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ABSTRACT

Thia is a study of economic growth theories. This study is not a 

traditional approach using general treatises, hut an approach utitizing 

a combination of mathematical economics and econometrics.

In recent years the study of economic growth has become common 

among economists. Before the Great Depression little attention was paid 

to the many factors affecting the growth of national income. The Great 

Depression encouraged economists to give closer scrutiny to this sub-

ject. During the Second World War the analysis of national income was 

largely aimed at controlling the war economy in the United States. The
i 

national income concept has been considered very useful in understand-

ing and explaining what takes place in the economy* Thus the study of 

economic growth has become more popular. New courses in this subject 

have been introduced in colleges and universities. Also, new books, 

institutes, and conferences in this field are continually increasing 

in number. The topic of economic growth is extremely broad. It nay 

be divided into two categories:

1) the growth involved in the shift of an economy from the stage of 

"underdeveloped" to the stage of "developed;"

2) the growth of the already "developed" economy.

This study is confined to the second category, particularly to the 

growth of the national income of the United States.

Due to the scarcity of data, a complete and more sophisticated 

analysis is a matter of difficulty. Collection of reliable statistics 

is tedious. Often the desirable raw material is hard to obtain. Even 



In the United States, income statistics on the state level do not 

exist,

Koreover, in this study of national income accomplishment is un-

likely without tedious calculation. The deeper one goes into the 

study, the more calculation becomes necessary. Also if a better result 

is to be expected, a more complicated analysis has to be undertaken.

In the preparation of this study, an attempt has been made to give 

an empirical interpretation of economic growth models for the United 

States, and to bring out the consistencies or inconsistencies between 

reality and theories. Chapter I is an introduction to the study. The 

subject of Chapter II is the discussion of some major economic growth 

theories, which constitute the basis of this study. The method of 

estimation of parameters and the structure of models are explained in 

Chapter III. Chapter IV covers statistical results, the empirical in-

terpretation of various arguments in economic growth. Finally, a sum-

mary and a conclusion are presented in Chapter V. The author wishes 

to thank Dr. Z. A. Eltezem for his guidance, patience, understanding, 

and encouragement in the supervision of this study. He also appreciates 

the valuable suggestions and time-consuming efforts of Dr. Henry C. 

Chen.
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CHAPTER I

INTRODUCTION

I THE PURPOSE OP THE STUDY

Economic problems can be studied in two distinct ways. One is 

the traditional approach, by using general treatises dealing with the 

variables that affect the economy. The other one is the mathematical 

or econometric approach, by the use of mathematics and statistics. The 

second approach has received wide acceptance during the last few decades 

It was originated at the end of the 1920*s, and became institutionalized 

in the succeeding years. It is considered as a scientific development 

of economics, and is still developing and growing in importance.

The approach by using mathematics and statistics has become a tool 

of analysis widely used in economic growth. Still there are many argu- 

2 
ments about this approach. Economists have different opinions on it. 

We all realize that mathematics has been successfully applied in natural 

sciences, but can it achieve the same success in economics? Economists 

have been trying hard to fit mathematics into economic theories, intend-

ing to discover some laws governing the growth or development of an

i
Institutions and journals for this purpose have been established 

in the past decades, such as: The Econometric Society, The Cowles Com-
mission for Research in Economics, Econometrica, Review of Economic 
Statistics, et cetera.

2
Professor R. G. D. Allen has said; "Whether mathematical tech-

niques can be, or should be, used in economics is a much-discussed 
question." See R. G. D. Allen, Mathematical Economics (London: Mac-
millan & Company, Ltd., 1959), Introduction, p. xv. 
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economy. Such a scientific development in economics, however, is still 

considered in an experimental stage. More effort is needed. This study 

may be said to be one of the experiments in this respect.

There is one thing to be noted*that^tvery economic phenomenon is 

characterized by change. Consumption is subject to the change of con-
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Morris Copeland.The flow-of-funds accounts divide the economy into 

various sectors or different economic decision-making groups, showing 

for each sector the main sources of funds with which it makes payments 

and the principal uses of funds in connection with such payments. For 

instance, in the United States, in the Federal Reserve flow-of-funds 

accounts, as shown in the Federal Reserve Bulletin, there are eleven 

sectors, e.g., consumer and nonprofit, corporate business, farm business, 

federal government, et cetera. Thus the flow-of-ftmds accounts show 

how money and credit perform, and also the pattern of financial assets 

and debts after such transactions. On the other hand, the national 

income and product accounts provide a measure of the nation’s current 

productive efforts. There are two main streams in these accounts.

They are the stream of consumption, and the stream of investment. Con-

sumption consists of personal consumption and government consumption, 

while investment is the aggregate of private investment (including 

foreign investment) and government investment.

According to the national income and product accounts, aggregate 

income equals the sum of aggregate consumption and aggregate invest-

ment. This concept has become the basis of macro-economics, and is 

widely used in the analysis of economic growth. Nowadays, in most of 

the national income models, the national income and product accounts

"Morris Copeland, Study of Moneyflows in the United States (New 
York: National Bureau of Economic Research, 1952)• This is the first 
fully developed publication in the flow-of-funds accounts.
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are used, such as in the Keynesian model^

Y = C + I 

where Y designates the aggregate incoce, C, the aggregate consumption, 

and I, the aggregate investment. In this study the national income and 

product accounts rather than the flow-of-funds accounts are considered.

The period for this study is from the year 1929 to the year 1963• 

During this thirty-five year period, there were a great depression at 

the beginning and a great war in the middle.. The great depression, of 

course, was an economic phenomenon, but the great war was certainly not. 

Moreover, during the war, a substantial increase in government expend-

itures did not represent the normal behavior of the economy* For this 

reason, the war-years are excluded from the data used in this study. 

Also, gross national product is used rather than net national product, 

since the value of capital depreciation of the private sector and the 

government sector is not easily traceable. Because the period for this 

study starts in the year 1929> all data are converted into 1929 dollars 

to avoid inconsistency.

^John M. Keynes, The General Theory of Employment, Interest and 

Money (New York: Harcourt, Brace and Company, 1936), p. 63.



A REVUTS OF ECOKOiaC GROWTH THEORIES

I’H '
In this chapter an attempt is made to review some of the major 

theories in economic growth. Economic growth is actually a complex re-

sultant of many factors. Economists agree that there is a very close 

relationship among aggregate income, aggregate consumption and aggregate 

investment, and that their interactions play a chief role in the economic 

growth, but there is little agreement among thorn as to the nature of 

this relationship. Let us examine some of the most widely recognized 

relationships, which exist among these economic aggregates.

I THE CLASSICAL THEORY

Although basically this study is related to modern growth theories, 

a brief review of the classical theory is helpful in understanding the 

position of modern theorists. Here the classical theory refers to the 

traditional or orthodox principles of economics handed down and generally 

accepted by Western economists from somewhere around the time of David 

Ricardo (1772-1823) to 1930. According to this theory, output is a 

function of labor. By the assumption of Say’s Law/ supply creates its

- •«
This is named after the French economist, J. B. Say, 1767-1832. 

His theory is usually summarized as "supply creates its own demand," 
which is best expressed in the following quotation from his writings: 
"The total supply of products and the total demand for them must of 
necessity be equal, for the total demand is nothing but the whole mass 
of commodities which have been produced; a general congestion would 
consequently be an absurdity." From J. B. Say, Traite (1st ed., 1803), 
Vol. II,p. 175, as quoted in C. Gide and C. Rist, A History of Economic 
Doctrines (2nd English ed.; New York: D. 0. Heath & Co., 19481, p. 131*
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oto  demand, and there will always be a sufficient rate of spending to 

maintain full employment. Thus, income is spent automatically at a rate 

keeping all resources employed (including labor supply). Income is 

either spent currently on consumer goods or saved for the future spend-

ing on producer goods; i.e., all income is spent, partly on consumption 

and partly on investment. The equality of saving and investment is 

attributed to the rate of interest^ An increase in interest rate will 

increase saving, and a decrease in interest rate will decrease saving. 

On the other hand, the lower rate of interest will increase the incen-

tive to invest, leading to the elimination of the excess of saving over 

investment. By this principle, since saving is spent on investment 

sooner or later, the volume of consumption does not seem to be impor-

tant. Classical economists, however, did not realize that a fall in 

consumption, instead of leading to an increase in investment, may lead 

to a fall in total demand and therefore in employment.

/x 1 \ II THE KEYtrESIAN THEORY OF ECONOMIC GROWTH

The Keynesian theory is a turning point from the classical theory. 

According to Say’s Law, if more resources are employed in one industry 

or in one firm, they are assumed to be drawn away from other industries 

or other firms, because supply cannot be increased without the increase 

of demand as both of them are equated to one another. Thus the classi-

cal theory primariTy relates, but not entirely, to the use of a given 

quantity of resources by individual firns and individual industries 

within the economic system as a whole. On the contrary, the Keynesian 

theory relates to economic aggregates, such as the aggregates of employment, 
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national income, consumption, saving, and investment. Keynes recognizes 

income as a function of later supply (or employment), but also presumes 

that aggregate income Y is derived from aggregate consumption C and 

aggregate investment I, as ire have indicated in.the previous chapter, 

such that

Y = C + I (2-1)

In other words, aggregate consumption and aggregate investment deter-

mine the amount of aggregate income.

Keynes accepts the classical proposition of equality of saving and 

investment but attributes the equality to changes in the level of in-

come rather than to the rate of interest. He first sets consumption as 

2
a function of income. Let us see how this consumption function is 

arrived at. It is assumed that income is either consumed or saved or ■ 

both. According to Keynes, saving S is a function of income rather 

than a function of interest as in the classical theory, i.e.,

S = sY (2-2)

where s is a constant, and less than one. s is called the marginal 

propensity to save. According to the proposition of equality of saving 

and investment, and from equation (2-2), then (2-1) becomes

Y = C + sY

yielding the consumption function,

C = (1-s)Y

or C = oY (2-J)

where c is equal to (1-s) and is called the marginal propensity to

:eynes, op. cit.. p. 27. 
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consume.

By substituting (2-3) into (2-1), there results

T = oY + I

After transposing, it gives

(1-c)Y = I

or Y = /I/d-c)/!

= kl

where k is a positive constant and greater than one as (1-c) is less 

x
than one| k is called the multiplier. Since 1-c=s, the multiplier can 

be described as the reciprocal of the marginal propensity to save. The 

multiplier implies that an increase in investment will create k times 

the original increment in new income. The greater the marginal propen-

sity to consume, the greater the multiplier will be. In the Keynesian 

theory, price level, rate of interest, quantity of money or total assets, 

distribution of income, and other such factors are of little or no im-

portance to the consumption function.

There is an argument that consumption may not behave as a constant 

proportion with the level of national income. As one moves along the 

distribution from lower income to higher income, average consumption 

’Till rise, but less than income in proportion, and the higher the in-

come the less the rise in consumption from a further increase in income. 

Although the marginal propensity to consume is still positive and less 

than one, it declines as income rises. It will not stay with the same

x
^Actually this multiplier concept was originated by R. F. Kahn. 

See R. F. Kahn, "The Relation of Home Investment to Unemployment," 
Economic Journal, June, 1951• Also ibid., pp. 113-115•



9

constant.

4 5
However, for J, S. Duesenberry and M. Friedman, the long-run re-

lationship between consunption and income appears to be constant so that 

the average propensity to consume is constant and equal to the marginal 

propensity to consume. If the consumption function is

C = a * cT

where a is a constant term, then the average propensity to consume will 

be

APC = C/Y

= (a + cY)/Y

= a/Y + c

but c is the marginal propensity to consume in the case where

C = cY

i.e., KPC = C/Y

= cY/Y = o

Thus in the first case

APC = a/Y + UPC

which shows that the average propensity to consume is not a constant 

and is greater than the marginal propensity to consume, but declines 

as income increases, ^thematically, if income Y increases substan-

tially, a/Y will approach zero; thus, in the long-run APC is approach-

ing a limit of the UPC as income Y increases.

4j. S, Duesenberry, Income, Saving and the Theory of Consumer 

Behavior (Cambridge: Harvard University Press, 1949), PP» 32-57•

^U. Friedman, A Theory of the Consumption Function (Princeton: 

Princeton University Press, 19577, PP» 7-14.



10

Perhaps there is such a situation that a long-run consumption 

function merely relates to the ITC, while a short-run function involves 

the APC, which is greater than the EPC. How can the two be related? 

Arthur Smithies has tried to make a reconciliation.^ He has argued 

that the consumption function is basically nonpropqrtional to the fluc-

tuations of income drifting slowly upward over time as income grows 

slowly, and that its upward drift will just happen to offset the tend-

ency for the average propensity to consume to decline with the growing 

of income. His argument for the upward drift in consumption is as 

follow:

a) Population has been moving from rural to urban residence where 

people usually spend more out of a given income.

b) The older age bracket is becoming bigger because of the successful 

advancement of medical science, and these older people consume with-

out earning.

c) The introduction of new consumer commodities is increasing, stimu-

lating people to spend additional money on consumption.

Therefore, Smithies has suggested that the consumption function is also 

a function of time t, .such that

C = a + bY + ct

tdiere a, b and c are some constants, and t, a positive integer, desig-

nates the time period, such as

t = 0, 1, 2, ... .

^Arthur Smithies, "Forecasting Postwar Demand:!,” Econometrica, 

Vol. 13, January, 1945, PP» 1-14.
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Next on the investment side, Keynes’ assumption is that investment 

is autonomous, that is, investment is determined outside the model. In 

mathematical interpretation, the assumption is

I = C + I

C = cT

I = Io

where I=Io means that IQ is given, and its volume is not dependent upon 

either the volume of consumption or the level of income inside the model. 

According to Keynes, the volume of investment depends on the marginal

7
efficiency of capital and the rate of interest. For the classical 

theory investment is a function of interest alon^/which the Keynesian 

theory does not totally accept. The Keynesiantheory incorporates the

8
marginal efficiency of capital into investment. The marginal efficiency 

of capital is a rate of discount which will make the present value of 

all the prospective returns from an investment just equal to the cost 

of the investment. Take a simple example, assuming that the cost of a 

building is $20,000. The building will yield $1,200 per year in rental 

and has depreciation of $200 per year, giving a net return of $1,000

per year. Then the marginal efficiency of capital is 5% 

*1,000/320,000=0.05). If the rate of interest of 45?, this building is 

worth $25,000 (i.e., $1,000/0.04=325,000); then it will be preferable

7
'Keynes, op. cit.. pp. 27-28.

Q
The concept of marginal efficiency of capital is. actually not 

originated by Keynes. Professor Irvin Fisher, at an earlier date, has 
provided a similar phrase to Keynes’ marginal efficiency of capital, 
"rate of return over cost;1* ibid., pp. 140-141.
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to invest in this building rather than to lend out $20,000 at 4% yield-

ing $800 a year. In other words, if a man expects to yield $1,000 at 

the end of the year, he has to invest $952 only if the marginal effi-

ciency of capital is 5^ ($1,000/(1+0.O5)=$952); but if he lends out his 

money at 4^, he has to lend out $961 in order to get $1,000 at the end 

of the year ($1,000/(1+O.O4)=$961). This $952 is synonymous to Keynes1 

g

9Ibid., p. 135.

supply price. The general formulation of the supply price may be ex-

pressed ast

^1 ^2 ^3 ^n
Supply Price = ■ ■ • — ■ + —+ ■■ ■ + ,.. +

(1+r) (1+r)2 (1+r)5 (1+r)n

where A’s are the annual returns, and r is the marginal efficiency of 

capital. By using this formula we can also calculate the principal on 

money lent out by substituting the rate of interest into r. According 

to this investment theory, therefore, when the marginal efficiency of 

capital is above the going rate of interest, investment will be con-

sidered as profitable and will tend to expend, and when it is below the 

rate of interest, investment will be discouraged. Hence, the volume of 

investment is determined by the relation between marginal efficiency of 

capital and the rate of interest.

According to this principle, however, the judgement of the value 

of marginal efficiency of capital may not be accurate for the later 

years or periods due to the fluctuation of economic phenomenon. Fur-

thermore, the behavior of investment does not seem to be so simple. 

Increases of investment may bring a higher level of employment, which 9
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will give a higher level of aggregate income. Then consumption will be 

increased as a result of increased income. Increases in consumption 

mean increases of consumer demands which will cause additional invest-

ment. This "feed-back" reaction cannot be neglected. Moreover, for 

aggregate investment, the availability of funds are more important than 

the market rate of interest, and, on the other hand, the availability 

of funds may influence the market rate of interest.

In generalizing the Keynesian model, the multiplier is a relation 

between output and investment, and thus the effect of a change in in-

vestment is examined by means of the multiplier. This is one-sided 
only because^ it ignores the reciprocal relations between investment and 

output. As we have seen, investment does influence output, but output 

also affects investment. Investment which arises due to a change in 

output is called induced investment. In the Keynesian model, induced 

investment is neglected. So Keynes' model is clearly defective as a 

description of economic reality.

Ill THE ACCELERATION PRINCIPLE

We have seen that the multiplier is concerned only with original 

investment as a stimulus to consumption and then to income. It is not 

the way the "real world" seems to be, because the multiplier does not 

involve the question whether additional consumption will induce further 

investment or not. Output can reproduce the course of autonomous in-

vestment suitably "multiplied up," but otherwise it tends steadily to 

its equilibrium level. This is because the multiplier uses only one 

relation, the consumption function; it gives no consideration to the
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side of investment. Induced investment does occur with additional con-

sumption. As mentioned in the preceding section, additional consumption 

will enlarge consumer demand which will induce additional investment.

the effect of added consumption upon the demand for investment is called 

the acceleration principle.

The acceleration principle has long teen used in the theory of in-

vestment, which is now recognized to be of crucial importance in almost 

all macro-economic models. It was first formally presented by J. M. 

Clark in 191?It is held that the demand for investment is derived 

from the demand for consumption. An increase in consumption will tend 

to induce an increase in investment; this relation can be expressed as

I(t) = i/0(t) - C(t-1)7 (M) '

where i is called the accelerator, t is referred to the tine period.

In this consumption-investment relation, investment I will be zero 

when the volume of consumption does not change between two periods, 

that is, when consumption is constant. If consumption changes by a 

positive or negative amount, investment or disinvestment will occur at 

a rate which is small or large depending on whether the change in con-

sumption is small or large. Since consumption is a function of income, 

then investment is also a function of income. Mathematically, if we 

substitute (2-J) into (2-4), then we have

I(t) = i/cY(t) - cY(t-1)7

or I(t) = ci2?(t) - Y(t-1]7 (2-5) )

10
John M. Clark, "Business Acceleration and the Law of Demand: A 

Technical Factor in Economic Cycle," The Journal of Political Economy, 
Vol. 25, March, 1917, reprinted in the AEA Readings in Business Cycle 
Theory (Philadelphia: Blakiston Co., 1944), PP« 235-2&O.
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Thus we obtain investment expressed in terms of income. Since c and i 

are both positive constants, the product of c and i will also be a 

positive constant, but, because o is less than one, the product of c 

and i will be less than the value of i. Therefore, by the above sub-

stitution the acceleration coefficient is smaller when we define in-

vestment in terms of income. However, the power of the acceleration 

upon investment does not shrink. For the purpose of illustration, let 

us take a simple example. Assume c=0.8, i=2, Y(t)=1OO, and Y(t~1)=80, 

from (2-^)^

I(t) = (2)(0.8)(100-80)

= (1.6)(20) = 52

From (2-5)

C(t) = cY(t)

= (0.8)(100) = 80

and C(t-1) « oY(t-1)

= (0.8)(80) = 64

Then from (2-4), we also get

I(t) = (2)(80-64)

= (2)(16) = 52

Zn both ways we obtain the same amount of investment.

The acceleration principle then overcomes the deficiency of the 

multiplier and accomplishes the "feed-back" of investment. It shows 

us that investment can be induced rather than being autonomous only. 

Subsequently, income is not merely a function of the level of employ-

ment, as indicated by the classical economists and Keynes, but is also 

influenced by investment. But what will happen when the multiplier and 

the acceleration principles are acting together? Professor Paul A.



