
A BATCH OPERATING SYSTET4 FOR A MICRODATA 1600/30 :

Interconnunication between processes

A Thesis

presented to

the Faculty of the Department of

Computer Science

Uiiversity of Houston

Tn partial fulfillment

of the requirements for the Degree of

tester of Science

By
Jean-Luc Konrat

June, 1975

ACKNCS'ZLEDGEf^EtfrS

I would like to express my gratitude to ray friend Xavier Mangin

for his obstinacy, understanding and constant help, which nade possible

the design and inpiementation of a coherent Operating Sys ten. Thanks are

extended to Professor J. Rhyne and the department of Ccmputer Science for

the financial support provided during the time of my studies.

A BATCH OPERATING SYSTEM FOR A MTOWATA 1600/30

Interccrrmunication between processes

A Thesis
presented to

the Faculty of the Department of

Ccnputer Science

University of Houston

In partial fulfillment

of the requirements for the Degree of

tester of Science

By
Jean-Luc Konrat

June, 1975

A BATCH OPERATING SYSTEM FOR A MICRODATA 1600/30 ;

Intercxiiinunication between processes

ABSTRACT

Part of the irrplementation of a general purpose batch Operating

System for a MICRCDATA 1600/30 is presented in this thesis. This Operating

System, with a resident of 4K bytes only, works in a minimum configuration

of 16K bytes. It may be used both in a batch configuration, with a spool­

ing system, and in stand-alone configuration. In this thesis, the system

is described in terms of its deocnposition into processes ; a general

schane for intercorinunication between processes is presented, and the con­

trol language is viewed as a tool for the description of the processes in

the system. The memory constraints are solved by a succession of overlays,

and the linkage to the context of a user program is danonstrated.

The description of the rest of the system may be found in the

thesis of Xavier Mangin [June, 1975]. Both theses are needed to get a full

understanding of the Operating System.

TABLE -OF OCt TIEOTS

CHAPTER I : INTBODOCTION

Available Hardware/Firmware

Available software

The requirements

Main results

The contents of this thesis

CHAPTER II : REQUIREMENTS

Storage requirements

Configuration requirements

Protection requirements

Reliability requirements

Efficiency requirements

CHAPTER III : SYSTEM OVERVIEW

Contents

Disk management

Input/Output configurations

The overlay system

Processors available in the system

1

1

2

3

4

5

7

8

8

9

10

11

11

12

13

14

16

21

29

CHAPTER IV : DEFINITICXSI OF DATA CHAINS 31

Processes and contexts 32

Objects 33

Structure" of data-chains- 35

Accessing objects 39

Change of context 41

Creation of data chains 43

CHAPTER V : IMPLEMENTATIOJ OF DATA CHAINS 47

Processes in the system 48

Inplementation of data chains 49

Objects and object types 58

Accessing objects 61

Change of context 67

Creation of data chains 69

CHAPTER VI : APPROACHES TO THE DESCRIPTION OF THE OPERATING SYSTEM 70

Description by process 71

Description by objects 72

CHAPTER VIZ : AN EXAMPLE OF CHANGE OF CONTEXT BY LINKING DISCIPLINE ;

THE SWAPPER PROCESS 76

The overlay systan 77

The swapper program 81

CHAPTER VHI : GENERAL SCHEME FOR THE EXECUTION OF A PROCESSOR 83

Effects through the processor data chain 84

Effects through the oomnunication area 85

Effects through requests to other processes 91

CHAPTER IX : THE REAL-TIME CLOCK PROCESS AND ERROR INTERRUPT ROUTINES 95

Stack overflow, power fail, panzer restart 96

Console interrupt 97

Real-time clock 97

CHAPTER X : THE MONITOR PROCESS At® THE CONTROL LANGUAGE 100

Functional description 101

Determination of the processor information area 102

Creation and binding of swapper and processor data chains 104

Allocation of processor data chains 124

Initialization of the carrnunication area and arguments for swapperl25

Nbrnel return fran processor sequence1 126

Buffering and requests upon other processes 127

Error cases and error routines. Abort conditions 130

Syntactical definitions of the control language 137

Error messages 140

Properties of the control language 143

Exanple of use of the control language 153

CHAPTER XI : THE LINKAGE TO A USER PROGRAM : THE EXECUTE PROCESSOR 159

General description 160

Control cards and options 162

The swapping process 166

Verifications and protection before user execution 169

Uh protection and verifications after user execution 171

CHAPTER XII : PROCESSOR EXTENSION AND TAILORING : THE PROC PROCESSOR 173

Processor definitions 174

The PROC processor 175

Tailoring a processor 176

Addition of ns^ processors in the system 179

The PROC processor defualt data chain 182

CHAPTER XIII : CONCLUSIONS 188

Satisfaction of the requirements 189

Extensions 192

APPENDIX : MEMORY MAPS 194

CHAPTER I

INTRODUCTION

1

. 2

The design of operating systems on minicomputers is generally faced

with, the challenge of providing users with, the generality of large ope^-

rating systems in a limited environment. It is generally considered to

be. an^inpoi2tant_bask.vAich._ney require, many manryears of work.

Two man-years were spent to design and implement the Operating Sys­

tem described in this thesis. The basic goal was to create a general

purpose batch-oriented operating system.

1. AVAILABLE

The MICRODATA machine of the Computer Science department of the U-

niversity of Houston, on v^iich the system was implemented, has the fol­

lowing configuration :

0-1 A MICRODATA 1600/30 CPU ; the CPU features include variable pre­

cisian instructions, character string manipulation, stack pro­

cessing (256 bytes) with stack overflow interrupt, six opera­

tional registers, a set of 110 different instructions, 8 operand

addressing modes, a variable word length (1, 2, 3, 4 bytes),

VO facilities including programmed mode transfer, concurrent

buffered X/0, direct memory access, detection of power fail,

real-time clock.

(21 Two boards with. 16K bytes of core each.

(31 The follcwing devices ;

. a dual disk drive with two disks, - each of them ccmposed of a

fix and of a removable platter.

. a parallel teletype ;

. a card reader ;

. a line printer ;

. an asynchronous canmunication controller ;

. a synchronous ccnrnunication controller ;

. an alterable control menory (2K words 1 ;

. a magnetic tape controller with a 9 tracks transport.

2. AVAILABLE SOFTWARE

The following software was available at the time of the creation

of the operating system :

(11 A disk. - Teletype Operating System ; the disk version of TOS

carprises a main program (formerly the TOS operator input

program) and a set of utility programs organized in overlays.

The main program contains a main operator control loop, a disk

roll-in and roll-out routine and a number of routines handling

the console teletype ; the set of utility programs mainly include

a msnory dump, a disk dump, a disk protect and unprotect, a me­

mory and register display and rpdate programs.

(21 A machine language symbolic asseribler ; this assanbler is a

tro pass assembler handling 3 character long labels ; it produ­

ces a listing on a teletype or a line printer ; the code gene­

rated is punched on a paper tape ;

3

C31 a relocatable link loader ; the relocatable link loader loads,

links and initiates the execution of relocatable programs pro­

duced by the asserbler on a paper tape.

37 THE^PEQUTEEMENTS~

The first st^> was to replace the paper tape by the disk as an in­

termediate form of storage. This provisional version was tested during

toro semesters by students using the MICRDDATA machine in a Ccmputer

Science course.

The next step was to develop a true batch operating system. The

following requirements had to be satisfied ;

Cll the system should be available in a 16K configuration ; as much

as possible should be actually available to a user program.

(2) A software scheme should be developed to compensate for the lack

of any software or hardware protection.

(3) The system should be extensible, in order to meet the research

needs of the Computer Science department.

(4} The system should be available under two different configura­

tions ;

. a batch, configuration, to provide standard users with an ef­

ficient and automated use of the computer ;

. a stand-alone configuration, in which a particular user is

able to interact with his program during its execution.

(51 The use of the system should be as simple as possible in the

standard cases.

4

4-. MAIN RESULTS

The following are felt to be the strong points of the resulting

Operating System :

(ir A very general file systen ; both, randan access and sequential

access files cna be created, and referenced by symbolic names ;

tenporary and permanent files can be created ; files are dy-

namically extended lay the use of an allocation map in monory ;

several disk operations can be concurrently performed.

(21 A sound scheme for the handling of contexts and the interccm-

munication between processes ; the control language can be

viewed as a tool by vhich a user defines the particular con­

text of a processor.

(3) Simplicity in the standard usage of the systen, by a set of

well chosen default options.

(4) The system holds in 16 K and 12 K are available to a user

program.

In addition to these main features, the following facilities are

provided :

Cll efficient use of the input/output devices in batch configura­

tion, by the implementation of a spooler ;

(21 possibility to dynamically redefine the input/output media of

the system ; inparticular, provision for the execution of por­

tion of control streams stored on the disk file systen ;

5

(31 inpiementation of a reasonable protection of the system against

unintentional destruction by a user program.

No real evaluation of the reliability of the programs is possible,

since, at the time this thesis is suhnitted, the system has not been put

into use.

5. THE OC^TENTS CF THIS THESIS

The operating system was developed in close collaboration with

another student, also working in a master thesis. Only part of the

Operating System is described in the present thesis. In spite of the

fact that a general description of the system is given in chapter III,

it is felt that both theses are needed to understand fully the opera­

ting system. Frequent references to the thesis of my friend Xavier

MANGIN will be found in the following chapters.

The parts of the system specifically described in this thesis include

the following :

(1) the interccmmunication between processes ;

(2} the monitor and the control language ;

(31 the linkage to a user program.

Two conflicting factors were faced in the writing of the present

material, specifically that (1) the size of the material had to be kept

within reasonable limits and (21 the thesis should give a sufficient

insight of the system.

6

The program listings were not k^)t as part of the thesis, and no

detailed flow-chart was included. However, an internal approach to

the description of the operating system was preferred to a scper-

ficial "user manual" approach. This remark holds for the description

of the control language as well.

CHAPTER II :

REQUIREMENTS

7

8

1. EXTENSIBILITY REQUIREMENTS

The first requirenent for the Operating System is that it should be

extensible. This Operating System is not an end product in itself, but

rather a starting point for future research in the Coiputer. Science De­

partment. The extensibility requirement is two-fold :

(1) Minor extensions in the Operating System.

This type of extension should be performed without a need for an

extensive kncwledge of the systen. It includes the addition of

new processors, adaptation of existing processors to specific uses,

and adaptation of the system to new peripherals. These extensions

should occur at a high frequency, following the needs of the Com­

puter Science Department.

(2) Major extensions of the Operating System.

This type of extension should occur in the development of new soft­

ware. The present Operating System is composed of independant mo­

dules ; some of the modules may be kept as part of future software

on the Microdata.

2. STORAGE REQUIREMENTS

The Microdata of the Computer Science Department is a machine with

32K bytes of memory. However, the Operating Systen is required to fit

in a 16K machine. An extensive use of the disks is thus done. Disk sto­

rage includes two disks, each of then composed of a fix platter and a rem­

9

ovable platter, with, a capacity of 2.5 million bytes per platter.

The use of the disk must provide the following facilities ;

(1) sane parts of the disks must be usable out of the context of the

operating system ;

(21 the user must be provided'with the possibility of coning with his

own removable platter.

3. COSFIGURATION REQUIREMENTS

The system is to be used by two categories of users : the batch users

and the stand-alone users.

(1) batch users. The system is to be usable by elementary Corputer

Science courses (FORTRAN and Assembly Language courses) ; this

usage is characterized by a high number of I/Os and sinple control

streams (oonpile-load-execute) ; this calls for :

. buffering of the I/O's in order to obtain a continuous input and

output for the physical devices, independant, as much as possible,

of the execution flew ; this nay be achieved by a spooling system.

. choosing a system of well organized default options, in order to

make the standard use of the system as sinple as possible.

(21 stand-alone users. The system must be available, most of the time,

to graduate students and faculty members, for them to perform ;

. extension and maintenance of the system itself ;

. research involving the development of new software.

10

These stand-alone users may need to reserve the carputer for their

exclusive use during large periods of time, create personal files

on one of the system disks or on a personal removable disk. They

need a more sophisticated system, involving in particular the fol-

Icwingrfacriities”;

. debugging tools ;

. facilities to handle personal files on the disks ;

. facilities to create new processors or to adapt existing proces­

sors to a particular user needs ;

. possibility of choosing an input or output medium different frcm

the standard ones.

4. PROTECTION REQUIREMENTS

The Microdata machine does not provide any tool to inplement protection

in an operating system (memory boundaries, supervisor mode). The only

protection that may then be provided is a protection against unintentional

errors.

(1) Memory protection ; the system has to provide a facility to res­

tore the context of the system in the case of an alteration of sys­

tem memories by a user program.

(21 Disk protection ; a reasonable disk protection must be implemented

to protect files of a user against access or destruction by another

user.

C3) System protection : a recovery processor must be implemented.

11

5. RELIABILITY REQUIREMENTS

A reasonable reliability must be respected concerning the standard

use of the system (compile-load-execute). Nothing more can be achieved

sj.nae-.the.,user .-may, by* program, zero, the^whole^maijory and/or the. whole disk

at any time.

6. EFFICIENCY REQUIREMENTS

In the spool configuration, the speed of the systan is required to

be as close as possible to the maximum speed of the card reader (300 cards

per minute). In other words, ef iiciency does not concern the CPU utili­

zation but rather the card reader servicing rate.

No efficiency is required in the stand-alone configuration case.

CHAPTER III

SYSTEM OVERVIEW

12

13
1. COKrTENTS

A general description of the system is given in this chapter, with

respects to the requirements given in chapter II. The first part is a

description of the system frcm the point of view of its communications

with the outside ; it describes the file system and associated drivers,

the input and. output of the system in spool and stand-alone configura­

tions. The second part deals with the intercommunication between pi3D-

cesses, and includes memoiry organization, cannunications via the me­

mory, and samples of the control language. Only the second part will

be described in greater details in the subsequent chapters of this the­

sis ; the first part is fully explained in the thesis of Xavier MANGIN

II] ; however, the short description given in this part should enable

one to understand fully the restnf the material in the present thesis.

A third part in this chapter gives a list of the processors currently

available in the system. Only some of them are described in this thesis.

2. DISK MANAGEMENT

A. THE MICRODATA DISK SYSTEM

A disk platter is divided into 203 cylinders (for a density of

100 tracks/inch) ; each cylinder is ccnposed of two tracks, one on each

side of the platter ; each track contains 24 sectors ; the sector is

the smallest addressable part of the disk. and contains 256 bytes of

information.

B FILE TYPES AND FILE STWCTURE

The files in the system belong to one of the two following cate­

gories-: CL] random and (21 sequential access files.

14

(1} Randan access files ; they are accessible by sectors and are ge­

nerally of type ’A' C such as an absolute program).

(21 Sequential access files : they are arranged in the form of records

of variable length. A record does not necessarily start at the

beginning of~a sector ; thus, sequential access files are not nor­

mally accessed on a sector basis. Sequential access files are di­

vided into two main types : source file types (’S’) contain records

of ASCII characters such as card images, source programs or lis­

tings. Relocatable files ("R*) contain records of binary values

such as relocatable programs created by the Assembler.

Each file is characterized by a corplete file-name vhich is unique

in the system. A corplete file-name is cctrposed of the following items :

(1) a file-id part, normally associated with a user in the system ;

(2) a user-defined name, to differentiate various files of a user ;

(3) a type ('S', ’R', or 'A').

Each platter posseses a track map and a directory, the directory

and track map give the physical location of permanent files on the platter.

C. FILE ACCESS

Randan access to a file is done through a routine located in the re­

sident part of memory (.DR). Sequential access to a file is done through

the Variable Length Record Driver routines ; the Variable Length Record

Driver routines use .DR as a subroutine.

A file request block is set by the calling program and the address

of this file request block is transmitted to the routine called (.DR or

15

relevant Variable Length Record Driver routine) through the CX) register.

The File Request Block contains the follcwing :

(11 an internal name ;

(21 sane additional routine-dependant information.

The internal name is different from the file-name, the association

between internal name and file name is done by means of a special struc­

ture called "Data Chain", which is presented later in this overview. All

files required by a processor or user program need to be declared on the

control card under the form :

internal name = file-name

The monitor is then- able to create the corresponding association in the

data chain. The trace in memory of a file contains the informations nee­

ded by the disk driver routine to process the request ; this trace is cal­

led File Control Block.

D. ASSIGNMENT OF FILES TO A RUN

All files needed by a user have to be assigned to the Ruin before

any I/O may take place. A structure contains the informations relative

to all the files currently assigned to a Run ; this structure is called

Current Aligned File last. Files cannot be used on a control card be­

fore being placed in the Current Assigned File List.

Two categories of files may be found in the Current Assigned File

List :

(11 permanent files, the definition of which is found in one of the

disk directories ;

1/0 MODES

BYTE I/O CONCURRENT l/O D.M.A.

WITHOUT
INTERRUPT

WITH
INTERRUPT

WITHOUT
INTERRUPT

WITH
INTERRUPT

TELETYPE *

CARD

READER
* * * «

LINE

PRINTER
* * * *

DISK

MAGNETIC

TAPE
* * * *

ARCM *

SYNCHRONOUS

INTERFACE
* * *

ASYNCHRONOUS

INTERFACE
*

TABLE 3.1

16

(2) tsrporary files, created by a user to store temporary informa­

tions ; these taiporary files will no longer exist after termina­

tion of the current RUN.

3. INPOT/OUrPUT COTFIGUEATIONSL

A. PERIPHERALS ON THE MICRODATA MACHINE

There are two ways of handli ng an input or an output on the Microda­

ta ; in the byte I/O mode, a byte is sent or received at each input or out­

put operation ; in concurrent I/O mode, blocks of memory are transferred

between execution of the instructions. Interrupts may be enabled in each

mode.

Another mode, the Direct Memory Access, also exists in the case of

disk transfers. A table (3.1) gives the available modes of transfer

for each device.

B. USE OF PERIPHERALS BY THE SYSTEM

In the standard configuration of the system, only the teletype, the

card reader, the line printer and the disk are used. The dedicated firm­

ware memories for the other devices (magnetic tape, ARCM, Synchronous in­

terface) are left unused by the system and may thus be made available to

a particualr processor or user program. The teletype is nomally used by

the systan as a "system teletype" and is used for ccnrnunications with the

console operator, in initialization and error handling cases. However, a

"user teletype" is also defined in the system, vhich is physically the sa­

17

me as the system teletype, but is used as an input/output medium. This

particular usage of the teletype is normally restricted to stand-alone

configuration only. Thus, the list of input media for the systen include

the following devices :

(1) tlw-card reader*;

(2) a sequential access disk file ;

(3) the user teletype.

The output media are :

(2) the line-printer ;

(2) a sequential access file ;

(3) the user teletype.

C. THE STAND-AIDNE CKNFIGURATICN

In the stand-alone configuration, the system nay be viewed as a ocm-

puting process, that may request input fran an input medium via a call to

a READ process, and that may send output to an output medium via a call

to a BRINT process.

It should be noted that the "system teletype" and the "user teletype"

have two different drivers, and, hence, constitute separate entities in

the system. The systen teletype has always priority over the user tele­

type driver. All these drivers wait for canpetion of the transfer since

no buffering is possible C the input or output medium may be changed bet­

ween twa inputs or outputs).

18

D. THE SPOOL COTFIGURATION

In t±ie spool configuration, the irput flew fran the card reader and

the output flew to the line-printer are buffered through, a list of spooled

files. TVr> independant processes, activated by interrupts, perform the

following functions :

(1) Read cards frem the card reader and store them on a spcxol input

file.

C2) Print the contents of a spool output file onto the line printer.

In this configuration, the READ process described previously normal­

ly takes its input frem a spool input file ; the PRINT process produces

its output on a spooled output file. These READ and PRINT processes may

be broken up in tavo parts :

(1) a resident part ;

(2) an overlay area.

The resident part of the READ/PRINT process is independant of the parti­

cular input/output medium used. The overlay part for each input/output

medium is constituted of a specific device driver and of a storage area.

The input media area:

Cl} the card reader ;

(2} the user teletype ;

C3) one of the user sequential access files ;

The output media are ;

(1) the line printer ;

C2} the user teletype ;

(3) one of the user sequential access files.

19

Spooled input and output files are organised in two independant cir­

cular lists. When a spooled input file is full, the spool input process

requests the next spooled input file on the list. The freed input file is

then available for use by the READ process. In the same way, v^ien a spool­

ed input file lia&-been_enptied by the READ process,, it.becanes available a-

gain for the spool input process. The sane considerations are true in the

case of spool output files.

In addition, a change of spool input file is forced in the following

cases :

(1) a disk error occurred in writing in a spool file ;

(2) a card, with two double quotes ("") is encountered by the input

spooling precess.

The READ fran the spooled input files and PRINT on the spooled output

files are the default options for the READ and PRINT processes. The user

may force these processes to be directed, for a portion of his RUN, to/

fran another irput/output media by a stacking discipline. The stackable

input media include :

(1) one of the user sequential files ;

(2) the user teletype.

The stackable output media are :

(1) one of the user sequential files ;

(21 the user teletype.

The stacking and unstacking disciplines of input and output media are ex­

plained in section 5. In error cases (e.g. devices not ready or swapping

out and in), a real time clock program handles the restart of the sleeping

spool input or output processes.

20

E. CHANGE OF INPUT OR OUTPUT CONFIGURATION

The system does not provide the user with, a way of passing fran the

stand-alone configuration to the spool configuration or vice-versa. The

configuration is.to be chosen, at system.creation.. Cm. the other hand, a

special processor, called IO processor, enable the user to direct the READ

or PRINT processes to take input from or produce output onto one of the

overlay mediums, different from the current one. The old medium overlay

is stacked on the disk, and the new medium overlay is loaded in memory.

A stacking is done for each call to the IO processor in its stacking func­

tion. An unstacking is done vhen one of the following conditions occur :

Cll reference to the IO processor in its unstacking function by user ;

C21 end of device condition ;

C3) error condition.

An end of device condition is defined for each device in input or in out­

put, and may be one of the following :

(1) end-of-file for an input file ;

(2) special card for the card reader ;

C3) "file full" condition for an output spool file.

A more detailed description of these end of device conditions can be found

in JIJ. A change of user must occur vhen the stack is empty. This occurs

in teletype-to-teletype configuration (stand-alone case) or spool-input-

file-to-spool-output-file configuration t spool case).

21

4. THE OVEKLZff SYSTEM

The memory conflicts are solved by a succession of overlays. A spe­

cial systen file (or scratch file) is used to hold temporary images of

memory. The memory is divided into two classes :

(l}'the resident part, mostly in low core, contains mainly the swapper ;

C2) the overlay area successively contains the monitor, the processors

and the users.

