a particular
processor in the current processor table (ACTION = 2).

Both in the cases of modification and reordering, the name of the
new processor can be any name of a processor which is not already in the
current processor table ; in the case when the user does not want to re—
define the processor name, the original processor need to be deleted ;
the deletion operation can be cambined with any of the above (ACTION =
11, 14 and 15 5.

179

"4, ‘ADDITION OF NEW PROCESSORS 'IN THE SYSTEM

A new processor can be introduced in the system by carrying out the

following operations ;
A, INITTAL DEBUGGING

An initial debugging of the processor is necessary to make sure that
the processor does not destroy any vital infoﬁnation in the system files
and the commnication area. This part can be carried out by use of the
EXECUTE processor ; if any effect upon system files is to be analysed,
or if any routine of the extended resident is needed, the MASTER option
of the EXECUTE processor needs to be set ; the default processor data

chain needs to be specified on each call to the EXECUTE processor.

B. DEBUGGING, PHASE IT

Additional debugging is generally necessary to make sure that the
processor carries its purpose in the system. In particular, the effect
upon the communication area could not be conveniently analysed by use
of the EXECUTE processor, since the cammmication area image is reloaded
together with the rest of the memory at the end of the processor execu-
tion.
A special option of the PROC processor (ACTION = 1) enables the
user in mecster mode to declare a newt processor information area for the
processor ; the user may specify the default control-card ; control card
that do not represent avvalid call for the processor (for instance if

an item must have MIN = MAX = 1 but no default binding } cannot be di-~

t

180

rectly declared, but need a second call to the PROC processor to modi-
fy the default data chain. For instance, an item of a processor default

data chain such as

ANTTEM(1,1) = ,
would be initially declared as :
ANTTEM(L,1) = CR$-S, /. R$-S is a dumy/
then modified by a second call to the PROC processor (ACTION = 11)to be :
ANITEM(1,0) = ,
so that, fram the rules given in the previous section, the resulti_ng. i-
tem be correct.

A user can then run easily a variety of test cases.

C. MAKE THE PROCESSOR PERMANENT IN THE SYSTEM
The processor created above is not declared outside of the RUN for
two major reasons :
(1) the current processor table is destroyed at the end of the
current RUN, as well as the "user—-defined" processor informa-
tion areas. i
'(2) the processor declared above is in one of the user's personal
files, rather than in one of the processor files.
A "provisional" permanent processor in the system can be created
by :
(11 making the processor information area "permanent" by deleting
it from the AVAIL list of the RUN$ file and appending it to

the permanent processor information area list (see [2]) ;

181

(2) insert the processor name in one of the default processor ta-—
bles (or several of them), This can be done by executing the
following steps :

. use the special options (ACTION = 5 and 6) of the PROC
processor to create in the current processor table the exact
copy of the desired contents of the desired default proces-—
sor table ;

. copy the current processor table into the relevant default
processor table.

(3) place the program in one of the system libraries.

The actions (1) and (3) above, as well as the second step of the
action (2), must be done by hand in the current version of the system.

A processor could be easily created to carry them out.

It is recammended that a special default processor table, available
under a single password, be created to contain the most general default
processor data chain for each of the processors in the system. The user
of the password may then decide to put "restricted" DPDCs in other de-

fault processor tables.

D. THE FINAL STEP

The above steps are not sufficient to make a processor permanent,
for the RUN$ file is normally copied fram a read-only back-up at each
system geheration. When the steps above have been successfully carried
out, a copy of the updated RUN$ file must be done on the back-~up file.
It is advisable that this copy be done by hand.

1

182

* 5. THE PROC 'PROCESSOR DEFAULT DATA CHAIN

The default control card is the following :

"PROC

ACTION-H(1,1,X'11') = 0,

NAME-C (10,0,X'11") =,

PARAM-D (X'FF',0,X'11'} = (],
LIST-B(3,3,X'11") = (YES, NO, NO),
PROMPT-C (X'20',0,X'11") = ,
FILE-A(1,0,X'11') =,

SECTOR-I (1,0,X'11') = ,

MEMORY=I (4,0,X'11') = ,
CONC-B(1,0,X'11") =,

LEVEL-H(1,0,X'11') =,

Il

TD’IE "‘I(lrorx'll') 4

INTADD-I (1,0,X'11') =,

NEWNAM-C (10,0,X'11') = ;

A. THE LIST BOOLEANS
The item LIST expects three different objects :
(1} if the first boolean is YES, the PROC processor will ac-
knowledge successful execution of each action ;
(21 a true value of the second boolean causes the current proces=
sor tablr ;
(31 a true value of the third boolean causes the processor given

"+ by the jtem NAME to be printed out.

