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Abstract

In the �rst part, a systematic procedure of multi-scale averaging, based on

Lyapunov-Schmidt (L-S) technique of bifurcation theory, is presented where low-

dimensional models are derived for two problems: dispersion of a non-reacting

tracer in laminar �ow in a tube (Taylor dispersion); and, diffusion, convection and

reaction in a catalytic monolith with porous washcoat. The averaged model for

Taylor dispersion developed by the L-S procedure is exact for general inlet/initial

conditions including point sources. It predicts no centroid displacement or vari-

ance de�cit as other models in the literature. Truncated hyperbolic models are

also presented along with inlet/initial conditions to the same accuracy. The re-

duced order model developed for catalytic monoliths is presented in terms of three

concentration modes and it is shown for time-varying inlet conditions, the interfa-

cial �ux depends on all three modes. In such cases, in contrast to the traditional

two-phase model, the three-mode reduced order model retains the feature of the

detailed model.

In the second part, modeling and simulation of reactive dissolution of carbon-

ates with in-situ gelling acids is presented. Stimulation of oil-wells in carbonate-

reservoirs using an acidic-solution is a common practice to enhance oil produc-

tion. However, due to heterogeneity, acid �ows preferentially in high-permeability

zones, which results into under stimulation of low-perm regions. Therefore, in-

situ gelling acids are used that block the high-permeability region by forming a gel

and diverts more acid to the low-permeability zones. Here, a rheological model

for in-situ gelling acids is developed and combined with an extended two-scale-

continuum model to describe the transport and reaction of in-situ gelling acids in

carbonates. Three-dimensional simulations predict dissolution patterns in various

�ow regimes that are in accordance with experimental results. The effect of rheo-

logical parameters on �ow diversion, optimum injection rates, wormhole diameter
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and gel front-width and speed is studied using scaling analysis. Finally, guidelines

for optimal stimulation of carbonates with in-situ gelling acids are presented.

x



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Part I Multi-scale Averaging of Diffusion-convection-reaction
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Top-down Approach . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Bottom-up Approach . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 2 Liapunov-Schmidt Reduction . . . . . . . . . . . . . . . . . . . 22

2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Mathematical Aspects of L-S . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Illustration of the L-S Reduction . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Averaged Model in Terms of Exit Concentration c1 . . . . . . . 38

2.4 Some Advantages of Averaging using the L-S procedure . . . . . . . 39

Chapter 3 Exact Averaging of Laminar Dispersion . . . . . . . . . . . . . 41

3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Transverse Averaging of Laminar Dispersion using the L-S Method . 44

3.2.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



3.2.2 Transverse Averaging . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Solution of the Local Equation . . . . . . . . . . . . . . . . . . 51

3.2.4 Convergence of the Perturbation Solution to the Local Equation 57

3.3 Analysis of Classical Taylor-Aris Dispersion . . . . . . . . . . . . . . 61

3.3.1 Temporal Evolution of Spatial Moments . . . . . . . . . . . . 64

3.3.2 Comparison of Lyapunov-Schmidt and Center Manifold Ap-

proaches for Averaging of Laminar Dispersion . . . . . . . . . 81

3.4 Truncated Regularized Two-Mode Models . . . . . . . . . . . . . . . 86

3.4.1 Case A: Convection Dominated Hyperbolic (Taylor) Limit: . . 88

3.4.2 Case B: The Taylor-Aris Limit: . . . . . . . . . . . . . . . . . . 98

3.5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 4 Reduced Order Model for recative dispersion in Catalytic

monoliths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Transverse Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Interfacial �ux and internal and external transfer coef�cients . . . . . 127

4.5 Limiting cases of the reduced order model . . . . . . . . . . . . . . . 133

4.5.1 Thin washcoat and wall reaction limits ("w � 1) . . . . . . . . 133

4.5.2 steady-state model: . . . . . . . . . . . . . . . . . . . . . . . 135

4.5.3 Taylor dispersion with diffusion into the washcoat . . . . . . . 139

4.5.4 Flat Velocity Pro�le . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5.5 Comparison of Two-phase and Reduced Order Models . . . . 147

4.6 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 5 Summary and Future Scope of the Work . . . . . . . . . . . . 153

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xii



Part II Reactive Transport of Gelling Acids and Wormhole
Formation in Carbonates . . . . . . . . . . . . . . . . . . . . . . . . .158
Chapter 6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Experimental Studies with Newtonian Acids . . . . . . . . . . 167

6.2.2 Experimental Studies with Diverting Acids . . . . . . . . . . . 169

6.2.3 Mathematical Studies . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 7 Mathematical Model for In-situ Gelling Acids . . . . . . . . . . 178

7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 Rheological Modeling for Diverting Acids . . . . . . . . . . . . . . . . 179

7.2.1 Effect of Temperature on Viscosity . . . . . . . . . . . . . . . 180

7.2.2 Effect of Pressure/Shear Rate on Viscosity . . . . . . . . . . 182

7.2.3 Effect of pH on Viscosity . . . . . . . . . . . . . . . . . . . . . 188

7.2.4 A Complete Rheological Model . . . . . . . . . . . . . . . . . 194

7.3 Two-scale Continuum Model (TSC) for in-situ gelling Acids . . . . . . 195

7.3.1 Darcy Law for in-situ gelling Acids . . . . . . . . . . . . . . . 197

7.3.2 Two-Scale Continuum Model . . . . . . . . . . . . . . . . . . 199

7.3.3 Dimensionless Form of the Model . . . . . . . . . . . . . . . . 209

Chapter 8 Numerical Techniques for Wormhole Formation . . . . . . . . 219

8.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.2 Pressure Pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.3 Concentration and Porosity Evolution . . . . . . . . . . . . . . . . . . 231

8.3.1 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.3.2 Finite Volume Discretization for Diffusion-Convection Operator 232

8.3.3 Solution of Reaction Operator . . . . . . . . . . . . . . . . . . 236

xiii



8.3.4 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Chapter 9 One Dimensional Analysis: Gel Dynamics and Flow Diversion 241

9.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.2 Single Core set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.2.1 Dimensionless TSC Model . . . . . . . . . . . . . . . . . . . . 243

9.2.2 Gel Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.2.3 Breakthrough Curves and Optimum Injection Rate . . . . . . 251

9.3 Dual Core Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

9.3.1 Dimensionless TSC Model . . . . . . . . . . . . . . . . . . . . 256

9.3.2 Flow Diversion in non-Reacting Case . . . . . . . . . . . . . . 257

9.3.3 Flow Diversion by in-situ gelling Acids . . . . . . . . . . . . . 258

9.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 261

Chapter 10 Two-Dimensional and Three-Dimensional Simulations: Dis-

solution Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.2 2-D Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

10.2.1 Single Core Analysis . . . . . . . . . . . . . . . . . . . . . . . 265

10.2.2 Dual Core Analysis . . . . . . . . . . . . . . . . . . . . . . . . 274

10.3 Three-dimensional Simulations of Wormholing with In-situ Gelling

Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.3.1 Overall pressure drop . . . . . . . . . . . . . . . . . . . . . . 283

10.3.2 Breakthrough Curves and Dissolution Patterns . . . . . . . . 285

10.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 288

Chapter 11 Summary and Future Scope of the Work . . . . . . . . . . . . 292

11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

xiv



Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311
Appendix A: Solution of Local equation in Laminar Dispersion . . . . . 312

A.1 Eigenvalue problem in Cylindrical Coordinate . . . . . . . . . . . . . 312

A.2 Solution of Local Equation . . . . . . . . . . . . . . . . . . . . . . . . 315

A.3 Moment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

A.3.1 Zeroth Moment . . . . . . . . . . . . . . . . . . . . . . . . . . 321

A.3.2 First Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

A.3.3 Second Moment . . . . . . . . . . . . . . . . . . . . . . . . . 323

A.3.4 Third Moment for uniform release . . . . . . . . . . . . . . . . 328

Appendix B: Scaling Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

B.1 Gel Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

B.1.1 Speed of Reaction and Gel Fronts . . . . . . . . . . . . . . . 332

B.1.2 Width of Reaction and Gel Fronts . . . . . . . . . . . . . . . . 334

B.2 Flow Diversion in Dual-core Set-up . . . . . . . . . . . . . . . . . . . 336

B.3 Optimum Injection rate . . . . . . . . . . . . . . . . . . . . . . . . . . 338

xv



List of Figures

Figure 1.1 Heirarchy of length scales in various chemical engineering

systems (a) Carbonate cores and (b) catalytic monoliths. . . 3

Figure 1.2 Different approaches to averaging/dimension reduction. . . . 5

Figure 2.1 Schematic diagram illustrating the choice of the complemen-

tary spaces in the domain and codomain of the linear oper-

ator in the Liapunov-Schmidt Reduction. . . . . . . . . . . . 25

Figure 2.2 Schematic diagram of a two-compartment discrete disffusion-

convection model. . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.1 Time evolution of �rst moment for point release of solute at