A. MAJOR OVERLAY

The input stream, as encountered by the read process, is composed of

a succession of control cards, each of them followed by their input data

(if any). Each control card enables a user to call a processor in the

system. In addition to the processor name, the control card may specify :

(1) a list of files needed by the processor,

(2) a list of parameters directing the action of the processor.

The monitor is responsible for the processing of the control cards.

After the processing of a control card relative to a processor, the moni­

tor is pverlayed by the processor. The action takes place via a request

to the swapper in low core. The image of the overlayed area is tempora­

rily saved in the scratch file. The processor then executes and upon com­

pletion returns control to the swapper. The swapper restores the monitor

program in memory for the processing of the next control card.

22

B. (XMMUNICATIONS VIA THE MEMDRY

Transmi ssi on of information fran the monitor to a processor is done

via a fixed size area, in low core, constituting the "Carmunication area”,

and of a variable size structure, allocated by- the monitor in high core,

constituting the*-"processor'datar-chain'''.

CH Processor data chain. The processor data chain is defined to be

the result of the processing of a control card by the monitor. It

includes the definition of the disk files needed by the user, and

of the input parameters specified by the user. The specification

field on a control card is canposed of a list of identities of the

form :

internal name = file name(s) or

internal name = value (s)

The internal name is a FORTRAN identifier that is known to the pro­

cessor. For instance, in the case of the ASSEMBLE processor, we

may decide that :

. IN defines the source input file of the assembler ;

. OUT defines the object output file for the assembler ;

. LIST is a boolean value indicating whether a listing is required.

Standard input and output files are normally used, and are the de­

fault values of IN and OUT if the user does not specify any par­

ticular file. A default value for LIST may have been defined to

be YES. The default options can be overpassed on the control card:

"ASM IN = MXFILE, LIST = NO ;

23

This redefines the standard input file to be the user file MYFILE

and specifies that no listing is to be produced.

The processor data chain defines the association between the in­

ternal anames known by the processor, and the files and values

assigned'-tcr-tharr by- the^user.- Several routines-in the resident

enable a processor to get the value assigned to an internal name

or to perform a disk operation on the file corresponding to an in­

ternal name ; since several files or values may be associated with

a single internal name, a sequence number is added to the internal

name to characterize the file or value uniquely. The number of

internal names, as well as the number of values or files associa­

ted with a given internal name varies frcm processor to processor

and frcm processor call to processor call. Thus, the processor

data chain is a structure of variable size, allocated by the mo­

nitor in high core. This structure is not overlayed.

(2) Ccmmunication area. A fixed size area is defined in the low re­

sident, and contains seme fixed variables in the system, such as :

. statuses and semaphores ;

. user identification and user-related variables (password...) ;

. sector addresses of priviledged information and tables on disk.

It contains in particular a pointer to the top of the current data

chain for use by the resident chain manipulation routines.

24

C. THE RESIDENT

(1) The minimum resident of the system is ccnposed of the following

constituents :

. low core indirections and firmware dedicated memory. This area,

wstly in page zero and beginning of page 1, contains the memory

boundaries for concurrent I/Os, the interrupt address of the I/O

routines and firmware conditional interrupts, the stack pointer

and real-time clock counter, the definition of the system files

and indirection relays for resident routines.

. Conditional interrupt handling routines.

. A system stack.

. The disk driver routine (.DR) and associated routines and tables.

. The data chain manipulation routines (.EGA, FETCH, LINK, UNLINK,

TYPE,...).

. The swapper and its data chain.

. The ccnmunication area.

. A system buffer necessary for swapper execution.

(2) The extended resident. The resident area may be extended by addi­

tion of some of the following routines :

. The Variable Length Record Driver routines.

. The REZD and PRINT, processes.

. The spooling processes C in spool configuration only).

. A system file handler.

The READ and PRINT processes and the spool process are normally

25

part of the resident. Hcwever, sane processors needing a large

memory area for storage of programs or tables will try to use the

smallest possible resident.

(3) READ and PRINT areas. The READ and PRINT processes, with the sys­

tem- file handler 7 constitute ~a particular^ area-of the memory (X*

1000' to X'2000'). Normally a processor needing some input data

flew and/or producing some output data flow (such as the ASSEM­

BLER) would thus begin at menory location X’2000' ; if the pro­

cessor is too big to hold in the rest of the memory (X^OOO1 to

X'SFFF'), the data following the control cards are copied by the

monitor in a special file CR$; the processor then executes from

the CR$ file, producing output onto a special file PR$. The mo­

nitor, after completion of the processor, then copies the con­

tents of the PR$ file on the current system output medium via re­

quests to the PRINT process.

(4) The spooling process area. In spool configuration, the spooling

programs are normally part of the resident. They occupy the high

memories (X'398O' to X'SFFF'). However the same considerations

as in C3) above may hold, and a processor may execute the follo­

wing serie of operations ;

. halt the spooling process ;

. swap out the spooling programs and buffers ;

. use the freed area for its own storage.

Upon carpetion, the spooling programs are reloaded and started

'again. A processor may be declared to be working without the

26

spooling programs, and then the above steps are carried out by

the monitor before processor execution.

D. OVERALL MEMDRY PICTURE AND EXAMPLE OF PRPGRAM

An overall memory picture may be drawn from the above considerations.

The overlay area always excludes the minimum resident. Depending upon the

characteristics of the processor (with spooling process or without spool­

ing process), the monitor allocates data chains from the top memory avai­

lable downwards (X'3980' or X'SFEF1). The processor data chain is al­

ways excluded from the overlay and defines an upper boundary for alloca­

tion of storage to a processor. The lower boundary of the overlay nay be

one of the following :

Cl) Top of minimum resident (X'OBFF1) ;

C2) Top of variable length record driver (X'1000') ;

(3) Top of the EXTENDED resident (X'2000’).

An overall memory picture, together with details about ccmponents of both

minimum and extended residents, is shewn in the appendix.

An example of a program may be :

"RUN PASS = 1000 ;

"ASM;
(program to assemble)

"ASM OUT-R = REIA$, LIST = NO ;
(program to assemble)

"LOAD IN = (REL$, RELA$) ;

"EXECUTE CHAIN = (IN=CR$, OUT=PR$, NUM-I =
C-1,544);
(data cards of user program)

"FIN

27

The execution of such, a program may be described as follovs :

CL) Monitor in : the monitor analyses the RUN . .card and creates the

corresponding data chain in high core, indicating in particular

that the value of PASS is 1000.

(2) RUN processor in : the RUN processor initializes a user, verifies

that the password PASS is valid, creates the standard temporary

files associated with the password (in particular CR$,PR$,REL$,

RELA$) .

(3) Monitor in : the monitor processes the next control card and de­

termines that the assembler is to be called. The processor data

chain is created with all default options ; the input of the as­

sembler is set to be the standard input file CR$, and the monitor

copies into CR$ the program to assemble following the control card.

The output file is set to be REL$. The listing file is set to be

PR$, and a listing is effectively required.

(4) Tkssenbler in : the assembler executes, taking input frcm CR$, pro­

ducing output into REL$, generating a listing in the PR$ file.

(5) Monitor in : the monitor copies the contents of PR$ to the current

system output medium via the PRINT process. It processes the next

control card, vfliich is a call to the assebbler processor with CR$

as an input file, RELA$ as an output file ; data following the con-,

trol card is copied into CR$; no listing is to be produced.

C6) Assembler in : the assembler executes with its input ccming frcm

the CR$'file, generating output in RELA$, producing no listing.

28

C7) Monitor in : the monitor copies the contents of PR$ (which is erp-

ty) on the current system output medium. The next control card

defines a call to the loader with input files REL$ and RELA$, the

output file being given by default (ABS$).

(8^*Ibade5Tin~: the loader executes and ccmbines the two input files

REL$ and REIA$ into an absolute program stored on the disk file

ABS$. Listing is generated directly on the current system output

medium via requests to the PRINT process.

(9) Monitor in : the file PR$ is not in the loader data chain, and

thus no copy has to be done by the monitor. The control card de­

fines a call to the EXECUTE processor. The default files and op­

tions are generated in the data chain (input from ABS$), the

user data are copied into CR$.

(10) Execute processor in : the execute processor prepares the memo­

ries before giving control to the user program. It verifies that

the program to execute is a valid program, saves all the memory,

gives to the user access to the user program data chain (defined

on the control card by IN-S = CR$, OUT-S = PR$, NLM-I = (-1, 544)).,

loads the user into core and gives control to the user program.

(11) User program in : The user has access to CR$ and PR$ for reading

input and producing listing. It can retrieve the two values as­

sociated with the array NUM by use of the resident chain manipu­

lation routines.

(12) Execute processor in ; The execute processor is able to swap out

the whole user memory and to reload the memory saved at the begin­

29

ning of execution of the EXECUTE processor. It then analyses the

effect of the user program C here contents of PR$) and copies the

contents of PR$ (listing produced by the user program) on the

current output medium.

CL31Monitor in : the monitor processes the next control card, which

is a call to the FIN processor, and generates the data chain.

(14) Fin processor in : the Fin processor takes all ccmpletion actions

necessary to terminate execution of the current run.

(15) Monitor in : the monitor is then able to analyse the next control

card.

The above description does not seek to be accurate about the exact

action of each processor, and associated control cards, but only wants to

give an example of execution of a sinple program.

5. PROCESSOPS AVAILABLE IN THE SYSTEM

A. PROC processor

The PPOC processor is mainly a maintenance processor ; certain op­

tions are not available to all users. Its function is to create new pro­

cessors in the system, or modifying existing processors by freezing some

parameters, changing processor names, changing defaults or reordering pa­

rameter lists.

B. 10 processor

The 10 processor handles the change of system input or output medium,

as described in previous sections.

30

C. FIIE processor

The FILE processor deals with, the assignment, creation, deletion, re­

call of files (permanent or taiporary).

The ASSEMBLER processor creates a relocatable and absolute output

frcxn a source program.

E. LOAD processor

The LOAD processor creates an absolute output, ready to be executed,

from several relocatable files, result of the ASSEMBLE or FORTRAN proces­

sors.

F. EXECUTE processor

The function of the EXECUTE processor is to protect the system against

mistakes occurring during execution of a user program.

Only the PROC and EXECUTE processors are desrcribed in detail in this

thesis. The reader is referred to [1] for description of the other proces­

sors.

CHAPTER IV

DEFTNITICN OF DATA CHAINS

31

32

1 . PROCESSES AND CONTEXTS

One approach to the description of an Operating System is to view

it-in-tenns-of^its deccxnposition into processes. Each of the processes

constituting the Operating System is associated with a context. The con­

text of a process is the part of the system that the process is able to

access and/or modify.

With respects to this definition, the context of a Fortran subrouti­

ne consists of the program itself, local memories, parameter list and

return address.

The context of a process (such as the Fortran subroutine) clearly

contains two classes of elements :

(1) Seme elements are strictly bound to the process, i.e they do not have

any meaning for any other process (the program, the local memories).

(2) Seme elenents can be accessed or modified by at least two different

processes in the system (parameter list and return address) ; these

elements are called OBJECTS in the following discussion ; the effect

of a process is completely determined by the set of all objects that

the process is able to access ; the effect is measured through the

set of objects the process is able to modify.

The idea here is to force each given process in the system to use a

standard pattern to communicate with the outside world (by accessing and/

or modifying the objects). A structure was designed to accomplish this

purpose, and is defined below under the name of DATA CHAIN.

33

For each given process, a unique Data Chain is defined, vdiich cont­

ains pointers to each object that the process is able to access and/or

modify. In a uniprocessing system, only one process may be executing at

aryi-given-timat; thus> only^one-JDatar-rChajar may be-accessed at any given

time ; this particular Data Chain is called CUBBENT DATA CHAIN. A fixed

manory location in the resident part of the merory defines at each inst­

ant the Current Data Chain. It is called the CUBBENT DATA CHAIN POINTEB.

A set of routines in the resident enable the currently executing process

to access and/or modify the set of objects accessible through the Current

Data Chain Pointer.

2. OBJECTS

An Cbject is an element of the Operating System which is meaningful

for at least two processes in the system. According to this definition,

the follcwing itans are objects :

(1) Parameters in a subroutine call

(2) Shared buffers

(3) Devices

(4) Files in the Disk File System.

(Ejects may be classified into three classes :

(1) Manory-bound objects :

(2) File objects ;

(3) "item" objects.

Parameters in the subroutine call, shared buffers are msnory-bound

34

objects, devices and files in the Disk File System are file objects ;

"item" objects are discussed in the following sections.

Each Cbject is here formally defined as an association of two cons­

tituents. :

(1) an ACCESS INDICATOR ;

(2) a VALUE AREA.

The Access Indicator is a simple svzitch that can be turned on and

off ; if the switch is off, the value area cannot be changed. The pro­

tection header of a sector may be considered as the Access Indicator of

the sector ; in the case of a buffer shared by two processes, a Senapho-

re may be created as an Access Indicator for the buffer.

A process may then take four types of "actions" with respects to a

given object :

(1) READ action (read the current value of an object) ;

(2) PROTECT action (reset the access indicator of the object) ;

(3) UNPROTECT action (set the access indicator of the object) ;

(4) WRITE action (write into the value part of the cbject if the access

indicator is CN, return in error otherwise) .

35

3. STRUCTURE OF DATA CHAINS

A. ITEMS

A Data Chain consists of a linked list of ITEMS, each of then being

able to reference one or several Cbjectsr

Each Iten within a Data Chain possesses an identification called

INTERNAL NAME. The Internal Name of an Item must be unique within the

Data Chain in which it is found.

All the Cbjects referenced by a given Item have the same nature

(MEMORY-BOUND cbjects, FILE cbjects, ...) . A TYPE represents this nature,

and is part of the item definition. This type is associated with the

Item as well as with the referenced cbjects.

Thus, an item is the way for the process to reference a particular

set of objects. As seen in the preceding section, four types of actions

may be taken by the process with respects to one of the objects (READ,

WRITE, PROTECT, UNPROTECT) . The Item Definition specifies which actions

the process is allowed to perform on any of the Cbjects referenced by the

Item. Four bits, corresponding to each of the actions, are RESET if the

process is not allcwed to perform the corresponding action upon the re­

ferenced Cbjects.

B. BINDING OBJECTS TO ITEMS

The Items described above are characteristic of a process : the in­

ternal names, types and action bits do not change from one execution to

36

another. However, the actual objects referenced by an Item may vary from

one execution to another. The action of establishing the linkage from

Item to Objects is called BINDING objects to the Item.

The linkage from Item to Objects is done via a linked list of point­

ers, as shewn in fig. 1. VAL points to a linked list ; each element in

the list is able to reference a single Object. Binding objects to an item

consists in creating this linked list.

We already mentioned in the Object classification that Items could

be considered as Cbjects. A special type is associated with such Objects.

In the case of an I ten of type I ten, the VAL pointer points to an

entire Data Chain (see fig. 2).

The process associated with the data chain containing an iten of

type item is called PARENT PROCESS. The Data Chain pointed at by the VAL

pointer is called DEPENDANT DATA CHAIN ; the associated process is a

SUBPROCESS of the parent process. In this definition, an Item is viewed

as an Object of a Parent process. The value field of the Item object is

defined to be the binding of the iten. Perform a WRITE action upon such

an Item object consists in binding objects to the item. An additional bit

had to be introduced in the Iten definition to represent the access indi­

cator of the item as an object of a parent data chain ; if this bit is

reset, the current binding of the item cannot be changed.

The binding of cbjects to items thus becomes the responsibility of

the parent process. A process can modify the access indicator or value

37

OBJECT LIST

Fig 1: AN HEM AND LINKAGE TO OBJECTS

38

ITEM

PARENT
DATA CHAIN

DEPENDANT
DATA CHAIN

-Fig 2 ; CASE OF AN ITEM OT TYPE TTEM

39

field of all objects accessed through its Data Chain ; it cannot change

the actual binding of any Itan in its own data chain. This situation is

very similar to the above example of a Fortran subroutine call. The sub­

routine can change the value of any parameter in the parameter list.

Hcwever, it is the responsibility of the main program to associate each

parameter in the formal list with a specific address, and this address

cannot be changed by the subroutine.

This definition of Items as particular objects adds the power of

recursion to the definition of data chains. The number and addresses of

the objects associated with the items become dynamic for the parent process.

The Internal Name, Type and action bits of the itens in a data chain can­

not be changed by either the parent or dependant processes. They are

characteristic of the process itself, and enable the process to access the

objects in a standard fashion. In the Fortran example, they are similar

to the formal parameter list in the subroutine definition.

4. ACCESSING OBJECTS

Reference to an object for a READ, WRITE, PROTECT or UNPROTECT ac­

tion is done through the Current Data Chain.

A set of routines, located in the resident part of the memory, en­

able a process to use the current data chain. The particular Name and

address of the routine may depend upon the TYPE of the Item referenced,

and the action required by the process. All .routines have a standard

40

cal 1ing sequence, specifically :

WX= Request block address

CAL Subroutine needed

The REQUEST BLOCK is set by the calling process. It alvzays includes

the following information :

(1) an IDENTIFICATION of the object within the current data chain ;

(21 sone subroutine-dependant information.

The Identification part may be standard between all the routines in

the package ; it includes the following :

(1) INTERNAL NAME of the Item ;

(2) a relative OBJECT NUMBER identifying the particular object desired

within the list of objects referenced by the Item ;

(3) the TYPE of the Itsn.

For the routine to be successfully executed, at least five conditions

must be met :

(1) the Internal name exists within the current data chain ;

(2) the Type specified in the Request Block matches the type of the Iten

determined by the Internal Name ;

(3) The Object Nunber specified in the Request Block is less than or equal

to the nunber of objects associated with the iten ;

(4) the action required is valid, i.e the corresponding bit in the item

definition is not reset ;

(5) if the particular action requested is a WRITE, the Access Indicator

of the object.referenced is not reset.

41
Each of the actions (READ, WRITE, PROTECT, UNPR3TECT) is defined

below for each object category (MEMDRY-BOUND objects, FILE objects, ITEM

objects). According to the definitions in Table 1, READ (PARAM(4)) cons­

ists in reading the fourth object associated vzith the Item defined by the

Internal Name PARAM ; SEMON (MEM (2)) consists in turning ON the Access

Indicator of the second object associated with the Manory-bound item de­

fined by the internal name MEM ; BIND (DATCHN(3)) consists in defining

a binding for the third I ten of a subchain of the current data chain.

5. CHANGE OF CONTEXT

A change of context in the system merely consists in altering the'

value of the CURRENT DATA CHAIN POIMTER. This can be done by three dif­

ferent disciplines :

(1) Queueing discipline ;

(2) Prearptive discipline ;

(3) Linking discipline.

The Queuing discipline inplies an identity of priorities between

the processes, and may be used to handle multiprogramming situations.

The Preenptive discipline is used to handle interrupts or inter­

rupt-like situations when a process has to be serviced in priority. The

prearpting context is fully independant of the preempted context. The

chain of the preempting context is generally of a fixed-binding nature.

The Linking discipline makes use of the Items of type Item, as defin-

Table 1: DATA CHAIN MANIPULATION PRIMITIVES

\ OBJECT

TYPE

ACTION X.

MEMORY BOUND
OBJECT

FTT.F

OBJECT
ITEM

OBJECT

READ
FETCH

The value of a set
of memory locations

READ
A file on the disk

file system

UNBIND
get the value of the

pointer to object list

WRITE
SET

memory locations
to a given value

WRITE
on the

disk file system

BIND
an object list to a

dependant item

PROTECT
SEMON

turn a semaphore
on

PROTECT
a portion of the
disk file system

SECURE
an item against
ulterior binding

UNPROTECT
SEM3FF

turn a semaphore
off

UNPROTECT
a portion of the
disk file system

RFT.FASE

reset the protect,
indicator of an item

43

ed above. The parent context "contains as a value" the entire Data Chain

of the dependant context. This scheme corresponds to orderly situations

such as a call to a subroutine. It is the responsibility of the parent

process to make sure that all items in the dependant data chain are pro-

perly -bound-before--the-subprocess is-enabled- Linking the new context

is in this case the responsibility of the parent process, and the sche­

me makes use of a stack to store successive values of the current data

chain pointer.

The preemptive and linking disciplines are sketched in fig 3.a,b.

6. CREATION OF DATA CHAINS

The question arises of vhen data chains should be created. It was

already mentioned that the Items in a data chain and their identification

(Internal Name, Type, REZ^/NRITE/PROTECT/UI^PROTECT bits) cannot be chan­

ged, since they are characteristic of the process with vzhich the Data

Chain is associated. Thus, a permanent image of a data chain may be kept

on the Disk for each process defined in the system. The creation of the

Data Chain is done merely by mapping the permanent image in memory. The

binding for the items of the permanent images is called DEFAULT BINDING.

The permanent image is itself called DEFAULT DATA CHAIN. An Access In­

dicator is defined for each iten in the DEFAULT DMA CHAIN, and specifies

whether or not the default binding can be modified.

INT.
ENTRY

I

Process inteix.
during execution

PROCESS IN
WAITING STATE

PREEMPTED PROCESS

PROCESS
EXECUTION

Fig 3.a CHANGE OF CONTEXT, PREEMPTIVE DISCIPLINE

I
I
V

<------------------------------

■ DEPENDANT PROCESS

PAREOT PROCESS

Fig 3. I> CHANGE OF CONTEXT, LINKING DISCIPLINE

46
A process that has no parent in the system is called MASTER process.

Its Data Chain is necessarily of a fixed-binding nature, and is created

at the same time that the process itself is brought in msnory.

Processes with variable bindings must be enabled by a parent process

after their associated Data Chain are created.

CHAPTER V

IMPLEMENTATION OF DATA CHAINS

47

48

1. PROCESSES IN THE SYSTEM

In the description of the irrplemention, we will call process any

program associated with a Data Chain. As will soon be seen, the imple­

mentation of Data Chains is costly memory-wise. The number of processes

in the system was thus reduced to the minimum.

The I4ASTER processes (i.e the processes having no parent) are defin­

ed to be :

(1) the MONITOR process ;

(2) . the SPOOLING process ;

(3) the SYSTEM INPUT process ;

(4) the SYSTEM OUTPUT process ;

(5) the SYSTEM FHE HANDLER process ;

(6) the REAL-TIME CLOCK process.

Only the MONITOR and the REAL-TIME CLOCK processes will be describ­

ed in detail in this thesis. The other processes (SPOOLING, SYST. INPUT,

SYST. OUTPUT, SYST. FILE HANDLER) concern the input/output of the system,

and are described as such in [MANGIN, (1)].

The other processes in the system are all subprocesses of the MO­

NITOR process. They will be described in this thesis. These DEPENDANT

processes include in particular :

(1) the SWAPPER subprocess ;

(2) the PROCESSORS ;

(3) the USER-DEFINED PROGRAMS . .

49

The creation of the Data Chains for these subprocesses is done by

the M3NIT0R upon user’s request ; the mechanism is described together

with the MONITOR’S description.