16

Sanuelson has given a clear analysis, which will be discussed later.

IV DZNAZilC ECOKOIHC ANALYSIS

In economic analysis involving different time periods, two methods 

may be used. One is called the continuous analysis by using differ-

ential calculus, which we shall not use in this study. The other one 

is called the period analysis. The period analysis is usually referred 

to as time lags analysis. Suppose that there are two variables, X and 

Y, In an analysis; if their relation involves the same tine period, it 

is said that there is no time lag, e.g.,

X(t) = aY(t)

where a is a constant and t designates the time period. In case these 

two variables X and Y are not related in the same time period, such as

X(t) = aY(t-1)

then there is a time lag, and X of the present time is in terms of Y 

of one period ago. Now economists call those economic relations, not 

involving difference in time, static. Similar equations with time lags 

are called difference equations. The above equation with one time lag 

is a first-order difference equation; since there is no constant term 

in it (or the constant term is zero), it is a homogeneous equation. If 

an equation has two time lags, such as

X(t) = aY(t-1) + bY(t-2)

it is called a second-order difference equation. Similarly, an equation 

with three time lags is called a third-order difference equation, and 

so on.

Now let us look back at Keynes1 model, where current consumption 
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is a fixed, proportion of the current income. This is a static relation, 
being without any lag. Many economists do not think that this relation/^ 

can describe the dynamic situation of the "real world." D. H. Robert-

son first introduces a time significance known as the "period analysis."^ 

he suggests a lag between the receipt of income and its expenditures, 

i.e., the total consumption in this year is a function of income earned 

last year, or

C(t) = f2T(t-1.)7

Logically his suggestion that consumption follows income is not without 

truth, because cash cannot be spent before it is received. But under 

his assumption, a zero cash balance at the beginning and at the end of 

each period must be presumed, and book credit facilities are not availa-

ble - which is not necessarily true. The lag should probably be re-

presented as a complex one. However, Robertson’s simple lag relation-

ship between income and consumption seems to be more reasonable than 

Keynes’ consumption function without a lag.

Some other economists, like Duesenberry, also advocate the intro-

duction of a lag to the consumption function. Duesenberry argues that 

the reason why consumption falls less than income in a depression is 

that cor.sumers adjust their consumption not only to current income but 

12
to their previous income, particularly previous peak income. The pre-

vious peak level of income has a persisting influence in maintaining

3 11
D. H.' Robertson, "Some Notes on 12r. Keynes’ General Theory of 

Employment," Quarterly Journal of Economics, November, 1956, p. 168ff.

* ^^Duesenberry, op. cit., pp. 76-89.
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consumption expenditures during a period of cyclical decline. His 

concept implies a lag, but a lag without regular length.

P. A. Samuelson^ and J. R. Eicks* 1 both agree with Robertson’s 

suggestions consumption as a proportion of income of the previous period

1^P. A. Samuelson, "Interactions Between the Multiplier Analysis 

and the Principle of Acceleration," Review of Economic Statistics, Nay, 
1939, PP* 75-78, reprinted in the AEA Readings in Business Cycle Theory 
(Philadelphia: The Blakiston Co., 1944), pp. 26l ^9»

1^J. R. Hicks, A Contribution to the Theory of the Trade Cycle 

(Oxford: The Clarendon Press, 1950)» PP* 21-23.

15
Samuelson, loc. cit.

C(t) = cY(t-l) (2-6) -

For investment, a lag should exist so that current investment is a func-

tion of the change in income occurring in the period before the last o 

one, such that

I(t) = i/?(t-1) - I(t-2)7 (2-7)

Thus this concept in the "period analysis" is mere specified than 

Duesenberry’s. | , .

V SALUELSON’S lilTERACTICNS BETWEEN 

THE MULTIPLIER AND THE ACCELERATOR

Professor Paul A. Samuelson on the basis of a suggestion by Pro-

fessor Alvin Hansen puts the multiplier principle and the acceleration

15 
principle together, contributing a famous analysis in aggregate income.

His basic assumption is also 11
Y(t) = C(t) + I(t) (2-8f f
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having the meaning that national income Y of a certain period, t is the 

sum of estimated consumer demand C and estimated investment demand I of 

the same period t. In his analysis there is a time lag, as mentioned 

in the previous section, betveon income and consumption

C(t) = cY(t-l) (2-6) '

where c is the marginal and average propensity to consume. This con-

sumption function with a lag is the major difference with the Keynesian 

model. With regard to estimated investment, it is basically a function 

of the change in consumption, exactly the same as in the acceleration 

principle, being the same relation as expressed by (2-4)

I(t) = i/C(t) - C(t-1)7 (2-4)

Mathematically the investment function may also be expressed in 

terms of income Y by substitution, yielding a similar expression to 

(2-7)

I(t) = ci2Y(t-1) - Y(t-2)/ (2-9)

with the same meaning, i.e., present investment is a function of the 

change in income of the period before the last one. According to (2-9), 

investment depends upon the change in income. If there is no change in 

income (income is constant), then investment will be zero, that is, no 

investment is induced. Perhaps, in addition to induced investment, there 

is some autonomous investment, which is independent of income, such as 

the government demand for armaments, then (2-4) becomes

I(t) = i/C(t) - C(t-1)7 + A (2-10) z

and (2-9) becomes

I(t) = ci/Y(t-1) - Y(t-2)7 + A (2-11)
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where A is the autonomous investment.^ From (2-8), (2-6) and (2-10), 

therefore

Y(t) = cY(t-l) + ci/Y(t-1) - Y(t-2)7 + A

or Y(t) = (c + ci)Y(t-l) - ciY(t-2) +.A (2-12)

This is a non-honogeneous second-order difference equation. It tells 

us that the current income depends on the income of the two previous 

periods, plus the current autonomous investment. At equilibrium, that 

means income is stable,

Y(E) = Y(t) = Y(t-1) = Y(t-2) V)

where Y(E) designates the income at equilibrium. Then (2-12) becomes

Y(E) = c(1+i)Y(E) - ciY(E) + A

or Y(E) = A/(1-c)

This is the multiplier formulation, in which income is equal to autono-

mous investment (which does not depend upon income) times the multiplier. 

It should be noted that the accelerator, i, drops out of the expression 

for equilibrium income. This is because induced investment occurs as 

a result of the acceleration principle only when income is changing.

Since at equilibrium income is considered to be stable, the role for 

the acceleration principle in equilibrium does not exist.

This analysis seems quite reasonable at first sight, but a careful 

examination discloses the difficulties with this model. Let us look at 

equation (2-12) again

This modification is also made by P. A. Samuelson. With this 
modification, the model is sometimes called Samuelson’s "second inter-
action model" to differentiate his original model which does not involve 
any autonomous investment. See P. A. Samuelson, "A Synthesis of the 
Principle of Acceleration and the Multiplier," The Journal of Political 
Economy, Vol. 47, December, 1939, PP» 786-797•
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Y(t) - (c+ci)Y(t-1) - ciY(t-2) + A

It is apparent that if Y(t-1) is greater than Y(t-2), then income is 

growing. Once Y(t-2) is greater than Y(t-1) so that ciY(t-2) is greater 

than (c+ci)Y(t-1), then income will be falling to a negative value. 

Assume c=0.5, i=2, Y(t-1)=2O, Y(t-2)=55, and. A=2, then

Y(t) = 1.5(20) - 55 + 2 = -3

Y(t+1) - 1.5(-5) -20 + 2 = -22.5

Y(t+2) = 1.5(-22.5) + 3 + 2 = -28.75

Unless, at the first period, A is great enough to cover the decrease of 

income, keeping the incomes of the succeeding periods with a positive 

value, the level of income will fall to a negative value. Suppose A=20, 

and other assumptions remain unchanged, then

Y(t) = 1.5(20)- 35 + 20 = 15

Y(t+1) = 1.5(15) - 20 -i- 20 = 22.5

But if A is not great enough, say A=6, then

Y(t) = 1.5(20) - 35 + 6 = 1

Y(t+1) = 1.5(1) - 20 + 6 = -12.5 

and income goes on the negative side again.

Therefore, initial conditions are very important to this model in 

predicting the growth of national income (product) for the future. This 

model cannot represent a general growth model, but may be a particular 

model for the situation where national income is in progress. When 

using this model one should avoid using depression periods as the in-

itial condition in predicting the growth of an economy. We shall pre-

sent more evidence about the difficulties of this model in the later 

chapter.
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VI HARBOD-DOIIAR GRCTTH THEORY

According to Keynes* theory, if today’s productive capacity in not 

adequately used, that is, if today’s investment is not big enough to 

meet the productive capacity, tomorrow’s investment will also be dis- 

couraged. / If investment declines tomorrow there will be an increase 

of the Surplus of idle capital» making the problem more difficult. If, 

however, total demand tomorrow is sufficiently greater than today’s 

demand, then today’s productive capacity can be fully employed, and 

there will be room for new investment again tomorrow, creating produc-

tive capacity that may in turn find full outlet if only demand would •. 

continue to grow day-after-tomorrow. Now the problem of growth is on 

the demand side. R. F. Harrod, recognizes this "growth problem," and 

tries to provide a theory which can explain how steady growth occurs 

in an economy, and also how, if this growth is interrupted - if this 

growth once diverges from its equilibrium path - the aggregate income 

may either explode into too rapid growth, producing inflation, or stop
» - 18 /

growing, producing depression. / .

Harrod’s analysis also incorporates both the multiplier concept 

and the acceleration principle. His concept is represented in terms 

of saving and investment, an alternative to stating national income in 

terms of consumption and investment. If consumption is a function of 

national income, then saving is also a function of national income.

17'Keynes, op. cit., pp. 141-146.

^Sr . F. Harrod, Towards a Dynamic Economics (London: The Macmillan 
& Co., Ltd., 1956), Lecture Three, pp. 65-100.
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He considers both present consunption and present saving to be fixed 

by present national income, and at equilibrium saving equal to invest-

ment. The relations are:

C(t) = cY(t)

S(t) = sY(t)

S(t) = I(t)

Also desired investment is proportional to the change in income be-

tween the present period and the period immediately past, i.e.,

Kt) = g/Y(t) - Y(t-127

Then investment will be a constant proportion, g, of the difference of

Y(t)-Y(t-1). By substitutions, the equation may be written as:

sY(t) = g/Y(t) - Y(t-1)7

or (s/g)Y(t) = Y(t) - Y(t-1)

where s/g will be a constant, and is the rate of growth which will just 

keep saving and investment equal. This rate of growth is known as the 

••warranted rate of growth/1 and designated by

Gw = s/g = /Y(t) - Y(t-1)7Y(t)

Since marginal propensity to consume plus marginal propensity to save

is unity, i.e., c+s=1, then

/Y(t) - Y(t-1)7Y(t) = (1-c)/g

1- Y(t-1)/Y(t) = (1-c)/g

Y(t-1)/Y(t) ■= (g+c-1)/g

or Y(t) = Y(t-1)2e/(g+c-1)7 (2-13)

Professor Evsey D. Bomar has independently produced an analysis

very similar to Harrod’s. He gets the same relation but with a different
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19 
interpretation. His argument is that g is the reciprocal of the 

average investment productivity, i.e., 1/g is the ratio of the addi-

tional output (income) from investment to the amount of investment:

Vg = Zr(t) - i(t-i)7/i(t)

Thus investment is not taken as dependent on Y(t)-Y(t-1) as in Harrod’s 

principle; it is Y(t)-Y(t-1) which is dependent on investment through 

the productivity of investment. In mathematics, however, we may get 

the same formulation for both Harrod’s and Domar’s principles.

In the Harrod-Domar model, there is no lag either in the multiplier 

or in the accelerator; the multiplier and the accelerator are found to 

act together to produce a steady and progressive growth in income over 

time. I'any economists criticize this model because the complete ab-

sence of time lags reduces its plausibility. It has been said that it 

20
is in "a world without history." Nevertheless, one may introduce a 

lag either in the consumption function or in the investment function 

to eliminate the sense of "without history," such as

C(t) = cY(t-l)

and I(t) = i/?(t-1) - Y(t-2)7

These two functions with a lag have been discussed previously (see 

(2-6) and (2-7)), but they do not possess any of Harrod’s properties. 

They are, however, analogous to that in Samuelson’s model, and here is

^E. D. Domar, "Capital Expansion, Rate of Growth, and Employ-

ment," Econonetrica, Vol. 14, April, 1946, pp. 137-147*

20
Joan Robinson, "Er. Harrod’s Dynamics," Economic Journal, 

Earch, 1949> P« 69.
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the comment of Professor G. Ackley:

...we again get (above two functions with time lag), not 
Harrod’s result of a "warranted" rate of steady growth with 
cumulative instability on either side, but an accelerator 
model permitting various kinds of fluctuations, but whose 
equilibrium solution always a constant income, not a 
steadily-growing one.

22 
Professor W. J. Baumol, therefore, makes a modification. In 

addition to the original relation in the investment function, he adds 

some autonomous investment demand A, and some investment demands which 

are proportioned to income, such as the community’s trade balance. 

Since the community’s trade balance provides a net non-consumption 

demand for the community’s products, Baumol considers it as a form of 

investment. Then the total investment demand during period t is given 

by

Kt) = - Y(t-1)/ + jY(t) + A (2-14) '

and in order that this be equal to realized investment (saving)

S(t) = sY(t) /

i.e., in order that investment desires be satisfied, then 

sY(t) = g/Y(t) - Y(t-1)7 + jY(t) + A

By substituting 1-c into s and by transposing, yields

Kt) = - A/(g+j+c-1) (2-15)

The final result of the modified model as expressed in (2-15) is

21 Gardner Ackley, 1'acroeconomic Theory (New York: The Macmillan 
Co., 1961), p. 524.

22W. J. Baumol, "Yet Another Note on the Harrod-Domar Model," 

Economic Journal, Vol. 62, June, 1952, pp« 422-27; also, W. J. Baumol, 
Economic Dynamics: An Introduction (New York: The Macmillan Co., I960), 
pp. 44-4^7
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more or less similar to Harrod's original model (see (2-1J))» In (2-15), 

there is a constant tern, "but in both (2-15) and (2-15) the current income 

is a constant proportion of the level of income of the last period.

In summarizing, the Harrod-Bomar growth model seems to be somewhat 

unrealistic. It implies perfect forecasting for all concemec. Producers 

must always perfectly forecast their sales, and this forecast of sales 

must include the sale of capital goods in an amount determined by the 

simultaneous growth of sales. Also consumers must perfectly forecast 

their incomes. With all the perfect forecasting, the rate of growth can 

then be kept going without interruption. There is no time lag, no chance 

for error either in the investor's forecast of production, or the pro-

ducer's forecast of sales. Moreover, the assumption that present income 

is constantly proportional to the level of income of the last period can-

not be valid all the time. The annual income nay not grow with the same 

percentage of the income of preceding year. Even if this percentage is 

measured by period, different periods will yield different percentages. 

For example, according to R. Goldsmith's report, the percentage increased 

per year of the gross national product of the United States in constant 

prices from 1859 to 1959 is 5*66, but for the period 1859-1879 it is 4.51, 

for 1879-1919 it is 5-72 it is 5.72, and for 1919-1959 it is 2.97.25 It 

will be seen later, however, in Chapter IV how the Harrod-Bomar model 

works empirically.

^Raymond Goldsmith, "Historical and Comparative Ratio of Production, 

Productivity and Price," Enplo^ent, Growth and Price levels, hearings 
before the Joint Economic Committee, 86th Congress, 1st Cess. (Washing-
ton, B. C.: U. S. Government Printing Office, 1959), Part 2, p.271.



CHAPTER III

THE HAKIN& OF MODELS

I THE ESTIMATION OF PARAMETERS

A. The Method of Least Squares

One of the simplest and most widespread methods of estimation used 

by economists is the least squares method. The least squares method 

suggests that the sum of the squares of the deviations between the 

actual values and the estimated values of observations be a minimum. 

More precisely, the method of least squares possesses the following 

properties.

1} The sum of the squares of the deviations of the sample observations 

from the sample values is a minimum.

2) The estimates are such that the estimated line passes through the 

point of means of the variables.

3) The estimated values for the parameters are the best unbiased linear 

estimates. "Best” means that the estimates have the smallest var-

iance among all linear unbiased estimates.

For example, in a two-variables case, which is sometimes referred to as 

the simple regression, assuming that X and Y are two variables, and 

there is a linear relationship between them such that

Y = a + bX (3-D

where X is the independent variable and Y is the dependent variable, 

and a, b are the unknown parameters indicating the intercept and slope 

of the function, respectively. Now suppose that the unknown parameters 

have been estimated as a* and b* by using the least squares method, and
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Fig. 5-1

then the estimated line is

T* = a* + h’X (5-2)

where Y* is the ordinate on the estimated line for any given value of 

X. It is obvious that not all the observations or sample points fall 

on the estimated line, such as shown in Fig, 5-1• If P is any point 

which is not on the estimated line, then there is a deviation u which 

is the difference between Y and I1, i.e.,

u = Y - Y«

The deviation from the estimated line may be positive or negative as 

the sample point lies above or below the line. Thus, if all these 

deviations are squared and summed, the resultant quantity must be 

non-negative and will vary directly with the spread of the points from 

the line:

£u2.£(y -t ')2
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Then from (3-2)

£ u2 = £ (Y-a*-b'X)2 

2 
Since the property of least squares is that £u be minimized, a neces-

sary condition is that the partial derivatives of the sum with respect 

to a* and b’ should both be zero. Therefore,

£ u2 = -2 £ (Y-a'-b^X) = 0

7 u2 = -2 £ X(Y-a’-b’X) = 0 
0D1

Divide both sides of each equation by 2, and by transposing we then 

obtain the standard form of the normal equations:

£ Y = a’n + b’ £ X (3-3)

£xY=a»£x + b«£x2 (3-4)

The simultaneous solution of these two normal equations yields the 

values of a' and b* that minimize the sum of the squares of the devi-

ations u*s. This is the basic property of the least squares method.

If divide through equation (3-3) by n, then

I = a* + b‘X (3-5)

where t=£Y/n, and X=£X/n. Thus it shows that the estimated line 

Y’=a’+b’X passes throu^i the point T of means X and ?, as shown in 

Fig. 3-1. This fulfills the second property of the method of least 

squares.

By substracting (3-5) from (3-1), there results

Y* - X = b*(X - X)

Let x=X-X, y=Y-Y, and y’=Y’-Y, then

y* = b’x (3-6)

that is an alternative way of writing the equation of the least-squares 
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line. Also

u = Y - T*

= (y + Y) - (y* + Y)

= y - y*

- y - Vx (from (3-6))

so that tho sum of the squares of the deviations is

£ u2 = £ (y - h’x)2

Minimizing it by taking partial derivatives with respoot to b* gives

-2 £ x(y-b*x) = 0

£ xy - b’ £ x2 = 0

b* = £ xy/ £ x2 (3-7)

and a* can be obtained from (3-5)

a* = Y - b’X (3-8)

Next we are going to show that a’ and b* are unbiased linear 

estimates. Let us assume

Y = a + bX + u (3-9)

and the expectation of u is zero, i.e.,

E(u) = 0

From (3-7) we have

b* = £ xy/ £ x2

= £ x (y -Y)/ £ x2

= £ XY/ £ X2 - Y £ x/ £ X2

Since the sum of deviations from the mean is zero, i.e.,

£ (x - X) = o
then £ x = 0

o
Hence b* = £ xY/ £ x

= £w Y
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2where w=x/^x . From (3-9)

b1 = T w(a + hX + u)

1
w is constant and since £x=0, then:

£ w = £ (x/ £ x2) = £ x/ £ x2 = 0

£ w2 = £ (x/ £ x2)2 = £ x2/( £ x2 £ x2) = 1/£ x2

£ wx = £ (x/ £ x2)x = £ x2/ £ x2 = 1

£ wx = £ w(X - X) ®£wX-X£w = £wX = 1

= a£w+b£wX+£w

= b + £ wu

Then E(b*) = b + £ v.E(u)

Since E(u)=O, then E(b')=b. Thus b* is an unbiased linear estimate of b.