the tube center. . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.2 Centroid displacement versus time for point release of solute

at different radial locations. . . . . . . . . . . . . . . . . . . . 69

Figure 3.3 Centroid displacement versus time for point release at the

center with varying Per: . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.4 Temporal evolution of variance for uniform release and point

release at the center. . . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.5 Evolution of variance corresponding to point release at the

center with varying Per: . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.6 Evolution of the third central moment for uniform release of

solute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 3.7 Log-Log plot of skewness versus time for uniform release

and h�2i = h�3i = 0. . . . . . . . . . . . . . . . . . . . . . . . 79

xvi



Figure 3.8 Dispersion curves predicted by the low-dimensional �rst or-

der hyperbolic model [The dispersion curves include a Dirac-

delta function of magnitude Exp(�48
p
) at � = 0, which is not

shown in the �gure]. . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.1 Schematic diagram of a single straight monolithic channel

of circular cross-section and with a uniformly thick washcoat. 109

Figure 4.2 Variation of the internal Sherwood number with washcoat

volume fraction. . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 4.3 Steady state exit conversion {e corresponding to uniform

feed conditions versus transverse peclet number p at var-

ious Thiele modulus for wall reaction case (comparison to

exact solution). . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 4.4 Predicted dispersion/RTD curves for non-reacting case cor-

responding to various diffusivity ratios � at "f = 0:8, "wc =

0:5 (or, w = 0:25,  = 0:125) and p = 1: . . . . . . . . . . . . 142

Figure 4.5 Predicted cumulative RTD function or F-curve for non-reacting

case corresponding to various diffusivity ratio � at "f = 0:8,

"wc = 0:5 (or, w = 0:25,  = 0:125) and p = 1: . . . . . . . . 143

Figure 4.6 Dimensionless dispersion coef�cient for various difusivity ra-

tios for Taylor dispersion with diffusion into washcoat with

parabolic velocity pro�le for "wc
�
= 

w

�
= 0:5: . . . . . . . . 144

Figure 4.7 Dimensionless dispersion coef�cient for various difusivity ra-

tios for Taylor dispersion with diffusion into washcoat with �at

velocity pro�le for "wc
�
= 

w

�
= 0:5: . . . . . . . . . . . . . . 148

Figure 6.1 Schematic view of a wellbore, damaged zone and reservoir. 160

Figure 6.2 Dissolution patterns formed at different injection rates of acidic

solution (Fredd and Fogler, 1998). . . . . . . . . . . . . . . . 162

xvii



Figure 6.3 Increase in permeability due to dissolution with 0.25 M EDTA

at various injection rates in a core (0.8-2 mD) of length 10.2

cm and diameter 3.8 cm (Fredd and Fogler, 1998). . . . . . 163

Figure 6.4 Breakthrough curve (here, pore volume to breakthrough is

de�ned as the number of pore volume of acidic solution in-

jected to increase the permeability of the core by a factor

100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 6.5 Breakthrough curve and wormhole patterns for various acids

with different reactivity. . . . . . . . . . . . . . . . . . . . . . 165

Figure 6.6 Wormholes created by injecting water through a radial core

(of diameter 2 mm and length 50 mm) made of plaster (Dac-

cord, 1987). . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 6.7 Dissolution patterns and �ow diversion in dual-core experi-

ments with diverting acids at various injection rates (a) ex-

periments 3 (Gomaa et al., 2011) with injection rate, Q =

1cm3min�1 and permeability ratio, Khigh

Klow
� 25, (b) experi-

ments 8 (Gomaa et al., 2011) with injection rate,Q = 15cm3min�1

and permeability ratio, Khigh

Klow
� 20, (c) experiments 10 (Go-

maa et al., 2011) with injection rate, Q = 2:5cm3min�1 and

permeability ratio, Khigh

Klow
� 21. . . . . . . . . . . . . . . . . . . 172

Figure 7.1 Schematic of different length scales associated in a lcarbon-

ate core used in laboratory experiments. . . . . . . . . . . . 178

Figure 7.2 Effect of temerature coef�cient of viscosity, �, on viscosity

vs temperature pro�le. . . . . . . . . . . . . . . . . . . . . . 181

Figure 7.3 Schematic diagram illustrating the time independent non-

Newtonian �uid behavior. . . . . . . . . . . . . . . . . . . . . 183

xviii



Figure 7.4 Schematic diagram illustrating the general viscosity behav-

ior of a shear thinning �uid. . . . . . . . . . . . . . . . . . . . 186

Figure 7.5 Experimental data for viscosity of ZCA (1.5 % SGA-III) vs pH.189

Figure 7.6 Effect of �m on viscosity vs pH pro�le for a = 10 and pHm = 5:191

Figure 7.7 Effect of pHm on viscosity vs. pH pro�le for �m = 20 and

a = 10: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Figure 7.8 The effect of the parameter a on viscosity vs. pH pro�le. . . 193

Figure 7.9 Comparison of experimental and theoretical plot for viscosity

vs. pH for various shear rates. . . . . . . . . . . . . . . . . . 196

Figure 7.10 Variation in permeability with porosity due to dissolution for

typical values of � = 0:5, 1:0 and 1:5: . . . . . . . . . . . . . 205

Figure 7.11 Change in pore radius with porosity due to dissolution for

typical values of � = 0:5, 1:0 and 1:5: . . . . . . . . . . . . . 206

Figure 7.12 Change in area per unit volume available for reaction as

porosity changes due to dissolution for typical values of � =

0:5, 1:0 and 1:5: . . . . . . . . . . . . . . . . . . . . . . . . . 207

Figure 7.13 Schematic diagram of a single core set-up. . . . . . . . . . . 209

Figure 7.14 Schematic diagram of a multicore set-up. . . . . . . . . . . . 213

Figure 8.1 Finite volume descretization in 1D (solid circles denote the

node points where concentrations, porosity and pressure

are de�ned; w and e de�ne the west and east face of the

element where velocity vector are de�ned). . . . . . . . . . . 221

xix



Figure 8.2 Finite volume descretization in 2D (solid circles denote the

node points where concentrations, porosity and pressure

are de�ned; w and e denote the west and east faces of the

element where x-component of velocity vector are de�ned; s

and n denote the south and east faces of the element where

y-component of velocity vector are de�ned). . . . . . . . . . 221

Figure 8.3 Finite volume descretization in 3D (solid circles denote the

node points where concentrations, porosity and pressure

are de�ned; w and e denote the west and east faces of the

element where x-component of velocity vector are de�ned; s

and n denote the south and east faces of the element where

y-component of velocity vector are de�ned; b and t denote

the bottom and top faces of the element where z-component

of velocity vector are de�ned), (a) meshing (b) control volume.222

Figure 8.4 The main steps used in obtaining numerical solution of the

two-scale continuum models in single or dual core set ups. . 224

Figure 8.5 Surface of control volume at the boundaries, (a) west bound-

ary, i = 1, (b) east boundary, i = Nx, (c) south boundary,

j = 1, (d) north boundary, j = Ny, (e) bottom boundary,

k = 1, (a) top boundary, k = Nz. . . . . . . . . . . . . . . . . 226

Figure 9.1 Schematic diagram of (a) single core set-ups (b) dual core

set-ups in laboratory core experiments. . . . . . . . . . . . . 242

Figure 9.2 PH/concentration pro�le from 1-D simulation for Da = 100: . 246

Figure 9.3 Viscosity pro�le (presence of gel) in the core the from 1-D

simulation for Da = 100: . . . . . . . . . . . . . . . . . . . . 247

Figure 9.4 Gel propagation (viscosity pro�le) at Da = 100 in the core

for various pore volume of acid injected. . . . . . . . . . . . 248

xx



Figure 9.5 Width of gel and reaction fronts in cores of different initial

permeabilities at constant injection rate, u0 = 9:8�10�4cm s�1:250

Figure 9.6 Overall pressure drop for gelling and Newtonian acids from

1-D simulation at Da = 100: . . . . . . . . . . . . . . . . . . 252

Figure 9.7 Comparison of breakthrough curves for gelling acids and

Newtonian acids at �2 = 0:047: . . . . . . . . . . . . . . . . . 253

Figure 9.8 Effect of initial core permeability on breakthrough curves for

gelling acids at �2 = 0:047: . . . . . . . . . . . . . . . . . . . 255

Figure 9.9 Gel dynamics in dual core set-up at �2 = 0:07 and Da = 100

from 1-D simulation. . . . . . . . . . . . . . . . . . . . . . . . 259

Figure 9.10 Flow splitting in dual core set-up at �2 = 0:047 and Da = 100: 260

Figure 9.11 Ratio of inlet �ow rates in low-perm to high-perm cores from

1-D simulation at �2 = 0:047 and Da=100. . . . . . . . . . . 261

Figure 10.1 Evolution of effective mobility in time for Newtonian acids at

various injection rates from 2-D simulation. . . . . . . . . . . 267

Figure 10.2 Evolution of effective mobility in time foi gelling acids at var-

ious injection rates from 2-D simulation. . . . . . . . . . . . . 268

Figure 10.3 Breakthrough-curves for Newtonian and gelling acids at �2 =

0:047: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Figure 10.4 Dissolution patterns at optimum for gelling acids and New-

tonian acids from 2-D simulation in a core of 5 cm length at

(a) color-scale for porosity, (b) initial heterogeneious poros-

ity �eld, (c) porosity �eld (wormhole structure) at breakthrough

for Newtonian acids, and (d) porosity �eld (wormhole struc-

ture) at breakthrough for in-situ gelling acids. . . . . . . . . . 270

xxi



Figure 10.5 pH pro�le and demonstration of reaction and gelled zones

(a) color-scale for pH, (b) Newtonian acids, and (c) in-situ

gelling acids. . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Figure 10.6 Dissolution patterns in a core of length 10 cm and height