2. ItTT.T^TRNTATION OF D^EA, CHAINS

ITEM DEFINITICN

As specified in the preceding chapter, a DATA CHAIN consists in a

linked list of ITEMS, each of them being able to reference one or seve­

ral objects. All pointers in Data Chains are absolute ; the last ele­

ment in a chain has a zero pointer.

The USKERNAL NAME of items is implemented as a FORTRAN identifier,

i.e at most 6 letters or digits, beginning by a letter ; characters are

stored as ASCII characters (1 byte per character) ; the INTERNAL NAME

is ocnpleted to 6 characters by trailing blanks on the right.

In the irrplementation, TYPES consist in a unique ASCII character.

The possible types are :

(1) 'X' ,'C' ,'H' ,’F' ,’B’ (MEMORY-BOUND objects)

(2) * •/S'/R'/A' (FIIE objects)

(3) 'D* (ITEM objects)

The ACTIOSI BITS are stored together in a whole byte, though only

5 bits of this byte are used. Each of the lower 4 bits corresponds to

a different action, as shewn in Fig. 4 ; the bit is set if the process

is allowed to perform the action on the objects associated with the

item, reset otherwise. The fifth bit is the Access Indicator of the

50

iten considered as an object of a parent chain ; it is set if the process

can change the binding of the item, reset otherwise.

B. LINKAGE OF OBJECTS TO ITEMS

The linkage of objects to items was defined as a linked list in

order to preserve the full recursivity of the structure, in particular

with respects to items considered as objects of a parent data chain,

via an item of type ITEM.

The linked list was kept in the particular case of itens of type

ITEM. For cases involving Memory-bound objects and File objects, the

pointers to objects (VALPTR in fig. 1) were stored as a linear list

starting from the.memory location pointed at by the VAL pointer. An

additional byte had to be introduced to specify the number of objects

in the linear list. Thus, from 0 to 255 objects may be referenced by

a single iten. For N objects, the savings in terms of memory is :

2 x N bytes of core.

a) another simplification was done in the case of memory-bound

items, and is detailed below. In almost all instances, one of the

tw following conditions was met :

(1) Mary processes can read or alter a given object, but this

object is of a fixed binding nature, such as a system va­

riable ;

(2) Once bound, the object can only be read by a single process

in - the system, and cannot be written into (input parameter

for a processor) .

51

Objects in class (1) were simply blocked in a dedicated area in

low core, called the OMIJNICATICTJ AREA. The Corrrnunication Area in­

cludes thus such variables as RUN variables, fixed meraonry addresses,

sector numbers, status bytes, semaphores, a.s.o. A description of

the canmunication area is contained in appendix A. This simplifi­

cation presents at least two major drawbacks :

(1) it becones difficult to see which process in the system "pos­

sesses" (i.e is able to access and/or modify) a given varia­

ble in the coianunication area ;

(2) processes become sensitive to modifications in the carmuni ca­

tion area structure.

These drahfoacks were partially overcane by :

(1) grouping the carmunication area objects so that the variables

relevant to a given, family of processes be stored consecuti­

vely in rremory ;

(2) forcing all processes to access each object in the oanmuni-

cation area in the following standard fashion :

. fetch the address of the top of the relevant group in page

zero of memory ;

. access the desired by an offset from this address.

The scheme is sketched in fig. 5 case b.

Since objects in class (2)interest only one process in READ-

CNLY fashion, their value is placed within the data chain before

activation of the process ; no pointer at all need to be stored

52

, and tills results, in non-negligible savings in terms of storage :

in the case of an object that can be stored in one byte of core,

this sinplification cuts the storage needed in a factor of one to

three (1 byte needed for storage of object instead of 1 byte for the

cbjectrand*2 bytes for the pointer*) .

b) the same scheme could not be extended to the case of FILE ob­

jects. Files are shared objects in the system, and are used exten­

sively in all READ/WRITE/PRCnLCT/UlSEPFCTECT cases. Two simplifica­

tions were made in order to ease the implementation and usage : .

(1) the sharing of the same FITE OBJECT by two different items

belonging to the SAME data chain was simply forbidden in the

system, as a safeguard against errors ; this is not really

a restriction, since DIFEEBENT processes can access and/or

modify the same file object (see fig. 5, cases d and e).

(2) very few cases were met where the need was felt to use

multiple file objects assciated with a single item (however

see LOADER data chain example, in II]) ; the idea was kept

but merely implemented as several different items, each of

them pointing onto a single file object. The internal names

of the items differ only by their OBJECT # byte. The be­

haviour of the resulting structure is defined to be as if

a single item was associated with all the file objects.

However, the new scheme is more costly memory-wise, since

repeated storage of the internal name is required (see fig.

5,case c).

BYTES
12 3

<:---- >------ >------>

Fig 5 : IMPLEMENT7\n(3SI OF DATA CHAINS
Case a : MEMDRY-BOUND OBJECT, READ_- (KLY,

ACCESSIBLE BY CNE PROCESS ONLY

Fig. 4 : ACTION BITS AND PROTECTION INDICATOR

Fig 5, case b : MEMDRY-BOUND OBJECT, FIXED-BINDING CASE

BYTES
12 3

<---- >------ >------>

Fig 5 : IMPLEMENTTYTICN OF DATA CHAINS
Case a : MEM3RY-BOUND OBJECT, READ_- ONLY

ACCESSIBIE BY CNE PROCESS OSILY

Fig 5, case d :
FORBIDDEN SHARING OF A FILE OBJECT BY

ITEMS IN THE SAME DATA CHAIN

Fig 5; case e

ALLOWED SHARING OF A FILE OBJECT BY
DIFFERENT PROCESSES

58

3. OBJECTS AND OBJECT TYPES

A. OBJECTS IMPIEMENTED

Among the list of possible objects mentioned in the fornel presen­

tation, the-followtng w^?e-inpiemen ted -through, use*- of- data chains :

(1) read-only parameters in subroutine calls ;

(2) objects of type item .

The items listed belcw were implemented by use of the ccmnunication area

through page zero indirection :

(1) buffer shared between processes (by placing the semaphore

in the connunication area) ;

(2) devices (by the spooling system) ;

(3) READ/WRITE only memory-bound objects of fixed binding type.

General READ/t^^TE/PRCTECT/UNPROTECT memory-bound objects of variable

binding were not inplemented in the 16 K version of the system.

B. PRCTECTION MECHANISMS

The formal presentation insisted on a protection mechanism for each

object ; the idea was maintained throughout the irrpleirentation.

(1) Cbjects of type ITEM : The additional bit "protecting"

each item was implemented as will be seen in the descrip­

tion of the monitor .

(2) File objects : a suitable protection mechanism, was imple­

mented by use of the hardware header on each sector of the

disks ; an additional software protection, on the basis of

a file in the disk file system, was implemented to prevent

59

a use to destroy another user's or a system file.

(3) Memory-bound objects : no hardware protection is offered

by the computer microprograms over any specific memory lo­

cation. Itenory-bound items treated through use of data-

chains need no protection indicator since they are READ -

ONLY by definition. Protection of objects in low core, and

in particular in the communication area, was insured by two

mechanisms :

. inpiementation of a relocating loader "filtering" a pro­

cess's requests for indirections in page zero, depending

on the degree of reliability of the process ;

. inpiementation of an "execute program" processor to exe­

cute a user's program ; the entire memory image is saved

before (and restored after) the user's program execu­

tion.

A description of the relocating loader can be found in [1],

and the EXECUTE processor is described in details in this

thesis.

It can be noted that no specific PROTECT/UNPROTECT routine

was inplemented.

C. ITEM OBJECTS

The associated item type is 'D'. An item object can be shared by

several different processes, though no exanple of this was actually tried.

No recursion is possible in the 16 K version of the Cperating System,

and thus no process can have itself or a parent process as a sub-process.

60

D. MEMORY-BOUND OBJECTS

The types associated with, manory-bound objects treated through use

of data chains include :

'I' INTEGER OBJECT, FULL WORD Core used : 2 bytes

'H' HALF-WORD INTEGER OBJECT Core used : 1 byte

'C ASCII CHARACTER OBJECT Core used : 1 byte

'B' BOOLEAN OBJECT Core used : 1 byte

•pi FILE-NAME OBJECT Core used : 8 bytes

No routine to RE^/WRITE/PRCTECT/LWROTECT was written, since a copy

of the value of the object is done each time the process is activated.

E. FILE-BOUND OBJECTS

The types associated with FILE objects include the following :

' * ANY FILE IN TEE DISK FILE SYSTEM

'S' FILE OF TYPE 'SOURCE' (TYPE 'S')

'R' FILE OF TYPE 'RELOCATABLE' (TYPE 'R')

'A* FILE OF TYPE 'ABSOLUTE' (TYPE 'A').

The trace in memory of a File object is a FILE CONTROL BLOCK, succintly

presented in the overview ; the File Control Block is described in details

in II].

61

4. ACCESSING OBJECTS

Reference to an object for a READ, WRITE, PROTECT or UNPRCTECT ope­

ration is done by use of the CURRENT DATA CHAIN or the COMMUNICATION AREA,

A. ACCESS VIA THE COMMUNICATION AREA

Accessing an object within the Carimunication Area is done via an

indirection relay in page zero of memory.

READ action : IDX Indirection relay

IDA+ Offset to object required

WRITE action : LDX Indirection relay

STA+ Offset to object required

Nd explicit Protect or Unprotect can be done by a process, and the

objects in the ccrnmunication area renain constantly unprotected.

B. ACCESS VIA THE CURRENT DATA CHAIN

As defined in the formal presentation, the process sets-up a REQUEST

BLOCK, and calls the relevant routine in the resident part of the memory.

The beginning of a request block is standard between all the routines,

and is shown in fig. 6. It identifies a unique object within the Current

data chain. A different appendage may be necessary, depending on the rou­

tine called.

62

A single routine (.FCA) is used by all routines to fetch the ad­

dress of a particular item within the current data chain. The calling

sequence for this routine is :

IDX= Request Block address

CAL .FCA

The output is stored in the registers of the calling program as follows :

(X) ranains unchanged

(B) points to the top of the object list or is equal to zero ; a zero

value of the (B) register means that no item in the current data

chain satisfies all of the follcwing conditions :

(1) Internal name matches internal name specified in R.B.

(2) Type Hatches type specified in R.B.

(3) # OBJ. byte in item definition is greater than or equal to

the OBJ # specified in the R.B.

(A) is undefined if (B) is zero, otherwise (A) contains the address of

the matching item.

The routine is flowcharted in fig. 7.

Other chain manipulation routines make use of .FCA as a subroutine,

and are succintly described belcw.

a) Case of FILE objects : A single routine (.DR) may be used to

perform all actions (READ/WRITE/PRCTECT/UNPROTECT) . The

appendage needed to the Request Block is shown in fig. 6.

The OP. REQ. byte must be set to 1,2,3,4 in order for the rou-

. tine to perform respectively a Read, Write, Protect or Unpro­

63

tect operation ; no multiple operation can be done at a time.

Several routines in the resident constitue the Variable Length

Record Driver and make use of .DR. The File Request Block need­

ed in the calling sequence is canpatible with the general Request

Block format. All these routines are described extensively in

II] .

b) Case of Memory-bound objects : only the READ operation was inple-

mented. The routine FETCH in the resident can be called by a

process and is able to match the current value of a single object

into the area of the calling process. The calling sequence is :

LDX= Request Block address

IDB= address to store the object's value

CAL ■ FETCH

The output of the routine is in the (B) register : (B) is zero

if the request is in error (bad return from .FCA) , non-zero

otherwise. The other registers are unmodified.

c) Case of item objects : The four actions (UNBIND, BIND, SECURE,

RET EASE) were formally thought as part of the resident. How­

ever, these constitute carplex operations that cannot be kept

permanently in memory. The solution adopted is that all bin­

ding of chains are to be done at the time the Data Chain is

created (i.e brought in memory) ; this can be :

. at system gemeration time for MASTER processes ;

. at control-card processing time for the other processes.

The corresponding actions are thus performed by the MCHETOR.

Fig 7

FLCtOiARr .FCA

INTERNAL

NAME OBJECT # TYPE

<-- -
4 Bytes

Fig 7
REQUEST BLOCK FORMAT

OP. REQ. STATUS BYTE LCW CORE ADDRESS

HIGH CORE ADDRESS SECTOR # WITHIN FILE

4 Bytes

Fig 8
FILE REQUEST BLOCK APPENDAGE FOR

USE BY .DR ROUTINE

Table 2 : TABLE GF IMPLEMENTED PRIMITIVES AND CALLINGSEQUENCE

OBJECT
TYPE

ACTION
REQUEST.

MEMDRY-BOUND
OBJECT
THRU

COMMUNICATION
AREA

MEMORY-BOUND
OBJECT
THRU
DATA
CHAIN

FILE-BOUND
OBJECT

ITEM
OBJECT

READ
LDX Page Zero

Indirection
LDA+ Offset

LDX= Request Bl.
address

IDB= Core addr.
CAL FETCH

IDX= File Req.
Block addr.

CAL .DR
(OP. REQ. = 1)

by MOSriTOR
only

WRITE
LDX Page zero

Indirection

STA+ Offset

not
inplemented

WX= File Req.
Block addr.

CAL .DR
(OP. REQ. = 2)

by MONITOR
only

PROTECT not
inplemented

not
inplemenyed

LDX= File Req.
Block addr.

CAL .DR
(OP.REQ. = 3)

by M2NIT0R
only

UNPROTECT not
inplemented

not
inplemented

LDX= File Req.
Block add.

CAL .DR
(OP. REQ. = 4)

----- 3

by MONITOR
only

67

5. CHANGE OF CONTEXT

Among the possible change of context described in the formal presen­

tation, two were implemented :

(1) the PREEMPTIVE discipline^ to. handle, interrupts ;

(2) the LINKING discipline otherwise.

A. CHANGE OF COTTEXT BY LINKING DISCIPLINE

The data chain to be linked is a subchain of the current data chain.

A small stack (for storage of current data chain pointers) and two

routines in the resident (LINK and UNLINK) accomplish the purpose.

A Request Block is set-rp by the parent process ; its format is

given by the general request block format. The parent process then exe­

cutes the following code :

IDX= Request Block address

CAL LINK

The routine LINK then stacks the current value of the current data chain

pointer and updates it to the top of the dependant data chain. The out­

put is indicated in the (B) register of the calling program, and is zero

if an error occured ; this eaoror return may be caused by :

(1) bad return frcm .FCA (i.e no item in the current data chain meets

the specifications in the request block)

(2) stack overflow.

The parent process then jumps to the start address of the dependant pro­

cess, and waits for its carpietion.

68

Upon return frcm the subprocess, the parent process executes a call to

the UNLINK routine :

CAL UNLINK

The^UNLINKtrQUtirLe^resetsxthe-curreriti.data„chain. pointer, to the value

on the top of the stack, placed by the LINK operation.

B. CHANGE OF CONTEXT BY PREEMPTIVE DISCIPLINE

In this case, the preenpting context is fully independant of the

preerrpted context ; the preempting process is a MASTER process (it has

no parent in the system) .

Since the data chain of a process is not a subchain of any parent

chain, the MASTER process is always assumed to know the address of the

top of its own data chain ; two routines in the resident (PREEMP, RET FAS)

^llcw such a MASTER process to preempt the currently executing process

without disturbing its execution. An additional difficulty was met in

irrplementing the scheme, as will be seen in the REAL-TIME CLOCK PROCESS

description chapter.

The calling sequence for the two resident routines is respectively :

IDB= Top of chain pointer address

RTX PREEMP

and : RTX ret fas

The routines have no output.

69

6. CREMTCN OF DATA CHAINS

Data chains of MASTER processes are of a fixed binding nature. They

sire mapped in memory together with the process.

Other-processes- are-all subprocesses of-the Monitor process. Only

the SWAPPER data chain is permanently in memory, since it is a part of

the resident. The processor and user program data chains are created by

the Monitor at control-card processing time ; the binding for these

chains is permanently determined by the Monitor at the same time.

DEFAULT PROCESSOR DATA CHZVENS are kept permanently on the disk.

They are mapped in memory by the monitor at control-card processing time.

The algorithms to create and bind data chains frcxn the processing of a

control card and a default processor data chain are described together

with the Monitor description.

CHAPTER VI

APPROACHES TO THE

DESCRIPTION OF THE OPERATING SYSTEM

70

71

In viewing the system as composed of processes and subprocesses f

we can follow two approaches ;

<L .^DESCREPTTSW BY<I^OCESS

The first approach, is to describe each process existing in the

system. Processes are considered with respects to the following :

(11 initial presentation of vdiat the function of the process

is in the overall systan.

(21 external behaviour describing a process by looking at all

the objects that the process is able to manipulate ; this in­

cludes the following :

. behaviour with respects to the process data chain.

. behaviour with respects to the cormunication area ;

. behaviour with respects to subprocesses ;

. behaviour with respects to system files ;

(31 internal behaviour of the program itself.

In this thesis, the following processes are described with

various level of details :

(11 the SWAPPER subprocess (chapter 7);

(21 the REAL-TIME CLOCK process (chapter 8 1 ;

(31 the MONITOR process C chapter 101, with the control language ;

(41 the PROCESSOR subprocesses general format (chapter 9 1 ;

(51 the EXECUTE processor, and linkage to a user program (chapt. 11);

(61 the PROC processor (chapter 12 1.

72

A description of the other processes in the systan C READ and

WRITE procesess, SPOOLER process, 10, FILE, ASSEMBLE, LOAD processors)

can be found in (11 or (21.

2, DESCIUPTISN BY OBJECTS

The second approach is to describe the system by looking at the

objects. The description is three-fold :

(11 contents : general description of what the function of the

process is as a means of caimunications between processes.

(2) structure : description of the objects in teacns of its com­

ponents and formatting.

(31 usage : this involves a description of the standard routine (s)

accessing the object and a cross reference table of the pro­

cesses accessing or modifying the object.

A descipticn by objects may incluse the following :

A. MEMORY DESCRIPTION

The manory can be described as a serie of invariant areas (re­

sidents! and overlay areas. A description of the various overlays

of the manory is present in appendix to this thesis.

(11 Data chains. The contents, structure and usage of data

chains is described abundantly througout this thesis.

(21 Page zero. The first page of the memory (page zero 1 con­

tains indirections to access the coirrnunication area and

routines of the various residents, as well as fixed sector

73

addresses within system files.

C31 Camunication area. The cannunication area is divided into

several sub-areas, each of them being defined by an indirec­

tion in page zero. The sub-areas include the follaving :

. I/O subarea ; this area contains information relative to

the current system configuration, and. is described in II] .

. RUN subarea ; this area contains information relative to

the current user of the system, such as his password, file-

id. . . It contains in particular the RUN byte, giving the

current status of the current RUN ; the RUN byte is des­

cribed -in the M3NIT0R chapter.

. .FC subarea ; this area is a general communication area for

such processes as the SPOOLER process, the READ and PRINT

processes, and the REAL-TIME CLOCK process. It also con­

tains the current data chain top pointer.

. PROC sub-area ; this area constitutes a provision for trans­

mission of fixed arguments between monitor and processor.

A detailed description of this sub-area can be found in the

processor general description chapter.

74

B.DESCRIPriaJ CF THE FILE OBJECTS

A general description of the disk file system is not done in

this thesis, but is present in 11]. A short description can be found

in the system overview chapter. Files include the following :

(1) files of type ’S' (normally sequential access, 2\SCII charac­

ters 1 ;

(21 files of type 'R' (normally sequential access, binary records) ;

C3) files of type 'A' (normally randan access) ; the format of

absolute files is described in JI].

A particular attention should be placed onto system files. Sys­

tem files are particular files that are not directly available to a

user program. A special handler for these files is part of the ex­

tended resident, and constitute the SYSTEfd FILE HANDLER process ;

it is succintly described in the processor general description chap­

ter. System files are not described in this thesis, but can be found

in 12]. Basically, the system files are :

(1) a scratch file (SCR$) ; this file is used by the system as

a virtual extension of the memory, as mentioned in the desc­

ription of the swapper (chapter 7) , the EXECUTE processor

C chapter 11) and the READ-PRINT processes (in II]) ;

(21 processor and library files respectively containing the ab­

solute and relocatable programs available in the system.

A particular processor file is PRO$, containing the monitor

> and the major processors ; PRO$ also contains the paisticular

75

input-output drivers, as fetched by the 10 processor C see I1J) ;

directory files ; these files contain for each, disk a per­

manent track map and a directory of all the files on the disk ;

C4) spooled files ; these files are used as a buffer in the system

by the SPOOLER process ;

(51 the RUN$ file, describing :

. the current status of the system (processors, file-ids...)

. and information concerning the current user of the system.

This file contains in particular the CURRENT PROCESSOR TABLE,

CURRENT ASSIGNED ETLE LIST and PROCESSOR INFORMATION AREA

described in this thesis.

CHAPTER Vn :

AN EXAMPLE OF CHANGE OF CONTEXT BY LINKING DISCJPLLNE

THE SWAPPER PROCESS

76

77

1. THE OVERLAY SYSTEM

The system makes an extensive usage of the technique of the change

of context by linking discipline. We have seen in the overview that the

system involves a continuous overlay pattern, follcwing the altemance :

(1) MONITC^ROCESSOR/MDNITOR or

(2) LOJITDR/ DTE PROCESSOlVUSER/EXECUrE PROCESSOR/l^DNITOR.

The SWAPPER is the program that actually performs this altemance. It

has its own. Data Chain, and thus constitutes a particular process. The

SWAPPER and its chain are entirely located in the resident part of the

memory.

A more accurate description of the overlay pattern would involve in

the case (2) s

1OIET®/SWAPPER/EXECOTE PROCESSOJVSWAPPEF/USEJVSWAPPER/

EXEXUTE PROCESSOR/SWAPPER/MLNITOR

At least four contexts would have to be created :

(1) the M3NITQR context ;

(2) the SWAPPER context ;

(3) the-E-XECUTE PROCESSOR context ;

(4) the. L^R-DEFINED context (s) .

As will be seen in the description of the EXECUTE PROCESSOR, the swapper

bringing the user program in core must possess special properties , in

order to protect the system against destruction by the user. For this

reason, it was decided to use a particular routine different fron the

general SWAPPER ; this routine does not have a context of its cwn, but

78

rather is a part of the EXECUTE PROCESSOR program ; it is described as

such in this thesis.

Thus, in terms of contexts, the system involves one of the two fol-

Icwing patterns :

(1) LOJITOR context/SWSPPER context/PROCESSOR context/

SWAPPER context/MSKITOR context/...

(2) MONITOR context/SI’iAPPER context/EXECUTE PROCESSOR context/

USER-EEFINED context (s)/EXECUTE PROCESSOR context/

SWAPPER context/MStJITOR context/...