Similarly, a* is an unbiased linear estimate of a. From (3-8)

a* = T - b*X

= Z T/n - ( £ wY)X

= £ (Y/n) - £ XwT

= £ (1/n - ^w)Y

= £ (1/n - TuHa + bX + u)

= a- aX£w + bX-bX£wX + £ (1/n - Xw)u

= a + £ (1/n - Xw)u

Hence E(a*) = a + £ (1/n - Xw)E(u)

or E(a’) = a

Finally we are going to see that the estimated a* and b* are the 

best linear unbiased, that is, they have the smallest variance. Let us 

define any arbitrary linear estimate of b as

b’» = £ cY

where c = w + d (3-10) 
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w being defined as previously and d being arbitrary constant. For b” 

to be an unbiased estimate of b, d must fulfill certain conditions. 

From (3-9)

b” = £ c(a + bX + u)

= a^c + b^cX+^cu 

so E(b* *) = a c + t r cX = b 

if £c=0 and ^_cX=1. These two conditions, from (3-10) and the properties 

of w, gives the required conditions for d, i.e.,

I d = 0

and £ dX = £ dX = 0

The variance of this arbitrary linear unbiased estimate is then

o
Var(b* *) = E( cu) )

= E(u2) £ c2

2 
where £d must be nonnegative and is zero only if each value of d is 

zero. Thus the least-squares estimate has the smallest variance of all 

linear unbiased estimates. A similar result nay be obtained for Varta1).

So with all these properties, we obtain the estimates of the para-

meters of a linear relation by using the above two normal equations 

(3-3) and (3-4), or the equations derived from them, such as (3-7) and- 

(3-8). Moreover, by solving the two normal equations, we may get

n £ XT - £ X £ Y

n £ X2 - ( £ X)2

But £ c2 = £ w2 + £ d2 + 2 £ wd

n
£ wd = £ xd/ £ x = 0 

therefore,

*> 2
Var(b”) = Var(b’) + E(u ) £ d

(3-11)
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£x 2£y -2;x £xy

The aim of this study is not to discuss the econometric method, so 
in this section we simply point out the problems with the least squares 
method, and the difficulty of this study. More detail about the methods 
which can overcome the consequences of the least squares method may be 
obtained in J. Johnston, Econometric Methods (New York: McGraw-Hill Book 

Co., Inc., 1963), pp . 177-295.
3Ibid.. p. 179.

*' = ----—5--------- 2~ (3-12>
»ZX2 - (£X)2

More detail about the technique of the least squares method may be 

seen in Appendix A.

2
B. Problems with the Least Squares Method

We have seen the properties of the least squares method, but there 

are some consequences arising from it.^

1) The sampling variances of these estimates may be unduly large com-

pared with other methods.

2) By the usual least squares method, we are likely to obtain a serious 

underestimate of the variances.

3) We shall obtain inefficient prediction, that is, predictions with 

needlessly large sampling variances.

These consequences, however, may be eliminated by making use of auto-

correlation, i.e., making use of the autoregressive structure of the 

disturbances (the measurement errors, i.e., the differences between the 

estimated values and the actual values of observations). This process 

is equivalent to a two-steps procedure.

The first step is to transform the original variables according to 3 
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the autoregressive structure of the disturbance term, which refers to 

u such as in the equation

T = bX + u

where X and Y are variables, b is the parameter, and u is the measure-

ment error such that

u = Y - Y*

where Y* is the estimated value of Y. The second step is to apply the 

usual least squares to the transformed variables. Thia process can be 

made by the use of matrix algebra. We may write Y=bX+u in matrix nota-

tion such that

By applying a transformation

Tn

Y1

X12 x22T2

'X11 X21

X1n X2n

(3-13)

0 ...

1 ...

0 ...
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where p is the coefficient of autocorrelation, and its absolute value 

is less than one i.e., |p[<1. Its value can be obtained by applying 

the usual least squares method from

ut ’ ^t-l + et

where e^. is not a random variable but a residual such that 

et = T - b’X

where b’ is the estimated parameters. Solving (3-14) we then obtain 

the value of b, which will not yield the consequences as stated above. 

In this study, however, we do not concentrate on one or two equations, 

but have a number of equations with a large sample. Therefore, it is 

impossible for us to use this two-steps procedure.

The second problem arising from the usual least squares method is 

that there will be a negative bias if there is any time lag in the var-

iables, such as in the equation

T(t) = a + bl(t-1) + u

Especially in small samples, the bias is even more serious. Professor

J. Johnston has introduced some ways of lessening the difficulty of the 

4 
least squares method in the estimation when time lags are involved, 

but they are too complicated for us to apply in so many equations as in 

this study. Furthermore, a complete elimination of the bias in lagged 

variables is still in discussion.

So far we have merely pointed out the problems with the usual least 

squares in a single equation. In an economic model there is usually 

more than one equation. When single equations interact together, the

4Ibid.. pp. 211-221 
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direct application of the usual least squares method to the single 

equations will not yield unbiased estimates of the parameters. Let 

us take a simple model such as

C = a + bY + u (5-15)

Y = C + I (5-16)

I = Io (5-17)

where C = consumption expenditure

I = income

I = investment, which is autonomous and is determined outside

the model

Io = given value for I

We also assume that there are some data given as in the following table:

Y C

5 5 0

10 10 0

15 15 0

15 10 5

20 15 5

25 20 5

£Y=90 LC=75 LIO=15

7=15 C=12.5 Io=2.5

By applying directly the usual least squares method to (5-15) gives 

n^CT-^c£T 

n 112 - ( £ I)2
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where n=6, £CY=1,300, £CyY=6,75O, ^=1,600, and (£T)2=8,100. Thus we 

obtain b=0.7» and a=C-b?=2. Re-write (3-15)

C(t) = 2 + O.7Y(t) + ut (3-18)

where t designates the time period. We may apply the least squares 

method to the reduced form of (3-15) by substituting (3-16) into (3-15) 

such that

C = a + b(C + I) + u

from which we obtain the reduced form of C

C=~r-+~-I + T~-u 
1-0 1-0 1-0

By applying the least squares method to the reduced form, gives 

b/(1-b) = 1, or,b=0.5

and a/(1-b)=10, or, a=5

Re-write (3-15)

C(t) = 5 + 0.5Y(t) + ut (5-19)

The method employed in the above by using the reduced form of the model 

is that of indirect least squares; that is, usual least squares method 

is applied to find estimates of the parameters of the reduced from, and 

from these, in turn, estimates of the structural parameters are obtained. 

The indirect least squares method will yield unbiased estimates of a 

and b for the model as a whole system, such as in (3-19)• It is obvious 

that the result of the direct application of least squares method, as 

shown in (3-18), yields upward biased estimates, because the slope of 

(3-18) is greater than that of (3-19)•

Although the indirect least squares method yields unbiased estimates 

of the parameters for the whole model, it is sometimes feasible. There
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is another method of more general applicability called the two-stage 

least squares method. The first stage of this method is, from (3-16), 

to compute

T = h + gl + e

»Z YI I
where g = -----5--------- 5

nZ I - di) 

and h = ? - gl

The estimated Y values are given by

Y* = h + gl (3-20)

Now the second stage is to substitute these Y’ values in (3-15) to give

C = a + bY* + (u + be) (3-21)

The second stage is then completed by applying least squares directly 

to (3-21) to obtain estimates of a and b.

Besides the above two methods, there are still some other methods 

which can eliminate the bias arising from the direct application of the 

least squares method to the single equations, such as the least-variance- 

ratio method, the full-information maximum likelihood method, and the 

three-stage least squares method. All these methods are quite com-

plicated. If we apply any one of them to this study, we have to com-

pute the parameters model by model. Also, in so doing, we will have 

different values of parameters for the same function in different models. 

In this study, however, we are also interested in the values of the 

parameters of each single function, so that we can compare the various 

theories in the consumption and investment functions empirically. For 

these reasons, we have to apply directly the usual least squares method 

to this study.
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II BASIC ASSUMPTIONS 

Urh ' -

The Keynesian theory assumes that aggregate income is equal to the 

am of aggregate consumption and aggregate investment, making a defi-

nitional equation in macro-economics

Kt) = C(t) + I(t) (3-22)

All theories which we have discussed in the previous chapter use this 

definition. In it we do not see how the government spends its money. 

In theory, all government expenditures "belong either in the category 

of consumption or investment expenditures. Hence, according to the 

above definition (3-22), the total government expenditures are merged 

in the consumption and investment categories. In Keynes* model, however, 

it actually does not neglect the government sector. It does emphasize 

the role of government in an economy, for the impact of government ac-

tion can help to stabilize economic growth. Therefore, some economists 

introduce the government sector as a separate item among the components 

of national income, such that

Kt) = C(t) + I(t) + G(t) (3-23)

where G is the volume of government expenditures on goods and services. 

There are also some other reasons for separating the government sector, 

such as

1) the difficulty in breaking down government expenditures into con-

sumption and investment expenditures,

2) some special interest which centers around government expenditures.

The determination of the volume of government expenditures is not 

simple. There are many factors which affect government expenditures, 

although usually government accounts are under the annual budget.
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Disgaxding those factors arising from politics and weirs, economists 

usually consider the total volume of government expenditures as a func-

tion of the level of income with direct proportion:

G(t) = gY(t)

where g is a positive constant and less than one. In economics, the 

purpose of a government is not to make money to increase its assets 

such as by investments. Its major receipts are from taxation. It is 

clear that receipts arising from taxation depend upon the level of 

national income. Government receipts and expenditures are supposed to 

be balanced. Therefore government expenditures depend largely upon 

the level of national income.

In this study, we use both arguments as our definitional equations 

i.e., (3-22) and (3-23); also as mentioned in Chapter I, T(t) designates 

gross national income, thus I(t) here is gross investment.

Ill THE COMGUL’PTION FUHCTICN

As seen in the previous chapter, there are many arguments about 

the consumption function. Basically, in this study we adopt the in-

come-consumption relation and its extensiors. The followings are the 

consumption functions which we axe going to test:

C(t) = cY(t) (5-24)

C(t) = cY(t) + a (5-25)

C(t) = cY(t-l) (5-26)

C(t) = cY(t-1) + a (5-27)

C(t) = cY(t) + bt * a (5-28)

Equations (j-24), (3-25) (3-23) are called static formulations, 
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c 
while equations (5-26) and (5-27) are dyneunic in the sense that there 

is a time lag in the level of income.

Equation (5-24) is from the Keynesian model, which is critized as 

"being too static; and equation (5-26) involves a lag on the income side, 

as suggested by Robertson and other economists trying to overcome the 

deficiency of the static Keynesian model. The difference between (5-24) ‘ 

and (5-25) and that between (5-26) and (5-2?) is the same; it is only a 

matter of whether there is a constant term or not. For those two equa-

tions, (5-25) and (5-2?)» the marginal propensity to consume is less than 

the average propensity to consume, as discussed in Chapter II. This 

situation, according to Duesenberry and Friedman, should not be the case 

in long-run. They suggest that in long-run, the marginal propensity to 

consume should be the same as average propensity to consume, and so the 

consumption function should be formulated like (5-24) and (5-26).

The consumption function (5-28) is formulated according to the sug-

gestion of Arthur Smithies. There is no lag at all, but instead, he 

argues, as seen in Chapter II, that consumption should also be a func-

tion of time, not only of income, in order to reconcile the short-run 

long-run problem.

Besides, there is another approach concerning the consumption func-

tion, which we have not discussed before. The underconsunptionists say 

that aggregate consumption is determined by two things: (1) the level 

of aggregate income of the previous period, and (2) by the distribution 

of that income between wages and profits, such that^

^Howard J. Sherman, Facrodynar-ic Economics: Growth, Employment and 

Prices (New York: Appleton-Century-Crofts, 1964), p. 79 and P» 255
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C(t) = a + bW(t-1) + cP(t-1) (3-29)

where P designates profit income, and W is wage income proportional to 

net national income, such that^

W(t) = d + eY(t) (3-30)

Also it is assumed that

w(t) + p(t) = Y(t) (3-31)

where Y is net national income, so that

W(t-1) + P(t-1) = Y(t-1)

Therefore, the relation of (3-29) inplics that consumption is a func-

tion of the income of the last period.

Thus, all of these consumption functions as stated above are not 

without .reasons. In the next chapter, we shall see how they work em-

pirically, and which of them is closest to the "real world."

IV THE INVESTIEJJT FUITCTION

Our investment functions are based upon the acceleration principle.

They are:

I(t) = i2c(t) - C(t-1)7 (3-32)

I(t) = 12c(t) - C(t-1)/ + A (3-33)

I(t) = i/c(t-1) - C(t-2)7 (5-34)

I(t) = i/Y(t) - Y(t-1)7 (3-35)

I(t) = i/Y(t-1) - Y(t-2)7 (3-36)

I(t) = i/Y(t) - Y(t-1 )7 + jY(t) (3-37)

6Ibid.. p. 235.
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I(t) = i/Y(t) - Y(t-1)7 + jY(t) + A (5-38)

Equation (3-32) is the original formulation of investment function 

under the acceleration principle. Equation (3-33) is similar to (5-32) 

except that it has a constant term A, which designates autonomous in-

vestment, according to the argument that in addition to induced invest-

ment there is also autonomous investment.

The investment function (5-34) involves a time lag on the consump-

tion side. In either (3-32) or (3-33), the induced investment arising 

from the action of the accelerator is considered to be completed in the 

same period as that in which the additional consumer goods output occurs 

which required the investment. Some economists argue that if income 

rises, people buy more consumer goods; but in order to make more consumer 

products, more machines are required (subsequently more machines have 

to be made), and thus it requires some times for the construction and 

installation of machines and plants. Therefore, it is suggested that 

the accelerator effect should be lagged.

Equations (3-32), (3-33) and (3-34) express investment as a function 

of the change in consumption, which is a function of income. But some 

economists apply the acceleration principle to the change in income 

directly, such as (3-35), which is suggested by Professor Harrod. As 

seen in the previous chapter, in the discussion of the acceleration 

principle, no matter whether we put investment as a function of the 

changed consumption or as a function of the changed income, mathematic-

ally the acceleration effect is the same when we use the same marginal 

propensity of consume. Empirically, however, it will not, because the 

change in consumption does not vary in a constant proportion to the 
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change in income over time. That is to say, the acceleration coefficient 

in (3-35) will not equal the product of the marginal propensity to con-

sume times the acceleration coefficient in (3-34). For example, accord-

ing to the result of our estimation, we have

C(t) = O.7972Y(t) (3-59)

Kt) = 2.8452^(t) - C(t-12? (3-40)

I(t) = 2.0266/Y(t) - Y(t-1 )7 (5-41)

If we substitute (5-39) into (3-40), we have 

Kt) = O.7972(2.8452)/Y(t) - Y(t-1)/ 

= 2.26822Y(t) - Y(t-1 )7 

where the acceleration coefficient is different from that of (3-41). 

Therefore, we cannot view (3-32) and (3-35) as the same thing, because 

they will render different effects. By the same token, (3-36), a func-

tion of the change in income occurring in the period before the last 

one, will have a different effect from (3-34). The time lag in (3-36) 

is introduced for the same reason as (3-34).

Equations (3-37) and (3-38) are the modification of Harrod-Domar 

model, as seen in the previous chapter. In (3-37) it is assumed that 

some investment demand is proportional to income, such as the commmunity’s 

trade balance, designated by jY(t), where j is a constant and may be . 

negative} also, there is still some investment demand based on the accel-

eration principle as in the Harrod-Domar model. In (3-38) in addition 

to the assumption of (3-37)» there is some autonomous investment, written 

as A, independent both of the lavel of income and the change in income.

In addition to the investment functions as listed in the above, 

according to the theory of "overinvestment," there is another one, which 
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is proportional to the change in profit of the previous period, such 

that^

I(t) = g + h^(t-l) - P<t-2)7 (3-42)

where I is net investment. The t.-ic reason of this proposition is 

that the aim of investment is to . ..e profit. Additional profit will 

attract additional investment, but, on the other hand, a decline in 

profit will discourage investment.

The combinations of the basic definitions, consumption functions 

and investment functions constitute the economic models for us to in-

vestigate in the next chapter.

7Ibid.. p. 89 and p. 237.



CHAPTER IV

EKPIRICAL INTZRPPETATION

Major growth theories were discussed in Chapter II, and the hy-

potheses of this study were established in Chapter III. Upon these hy-

potheses and using the least squares method, this chapter presents the 

results of empirical applications.

I THE FUHCTICKS

According to the basic assumption established in the prA<*.eding 

chapter, there are two definitional equations:

Y(t) = C(t) + I(t) (4-1)

Y(t) = C(t) + I(t) + G(t) (4-2)

In this study Y is gross national product, and t is time period. In 

(4-1), C is the sum of personal consumption and government consumption, 

and I is the sum of private investment and government investment. In 

(4-2), C refers to personal consumption, I private investment, and G 

total government expenditures on goods and services. In (4-2), total 

government expenditures are not broken down according to consumption 

and investment. The Office of Business Economics of the United States 

Department of Commerce published the total government expenditures on 

goods and services with no distinction between their consumption and 

investment nature. In Table A-IIa of John W. Kendrick’s book. Produc-

tivity Trends in the United States, total government expenditures are 

broken down into consumption expenditures and investment expenditures. 

This break-down is recorded so that column (6) presents government
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investnent, and coltem (10) total govermaent expenditures on goods and 

services.By taking the ratio of these two columns, i.e., dividing 

colurin (6) by column (10), the annual percentage of government invest-

ment out of the total government expenditures on goods and services may 

be computed. According to these percentages, annual government invest-

ment may be apportioned. By substracting government investment from 

total government expenditures, the resulting amount is government con-

sumption expenditures. The data given by Kendrick, however, is up to 

the year 1957 only; so for the years 1958-1965, the percentage of govern-

ment investment out of the total government expenditures is based upon 

the average of the annual percentages of 1929-1957• This average is 

approximately 29f. Summary data are recorded in Appendix C. The orig- 

2
inal data are obtained from Survey of Current Business in current dol-

lars, and converted into 1929 dollars according to the "Consumer Price 

x 
Index" provided by the Statistical Abstract of the United States.

Under each of the above definitional equation, there are five con-

sumption and seven investment equations. By combining these equations, 

some fifty-five national income models result, each one of which is 

tested against observation. Below are the results of the estimation of

1
John W. Kendrick, Productivity Trends in the United States 

(Princeton: Princeton University Press, 196177 PP* 295-295•

2
U. S. Department of Commerce, Office of Business Economics, Sur-

vey of Current Business (Washington, D. C.: U. S. Government Printing 
Office, 1930-19^477

^U. S. Department of Commerce, Bureau of the Census, Statistical 

Abstract of the United States (Washington, D. C.: U. S. Government 
Printing Office, 1950-1964).
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all the paranetere (all constant terms in the following equations are 

in millions of 1929 dollars),

A) Defining aggregate income as

T(t) = C(t) + I(t) (4-1)

we have

C(t) = O.79724Y(t) (4-5)

C(t) = O.75841T(t) + 8,652.65 (4-4)

C(t) = O.829O6Y(t-1) (4-5)

C(t) = O.78O55Y(t-1) + 10,515.42 (4-6)

C(t) = O.72?52Y(t) + 285.85t + 10,289.00 (4-7)

and

I(t) = 2.84519/C(t) - C(t-1)7 (4-8)

Kt) = O.95O75/E(t) - C(t-1)7 + 50,969.65 (4-9)

I(t) = 2.851892^(t-1) - C(t-2)7 (4-10)

I(t) = 2.02659/Y(t) - T(t-1)/ (4-11)

I(t) = 2.O1716/Y(t-1) - Y(t-2)7 (4-12)

I(t) = O.H667/Y(t) - Y(t-1)7 + 0.19802Y(t) , (4-15)

I(t) = O.1OO27/?(t) - Y(t-1)7 + O.25799Y(t) - 8,702.24

(4-14) 

The following estimations are also made:

C(t) = 19,618.84 + 0.724147/(t-1) + 0.55286P(t-1) (4-15)

Kt) = 19,348.54 + 1.00658/p(t-1) - P(t-2)/ (4-16)

7?(t) = 0.59518Y(t) - 5,578.05 (4-17)

where C is total consumption, H wage income, P profit income, I net

investment, and where T(t)=W(t)+P(t). In this case Y refers to net 

national product rather than gross national product.
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Since the data used cover the years 1929 through 1963 (after ex-

cluding the four year war period, 1942-1945) there could have been 

thirty-one years of observations. In this study, however, period anal-

ysis is used; and by taking 1950 as the basic year, there are only thirty 

years of observations. Furthermore, for investment functions with lags, 

1951 is taken as the basic year, which leaves only twenty-nine years of 

observations. In order to match investment functions with corresponding 

consumption functions, the following consumption functions are used:

C(t) = O.79699T(t) (4-5)*

C(t) = O.7567OY(t) + 9,016.40 (4-4)*

C(t) « O.82986Y(t-1) (4-5)*

C(t) = O.77O54Y(t-1) + 12,619.16 (4-6)*

where the basic time period t is 1951.