4 cm at �2 = 0:047 for (a) Newtonian acids and (b) in-situ

gelling acids. . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Figure 10.7 Flow diversion in a dual core set-up from 2-D simulation,

inset show the plot at shorter times. . . . . . . . . . . . . . . 277

Figure 10.8 Fractional �ow (ratio of �ow rates in low-perm to high-perm

cores), inset show the plot at shorter times. . . . . . . . . . 278

Figure 10.9 Disoolution pattern in dual core study when optimum exist

in high-perm core (a) simulation results (b) experimental re-

sults (Gomaa, et al., 2011). . . . . . . . . . . . . . . . . . . . 279

Figure 10.10 Disoolution pattern in dual core study when optimum exist in

low-perm core (a) simulation results (b) experimental results

(Gomaa, et al., 2011). . . . . . . . . . . . . . . . . . . . . . . 281

Figure 10.11 Comparison of pressure pro�le from 3-D simulations and ex-

periments; (a) Pressure pro�le for gelling acids, (b) pressure

pro�le for Newtonian acids, and (c) experimental pro�le (Go-

maa, et al., 2011). . . . . . . . . . . . . . . . . . . . . . . . . 284

Figure 10.12 Breakthrough curves for gelling acids and newtonian acids

from 3-D simulation at �2 = 0:047: . . . . . . . . . . . . . . . 285

Figure 10.13 Experimental breakthrough curve for DTPA (Fredd and Fogler,

1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Figure 10.14 3-D dissolution patterns at optimum for (a) Gelling acids

(0:01cm3s�1) and (b) Newtonian acids (0:04cm3s�1). . . . . . 287

xxii



Figure 10.15 (a) Breakthrough curves for in-situ gelling acids and New-

tonian acids; Dissolution patterns in wormhole, conical and

rami�ed dissolution regimes (b) for in-situ gelling acids, (c)

for Newtonian acids, and (d) from experiments (Fredd and

Fogler, 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . 289

xxiii



List of Tables

Table 4.1 Various transverse functions and coef�cients for fully devel-

oped laminar �ow in a circular channel with a washcoat of uni-

form thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table 4.2 Transverse functions and coef�cients for �at velocity pro�le/developing

�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table 6.1 Set of dual-core experiments with diverting acids at various

injection rates (Gomaa et al., 2011). . . . . . . . . . . . . . . . 171

Table 7.1 List of dimensionless quantities used for single core analysis. . 210

Table 7.2 List of dimensionless quantities used for dual core analysis. . . 214

Table 9.1 List of parameters and dimensionless numbers used in the

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

xxiv



Nomenclature

Part I
Roman letters

a = radius of the tube

av = area per unit volume

c = dimensionless solute concentration

Cf = dimensional solute concentration in �uid phase

cf = dimensionless solute concentration in �uid phase

Cf;in = dimensional inlet solute concentration in �uid phase

cf;in = dimensionless inlet solute concentration in �uid phase

Cf0 = dimensional initial solute concentration in �uid phase

cf0 = dimensionless initial solute concentration in �uid phase

cin = dimensionless inlet solute concentration

cj; c
0
j; c

0
i;j = �uctuation in dimensionless solute concentration of the O(pj)

cm = dimensionless cup-mixing or velocity weighted concentration

cm;in = dimensionless inlet cup-mixing or velocity weighted concentration

cpf = speci�c heat capacity in �uid phase

CR = reference concentration

Cw = dimensional wall concentration

cw = dimensionless wall concentration

Cw0 = dimensional initial solute concentration in washcoat

cw0 = dimensionless initial solute concentration in washcoat

c0 = local �uctuation in dimensionless concentration

c0 = dimensionless initial solute concentration

hci = dimensionless overall cross-sectional averaged solute concentration

xxv



hc0i = dimensionless average initial solute concentration

hcif = dimensionless cross-sectionally averaged concentration in �uid phase

hcsi = dimensionless peripheral averaged concentration at �uid-washcoat inter-

face

hciw = dimensionless cross-sectionally averaged concentration in washcoat

D = Dimensionless molecular diffusivity of solute

Da = Damköhler number (corresponding to homogeneous reaction in wash-

coat)

Das = Damköhler number (corresponding to equivalent surface reaction in

washcoat)

Df = Dimensional molecular diffusivity of solute in �uid phase

Dw = Dimensional molecular diffusivity of solute in washcoat

E = Residence time distribution (RTD)

E = RTD in Laplace domain

F = non-linear diffusion-convection-reaction operator

h = heat transfer coef�cient

I1 = �rst order modi�ed Bessel function of �rst kind

J = interfacial molecular �ux at �uid-washcoat interface (dimensionless)

Jfw = interfacial molecular �ux at �uid-washcoat interface (dimensional)

kext = external mass transfer coef�cient (dimensional)

kf = heat conductivity in �uid phase

kint = internal mass transfer coef�cient (dimensional)

ko = overall mass transfer coef�cient (dimensional)

L = Length of the monolith

mk = kth spatial moment

Mk = kth spatial moment in Laplace domain

Nu =Nusselt number

xxvi



n;n
 = normal unit vector to @


n
f = normal unit vector to @
f

n
w = normal unit vector to @
w

p = transverse Peclet number

Per = radial Peclet number

PeL = axial Peclet number

r = radial coordinate (dimensional)

R = homogeneous reaction in washcoat (dimensionless)

Rw = homogeneous reaction in washcoat (dimensional)

R
f = hydraulic radius for �ow channel

R
w = effective (diffusion) length scale in washcoat

s = dimensionless source term containing initial and inlet conditions

s0 = deviation of source term from its average

hsi = average of source term

sf = dimensionless source term containing initial and inlet conditions in �uid

phase

sf = dimensionless source term containing initial in washcoat

She = external Sherwood number

She;flat = external Sherwood number corresponding to �at velocity pro�le

She;non�react = external Sherwood number corresponding no reaction in wash-

coat

She;ss = external Sherwood number coef�cient corresponding to steady state

Sho = overall Sherwood number

Sh
i = internal Sherwood number

T = temperature

Tin = inlet temperature

Tm = mixing-cup temperature

xxvii



Tw = wall temperature

t = dimensionless time

t0 = dimensional time

u = velocity in the axial direction (dimensionless)

u0 = �uctuation in velocity in the axial direction (dimensionless)

Uf = �uid velocity in the axial direction (dimensional)

uf = �uid velocity in the axial direction (dimensionless)

u = averaged �uid velocity in the axial direction (dimensionless)

hui = averaged velocity in the axial direction (dimensionless)

x0 = coordinate along the length of the reactor (dimensional)

x = dimensionless coordinate along the length of the reactor

Greek letters

� = Laplace domain variable

� = dimensionless catalyst activity pro�le

�0= deviation in activity pro�le from its average

h�i= average catalyst activity pro�le

 ;  n;  mn =eigenfunctions of a linear operator L

"f = macroscopic volume fraction of �ow channel

"w = macroscopic volume fraction of washcoat

"wc = porosity of the washcoat

 = capacitance ratio in washcoat to the �uid phase

w = volume ratio of washcoat to the �ow channel

� = transverse function that depends on �ow pro�le

� = transverse function that depends on activity pro�le

{ = exit conversion

� = ratio of washcoat thickness to radius of �ow channel

� = dimensionless dispersion coef�cient

xxviii



� = ratio of solute diffusivities in �uid to washcoat

�k = kth eigenvalues of transverse Laplacian operator

�k = kth central moment

�2s = Thiele modulus corresponding to equivalent surface reaction in washcoat

�f = density of �uid phase

� = transverse function that depends on Dirac-delta at interface

�2 = variance

�2D = dimensionless normalized second central moment

� = azimuthal (angular) coordinate

�D = transverse diffusion time

� cD = diffusion-convection time

�C = convection time

�R = reaction time


 = overall cross-section (�ow channel + washcoat)


f = cross-section of �ow channel


w = cross-section of washcoat

� = dimensionless radial coordinate

� = transverse function that depends on �ow pro�le

Subscripts

f =�uid phase

s =solid phase

w = washcoat

m =cup-mixing

1 =asymptotic value

X;L =�ow direction

T =Transverse direction

Operators

xxix



r2
?0 = transverse Laplacian operator (dimensional)