Such a loop is associated with each call to a processor.

Assuming that the monitor is able to create and bind all data chains

involved, one execution of the loop can be handled simply by use of the

linking mechanism ; the part of the memory that is not overlayed must

include at least :

(1) the COMMUNICATION AREA and SWAPPER in low core

(2) the PROCESSOR DATA CHAIN in high core.

Diagrams in Fig 9 and 10 describe one execution of the loop in terms

of change of context and shew the Data Chains involved.

MONITOR CONTEXT

Fig 9 LINKAGE TO A USER PROGRAM

DIAGRAM SHa-TING THE CHANGES OF CONTEXT

<------------

MXtiTOR CHAIN

USER CCMEXT(S)

EXECUTE PROCESSOR CONTEXT

SWAPPER CONTEXT

MONITOR CONTEXT

81

2. THE Sl-iZAPPER

The SWAPPER subprocess is entirely part of the resident. It enables

the MONITOR to load a processor in memory, and is able to restore the

monitor-image*upon* returrr frem the* processor.

The effect of the Swapper program can "be described internally by :

(1) save the current monitor image on the SYSTEM SCRATCH FTTH ;

(2) load the processor in memory ;

(3) link the processor data chain ;

(4) jump to the processor start address ;

(5) wait for processor canpletion ;

(6) unlink the processor data chain

(7) reload the last monitor image from the SYSTEM SCRATCH FILE ;

(8) return control to the monitor program .

The SWAPPER DATA CHAIN is entirely in lew core. Except for the item

of type ITEM defining the PROCESSOR DATA CHAIN for the LINK operation,

all bindings of the swapper data chain are .also in lew core.

The swapper data chain is ccmposed of the follcwing items

(1) an item of type 'D* (CHAIN) bound by the monitor to the pro­

cessor data chain in high core ;

(2) a read-only file-bound item, bound by the monitor to the File

Control Block of the file vhere the processor absolute program

is to be found ;

(3) a read-write file-bound item of fixed binding (Mff) defining

’the System Scratch File vhere the monitor image is to be saved

temporarily during the processor execution .

82

In addition to the objects reached via its data chain, the swapper

objects include the following :

(1) the value of the registers tpon input :

. (A) contains the start address for the monitor swap ;

. (B) contains the end address for the monitor swap ;

. (X) contains the sector # within file where the processor ab­

solute program is to be found .

(2) a single byte within the PROC section of the carmunication area.

This byte is set to zero by the monitor before execution of the

swapper ; the swapper program may change the value of the byte

in case of errors, as is shewn below :

. SWP = 1 (error in swapping monitor out) ;

. SWP = 2 (error in reading the processor dictionary) ;

. SWP = 3 (error in reading the processor program into core) ;

. SWP = 4 (error in trying to reload the last monitor image) ;

. S14P = 7 (errors 3 and 4 ccmbined) .

(3) a fixed address in page zero, defining the sector address with­

in the System Scratch file where the monitor image is to be

temporarily saved.

CHAPTER VIII :

GENERAL SCHEME FOR THE

EXECOTICN OF A PROCESSOR

83

84

As explained in the system overview chapter, each processor consti­

tutes a separate process in the system. A single processor is called for

each processing of a control card by the monitor. The processor absolute

image file, sector number within file, and PROCESSOR DATA CHAIN are found

by the monitor on the disk (PROCESSOR INFORMATION APEA WITHIN RUN$ FILE).

The bindings of the processor data chain and the core boundaries for the

overlay are determined by the monitor ; the swapper chain is also bound

by the monitor program.

Thus, a processor can have effects on the system by the follcwing :

(1) the Processor Data Chain ;

(2) the Ccmmunication area ;

(3) requests upon other processes (SYSTEM FILE HANDLER PROCESS,

READ, PRINT processes, SWAPPER subprocesses) .

1 EFFECTS THROUGH THE PROCESSOR DATA CHAIN

The Processor Data Chain is the normal way for a processor to :

(1) read input parameters set by the monitor from the processing of

the control card;

(2) LINK and UNLINK subprocesses ;

(3) act upon user files on the disk (READ, WRITE, PROTECT, UNPROTECT).

The processor data chain typically is used for processor-dependant effects

on the system, and thus is not described further in this chapter. A des­

cription of processor data chains and meaning of each item is found in

the description of each particular processor.

85

2 EFFECTS THROUGH THE CCt'MJNICATION AREA

A. VARIABLE EFFECT

Variable effects upon the ccranunication area can be expected fran

a-’-proeesserT depending-upon- the sub-areas that the processor is able to

access and/or modify.

B. CXMOJICATimi WITH THE MONITOR

A special sub-area (the ‘PROC* sub-area) is reserved for ccrrrnuni-

cation of special fixed-size information between the monitor and the" pro­

cessors. A detailed description of this sub-area follows ; each object

in the sub-area is considered.

(1) MAXMEM : The maximum address actually available to a processor

may change frcm execution to execution, since processor data

chains in high core are of variable binding. This memory loca­

tion contains the high core address available to the processor ;

the processor may read this value to optimize buffer sizes, or

define upper boudaries for variable-size tables.

(2) PROTIM : This memory location contains at each instant the time

remaining before a processor time-out occurs (see REAL-TIME

CLOCK process in following chapter) ; this value is initialized

by the monitor, and is decremented by the REAL-TIME CLOCK process

every time period.

(3) SWP : This byte is used by the swapper to signal abnormal swapper

behaviour to the monitor, and has already been described.

86

(4) ERRFRB : 16 memory locations are reserved to the handling of ab­

normal disk errors by the processor. When an abnormal return

from the disk handler (.DR) occurs, the processor is able to pla­

ce the File Request Block in this area for subsequent interpre­

tation by the monitor ; since at the time the File Request Block

is copied the OP.REQ byte in the FEB has been set to zero by the

.DR routine (see [1]) , an additional byte (OPREQ) is needed

to hold the value of the OP.REQ byte before execution of the disk

handler.

(5) INTADD : This address is a special entry in the processor program

to v^rLch the REAL-TIME CLOCK process may juirp if one of two con­

ditions hold :

. A console interrupt has been recognized ;

. A processor time-out condition occurred

This address is initialized by the lOJITOR to a value specified

in the PROCESSOR INEXDPMATION AREA of the processor called ; the

processor may rpdate it during its execution. The address is

typically the one of a closing sequence of the processor (see

fig. 11).

(6) PROC : This byte is initialized to zero by the monitor before

control is given to the processor. A normal execution of a pro­

cessor is characterized by a zero value of this byte upon return.

87

Each bit contains a one value if a specific error occurs, as de­

tailed below :

. bit 0 (lew order bit) : set to 1 if an abnormal return from .DR

occured and the File Request Block corresponding to the erro­

neous disk operation has been placed in ERRFBB and following.

. bit 1 : set to 1 if an abnormal return from .DR occured and the

status of all files not in read-only is not guaranteed; this

means typically that a disk error occured in the midst of the

closing sequence of the processor (see fig 11).

. bit 2 : set to 1 if an error occured in the manipulation of a

SYSTEM FILE ; this bit is set to 1 automatically if the opera­

tion in error occured via a request to the SYSTEM FILE HANDLER

process.

. bit 3 : set to 1 by the REAL-TIME CLOCK process if a processor

time-out condition was detected.

. bit 4 : set to 1 by the REAL-TIME CLOCK process if a console

interrupt was recognized during the execution of the processor.

. bit 5 : set to 1 if a STACK OVERELCW interrupt was processed

during the execution of the processor.

. bit 6 : set to 1 if a POWER FAIL interrupt was processed during

the execution of the processor.

. bit 7 (high-order bit) : set to 1 by the processor to signal

the monitor that the processor execution was not successful.

If this bit is the only non-zero bit in the PROC byte, the er­

ror will be interpreted by the monitor as a user error.

88

To each bit set to one upon return corresponds a special action

fran the monitor ; these actions are described in the EREOR section

of the monitor description chapter.

Jwps to the. interrupt entry^of the processor (INTADD) can be pre­

vented by the processor during execution of critical sections (i.e sections

of program that must be executed "at once"). A special byte in the .FC

sub-area of the cannunication area can be set to zero (interrupts dis­

abled condition). If this byte is zero, the processor time-out and

the console interrupt conditions will not cause any action to be taken

in addition to the setting of the PROC byte third or fourth bit to one ;

if the byte is equal to one, a jump to the interrupt address of the pro­

cessor will occurr ; the value of the byte is checked periodically by the

REAL-TIME CLOCK process.

In addition to the bytes described above, the PROC sub-area contains

a small routine that takes the follcwing actions successively :

(1) set the PROC byte to the inclusive OR of the old value of the Proc

byte with the contents of the (A) register.

(2) junp to the processor interrupt address (INTADD).

This routine is used by "the REAL-TIME CLOCK process ; however, it

may be used by the processor itself, and the calling sequence is :

IDA= OR mask for the PROC byte

IDX .CA (top of the PROC subarea address)

JMP+ 7

The PROC, sub-area physical structure is shewn in fig 12.

Fig 11 : GENERAL SCHEME

ENTRY

FOR PROCESSOR EXECUTION

91

3. EFFECTS THBOUGH REQUESTS TO OTHER PROCESSES

A. REQUESTS TO THE SYSTEM FILE HANDLER ROUTINE

Processors desiring to execute any I/O upon system files nonnally

do it via a special routine called the SYSTEM FILE HANDLER PROCESS.

This routine possess its own data chain, and thus constitutes a parti­

cular process in the systen ; in this data chain are defined all the

conmonly used system files, including :

(1) the RUN? file

(2) the SCR? file (system scratch file)

(3) the PRO? file (particular processor file containing the monitor)

(4) the disk directories DIR? (1-2-3-4).

The routine is called via the follcwing sequence :

IDX= File Request Block address

IDA= 6

ADA .HPROG

STA *+3

RTJ= **

The INTERNAL NAME of a system file is equal to its. external name (file­

name) .

The output is in the register (A) : A non-zero value of (A) indica­

tes to the processor that the disk request was in error. The REQUEST BLOCK

and FILE CONTROL BLOCK in error have been copied on the systan teletype

by the routine, and the bit # 2 of the PROC byte has been set to 1.

92

B. REQUESTS TO THE INPUT AND OUTPUT PROCESSES

Processors needing sane input from the current system input medium or

producing same listing on the current systen output medium normally do it

by placing requests on the READ (SYST. INPUT case) or PRINT (SYST. OUTPUT

case) processes.

A print request is detained by the follcwing sequence :

IDX= address of message to print

RTJ* PRINT

The message is terminated by a zero byte.

As in the case of the SYSTEM FILE HANDIER process, a non-zero value of

the (A) register on output indicates that an error occurred during exe­

cution of the process. The RUN byte (see M3NIT0R) bit 2 is set to one

and a message is printed-out on the system teletype ; however, no action

is taken upon the PROC byte by the PRINT process.

A read request is obtained by a :

RTJ* READ

A positive value of (A) tpon return indicates that the card read was a

control-card ; a negative value is associated with error cases similar

to the PRINT case above.

C. DATA FLOW INPUT AND DATA FICW OUTPUT FILES

However, we mentioned in the informal presentation in Chapter 3

that the READ, PRINT processes (as well as the system file handler)

are part of the "extended resident". Some processors are either too big

or require large tables (such as the ASSEMBLER, see Ill. to be kept per­

93

manently in memory together with the extended resident ; an additional

buffering is done by the monitor in the particular case of these processors.

Two additional files, of names CR$ and PR$ are always temporarily

assigned to the current RUN ; these files are dedicated to hold :

(1) data-fi'ow* input~as=readrfrcm-the=-current- input medium (CR$) ;

(2) data flow output as to be printed later on the current output

medium (PR$) .

The monitor copies into CR$ all "data" cards (i.e cards following

the processor control cards, up to the next control card excluded) by

placing requests on the READ process. The processor may then use the

standard disk driver (.DR) or the variable length record driver routines

to perform the following :

(1) read input from the CR$ file ;

(2) produce listing onto PR$ file ;

Upon return from the processor, the monitor copies the contents of

the PR$ file onto the current output medium of the system, using the va­

riable length record driver and placing requests on the PRINT process.

Though clearly inefficient, this scheme can be justified by the fol-

Icwing considerations :

(1) memory storage, as described above ;

(2) flexibility : the "data flew input" medium is new defined in the

processor data chain ; thus a simple change in the binding of the cor­

responding item, redefines the data flew input for a particular execu­

tion of a processor ; for instance, by simple modification of the bin­

94

ding, the ASSEMBLER will execute on a program stored in any file in the

disk file system ; this binding can be done by the monitor tpon user

request on the processor call control card.

D. RETURN TO’ TEE" SWAPPER

The normal termination sequence for a processor is :

JMP STOP

STOP is an address in page zero of memory executing a jump to the begin­

ning of the part of the swapper that reloads the monitor. Before

reloading the monitor, an additional checking is done that the fol-

laving conditions are satisfied :

(1) all disk I/Os are carpleted

(2) the LINK/UNLINK stack is in a correct status.

Recursive calls on the swapper are not possible in the current ver­

sion of the system. Thus, a processor must manage its own overlays if

necessary (see EXECUTE PROCESSOR example).

k

CHAPTER IX :

THE REAL-TIME CLOCK PROCESS AND THE

ERROR INTERRUPT ROUTINES

95

96

An " interrupt entry " was defined for each processor in the

preceding chapter. A jump to this entry point is executed an the

case an error condition is detected. The M3SHT0R program posseses

such an entry point as well. A process activated by the REAL-TIME

CLOCK provided by the microprograms is in charge of the treatment

of these error conditions. The microprograms are able to detect

the following interrupts (in addition to the normal device inter­

rupts 1 :

(11 console interrupt

(2). power fail and power restart interrupts ;

(31 stack overflow interrupt ;

(41 real-time clock interrupt ;

1, STACK OVERFLCW> PCWR FAIL,-POWER RESTART

It was decided that the stack overflow and power fail interrupts

were to be considered as fatal errors in the system. A jump to the

error analysis programs of the monitor is executed, and the operator

is able to specify viiich action to be taken, among the following :

(11 continue execution ; only the last processor is in error ;

(21 abort the current RUN ;

(31 reload the system.

In the case of. a pcwer fail or stack overflow, the third of these

actions is reccnmended, since the stack overflow and power fail prog­

rams do not guarantee that the statuses of the files is correct.

91

The power fail program executes the following ;

Cll disable the real-time clock ;

(21 reset the power fail bit in the systen stack ;

(31 halt ;

The power restart program sets the sixth bit of the PROC byte to

one (PROC = X'40') and executes a jump tn the STOP routine to re­

load the monitor if necessary (JMP STOP).

The stack overflow interrupt program sets the fifth bit of the

PROC byte to one (PROC = X'20') and executes a jump to the STOP

routine as above.

2. COStSC^Eb INTERRUPT

The only action taken by the console interrupt program is to

set the fourth bit of the " interrupt requested " byte to one for

ulterior treatment by the real-time clock process (see below) .

3. REIAL-TIME] CLOCK

The Operating systsn makes use of the real-time clock provided

by the microprograms to execute the following :

(11 rpdate the time couters : two time counters are existing in

the system, specifically ;

. a count of the RUN time ; the RUN time is decremented by

one every second fran a value set by the RUN processor.

A value of zero of the RUN time causes the RUN time to be

reset to a large value and the bit 1 of the RUN byte to

98

be set to one ; after carpletion of the current processor,

the RUN will be aborted by the monitor.

. a count of time for the current processor, as defined in

the preceding chapter ; this time is used to detect a loop

in execution of a processor ; the initial value set by the

monitor does not correspond to the average time of execu­

tion of the processor, but rather to a maximum time, after

which one can be sure that the processor was not executing

normally. Upon a zero value of this time, the time is reset

to a large value, and the third bit of the " interrupt

requested " byte is set to one (X 1 081).

The above times include CPU time, disk I/O times and input/

output time. They do -nt constitue any representation of the

CPU time.

(2) restart the concurrent spooler routines if they need to be

restarted (see [1] for specific description of the cases).

(3) check vhether a special condition (CONSOLE INTERRUPT, MAX

TIME for current processor } occured since the last inter­

rupt by checking the value of the " interrupt requested "

byte defined in the .FC sub-area of the ccmnunication area.

If a non-zero value of the byte is detected, a check upon

the " interrupt enabled " byte C in the same sub-area) is

done ; if the byte has a zero value, it means it has been

set by a processor, currently executing a critical section.

99

No action is then taken inmediately. If the interrupts are

enabled, the following steps are executed :

. update each corresponding bit of the PROC byte to the

value of the " interrupt requested " byte ;

. zero-the*"'- interrupt requested " byte ;

. wait for the queue of disk operations to be aipty ;

. jurrp to the interrupt address of the currently executing

program, as defined in the PROC sub-area of the communi­

cation area.

This sequence gives a chance to the currently executing

process to take ^>propriate action of recovery.

CHAPTER X :

THE MONITOR PROCESS

AND THE CONTROL LANGUAGE

100

101

1. FUNCTIONAL DESCRIPTICN

Given the general scherre of execution of a processor, the functions

of the monitor process can be readily described by the following :

(1) Determine the processor to be called.

(2) Create the processor data chain ; bind swapper chain, processor

chain and subchains.

(3) If PR$ is in the processor data chain or any subchain, initiali­

ze PR$ to empty ; if CR$ is in the processor data chain or any

subchain, initialize CR$ to contain the set of cards separating

the current control card frcm the next, excluded.

(4) Initialize the ccmuunication area for processor execution.

(5) Link the swapper chain.

(6) Wait for swapper ccmpletion.

(7) Unlink the swapper chain.

(8) Analyse "results" of processor execution through canmunication

area and chains.

(9) If PR$ is in the processor data chain or any subchain, copy the

contents of PR$ onto the current system output medium.

(10) Go to step (1).

One execution of the monitor will be defined as a single execution of

steps Cl) through (10). It involves the execution of a single proces­

sor.

102

The tOJITOR program will be examined successively with respects to the

following :

Cl) Determination of the processor information area.

(2) Creation and binding of the swapper, processor data chains and

subchains.

(3) Tm‘tial 17.ation of the ccxnmunication area, transmission of argu­

ments to the swapper.

(4) Normal return from processor sequence.

(5) Error conditions and routines.

(6) CR$-PR$ files management.

A sample of the control language will be studied ; the syntactical

definitions and error messages are also presented in this chapter.

2. DETERMINATICM OF THE PROCESSOR INFORMATION AREA

As mentioned in the general processor description chapter, the in­

formation necessary to build the processor chain (s) is held within an

area of the RUN$ file called PROCESSOR INFORMATION AREA. The first step

for the monitor is thus to establish the correspondence between the PRO­

CESSOR NAME specified on the control card and the sector address of the

particular processor information area needed within the RUN$ file.

For each RUN is specified a list of processor names available to

the user. This list is kept in a particular area of the RUN? file cal­

led CURREt'JT PROCESSOR TABLE. A user can dynamically add, modify or de­

lete processors from the current processor table by use of the PROC pro­

103

cessor t see PPOC processor description chapter).

The current processor table establishes the correspondence bet­

ween processor identification and sector address of processor informa­

tion area. It is defined within 3 consecutive sectors of the PUN$ file,

and' the-address of the- first™ sector" frcnr the beginning of the RUN$ file

is found by the monitor in the RUN sub-area of the canrunication area.

The format of the current processor table is given in fig'13.

A processor identification, as defined in the current processor table

is composed of the following elements :

(1) a NAME field (up to 8 letters or digits, eventually completed

to 8 by trailing blanks) ;

(2) an OPTION field (one single letter or blank).

The processor identification characterizes the processor within the cur­

rent processor table.

A "control card" in the system consists in any number of physical

records on the current system input medium. The first character of the

first of these records need to be a " cliaracter, in order for the moni­

tor to be able to separate control cards frcm data cards ; as a con­

sequence, no data card may begin by a " character ; the same considera­

tion holds for the second, third,... records of a control card, if se­

veral physical records are needed.

The progranmer must specify both the NAME field and the OPTION

field for a correct processor call to be executed. The processor NAME

must inmediately follcw the " character on the control card ; it may be

abbreviated to the smallest subset of characters that determine the pro-

PROCESSOR IN TABLE

104

cessor name canpletely within the names in the current processor table.

In the case of a non-blank. option, a corrma must immediately follow the

NAME field, itself inmediately follcwed by the letter constituting the

OPTION field ; in the case of a blank option, the camna may be emitted.

Brail cases-, AT*LEAST ONE- KLANJ?must--fdllcw the processor identification

sequence.

An exception occurs in the case of the processor "FIN terminating

a RUN. The processor "FIN is not defined within the current processor

table. The sector number of the processor information area of the "FIN

processor is a constant in the system, and is defined in page zero of

memory. A checking for the sequence of character "FIN is done by the

monitor before any search in the current processor table. Thus, any con­

trol card beginning by the character sequence "FIN will be interpreted

as a call to the "FIN processor.

3. CREATION AND BINDING OF SWAPPER AND PROCESSOR DATA CHAINS

A. PROCESSOR INFORMATION AREA

The processor identification field on the control card had the only

function of enabling the monitor to load into memory the processor infor­

mation area defining a particular processor in the system.

A processor information area is created on the disk via use of the

PROC processor (see corresponding chapter). "Permanent" processor in­

formation areas correspond to standard use of the processors in the sys­

tem and are constantly defined within the RUN$ file ; seme "tenporary"

processor information areas may be tailored by a user .

105

The processor information area is described in fig. 14. It contains

the following basic elements :

(1) The definition of the processor program absolute image. This

includes a file-name and a sector number ; file name and sector

number define an address in the disk file system where the dic­

tionary of the processor program's absolute image can be found ;

the file-name must either be PRO$ (particular system file con­

taining the monitor) or be defined in the CURRENT ASSIGNED ETTE

LIST as a user file.

(2) The definition of the processor default data chain. For each

item in the processor default data chain are defined the fol­

lowing :

. INTERNAL NAME of the item ;

. TYPE of the item ;

. ACTION BITS of the itan ;

. # DEFAULT OBJECTS associated with the item ;

. MINIMUM expected number of objects to be bound to the item ;

. MAXIMUM expected number of objects to be bound to the item ;

. DEFAULT BINDING of the item.

The default binding may be empty (in this case # DEFAULT OBJECTS

= 0) ; it may be outside of the MIN/MZ\X range. The format of

an item in the default processor data chain is corpatible with

the general format of an item, as defined in the Data Chain Im­

plementation chapter ; MEN and 14AX (Minimum and Maximum expec-

'ted number of objects to be bound to the item) are appended at

106

the end of the item definition.

Three additional bytes defining the Default Processor Data Chain

(D.P.D.C.) as an object (of the swapper chain via an item of

type item) are to be found within the Processor Information A-

rea (P.I.A.). They are the minimum, maximum and access bytes

relative to the D.P.D.C. as an object of the swapper chain.