183

B, POSSIBLE ACTIONS
The possible actions include the following ;

(1) ACTION = 0 ; this a "no action required" option ; the PROC
can still be used for listing purposes, via the LIST options.

(2) ACTION = 1 ; the processor whose name is specified in the item
NAME is deleted from the current processor table.

(3] ACTION = 2 ; option of creation of a new processor ; all the
parameters in the processor information area must be defined.

(4) ACTION = © ; this option causes all processor names in one of
the default processor tables given to a user, as specified in
the sector SECOOR, to be appended to the end of the current
processor table, as long as their names are not already defined
within the current processor table ; if a processér name is spe—
cified in NAME, only the processor name specified is searched
for in the default processor table specified..
This option can be used to call libraries of absolute programs.

(5) ACTION = 5 ; this option causes all processor names in the de-
fault processor table specified in the sector SECTOR to be de-
leted fram the current processor table, if their names are de-
fined in both tables ; if a processor name is specified in
NAME, only this processor will be deleted, if it is found in
the processor table defined by SECTOR.
This option can be used in conjunction with (4) above to cre-
ate default processor tables, as described in the previous

- section.

184

(6] ACTION = 10 ; this option enables a user to tailor a proces-—
sor to his own needs, as described in section 3 of this chapter.
No reordering of the parameters takes place, and the new items
are appended to the end of the data chain in which they are
declared. No deletion operation takes place, and hte new pro—
cessor name must be defined under the name NEWNAM (old pro-
cessor : NAME }, and the name must not be already in the cur-
rent processor table.

(7) ACTION = 11 ; same effect as above, except the processor name
NEWNAM is deleted prior to the execution of the above. If no
processor name is declared under NEWNAM, the new processor na-
me is assumed to be NAME, and the processor defined by NAME
is deleted from the current processor table.

(8) ACTION = 12 ; the processor NAME is renamed in NEWNAM and the

. prampt is changed ; if any item is specified in the chain de-
fined by PARAM, the items in the correspc;nding chain in the
processor information area are reordered accordingly ; not
all items need be mentioned, and the item specifications and/
or the bindings eventually specified on the control card are
ignored. The prampt is redefined to be the PROMPT message
specified by the user, in all cases, even if the PROMPT is
left empty.

(9) ACTION = 13 ; same effect as Me, except that a deletion

occurs, as explained in (7) above, -

185
(10) ACTION = 14 ; this option is a cambination of the options
(6) (ACTION = 10) and (8) A ACTION = 12) above, in this
order, ie the items modified are appended to the beginning
of the new processor data chain.
(11] ACTION = 15 ; this option is a combination of the options
(7) (ACTION = 11) and (9) (ACTION = 13) above, in this

order.

C. PROCESSOR NAMES
The items NAME and NEWNAM contain processor names. The formatting
of the processor names must be as on the control card., However, names
cannot be abbreviated and no trailing blank may be appended to the pro-

cessor name. Example :
NAME = 'EXECUTE,X',

The item NAME contains the processor name to list is 'LIST (3) is set,
the processor to delete if ACTION = 1, the processor to create if AC-
TION = 2 ; it reference a processor in a default processor table if
ACTION = 5 or 6 ; it references a processor already defined if ACTION =
10 or above.

The item NEWNAM gives a name to "tailored" processors in the cases
where ACTION = 10 or above. If no name is declared in NEWNAM, the new

processor name is assumed to be equal to the previous one.

186

D. PARAM

The item PARAM is used to contain the processor data chain of the
created processor if ACTION = 2 ; the MIN, MAX and ACCESS are the MIN,
MAX, and ACCESS of the resulting default processor data chain.
The item PARAM also contains the user modifications that a user wishes
to perform on a default processor data chain already existing ; the ru-
les for the modifications are explained in section 3. this use concerns
the values 10, 11, 14 and 15 of the ACTION item. The item PARAM are also
a way to redefine the ordering of a default processor data chain (or of
subchains of this chain) in the case of values 12 or above of the ACTION
item ; as specified above, in the case of the actions 12 and 13, nothing

needs be specified except the names the item

E. FILE and SECTOR
These parameters are used to reference the location of the disk file
system where the absolute program is to be found in the case (ACTION = 2)
of declaration of a new processor. The SECTOR is used to refer a default
processor table in the case ACTION = 5 and 6 (the FILE is ;:hen not used).