r2
? = transverse Laplacian operator (dimensionless)

hi = Inner product over whole cross-section (�ow channel + washcoat)

hic = Inner product with velocity pro�le as weighting function

hif = Inner product over �ow channel

hiw = Inner product over washcoat

L = linear operator

Part II
Roman letters

a =rheological parameter signifying the pH range of gel formation

av =area perunit volume available for reaction

av0 =initial value of av

Av = dimensionless area perunit volume available for reaction

Cf = acid concentration in the �uid

Cfin =inlet acid concentration

Cs =acid concentration in the solid-�uid interface

cf = dimensionless acid concentration in the �uid

cs = dimensionless acid concentration in the solid-�uid interface

dp =particle diameter

De =effective dispersion coef�cient of acid/protons

Dep = effective dispersion coef�cient of polymers

DeX = effective dispersion coef�cient of acid/protons in axial direction

DeT =effective dispersion coef�cient of acid/protons in transverse direction

Da = Damköhler number based on reaction time

Daopt = optimum Damköhler number based on reaction time

fr =fraction of total �ow going through low-perm core

K =permeability

xxx



K0 =initial permeability

kc =mass-transfer coef�cient

ks =reaction rate constant

keff =effective rate constant

L = length of catalytic wire

m =pore length to diameter ratio

M = Mobility

n =power index

Nac =acid capacity number

P =pressure

p =dimensionless pressure

pexit =exit pressure

pHm = pH value at which viscosity is maximum due to gel formation

PV =pore volume

PVBT =pore volume to breakthrough

Q = �uid volumetric �ow rate

Qopt = optimum �uid volumetric �ow rate

r =dimensionless pore radius

rp =pore radius

rp0 =initial pore radius

R = reaction rate

Rep =Reynold's number

Sc =Schmidt number

Sh =Sherwood number

Sh1 =asymptotic value of Sherwood number

t = time (dimensionless)

t0 =dimensional time

xxxi



t� =time in wave coordinate

T = temperature

T0 =reference temperature

Ts = solid phase temperature

U =dimensional velocity

u =dimensionless velocity

u0 =inlet velocity

uopt =optimum injection rate

v =velocity

x =dimensionless axial/�ow direction

x0 = axial direction

x� =axial direction in wave coordinates

y0; z0 =transverse direction

y; z = dimensionless transverse direction

Greek letters

� = temperature coef�cient of viscosity

�c = acid capacity

� = parameter used in structure-property relation
:
 = shear rate

" = porosity of the rock

"0 =initial porosity

h"0i =average initial porosity

�" =magnitude of heterogeneity

�2 = pore-scale Thiele modulus

�2 = macro-scale Thiele modulus

�0 =polymer viscosity

� =dimensionless permeability

xxxii



� = viscosity

�0 =base viscosity

�a =aparent viscosity

�eff =effective viscosity term

�m =maximum increase in viscosity from the base value due to gel formation

h�ic =average viscosity in reaction zone

h�igel =average viscosity of gel

�s =solid density

� =shear stress

xxxiii



Part I

Multi-scale Averaging of Diffusion-convection-

reaction Models

1



Chapter 1 Introduction

1.1 Preamble

Modeling and analysis of the transport and reaction phenomena is one of the

core activities of the chemical engineering discipline. Models of chemical reactors

and other process equipment are obtained by applying the fundamental conserva-

tion laws and combining them with the constitutive equations for the various rate

processes. These systems have hierarchy of length scales as can be seen from

Figure 1.1. For example, it can be seen from Figure 1.1(a) that length-scales in a

carbonate core (which are used to analyze the oil production from reservoirs that

are spread in kilometers) varies from core scale (cm) to intermediate Darcy-scale

(mm) to pore scale (�m). The Darcy-scale is where Darcy law are applied for

describing �ow equations and pore-scale is where conservation laws are applica-

ble. Similarly, in a catalytic monoliths, the length scale varies from few centimeters

to few
�
A as can be seen from Figure 1.1(b). These length scales are typically

characterized by three representative ones, namely, microscale, mesoscale and

macroscale. Microscale is the molecular scale where conservation laws applied

and molecular properties are expressed. Macroscale is the reactor or process

scale where laboratory experiments are performed to measure the quantities that

interest to scientists and engineers. Mesoscale or intermediate scale which is

smaller than macroscale and bigger than microscale, represents the smaller length

scale of the reactor. For example, in case of a tubular reactors, the mesoscale is

the tube or catalyst particle diameter while in case of porous media, the mesoscale

is the heterogeneity length-scale. These length scales can also be interpreted in

terms of time scales. For example, the residence time in the reactor varies usually

between 1 to 1000 seconds while the intraparticle diffusion time is of the order of

0:1s. Similarly, inside a pore, the diffusion time is of order of microseconds and
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(a)

(b)

Figure 1.1: Heirarchy of length scales in various chemical engineering systems (a)
Carbonate cores and (b) catalytic monoliths.
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the time scale associated with adsorption is typically less than a microsecond and

could be as small as a nanosecond. Depending on the level of detail included at

various length and time scales, mathematical models can vary in complexity, from

a few algebraic or ordinary differential equations to several coupled partial differen-

tial equations in three spatial coordinates and time. In addition, due to the strong

coupling between the transport and reaction processes and the dependence of

the kinetic and transport parameters on the state variables, the model equations

are usually nonlinear and may exhibit a variety of complex spatio-temporal pat-

terns. For most cases of practical interest, even with the present day computational

power, it is impractical to solve such detailed models and explore all the different

types of solutions that may exist in the multi-dimensional parameter spaces. Even

in cases where detailed solutions can be obtained, the numerical results may have

to be coarse-grained to determine quantities, such as the average exit conversion

of a reactant or speed of an adsorption or thermal front, that are of interest to

the design engineer. For these reasons, it is of practical interest to have accurate

low-dimensional models in terms of experimentally measurable variables, such as

cup-mixing concentrations or temperatures, for the purpose of design, control and

optimization of chemical processes. Since reaction and transport processes can

create a scale separation, an averaged low-dimensional model can be developed

at macroscale in terms of experimentally measurable quantities that retains all the

essential physics at microscale in terms of transfer/dispersion coef�cients.

Figure 1.2 shows the schematic diagram of various approaches used in liter-

atures to reduce the dimension and develop a low dimensional model for a given

system. The top-down approach is the most common procedure to develop low-

dimensional models of reactors where certain a prior assumptions are made on

the length and time scales of diffusion, convection and reaction, and, conservation

laws are applied at the meso or macro scales only. For example, the most fa-
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Figure 1.2: Different approaches to averaging/dimension reduction.

mous and widely used chemical reactor model, namely the continuous-�ow stirred

tank reactor (CSTR), is obtained by assuming the negligible diffusion time (or com-

plete mixing) in every directions (�ow and transverse direction) that expresses the

species and energy balances at macroscale in terms of few ordinary differential

equations. Similarly, the plug-�ow reactor model (PFR) assumes the complete

mixing in transverse direction and expresses the conservation laws at mesoscale

as partial differential equation in time and one spatial coordinate in �ow direc-

tion. These models are computationally very simple. However, assumptions made

in the top-down approach are not justi�ed for most cases of practical interests

and thus, the models developed using this approach such as the CSTR, the PFR,

the axial dispersion model with/without Danckwerts boundary conditions, the two-

phase catalytic reactor model, pseudo-homogeneous models of multiphase reac-
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tors etc., ignore the physics at small length scales. In fact, the shortcomings of

these models (such as the inability to predict micromixing effects on conversion

and yield/selectivity of an intermediate product for the case of fast reactions) are

well known. For example, the conversion predicted from ideal CSTR model is in-

dependent of how input and output streams enter the reactor and so on.

The other extreme is the numerical approach where detail diffusion-convection-

reaction models for given system are applied at micro-scale and are solved numer-

ically such as by using computational �uid dynamics (CFD). While this approach

is certainly feasible (at least for single phase systems) due to the recent avail-

ability of computational power and more accurate than the top-down approach, it

may be computationally prohibitive, especially for multi-phase systems with com-

plex geometries and fast kinetics. It is also not practical when design, control and

optimization of the reactor or the process is of main interest. The main draw-

backs/criticism of this approach are that:

(i) It uses discrete models of very high dimension that are not only dif�cult to

incorporate into design and control schemes but also may not represent the

original problem due to discretization.