An additional difficulty comes from the fact that pointers in

data chains are absolute ; it was thus decided that all data

chains held on the disk were to be stored as if the area were to

be loaded into page zero of core (Note : the same convention

was adopted for all structures involving absolute pointers if

they were to be stored on the disk ; this includes in particu­

lar DIRECTORIES, the CURRENT ASSIGNED FILE LIST and the CURRENT

PROCESSOR TARTF) . Consequently, a traversing of data chains

is needed (to update pointers) each time a disk operation oc­

curs. In addition, the FILE-ID zero on the disk is interpreted

by the monitor as the file-id of the current RUN, as defined in

the RUN sub-area of the ccmmunication area.

(3) The definition of the MEMORY REQUIREMENTS of the processor.

A minimum memory requirement (interval MAXMIN-MINMAX) and a

maximum memory requirement (interval MINMIN-MAXMAX) are defined

for each processor in its Pnxessor Information Area. The moni­

tor makes sure that the MINIMUM requirements are satisfied, and

will allocate the maximum memory available within the MAXIMUM

107

required. The upper memory available to approcessor may change

from processor call to processor call, and is placed by the mo­

nitor in the PROC sub-area of the oamninication area for the pro­

cessor. infonnation^

(4) A definition of a special entry (INTERRUPT ENTRY) for the pro­

cessor. This entry is used by the REAL-TIME CLOCK process in the

case where an abnormal interrupt is detected (see REAL-TIME CLOCK

PROCESS chapter).

(5) A PROMPT message to be printed by the monitor tpon the processor

call ; this message consists of ASCII characters,-."and is termi­

nated by a zero byte.

(6) Sane additional "PROCESSOR CCNSTANTS" to be used by the monitor.

. A PROCESSOR NUMBER ; as shall be seen in the description of the

PROC processor, a user may change the name of a processor in

the system ; the processor number is thus the only way for the

monitor to tell the console operator that a given processor

was found in error.

. A "CCNCURRENT I/O ACCEPTANCE INDICATOR". This byte is SET if

the SPOOLING process is allcwed to run during the processor

execution, reset otheraise.

. A PROCESSOR LEVEL. To each processor is associated a level,

vhich is attempting to estimate the degree of importance that

a failure of this processor has with respects to the current !

user of the system ; the current values of the LEVEL are :

FILE -
NAME

SECTOR //

MAXMAX

Memory
requirements

Abnormal
conditions

MINMAX

MAXMIN

MINMIN

PROTIM

INTADD

PRO y/

CONG
Processor
constants

Definition of DPDC
as an objcet of the

LEVEL

MIN

MAX

ACC.

SWAffiSK cnam

—

PROMPT

Processor
program
definition

AN ITEM IN THE DEFAULT PROCESSOR DATA CHAIN

no

LEVEL = -1 : a processor error does not abort the RUN

LEVEL = +1 : a processor error always aborts the RUN

IEVEL = 0 : a processor error aborts the RUN if the sys-

tan is in BATCH configuration, does not abort

the RUN otherwise.

Exairples of processor default data chains can be found in the des­

cription of each processor, both in this thesis and in II].

B. SPEdFICATIOSI FIELD CN THE CONTROL CARD

The control card specification field enables the user to specify

the Processor Data Chain for the processor to be called. Reference to

a particular item in the processor data chain can be done either by ex­

plicit mention of the internal name of the item (EXPLICIT field) or by

position in the control card (IMPLICIT field). Recursion for the treat­

ment of subchains of the processor data chain is obtained by enclosing

the subchain within parenthesis. Sane processors may call for the cre­

ation of user-defined items vhich are not in the Default processor data

chain.

a) The control card specification field consists in a number of .

fields (fran zero to 255) separated by cormas, terminated by a closing

delimiter (" , ; or)). A control card specification field may spread

over any number of physical records on the input medium ; it must be sep­

arated fran the processor identification field by at least one blank.

The closing delimiter terminating the specification field also termi­

nates the control card ; thus, no closing delimiter is needed if there

Ill

is no data card following the control card (the " character at the be­

ginning of the next control card will terminate the current one).

However, since it is needed if any data card(s) is present, systematic

usage of the termination character can be considered good practice.

b) Each field corresponds EXPLICITLY or IMPLICITLY to a single iten

in the processor data chain. The correspondence is EXPLICIT if mention

is done of the internal name on the control card. If no internal name

is specified in the Nth field of the control card, the progranmer is as­

sumed to refer to the Nth parameter in the Default Processor Sata Chain,

and the correspondence is said to be IMPLICIT. If the internal name spec­

ified (EXPLICITLY) is not found in the default processor data chain,

the user is assumed to declare a new item (USER-DEFINED ITEM) in the

chain. Whether the parameter be defined EXPLICITLY, IMPLICITLY or be

a USER-DEFINED ITEM, the progranmer iray (or may not) specify a bind­

ing for the item by means of an object list.

field := implicit field e^licit field

explicit field := item definition = object list

implicit field := object list

Note : the monitor, in order to be able to make the distinction bet­

ween explicit or implicit field, "looks ahead" for a ,=* character to

the next 'or closing delimiter WITHIN THE LIMITS OF THE CLRRENT

PHYSICAL RECORD ; this causes a restriction to be done to the general

rule of free founatting of the control-card, since the item definition

and the ,=, character must be on the same physical record, inorder for

112

the field to be interpreted correctly ; however, this seems to be no real

restriction in practice, since prograirmers tend to groip the internal

name and '=' character on the same physical record anyway.

cy ITEM-DEFINITION

When an implicit reference is made of an item (by position on the control

card), the TYPE, ACCESS, MIN and MAX of the item are defined to be the

default TYPE, ACCESS, MIN and MAX bytes of the relevant item in the DPDC.

When the reference is explicit, the same rule normally applies ; for a

user-defined item (i.e. an item that is not in the DPDC), the defaults

for the TYPE, ACCESS, MEN and MAX are defined to be the following :

(1) blank type (any file in the disk file system) ;

(2) X'll* access (open to READ and BIND only) ;

(3) MIN = 0 (minimum number of objects expected = 0);

(4) MAX = X’FF' (naximum number of objects expected = 255) .

Hcwever, for explicit reference to an item, and in the case of user-de­

fined items, the user may override the defaults by explicit mention of

all of the TYPE, ACCESS, MIN and MAX, or by mentioning only seme of them.

A user-defined type may be mentioned explicitly by appending a

character to the internal name of the item ; the type (one of the cha­

racters ’D',’ '/S'/R'/A'/I'/H'/C'/B' or 'F'). Must immediately

follcw the 'character without intervening blanks. Hcwever, if the

item referenced is defined in the default processor data chain, the u-

ser-defined -type must match the type of the corresponding item in the

DPDC, otherwise an error results and the processor will not be executed.

113

The MAX,MIN and ACCESS bytes may be redefined by the user according

to the following rules :

item definition := internal name item specificetion

item specification := [type] I nunmaxacc]

type := - S R A B C I F blank

nummaxacc := ([max] [, I min] [, [access]]])

The min , max and access are considered by the monitor as objects

of type 'H' and must be explicited accordingly on the control card (see

cbjects of type 'H* section later in this chapter).

If any of these is explicitly mentioned, the follaving rules hold :

(1) the MIN of the resulting item will be in all cases taken to be

equal to the maximum of the user-defined MIN and of the default

MIN ;

(2) the MAX of the resulting iten will be in all cases taken to be

equal to the minimum of the user-defined MAX and of the default

MAX ;

(3) if the item is a user-defined item, the resulting access will be •

obtained by applying the follaving rules :

. a tenporary access is created by taking the user-defined item ;

. a logical AND is taken between this tenporary access and the

ACCESS of the data chain in which the item is defined, con­

sidered as an object of a parent chain ;

C4) if the item exists in the default processor data chain, the re­

sulting item will be obtained by application of the following :

114

. the four lower bits are tenporarily taken to be equal to their

DEFAULT definition (i.e. their definition in the chain) ;

. the fifth bit (BIND access, allowing the user to redefine the

default binding of the item) is tenporarily taken to be equal

to the logical AND of the fifth but in the data chain (default

value) and of the user definition for the fifth bit of the

access byte ;

. finally, the resulting item is obtained by applying the same

rule as above in case (3), specifically a logical AND is taken

between the temporary access and the access byte of the data

chain in which the item is defined.

d) OBJECT LIST

The object list enables the user to redefine the binding of the current

item. The list of objects is specified as a succession of subfields

separated by commas, enclosed within parentheses ; if there is only one

object in the list, the parentheses may be left out, except in the case

of an item of type item ('D* type).

If no object is specified, the binding is assumed to be equal to the

default binding, i.e. :

(1) the binding defined in the Default Processor Data Chain for the

items already defined in the DPDC ;

(2) the empty binding for user-defined items.

115

<object list> := <eipty list> | /single object list') I
/multiple object list>

<enpty list* := *nil-y

/single cbiject list* := <dbject> *

<multiple object list* := (<dobject> , ‘dobject’r)
ok.

When one of the subfields is left out, the corresponding default ob­

ject from the DPDC is assumed, if any ; if none, an error results and

the processor is not executed.

<dobject* := <nil> /objects

If the number of subfields explicitly or implicitly specified within an

dDject list is greater than the MAX of the corresponding itan, an error

results and the processor is not executed.

If the number of subfields specified within an object list is smaller

than the MIN of the corresponding item, the monitor will attempt to cam­

ple te with default objects, until the number of objects is equal to MIN ;

if the number of default objects is strictly less than MIN, an error

will result and the processor will not be executed.

For each subfield which is explicitly specified, one of three conditions

must hold :

Cl) the ACCESS fifth bit (bit # 4) of the relevant item is set ;

(2) no default binding is specified for the subfield in the DPDC ;

(3) the default object for the subfield is equal to the object spe­

cified by the user.

116

e) COMPLETION CXWITICNS

Not all items in a default processor data chain need to be explicitly or

inplicitly mentioned by the user on its control card. If an item of the

DPDC is left unspecified, it will be appended to the (memory) processor

data chain at the end of the processing, and its binding will be assumed

to be equal to the default binding, as specified in the DPDC. This re­

mark holds for subchains of the PDC as well.

This can be considered as an exception to the ccrrpletion rule for

objects as explained in the preceding paragraph ; in the case where the

item . is of type item, all itemsobjects in the DPDC will be present in

the final chain ; in the case of items of other types, the completion

rulw will hold only until the final number of objects reaches the MIN

value.

f) OBJECTS

The objects specified in the value list must have the type expected from

the item definition. The different object types are examined below suc­

cessively.

g) FILE OBJECTS (TYPES 'S'/R' ,'A' or ' ')

A file object is defined on the control card by a FILE-NAME and a FILE-

TYPE.

The file-name is constituted of two parts : the FILE-ID part and

the USERNAME part. The file-id part is characteristic of a user or a

group of users in the system ; it is constituted of from 1 to 4 hexade­

cimal characters ; if the file-id part is left out of the control card,

117

it is assumed to be equal to the CUUFENT USER FILE-ID, as defined within

the RUN sub-area of the ccmnunication area. The file-id part, if expli-

cited on the control-card, is separated from the username part by the

special character : ; since the monitor "looks forward" for a '*• in

order to know if the file-id is explicited, the file-id and username parts

mast belong to the same physical record ; however, any number of blanks

may be left before and after the ’*' character. The username part is

constituted of up to 8 letters or ’ $ ’, eventually ccrrpleted on the right

by trailing blanks.

The FILE-TYPE may be explicitly mentioned on the control card, and

is this case must immediately follow the character *-1, itself appended

to the end of the file-name. If the type is explicit, it must be equal

to the type of the corresponding item if the type is one of the three

types 'S'/R' ,’A' ; if the type is not explicited, it is assumed to be

equal to the type of the corresponding item if the type of the iten is

'S', 'R' or ’A’ ; an error results in all the other cases.

The complete identification of a file in the disk file system con­

sists in the file-id, username and file-type. Two files with the same

file-id and username but different types (such as CR$-S and CR$-A) may

coexist in the system. A demonstration of the actual way a file-name is

stored internally by the system is shewn in fig. 15.

The monitor is in charge of constructing the file control block for

the file required. The file must be defined in the current assigned file

list, containing the list of the files currently assigned to the RUN.

118

The current assigned file list format is described in fig. 116. the in­

formations relevant to the construction of the FTTE CCNTROL BLOCK inclu­

de the following items :

(1) file-name ;

(2) current END-OF-FILE ;

(3) disk/platter byte ;

(4) offset to first allocation of file within platter ;

These elements are to be placed in the file control block by the monitor

for later use by the disk driver routine (.DR).

In addition to these,elements, the "STATUS 1" byte contains 8 bits

defining the type.of access allowed to a user upon the file concerned ;

the four lower bits define the possible ways in which a user with the same

file-id as the file-id of the file concerned may access the file (READ,

WRITE, PROTECT, UNPROTECT accesses in this order fran bit 0 [lewer bit]) ;

the four high-order bits apply to all the other users in the system.

If the file-id of the current user is the same as the particular

file-id, the four lover bits areaoonsidered ; otherwise, the four higher

bits are considered. If, for each of the four lower bits in the access

byte of the current item whiclr is set to one, the corresponding bit a-

mong the four chosen is also set to one, the required access upon the

file is acknowledged ; otherwise, an error results and the processor call

is ignored.

The "STATUS 2" byte of the current assigned file list contains in

particular the following bits :

119

(1) a "in use" bit (bit 1), set to 1 when the file is currently in use

(2) a ‘file possibly in bad status" bit (bit 6), set to one when the

contents of the file are doubtful ;

C3) a "file in hardware error" bit, set to one when a disk error oc-

cured when reading, writing, protecting or unprotecting the file ;

When the file control block is created by the monitor, the "in use" bit

of the status 2 is set. When the file control block is destroyed (upon

return fran the processor) , the monitor resets it. Upon error returns

from the processor, the monitor may set the "file possibly in bad status"

and "file in hardware error" bits of the status 2.

Normally, when a file is requested by a processor, the "in use" bit

must be reset ; hcwever, a file may be requested by different subchains

of the processor data chain. In this case, the file control block is

not created, but the VAL pointer of the new item is set to point onto

the file control block already created. A specific check is made that

the file is not requested frcm two different items belonging to the same

data chain (see fig.3, case d).

Finally, the binding of a file object by the monitor can be explai­

ned by the following steps :

(1) check that the file requested is in the current assigned file list ;

return in error otherwise.

(2) check that the access required (in the item definition) is ac­

knowledged by the definition of the file in the current assigned

file list ; return in erirar otherwise ;

120

(3) look-up in all chains and subchains created to this point whether

a file control block was already created with the same file-name.

. If found, check vdiether a reference to the FCB is done frcm

an item in the same data chain as the current item ; return in

error if so ; otherwise simply set the VAL pointer of the cur­

rent item to point onto the FCB found ;

. If not found, check that the file is not in use (i.e. that

the "in use" bit in the assigned file list definition for the

file is not set) ; return in error if the file is found already

in use ; otherwise set the file to "in use" and create the File

Control Block in memory frcm the definition of the file in the

Current Assigned File List.

h) ITEM OBJECTS (TYPE 'D*)

Chain objects enable a processor to define subprocesses. On the control

card, it is simply a recursion over the syntactical definition of the

" specification field " within parentheses ; the maximum recursion depth

has been arbitrarily set to 5, v^iich is more than sufficient for all prac­

tical purposes.

As noted before, here the parentheses cannot be left-out, for rea­

sons of ambiguity of the control language.

The access of an item of type item is used as a mask for all items

in the dependant chain ; this is used in the system to prevent any sub­

process frcm having more power than its parent.

121

Anotlier exception has already been noted for the case of items of

type item : in the case where some items of the dependant chain are left

unspecified, all items in the chain of the DPDC corresponding to the de­

pendant chain are appended (as explained under e) of this paragraph),

instead of only those necessary to complete the number of objects to MIN

as in the case of items of other types (see b) of the present paragraph).

i) MEMDRY-BOUND OBJECTS (TYPES 'I', 'B' , 'H' , 'C , 'F')

Objects of type 'I* correspond to full-word integer values, and are

thus held in two bytes of core ; on the control-card, they can be writ­

ten in one of two forms :

(1) decimal form (normal signed or unsigned integer value) ;

(2) hexadecimal form, format compatible with the ASSEMBLER hexadeci­

mal form .

Objects of type 'H' correspond to half-word integer values, and are

thus held in one single byte of core ; on the control-card, they can be

written in one of three forms ;

(1) decimal form, as above;

(2) hexadecimal form, as above;

(3) character form, format ccnpatible with the ASSEMBLER character

format; the single quote character has been added, and may be

written as two consecutive quotes.

Objects of type 'C* correspond only to characters ; on the control

card, they must be written in the character form specified above ; the

character 'C preceding the quote may be left out.

122

Objects of type ’B’ are meant to hold boolean values ; they are,

however, held in a whole byte of core as a binary 0 or 1 ; on the con­

trol card, they can be written either as a 0 (resp : 1) or as one of

the words NO or YES.

Objects of type 'F* are file-names considered by the system as me­

mory-bound d’jects. No file control block is created, no search in the

current assigned file list is done by the monitor. They cannot be used

to actually execute disk I/Os on the file, but rather seek to trans­

mit a file-name as a simple parameter (see example of use in the "FILE

processor, in [1]) ; they are stored in the packed 8-bytes version com­

patible with the format of file-names in the file control block ; on the

control-card, they are written exactly as an object for an item of file

type *, if no explicit type is mentioned on the control card for the file

the type is implicitly assumed to be 'S' ; if a type is explicited, it

must be equal to one of the file-types 'S', ’R' or 'A'.

j) MULTIPLE CONSTRUCTS

A writing convention was designed to simplify the writing of multiple

object lists in the following cases :

(1) objects of type ’C or objecrts of type 'H* written in character

format ;

(2) objects of type 'H* or 'I* written in hexadecimal form.

The "multiple construct" :

'MESSAGE : '

will be interpreted by the monitor as the more complex :

123

('M'/E'/S'z'S'/A'/G'r'E*/ ')

If the item is of type 'H', the following expression :

X'01011'

will be interpreted as if the following had been written :

(x'Ol'.X'Ol'zX'l') or (1,1,1)

If the item had been of type 11', the previous expression would have been

interpreted by tee monitor as the following :

(X'0101' zX'l') or (257, 256)

Note that the result in both cases would have been radically different

if one had written X'lOll' instead of the above.

These multiple expressions cannot spread over several physical re­

cords ; however, this is not a limitation since such constructs can be

found within multiple object lists ; to split the above character for­

mation, one could have written for instance :

('MESSAGE ' ,

124

4. AUjOCATIOSI OF PROCESSOR DATA CHAINS

Processor data chains are allocated by the monitor in high core

DOWNWZ\RDS. When a new item is allocated, it is allocated the first enp-

ty storage below the items already allocated ; a consequence ot this al­

location schene is that successive objects in an object list are to be

found by negative offsets frcm the first one (the actual value of the

offset depends on the item TYPE according to the memo27y requirements for

each object).

The higher address for storage of the processor data chains depends

on whether or not the processor allows the spooling process to be running

during its execution, as defined by the "concurrent I/O indicator" byte

defined in the processor information area. If the byte is reset, the

spooling process is put in a wait condition by the monitor before the

beginning of the chain allocation phase ; the image of the spooling pro­

cess area is temporarily stored in an area of the SCR$ file. The proces­

sor data chains may then be allocated frcm the top of memory dcwnwards.

Otherwise, they are allocated frcm the bottcm of the spooling process

area.

In allocating the data chains, the monitor makes sure that the MI­

NIMUM requirements of the processor are satisfied (as defined by the

variable MU'^MAX of the processor information area) • otheroise, an er­

ror will result, and the processor will not be executed.

Adiitional memory constraints for the allocation process are the

minimum requirements of the monitor itself, as described in section 7.

125

5 INITIALIZATION OF THE CCMMUNICATION AREA AND ARGUMENTS FOR SV'ZAPPER

Additional infonration for transmission of information to the proces­

sor and to the swapper include the follcwing :■

(1) printing of the prcrrpt message included in the processor infor­

mation area (a bit enables a user to prevent the printing of

this pranpt, as well as the printing of control cards ; it can

be reset and set via calls to the "10 processor, see II]).

(2) initialization of various parts of the ccrrmunication area, inclu­

ding the following :

. reset PROC and SWP bytes (in the PROC sub-area) ;

. initialize PROTIM and INTADD (in the PROC subarea) to the

cojrresponding values defined within the processor information

area ;

. set the MAXMEM location in the PROC sub-area to the maximum

address available to the processor, as resulting fran the da­

ta chain allocation process explained in the preceding paragraph.

. set the "processor number" byte in the .FC sub-section of the

cannunication area to be equal to the corresponding byte def­

ined within the processor information area.

(3) transmission or the arguments necessary to coicrect swapper execu­

tion . The File Control Block of the file where the processor

program absolute image is to be found is created in lew core with­

in the "swapper data chain ; the name of the file is found in the

’processor information area ; the name may be FFEF*PRO$, in which

126

case tiie file control block is found within the chain of the MASTER pro­

cess (see general processor description chapter, section 3.A) ;

otherwise, the file must be defined within the current assigned file

list, and the file control block is created by following the steps spe­

cified in section 3.B) of this chapter.

The sector number within the file is to be found in the processor

information area, as well as the lew core address for the swap-out pro­

cess (= MINMIN) .

The high core address for the swap-out is ccnputed fran both :

. the msnory requirements of the processor and

. the first address not used for storage of the processor data chains,

as resulting fran the allocation process.

6 NORMAL RETURN FROM PROCESSOR SEQUENCE

The steps followed by the monitor after a normal execution of a

processor include the follcwing :

(1) reset the conmunication area relevant objects, test for errors ;

(2) copy the data flow output fran PR$ onto the current system out­

put medium, if PR$ is present in any of the processor chains ;

(3) update the current assigned file list ;

(.4) if necessary, reload the spooling process area fran the scratch

file ; if necessary, enable the spooling process.

Step (1) the communication area C PROC subsection) is interro­

gated with respects to processor errors and swapper errors ; the PROC

127

and SWP bytes are reset ; the INTADD is set to point on the monitor in­

terrupt address ; the PROTIM location is reset to the monitor time-out

condition ; the interrupts are enabled ; the processor number byte in the

.FC stib-area is reset to zero (MCNTTOR IN).

STEP 3 : the current assigned file list, both in memory and on the disk

is updated as follows : each file in the current assigned file list is

tested for the "in use" condition ; if the file is found to be in use,

a search for the file control block corresponding to the file definition

is done through the swapper and processor chains ; if the file is found,

the "in use" bit is reset and the END-OF-FILE is updated to the current

value of the END-OF-FILE in the File Control Block.