B) With government expenditures as a separate component of aggre-

gate income, such that

Y(t) = C(t) + I(t) + G(t) (4-2)

we have

C(t) = O.66299Y(t) (4-18)

C(t) = O.58565Y(t) + 17,585.89 (4-19)

C(t) = O.68946Y(t-1) (4-20)

C(t) = O.6O255Y(t-1) + 18,549.27 (4-21)

C(t) = O.59769Y(t) - 152.64t + 16,880.40 (4-22)

and

I(t) = 2.195O72c(t) - C(t-1)7 (4-25)

I(t) = O.7477l2c(t) - C(t-1)7 + 25,324.20 (4-24)

I(t) = 2.2455520(t-1) - C(t-2)7 (4-25)

Kt) = 1.5127O/Y(t) - Y(t-1(4-26)



50

Kt) = 1.45517/Y(t-1) - T(t-2)7 (4-2?)

I(t) = O.13855/Y(t) Y(t-1)7 + 0.14249Y(t) (4-28)

I(t) = O.12592/Y(t) - Y(t-1)7 + 0.17392Y(t) - 6,852.99

(4-29)

Also, we have

G(t) = 0.18890Y(t) (4-30)

In (4-25) and (4-27), there are twenty-nine observations only. For 

those consumption function of twenty-nine observations, there are

C(t) = O.662l6Y(t) (4-18)*

C(t) = O.58397Y(t) + 17,496.55 (4-19)*

C(t) = 0.68938Y(t-1) (4-20)*

C(t) = O.59849Y(t-1) + 19,550.00 (4-21)*

Also, for government expenditures with 1931 as the basic year, we have

G(t) = O.18952Y(t) (4-30)*

Although estimation based on either twenty-nine or thirty observations 

gives approximately the same value of parameter, still the principle of 

logic cannot be ignored.

To find out which of the above functions is better than the others, 

their mean-squares-error are used. 1'ean-squares-error is the average 

of the sum of the squares of the difference between the estimated value 

and the actual value of the observation, such that

27^(t)-c*(t)72 £/i(t)-i*(t)72

M-S-E =-------------- , or M-S-E =------- --------
n * n

where C*(t) and I’(t) are the actual value of observationsand n is

^Since we have already used C(t) and I(t) as our estimated values, 

so we use C*(t) and I’(t) to represent the actual values of observations. 
This notation is contrary to the usual way.
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the number of total observations. The smaller the M-S-E, the better 

the function. In Table A the consumption and the investment functions 

are listed with their M-S-E, which correspond to the definitional equa-

tion (4-1). Table B consists of the functions related to the defini-

tional equation (4-2). In both tables, the functions are listed in 

ascending order according to the K-S-E, so that the first model has the 

smallest U-S-E.

Table A and Table B have one thing in common, that is, the best 

consumption function is

C(t) = cY(t) + a

and the best investment function is

I(t) = i/Y(t) - Kt-I)/ + jY(t) + A

This implies that no matter what definitional equation is used, these 

two functions are likely to be the best choice. However, the K-S-E’s 

of these two functions are smaller in Table A than those in Table B, 

that is, when a function is related to the definition, Y(t)=C(t)+I(t), 

the L'-S-E is smaller than that when the function is related to 

Y(t)=C(t)+I(t)+G(t), In other words, the result by the definition 

Y(t)=C(t)+I(t) is better than that by Y(t)=C(t)+I(t)+G(t). This may 

be due to the fact that if total government expenditures on goods and 

services are separated from consumption and investment, the government 

sector cannot give the same effect as that produced by consumption and 

investment.

The consumption function next to the best in both Table A and 

Table B is

C(t) = cY(t) + bt + a



Table A

Mote: this table is under the assumption, Y(t)=C(t)+I(t)

Function Empirical Result H-S-E Ref.

C(t)=cY(t)+a C(tM.75641Y(t)+8,632.65 7,960,528.977 (4-4)

C(t)=oY(t)+bt+a C(t)=0.72752Y(t)+283.83t+10,289.00 13,157,589.379 (4-7)

C(t)=cY(t) C(t)=O.79724Y(t) 19,812,774.227 (4-3)

C(t)=cY(t-1)+a C(t)=O.78O35Y(t-1)+1O,313.42 56,695,278.351 (4-6)

C(t)=cY(t-1) C(t)=O.829O6Y(t-1) 72,380,449.597 (4-5)

I(t)=i/T(t)-Y(t-12/+jY(t)+A I(t)=0.10O27/y (t)-Y(t-1 )7+0.23799Y(t)

-8,702.24 6,664,672.650 (4-14)

I(t)=i/^(t)-Y(t-1\7*jY(t) I(t)=O.1l667/Y(t)-Y(t-1)/+O.l98O2Y(t) 18,368,179.157 (4-13)

I(t)=i/j(t)-C(t-1}7+A I(t)=O.95O75/&(t)-c(t-1)/+3O,90.63 333,332,094.762 (4-9)

I(t)=i/Xt)-C(t-1)7 I(t)=2.845l9/6(t)-C(t-1)7 949,836,592.234 (4-8)

I(t)=l/6(t-1)-C(t-2)7 I(t)=2.83189/&(t-1)-C(t-2)/ 970,723,641.711 (4-10)

I(t)=i/Y(t)-Y(t-1)7 I(t)=2.O2659l^(t)-Y(t-1)/ 1,001,057,709.943 (4-11)

i(t)=i/r(t-D-Y(t-2)7 I(t)=2.017l6/r(t-1 )-Y(t-2)7 1,057,385,770.811 (4-12)



Table B

Note: this table is under the assumption, Y(t)=C(t)+l(t)+G(t).

Function Bnpirical Result M-S-E Ref.

. C(t)=cY(t)+a C(t)=O.58363Y(t)+17,585.89 8,783,301.679 (4-20)

C(t)=cY(t)+bt+a c(t)=o.59769Y(t)-132.64t+i6,88o.itO 8,793,634.195 (4-23)

C(t)=cY(t-l)+a c(t)=o.60235y (t)+18,549.27 38,767,194.847 (4-22)

C(t)=cY(t) c(t)=o.66299Y(t) 57,211,900.490 (4-19)

C(t)=cY(t-l) c(t)=0.68946Y(t-l) 92,903,474.109 (4-21)

l(t)=iZY(t)-Y(t-117+JY(t)+A l(t)=O.12592ZY(t)-Y(t-l)7+O.17392Y(t)
-6,852.99

11,382,610.178 (4-30)

I(t)=iZY(t)-Y(t-117+JY(t) l(t)=0.13835Zx(t)-Y(t-l)7+0.1Jf21t9Y(t) 19,187,303.018 (4-29)

l(t)=iZc(t)-C(t-l)7+A l(t)=O.74771Zc(t)-c(t-l17+23,324.20 194,030,284.900 (4-25)

i(t)=iZx(t)-Y(t-i)7 l(t)=1.5127OZY(t)-Y(t-117 529,727,544.859 (4-27)

l(t)=iZx(t-l)-Y(t-2)7 l(t)=1.43317ZY(t-l)-Y(t-2)7 553,517,125.649 (4-28)

i(t)=tZc(t)-c(t-i)7 i(t)=2.i95O7Zc(t)-c(t-i)7 590,710,860.222 (4-24)

l(t)=iZc(t-l)-C(t-2)7 I(t)=2.24533Zc(t-l)-c(t-2)7 598,761,513.228 (4-26)
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which is suggested by A. Smithies. As discussed in Chapter II, Smithies 

argues that consumption is also a function of time, t, i.e., the con-

sumption function slowly drifts upward over time. In that case, the 

coefficient of t is supposed to be in positive value. According to the 

above results, when this consumption function is related to the definition, 

Y(t)=C(t)+I(t), the value of the coefficient b is positive, as shown in 

(4-7); but, when this function is related to Y(t)=C(t)+I(t)+G(t), as shown 

in (4-22), b is negative. That is to say that consumption (or income, 

since consumption is a function of income) may not necessarily drift up-

ward over tine empirically. There, it can be said that consumption or 

income may be a function of tine, but not necessarily directly propor-

tional to the time period.

The investment function next to the best in both Table A and Table 

B is

I(t) = i/Y(t)-Y(t-1)7 + jY(t)

which is similar to the best function except the latter one does not have 

a constant tern. In general, it can be seen that, either in Table A or 

in Table B, a function will yield a better result if there is a constant 

term, because a constant term can make the estimated points closer to the 

average point on the estimated line. It should be noted in both Table A 

and Table B that the K-S-E*s of

C(t) = cY(t) + a 

C(t) = cY(t-l) + a 

I(t) = i/Y(t) - Y(t-1)7 + jY(t) + A 

I(t) = i/C(t) - C(t-1)7 + A 

are smaller than those of
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C(t) = cY(t)

C(t) = cY(t-l)

I(t) = i/Y(t) - Y(t-1)/ + jY(t)

I(t) = i/C(t) - C(t-1)/

respectively. That is, a constant term can make the slope of the func-

tion flatter so that the estimated points are closer to the average of 

the sample.

Whether the investment function can be expressed better in terms 

of consumption or in term of income cannot be found in Table A and 

Table B. We cannot obtain a clue because in Table A the investment 

functions are better expressed in terms of consumption, while in Table 

B the L'-S-E’s of

I(t) = i/Y(t) - Y(t-1)7

I(t) = i/Y(t-1) - Y(t-2)7 

are smaller than those of

I(t) = i/^(t) - C(t-1)7

I(t) = i/C(t-1) - C(t-2)7

Another thing to note is that those unlagged function can yield 

better results than those lagged functions. There may be three reasons 

for this:

1) Because of the exclusion of the war-period, 1942-1945* there is a 

large measurement error between 1941 and 1946. For example, in the 

lagged consumption function, the measxurement of the consumption of 

1946 based on the income of 1941 is incorrect.

2) As indicated in Chapter III, the estimates of the parameters of lagged 

functions are biased because of the direct application of the least 

squares method.
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5) The introduction of tine lag into a function cannot be more realistic. 

The first two reasons are quite obvious and positive, but the third 

reason is still under discussion among economists. In this study the 

third reason cannot be assured because of the deficiencies in the first 

two reasons.

II TIE MODELS

The empirical results of the various consumption and investment 

functions have been noted above. Upon combinations of these functions 

with the two definitional equations, (4-1) and (4-2), the models for 

this study are established. The combinations are tabulated in Table C 

and Table D. Table C is related to the definition Y(t)=C(t)+I(t), while 

Table D is related to Y(t)=C(t)+I(t)+G(t). Both tables record the solu-

tion of each model with some remarks. The method for solving these 

models is to substitute all variables into the definitional equation, 

formulating a single difference equation in terms of income Y. Solving 

the difference equation, the general solution is obtained for national 

income over time, Y(t). For the solution of difference equations, one 

may refer to Appendix B.

In all there are fifty-five models in Table C and Table D. There 

is a variety of solutions, so that the common rate of growth calculated 

5 
by arithmetic mean is used as an index. It is not intended that this

"Tie do not use the geometric mean because we have some difficulty 
with it. The formula of the geometric mean is

w fT(t)-Y(t-1) . Y(t-1)-Y(t-2) ... 1/n

H * I Y(t-1) Y(t-2)

where R, Y, t and n have the same meaning as in (4-31 )• Since we may 
occasionally experience a negative value for the change of income be-
tween two periods, we may have a complex number for R.
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is the "standard" rate of growth, but it is used, as a guide,having no 

better alternative. Based upon the data in Appendix C the rate of growth 

of the national income of the United States is computed for the period 

1930-1965 (excluding the war period, 1942-1945) using arithmetic 

mean, such that '

p 1 vTY(t) - Y(t-1) .. X1.
R - n 4. Y7t-i)--- J (4-31 >

where R designates the average rate of growth, n is the number of obser-

vations, Y represents gross national product, and t refers to tine per-

iod. The average rate of growth, from (4-31), for the period 1930-1963 

(excluding 1942-1945), is 0.041998 or 4.1998 per cent. From this result 

the relation of (4-31) Eay be expressed as

Y(t) - Y(t-1) = 0.041998 Y(t-1)

which is a difference equation. By transposing, gives

Y(t) = (1 + O.O41998)Y(t-1)

= 1.041998Y(t-1) (4-32)

from which a general solution

Y(t) = (1.041998)% (4-33)

is obtained (see Appendix B), where Yq is the initial value. In this 

case, Yq refers to the gross national product of the year 1930. Accord-

ingly, if any model in both Table 0 and Table D yields a rate around 

0.041998, it might be said that this rate is likely to be a moderate 

one, otherwise the rate is too high or too low.

Kost of the models, either in Table C or in Table D, cannot yield 

a satisfactory result from the point of view of forecasting. According 

to the result in the previous section the best functions under both 

definitional equations are



Table C

Formulation of Model Model with Est'd Parameters Solution Remarks

1) Y(t)=C(t)+l(t)

C (t)=cY(t) 

i(t)=iZc(t)-c(t-i)_7

Y(t)=C(t)+l(t)

C(t)=O.79721lY(t)

l(t)=2.84519Zc(t)-c(t-l)7

Y(t)=93,453(1.09816)t

The rate of growth 

is too high.

2) Y(t)=C(t)+l(t)

C(t)=cY(t)

i(t)=iZc(t)-c(t-i)7+A

Y(t)=c(t)+I(t)

C(t)=O.79721tY(t)

l(t)=O.95O75Zc(t)-C(t-l)7

+30,969.63

Y(t)=-59,287.08(1.36519?

+152,740.08

The rate is too

high, and

income is going 

to fall in negative 

value.

3) Y(t)=C(t)+l(t)

C(t)=cY(t) 

l(t)=i/c(t-l)-C(t-2)7

Y(t)=c(t)+I(t)

C(t)=O.79699Y(t)

l(t)=2.83189(c(t-l)-c(t-2))

Y(t)=88,400.09(1.11103)t 

-2,487.09(10.0066? 

(Basic Year: 1931)

The rate of the 
negative term is 
greater than that 
of the positive 
teim, so income is 
going to be nega-
tive.

4) Y(t)=C(t)+l(t)

C(t)=cY(t) 

l(t)=iZY(t)-Y(t-l)7

Y(t)=C(t)+l(t)

C(t)=O.79721iY(t)

l(t)=2.O2659ZY(t)-Y(t-l)7

Y(t)=93,^53(1.11117)t

The rate of growth 

is too high.



Table C (Continued)

Formulation of L'odel Kodel vrith Est’d parameters Solution Remarks

5) Y(t)=C(t)+I(t)

C(t)=cY(t)

I(t)=iz/Y(t-1)-Y(t-2)7

Y(t)=C(t)+I(t)

C(t)=O.79699Y(t)

I(t)=2.O17l6^Y(t-1)-Y(t-2)7

Y(t)=88,984.51(1.128O7)t

-5,O71.51(6.8O818)t

(Basic Year: 1931)

Y(t) is going to be 

negative because the 

rate of the negative 

term is greater than 

that of the positive 

term.

6) Y(t)=C(t)+I(t)

C(t)=cY(t)

I(t)=i/Y(t)-Y(t-1)7

+jY(t)

Y(t)=C(t)+I(t)

C(t)=O.79724Y(t)

I(t)=O.1l667/Y(t)-Y(t-1)/

+O.198O2Y(t)

Y(t)=93,453(1.04240)*
The rate of this . 

model seems to be 

quite moderate.

7) Y(t)=C(t)+I(t)

C(t)=cY(t)

I(t)=i/Y(t)-Y(t-1 >7 

+jY(t)+A

Y(t)=C(t)+I(t)

C(t)=0.79724Y(t)

I(t)=O.1OO272Y(t)-Y(t-1 j7

+O.25799Y(t)~8,7O2.24

Y(t)=247,OO8.24
-153,553.24(O.73999)t

In this case, 

0.73999=1-0.26001, 

i.e., the rate is in 

negative value: 

-26.001$?. When t 

increases indefi-
nitely, (0.73999)* 

will approach zero, 

and Y(t) will remain 

at 247,008.24.



Table C (Continued)

Formulation of Model Model with Est'd Parameters 
l i

Solution
1

Remarks

8) Y(t)=C(t)+l(t)

C(t)=cY(t)4a 

i(t)=iZc(t)-c(t-i)7

Y(t)=C(t)+l(t)

C(t)=0.75841Y(t)+8,632.65

l(t)=2.84519Zc(t)-c(t-l)7

Y(t)=57,72O.8^(1.126o8)t

+35,732.16

The rate is too 

hieli.

9) Y(t)=C(t)+l(t)

C (t)=cY(t)-i-a

l(t)=iZc(t)-C(t-l)7+A

Y(t)=C(t)+l(t)

C(t)=O.75841Y(t)-tS,632.65

l(t)=O.95O75Zc(t)-C(t-l)7

+30,969.63

t
Y(t)=-70,468.21(1.50389) 

+163,921.21

Y(t) is going to be 

negative over time.

10) Y(t)=C(t)+l(t)

C(t)=cY(t)+a 

l(t)=iZc(t-l)-C(t-2)7

Y(t)=c(t)+i(t)

C(t)=0.75670Y(t)+9,016.4o

I(t)=2.83189Zp(t-l)-c(t-2)7

Y(t)=28,355.97(1.1491£

-2,61O.59(7.715ir 
+54,946.44

(Basic Year: 1931)

The negative term 
has a greater rate, 
so Y(t) will fall 
into negative 
value.

11) Y(t)=C(t)+l(t)

C(t)=cY(t)+a

I(t)=i^f(t)-Y(t-1)/

Y(t)=c(t)+I(t)

c(t)=o.758iHY(t)+8,632.65

I(t)=2.02659fY(t)-Y(t-l)J

Y(t)=57,72O.84(1.3535)t

+35,732.16

The rate of growth 

is too high.



Table C (Continued)
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Formulation of Model Model with Est’d Parameters Solution Remarks

12) Y(t)=C(t)+l(t)

C(t)=cY(t)+a 

l(t)=iZx(t-l)-Y(t-2)7

Y(t)=C(t)+l(t)

c(t)=O.7567OY(t)+9,O16.4o

I(t)=2.O1716y Z(t-1)-Y(t-2)/

Y(t)=59,201.97(1.16320/ 

-2,807.26(7.12754^ 

+37,058.30 
(Basic Year: 1931

The negative term 
has a greater rate, 
so Y(t) vill fall 
into negative value.

13) Y(t)=C(t)+l(t)

C(t)=cY(t)+a

I(t)=i/Y(t)-Y(t-1)7 
+JY(t)

Y(t)=C(t)+l(t)

C(t)=O.75841Y(t)+8,632.65

I(t )=0. H667/Y(t )-Y(t-l)7 
+O.198O2Y(t)

Y(t)=198,095-75
-104,642.75(1.59624?

Y(t) falls into 

negative value.