The parameters are dummy in all other cases.

F. PROVMPT
The parameter PROMPT contains up to 32 ASCIT characters to be prin-~
ted at each execution of the processor defined or modified. The PROMPT can
be empty (no prampt will be printed }. This applies to the values 2,
10 and above of the ACTION item ; it is a dummy in the other cases.

+

187

G. MEMORY
This item defines the memory requirements of a processor created,
as defined in the processor information area, in the order MAXMAX, MINVAX,
MAXMIN, MINMIN,
In the case of tailoring of an already existing processor, only the
two first objects (MBXMAX and MINMAX } have any meaning, and the modi-

fications can be in the sense of increases in the memory requirements.

H, OONC, LEVEL, TIME, INTADD

These parameters correspond to the "concufrent I/0 irdicator", "pro-—
cessor level", "time-out condition" and "interrupt address" defined in
the processor inforination area.

In the case of the creation of a processor, all items must be speci~
fied. In the case of modification of a processor (ACTION = 10, 11, 14 and
15), they may be omitted.; if they are specified, the following hold :

(1) the resulting "concurrent I/0 indicator" is egual to the lo~
gical AND of the CONC specified and the old value ;

(2) the processor level may only be increased ;

(3) the time-out condition may only be diminished ;

(4) the interrupt address cannot be mofified.

The parameters are dumgy in all other cases.

CHAPTER XIIT :

CONCLUSIONS

188

189

Conclusions are drawn below with respects to the following :
(1) satisfaction of the requirements ;

(2) extensions.

1. SATISFACTION OF THE REQUIREMENTS

An attempt is made below to estimate scme characteristics of the O-

éerating system, with respects to the requirements given in chapter II.

A. RELIABILITY

The reliability of the system as a whole cannot be honestly esti-
mated in the prese.nt, since, at the time this thesis is submitted, the
system has been used by the authors only. The basic routines (Disk dri-
ver, chain manipulation routines, I/0 handlers, ...) have been fully tes-
ted through use of the system in its intermediate form by students in a
Computer Science course.

It is felt that the reliability of the error—handling routines is
doubtful. As was explained in the present thesis, no error routine was
incorporated to the resident, but rather the monitor was given all res-
ponsibilities concerning error analysis and recovery ; the effectiveness
of this scheme still has to be confirmed. It is the author's opinion that
at least a system teletype handler and a simple error recovery routine
should be added to the minimum resident, and that theses routines can be
kept sufficiently simple, so that the resulting system does not exceed

the 16K limit.

*

1%0

B. PROTECTION

(1)

(2)

Menory protection : the memory protection implemented in the EXE-—
CUIE processor is felt to be a reasonable software solution to the
lack of memory protection by the microprograms. However, a true
memory protection scheme should be implemented by a modification
of the existing microprograms. The checking of a slave/master bit
should be done in order to control the following :

. execution of certain instructions (disk I/0s, ...) ;

. WRITE access to certain pa.rts of the memory.

Disk protection : Protection of a file against unintentional des-

truction is insured by the software at different levels, specifi'—

cally :

. when a file is recalled (i.e. placed in the current assigned
file list), a specific access is specified ; the FILE proces—
sor checks that the access is campatible with the definition
of the file in the proper directory ; if the access is in read-
only, the file is not unprotected ;

. when a processor or user program requests a file, a specific ac-
cess is specified, and this required access is checked by the
monitor against the access in the current assigned file list ;

. when a disk operation is requested (via the .DR routine), the

disk driver mokes sure that the file is available for the cor-

responding access.

191

The resulting protection scheme is felt to be both strong and
flexible. Additional protection of system files is done by the
EXECUTE processor before the user is given control.

(3) System protection : a recovery processor is strongly needed to

restart the system, in case of a system crash.

C. DUAL CONFIGUPATION

The basic goal of a dual configuration (stand-alone, batch) has been

achieved. However, the following remarks can be done :

(1) the spooling system lacks in generality ; too much attention was
paid to giving the card reader a fast servicing rate ; the inter-
rupt driven scheme would be advantageously replaced by a method
in which a scheduler would drive the I/Os during the idle timed
of the C.P.U.