7 BUFFERING AND REQUESTS UPON OTHER PROCESSES

The monitor executes requests upon the following processes :

(1) the SYSTEM FILE HANDLER ROUTINE (MASTER process) in order to

execute the following disk operations :

. load the current processor table in memory ;

. load the processor information area in memory ;

. load the current assigned file list in msnory ;

. store the current assigned file list on the disk.

The last of these operations is normally done twice per execution of the

monitor, once before the processor execution, and once after return fran

the processor.

128

(2) the READ process, in order to perform the following operations :

. read the successive physical records constituting the control

card ;

• copy ti16 data flow output, if any ;

. skip to the next control card, in error cases ;

(3) the PRINT process, in order to perform the following operations :

. print the control cards images (unless specific user request,

see "10 processor, in [1]) ;

. print the procesoor prcrrpt (same remark as above) ;

. copy the data flew output frem PR$, if any ;

. print error messages, if any ;

The formatting of the two dedicated files PR$ and CR$ is done by

records ; the monitor is thus able to use the variable length record

driver routines in order to execute the necessary COPY operations.

After each cycle of execution of the monitor, both of these files

are reset by the follaving operations :

(1) write an end-of-file mark onto the first two bytes of the first

sector of the file (sector zero) ;

(2) reset the EMD-OF-FIIE location to zero in the current assigned

file list definition of the file ;

(,3) return to the available list all allocations .of the file except

for the first allocation.

129

The monitor makes use of a single buffer for all disk operations.

The buffer is successively overlayed by the following structures :

(1) the current processor table ;

C2) the processor information area ;

C3) the buffer necessary to the eventual COPY operation of the input

data flow ;

(4) the buffer necessary to the eventual COPY operation of the out­

put data flew ;

In addition, the buffer holds the error messages loaded fron the PRO$

file, if loading than ever becomes necessary.

The buffer is located in high core, above all the monitor programs.

The buffer size is necessarily 3 pages during the (1) and (2) stages ;

however, the variable size structure of the processor information area

inplies that not all the buffer may actually be used for the storage of

pertinent information ; the first unused location is defined by the first

two bytes of the processor information area (see fig. 14) . Thus, the

remaining of the buffer may be allocated by the monitor to the storage of

the processor data chains ; however, at least one page must be kept to

meet the minimum buffer size requirements frem the copy operations, the

actual buffer size during the stage 4 depends on whether the system is

in BATCH configuration ; the buffer size during the stage (3) depends

upon the size of the processor data chain allocated and upon whether the

system is in batch configuration or not.

130

As a consequence of both the section 4 considerations and the above

discussion, the monitor will allocate the processor data chain (frcm

the top of memory dcxvnwards) until one of the three follcwing conditions

does not hold :

(1) the minimum processor memory requirements are not met ;

C2) the monitor buffer size becomes less than one single page of core ;

C3) the processor data chains begin to overwrite the processor infor­

mation area.

If one of these conditions does not hold, an error results and the pro­

cessor call is ignored.

8.ERROR CASES AND ERROR ROUTINES. ABORT CONDITIONS

The following will be examined successively :

(1) Errors during control card processing ;

(2) Errors occurring during disk transfers ;

(3) Swapper errors ;

(4) Processor errors ;

(5) Run abort conditions and routines ;

A. ERRORS DURING CONTROL CARD PROCESSING

A variety of user errors may occur during control-card processing.

A list of .the specific errors can be found in a later section of the pre­

sent chapter.

The error messages are located within a particular area of the PRO$

file ; the sector address is defined in lew core. All errors result

131

in a non-execution of the current processor call ; the actual penalty

may include abortion of the current RUN if the user is in BATCH con­

figuration. Otherwise, the cards are skipped until the next control card

is met, and normal execution continues frcm this point.

An indication is given to the user of where on the control-card the

monitor was able to detect the error ; however, this is simply an indi­

cation that may well not reveal where the true mistake was.

B. ERRORS DURING DISK TRANSFERS

Any error occurring during a disk transfer will cause a jump to the

RUN byte analysis routine, and the RUN will normally be aborted.

C. SWAPPER ERRORS

Any swapper error will cause the printing of the message :

'SWAPPER ERROR :'

on the system teletype ; following this message, the SWP byte will be

durrped ; the file request block and the file control block relative to

the disk operation found in error will be dunped on the system teletype.

The PROC byte high order bit (BIT 7) will be set to 1, as well as the

RUN byte third bit (BIT 2) ; thus, any swapper error causes abortion

of the cunrent RUN.

132

C. PROCESSOR ERROR ANALYSIS

In the case of a non-zero PROC byte upon return fran processor execu­

tion, the following actions are taken by the monitor in this order :

(1) if the seven lew-order bits of the PROC byte are zero, GO TO step

(11) ;

(2) print upon the system teletype the following message :

'ABNORMAL RETURN FROM PROCESSOR : 1

followed by the contents of the PRONUM bytes of the .FC sub-area

of the ccmnunication area (processor number) ; print :

'PROCESSOR STATUS BYTE : '

tpon the system teletype, followed bytthe contents of the PROC

byte ; print upon the current system output medium (i.e. for

user information) the following message :

'SYSTEM OR DISK ERROR'

(3) if the BIT 6 of the PROC byte is set (POWER FAIL), print :

'POWER FAIL'

on the system teletype ; set the bit 3 of the RUN byte to one ;

set the bit 1 of the PROC byte to 1.

(4) if the BIT 5 of the PROC byte is set (STACK OVERFLOW), print :

'STACK OVERFLOW'

on the system teletype ; set the bit 3 of the RUN byte to one ;

set the bit 1 of the PROC byte to one.

(5) if the bit 3 of the PROC byte is set, print :

'TIME-OUT'

133

on the system teletype ; set the bit 3 of the RUN byte to one.

(6) if the bit 4 of the PROC byte is set (CONSOLE INTERRUPT), print :

'CP. INT.'

on the system teletype ; if the LEVEL of the processor is positive,

or if the LEVEL is equal to zero and the system is in batch conf­

iguration, set the bit 4 of the RUN byte to one.

(7) if the bit 2 of the PROC byte is set, set the bit 2 and the bit 0

of the RUN byte to one.

(8) if the bit 0 of the PROC byte is set, print the file request block

and the operation requested byte of the disk cperation found in

error on the system teletype ; these are found respectivelt in the

ERRFRB and OPREQ areas of the PROC sub-area of the C.A. ; traver­

se all processor data chains in search for the internal name in

ERRFRB ; if a file control block is found, dump it on the system

teletype ; if it is not found, print :

'NOT FOUND*

on the system teletype ; set the "file in hardware error" bit in

the status 2 of the current assigned file list definition for

the file.

(9) if the bit 1 of the PROC byte is set, take the follcwing action

with respects to all files in the current assigned file list :

. if a file is not "in use", ignore it ;

. if a file is not defined in any of the swapper, processor data

chains, ignore it ;

134

. if a file is found within at least one of the chains, but the

corresponding items pointing to the file have READ-ONLY access

bytes, simply reset the "in use" bit in the status 2 of the

assigned file list definition for the file ;

. if a file is found and at least one item points to it in either

WRITE, PROTECT or UNPROTECT access, reset the "in use" bit and

set the "file possibly in bad status" bit (BIT 6) in the status

2 of the assigned file list definition for the file.

(10) print on the current system output medium :

'PROCESSOR IN ERROR'

(11) print on the current systan output medium :

'PROCESSOR NOT SUCCESSFUL'

if the LEVEL of the processor is positive OR if the LEVEL is

zero and the system is in BATCH configuration, set the high-or­

der bit of the RUN byte.

E. ABORT CONDITIONS. RESTART ROUTINES

An abort condition is characterized by a non-zero value of the RUN

byte. The bits constituting the RUN byte have the following meaning :

(1) bit 0 (lew-order bit) : this bit is set to one if a disk error

occured during the current RUN ;

C2) bit 1 : set to one if a RUN time-out condition was detected by

the REAL-TIME CLOCK process.

(3) bit 2 : set to one if a disk error occurred during the current

' RUN upon one of the system files.

135

(4) bit 3 : set to one if a system fatal error or an abnormal inter­

rupt occurred during execution of the current RUN.

(5) bit 4 : set to one if a console interrupt was recognized and the

system is in BATCH configuration.

(6) bits 5 and 6 : unused.

(7) bit 7 : set to one if the RUN is to be aborted because of a user

error other than the occurence of the max RUN time.

The monitor checks the value of the RUN byte after execution of each

processor. A non-zero value of the RUN byte causes the following se­

quence to be executed :

(1) if the bit seven is the onlt one to be set, go ABORT the RUN (

call to the FIN processor);

(2) if the bit one is set, go ABORT the RUN via a call to the FIN

processor ;

(3) if the bit zero is set, and the bit four is set, print on the

system teletype the following message :

'FATAL SYSTEM FIIE ERROR'

(4) if the bit three is set, print on the system teletype the fol­

lowing message :

'FATAL SYSTEM ERROR'

(5) disable the spooling process, and wait that the queue of opera­

tions on the disk be empty.

C6) type ;

'PLEASE ENTER SENSE SWITCHES'

on the system teletype.

136

(7) halt ; wait for operator to press the RUN switch on the console.

(8) enter sense switches ;

(9) if the switches are all leset, go back-to step (6) ;

(10) if the leftmost switch is up, jump to the beginning of the TOS

program ; upon return from TOS, jump back to step (6) ;

(11) if the next switch is up, go abort the current RUN by executing

a call to the FIN processor ;

(12) otherwise, if the next switch is not up, go back to step (6) ;

(13) if the next switch is tp, set the RUN byte back to zero, and

continue the execution normally.

131

9. SYNTACTICAL DEFINITIONS OF THE CCNTPOL LAKTGUAGE

The syntactic equations defining the control language are grouped

together below. An "extended" notation is used to express the sintac-

tic rules, where in particular :
I,,
) z \ stands for repetion from a to b times of G ;
a S) J A C I

1<6z(stands for 2^67/
09 - - C J

1 \ stands for "indefinite repetition, at least a times";at
1 , _

[] stands for) < G > I
o

<nil? stands for the null element ;

(1) <control card? := <identification? <blank>• <chain definition >

(2) identification> := " <processor name? [, <processor option?]
8(1(3) ^processor name? :=,)letter I
it J

(4) ^processor option? := <letter ?

0»
(5) * chain definition > := [< iten sequence ?]), item sequence > (

< closing delimiter >/ \
II 6 ' J

(6) ^closing delimiter? := ; I " \)
(7) <item sequence? := <explicit field? | <iiiplicit field?

(8) ^explicit field > := <item definition? = ■<object list ?

(9) <implicit field? := <object list?
(10) ^object list? := <default list? |-esingle object list? |

^multiple object list >

(11) ’<default list? := <nil?

138

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

isingle object list> := <object> (<data chain object >
<closing delimiter>

4multiple object list? := (^dobject^ dobject
t- closing delirrdlter >

-tdcbject^ := <default object z j <object

< default object* := -tnil>

< object > := <memory-bound object > I < file object ?

/item definition > := /internal name* <item specification >

< itemspecification > := [/.type-*] [/ nummaxacc >]

/type* := - s|R|A[B|blank|c|l|h|f|D

4nunmaxacc? := (■‘•max* [, <min* [,/access*] Inclosing delimiter
/max* := /nil>|<hexal*

/min* := /nil* |/hexal>

^access* := <nil> j<hexal> g.

/internal name> := /letter* j/letter * |zdigit-*

/data chain object* := /chain definition *

< file cbject>.-sfile identification* /file type >

/file identification* := [/fileid* *] / user-defined name *>

/fileid* := <b.exa2‘>

/user-defined name* := /letter* | $

/file type* := [- j s|rIaI blank (]

139

(31) <manory-bound object> := xFcbject? plobject>j^Hobject> I<Cobject >
zBcbject?

(32) <Fobject> := /file identification>
(33) <Idbject> := < decimal> | < multvalhex2 >

(34) <Hobject> := ^decimal?- |<raultvalhexl? 6 zinultvalchar >

(35) <’cobject> := [C] <multvalchar 7

(36) <Bobject> := 2true boolean > j <false boolean -z
(37) < multvalhex2 > := X * ^2 hexa2 > J [z hexal -7] 1

(38) < multvalhexl > := X * L hexal1
- O I J

(39) < raultvalchar > := 1 < *1 < non-quote ASCII character >

(40) < decimal > := < positive t- I z negative >

(41) <positive? := I +] integer •>

(42)

(43)

(44)

(45)

(46)

(47)

Lnegative> := - <integer >
* (

< true boolean?' := 1 //digit??
Q I VePz-< false boolean? := 0)< digit?

* () 0
zhexa2 y := < < hexa z {

<r hexa?1 := A|B^c)DjEjF | < digit 7

3 L

140

10. ERROR MESSAGES

The error messages occurring during control card processing are lis­

ted below as they can be found in the FEFF*PRO$ file.

(1) UNKNOWN PROCESSOR IDENTIFICATION : the processor name and option fields

as specified on the control card do not match any of the processors in

the current processor table.

(2) IIIr-DETTNED PROCESSOR IDENTIFICATICN : the processor name and option

fields do not determine the processor uniquely within the cuiasent

processor table. Hint : do not abbreviate the processor name too much.

(3) CHAIN RECURSION LEVEL TOO DEEP : the level of embraced parentheses

is too deep (greater than 5).

(4) BINDING CANl'JOT BE OBTAINED BY DEFAULT : no default value can be bound

to the item in this position. Hint : probably a carma too many.

(5) DUPLICATED INTERNAL NAME : The sane internal name was used twice in

the same data chain. Hint : check items generated by default in

processor data chain and their associate positions on the control

card.

(6) TOO MANY ITEMS FOR THIS DATA CHAIN ; the number of itons in the cur­

rent data chain is greater than the MAX of the chain as an object.

Hint ; one of th3 internal names specified in the chain was mispelled.

(7) TOO FEW OBJECTS FOR THE CURRENT ITEM : The number of objects bound

to the item is less than the MIN specified for the iten. Hint : one

of the objects was forgotten.

141

(8) TOO MANY OBJECTS FOR CURRENT ITEM : the number of objects bound to

the item is greater than the MAX specified. Hint : probably a

conna too many, or check definition for item.

(9) ATTEMPT TO CHANGE THE BINDING OF A PROTECTED ITEM : the iten is

'frozen* to its default value, and an attempt was made to bypass

the default.

(10) UNOORRECT FILE-TYPE : either an explicit file type was incorrect,

or the file type was not explicited and the item is of type * 1.

(11) IT,.TEGAL FILE-ID : The file-id field in the file-name is incorrect.

(12) UNVALID BOOLEAN : uncorrect spelling of a boolean object.

(13) QUOTE ERROR : a quote was forgotten or the expression within quotes

is incorrect.

(14) OVERFLOW : too large a value for an integer or half - word object

expressed in decimal form.

(15) '=' SIGN FOUND MISSING : self explanatory. Hint : the internal

name may be incorrect, or an object list was mispelled.

(16) UTCORRECT TYPE : The type explicited for the itsm is incorrect

(17) UNABLE TO ALLOCATE DATA CHAIN : self-explanatory.

(18) ACCESS ERROR : the file required is not available for the access

required.

(19) FITE STATUS ERROR : the file requested is already in use. Hint :

a file requested for processor execution (eventually by default)

is used as input or-output medium for the system.

142

(20) DUPLICATED FILE COS1TROL BL0Q< WITHIN CHMN : an attenpt was made

to request the same file from two diffemnt items of the same data

chain. Hint : check default assignments for items of file type.

(21) FILE NOT FOUND WITHIN RUN$: the file requested is not currently

assigned to the current RUN.

(22) END OF FIELD NOT MET : a ccrana or termination character was ejec­

ted by the monitor program at this point of the processing. Hint :

this error message can be printed-out in reason of many different

errors ; however, the error can be located precisely from the

monitor indication.

A general remark need to be done concerning the error diagnostics

generated by the monitor : a A * * * * * * * 1 *1 character is printed to indicate to the

user the point in the processing where the monitor was able to recog­

nize the error ; hcwever, it should be understood that this indication

may not always be meaningful ; for instance, the character will be in

many cases located in front of the semicolon terminating the control

card, since most of the default processing is done at that time ; the

error (6), for instance, will in most cases be printed at the end of

the processing of the control card, though it was caused by an error

occurring generally much before this point.

Inprovements are needed in the precision of the above messages ;

a scheme has to be found to be able to give more precise indication

of viiich particular ' field of the control-card was erroneous.

143

11. PROPERTIES OF THE CONTROL LANGUAGE

A. EQUIVALENCE BETWEEN CONTROL CARD AND INTERNAL REPRESENTATION

This approach taken in the beginning of this chapter for the des­

cription of the control-card processing mechanism was an internal ap­

proach. An identity such as :

item specification := object list

, on.the control card, was described in terms of its internal equi­

valent, i.e in terms of such concepts in the systen as itens, objects

and data chains.

Conversely, each item in any data chain for any process may be

described in terms of its expression on a control card ; each default

processor data chain is equivalent to a "default control card" ;

a call to the "PROC processor (see this chapter) enables a user to

list the "default control card" of a processor in his processor table.

This equivalence can be demonstrated by examining the case of the

ASSEMBLER processor in the system ; the case is not chosen because of

its generality but rather because it is a simple and typical example

in the systen.

The Assembler processor data chain contains the following four

items (MIN = MAX = 4 , ACCESS = XJ11J for the processor data chain as

an object of the swapper chain) :

144

(1) item # 1 : internal name : IN; type : 'S' (expects a file of type

source); MIN = MAX = 1; access required : X’ll' (read only) ;

default binding : 0000*CR$ (standard data flow input file for the

current user). This item is used by the program to read the input

source assembly language program.

(2) item # 2 : internal name : OUT ; type : 'R' ; MEN = MAX = 1 ; ac­

cess required : X'12' (write only) ; default binding : 0000*REL$-R

(standard relocatable file of the current user).

This item defines the file where the relocatable output of the As­

sembler is to be put.

(.3) item # 3 : internal name : FLAG ; type : 'B* ; MEN = MAX = 3 ; ac­

cess required : X’ll' (read-only) ; default binding : YES,YES,YES ;

This item let a user specify if listing of the assembled program is

wanted (first boolean) , if a listing of the symbol table is wan­

ted (second boolean), and if a relocatable output is to be ef­

fectively written onto the output file (third boolean) .

(4) last item : internal name : PRINT ; type : 'S' ; MEN = MAX = 1 ; ac­

cess : X'12" ; default binding : 0*PR$ (standard output data flow

file). This item defines the file where the listing is to be

produced ; this file is by default the standard output file, to

be copied by the monitor onto the current system output medium.

The "default control card" corresponding to this default proces­

sor data chain will be the following :

145

"ASSEMBLE IN-S (1,1,X' 11*) = CR$,

OUT-RCl,!^'^') = PEL$,

FLAG-BO^^'ll') = (YES, YES, YES),

PRINT-S(1,1,X'12') = PR$;

The above control card constitutes a valid call to the ASSEMBLER.

However, it is not always the case that a default control card is a

valid call to the processor ; for instance, we can define frcm the a-

bove processor another processor called "ASSEMBLER having the same

data chain, except for the second item (OUT-R(1,1,X'12')) , which,

on the disk, does not have any object bound to it (empty binding).

Then, the equivalent control card :

"ASSEMBLER IN-S (l,l,X'll') = CR$,

OUT-Rd,!^'^') = ,

FLAG-B(3,3,X'll') = (YES, YES, YES),

PRZNT-Sdd^'LZ') = PR$;

will no longer constitute a valid call to the assembler, since the

second item is associated with an object list containing a number of

objects (0) outside the MIN - MAX range (1 - 1). In the above

case, the monitor program will, irrmediately after processing the second

line, produce the following :

OUT-Rd,!^'^*) = ,

*

ERROR : TOO EEW OBJECTS EOR CURRENT ITEM - PROCESSOR IGNORED

CARDS SKIPPED

146

B. SIMPLICITY OF USAGE

The expressions given as an exairple in the previous paragraph should

not . cause one to be.1 ithat the control language is not easy to use.

they were shown in this form for the sake of exairple only.

Actually, the two following cards would produce exactly the same

calls as in the preceding paragraph :

(1) "ASSEMBLE ;

(2) "ASSEMBLER ;

By the very definition of the default card, the same effect can be achieved

by specifying the processor name only, since the resulting processor data

chain is to be identical to the default processor data chain.

In fact, in the case of the second call, the error indications

given by the monitor become somewhat less clear than they were in the

previous paragraph :

"ASSEMBLER ;

*

ERROR : TOO FEW OBJECTS FOR CURRENT ITEM - PROCESSOR IGNORED

CARDS SKIPPED

This exairple corroborates the judgments given at the end of the section

10 of the current chapter.

The prograrrmer is allowed to be even less verbose :

"ASSE;

147

More abbreviation would be erroneous ;

"ASS;

*

ERROR : ILL-DEFINED PROCESSOR I^IAME - PROCESSOR IGNORED

CARDS SKIPPED

It was kept as a general rule to the definition of processor data

chains that standard use of the system should be as simple as possible ;

the following sequence will assemble, load and execute a single program

using the standard input/output files :

"ASSEMBLE ;

"LOAD

"EXECUTE ;

If the assembly of a program stored pemanently on the disk file

systen is needed, the progranmer need to specify the file-name in order

to overrule the default given :

"ASSEMBLE IN-S(l,!^'!!') = (MYFILE-S) ;

the specifications for the item may be left out, since they are not

different fran the specifications in the D.P.D.C. :

"ASSEMBLE IN = C MYFILE-S) ;

since a single object is needed, and since the file is expected to be

of type ’S' from the item type, both parentheses and file-type can be

left out :

"ASSEMBLE IN = MYFILE ;

148

Finally, the internal name itself can be taken out, since it corresponds

to the first item of the DPDC :

"ASSEMBIE MYFILE ;

If the item is not the first in the DPDC, the programmer may opt for

any of the following :

(1) "ASSEMBLE , ,(,N0) ;

(2) "ASSEMBIE FLAG = (,N0) ;

v^iich in either case stands for :

11 Assemble the following program, list the assembled program but do not

list the symbol table " ; note that the first and third object of the

FLAG item need not -be explicited ; for an assembly with no listing at all,

the following is valid :

"ASSEMBLE FLAG = NO ;

Note that the following expression is erroneous :

"ASSEMBLE ,, ,FLAG = NO ;

since it leads the monitor to try to define the item FLAG twice in the

same data chain.

It is understood that the specification of a parameter located far

in the list can be tedious for the programmer. Thus, the following ac­

tions are recommended when defining processor cards :

(1) use of standard "natural" internal names ; in the present state

of the system, the following are canmonly used ;

149

. IN to define the natural input of the processor ;

. OUT to define the natural output of the processor ;

. I1ST to define the various listing options ;

. PRINT to define the printing medium ;

. SPEC to define the carmand medium (specification file).