14) Y(t)=c(t)+I(t)

C(t)=cY(t)+a

l(t)=iZY(t)-Y(t-l)7
+JY(t)+A

Y(t)=C(t)+l(t)

C(t)=O.75841Y(t)+8,632.65

l(t)=0.10027ZY(t)-Y(t-l)7
+o.23799Y(t)-8,7O2.24

t
Y(t)=112,768.58(1.03727)

-19,315.58

The rate scans 

quite moderate

1^) Y(t)=C(t)+l(t)

C(t)-cY(t-l) 

l(t)=iZc(t)-C(t-l)7

Y(t)=c(t)+I(t)

C(t)=O.829O6Y(t-l)

I(t)=2.84519Zc(t)-c(t-l)7

Y(t)=120,653•22(1.16753) 
-27,200.22(2.02035)t

The negative term 
has a greater rate, 
so Y(t) will be 

negative.



Table C (Continued)

Formulation of Model Model with Est'd Parameters Solution Remarks

16) Y(t)=C(t)-U(t)

C(t)=cY(t-l) 

l(t)=iZc(t)-C(t-l)7+A

Y(t)=c(t)+I(t)

C(t)=O.829O6Y(t-l)

l(t)=O.95O75Zc(t)-c(t-l)7

+30,969.63

Y(t)=O.88782t(-87,7i5-65 

costB-105,302. WsintB) 

+181,168.65 
where B=88%5.0' =1-555 

Rad.

In this case 0.88782 

will approach zero 
so eventually Y(t) 
will approach the 
value 181,168.65.

17) Y(t)=C(t)+l(t)

C(t)=cY(t-l)

I(t)=iz5(t)-Y(t-1)/

Y(t)=C(t)+l(t)

C(t)=O.829O6Y(t-l)

l(t)=2.O2659/Y(t)-Y(t-l)7

Y(t)=93,^3(l.16652/
The rate of growth 

is too high.

18) Y(t)=C(t)+l(t)

C(t)=cY(t-l) 

l(t)=iZY(t-l)-Y(t-2)7

Y(t)=C(t)+l(t)

c(t)=0.82986Y(t-l)

I(t)=2.O1716ZY(t-l)-Y(t-2)7

t 
Y(t)=29T,861.96(1.327^6) 
-211,948.96(1.51957/

(Basic year: 1931)

The negative tem 
has a greater rate, 
so Y(t) will fall 
into negative 
value.

19) Y(t)=C(t)+l(t)

C(t)=cY(t-l) 

l(t)=iZY(t)-Y(t-l)7 

+JY(t)

Y(t)=C(t)+l(t)

C(t)=0.82906Y(t-l)

l(t)=O.11667Zx(t)-Y(t-l)7

+O.198O2Y(t)

Y(t)=93,^53(l. 03950/

The rate seems quite 

moderate.



Table C (Continued)

Formulation of Model Model with Est'd Parameters Solution Remarks

20) Y(t)=C(t)+l(t)

C(t)=cY(t-l)

l(t)=iZY(t)-Y(t-l)7 

+JY(t)+A

Y(t)=C(t)+l(t)

C(t)=O.829O6Y(t-l)

l(t)=0.10027/Y(t)-Y(t-l)7

+O.23799Y(t)-8,702.21t

Y(t)=129,792.63 t

-36,339.63(1.10132)

Y(t) is going to 

be negative.

21) Y(t)=C(t)+l(t)

C(t)=cY(t-l)+a 

l(t)=iZc(t)-C(t-l)7

Y(t)=C(t)+l(t)

C(t)=0.78O35Y(t-1)+10,313.42

I(t)=2.84519/c(t)-C(t-1 )7

Y(t)=46,953.53 t
+111,233.13(1.32524)
-64,733.67(1.67535)^

The negative term 

has a greater rate, 

so Y(t) will be 

negative.

22) Y(t)=C(t)+l(t)

C(t)=cY(t-l)+a 

I(t)=i2x(t)-Y(t-1)7

Y(t)=C(t)+l(t)

C(t)=0.78035Y(t-l)+10,313-42

l(t)=2.O2659/Y(t)-Y(t-lj7

t
Y(t)=46,499.47(1.21396) 

+46,953-53

The rate is too 

high.

23) Y(t)=C(t)+l(t)

C(t)=cY(t-l)-ta 

l(t)=iZx(t-l)-Y(t-2)7

Y(t)=C(t)+l(t)

C(t)=0.77O34y (t-1)+12,619.16
I(t)=2.O1716/Y(t-1)-Y(t-2)7

Y(t)=54,946.44 
+1.42027X(30,966.56 

costB-90,704.37sintB) 

where b =78o 55-5,= 
1.3775 Rad.

(Basic year: 1931)

The value of Y(t) 

is oscillatory and 

explosive, but the 

rate is too high.



Table C (Continued)

Formulation of Model Model •with Est'd Parameters Solution Remarks

21t) Y(t)=C(t)+l(t)

C(t)=cY(t-l)-ta

I(t)=i/Y(t)-Y(t-1}7

+JY(t)

Y(t)=C(t)+l(t)

C(t )=0.78035Y(t-l)+10,313.1>2

l(t)=O.11667/Y(t)-Y(t-l)7

4O.198O2Y(t)

Y(t)=-383,218.4O +
(0.96843)

+476,671.40

Since 0.96843 is 
less than one, and 
the coefficient is 
negative, so Y(t) 
will increase to 
a maximum 476,671.4 
eventually.

25) Y(t)=C(t)+l(t)

C(t)=cY(t-l)+a 

l(t)=iZY(t)-Y(t-l)7 

+JY(t)+A

Y(t)=C(t)+l(t)

C(t)=0.78O35Y(t-1)+10,315.42

l(t)=0.10027ZY(t)-Y(t-l)7

+O.23799Y(t)~8,7O2.24

Y(t)=-87,853.55 

+181,306.55(1. ophi )1

The rate seems a 
little too low, but 
the coefficient is 
so large that it 
iiay set off the 
low rate.

26) Y(t)=C(t)+l(t)

C(t)=cY(t)+bt+a

i(t)=iZc(t)-c(t-i)7

Y(t)=C(t)+l(t)

C(t)=0.72752Y(t)+283.83t 

+10,289.00

I(t)=2.84519Zc(t)-c(t-l)7

Y(t)=4.5,162.61+1,041.681 

-321,709.61(1.15159^

The rate is too 
high and the co-
efficient (nega-
tive) is too 

large.



Table C (Continued)

Formulation of Model Model with Est'd Parameters Solution Remarks

27) Y(t)=C(t)+l(t)

C(t)=cY(t)+bt+a 

l(t)=iZ.C(t)-C(t-l)7+A

Y(t)=C(t)+l(t)

C(t)=O.72752Y(t)+283.83t 

+10,289.00

I(t)=0.95O75Zc(t)-C(t-l)7

+30,969.63

Y(t)=155,055.91+
l,041,68t

-61,602.91(1.6^997)t

The rate is too 

high, and Y(t) 

will be negative.

28) Y(t)=C(t)+l(t)

C(t)=cY(t)+bt+a

i(t)=iZx(t)-Y(t-i)7

Y(t)=C(t)+l(t)

C(t)=0.72752Y(t)+283.83t 

+10,289.00

l(t)=2.O2659z5(t)-Y(t-l)7

Y(t)=2i5,508.91+1,0^1.68t

+47,9^. 09(1.1553^ )*

The rate is too 
high.

29) Y(t)=C(t)+l(t)

C(t)=cY(t)+bt-Hi 

l(t)=iZY(t)-Y(t-l)7 

+JY(t)

Y(t)=C(t)+l(t)

C(t)=0.72752Y(t)+283.83t

+10,289.00
I(t)=o.il667/Y(t)-Y(t-1)7

+O.198O2Y(t)

Y(t)=144,152.79 
+3,811.84t

-50,699.79(2.7642i)t

The rate is too 
high, and Y(t) will 
became a negative 
value.

30) Y(t)=C(t)+l(t)

C(t)=cY(t)+bt+a

I(t)=i/Y(t)-Y(t-1)7
+jY(t)+A

Y(t)=c(t)+I(t)

C(t)=O.72752Y(t)+283.83t 
+10,289.00

I(t )=0.10027Z5f(t )-Y(t-l )7 
+O.23799Y(t)-8,7O2.24

Y(t)=69,944.12+8,230.6ot 
+23,508.88(1.52423r

The rate is too 
high.



Table C (Continued)

Formulation of l/odel L'odel with Est’d Parameters Solution Remarks

31) Y(t)=C(t)+I(t)

C(t)=a+W(t-1 )+cP(t-1)

I(t)=i/F(t-1)-r(t-2)7+j

W(t)=d+eY(t)

P(t)=Y(t)-V;(t)

Y(t)=C(t)+I(t)

C(t)=19,618.84+0.72412^(1-1) 

+0.53286P(t-1)

I(t)=19,348.34+1.OO6382P(t-1) 

-P(t-2)7

w(t)=0.595ieY(t)-3,570.03 . 

P(t)=Y(t)-W(t)

Y(t)=0.59270t(-35,747.46costB 

-88,21161sintB)+112,462.46

where B=37°35.5*=0,6559 Rad., 

and Y(t)=HIP

When t in-

creases in-

definitely, 
O.5927Ot ap-

proaches zero 

because 0.5927^ 

is less than 

one. Then 

Y(t) will 

approach the 

value 

112,462.46.

Note: (i) In this table all solutions for Y(t) are measured in millions of dollars (1929), where Y(t) 
designates gross national product except in model (?1).

(ii) The basic year (i.e., at time t=0) of all solutions in this table is 1930, except those 
with a notification.



Table D

Formulation of Model Model with Est'd Parameters Solution Remarks

1) Y(t)=C(t)+l(t)-tG(t)

C(t)=cY(t) 

i(t)=iZc(t)-c(t-i}7 

G(t)=gY(t)

Y(t)=C(t)+l(t)^(t)

C(t)=O.66298Y(t)

l(t)=2.195O7Zc(t)-c(t-l}7

G(t)=O.1889OY(t)

Y(t)=93,453(1.11331/
The rate of growth 

is too high.

2) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t)

I(t)=i^(t)-C(t-1)7+A

G(t)=gY(t)

Y(t)=C(t)+l(t)-KJ(t)

C(t)=O.66298Y(t)

l(t)=O.74771^(t)-c(t-l)7

+23,324.19

G(t)=O.1889OY(t)

Y(t)=157,473.21

t
-64,020.21(1.42610)

The rate is too 
high and income 
is going to fall 
in negative value.

3)' Y(t)=C(t)+l(t)-K3(t)

C(t)=cY(t) 

l(t)=i/c(t-l)-C(t-2)7

G(t)=gY(t)

Y(t)=C(t)+l(t)-Ki(t)

C(t)=O.66216Y(t)

l(t)=2.24533Zc(t-l)-C(t-2)7

G(t)=0.18952Y(t)

t 
Y(t)=107,550.72(1.12661) 

-3,114.73(8.89807/

(Basic Year: 1931)

The rate of the 
negative term is 
greater than that 
of the positive, 
so Y(t) is going 
to be negative.
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Formulation of Model Model with Est'd Parameters Solution Remarks

M Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t) 

l(t)=iZY(t)-Y(t-l)7 

G(t)=eY(t)

Y(t)=C(t)+l(t)-K}(t)

C(t)=O.66298Y(t)

l(t)=1.512TO^f(t)-Y(t-l)7

G(t)=O.1889OY(t)

Y(t)=93,^3(1.10854)t
The rate is too 

high.

5) . Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t) 

l(t)=iZY(t-l)-Y(t-2)7

G(t)=gY(t)

Y(t)=C(t)+l(t)-K?(t)

C(t)=O.66216Y(t)

l(t)=l.H3317ZY(t-l)-Y(t-2)7

G(t)=O.189525Y(t)

Y(t)=107,795.38(1.132791

-3,359.38(8.530^)*

(Basic Year: 1931)

Y(t) is going to be 
negative because 
the rate of the 
negative term is 
greater than that 
of the positive 
term.

6) Y(t)=C(t)+l(t)-Kl(t)

C(t)=cY(t)

I(t)=i/Y(t)-Y(t-1)7 

+JY(t)

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

C(t)=O.66298Y(t)

l(t)=O.13835ZY(t)-Y(t-l)7

+O.14249Y(t)

G(t)=O.1889OY(t)

Y(t)=93,i*53(l.01*21*0)*
This is the same 
rate as that in 
model 6 of Table A. 
This rate seems 
quite moderate.
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Formulation of Model Model ■with est'd Parameters Solution Remarks

7) Y(t)=C(t)+l(t)-Kl(t)

C(t)=cY(t)

I(t)=i/Y(t)-Y(t-1)7 

+JY(t)+A

G(t)=g(t)

Y(t)=C(t)+l(t)4<?(t)

c(t)=o.66298Y(t)

l(t)=O.12592ZY(t)-Y(t-l)7

40.17392Y(t)-6,852.99

G(t)=O.1889OY(t)

Y(t)=265,583.46

-172,130.46(0.82993)*

O.82993 is less 
than one, so 
Y(t) will approach 
the value 
126,583.46.

8) Y(t)=C(t)+l(t)4G(t) 

C(t)=cY(t)+a 

i(t)=iZc(t)-c(t-i)7 

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

c(t)=0.58363Y(t)+17,585.89

I(t)=2.195O7/c(t)-c(t-l)7

G(t)=O.1889OY(t)

Y(t)=77,3O9.48

+16,143.52(1.21590)*

The rate is too 

high.

9) Y(t)=C(t)+l(t)-K}(t)

C(t)=cY(t)+a 

I(t)=i/C(t)-C(t-1)7+A 

G(t)=gY(t)

Y(t)=C(t)+l(t)4O(t) 

c(t)=o.583637(1)417#585•89 

l(t)=0.74771/C(t)-c(t-lV 

+23,324.19

G(t)=0.18890Y(t)

Y(t)=179,845.18

-86,392.18(2.08886)*

Y(t) is going to 
be negative over 
time.



Table D (continued)

Formulation of Model Model with est'd Parameters Solution Remarks

10) Y(t)=C(t)+l(t)-H3(t)

C(t)=cY(t)+a

l(t)=iZY(t)-Y(t-l)7

G(t)=gY(t)

Y(t)=C(f)+l(t)-KJ(t)

C(t)=O.58363Y(t)+i7,585.89

I(t)=1.5127OZY(t)-Y(t-l)7

G(t)=O.1889OY(t)

Y(t)=77#3O9-^8

16,143.52(1.17699)

The rate is too 

high.

11) Y(t)=c(t)+I(t)-K;(t)

C(t)=cY(t)+a 

l(t)=iZY(t-|)-Y(t-2)7 

G(t)=gY(t)

Y(t)=C(t)+l(t)-K3(t)

C(t)=0.58397(t)+17,^96.55

l(t)=l.ll3317ZY(t-l)-Y(t-2)7

a(t)=O.18952Y(t)

Y(t)=77,246.89

+31,786.61(1.24495)t

-4,597.50(5.08246/

(Basic Year: 1931)

The negative term 
has a greater rate, 
so Y(t) will be a 
negative value.

12) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t)+a 

l(t)=iZY(t)-Y(t-l)7 

+JY(t)

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

C(t)=0.58363Y(t)+17,585.89

I(t)=O.13835ZY(t)-Y(t-l)7

+O.lte49Y(t)

G(t)=O.1889OY(t)

Y(t)=2O6,927.78

-113,474.78(2.9252)

Y(t) will fall in-
to negative value.

o



Table D (Continued)

Formulation of Model Model with est’d Parameters Solution Remarks

13) Y(t)=C(t)+l(t)-K}(t)

C(t)=cY(t)+a

I(t)=i/Y(t)-Y(t-1)7

+jY(t)+A

G(t)=gY(t)

Y(t)=C(t)+l(t)4G(t)

C(t)=0.58363Y(t)+17,585 • 89

l(t)=O.12592Zx(t)-Y(t-l)7

+O.17392Y(t)-6,852,99

G(t)=O.1889OY(t)

Y(t)=200,425.04

.-106,972.04(1.74007)t

Y(t) will be nega-

tive.

14) Y(t)=C(t)+l(t)4G(t)

C(t)=cY(t-l) 

l(t)=iZ?(t)-Y(t-l)7 

G(t)=gY(t)

Y(t)=c(t)+I(t)+G(t)

C(t)=O.68946Y(t-l)

l(t)=1.5127O^(t)-Y(t-117

G(t)=O.1889OY(t)

Y(t)=93,453(1.17338?
The rate is too 

high.

15) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t-l) 

l(t)=iZx(t)-Y(t-l)7 

+JY(t)

G(t)=gY(t)

Y(t)=C(t)+l(t)4G(t)

C(t)=O.68946Y(t-l)

l(t)=O.13835ZY(t)-Y(t-l)7

+O.14249Y(t)

G(t)=O.1889OY(t)

Y(t)=93,453(1.03930?
This rate seems 

quite moderate.



Table D (Continued)

Formulation of Model Model with est'd Parameters Solution Remarks

16) Y(t)=C(t)+l(t)-K;(t)

C(t)=cY(t-l) 

l(t)=iZY(t)-Y(t-l)7 

+aY(t)+A 

G(t)=eY(t)

Y(t)=C(t)+l(t)+G(t)

C(t)=O.6891i55Y(t-l)

I(t)=0.12592/Y(t)-Y(t-l)7

+O.17392Y(t)-6,892.99

G(t)=O.1889OY(t)

Y(t)=131,O95.41

-37,642.41(1.10225)t

Y(t) will be nega-

tive.

17) Y(t)=C(t)+l(t)+C(t)

C(t)=cY(t-l)-ta

l(t)=iZY(t)-Y(t-l)7

G(t)=gY(t)

Y(t)=C(t)+l(t)-KJ(t)

C(t)=0.60235Y(t-l)+18,549.27

l(t)=1.51270ZY(t)-Y(t-l)7

G(t)=O.1889OY(t)

Y(t)=88,858.79 

t 
+45,942.11(1.29753)

The rate is too 

high.

18) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t-l)+a

l(t)=iZY(t)-Y(t-l)7 

+jY(t)

G(t)=gY(t)

Y(t)=c(t)+l(t)+G(t)

C(t)=O.6O235Y(t-l)+18,549.27

I(t)»O.138355(t)-Y(t-l)7

+O.14249Y(t)

G(t)=O.1889OY(t)

Y(t)=279,939.43
-186,486.43(0.87500)^

0.87500 is less 
than one, so 
Y(t) will approach 

the value 
279,939.43.



Table D (Continued)

Formulation of Model Model •with est'd Parameters Solution Remarks

19) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t-J)+a

I(t)=i/Y(t)-Y(t-1)7

+jY(t)+A

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

c(t)=o.6O235Y(t-1)+18,549.27

l(t)=0.12592ZY(t)-Y(t-l)7

+o.l7392Y(t)-6,852.99

G(t)=O.1889OY9&)

Y(t)=335,810.69

-242,357.69(0.93189 J1

O.93189 is less 
than one, so 
Y(t) will approach 
the value 
335,810.69

20) Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t)+bt4ti

(i)=iZc(t)-c(t-i)7

G(t)=gY(t)

Y(t)=C(t)+l(t)-K}(t)

0(t)=0.59769Y(t)-132.6^t 

+16,880.40

l(t)=2.195O7Zc(t)-c(t-l)7

G(t)=O.1889OY(t)

Y(t)=73,913.67-621.52t

+19,539.33(1.191i26)t

The rate is too 

high.

21) Y(t)=C(t)+l(t)-K;(t)

C(t)=cY(t)+bt+a 

I( t )=i^( t )-C( t-lj&A 

G(t)=gY(t)

Y(t)=c(t)+i(t)t<;(t)

0(t)=0.59769Y(t)-132.64t 

+16,880.40

l(t)=O.71t771Zc(t)-c(t-l)7 

+23,324.19

G(t)=gY(t)

Y(t)=186,626.05-621.52t

-93,173-O5(1.91399)t

Y(t) falls into 

negative value.



Table D (Continued)

Note: (i)In this table all solutions for Y(t) are measured in millions of dollars (1929), where Y(t) 
designates gross national product, (ii) the basic year (i.e. at time t=o) of all solutions 

in this table is 1930 except those with a notification.