(2) the handling of end-of-device conditions couls be implemented via
recursive calls to the FILE processor, rather than performed by
routines of the extended resident ; this method would have the
followipg advantages : ‘

. core storage : the extended resident routines would be simpli-
fied. ' |

. generality : explicit stacking as weil as explicit unstacking of
input/output drivers could be dynamically treated via a recur—
sion over the monitor.

(3} OPEN and CIOSE functions for a device should be implemented, in

"order to be able to incorporate the tape as an alternative input/

output medium of the system.

192

D. EXTENSIBILITY

Additions of new processors to the system can be carried out simply
by use of the PROC processor. Addition of new input/output devices (pa-—
per tape,...) require minimum modification of. the programs.

In general, modularity in the system is obtained via systematic usage
of the data chain technique largely described in this thesis. The set of
objects in the system that a particular process accesses and/or modifies
can be readily reoognizéd. However, a reorganization of the cammunication
area appears as being a necessity.

Minor modifications in the residents does not require any recompila-
tion of processors, as long as the overall boundaries are respected (X'
1000' for the minimum resident and variable length record driver, X'2000'

for the extended resident).

2. EXTENSIONS

Some propositions for improvements and/or extensions of the existing

system are given below.

A. MINOR EXTENSIONS
A set of routines are needed in order for the system to be usable,
including the following :
(1) a RUN and a FIN processors ;
(2) accounting routines, additions of passwords, disk dump routines ;
(3) a recovéry processor ;

(4) error analysis and recovery routines..

193

B. MAJOR IMPROVEMENIS

Inprovements requiring a significant modification of the existing

system may be conducted in the following directions :

(1

(2)

(3)

(4)

Microprogramming, including :

. memory protection and instruction control ;

. microcoding of some of the resident routines ;

. implementation of a stack underflow interrupt.

Data chains ; it is felt that data chains could constitute the core
of a serie of possible extensions of the system. For instance,

an additional "buffer" memory-bound cbject type could be imple-
mented (a page in memory, associated with a semaphore), so that
buffer allocation be done by the monitor rather than by the pro-
cesses themselves. Primitives to protect, unprotect and write upon
memory bound objects could be designed and added to the minimum
resident.

Reentrant coding ; these extensions in data‘chains should enable
one to rewrite both MONITOR and SWAPPER as pieces of pure code ;
the necessary buffers and temporaries would be accessed through
use of data chains. It is the author's opinion that these modi-
fications can be carried out within the 16K limits ; the additional
memory storage needed should be obtained from the fact that the

extended resident routines would be able to treat end-of-device

conditions via recursive calls upon the swapper and monitor.

File syétem ; some propositions are made in [1] ; however, any

rﬁajor extension of the file system (such as the design of pro-

gram files) would make 32K of core necessary.

APPENDI X

MEMORY MAPS

194

3FFF

(only in spooled

CONCURRENT I/0 AREA configuration)

3A80

DATA CHAIN AREA
(VAR)

available to

MAIN OVERLAY MONITOR oxr

“i{nteractive"
processor

2000 l

EXTENDED RESIDENT

availavle to

user program

or other pro-
cessors

1000 ' i

VARIABLE LENGTH RECORD DRIVER

BB3 ’ \4

MINIMUM RESIDENT

Memory map

0BB3

0AB3

06E5

059F

0400

0300
0200
0180

0100

SYSTEM BUFFER

DISK DRIVER .DR

CHAIN MANIPULATION ROUTINES

SWAPPER

TRACK MAPS, DEVICE TABLES

SYSTEM STACK

COMMUNICATION AREA

INTERRUPT ROUTINES

CONTROL VECTOR

MINIMUM RESIDENT

2000

1D00

1400

1200

1000

0F80

0BB3

CURRENT ASSIGNED FILE LIST

SYSTEM FILE DRIVER

SYSTEM TELETYPE HANDLER

READ AND PRINT PROCESSES

DICTIONARY OF ROUTINES

PRINT OVERLAY

READ OVERLAY

I/0 STACK

VARIABLE LENGTH RECORD DRIVER

EXTENDED RESIDENT

1]
(2]

(3]
[4]
[5]

BIBLIOGRAPHY

Xavier Mangin, Master Thesis, June 1975 (University of Houston).

Microdata documentation , Assembly Language, Teletype Operating
System

Prime Disk Operating System , Prime 200 DOS Reference Guide (may 1973)

E. W. Dijkstra , The Structure of the "THE" Multiprogramming System

Computer Scince Department, University of Houston, Internal System Do-

cumentation

200