(2) block the parameters that programmers are more likely to mo­

dify at the beginning of the control card (IN, OUT, LIST) ;

an option in the "PROC processor enables a user to "reorder"

a default processor data chain (see corresponding chapter).

(3) provide the user with different default control cards for each

given program in the system ; for instance, create a proces­

sor called "ASSEMBLER, so that the follcwing call :

"ASSEMBLER ;

be interpreted as the previous call :

"ASSEMBLE LIST = NO ;

The facility of tailoring a control card already existing to a

particular user's needs is given by the "PROC processor.

A standard use of options for these alternate default control

cards should be recarmended when declaring the control cards.

In conclusion to this paragraph, it appears that standard use of

the system may involve very simple control card usage, if care is taken

in the setting of the default options. No knowledge at all should be

150

necessary, to the average user of the system.of the internal representa­

tion of control cards ; it is felt that the object types have been kept

sufficiently basic and simple, so that no difficulty should be met in

the setting of more carplex control cards.

The itan specification field (MAX, MIN, ACCESS, TYPE) is expec­

ted to be little used, and its existence should be ignored by most pro­

grammers. However, the creation of processors, the declaration of con­

trol cards, or extensive use of the control card as a device (see later

in this paragraph) may require the understanding of this feature, and.

thus a minimum understanding of the underlying structures behind the

control language.

C. GENERALITY OF THE CONTROL LANGUAGE

The monitor program processes the control cards in a strict move­

forward fashion. The two following exceptions were made to this rule :

(1) a "look ahead" was done to determine whether a particular field

is explicit or implicit ;

(2) a look ahead was dene to determine if a file-id is explicited

or not.

In these forward moves, the monitor does not cross record boundaries

(i.e it will not pass frem one card to another) ; two restrictions

result frem this fact, but should be of minor concern to a programmer.

151

The choice of the basic objects was mainly governed by a desire for

simplicity ; in a few cases, the need was felt for a WORD object type,

so that names be considered as objects in themselves, rather than as

conbinations of character objects.

On the vhole, the control language was felt to be sufficiently

general for the needs of the system ; the opposite effect was actually

feared, specifically that the full power of the language be never put

into use ; only one processor in the actual configuration, the EXECUTE

processor (and, in a certain measure, the PROC processor), actually

justify the existence of items of type iten (i.e, the recursive defi­

nition of chain definitions). However, the full generality of the

control language is hoped to find its justification in later system

developments.

D. THE USE OF THE CONTROL CARD AS AN INDEPENDANT DEVICE

Enphasis is put here on the use of the control card as an inde­

pendant device in the system. 7\s shall be seen in the description

of the EXECUTE processor, the user data chain is declared by the

programmer on his control card, as a subchain of the EXECUTE proces­

sor data chain ; this particular chain (or eventually si±>chains) is

meant to hold two classes of objects :

(1) file objects, in order to enable the user to use the disk driver

to execute I/Os on files in the disk file system. The two stan­

152

dard irput and output files (CR$ and PR$) are bound by de­

fault to two items defined for the user C IN-S and OUT-S) ;

the files are given in read-only and write-only respectively.

Thus, without any specification of the data chain, the user

program may read data input frcm the current input medium,

and produce output on "the current output medium, by setting

file request blocks with names IN-S and OUT-S and calling one

of the resident or library driver routines. If any different

file is needed, the user may override the default association

for the itsns IN and OUT, or create any itsn of his choice.

However, no request for PROTECT or UNPPOTECT accesses will be

satisfied.

(2) memory-bound objects ; any user program has access to the resi­

dent routine FETCH, and is thus enabled to read memory-bound

objects within his data chain. The user may define items on

his control card, and place requests to the routine FETCH to

read one of the associated objects into the area of his program.

A user program is entitled to the same facilities than a pro­

cessor for cannunication with the control card. This may be

used for one of the following reasons :

. it permits the isolation frcm the standard input stream of

certain control parameters for clarity purposes ;

. it gives readability to the data by associating a name and

type to each variable, array or string input ;

153

. it transfer the task of conversion to binary format from the

user program to the monitor ; this should be particularly use­

ful in the debugging of assembly language programs.

. it saves disk transfers.

However, the following inconvenients should be understood :

. it is not possible to declare arrays or strings whose di­

mensions are bigger than 255 ;

. the physical storage of data chains diminishes the total area

available to the user program.

In conclusion to this paragraph, it appears that the control card

is an elegant and qonvenient way for a user program to acquire a limited

amount of data ; the tool should be particularly valuable in the debug­

ging of assembly language programs. Standard read/write operations on

system files are made possible by the declaration of items of file type

on the EXECUTE processor control card.

12. EXAMPLE OF USE OF THE CONTROL LANGUAGE

No user manual was included in this thesis as such, for the reasons

specified in the introduction. A short program is given in the overview

chapter ; simple examples for the ASSEMBLER card were analysed in the

preceding section. The default control card of each processor is given

at the beginning, of the description of the processor, both in the pre­

sent thesis and-in II].

154

The following examples are given below in order to clarify the

most cctiplex default rules given in the section 3 of the present chap­

ter. They are in no measure typical of average use of the control

language.

An item in a (fictive) default processor data chain is defined

by the following :

(1) internal name : ANITEM ;

(2) type : 1 1 (file-type, particular type of file not specified) ;

(3) MIN = 2 ; MAX = 4 ; ACCESS = X'dE' ;

(4) number of default objects : 3 ; default objects as found on the

disk : 0*CR$-S,0*PR$-S,0*ABS$-A ;

In addition, the iten ANITEM is found in a data chain, the access

byte of which is equal to X'IS' ; it is the third item of the chain.

The current file-id, as defined within the RUN sub-area of the con-

munication area, is equal to X'lOOO'.

(1) Equivalent control card : if no explicit or implicit mention

of the item ANITEM is done on the control card, the item ge­

nerated will behave as if the following explicit mention had

been done :

ANITEM (4,2,X'13') =

(1000*PR$-S, 1000*CR$-S, 1000*ABS$-A) ,

Note that the protect, unprotect accesses get masked by the

access of the chain as an object, and that the zero file-ids

gett set to the current file-id.

155

The default generation will also be caused by any of the fol-

Icwing implicit declarations :

ANITEM = ,

ANITEM = (PR$,CR$,ABS$) ,

ANITEM = ,

(,,), (on the third field).

However, by application of default rules, the follaving calls :

ANITEM = (,) ,

ANITEM = () ,

will behave as the more explicit following call :

ANITEM = (PR$-S, CR$-S) ,

The third default object is not bound to the final chain, sin­

ce only MIN defaults are generated ; this rule would not hold

if the itan was of type 'D'. Note that the two calls :

ANITEM = ,

and :

ANITEM = () ,

are not, in this particular case, equivalent.

(3) Modifications of the default bindings may be obtained by the

following calls :

ANITEM =(PR$-S, ABS$-A) ,

ANITEM = (PR$-S, 1000*ABS$-A)

156

Combinations of explicit and default values can be obtained :

ANITEM = (,ABS$-A) ,

(4) Modification of the item characteristics are demonstrated be­

low :

ANITEM (X'FF*/OyX'lS1) = ,

will behave as the equivalent control card given by default.

ANTIEM(2,0,X,13,) =,

will behave as the more explicit :

ANITEM(2,2,X'13') = (PR$-S, CR$-S),

since the MAX has been changed.

ANITEM(,3) = () ,

will generate the ccnplete default binding as in :

ANITEM = ,

and by opposition to :

ANiteM = (),

, since the MIN is new equal to 3.

The following call :

ANITEM >C ,,3) = MYFILE-S,

is in error, since the default binding can no more be redefined

from the change in the access byte fifth bit.

157

(5) the following calls are in error and are shown together with

the error messages produced by the monitor :

ANITEM = (, , ABS$-A,) ,

*

ERROR : BINDING CANNOT BE OBTAINED BY DEFAULT - PROCESSOR IGNORED

ANITEM = (, , , PR$-S) ,

*

ERROR : DUPLICATED FILE CONTROL BLOCK WITHIN CHAIN

ANITEM = (, , , TEMP$-S,TEMP$-A) ,

*

ERROR : TOO MANY OBJECTS FOR THE CURRENT ITEM

ANITEM(3) = (, , , TEMP$-S) ,

ERROR : *

ERROR : TOO MANY OBJECTS FOR THE CURRENT ITEM

ANITEM-S = ,

*

ERROR : UNCORRECT TYPE

ANITEM(,4) = (, , TEMP$-S) ,

X *

ERROR : TOO FEW OBJECTS FOR THE CURRENT ITEM

158

ANITEM = PR$,
*

ERROR : ILLEGAL FILE-TYPE

ANTIM = PR$-S ,

may not be an error since it may be the creation of a user-

defined item, if the MIN and MZ\X of the chain are not equal.

It will be considered so at the time the above identity is

processed, and thus the eixor will not be imnediately recog­

nized ; hcwever, at the end of the processing of the chain,

ANITEM will be created, together with its default binding ;

if for the chain MEN = MAX, the total number of items in the

chain will eventually becane greater than MAX, and the monitor

will print :

ERROR : TOO MANY ITEMS FOR THIS CHAIN

, with the character in front of the closing delimiter ter­

minating the chain (and eventually the control card).

"WHATEVER ANITEM=,, ;

*

ERROR : DUPLICATED INTERNAL NAME- PROCESSOR IGNORED

ANITEMC, ,3) = ABS$-A,

*

ERROR : ATTEMPT TO CHANGE THE BINDING OF A PROTECTED ITEM

CHAPTER XI

THE LINKAGE TO A USER PROGRAM : THE

THE EXECUTE PROCESSOR

159

160

1.' GENERAL DE^RIPTH^I

In many systems, a user program can be considered as a parti­

cular processor in the system. However, this scheme was not pos­

sible in the present Cperating Sy st an, since no protection mecha­

nism is offered by the microprograms ; no hardware or firmware pro­

tection is present to prevent a program from accessing any part of

the memory, of any of the devices. A special processor, the EXECUTE

processor, had thus to be implemented to limit, as far as possible,

the destructive action that a user program may have on the system ;

an additional memory overlay (see SWAPPER chapter) is thus neces­

sary to bring the user program in core.

Protection is particularly needed for the following objects :

(11 system files ; files that are not in the current assigned

file list are protected (see II]) ; however, such system

files as SCR$ and RUN$ are not protected when control is

given to the EXECUTE processor ; the EXECUTE processor thus

needs to protect such files to prevent accidental writing

by a user program. The user does not have access to the

PRCTECT and UNPROTECT actions, since the conresponding bits

are reset in the access byte of the user data chain (see next

section 1. However, accidental execution of disk conmands

may not be prevented.

(21 memory ; the effects of a user program on the menory can only

- be one of the follcwing :

161

. extensions of files in the track maps ;

. changes in the definition of end-of-files in the data chain.

The entire memory is thus swapped out before the user is brought

in memory ; the user is given only a copy of the resident part

of the system that he is entitled to use, specifically ;

. disk driver and track maps, device tables ;

. swapper and its chain ;

. chain manipulation routines ;

. sequential access disk driver routines ;

. data chains.

At the end of the user program execution, the user context (the

whole memory 1 will be swapped-out (if possible) ; the old

context (of the EXECUTE processor) will be swapped in. then

the modifyable part of the old context will be updated accor­

ding to the saved user context, if the changes are legitimate.

Hcwever, destruction of the necessary swapper by the user prog­

ram cannot be prevented. Thus, the EXECUTE processor sets a

bit in the RCN$ file before control is given to the user prog­

ram ; a message is also printed out on the system teletype.

In the case when a user program is in a dead loop, or halts,

the operator can take one of the following actions ;

. press on the interrupt key ; if the swapper is not destryed,

control will be given to the entry point of the swap-out prog­

ram, and normal execution of the EXECUTE processor will continue.

162

. load a special processor in memory C if the above method

fails 1 ; this processor looks rp the RUN? file for the

bit set by the EXECUTE processor ; if this bit is set,

the processor is able to reload the context of the EXECUTE

processor, and execution can continue normally from this

point.

2.' Ca^TROL- CARD AND-OPTIONS

The default control card for the EXECUTE processor can be written

as follotvs :

"EXECUTE

ABS’-AC1,1,X'13'1 = ABS-A.,

SECTOR-I(l,l,X'll') = 0,

CHAIN-D(X,FF,,2,X,13,) = (

IN-S(X,FF,,1,X,11,) = CR$,

OUT-SCX'FF',!^'^') = PR?) ,

DUMP-A(l,0,X'13') = ,

TZME-Kl,!^'!!*) = 60,

M3DE-BCLrl,X,ll,l = NO,

TOS-Btl,!^'!!’) = NO,

LIST-S (IflfX'Ol') = PR?-S ;

The successive items and their meaning are examined successively below.

163

QI Internal name : ABS ; type : A ; MIN=^AX=1 ; ACCESS = X'll' ;

default binding : ABS$-A.

This parameter defines the file viiere the absolute program

oan be found by the swapper.

(21 Internal name : SECTOR ; type : I ; MINMYIAX=1 ; ACCESS = X'll' ;

default binding : 0.

This item defines the sector number within the file ABS where

the program dictionary can be found.

C3) Internal name ; CHAIN ; type : D ; MLN = 2 ; MAX = @%% ;

ACCESS = X’lS' ; default binding ; the items :

. IN-S C MIN = 1, MAX = X'FF*, ACCESS = X'll*, default binding :

CR$ (standard input data flow)) ;

. OUT-S (miN = 1, MAX = X'FF', ACCESS = X'12', default binding :

PR$ (standard output data flow)).

This item defines the user data chain. Any number of items can

be user-defined (255) ; the accesses given include READ and

WRITE accesses, but not the PROTECT and UNPROTECT accesses

(ACCESS = X'13') ; the user may thus define any item of

his own, including items of type item and memory-bound items

(for use of the control card as a device, see preceding chap­

ter, section LL.D). However, the two following itens are

given by def ault ;

. IN-S is normally associated with, the standard input data file

C CR$ 1 ; however, the user may redefine this iten to any read­

164

only file among the files in the current assigned file list ;

any nuirber of files needed in READ-ONLY by his program can

actually be bound to this particular item (MAX = X'FF* } ;

. OUT-S is normally associated with standard output data file

C PR$ 1 ; however, the user may redefine this iten to be

bound to up to 255 files to be accessed in WRITE-ONLY by

his program.

C41 DUMP ; type : ’A' ; MIN = 0 ; MAX = 1 ; ACCESS = X’12'; de­

fault binding : empty binding.

If any file is specified by the user, the swapper will swap-

out the manory image of the user on this file, instead of

the standard SCR$ file ; this particular file will then be

available to the user for ;

. taking a post-mortem dump ;

. executing the output (CHECKPOINr facility) .

(5) M3DE ; type : 'B' ; MIN = 1 ; MAX = 1 ; ACCESS = X'll* ;

default binding : NO ;

This parameter is transparent to slave users (i.e, the access

byte is set to X’ll1 for this category of users). If the

value of this item is YES, C MASTER mode), the systsn files

will not be protected, and more entry points in manory will

be available to the user program.

(61 TOS ; type ; 'B' ; MIN - MAX - 1 ; ACCESS = X'll* ; default

binding : NO .

165

This parameter is "frozen" (by* setting the access byte to X’01')

for the users of the system in spool configuration. If this

parameter is equal to YES, the EXECUTE processor will make the

Teletype Operating System available to the program by :

. relating the concurrent I/O area by TOS before giving con­

trol to the user program ;

. setting the trap location so that a TRP instruction or a

console interrupt execute a jump to the beginning of the

TOS programs.

A user in stand-alone configuration is thus able to use TOS

for the debugging of his program. However, the EXECUTE pro­

cessor then needs the concurrent I/O area for the storage of

TOS C in the 16K configuration), and this area is thus ne­

cessarily not available to the user program.

(7) LIST ; type : ’S' ; MIN = MAX = 1 ; ACCESS = X '01'; default

binding : PR$.

This parameter is completely "frozen" for all categories of

users. It is used by the EXECUTE processor to be able to

list the eventual user program output on the current system

output medium after execution of the user program ; the EXECUTE

processor is actually given the file in write-only access, since

PR$ is normally a write-only file ; it actually updates the

access to be able to read the file.

C8L TIME ; type : 'I' ; MIN = MAX = 1 ; ACCESS = X'll' ; default bin­

166

ding ; 60.

This parameter defines a max-time for the user program ; this

time is initialized by- the EXECUTE, and decremented every se­

cond by the real-time clock process during execution of the

user program ; a minute is standard. If a max time occurs,

a jump to the beginning of the swapper is executed.

3> THE SWAPPING PROCESS

As mentioned in chapter VI, the EXECUTE processor doos not use

the systen swapper, but rather a specialized swapper carrying out the

following operations :

(11 swap the user in ;

(2) swap out all the user context ;

(3) swap the old context back in memory.

A. SWAPPING IN OF THE USER

At the beginning of this phase, the dictionary of the user prog­

ram is already in core, and the verifications concerning the validity

of the loading addresses are already done (see following section).

The control is given to the swapper to swap the user in, and the

swapper gives control to the user with, the values of the registers

defined in the dictionary C A,B,X,l^/O,Pl.

167

B. SWAP OUT OF THE USER CONTEXT

The conditions for canpletion of the user program are the following

(1) execution of a :

JMP STOP

is the normal carpietion sequence.

(21 power fail, paver restart and stack overflow will cause also

execution of the above sequence.

(31 max time (see previous section) ;

(41 console interrupt ; however, if TOS was required, a jump to

TOS is executed instead of the previous sequence.

Upon canpletion of the user program, the control is given to the

swapper, which performs the following operations :

(11 stop and disconnect I/Os' upon the devices (card reader, line

printer, disk) ;

(21 disable the interrupts and the real-time clock ;

(3) swap out the whole memory on the system scratch file ; this

image will be eventually copied by the EXECUTE processor on

a user file if a DUMP was required (see previous section).

C. SWAP IN THE OID CONTEXT

The swapper then reloads the context of the EXECUTE processor

Cthe whole manory 1 from the SCR$ file in a single call to the .DR

routine. This operation requires the following conditions to be met :

168

Cll the disk interrupt has to be the only interrupt that can occur

during the operation ;

C2)_ the queue of disk operations must contain only one operation

C the swap operation] ;

(3) the current context and the SCR$ context must have in ccmmon

the following piece of program (waiting loop for the disk

interrupt and return from .DR routine] :

CAL .DR

IDV+ 8

NAZ *-2

so that, viien the piece of program is loaded frcm the disk, the

execution flow 'stay undisturbed ;

(4) the byte defining the operation requested in the file control

block in the SCR$ context, needs to be non-zero ;

(5) upon reception of the end-of-transfer interrupt, the SCR$ con­

text (nov fully loaded into core) must be ccnpatible (stack,

device queue, FCB) with the configuration of a program awaiting

the end-of-transfer interrupt frcm the disk ;

(6} the disk image in the SCR$ file must be within one single al­

location, in order for the .DR routine to be able to execute

the transfer in one single st^>.

169

4 . -VERIFICATiaJS AND PBOTECTION BEFORE USER EXECUTION

In order to avoid as much as possible the number of system crashes

and their severity, the EXECUTE processor does as much verification of

the user program as possible, and also tries to protect the system against

unintentional mistakes in the user program.

A. VERIFICATION PROCESS

Verification is done that the file declared by the ABS item of the

control-card is formatted correctly ; more precisely, the sector defined

by the item SECTOR of the control card needs to be formatted as an ab­

solute program dictionary. Reference is done to MANGIN, [1] for a des­

cription of the absolute program dictionary. The specific verifications

are :

(1) number of segments 59

(21 for each segment,

low program limit segment start address segment end address

high program limit

(31 lew program limit execution address high program limit

(4) first location available to user low program limit

(51 high program limit top memory available to user program

C61 stack, location = system stack, location or

low program limit stack location high program limit

If all of the above conditions hold, the file is considered as correct ;

otherwise, en error message is printed and the user program is not execu­

ted.

170

B. PROTECTION PROCESS

The protection process seeks to protect the system against mista-

kes in the user program. The entire momory is swapped out on the system

scratch file C SCR$ 1 and the disk image is updated for the swap back by

the swapper. As said in the last section, the waiting loop for the two

swappers is the same :

SDR DC **

CAL .DR

IDV+ 8

NAZ *-2

JMP* SDR

The swap out process is executed by a return jump to SDR.

This provides the SCR$ context with the property of conpatibility

for the swapping back process (configuration of program awaiting an

end-of-transfer interrupt from the disk).

In order to be able to distinguish between the return from the

SDR program at swap out time and at swap (back) in time, the contents

of the locations SDR and SDR+1 of the DISK image are updated, so that

a juirp to the proper part of the EXECUTE processor be executed at the

end of the execution of the swapping process.

Furthermore, a byte in the current user area of the RUN file is set

to one to indicate that, in case of a caiplete crash of the user program,

a msnory- image on the disk is ready to be restarted.

171

The other protection steps are relative to the protection of sys-

tan files.

C. OTHER ACTIONS

The other actions performed by the EXECUTE processor before gi-

ving control thethe swapper include the follcwing ;

(1) write on the system teletype the expected time of execution of

the user program (as specified on the control card) ;

(21 load the Teletype Operating System in the concurrent I/O area

if the TOS option on the control card is set ;

(31 set the PROTIM location of the PROC subarea of the communica­

tion area to be equal to the user maxtime ;

(4} set the interrupt address defined in the PROC area to the start

of the swapper program ;

(5) set the console interrupt address to the TOS execution address

if the TOS option on the control card is set.

5 . 'UNPROTECTION AND VERIFICATIONS 7\FTER USER EXECUTIOSI

After the swap back of the EXECUTE processor context, the system

files are unprotected. The message :

USER OUT

is printed on the systen teletype. The byte set to one in the RUN$ file

is reset.

172

The EXECUTE processor needs to record the legitimate changes to

the menory done by the user.

Files extensions involve modification of the EOF byte in the FCB

definition, and modification of track maps. A traversing of all the

File Control Block is done to check that the corresponding first allo­

cation offset has not been modified ; the eventually added allocations

are corpared with the allocations bound to the file in the previous

context. The following properties must be true :

(11 the chain (starting fran the first allocation) of the allo­

cations already bound before must still exist after execution

of the program.

(21 The extensions must belong in the AVAIL list of the original

context.

(31 No allocation may be shared betwwen several different files.

(41 The End-Of-File defined in the File Control Block must be

smiler or equal to 192 x N, where N is the total number of

allocations bound to the file.

If all the conditions are true, the file extensions are reported on

the track maps and file control block of the EXECUTE processor. In

the opposite case, the original definition of the file is kept and

a warning message is printed out on the current system output medium.