(ii) Due to the strong coupling between the transport and reaction processes,

the model equations are usually nonlinear and may exhibit a variety of com-

plex spatio-temporal patterns. Without having prior parametric studies, these

patterns may not be explored numerically. Even when appropriate set of pa-

rameters are considered, right initial conditions or initial guess are essential

in numerical approach. In addition, design engineers are interested usually

in averaged quantities such as the average exit conversion of a reactant or

speed of an adsorption or thermal front, so when detailed solutions are ob-

tained, the numerical results may have to be coarse-grained to determine

those quantities.
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(iii) For highly nonlinear cases where length scale of separation is very high, the

mesh size needed to avoid spurious solutions may be so small that this ap-

proach is not feasible. For example, in case of a carbonate core where length

scale separation is of order of 105 (core scale of around 10 cm to pore scale

of around 1�m), the number of mesh needed in every direction is 105, i.e., for

a typical core (10 � 4 � 4 cm3), the number of mesh points needed for 3-D

simulation is of order of 1014 which is not practical.

(iv) Numerical approach such as the CFD also uses averaged models (e.g k �

� model for turbulent �ows, Prandtl mixing length theory etc.) with closure

schemes that are not always justi�ed and contains adjustable constants.

Thus, the intermediate approach where the full convection-diffusion-reaction

equations are averaged spatially using systematic procedure, are preferred to de-

velop low-dimensional models as it retain the essential features of the system and

computationally less expansive than the numerical approach. In this approach, the

full model is averaged over small length scales to describe the process at macro

or meso scale in terms of effective coef�cients such as transfer coef�cients, dis-

persion coef�cients, effectiveness factors etc. Another advantage of this approach

is the ability to predict and verify the range of convergence and validity of the av-

eraged model. Before going into detail, we give a brief history of some important

reactor models and discuss the averaging procedures used in the literature in fol-

lowing section.

1.2 Literature Review

1.2.1 Top-down Approach

The most widely used simpli�ed reactor models are the three classical ideal re-

actor models: (i) the ideal batch reactor (BR) model, (ii) the ideal plug-�ow reactor

(PFR) model and (iii) the ideal continuous-�ow stirred tank reactor (CSTR) model.
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The BR model describe the evolution of concentration/temperature pro�le as re-

action occurs in terms of one dimensional ordinary differential equation in time as

follows:
dC

dt
= � R(C) with C = C0 @ t = 0; (1.1)

where C is concentration vectors for various species, R (C) is reaction vector, � is

the stoichiometric coef�cient matrix and C0 is the initial concentration vector. For

energy balance, concentration vector in transient term is replaced by temperature,

T and reaction term is multiplied by corresponding enthalpy of reaction. Similarly,

the PFRmodel assumes no gradient in transverse (to �ow) direction and expresses

the species and energy balance as a �rst order partial differential equation in time,

t and one spatial coordinate, x (corresponding to �ow direction) by neglecting axial

mixing as follows:

@C

@t
+ hui @C

@x
= � R(C);

C = Cin @ x = 0 and C = C0 @ t = 0; (1.2)

where Cin is the inlet concentration vector and hui is the average velocity. It

should be noted that it is an hyperbolic model and describes how the concentra-

tion/temperature pro�le varies in �ow direction. While the BR model and the PFR

model have existed since the late eighteenth century, a conceptual leap came in

the form of the CSTR model (Bodenstein and Wolgast, 1908) which assumes com-

plete mixing at all scales and expresses the balance equations as follows:

dC

dt
=
Cin �C
�C

+ � R(C), (j = 1; 2; :::;M) (1.3)

where �C is the total residence time of the reactor. It should be noted that these

reactor models are expressed in terms of a single mode C and do not distinguish
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between spatially averaged concentration, hCi, and cup-mixing or �ow averaged

concentration, Cm.

The assumption of no axial mixing in PFR model was later relaxed by using

�nite axial mixing by Irving Langmuir (1908), who dealt with both the limiting cases

of �mixing nearly complete� and �only slight mixing� and replaced the Dirichlet

boundary condition (C = Cin @ x = 0) by a �ux type boundary condition:

D
dC

dx
= hui [C�Cin] @ x = 0; (1.4)

where D is the diagonal matrix of molecular diffusivity of the species. The above

boundary condition was rediscovered �rst by Förster and Geib (1934), which was

quoted and applied by Damköhler (1937) and then �nally by Danckwerts (1953),

and since then, it has been known as `Danckwerts' boundary condition'. Förster

and Geib (1934) in their paper, introduced the concept of residence time distri-

bution (RTD) and obtained the RTD curves for the axial dispersion model using

Danckwerts boundary condition. Damköhler (1937) in his historic paper, summa-

rized various reactor models and formulated the two-dimensional DCR model for

tubular reactors (by using the Danckwerts boundary condition with parabolic ve-

locity pro�le corresponding to laminar �ow in tubes) to describe �nite mixing both

in the �ow and transverse directions. Later, Danckwerts (1953) introduced the

concepts of �hold-back� and �segregation� and devised a generalized treatment

of RTD. Following this, Zwietering (1959) introduced the concept of micromixing

(mixing caused by local diffusion, local velocity gradients and reaction at the small

scales) and quanti�ed the degrees of mixing with the ideas of �complete segrega-

tion� and �maximum mixedness�. Since then, the topic of micromixing has become

a part of classical Chemical Reaction Engineering and has been discussed in var-

ious textbooks [Levenspiel (1999), Froment & Bischoff (1990), Westerterp, van

9



Swaaij & Beenackers (1984)] and review articles (Villermaux, 1991).

Though the top-down approach is the one that chemical engineers have fol-

lowed historically to develop low-dimensional models of various reactors at macroscale

by making certain a prior assumptions on the length and time scales, these as-

sumptions are usually not justi�ed since it involves comparison of the solutions

obtained with more detailed (fundamental) models, which are not available. Be-

cause of the a prior assumptions, these models cannot explain many experimen-

tally observed features that arise due to strong coupling between transport and

reaction processes at small scales. When the predictions of such ad-hoc mod-

els do not match with experimental results, the low-dimensional models are modi-

�ed by expanding the degrees of freedom using concepts such as residence time

distribution, non-ideal �ow and mixing, which express the models in terms of ef-

fective quantities such as effectiveness factors or effective dispersion coef�cients

(Danckwerts, 1958; Zwietering, 1959; Levenspiel, 1999). The short-comings of

this approach (such as the dependence of these effective coef�cients on the ki-

netic parameters and inconsistencies such as in�nite propagation speed of signals

even in convection dominated systems) are well known (Balakotaiah and Chang,

2003; Balakotaiah and Ratnakar, 2010).

1.2.2 Bottom-up Approach

Numerical Approach

The numerical approach is the discretization of the convection and the diffu-

sion operators of the PDEs that gives rise to a system of effective low-dimensional

models of very high order depending on the mesh size (/discretization interval) re-

quired to avoid spurious solutions. For example, the minimum number of mesh

points (Nxyz) necessary for direct numerical simulation (DNS) of non-reacting tur-
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bulent �ow is given by (Baldyga and Bourne, 1999)

Nxyz � Re9=4Sc3=2; (1.5)

where Re and Sc are the Reynolds and turbulent Schmidt numbers, respectively.

[ For Re = 104 and Sc = 103, Nxyz � 1013, which is quite large.] For the case

of steady-state one-dimensional laminar reacting �ows in a tube of radius a and

length L, the minimum number of mesh points required is given by (Dommeti &

Balakotaiah, 2000)

Nx =

s
Pe3

24q

�
q � 1� 2Da

Pe
+
2Da2

Pe2

�
; (1.6)

where

q =

r
1 +

4Da

Pe
; (1.7)

Da is the Damköhler number, Pe is the Peclet number based on the reactor length,

given by

Pe =
L

2a
Re Sc: (1.8)

For very fast reactions, i.e. Da � 1, criterion to avoid spurious solutions for a

3-dimensional scalar CDR is simpli�ed as

Nxyz =

�
�2

24

�3=2
; (1.9)

where �2 (= Pe Da) is Theile-modulus. For the case of non-isothermal kinetics,

�2 = �20 exp[B]; where �
2
0 is the value based on the reference temperature and B

is the Zeldovich number (dimensionless adiabatic temperature rise). Thus, for a

typical value of B of 20 (that is very common for partial oxidation and combustion

reactions) and �20 = 1; Nxyz = 3 � 1017, which is very large and the problem is
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rendered numerically unsolvable. Similar examples can be given for other systems

where the number of mesh size required to avoid spurious solution and to capture

the essential physics of the system, is very large. These systems of such high

order cannot be easily incorporated for control and optimization purposes. Thus,

the numerical solution of the three-dimensional transport equations for reacting

�ows using CFD codes or other methods are prohibitive in terms of the numerical

effort required, especially for the case of fast/ non-isothermal kinetics. In such

cases, low dimensional models are a natural alternative.

Averaging or Dimension Reduction Approach

In this intermediate approach, the full model is averaged over small length

scales to describe the process at macro or meso scale. Several different em-

pirical as well as rigorous averaging techniques (with different terminology such as

homogenization, dimension reduction, adiabatic elimination, multi-scale method,

slaving principle, etc.) are used in different �elds for obtaining low-dimensional

models. In chemical engineering literature, the two most important concepts that

have appeared in the past century to provide a simpli�ed description of the trans-

port processes are that of the transfer coef�cient and the dispersion coef�cient.