Formulation of Model Model with est’d Parameters Solution Remarks

22) Y(t)=C(t)+l(t)+G(t) 

C(t)=cY(t)+bt-ta 

I(t)=i/Y(t)-Y(t-1)7 

G(t)=gY(t)

Y(t)=C(t)+l(t)-K}(t)

c(t)=O.59769Y(t)-132.62tt

+16,880.40

l(t)=1.51270/Y(t)-Y(t-l)7

G(t)=O.1889OY(t)

Y(t)=74,693.37-621.52t 
+18,759-63(1.16425 )t

The rate is too 

high.

23) Y(t)=C(t)+l(t)+G(t) 

C(t)=cY(t)+bt+a 

l(t)=i/5(t)-Y(t-l)7 

+JY(t) 

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

C(t)=0.59769Y(t)-132.64t 

+16,880.40

l(t)=O.13835/Y(t)-Y(t-|)7

+O.14249Y(t)

G(t)=O.1889OY(t)

Y(t)=16,862.05-1,870.221 

+76,590.95(2.05176 yt
The rate is too 

high.

24) Y(t)=C(t)+l(t)+G(t) 

C(t)=cY(t)+bt+a 

l(t)=i/Y(t)-Y(t-117 

JY(t)+A

G(t)=gY(t)

Y(t)=C(t)+l(t)+G(t)

C(t)=0.59769Y(t)-13^S4t

16,88o.4o 
l(t)=O.12592ZY(y)-Y(t-117 

+O.173?2Y(t)-6,852.99

G(t)=O.i889OY(t)

Y(t)=243,212.40-3,358.761 
-149,759.40(1.45690)*

Y(t) falls into 

negative value.
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C(t) = cY(t) + a 

C(t) = cY(t) + bt + a 

and Kt) = i/?(t) - Y(t-1)7 + jY(t) + A 

I(t) = i/Y(t) - Y(t-1)7 + jY(t) 

from which under each definitional equation four combinations can be 

made. They are:

( C(t) = cY(t) + a

I I(t) = 12Y(t) - Y(t-1]7 + jY(t) + A

fC(t) = cY(t) + a 

ll(t) = i^(t) - Y(t-1 )7 + jY(t) 

fC(t) = cY(t) + bt + a 

ll(t) = i/Wt) - Y(t-1>7 + jY(t) + A 

rC(t) = cY(t) + bt + a 

\l(t) = i/Y(t) - Y(t-1)7 + jY(t)

Accordingly, these combinations, together with the definitional equation, 

should yield a. better result. Lot us look at Table C, which is under 

the definition, Y(t)=.C(t)<-I(t). Except the first combination which can 

yield a moderate rate as shorn in Table C model 14, the other three com-

binations cannot give a satisfactory result. The second combination as 

shown in Table C model 13 yields a negative value for Y(t), This does 

not make sense. The third combination as in Table C model 30 yields a 

rate 0.52423 or 52.423 per cent, which is too high in the "real world". 

The last combination as in Table C model 29 gives a negative value for 

Y(t). These four combinations under the definition, Y(t)=C(t)+I(t)+G(t), 

can be seen in Table D, model 13, model 12, model 24 and model 23, re-

spectively. In Table D, the solution for Y(t) from the first three 
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combinations is a negative value. The last combination as in Table D 

model 2? yields a very high rate of growth, i.e., 1O5.1?6%. Although 

these consumption and investment functions appear to be fairly accurate 

in describing individual economic relations, when a consumption function 

and an investment function interact together, the result of this inter-

action may be absurd. That is to say, the combination of a good consump-

tion function and a good investment function may not necessarily make a 

good model. The above first combination can make a moderate model in 

Table C, but it cannot do the same job in Table D.

In general, according to our empirical work, there are four cases in 

the solutions of both Table C and Table D. The first case refers to those 

solutions with a moderate, i.e., around 0.041998. Only six out of fifty- 

five models can yield a moderate rate. In the second case the rate is a 

negative value. For example, the solution of model 7 in Table C is 

Y(t)=247,008.24-155,355.24(O.75999)t, Where 0.75999=1-0.26001, i.e., the 

rate is -26.001 per cent. Since 0.75999 is less than one, then in long- 

4-
run as t approaches infinity, (0.75999) will approach zero, so that Y(t) 

will approach asymptotically the value 247>008.24. Thus in this case, 

Y(t) will approach a constant level asymptotically over time, i.e., after 

Y(t) has attained to that level, Y(t) will remain there forever and stop 

growing. There are not many but six models yield a negative rate in this 

study. In the third case the rate is too high, which refers to the rate 

close to 10 per cent or above, so that the path of Y(t) over time is 

steeply explosive. Some models yield an extremely high rate, such as 

that of model 25 in Table D. Totally there are eighteen models in this 

case. The remaining models belong to the forth case, that is, they all 

yield a negative value for Y(t) over time. This is due to the negative
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value of the coefficients which are detennincd by the initial value of 

Y(t) and the value of the constant tern (if any). In this study all 

models involving in second-order difference equation give a negative value 

for Y(t) over time (the reason for this will bo discussed later). For 

example, model 10 in Table C, the rate of the negative term is higher than 

that of the positive term so that the value of Y(t) over time will be 

negative. This negative value is determined by the initial values of Y(0) 

and Y(1) and the value of the constant tern. In Fig. 4-1, four curves, 

y1, y2, y^, and y^ are drawn to represent the path of Y(t) over time in 

the four cases, respectively.

According to our empirical result, the Harrod-Domar model as shown 

in Table C model 4 yields a solution for Y(t) over time with a pretty 

high rate which is classified in the above fourth case. The solution is

Kt) = 93,453(1-11117)^

Here the rate 0.11117 is not the "warranted rate of growth," but it is 

the annual rate of growth of income. This rate, however, can also keep 

saving and investment equal. The assumption of the Harrod-Domar model 

at equilibrium is as follows:

Fig. 4-1
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C(t) = cY(t) 

S(t) = sY(t) 

c + s = 1 

S(t) = I(t) 

and I(t) = i/Y(t) - Y(t-1)7 

Therefore,

sY(t) = i/Y(t) - Y(t-1)7

/Y(t) - Y(t-1)7/Y(t) = s/1 = (1-c)/i = Gw

where Gw is the "warranted rate of growth" which keep saving and invest-

ment equal. From empirical results, we have

(1-c)/i = (1-0.79724)/2.02659 = 0.10005

That is, the "warranted rate of growth" is 0.10005. Since

/Y(t) - Y(t-1)//Y(t) •= 0.10005 

then (1-0.10005)Y(t) = Y(t-1)

or Y(t) = 1.11117Y(t-1)

from which the same general solution as shown in Table C model 4 may be 

obtained. Now judging from the empirical work, indications are that the 

Harrod-Domar model is not good in forecasting, because it yields a rate 

too high for the "real world."

The empirical result also seems to be a good reason for the criticism 

of the unlagged Harrod-Domar model. However, even when a lag is introduced 

into the consumption function (as discussed in Chapter II, this modified 

model will not possess any of Harrod’s properties), still a better result 

cannot be obtained than that as shown in Table C model 17:

Y(t) = 93,455(1.I6652)t

where the rate 0.16652 is even higher than that of the original Harrod- 

Domar model. Furthermore, this modified model with a lagged consumption
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function does not possess any of Harrod’s properties because the rate in 

the solution cannot keep saving and investnent equal. If saving and in-

vestment are equated, then (see Table C model 17)

S(t) = I(t)

or sY(t-1) = i/Y(t) - Y(t-1)7

By the assumption c+s=1, then

(l-c)Y(t-l) = i/Y(t) - Y(t-1)/

Hence (1.O829O6)Y(t-1) = 2.02659/^(t) - Y(t-1)7 

or /Y(t) - Y(t-1)7A(t-1) = 0.17094/2.02659 = 0.08435 

which is the rate equivalent to the "warranted rate of growth" in the 

Harrod-Donar model, i.e., this rate keeps saving and investment equal.

From the above last expression, we have

0.08435Y(t-1) = Y(t) - Y(t-1)

or Y(t) = (1 + O.O8435)Y(t-1) = 1,O8435T(t-1) 

and the general solution is

Y(t) = Yo(1.08435)t

where YQ in this case is 93,453* This rate, 0.08435, oan also keep saving 

and investment equal, but it is different from that given in Table C model 

17 (i*e*» O.I6652). Thus this difference between the two rates implies 

that the rate given in Table C model 17 does not keep saving and invest-

ment equal. Therefore, when a lagged consumption is introduced into the 

Harrod-Donar model, the modified model will not retain the original properties.

The Samuelson model is also invalid in this empirical work. As shown 

in Table C model 15, the solution is

Y(t) =.120,653*22(1.I6753)t - 27,2OO.22(2.O2O35)t

where the rate of the negative term is higher than that of the positive 

term so that income Y(t) will fall into negative value over time. The
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modification of this model by adding some autonomous investment in the 

investment function yields

Y(t) = 0.88782t(-87,715.65costB-105,302.44sintB)+181,168.65 

as shomi in Table C model 16, where 0.88782 is less than one so that 

when t increases indefinitely, 0.887821' will approach zero and then Y(t) 

will approach asymptotically the value 181,168.65. In this case, after 

Y(t) has attained to the value 181,163.65, Y(t) will stop growijag. The 

solutions of these two models, however, do not make any sense from the 

standpoint of economic growth.

The main reason why the Samuelson model is invalid in this study is 

that the period starts in the depression time as we have indicated pre-

viously in Chapter II. Actually this is a general shortcoming of any 

model formulated by second-order difference equation. This is the reason 

why none of the models of second-order difference equation can yield a 

moderate rate for Y(t), including the model formulated by the undercon-

sumption and the overinvestment theories (the solution of this particular 

model can be seen in Table C model 51)•

It is apparent that a model of second-order difference equation can 

be applicable only in a certain particular case. The conditions for a 

model of second-order difference equation are:

1) The necessary condition is that the initial situation of national 

income Y(t) must be progressive, i.e., income must be higher in the 

next period.

2) The necessary and sufficient condition is that the initial rate of 

increase of Y(t) must be great enough (i.e., the value of Y(1)-Y(0) 

must be great enough).
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Take the solution of the Samuelson model again,for illustration,

Y(t) = + A2(2.02035)t (^-3^)

■where A-^ and Ag are constants to be determined by the two initial val-

ues Y(0) and Y(l). The necessary condition is that Y(l) must be 

greater than Y(0). Suppose Y(l) is less than Y(0), such that Y(0)=2 

and Y(l)=l, then at t=0

Y(0) = Ax + Ag = 2

and at t=l

Y(l) = 1.16753A1 + 2.02035A2 = 1.

Solving for A^ and Ag yields

A = 3-5654 and = -I.5654.

Thus the solution for (4-34) is

Y(t) = 3-5654(1.16753)t - 1-5654(2.02035)t

where the rate of the negative term is higher than that of the positive 

term, so that income Y(t) will fall into negative value over time.

But, the other way round, when Y(O)=1, and Y(l)=2, then

Ax = 0.00239 and Ag = O.9976I

and the solution of (4-34) becomes

Y(t) = 0.00239(1.16753/ + 0.99761(2.02035/

Then Y(t) will be in progressive values, consistent with the sense of 

growth. For the necessary and sufficient condition, the initial 

rate of increase of Y(t) must be great enough. Suppose Y(0)=l, and 

Y(l)=l.l, then

A1 = 1.07919 and Ag = -0.07919
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and (4-54) will "become

Y(t) = 1.07919(1.I6755)t - 0.07919(2.02055)* 

where the rate of the negative tera is higher than that of the positive 

term so that Y(t) will be in negative value over time. In this case, 

if the value of Y(1) is only increased by 10£ of the value of the pre-

ceding period Y(0), the model is not applicable. Therefore, in order 

to meet the necessary and sufficient condition, the initial rate of 

increase of Y(t) must be great enough, and its magnitude is determined 

by the values of the two characteristic roots.

So far we merely use the rate of growth calculated by arithmetic 

mean as an index to find out which model can yield a moderate rate for 

Y(t) over time. In Table C, there are four models with a moderate rate, 

namely, models 6, 14, 19, ^4 25; and in Table D, there are two models, 

model 6 and model 15, which have a moderate rate. However, which rate 

is the best? To answer this question we have to make use of the mean- 

squares-error again by taking the average of the sum of the squares of 

the difference between the estimated value and the actual value of the 

observation of Y, such that

/Y(t) - Y*(t)?2

M-S-E = ------------—
n

where Y is the estimated value, Y* is the actual value, n is the number 

of total observations, and t is the tine period. Accordingly, the 

smaller the M-S-E, the better the model. In Table E, the above six 

models are listed; they appear to reflect better rates as well as 

their M-S-E. The models are listed in an ascending order according 
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to the value of the M-S-E. The M-S-E of that computed according to 

the rate of growth hy arithmetic mean is also put in Table E. Besides, 

in Table E, there is a model (C-24) ■which yields a negative rate (i*e., 

-0.03157, as 0.96843=1-0.03157); so the aptitude of the M-S-E of a 

model with a negative rate can be observed.

In Table E, there are more models frcm Table C than from Table D, 

that is, the merging of government expenditures into consumption and 

investment expenditures may yield a better result. The reason for this, 

as mentioned before, may be due to the fact that the portion of invest-

ment arising from government expenditures cannot achieve the function 

of "feed-back" if the total volume of government expenditures is sepa-

rated. However, there is one thing to note, that both model C-6 and 

model D-6 yield the same result. Both of them have the same consump-

tion and investment functions, but in model D-6, the volume of govern-

ment expenditures is separated. Is this a coincidence because of the 

rounding up of decimal points, or is there any other reason? To answer 

this question more investigation and effort are needed, and is beyond 

the scope of this study.

In Table E all consumption functions are either related to the 

current income or to that of the previous period. The suggestion of 

A. Smithies that consumption is also a function of time does not ap-

pear in Table E, that is, his consumption function cannot make a good 

model in this study. With regard to investment functions, in Table E, 

these are all related to the Harrod-Dcmar1s modified investment func-

tion, as suggested by W. Baumol, either with or without the constant
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Table E

Model Solution M-S-E Ref.

Y(t)=C(t)+l(t)

C(t)=cY(t-l)+a

l(t)=iZY(t)-Y(t-l)7+JY(t)4-A

Y(t)=181,306.55(1-02771^-61,853.55 368,322,920.86 0-25

Y(t)=C(t)+l(t)

C(t)=cY(t)

l(t)=iZY(t)-Y(t-l)7+jY(t)

Y(t)=93,453(1. Oh214O)t
476,178,230.92 C-6

Y(t)=C(t)+l(t)+G(t)

C(t)=cY(t)

l(t)=i/Y(t)-Y(t-l)7+jY(t)

G(t)=gY(t)

Y(t)=93,453(1.04240)t 476,178,230.92 D-6

Y(t)=C(t)+l(t)

C(t)=cY(t)+a

I(t)=iZY(t)-Y(t-l)/+JY(t)+A

Y(t)=112,768.58(1.03727)t-19> 315.58 494,310,352.74 c-14

Rate of Growth by Arithmetic 
mean. Y(t)=(l+R)Y(t-l) 
where R=. - ^(LlJ^

Y(t)=93,453(l.O41998)t 536,457,025.87

8
4



Table E (Continued)

Note; The last column of this Table refers to the model number of Table C and Table D.

Model Solution M-S-E Ref.

Y(t)=C(t)+l(t)

C(t)=cY(t-l) 

l(t)=iZx(t)-Y(t-l)7+jY(t)

Y(t)=93,453(l.O395O)t 899,614,708.20 C-19

Y(t)=C(t)+l(t)-K;(t)

C(t)=cY(t-l)

I(t)=i/Y(t)-Y(t-l)7+JY(t) 

G(t)=gY(t)

Y(t)=93^53(l.O3931)t
915,532,930.26 D-15

Y9t)=c(t)+I(t)

C(t)=cY(t-l)+a

l(t)=i^Y(t)-Y(t-l)7+JY(t)

Y(t)=-383,218.40(0.96843)1+

476,671.40
2,025,732,729.36 C-24
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term (i.e., autonomous investment). None of the investment functions 

in Table E is related to the change of consumption. It is also noted 

that there is no lagged investment function in Table E.

There are four models, in Table E, yielding a better result than 

that calculated by the method of arithmetic mean, that is, these four 

models have a smaller M-S-E. It appears then that the common method 

to find the rate of growth by arithmetic mean is not a very good one. 

However, if this common method of arithmetic mean is good enough for 

the prediction of the growth of an economy, econometricians may save 

a lot of time in studying and formulating economic growth models.

The model with the smallest M-S-E in Table E is model 02$):

Y(t) = C(t) + I(t)

C(t) = cY(t-l) + a

I(t) = i/Y(t)-Y(t-lj7+ <)Y(t) + A.

Included in this model is the best investment function, but the con-

sumption function is not a very good one (see previous section). The 

solution of this model is

Y(t) = 181,306.55(1.02771/ - 87,853.55 (M5)

The rate in this solution is a little too low, and the constant term 

is of negative value. Actually, the rate of growth in the United 

States is higher than 0.02771# and a negative constant tenn makes Y(t) 

grow even slower than without that constant term. This model has the 

smallest M-S-E in Table E because there is a large coefficient (i.e., 

181,306.55) so that the deficiency of the low rate can be overcome. 

Also, this low rate can lessen the deviation of the estimated Y(t) 
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in the depression period. If the initial condition is not cast on the 

depression period, then this nodcl will not have the scaliest M-S-E. 

Therefore, even though this codel has the scaliest M-S-E, still it is 

not an ideal model.

It has been indicated that there are two models which have the same 

I'-S-E. They are in the second place in Table E. These two models have 

the same consumption and investment functions, and there are no constant 

terms either in the consumption function or in the investment function. 

Thus the path of Y(t) over tine i; strictly proportional to the rate 

0.04240 only.

In the third place, there is a model in Table E with the best con-

sumption and the best investment function, as indicated in the previous 

section. This model yields a rate slightly lower than that of models 

0-6 and D-6, and its M-S-E is a little larger than that of the latter 

ones.

The last model in Table E is the one with a negative rate of growth, 

i.e., -0.03157. When the time period t keeps going indefinitely, the 

value of Y(t) will approach a maximum level 476,671.40 asymptotically. 

Also it can be seen that its M-S-E is extremely large. Thus it is 

obvious that this model is not applicable.

However, the evaluation as shown in Table E is still not satis-

factory. In Table E, the M-S-E is calculated according to the gen-

eral solution which is determined by the initial value of the model. 

Usually an initial point is quite far away from the average point of 

the sample, as it may often be arbitrary. A great deviation between 

the initial value and the average value will not give a good solution 



88

for the model, because in a general solution the initial value is the 

base of prediction. Therefore the M-S-E of the general solution of a 

good model may not be small er than those of the others due to a bad 

initial condition. In this study, the initial'condition is not an 

ideal one because the period studied, as pointed out before, is from 

the beginning of the Great Depression. Another way of evaluation is 

possible by avoiding the use of the initial value as a base. In order 

to avoid the influence of this initial condition, the solution for 

Y(t) is not performed in the general form in the same way as a differ-

ence equation is solved. All variables are substituted into the defi-

nitional equation, and then like terms are grouped without transposing. 

Thus the estimated value of Y(t) can be obtained by substitutions of 

actual values of variables of each year into the non-general"form.

Using model C-2$ as an example, (^-35) is its general solution as shown 

above. Alternatively, if all variables are substituted into the defi-

nitional equation without transposing, then the estimated values of 

Y(t) can be obtained by the non-general solution

Y(t) = O.33836Y(t) + 0.68008Y(t-l) + 1,611.18 (^-36)

where the Y(t) on the left hand side is the estimated value, and the 

one on the right hand side is the actual value. The values of Y(t) on 

the left hand side can be obtained by substitutions of the annual ac-

tual values into the variables Y(t) and Y(t-l) on the right hand side. 

This process, however, can be said to be a test against economic rela-

tion rather than a forecasting. Thus the magnitude of the M-S-E of 

(^-36) can tell whether or not model C-25 is a good model in describing 
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the relation of econorxc variables in comparison ■with other models- 

Thus according to the non-general solutions, the M-S-E's of these . 

models in Table E Eire calculated again, as tabulated in Table F.