If the list file was not found in error by the previous algorithm

it is copied by the EXECUTE processor onto the current system output

medium. (via the PRIM1 process 1. All characters are checked to be

ASCII, and, if not, replaced by the character @. The printing is

aborted vdien too many non-ASCII characters have been encountered.

CHAPTER XEE

PROCESSOR EXTENSION AND TAILORING

THE PROC PROCESSOR

173

174

1, PROCESSOR DEFINIWNS

In the description of the MONITOR, two aspects have been overlooked,

specifically how* current processor table and processor information area

are created.

Normally, the current processor table is initialized at RUN time to

one of several DEFAULT PROCESSOR TABLES on the disk. The pariicular de­

fault processor table may be selected by the user among a list of default

processor tables available to his password.

The set of processor information areas that can be reached through

at least one default processor table constitute the set of "permanent"

processor information areas. They are defined permanently in the RUN$

file, and define standard options for the processors in the processor

files. There may be several processor information areas associated with

a single program, corresponding to different default control cards or

memory requirements. Moreover, certain items may be "blocked" to their

default bindings. For instance, we ney decide that the TOS option in

the EXECUTE processor be given only to a certain class of users ; for the

other users, the access byte fifth bit of the TOS item is set to zero, so

that the users cannot change its value ; only the new EXECUTE processor

C xdiich may have another name, such as EXECUTE,I 1 would be placed in one

Cor several 1 of the default processor tables available to the class of

users, /toother example would be that we decide that a "big" Assembler is

needed for the assembling of large programs. A larger symbol table would

175

be nade available by setting the "concurrent I/O acceptance indicator"

byte of the processor information area to zero, and modify accordingly

the maximum memory requirements (MAXMAX 1 of the nav processor.

Thus, many processor information areas may be associated with a gi­

ven processor. Only one copy of the program need to be kept on the disk,

and, in a multiprogrammed environment, the absolute programs can be writ­

ten as a pure code, each user accessing the unique copy mapped in menory

via a separate data chain. Very general processors can be created, and

adapted to particular needs by creating different processor information

areas relative to the program.

Since the current processor table is initialized at each RUN, a user

may tailor a processor defined in the system to his own needs. For ins­

tance, a user wrking regularly on a given program may create a version

of the EXECIJEE processor with all the arguments needed to the execution

of his program, such as absolute file name, sector address, standard pa­

rameters in the data chain of the program, a.s.o. The modified default

control card would be kept in an vailable area of the RUN$ file (a "user"

processor information area is thus created). At Run canpletion, the used

areas are returned to a free list, so that the changes pertain to a user

only.

2. THE PPOC PROCESSOR

The PROC processor enables a user to create new processors in the

. system, tailor exeisting processors to his own needs, and make libraries

176

of absolute programs available to his FUN.

The creation of new processors is a MASTER option, since it enables

a user to execute one of his own programs without the system files and

the resident memories being protected as in the case of a program execu­

ted via the EXECUTE processor. The successive phases needed to intro­

duce a new processor in the systen are desribed in section 4.

On the other hand, the option of tailoring a processor to a user’s

needs is available to all users ; the process is described in section 3,

of this chapter.

The PROC processor data chain is described in section 5. Since it

is a ccmplex chain, several processor information areas should be cre­

ated ; an ACTION byte decides which option is demanded ; the ACTION byte

is "frozen" for slave users.

3. TAILORING A PROCESSOR

Tailoring a processor is defined as a user-available option. A new

processor informaticn area is created from modifications of a processor

information area already existing and accessible through the current pro­

cessor table. Controls are provided that the new processor is more "res­

tricted than the ol processor.

Mention of the processor to be modified is done by the processor na­

me. A user is entitled to the following changes ;

dl the processor name itself. If no processor name is explicitly

' . mentioned, the processor name is assumed to be unchanged.

177

(21 the prcnpt message printed out by the monitor ;

(31 if the "concurrent I/O indicator" is et, it can be reset by

the user ;

(41 the TOP memory requirements can be increased (but not dimi­

nished 1 ; the IXM memory requirements cannot be changed ;

(51 the default processor data chain can be modified with, respects

to the follcwing :

. a MIN can be specified ; the resulting MIN will be taken to

be the maximum of the user MIN and the previous MIN ;

. a MAX can be specified ; the resulting MAX will be taken to

be the minimum of the user MAX and the previous MAX ;

. an 2\CCESS may be specified ; the fifth bit of the resulting

access will be taken to be the logical AND of the two cor­

responding bits ; the other bits cannot be changed, and the

user specifications will be ignored ;

These considerations are valid for the definition (MIN, MAX

and ACCESS) of the default processor data chain as an object.

If the resulting access bit is set, the default binding of the

resulting item is taken to be equal to the binding specified

for the item on the control card. However, no mixing of de­

fault and user-defined objects is possible on the control-

card.

New items can be created by a user ; all the user created i-

tem will be appended at the end of the default processor data

178

chain, in the order in v^iich. they appear on the control card ;

the user is responsible for the modifying of the MEN and MAX

of the data chain in viiich the item is inserted, so that the

resulting number of items be still correct ; the access byte

of the newly created iten is masked by the access of the data

chain in v^iich it is inserted.

The order of the items in default processor data chains can also be

modified. This constitutes a separate option (ACTION = 12) ; the user

need not specify ary of the item types, characteristics, or default bin­

dings of the items referred, since they will not be modified. The order

of items in subchains can also be changed by use of this option.

The name and prarpt message associated with the resulting new pro­

cessor can be redefined by the user as in the previous case (ACTION = 9).

The two above actions can be ooribined (ACTION = 13). In this case,

as might be expected, the modifications are carried out before the reor­

dering is done.

The additional option is given to a user to delete a particular

processor in the current processor table C ACTION = 2).

Both in the cases of modification and reordering, the name of the

new processor can be any name of a processor which is not already in the

current processor table ; in the case vhen the user does not want to re­

define the processor name, the original processor need to be deleted ;

the deletion operation can be combined with, any of the above C ACTION =

11, 14 and 15 1.

179

4. 'ADDITKM CF 'NEW PROCESSORS IN THE SYSTEM

A new processor can be introduced in the system by carrying out the

following operations ;

A. INITIAL DEBUGGING ...

An initial debugging of the processor is necessary to make sure that

the processor does not destroy any vital information in the system files

and the corrmunication area. This part can be carried out by use of the

EXECUTE processor 7 if any effect upon system files is to be analysed,

or if any routine of the extended resident is needed, the MASTER option

of the EXECUTE processor needs to be set ; the default processor data

chain needs to be specified on each call to the EXECUTE processor.

B. DEBUGGING, PHASE II

Additional debugging is generally necessary to make sure that the

processor carries its purpose in the system. In particular, the effect

upon the ccmmunication area could not be conveniently analysed by use

of the EXECUTE processor, since the ccnmunication area image is reloaded

together with the rest of the memory at the end of the processor execu­

tion.

A special option of tiie PROC processor C ACTICN = 1) enables the

user in matter mode to declare a new processor information area for the

processor 7 the user may specify the default control-card 7 control card

that do not represent awalid call for the processor C for instance if

an item must have MIN = MAX = 1 but no default binding) cannot be di­

180

rectly declared, but need a second call to the PROC processor to modi­

fy the default data chain. For instance, an item of a processor default

data chain such, as ;

ANITEM(1,11 = ,

would be initially declared as :

ANZTEHClrl) = CR$-S, /. R$-S is a dummy/

then modified by a second call to the PROC processor (ACTION = 11)to be :

flNITEM(lf01 = ,

so that, frcm the rules given in the previous section, the resulting i-

tem be correct.

A user can then run easily a variety of test cases.

C. MAKE THE PROCESSOR PERMANENT IN THE SYSTEM

The processor created above is not declared outside of the RUN for

two major reasons :

(1) the current processor table is destroyed at the end of the

current RUN, as well as the "user-defined" processor informa­

tion areas.

(21 the processor declared above is in one of the user's personal

files, rather than in one of the processor files.

A "provisional" permanent processor in the systen can be created

dl making the processor information area "permanent" by deleting

it frcm the AVAIL list of the RUN$ file and appending it to

the permanent processor information area list (see 12]) ;

181

C21 insert the processor name in one of the default processor ta­

bles C or several of them 1. This can be done by executing the

following steps ;

. use the special options C ACTION =• 5 and 6) of the PROC

processor to create in the current processor table the exact

copy of the desired contents of the desired default proces­

sor table ;

. copy the current processor table into the relevant default

processor table.

(3) place the program in one of the system libraries.

The actions (1) and (3) above, as well as the second step of the

action (2), must be done by hand in the current version of the system.

A processor could be easily created to carry them out.

It is recaimended that a special default processor table, available

under a single password, be created to contain the most general default

processor data chain for each of the processors in the system. The user

of the password may then decide to put "restricted" DPECs in other de­

fault processor tables.

D. THE FINAL STEP

The above steps are not sufficient to make a processor permanent,

for the RUN$ file is normally copied frcm a read-only back-up at each

system generation. When the steps above have been successfully carried

out, a copy of the updated RUN$ file must be done on the back-up file.

It is advisable that this copy be done by hand.

182

5. THE PROC PROCESSOR DEFAULT DATA. CHAIN

The default control card is the following ;

"PROC

ACnON-ft(l,l,X'll'l = 0,

NAME-C CIO, 0,X' 11'1 =,

PARAM-DCX'FF' ,0,X'll') = Q,

LIST-BCS^zX'll') = C YES, NO, NO),

PRCMPT-CCX'20' ,0,X'n') = ,

FZLE-AClfOfX'll') =. ,

SECTOR-Kl^^'ll') = ,

MEM3RY-lC4,0,X'll') = ,

CONC-B(l,0,X'll') =,

LEVEL-HCl,0,X'll') =,

TIME -I(l,0,X'll') = ,

INTAI3>-IC1,O,X'11') = ,

NEWnAKH3(10,0,X'11') = ;

A. THE LIST BOOLEANS

The item LIST expects three different objects :

CH if the first boolean is YES, the PROC processor will ac-

kncwledge successful execution of each action ;

C21 a true value of the second boolean causes the current process

sor tablr ;

C31 a true value of the third boolean causes the processor given

", by the item NAME to be printed out.

183

B. POSSIBLE ACTIONS

The possible actions include the following ;

Q.1 ACTION = 0 ; this a "no action required" option ; the PROC

can still be used for listing purposes, via the LIST options.

C21 ACTION = 1 ; the processor viiose name is specified in the item

NAME is deleted from the current processor table.

(31 ACTION = 2 ; option of creation of a new processor ; all the

parameters in the processor information area must be defined.

(41 ACTICM = ® ; this option causes all processor names in one of

the default processor tables given to a user, as specified in

the sector SEOOOR, to be appended to the end of the current

processor'table, as long as their names are not already defined

within the current processor table ; if a processor name is spe­

cified in NAME, only the processor name specified is searched

for in the default processor table specified.

This option can be used to call libraries of absolute programs.

(5) ACTION = 5 ; this option causes all processor names in the de­

fault processor table specified in the sector SECTOR to be de­

leted fran the current processor table, if their names are de­

fined in both tables ; if a processor name is specified in

NAME, only this processor will be deleted, if it is found in

the processor table defined by SECTOR.

This option can be used in conjunction with. (4) above to cre­

ate default processor tables, as described in the previous

• section.

184

C61 ACTION = 10 ; this option enables a user to tailor a proces­

sor to his own needs, as described in section 3 of this chapter.

No reordering of the parameters takes place, and the new itens

are appended to the end of the data chain in which they are

declared. No deletion operation takes place, and hte new pro­

cessor name must be defined under the name NEWNAM (old pro­

cessor : NAME 1, and the name must not be already in the cur­

rent processor table.

(71 ACTION = 11 ; same effect as above, except the processor name

NEWNAM j_s deleted prior to the execution of the above. If no

processor name is declared under NEWNAM, the new processor na­

me is assumed to be NAME, and the processor defined by NAME

is deleted frcsn the current processor table.

(8) ACTION = 12 ; the processor NAI4E is renamed in NEWNAM and the

pranpt is changed ; if any item is specified in the chain de­

fined by PARAM, the itens in the corresponding chain in the

processor information area are reordered accordingly ; not

all items need be mentioned, and the item specifications and/

or the bindings eventually specified on the control card are

ignored. The pranpt is redefined to be the PRCMPT message

specified by the user, in all cases, even if the PRCMPT is

left empty.

(91 ACTION = 13 ; same effect as above, exc^t that a deletion

occurs, as explained in (7) above.

185

0-01 ACTION = 14 ; this option is a caribination of the options

C61 C ACTION = 10) and C81 A ACTION = 12) above, in this

order, ie the items modified are appended to the beginning

of the new processor data chain.

CHI ACTION = 15 ; this option is a combination of the options

C71 (ACTiasi = 11) and C9) C ACTION = 13) above, in this

order.

C. PROCESSOR NAMES

The items NAME and NEWNAM contain processor names. The formatting

of the processor names must be as on the control card. However, names

cannot be abbreviated and no trailing blank may be appended to the pro­

cessor name. Example :

NAME = 'EXECUTE,X*,

The item NAME contains the processor name to list is LIST (3) is set,

the processor to delete if ACTION = 1, the processor to create if AC­

TION = 2 ; it reference a processor in a default processor table if

ACTION = 5 or 6 ; it references a processor already defined if ACTION =

10 or above.

The item NEWNAM gives a name to "tailored" processors in the cases

where ACTION = 10 or above. If no name is declared in NEWNAM, the new

processor name is assumed to be equal to the previous one.

186

D. PARAM

The iten PARAM is used to contain the processor data chain of the

created processor if ACTION = 2 ; the MIN, MAX and ACCESS are the MEN,

MAX, and ACCESS of the resulting default processor data chain.

The item PARAM also contains the user Tnodifications that a user wishes

to perform on a default processor data chain already existing ; the ru­

les for the modifications are explained in section 3. this use concerns

the values 10, 11, 14 and 15 of the ACTION item. The item PARAM are also

a way to redefine the ordering of a default processor data chain (or of

subchains of this chain) in the case of values 12 or above of the ACTION

item ; as specified above, in the case of the actions 12 and 13, nothing

needs be specified except the names the item

E. FILE and SECTOR

These parameters are used to reference the location of the disk file

system vfliere the absolute program is to be found in the case (ACTION = 2)

of declaration of a new processor. The SECTOR is used to refer a default

processor table in the case ACTION = 5 and 6 (the FILE is then not used).

The parameters are dunmy in all other cases.

F. PROMPT

The parameter PROMPT contains up to 32 ASCII characters to be prin­

ted at each execution of the processor defined or modified. The PRCMPT can

be erpty C no prarpt will be printed). This applies to the values 2,

10 and above of the ACTION item ; it is a durnny in the other cases.

187

G, MEM3RY

This iten defines the memory requirements of a processor created,

as defined in the processor information area, in the order MAXMZ\X, MINMAX,

MAXMIN, MINMIN.

In the case of tailoring of an already existing processor, only the

two first objects (MAXMAX and MINMAX) have any meaning, and the modi­

fications can be in the sense of increases in the memory requirements.

H. CCMC, LEVEL, TIME, INTADD

These parameters correspond to the "concurrent I/O indicator", "pro­

cessor level", "time-out condition" and "interrupt address" defined in

the processor information area.

In the case of the creation of a processor, all items must be speci­

fied. In the case of modification of a processor (ACTION =10, 11, 14 and

15 1, they may be emitted.; if they are specified, the following hold :

Cl) the resulting "concurrent I/O indicator" is equal to the lo­

gical AND of the CCNC specified and the old value ;

(2) the processor level may only be increased ;

C31 the time-out condition may only be diminished ;

C41 the interrupt address cannot be mofified.

The parameters are dumuy in all other cases.

CHAPTER XEII

OCCLUSIONS

188

189

Conclusions are drawn below witb. respects to the following ;

(1) satisfaction of the requirements ;

(21 extensions.

1. SATISFACTION OF THE REQUIREMENTS

An attempt is made below to estimate sane characteristics of the 0-

perating systen, with respects to the requirements given in chapter II.

A. RELIABILITY

The reliability of the system as a whole cannot be honestly esti­

mated in the present, since, at the time this thesis is submitted, the

system has been used by the authors only. The basic routines (Disk dri­

ver, chain manipulation routines, I/O handlers, ...) have been fully tes­

ted through use of the system in its intermediate form by students in a

Computer Science course.

It is felt that the reliability of the error-handling routines is

doubtful. As was explained in the present thesis, no error routine was

incoirporated to the resident, but rather the monitor was given all res­

ponsibilities concerning error analysis and recovery ; the effectiveness

of this scheme still has to be confirmed. It is the author’s opinion that

at least a system teletype handler and a simple error recovery routine

should be added to the muiiraum resident, and that theses routines can be

kept sufficiently simple, so that the resulting system does not exceed

the 16K limit.

190

B. PROTECTION

Cl) Rfemory protection : the memory protection implemented in the EXE­

CUTE processor is felt to be a reasonable software solution to the

lack of memory protection by the microprograms. However, a trae

menory protection scheme should be implanented by a modification

of the existing microprograms. The checking of a slave/master bit

should be done in order to control the following :

. execution of certain instructions (disk I/Os, ...) ;

. WRITE access to certain parts of the memory.

(2) Disk protection : Pintection of a file against unintentional des­

truction is insured by the software at different levels, specifi­

cally :

. viien a file is recalled (i.e. placed in the current assigned

file list), a specific access is specified ; the FILE proces­

sor checks that the access is compatible with the definition

of the file in the proper directory ; if the access is in read­

only, the file is not unprotected ;

. when a processor or user program requests a file, a specific ac­

cess is specified, and this required access is checked by the

monitor against the access in the current assigned file list ;

. vien a disk operation is requested (via the .DR routine), the

disk driver makes sure that the file is available for the cor­

responding access.

191

The resulting protection scheme is felt to be both strong and

flexible. Additional protection of systan files is done by the

EXECUTE processor before the user is given control.

(3) System protection : a recovery processor is strongly needed to

restart the system, in case of a system crash.

C. DUAL CCNFIGUPATICN

The basic goal of a dual configuration (stand-alone, batch) has been

achieved. Pfowever, the follcwing remarks can be done :

Cl) the spooling system lacks in generality ; too much attention was

paid to giving the card reader a fast servicing rate ; the inter­

rupt driven scheme would be advantageously replaced by a method

in which a scheduler would drive the I/Os during the idle timed

of the C.P.U.

(2) the handling of end-of-device conditions couls be implemented via

recursive calls to the FILE processor, rather than performed by

routines of the extended resident ; this method would have the

follc^zing advantages :

. core storage : the extended resident routines would be simpli­

fied.

. generality : explicit stacking as well as explicit unstacking of

input/output drivers could be dynamically treated via a recur­

sion over the monitor.

C3) OPEN and CLOSE functions for a device should be implemented, in

order to be able to incorporate the tape as an alternative input/

output medium of the system.

192

D. EXTENSIBILITY

Additions of new processors to the system can be carried out simply

by use of the PPOC processor. Addition of new input/output devices (pa­

per tape,...) require ininiinum modification of the programs.

In general, modularity in the system is obtained via systematic usage

of the data chain technique largely described in this thesis. The set of

objects in the system that a particular process accesses and/or modifies

can be readily recognized. However, a reorganization of the communication

area appears as being a necessity.

Minor modifications in the residents does not require any recompila­

tion of processors, as long as the overall boundaries are respected (X*

1000* for the minimum resident and variable length record driver, X^OOO1

for the extended resident).

2. EXTENSIONS

Same propositions for improvements and/or extensions of the existing

system are given below.

A. MINOR EXTENSICXJS

A set of routines are needed in order for the system to be usable,

including the following :

(11 a RUN and a FIN processors ;

(21 accounting routines, additions of passwords, disk dunp routines ;

C31 a recovery processor ;

(4) error analysis and recovery routines..

193

B. MAJOR IMPROVEMENTS

Improvements requiring a significant modification of the existing

system may be conducted in the follcwing directions :

(1) Microprogranming, including :

. memory protection and instruction control ;

. microcoding of seme of the resident routines ;

. inpiementation of a stack underflow interrupt.

(2) Data chains ; it is felt that data chains could constitute the core

of a serie of possible extensions of the system. For instance,

an additional "buffer" memory-bound object type could be imple­

mented (a page in memory, associated with a senaphore), so that

buffer allocation be done by the monitor rather than by the pro­

cesses thenselves. Primitives to protect, unprotect and write upon

memory bound objects could be designed and added to the minimum

resident.

(3) Reentrant coding ; these extensions in data chains should enable

one to rewrite both MDNITOR and SWAPPER as pieces of pure code ;

the necessary buffers and temporaries would be accessed through

use of data chains. It is the author's opinion that these modi­

fications can be carried out within the 16K limits ; the additional

msnory storage needed should be obtained from the fact that the

extended resident routines would be able to treat end-of-device

conditions via recursive calls upon the swapper and monitor.

(4} File system ; some propositions are made in II] ; hex^ever, any

major extension of the file system (such as the design of pro­

gram files) would make 32K of core necessary.

APPENDIX

MEMORY MAPS

194

3FFF

3A80

(VAR)

2000

1000

BB3

CONCURRENT I/O AREA
C only in spooled

configuration)

A A

available to
MONITOR or
"interactive"

processor

availavle to
user program
or other pro­
cessors

V

DATA CHAIN AREA

MAIN OVERLAY

EXTENDED RESIDENT

VARIABLE LENGTH RECORD DRIVER

MINIMUM RESIDENT

o

Memory map

0BB3

0AB3
SYSTEM BUFFER

DISK DRIVER .DR

06E5

CHAIN MANIPULATION ROUTINES

059F

SWAPPER

0400

0300
TRACK MAPS, DEVICE TABLES

0200 SYSTEM STACK

0180
COMMUNICATION AREA

0100

INTERRUPT ROUTINES

CONTROL VECTOR

MINIMUM RESIDENT

2000

1D00

CURRENT ASSIGNED FILE LIST

SYSTEM FILE DRIVER

SYSTEM TELETYPE HANDLER

READ AND PRINT PROCESSES

1400 DICTIONARY OF ROUTINES

1200
PRINT OVERLAY

1000
READ OVERLAY

0F80 I/O STACK

VARIABLE LENGTH RECORD DRIVER

0BB3

extended resident

BIBLIOGRAPHY

[1] Xavier ffengin, ^fester Thesis, June 1975 (liiiversity of Houston).

[2] Microdata documentation , Assembly Language, Teletype Operating

[3] Prime Disk Cperating System , Prime 200 EOS Reference Guide (may 1973)

[4] E. W. Dijkstra , The Structure of the "THE" Multiprogramming System

15] Oonputer Scince Department, University of Houston, Internal System DO"

cumentation

200