Both these concepts reduce the local degrees of freedom and provide a coarse-

grained low-dimensional description of the transport process in terms of macroscale

averaged variables such as cup-mixing and/or wall temperatures, and some weighted

average concentrations. While both concepts have been applied successfully for

many decades for non-reacting systems, their application to reacting systems or

transient problems with sources or sinks, leads to identi�cation of sharp differences

between them.

The Transfer Coef�cient Concept: The transfer coef�cient concept is almost a

century old and was introduced by Lewis (1916) and Lewis and Whitmann (1924),

12



in the context of �lm models for heat and mass transfer. It is closely related to the

boundary layer theory introduced by Prandtl (1904) and Von Karman (1921) in the

context of momentum transfer. In text books, the heat transfer coef�cient concept

is often illustrated by the classical Graetz-Nusselt problem describing steady-state

heat transfer in laminar �ow in a circular tube (with length to diameter ratio >>1).

In this case, the detailed model describing the �uid temperature variation in the

tube as a function of axial and radial position (assuming azimuthal symmetry) is

described by the partial differential equation

2 hui �fcpf
�
1� r2

a2

�
@T

@x
= kf

1

r

@

@r

�
r
@T

@r

�
; 0 < r < a; x > 0 (1.10)

with initial (inlet) and boundary conditions

T (x = 0; r) = Tin , T (x; r = a) = Tw;
@T

@r
(x; r = 0) = 0; (1.11)

while the coarse-grained low-dimensional model is given by

hui �fcpf
dTm
dx

= avq ; Tm(x = 0) = Tin; av =
2

a
; (Global equation)(1.12)

q = h(x) (Tw � Tm) ; (Local equation)(1.13)

where Tm is the cup-mixing (or velocity weighted or bulk) temperature de�ned by

Tm =

R a
0
4�r hui

�
1� r2

a2

�
T (x; r)dr

�a2 hui : (1.14)

Here, av is the heat transfer area per unit tube volume, and the local heat transfer

coef�cient and the dimensionless heat transfer coef�cient (Nusselt number) are

de�ned by

h(x) =
�kf @T@r (x; r = a)

Tm � Tw
; NuT (x) =

2a h(x)

kf
(1.15)
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The coarse-grained model is expressed in terms of the experimentally measurable

cup-mixing temperature and eliminates the dependence of the temperature on the

smaller scale (radial coordinate) and hence the associated transverse degrees of

freedom. To complete the low-dimensional description, we have to specify the de-

pendence of h(x) (or NuT (x)) on the parameters appearing in the detailed model.

For this speci�c case, this can be done either by exact solution of the full model

or by analyzing the two limiting cases of short and long axial distances from inlet

(corresponding to the Leveque solution and the asymptotic downstream solution

with fully developed velocity and temperature pro�les). Since these expressions

can be found in standard heat transfer books (Kays et al. (2004)), we will not re-

peat them here but note the following key observations about the low-dimensional

model given by equations (1.12,1.13 ): (i) The global equation gives the variation

of the measurable global variable, namely the cup-mixing temperature, along the

tube length (which is the global or large scale). (ii) The local equation (1.13) uses

two temperature modes to express the local gradients in terms of the eliminated

smaller scale. (iii) For the practical case of tube length being much larger than the

radius (L=a >> 1) or when there is a clear separation of length scales, the heat

transfer coef�cient over most of the tube length is given by an asymptotic value

that depends only on the local length scales and molecular properties, i.e.,

NuT1 = 3:656 or h1 =
3:656kf
2a

: (1.16)

The asymptotic Nusselt number is just the �rst eigenvalue of the convection-diffusion

(C-D) operator appearing in the Graetz-Nusselt problem. When there is a clear

separation of length scales, only the �rst transverse mode of the C-D operator is

important and all other transverse modes (degrees of freedom) are eliminated. For

short distances, where a thermal boundary layer may exist, the spectrum of the

14



C-D operator is continuous and in the general case of arbitrary inlet conditions, it

is not possible to reduce the transverse degrees of freedom. However, for spe-

cial inlet conditions such as that of a uniform inlet temperature, the inlet boundary

layer can be characterized and the low-dimensional model can be extended by

using a position dependent heat transfer coef�cient. The key point to note here

is that once a two-mode low-dimensional model is available, its range of validity

can be extended by using position dependent transfer coef�cient. In fact, in this

classical Graetz-Nusselt problem, use of exact expression for h(x)makes the solu-

tion of the low-dimensional model to be identical to that of the detailed model (but

the low-dimensional model cannot treat or is not accurate for other types of inlet

conditions).

The low-dimensional model can easily be generalized to other situations such

as constant �ux boundary condition at the wall (for which NuH1 = 48
11
), ducts of

other shapes, complex geometries (porous media or packed-beds), developing

�ows, turbulent �ows and �ows with phase change. In all these cases, the ex-

pressions or correlations for h(x) change but the main concept of eliminating the

local degrees of freedom using a global and a local equation with two temperature

modes and the transfer coef�cient concept remains valid.

The Dispersion Coef�cient Concept: The dispersion coef�cient concept is older

than that of the transfer coef�cient and was �rst introduced by Boussinesq (1877)

as eddy viscosity for describing momentum transport in turbulent �ows. In the

chemical engineering literature, the popularity of the dispersion coef�cient in mass

transfer traces its origin to the papers of Taylor (1953) and Aris (1956). The clas-

sical Taylor-Aris problem considers the dispersion of a non-reactive solute in a

circular tube of constant cross-section in which the �ow is laminar. In this case, the

detailed model describing the solute concentration C(r; �; x; t) is described by the
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convective-diffusion equation

@C

@t
+ 2 hui

�
1� r2

a2

�
@C

@x
= Dm

�
1

r

@

@r

�
r
@C

@r

�
+
1

r2
@2C

@�2

�
+Dm

@2C

@x2
; (1.17)

0 < r < a; x > 0; t > 0

with boundary conditions

@C

@r
= 0 @ r = a;C �nite @ r = 0: (1.18)

and appropriate inlet and initial conditions. Taylor (1953) and Aris (1956) showed

that the cross-sectional averaged concentration

hCi (x; t) = 1

�a2

Z 2�

0

Z a

0

r C(r; �; x; t)drd�; (1.19)

is given by the coarse-grained low-dimensional model

@ hCi
@t

+ hui @ hCi
@x

= Deff
@2 hCi
@x2

; Deff = DT +Dm ; DT =
a2 hui2

48Dm

; (1.20)

whereDeff is the effective dispersion coef�cient. The �rst term inDeff is known as

the Taylor dispersion coef�cient and arises due to the combined effect of velocity

pro�le and transverse molecular diffusion. De�ning a transverse diffusion time (for

circular tube) as

tD =
a2

48Dm

; (1.21)

the Taylor dispersion coef�cient may be expressed as

DT = hui2 tD: (1.22)
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The second contribution to Deff in equations (1.20) (known as the Aris contribu-

tion) is the axial diffusion term that is already present in the detailed model and is

often neglected when the tube length is much larger than the diameter (or more

precisely, when L� hui tD and the radial Peclet number Per = ahui
Dm

�
p
48). As the

heat transfer model, this coarse-grained model eliminates the dependence of the

concentration on the smaller scales (transverse radial coordinate r and azimuthal

coordinate �) using the effective dispersion coef�cient concept, which depends

only on the eliminated length scale and molecular properties. The model given

by equations (1.20)) is widely used in the chemical engineering literature, often

with added inlet and exit boundary conditions. In the literature, there is no general

agreement or justi�cation for these inlet and exit conditions.

The following observations may be made on the Taylor-Aris low-dimensional

description of the non-reactive solute dispersion model: (i) The average concen-

tration hCi (x; t) is not an easily measurable quantity. In fact, Taylor (1953) him-

self measured experimentally the cup-mixing or velocity weighted concentration

Cm(x; t) (also known as the bulk concentration), which can be done by collecting

small samples of �uid exiting the tube. As we show below, the distinction between

Cm(x; t) and hCi (x; t) is important but is often ignored in most publications on this

topic (and also in most textbooks). (ii) The Taylor-Aris model uses a single concen-

tration mode and represents what is a local phenomenon (exchange of solute by

molecular diffusion between fast moving �uid near the center of the tube and slow

moving �uid near the wall) as a diffusion term in the macroscale equation. It rep-

resents the local (transverse) gradient in concentration as a gradient in the global

(longitudinal) variable with respect to the global scale in the low-dimensional de-

scription. As can be seen intuitively, this is not an accurate description of the true

physical situation and hence is the main reason for the many conceptual dif�culties

(such as upstream diffusion of the solute, in�nite speed of propagation of signals
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even in the convection dominated limit, etc.) associated with this model. (iii) Since

the model is parabolic and is similar to the diffusion equation (in a coordinate sys-

tem moving with the average velocity), it requires additional boundary conditions

or physical constraints. Further, it can not describe the bypass behavior or the

segregated �ow limit that may be reached in the case of laminar �ow in a tube with

negligible molecular diffusion effects (Dm ! 0).