The two Samuelson's models are also put in Table F allowing observa-

tion as to whether or not they are good in testing against econanic 

relation even though they are not applicable in forecasting.

In Table F, the model with the smallest M-S-E is not the same 

one with the smallest M-S-E in Table E. The model with the smallest 

M-S-E in Table E, i.e., model C-25, now is in fifth place in Table F. 

The reason for the decline of this model to fifth place is due to the 

shortcaning discussed above. We have said previously that this is 

not an ideal model, and now we can get a strong support for this re-

mark.

The smallest M-S-E of the model in Table F is in the third place 

in Table E, i.e., model C-14. According to the general solution, it 

does not have the smallest M-S-E in comparison with the general solu-

tions of other models, because the initial condition of this study is 

not perfect. However, according to the non-general form, it does 

have the smallest M-S-E in canparison with the non-general solutions 

of other models. Thus model C-14 is a model which can describe the 

econanic relation better than any of the others. Therefore, accord-

ing to the general solution a good model may not yield good results 

for Y(t) due to a bad initial condition, but according to the non-gen-

eral solution, it shows that the model is still a good one. Let us
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Table F

Model Solution ' M-S-E Ref.

Y(t)=C(t)+l(t)

C(t)=cY(t)+a

I(t)=iZx(t)-Y(t-l)7+jY(t)+A

Y(t)=l.O9666Y(t)-O.lOO2TY(t-l)-69.58 1,071.526.17 0-14

Y(t)=C(t)+l(t)

C(t)=cY(t)

l(t)=i^(t)-Y(t-l)7+JY(t)

Y(t)=1.11192Y(t)-0.11667Y(t-l) I,w,616.it2 C-6

Y(t)=C(t)+l(t)-K?(t)

C(t)=cY(t)

l(t)=iZY(t)-Y(t-l)7+jY(t)

G(t)=gY(t)

Y(t)=1.3272Y(t)-0.13835Y(t-l) 2,031,1^1.66 d -6

Y(t)=C(t)+l(t)-K}(t)

C(t)=cY(t-l)

l(t)=iZY(t)-Y(t-l)7+JY(t)

G(t)=gY(t)

Y(t)=0.46974Y(t)+0.5511OY(t-1) 32,336,35^.85 D-15



Table F (Continued)

Note: The last column of this Table refers to the model number of Table C and Table D.

Model Solution M-S-E Ref.

Y(t)=C(t)+l(t)

C(t)=cY(t~l)+a

l(t)=iZY(t)-Y(t-l)7+JY(t)+A

Y(t)=0-33826Y(t)40.68008Y(t-l)+l,611.18 51,195,650.35 C-25

Y(t)=C(t)+l(t)

C(t)=cY(t-l)

l(t)=iZY(t)-Y(t-l)7+JY(t)

Y(t)=O.31468Y(t)+O.71239Y(t-l) 52,249,847-21 C-19

T(t)=C(t)+l(t)

C(t)=cY(t-l)+a

I(t)=i/Y(t)-Y(t-l)7+JY(t)

Y( t)=0. 311i68y ( t) +0.77368y ( t-1) +10,313.42 62,705,407.26 C-24

Rate of growth by arith-
metic mean.

Y(t)=(l+R)Y(t-l) 
where -i

n £L Y(t-l) J

Y(t)=l.O41998Y(t-l) 124,437,492.00

Y(t)=c(t)+I(t)

C(t)=cY(t-l)

I(t)=i/C(t)-C(t-1)7+A

Y(t)=1.61728Y(t-1)-0.78822Y(t-2)+30,969.63 304,902,615.49 C-16 '

Y(t)=C(t)+l(t)
C(t)=cY(t-l) 
i(t)=iZc(t)-c(t-i)7

Y(t)=3.18788Y(t-l)-2.35882Y(t-2) 1,170,181,423.17 C-15
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look at the model

Y(t) = C(t) + I(t)

C(t) = cY(t) + a

I(t) = i[Y(t)-Y(t-l)]+ JY(t) +A

The consumption function is proportional to the level of the present 

income; and in addition there is seme consumption demand, designated 

by a, independent of income in the consumption function. The invest-

ment function is suggested by W. Baumol. In this investment function 

there is sane investment' demand based on the acceleration principle, 

i.e., i/y(t)-Y(t-117> scme investment demand proportioned to in-

come (such as the community's trade balance), written as JY(t), where 

J is a constant, and some autonomous investment demand independent 

both of the level of income and of its rate of change (or increase), 

designated by A. As mentioned before, these consumption and invest-

ment functions are the best functions considered by this study. This 

model should, then, be the best of the fifty-five models, since it 

consists of the best consumption and investment functions and has the 

smallest M-S-E in Table F.

It has been indicated that if a function (either consumption 

function or investment function) is related to the definitional equa-

tion, Y(t)=C(t)+l(t), its M-S-E is smaller than that when it is re-

lated to the definition, Y(t)=C(t)+l(t)+G(t). It has also been men-

tioned that four out of the six models in Table E (these six models 

yield a moderate rate) are related to Y(t)=C(t)+l(t), saying that the 

definition Y(t)=C(t)+l(t) is better than Y(t)=C(t)+l(t)+G(t).- Now, 
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further empirical support is gained, for this statement. It has been 

shown that both model C-6 and model D-6 yield the same rate, but their 

M-S-E's in Table F (i-e., according to the non-general solution) differ 

from each other. The M-S-E of model C-6 in Table F is smaller than 

that of model D-6. Model C-6 still stands in second place, in both 

Table E and Table F, while model D-6 is in third place in Table F. 

Both model C-6 and model D-6 consist of the same consumption and in-

vestment functions, but model C-6 is related to Y(t)=c(t)+l(t) while 

model D-6 is related to Y(t)=C(t)+l(t)+G(t). Therefore, a model can 

describe the relation of economic variables better if it is related 

to Y(t)=C(t)+l(t).

Model C-24, which yields a negative rate, is still not good accord-

ing to the non-general solution. As seen in Table F, this model has 

a large M-S-E, larger than those of the other six models which yield 

a moderate rate. In Table F, the M-S-E computed according to the 

rate of growth by arithmetic mean is pretty large too.

Both of Samuelson's models, as shown in Table F, have large M-S-E's, 

larger than that of any model in Table F. Both of them involve a 

second-order difference equation. We have already discussed the short-

comings of these two models, as well as any model involving a second- 

order difference equation. According to the results then in Table F, 

more evidence has been gained concerning the impracticability of this 

kind of models.

A summary of interpretations is as follows:
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1) The choice of the initial period or year is of the utmost 

importance in the forecasting of economic growth.

2) Those models involving a second-order difference equation 

x are impracticable in this study.

3) The definition, Y(t)=C(t)+l(t), is better than the defini-

tion, Y(t)=C(t)+l(t)+G(t).

4) A function with a constant term is better than one without 

a constant term.

5) An unlagged function is better than a lagged function.

6) The combination of the best consumption function and the best 

investment function will make the best model.



CHAPTER V

S12.£.IARY AM) CONCLUSION

I. HYPOTHESES

In this study the hypotheses are primarily generated from the 

multiplier and the acceleration principles. Criticism and arguments 

about these two principles have been raised. Economists hold differ-

ent opinions. R. F. Kahn first originated the idea of the multiplier, 

which was later fully developed by Keynes. Many economists think that 

the function of the multiplier is inadequate, since it is merely re-

lated to the original investment as stimulus to income. Keynes de-

fines aggregate income as the sum of the aggregates of consumption and 

investment, and assumes that the volume of investment is autonomous. 

Then investment is rather stable in the Keynesian model. Will some ad-

ditional income generated by investment induce some additional invest-

ment too? This "feed-back11 relation of investment does exist. There-

fore, the Keynesian model is one-sided. It only describes the stimula-

tion of investment upon income through the function of the multiplier 

effect, but it does not explain the stimulation that income has upon 

investment. Hence, in addition to the multiplier principle, the accel-

eration principle originated by J. M. Clark is used to reduce the de-

fect of the multiplier.

The principle of acceleration states that when income is increased 
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by the stimulation of investment, there will yield sane additional 

consumption which will in turn stimulate the volume of investment.

Thus the circuit of "feed-bach" is canpleted, as shown in Fig. 5-1-

In breaking down the circuit, investment is increased in proportion to 

the additional consumption. This is the original idea of the accelera-

tion principle. Since consxmption is a function of income, as indicated 

by Keynes, then by substitution, investment is also a function of income, 

and the circuit of Fig. 5-1 'will become

If we are allowed to borrow the terms from mechanical engineering, we 

may say that the relation in Fig. 5-1 is a "three-stroke cycle" while 

that in Fig. 5-2 is a "two-stroke cycle" in the aggregate economy.

Some economic models are formulated under the concept of "three-stroke 

cycle" such as the Samuelson model, and sane models, like the Harrod- 

Domar model are based upon the "two-stroke cycle."

Sone economists argue about the time lag in economic relations.

The Keynesian assumption that current consumption is a function of the 

level of current income does not involve any time lag, and is said to 
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be "out of history," static, and undynanic. The same time lag argu-

ment is also applied in the investment function; that investment should 

be a function of the change of consumption or inccme of the preceding 

period.

There are other arguments, (i) Consumption is a function of both 

incane and time, (ii) In addition to the acceleration relation, in-

vestment is also a function of the level of present incane, (iii) Ac-

cording to underconsumptionists, consumption is a function of vages 

and profit, both of •which are based on the level of the preceding 

period, and the sum of which is equal to net national income, (iv) In-

vestment is a function of the change in profit of the preceding period, 

as assumed in the overinvestment theory. Furthermore, in addition 

to Keynes’ definition of aggregate incane, sane economists define ag-

gregate inccme as the sum of the aggregates of consumption, investment 

and government expenditures, separating the government sector from 

consumption and investment.

In this study an attempt is made to put all the above arguments 

into the "empirical -world" to see whether they are applicable or not. 

All these arguments are the hypotheses upon which the models of this 

study were formulated.

II. METHODOLOGY

How to determine the empirical relationships among econcmic vari-

ables is a tremendous task. This can only be accomplished by estima-

tion based upon the statistical data obtained. The method of estimation 
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used in this study is the simplest one in econometrics. The straight-

forward least-squares method is used to estimate the parameters of 

each consumption function and investment function. As shown in Chap-

ter IH, our estimated parameters are the best, unbiased estimates in 

that single equation; but they are still not perfect estimates, as the 

usual least squares method has some unsatisfactory consequences.

For the estimates of those equations with a time lag, the usual 

least squares method is again used. It was pointed out in Chapter 

in that the application of the usual least squares method to a lagged 

function will yield negative biased estimates, such as in the equation

C(t) = cY(t-l) 

if c is greater than zero.

The consequences of the estimation of parameters for each single 

equation has been shown. Furthermore, in the model as a whole, when 

the consumption and the investment functions are combined to express 

the income function, the estimates of the parameters are no more un-

biased. In order to eliminate this shortcoming, the indirect least 

squares method or some other complicated method (such as the two-stage 

least squares method and full-information maximum-likelihood method, 

etc., as indicated in Chapter Hi) must be used. None of these com-

plicated methods have been applied to this study because there were 

fifty-five models to estimate and this would have resulted in the 

computation of parameters model by model. Besides, if the parameters 

were estimated model by model, different values would have resulted 
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for the parameters of the same function in different models. This 

would have prevented further comparative analysis. Therefore, in order 

to overcome these difficulties and permit comparative analysis, the 

usual least squares method 'is used to get the same values for the 

parameters in the same function. In this study there are obvious short-

comings in the method of estimation; however, since all these models 

are based upon the same method, the comparison of them is still pos-

sible. Nevertheless, the aim of this study is not'to build up a sin-

gle model which can truly describe the growth or behavior of an econ-

omy, but to give a general interpretation to the various economic 

growth models.

III. CONCLUSION

In all the consumption and investment functions in this study 

the following two functions under the assumption, Y(t)=C(t)+l(t), are 

the best consumption function and the best investment function:

C(t) = cY(t) + a

I(t) = iZY(t) -Y(t-1)7 + jY(t) + A.

The consumption function is an unlagged function. It can be said to 

be a modification of the Keynesian theory, in which the consumption 

function does not have a constant term. An unlagged consumption func-

tion has been criticized as being too static. Is a lagged consumption 

function more realistic than the unlagged one? The answer may not be 

positive, especially in the United States where credit facilities are 

so prevalent. First of all, even though one does not have any income 
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in the last period, one still has to consume in this period (i.e., one 

does not necessarily have to consume in relation to the incctne of last 

period). Secondly, consumption may not be det emined by the incane 

earned in the last period. It may be more realistic that people con-

sume according to their present incane. Assume that people have a habit 

or budget to consume 80^ of their income, which may not mean the in-

come of last period. Let us take a common example of an individual. 

Suppose a man earned $100 last week, and he knows that he is going to 

make $130 this week. Then he will consume $104 ($130 x 8056) instead 

of $80 ($100 x 80$) this week. He may not obtain his money until the 

end of the week, but he can consume out of his cash balance and through 

various credit facilities. The main reason to support a lagged con-

sumption function is that money cannot be spent before it is received. 

This reasoning is too rigid. It is only in the absence of credit 

facilities that people cannot consume their present income, having to 

spend only that income they earned in the preceding period. They could 

not, then, consume more than their last incctne. However, people are 

quite aware that they are entitled to their present incane; and if 

there are credit facilities available, people, will consider present 

consumption and present income together. People would not worry about 

what they had earned but what they have just earned, because the most 

realistic thing for human beings is "the present." Therefore, it may 

be more realistic to work with an unlagged rather than a lagged con-

sumption function in the analysis of economic growth.

The above investment function is not only based upon the 
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acceleration principle but it is also a function of the level of 

present income. Also, there are sane autonanous investment indepen-

dent of both the level of incane and the change of income. As al-

ready indicated, this is a modified Harrod-Domar investment function 

suggested by W- Baumol. An example given by him for that portion of 

investment arising from the level of income is the community’s trade 

balance, so that the value of j may be negative. According to our 

results, J is positive. It seems that this portion of investment is 

not so simple as the community’s trade balance. If there is no 

change of income, according to the acceleration principle only (i.e., 

l(t) = i/Y(t) -Y(t-1}7)# then investment ■will be zero. This situa-

tion is out of reality. The volume of investment may decline but 

■will never be zero because people will never stop consuming. Inven-

tories may be drawn down because of the decline of investment. In-

vestment, however, may decline but will not stop. Therefore, invest-

ment may not depend upon the change of income only, but may also de-

pend upon the level of income. Thus, the existence of that portion 

of investment proportional to the level of income is not so simple as 

a kind of trade balance, and is an important factor in the economy.

The investment functions of all models in this study which yield 

a moderate rate (as tabulated in Table E in Chapter IV) are related 

to the "two-stroke cycle," i.e., related to incane. None of those 

models has the investment function related to the "three-stroke cycle," 

i.e., related to consumption. Perhaps, the "two-stroke cycle" may 
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describe the econcmic relation more directly. Theoretically as indi-

cated before, both "cycles" can achieve the same effect in the accelera-

tion principle, but empirically they have different effects. Moreover, 

the "two-stroke cycle" seems to be more realistic than the "three- 

stroke cycle." It is likely that there is always some extra invest-

ment for new products, seeking a new market and more profit. This 

portion of investment in new products then does not depend upon the 

consumers* usual spending budget, but depends on how much extra money 

consumers want to spend out of their income, that is, some investment, 

as in new products, is determined by incane other than consumption. 

Thus there are two portions of investment: one arising from consump-

tion and the other arising from income. If we designate the former 

portion as Ic and the latter ly, then in symbol

I = IC + ly-

New products may be a kind of substitute for old products, so that 

consumers may shift their consumption to new products. Then the total 

volume of consumption may not be changed. However, if the new prod-

ucts are not substitutes, then the volume of consumption may be 

changed by the additional consxmiption of consumers according to their 

income. Hence, it is very difficult to tell what portion of invest-

ment depends on consumers’ usual budgets (i.e., depends on consump-

tion), and what portion of investment depends on income; that is, it 

is very difficult to identify Ic and ly. Since 1^ is also a function 

of income, it is better to put the total volume of investment in 

terms of income. In other words, in the investment function, it is 
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likely that the "two-stroke cycle" is superior to the "three-stroke 

cycle."

The combination of the above consumption and. investment functions 

under the definition, Y(t) = C(t)+I(t), makes out a model which is 

the best one in this study. Although, according to the general solu-

tion of this model, the mean-squares-error is not the smallest one as 

shown in Table E in Chapter TV, but this is due to the fact that the 

initial value is cast upon the depression period of the 1930'8. How-

ever, this model has the smallest mean-squares-error in Table F, Chap-

ter IV, according to the non-general solution, showing that this model 

is the nearest one to the "real world" in this study. This model is 

(model C-14)

Y(t) = C(t) + I(t)

C(t) = cY(t) + a

I(t) = i/Y(t)-Y(t-l)/ + JY(t) + A.

The model next to the best in this study is

Y(t) = C(t) + I(t)

C(t) = cY(t)

I(t) = iZY(t)-Y(t-l)/ + JY(t).

The difference between this model and the best model rests on the con-

stant term. In this model there is no constant term, either in the 

consumption function or in the investment function. As a matter of 

fact, mathematically, in the long-run a constant term of a function 

does not give much effect, because the value of a constant term does 
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not change over time. The longer the period the less effective the 

constant term is in a growing economy. In other words, the constant 

term must grow relatively more and more insignificant as income grows 

larger and larger over time. Therefore, in the short-run it is better 

to use a constant term, while in the long-run the constant term may 

be ignored.

The consumption and the investment functions of model C-lk (the 

best model in this study) are subject to the definition, Y(t)=C(t)+l(t), 

only. They cannot be applicable under the definition, Y(t)=C(t)+l(t)+G(t), 

in this study, because it is likely that the former definition is more 

realistic than the latter one.

Those models based upon the simple acceleration principle, which 

is merely related to either the change of consumption or the change 

of income, are not applicable in this study. They are likely out of 

plausibility, because, according to the simple acceleration principle, 

when there is no change in either consumption or income, investment 

will be zero. As discussed before, a zero investment does not make 

any sense in the economic growth. An example of this kind of model 

is the Harrod-Dana model, which yields a pretty high rate as shown in 

Table C model 4 in Chapter IV. With regard to those models involving 

in second-order difference equation, such as the Samuelson model, they 

cannot be applicable when initial values are cast upon a depression 

period, or a period with a small rate of increase in national income. 

They can only be applied in a period starting with a fast growing 

national income.
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Nevertheless, the best choice model in this study, (i.e., model 

C-14) is still not a satisfactory one, because its solution gives a 

constant rate. Economic phenomenon is characterized by change. It 

is impossible to have the same constant rate of growth all the time. 

As pointed out before, the rate of growth of an economy is different 

for different periods. Therefore, even the solution of model C-14 for 

Y(t) is pretty close to the "real world," but long-run prediction with 

this rate may not be correct. In case this model is used for forecast-

ing, parameters must be re-estimated from time to time in order to 

conciliate the economic change.

Here let us quote what R. G. D. Allen has said to complete our 

conclusion:

. . . therefore, the multiplier-accelerator model needs 
to be modified or supplemented. There are several, possible 
modifications to consider. The period analysis of the model 
may be too rigid and it may be better to have continuous 
variation. The linear assumptions may be the reason for the 
"unrealistic" features of the model and a non-linear accel-
erator may be the answer.' ;

R. G. D. Allen, Mathematical Economics (London: Macmillan and 
Company, Ltd., 1959), P* 219,



APPEMDIX A

THE 13THCD OF LEAST SQUARES

I SIMPLE LIUEi'iH EEGRSSSIOIT

Simple regression refers to a relationship between two variables. 

Assume there is a random variable Y that is related to another variable 

X by the linear equation

Y = a + bX (A-1)

where Y is called a dependent variable, and X an independent variable, 

also a, b are the parameters to be estimated. By using the method of 

least squares, a regression line (estimated line) is obtained

Y< = a* + b*X (A-2)

where a*, b* = estimates of the two unknown parameters

Y* = ordinate on line for any given value of X.