Rigorous Procedures: There are several other averaging techniques used in

literature. For example, in �uid dynamics, Reynolds averaging is widely used to

obtain time-smoothed transport equation that describes micromixing effectively.

However, this technique leads to the closure problem (more number of unknowns

than the number of equations). Several schemes have been proposed to close the

two terms in the time-smoothed equations, namely, scalar turbulent �ux in reactive

mixing, and the mean reaction rate (Bourne and Toor, 1977; Brodkey and Lewalle,

1985; Li and Toor, 1986; Dutta and Tarbell, 1989; Fox, 1992). However, these are

not justi�ed for fast/non isothermal kinetics as well as for the case where strong

boundary layers are present.

For dynamical systems with scale separation, the Center Manifold theorem

(Carr, 1981) has been used extensively in recent years to eliminate the slave (or

fast decaying) modes and obtain low dimensional models described by a few or-

dinary differential equations (Mercer and Roberts, 1990; Balakotaiah and Chang,

1995; Balakotaiah and Dommeti, 1999). While this is a powerful technique and

can describe the asymptotic behavior of a physical system near a �xed/steady

point (such as a trivial solution), a major limitation of this technique is its inabil-

ity to describe the transient evolution of initial conditions or dispersion process at

short times (Ratnakar and Balakotaiah, 2011a). In addition, it can not be used for

algebraic equations or elliptic problems (steady-state boundary value problems).
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Similarly, the method of moments (Aris, 1956; Chatwin, 1970; Barton 1983)

are one of the well known techniques to analyze the spreading process and to de-

termine the spatial moments. Aris (1956) analyzed the dispersion of non-reacting

solute in a tube using this method and derived the asymptotic solution for �rst few

moments where he presented the contribution of axial mixing on overall spreading

process. Chatwin(1970) revised the work of Aris (1970) further and derived the

solution of diffusion-convection model asymptotically. However, the double zero in

Laplace transform inversion was neglected in his derivation that lead to physically

incorrect results, which was corrected later by Barton (1983). Though this method

can predict the moments accurately, it can not be applied for non-linear problems.

In addition, the �rst few moments are not enough to determine the solution. For ex-

ample, in a tubular reactor, the spatial moments can not predict the exit conversion.

the third central moments.

The most superior averaging technique of all is the Lyapunov-Schmidt (L-S)

technique of classical bifurcation theory which eliminates the degrees of freedom

near a zero eigenvalue and analyze the bifurcation behavior of a nonlinear operator

(Golubitsky and Schaeffer, 1984; Balakotaiah et al.,1985). Recently, this technique

has been used for spatial averaging of convection-diffusion-reaction models pro-

vided a scale separation exists (Balakotaiah and Chang, 2003; Balakotaiah, 2004;

Bhattacharya at al., 2004; Chakraborty and Balakotaiah, 2005, Ratnakar and Bal-

akotaiah, 2011 a,b; Balakotaiah and Ratnakar, 2010). Intuitively speaking, the L-S

method of averaging is equivalent to Taylor expansion of a more detailed model

in terms of one or more small parameters representing the ratio of length or time

scales present in the detailed model. In such an expansion, the lowest (zeroth)

order term (which ignores the physics at the small scales) is the simpli�ed model

(such as the ideal PFR or CSTR model) while the higher order corrections modify

it by including the small but signi�cant physical phenomena (such as local velocity
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gradients, molecular diffusion, �nite rates of adsorption, reaction, etc.) present at

various length and time scales.

1.3 Objectives

As discussed in introduction, there are three approaches to obtain low-dimensional

models in the chemical engineering literature: (i) top-down approach, where a cer-

tain a prior assumptions are made to simplify the detail models; (ii) numerical ap-

proach, where the detailed model is discretized and solved numerically; and (iii)

averaging approach, where a low-dimensional model is developed by averaging

the detailed model over small length scales. We also discussed that the �rst two

approach have various shortcomings. Therefore, one of the main objective of this

part of thesis is to present a rigorous and systematic procedure for averaging of full

diffusion-convection-reaction model for various reactors that can be used for gen-

eral sources including non-linear and point sources. Since most of the averaging

techniques such as Center Manifold, method of moments and volume averaging

techniques have various shortcomings and L-S procedure overcomes these short-

comings, we develop low-dimensional models for transport and reaction processes

based on L-S procedure. Another objective is to analyze the range of conver-

gence and validity of the averaged model in parameter spaces. After we have

the averaged model, one of the important objective is to determine experimentally

measurable quantities to gain physical insight that can be helpful to design better

experiments or develop better low-dimensional models.

In the next chapter, we present the mathematical aspect of L-S procedure and

illustrate its application with an example of two-compartment discrete diffusion-

convection model transport. We also analyze the range of convergence and va-

lidity of the model. In the third chapter, we present the exact averaging of laminar

dispersion in a tube with general sources including point release and analyze the

range of convergence and validity of the model. In this chapter, we present the evo-
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lution of spatial moments and demonstrate the superiority of L-S procedure over

other techniques. We also analyze the truncated models and show that the regu-

larization of truncated model increases its range of validity. In the forth chapter, we

derive reduced order model for describing dispersion in catalytic monoliths where

we analyze the transfer coef�cient concept in detail. In the last chapter, summarize

the main conclusion of the �rst part of the thesis and recommends for future work.
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Chapter 2 Liapunov-Schmidt Reduction

2.1 Preamble

In this chapter, we present multi-scale averaging of a general non-linear opera-

tor corresponding to transport and reaction processes in a chemical reactor based

on the Lyapunov-Schmidt technique of classical bifurcation theory. This method

is best suited for spatial averaging near a zero eigenvalue (corresponding to the

vanishing of a small parameter representing the ratio of length or time scales in

the system). For the case of diffusion-convection-reaction problems, local equilib-

rium exists in the limit when local diffusion is very fast as compared to convection

and reaction [Remark: The convection time scale varies as L= hui, where L is the

macro length scale and hui is the average velocity. The reaction time scale varies

as CR=R(CR),where CR is a reference concentration and R(CR) is the reaction

rate. The local diffusion time scale varies as `2T=Dm, where `T is the meso or micro

length scale (tube radius in case of tubular reactor) and Dm is the molecular (or

effective) diffusivity. When `T ! 0, local diffusion becomes dominant as the other

scales are independent of `T . Conversely, by choosing the appropriate length scale

`T , the local diffusion can be made to be the dominant process and hence, the spa-

tial degrees of freedom associated with this length scale can be eliminated]. Di-

mension reduction based on Lyapunov-Schmidt technique uses two orthogonal set

of vector spaces and orthogonal projection of the convection-diffusion-reaction op-

erator and state variables (concentration/temperature) on those spaces. The resul-

tant low-dimensional models are described by multiple concentration and temper-

ature variables, unlike the traditional low-dimensional models which are described

by a single concentration and a single temperature variable. Each of these vari-

ables is representative of a physical scale of a system and is called a �mode,�

and the averaged models are called �multi-mode models.� Moreover, spatial aver-
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aging by the Lyapunov-Schmidt method retains all the parameters present in the

full CDR equation. Therefore, within their region of validity these low-dimensional

models retain the complex spatio-temporal behaviors (multiple solutions, oscilla-

tions, micromixing effects, etc.) that are exhibited by the detailed model that are

often missed by the traditional low-dimensional models. Intuitively speaking, the L-

S method of averaging is equivalent to Taylor expansion of a more detailed model

in terms of one or more small parameters representing the ratio of length or time

scales present in the detailed model. In such an expansion, the lowest (zeroth)

order term (which ignores the physics at the small scales) is the simpli�ed model

(such as the ideal PFR or CSTR model) while the higher order corrections modify

it by including the small but signi�cant physical phenomena (such as local velocity

gradients, molecular diffusion, �nite rates of adsorption, reaction, etc.) present at

various length and time scales

The Lyapunov-Schmidt method is a well known techniques for eliminating the

degrees of freedom near a zero eigenvalue. It has been used for analyzing the bi-

furcation behavior of a nonlinear operator near a zero eigenvalue (Golubitsky and

Schaeffer, 1984; Balakotaiah et al.,1985). Recently, this technique has been used

for spatial averaging of convection-diffusion-reaction models provided a scale sep-

aration exists (Balakotaiah and Chang, 2003; Balakotaiah, 2004; Bhattacharya at

al., 2004; Chakraborty and Balakotaiah, 2005, Ratnakar and Balakotaiah, 2011

a,b; Balakotaiah and Ratnakar, 2010). Here, we illustrate the main steps of this

averaging procedure by considering a single partial differential equation of the

convection-diffusion-reaction type and show how the local spatial degrees of free-

dom (present in the diffusion operator) may be eliminated by averaging. Application

of the procedure for more general cases may be found in the cited references.
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2.2 Mathematical Aspects of L-S

We explain here brie�y the mechanism of the Lyapunov-Schmidt reduction

when the linear operator is Fredholm of index zero. Finite dimensional (matrix)

operators and elliptic differential operators such as the transverse diffusion opera-

tor considered in the next section fall into this category.