By the properties of least squares (see Chapter III), gives 

£u2=£(Y-Y’)2 (A-3)

where u=Y-Y*. By substituting (A-1) into (A-?), yields

£ u2 = £ (I - a* - b*X)2 (A-4)

Taking the partial derivatives of (A-4) with respect to a* and b*, and 

2 setting them equal to zero to minimize the value of £ u , we get

£u2 = -2£ (Y - a* - b'X) = 0 (A-5)

£ u2 = -2 £ X(Y - a» - b’X) = 0 (A-6)

Re-write (A-5) and (A-6)

£ (Y - a* - b’X) = 0

£ X(Y - a* - b’X) = 0
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or, re-written

£ Y = na* + b* £ X (A-7)

p
£ XY = a* £ X + b’ £ X (A-8)

Equations (A-7) and (A-8) are the norcal equations, from which the values 

of a* and b* can be obtained:

n£XY-£X£Y
L*------- 2--------- 2

n£ X - ( £ xr

p
£ X £ Y - £ X £ XY

a* = s s—
n £ X2 - ( £ X)2

Alternatively, if we divide through (A-7) by n, then

? = a* + b*j? (A-9)

7'aere ?=£Y/n, X=£X/n, means of Y and X, respectively. (A-9) shows that 

the regression line passes through the point of means. From (A-9), then 

a* can be obtained in a simple way, such that

a* = ? - b’X (A-10)

In (A-1), if the constant term a is dropped out (or say, a is equal 

to zero), then (A-1) becomes

Y = bX (A-11)

In this case, the regression line will be

Y* = b'X (A-12)

Then with the least squares properties

£u2 = £(Y- Y')2

= £ (y  - b’X)2

J3y taking the partial derivatives of the last expression with respect to 

b* and setting it equal to zero for the purpose of minimization, gives

7|r£u2 = -2£x (Y - b’X) = 0



108

o
X XT = b* X X 

o 
or b* = ( X XT)/ £ X (A-13)

II KULTIPLS LD.'EAR REGRESSION

Vi’hen more than two variables are involved, the regression analysis 

is called multiple regression. As a matter of fact, multiple regression 

is the extension of simple regression. Assume there are three variables 

X, T and Z, such that

T = a + bX + cZ 1 (A-14)

where a,b and o are the parameters to be estimated. By using the least 

squares method, gives the multiple regression

Y* = a* + b’X + c»Z (A-15)

where a*, b’ and c’ are the estimates of the three parameters, and Y is 

the ordinate on line for any given value of X. As done in the two var-

iables case, it gives

[u2=[(Y-Y')2
9

» X (Y - a« - b’X - OVZ.Y

Then take the partial derivatives of the sum with respects to a*, b’ and 

c*, and set them equal to zero for minimizations

X (Y - a* - VX - c'Z) = 0

£ X(Y - a* - b’X - c’Z) = 0

X Z(Y - a’ - b’X - c’Z) = 0 

or, re-written

X Y = na’ + b» £ X + o’ X Z (A-16)

£ XY = a’ £ X + b’ £ X2 + c* £ XZ (A-17)

£ ZY = a’ £ Z + b’ £ XZ + c* X Z2 (A-18)
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Solving the normal equations (A-16), (A-17) and. (A-18), v/e can obtain 

the values of a*, b* and c*. Alternatively, since the least squares 

plane passes through the point of means, we can also obtain a* by 

a* = ? - b’X - c*2

In the case that the constant term is equal to zero, then

Y‘ = b»X + c’Z

Similarly

£u2 (Y- Y’)2

9 
= £ (T - b*X - c’Z)

Then take partial derivatives with respects to b’ and c*, and set both 

of them to be zero, such that

£ X(Y - b’X - c’Z) = 0

£ Z(Y - b’X - c’Z) = 0 

or

o
£ XY = b’ £ X + c* £ XZ

9
£ ZY = b« £ XZ + c’ £ Z

By solving the last two simultaneous equations, yields 

9
£ XY £ Z^ - £ ZY £ XZ 

b* = 2 2 2
£ X2 £ Z2 - ( £ XZ)2

£ X2 £ ZY - £ XY £ XZ 

q | s n * I - _

£ x2 £ z - ( £ xz)

If the dependent variable Y is related to three or more variables, 

still the same principle can be applied. In general if Y is a function 

of k variables, let the general multiple regression be written as

Y’ = a’ + b’X1 + b’Xg + ... + b^

and the normal equations are



110

£ I . a'n » b’ £ X,

XX,!. »>LX1

+ b« £ X2 + 

+ b^ £ +

...

... H-b^X^

£ xkY = «' L X.K + b. £ xkx1 + 1 Va * ...♦b.£^

In this study, however, no dependent variable is a function of note 

than two variables.



APPEin)IX B

SOLUTION OF LIL'EAR DIFFERENCE EQUATIONS

I FIRST-ORDER DIFFERENCE EQUATIONS

A) Y(t) = Y(t-1) + c

- In this equation, Y is the variable, c is a constant, and. t is a 

positive integer designating the time period.

When t=1, Y(1) = Y(0) + c

t=2, Y(2) = Y(1) + c = Y(0) + c + c « Y(0) + 2c

t=3, Y(3) = Y(2) + c « Y(0) + 2c + c = Y(0) + Jc

t=n, Y(n) = Y(0) + nc

Write t for n, then the general solution for Y(t) is

Y(t) = Y(0) + to

B) Y(t) x aY(t-l)

In this equation, Y and t have the same meaning as before, and a is 

a coefficient.

When t=1, Y(1) = aY(0)

t=2, Y(2) = aY(1) = a/aY(0)? = a2Y(0)

t=3, Y(3) = aY(2) = aA2Y(0)7 = a5Y(0)

t=n, Y(n) = a^CO)

Write t for n, then the general solution for Y(t) is

Y(t) = aSfO)
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C) Y(t) = aY(t-l) + c (B-1)

Since there is a constant tcra c in this equation, so it is called 

a non-honogeneous first-order difference equation. In this kind of 

equation (non-honogeneous difference equation), the general solution 

consists of two parts: the solution of the honogeneous counterpart, y(t), 

and the particular solution, ?, of the complete non-homogeneous equation, 

such that the general solution is

Y(t) = y(t) + ? (B-2)

First, to solve the honogeneous counterpart of (B-1)

y(t) = ay(t-l) (B-3)

let y(t)=kxt, where k is some constant to be found, then

y(t-1) = kV"1

From (B-J), it gives

, t . t-1
kx = akx

kx^”\x - a) = 0

x - a = 0

x = a

So y(t)=kx"^ is a solution, if x=a, i.e., if

y(t) * ka^ (B-4)

wt.ich is the solution of the homogeneous counterpart.

Secondly, to find the particular solution ?, let

? = Y(t) = Y(t-1)

From (B-1), it gives

? s i? + c

or, re-written

? = c/(1-a) (B-5)
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. where (1-a)/0.

Now, from (B-2), it yields

Y(t) = kat + c/(1-a)

where k is an arbitrary constant, and can be determined by using the

initial value Y(O). Vthen t=0, then

Y(0) = k + c/(1-a)

Thus,

k = Y(0) - c/(1-a)

Therefore, the final solution is

Y(t) = /Y(0) - c/(1-a)7at + c/(1-a)

D) Y(t) = aY(t-1) + bt + c (B-6)

First, for the homogeneous counterpart 

y(t) = ay(t-l)

which is the same as (B-J), the solution for y(t) can be obtained as 

before;

y(t) = ka11

where k is a constant.

Secondly, for the particular solution T(t), let

Y(t) = Y(t) = Y(t-1) = nt + n (B-7)

where m and n are some constants to be found. Then from (B-6) it gives

?(t) = a?(t) + bt + c

or, re-written

mt + n = a2m(t-1) + n/ + bt + o

By transposing and grouping the like terms, yields

(t - at - a)m + (1-a)n = bt + c (B-8)
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So if T(t)=mt+n, a and n must satisfy (B-8) and then (B-7)«

Let t=0, then from (B-8) it gives 

am + (1-a)n = c (B-9)

and if t=1, 

a + (1-a)n = b + c (B-10)

Substract (B-9) from (B-10), then 

bi - am = b 

or a = b/(1-a)

From (B-9) it gives

a2^7(1-a)7 + (1-a)n = c

9 
or n = c/(1-a) - ab/(1-a)

Thus, the values of a and n can satisfy both (B-7) and (B-8). From 

(B-7) it gives

9 
?(t) = bt/(1-a) + c/(1-a) - ab/(1-a)

9 
= (bt+c)/(1-a) - ab/(1-a;

Therefore, finally the general solution is

Y(t) = y(t) + ?(t) 

= ka^ + (bt+c)/(1-a) - ab/(1-a)^

where the value of k can be found by using the initial value Y(0) by 

setting t=0, such that

p 
k = Y(0) - c/(1-a) + ab/(1-a)

II SECOKD-ORDER DIFFERI'-KOB EQUATIONS

A) Homogeneous Second-order Difference Equation:

Y(t) + aY(t-l) + bY(t-2) = 0 (B-11)
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Let Y(t)=Ax^; then from (B-11) it £ives 

. t t-1 , t-2 
Ax + aAx + bAx = 0

By factorizing, yields 

, t-2, 2 , . 
Ax (x + ax + b) =0

Thus, if Y(t)=Ax\ x nust satisfy the relation 

2 
x + ax + b = 0

which is a quadratic equation. The solution of x can be obtained by 

conpleting a square, such that

-a + (a^ - 4b)7 

X = ------- -------- (B-12)

So there axe two possible values for x:

-a + (a2 - 4b

2
5) The roots are conplex, i.e., a '^4b.

Xi = 2

 -a - (a2 - 4b)7

x2 = 2

Thus, there are two solutions for Y(t):

Y(t) = AlX^ and Y(t) =

By adding up these two possible solutions, gives a core general solution:

Y(t) = A.jX* + AgX* (B-13)

where A^ and Ag are arbitrary constants. This general solution depends 

on the nature of the characteristic roots x^ and Xg of the quadratic 

equation. There are three possible cases.

2
1) The roots are real and unequal, i.e., a > 4b.

2
2) The roots are real and equal, i.e., a = 4b.
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p
Case (1): a^>4b

From (B-1J), the values of A1 and A2 can "be obtained in terms of 

the initial values Y(0) and Y(1) by setting t=0 and t=1 respectively, 

such that

Y(0) = A1 + A2

Y(1) = A1x1 + A2x2

By solving these two equations, yields

Y(1) - x 2Y(0)
A. = -------- -----
1 x1 - x2

Y(1) - x^O)
A2 = x2 - x1

The general solution thus becomes

where x^ and x2 are given in the above in terms of a and b

p
Case (2): eT = 4b

In this case the form of the solution is a little difference, i.e,,

Y(t) = A^1 + A2txt (B-14)

where, from (B-12), x=-a/2

By introducing the initial values, then from (B-14), gives

Y(0) = A1

Y(1) = A.jX + AgX

Therefore,

A1 = Y(0), and Ag =/Y(1) - xY(O)//x 
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and the final solution is

Y(t) = YCOx1 + tx^d) - xY(O)//x

which can also be written as

Y(t) = 2x(1-t)Y(0) + tY(1 ]7xt"1

where the value of x as civen in the above is (-a/2).

2
Case (3): a < 4b

In this case the roots are complex, involving the imaginary number 

/^7, or i, such that

x^ = c + di

x2 = c - di

2 4-
where c=-a/2, and d=(4b-a r/2. The values of (c+di) and (c-di) can. be 

expressed in trigonometric functions such that

c + di = (c^ + d^)^^c/Cc^+d^)^ +id/(c^+d2)^7

= (c + d )‘(cosB + i sinB)

,. » 2 ,2 r •» 2 .2 »4r .. •, 2 ,2 7
c - di = (c + d ) £c/(c +d )- - id/(c +d YJ

= (c^ + d^)^(cosB - i sinB)

where B is some angle such that

9 9 4-
cosB = c/(c + d Y

9 9 4-
sinB = d/(c + d Y

Therefore,

t , j-\tx1 = (c + di)

= (c^ + d^)^^(cosB + i sinB)^

= (o^ + d^)^^(costB + i sintB)
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$2 = (° - <ii)t

= (c^ + d^)^^(cosB - i sir.B)^

= (c^ + d^)t^2(costB - i sintB)

Then from (B-1J) it gives

Y(t) = AlX^ + A2x *
= (c2 + d2)t//22TA1+A2) costs +i(A1-A2)sintB7 (B-15)

Since A^ and Ag are arbitrary, so let

A.] + A2 = g

(A1 - Ag)i = h

where g and h are real numbers. This implies that (A1-Ag) is imaginary.

Re-write (S-15):

Y(t) = (c2 + d2)^2(g costs + h sintS) (B-16)

when t=0, then

Y(0) = g cosO° + h sinO° = g

Y/hen t=1, then

Y(1) = (c2 + d2)^(g cosB + h sinB)

= (c2 + d2)^X(0) cosB + h sin^

Then solve for hs

h = 2^(1 )-(c2+d2)^Y(0)cosB^//Tc2+d2)^sin^7

Since the value of c,d,g, h and B are known, therefore, the solution 

for Y(t) can be obtained from (B-16).

B) Non-homogeneous Second-order Difference Equation:

Y(t) + aY(t-1) + bY(t-2) = q (B-17)
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First, with the sar«e procedure as before, find the solution of the 

homogeneous counterpart which is

y(t) + ay(t-1) + by(t-2) = 0 (B-18)

Fron (B-18), there are three possible solutions:

y(t) = + agX*

y(t) = a^ + agtx*

y(t) = (c^ + costB + h sintB)

where the values of c, d, g, h and B are given as before.

Secondly, for the particular solution, as done before, let Y be 

the particular solution so that

? = Y(t) = Y(t-1) = Y(t-2)

From (B-17) it gives

5 + a? + b? = q

or ? = q/(1+a+b)

where (1+a+b)^0, so that the particular solution is acceptable. Since

Y(t) = y(t) + ?

then there are three possible solutions for Y(t):

Y(t) = a.]** + &2x 2 + q/CI+a+b)

Y(t) = a^x^ + agix0 + q/(1+a+b)

Y(t) = (c^+d^(g costB + h sintB) + q/(1+a+b) 

Substituting the values of c, d, g, h and B as given in the above, 

therefore, according to the nature of the characteristic roots X| and 

x2, the value of Y(t) can be obtained.



APPEPBIX C

BASIC DATA
(X'oney Value in Millions of 1929 Dollars)

Year
Consumer 
Price 

Indexes

Gross
■ National 

Product

Personal 
Consumption 
Expenditures

Gross 
Private 

Investment

1929 100.000 104,456 78,952 17,002

1950 97-487 93,455 72,797 11,258

1931 88.777 85,913 69,087 . 6,445

1932 79.732 73,528 61,840 1,557

1933 75-544 74,081 61,411 2,059

1934 78.057 85,240 66,482 4,249

1935 80.067 90,552 70,302 7,775

1936 80.905 102,271 77,394 10,272

1937 85.752 108,591 80,507 14,100

1933 82.245 105,626 78,596 9,447

1939 81.072 112,565 85,556 12,577

1940 81.742 125,092 87,936 17,940

1941 85.930 146,424 95,281 22,559

1946 113.903 184,949 129,153 29,021

1947 150.318 179,782 126,927 51,076

1948 • 140.569 184,817 127,052 ‘ 55,181

1949 159.028 185,615- 150,505 26,424

1950 140.569 202,750 158,929 56,017

1951 151.591 217,015 158,402 58,729

1952 154.941 225,955 141,844 35,052

1953 156.114 254,050 149,025 31,968

1954 156.784 251,600 151,817 51,785

1955 156.281 154,529 164,409 41,551

1956 158.626 264,257 170,159 44,316

1957 164.154 269,727 175,717 43,294

1958 168.677 265,548 175,822 54,520

1959 170.017 285,915 184,416 42,529

1960 172.697 291,050 190,062 43,286

1961 174.539 297,138 195,279 42,050

1962 176.549 515,059 202,071 47,085

1963 178.727 326,709 209,794 48,542

Column (1) (2) (5) (4)
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BASIC DATA (Continued)

(IZoncy Value in 1'illicns of 1929 Dollars)

Year
Government Expenditures Bet 

National 
Product

Wage 
& 

Salary

Net 
ProfitTotal

Govc:rr-L:ent Gcvcr:.r.:cnt
Consumption Investment

1929 6,482 4,361 4,121 95,819 50,423 45,396

1950 9,418 5,009 4,409 84,692 47,378 37,314

1951 10,385 6,100 4,285 76,715 44,064 32,651

1952 10,151 6,702 3,429 63,777 38,224 25,553

1933 10,651 . 7,607 3,024 64,602 38,584 26,218

1934 12,509 8,477 4,052 74,129 43,180 30,949

1935 12,477 8,325 4,152 81,515 45,824 35,691

1936 14,605 8,224 6,381 95,007 51,814 41,193

1937 13,984 8,690 5,294 99,143 55,052 44,091

1938 15,585 9,835 5,748 94,163 55,254 38,909

1939 16,450 10,164 6,266 102,695 56,667 46,028

1940 17,216 11,418 5,798 113,124 60,945 52,179

1941 28,804 18,855 9,949 135,902 72,252 63,650

1946 26,775 20,878 5,897 175,561 98,212 77,349

1947 21,779 16,734 5,045 169,784 94,264 75,520

1948 24,604 19,012 5,592 173,795 96,303 77,492

1949 28,886 21,801 7,085 173,183 96,640 76,548

1950 27,804 20,044 7,760 189,169 104,273 84,896

1951 39,884 28,109 11,775 202,522 112,615 89,907

1952 49,079 34,250 14,829 208,461 119,308 89,153

1953 53,057 37,554 15,503 217,059 126,898 90,161

1954 47,998 35,776 14,222 213,225 125,178 88,047

1955 48,369 55,021 13,343 233,863 154,951 98,912

1956 49,782 56,260 13,502 242,563 143,504 99,059

1957 52,716 38,272 14,444 246,918 145,320 101,598

1958 55,406 39,338 16,068 240,662 142,167 98,495

1959 57,170 40,591 16,579 259,822 152,020 107,802

1960 57,682 40,954 16,728 266,155 157,101 109,034

1961 61,849 43,913 17,936 271,653 159,747 111,906

1962 65,885 46,778 19,107 287,434 168,301 119,133

1963 68,573 48,687 19,886 298,265 174,651 125,614

Colurm (5) (6) (7) (8) <9). (10)
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Sources of Data. Except column (1), all data are originally in 

current dollars from U. S. Department of Commerce, Office of Business 

Economics, Survey of Current Business (Washington, D. C.: U. S. Govern-

ment Printing Office, 1930-1964), and converted into 1929 dollars accord-

ing to the "Consumer Price Index" given in column (1). An attempt has 

"been made to get all revised figures so that a series of Survey of Cur-

rent Business has been consulted. The following are some special remarks.

Column (1). The data are originally from U. S« Department of Com-

merce, Bureau of the Census, Statistical Abstract of the United States 

(Washington, D. C.: U. S. Government Printing Office, 1930-1964), on the 

base, 1957-1959=100. A series of Statistical Abstract of the United 

States has been consulted in order to get the revised figues. As shown 

in this column the data are already converted into 1929 dollars, i.e., 

1929=100.

Column (2). This column is the sun of column (5), column (4) and 

column (5).

Column (5). This column is the sum of column (6) and column(7)« 

For 1929-1957, the apportion of this column into column (6) and column 

(7) is according to the proportions of column (6) and column (10) of 

Table A-Ha of J. W. Kendrick’s Prcdnctivity Trenda in the United States 

(Princeton: Princeton University Press, I96I), pp. 295-295* For 1957- 

1965, the proportions are based on the average of 1929-1957* The aver- 

age is approximately 29#.

Column (8). This is the sum of column (9) and column (10).

Column (10). This is obtained by substracting column (9) from (8).
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