We consider a linear or nonlinear equation of the form

F (c; p) � Lc� pN(c; p) = 0 , (2.1)

where c is a state variable, p is a parameter (not necessarily small), L is a linear

operator, independent of p, and N (c; p) is a smooth function. We assume that L

has a simple zero eigenvalue with eigenvector y0, i.e.,

L y0 = 0; y0 6= 0: (2.2)

Let L� = adjoint operator to L and v0 be the eigenvector of L� corresponding to

zero eigenvalue, i.e.,

L� v0 = 0; v0 6= 0: (2.3)

We use orthogonal complementary spaces to decompose the domain and codomain

as shown in Figure 2.1. Let E be the projection operator onto range L. Then, equa-

tion (2.1) is equivalent to

E F (c; p) = 0; (2.4)

(I � E) F (c; p) = 0: (2.5)
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Figure 2.1: Schematic diagram illustrating the choice of the complementary spaces
in the domain and codomain of the linear operator in the Liapunov-Schmidt Reduc-
tion.

In the domain, c may be expressed as

c = hci y0 + c0 (2.6)

where hci y0 is the component of the solution c projected onto ker L. [If the eigen-

vector is normalized so that hy0; v0i = 1, then hci may be interpreted as the ampli-

tude of the projection of c onto ker L]. Thus, equation (2.4,2.5) become

E F (hci y0 + c0; p) = 0; (2.7)

(I � E) F (hci y0 + c0; p) = 0: (2.8)

We call equation (2.7) and equation (2.8) as the local and the global equations,

respectively. Since the operator EF : range L� ! range L is invertible, it follows

from the implicit function theorem that equation (2.7) can be solved uniquely for c0
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as

c0 = c0(hci y0; p): (2.9)

This is the key step of the elimination process for c0 that contains all the slave

modes. Substitution of equations (2.9) in (2.8) gives

(I � E) F (hci y0 + c0(hci y0; p); p) = 0: (2.10)

De�ning

f(hci ; p) = (I � E)F (hci y0 + c0 hci y0; p); p); (2.11)

we note that f : ker L! ker L� is a mapping between the one dimensional spaces

ker L and ker L�. We de�ne the averaged equation or the reduced order model for

the amplitude hci by

h(I � E) F (hci y0 + c0(hci y0; p); p); v0i = 0; (2.12)

where h�; �i denotes inner product and c0(hci y0; p) is de�ned implicitly by the equa-

tion

E F (hci y0 + c0(hci y0; p); p) = 0: (2.13)

Now, since E F 2 range L and v0 ? range L, the averaged model equation (2.12)

may be simpli�ed to

h F (hci y0 + c0(hci y0; p); p); v0i = 0: (2.14)

For the special form of F given by equation (2.1), the local equation (after noting

that EL = L) simpli�es to the equation

Lc0 = pEN(hci y0 + c0(hci y0; p); p) (2.15)
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while the averaged model is given by

hN(hci y0 + c0(hci y0; p); p); v0i = 0: (2.16)

In applications, the elimination of the slave vector c0 from equation (2.15) can be

done in many ways. For example, when N is a linear operator in c then the local

equation (2.15) can be solved exactly for c0 in terms of hci as

c0 = (L� p EN)�1 p EN(hci y0; p); (2.17)

provided the linear operator (L� p EN) is invertible. Substitution of equation

(2.17) in equation (2.16) gives an exact averaged equation for hci. A second ap-

proach to solve the local equation is to take advantage of scale separation that

may be present in the physical problem. For example, when p is small, we can use

a perturbation expansion

c0 =
1X
n=1

pnc0n (2.18)

and solve a sequence of linear inhomogeneous equations of the form

L c0n = b(hci y0; c01; ::c0n�1): (2.19)

In this case, the averaged model can be expressed in powers of p to any desired

order. Similarly, when the scale separation is such that p is large, we can use a

perturbation expansion of the form

c0 =

1X
n=0

c0n
pn

(2.20)

to solve the local equation.

We note that the solvability condition for equation (2.15, 2.19) is always satis-
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�ed due to the decomposition of c and our choice of complementary spaces, and,

having a small parameter or the introduction of a small parameter (and hence scale

separation) is convenient but not necessary in the L-S procedure. If the local equa-

tion (2.15) for c0 can be solved exactly, then the reduced order model is exact for

any �nite p. The L-S procedure can be applied for general (asymmetric) problem

as well as symmetric problem where operator L is self-adjoint, i.e., L� = L. We

provide here a simple example that illustrates the L-S procedure and has many

features that are similar to the laminar dispersion problem discussed in the subse-

quent sections.

2.3 Illustration of the L-S Reduction

We consider the two compartment discrete diffusion-convection model shown

in Figure 2.2. Each compartment (cell) is assumed to be perfectly mixed and the

exchange �ow rate Q between the compartments is assumed to be constant. The

convective (in and out) �ow rate is q, while the inlet solute concentration is cin(t).

In applications such as those in chemical engineering (residence time distribu-

tion theory) and biomedical engineering (pharmacokinetics), the second compart-

ment represents stagnant (no �ow) regions (Wen and Fan, 1975; Himmelblau and

Bischoff, 1968). The mathematical model for this system is given by

V

2

dc1
dt

= �Q c1 +Q c2 + q cin(t)� q c1 +
V

2
c10�(t) (2.21)

V

2

dc2
dt

= Q c1 �Q c2 +
V

2
c20�(t); t � 0 (2.22)

where the last terms in equation (2.21,2.22) containing the Dirac delta function

� (t), represent the initial conditions. De�ning characteristic times

�E =
V

Q
; � c =

V

q
; (2.23)
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Figure 2.2: Schematic diagram of a two-compartment discrete disffusion-
convection model.

and dimensionless variables

� =
t q

V
; p =

q

Q
=
�E
� c
; (2.24)

the model may be expressed as

A c = p f ; (2.25)
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where

A =

0B@ �2 2

2 �2

1CA ; c =

0B@ c1

c2

1CA (2.26)

and

f =

0B@ f1

f2

1CA =

0B@ dc1
d�
+ 2 c1 � 2 cin(�)� c10�(�)

dc2
d�
� c20�(�)

1CA : (2.27)

Here, �E is the local exchange time while � c is the convection or residence time.

The matrix A, which is symmetric has eigenvalues �0 = 0, �1 = �4 and corre-

sponding eigenvectors y0 =

0B@ 1

1

1CA, y1 =
0B@ 1

�1

1CA. Thus, de�ning the canonical
variables

hci = c1 + c2
2

; c0 =
c1 � c2
2

; (2.28)

or equivalently,

c1 = hci+ c0; c2 = hci � c0; (2.29)

and the projection matrix E =

0B@ 1
2

�1
2

�1
2

1
2

1CA, the averaged equation and local
equation are given by

d hci
d�

+ hci � cin(�)�
(c10 + c20)

2
�(�) + c0 = 0 (2.30)

�4c0 = p

�
dc0

d�
+ c0 + hci � cin(�)�

(c10 � c20)

2
�(�)

�
: (2.31)

Using the averaged equation (2.30), the local equation (2.31) may be written as

�4c0 = p

�
dc0

d�
� d hci

d�
+ c20�(�)

�
: (2.32)
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We note that if the local equation (2.32) can be solved exactly for c0 in terms of

hci, the reduced order model will be exact. To show that the L-S procedure is a

pure elimination process, we write the averaged and local equations in the Laplace

domain by de�ning

chci = Lfhci (�)g = 1Z
0

exp (�! �) hci (�) d� : (2.33)

Taking Laplace Transform of equation (2.30) & (2.32), we get

! chci+ chci � dhcini (!)� (c10 + c20)

2
+ bc0 = 0 (2.34)

�4 bc0 = p
h
! bc0 � ! chci+ c20

i
: (2.35)

Solving equation (2.35) for c0, we get

bc0 = p

4 + ! p

h
! chci � c20

i
; (2.36)

which after taking the inverse Laplace transform leads to the result

c0 =

�Z
0

exp

�
�4(� � t0)

p

�
d hci
d�

(t0) dt0 � c20

�Z
0

exp

�
�4(� � t0)

p

�
� (t0) dt0: (2.37)

Thus, the exact averaged equation in the Laplace domain is given by

! chci+ chci � dhcini (!)� (c10 + c20)

2
+

p
4

1 + ! p
4

h
!chci � c20

i
= 0: (2.38)

In the time domain, we can write the above equation (2.38) in the following form:

d hci
d�

+ hci+
�Z
0

exp

�
�4(� � t0)

p

�
d hci
d�

(t0) dt0 � cin(�)
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�(c10 + c20)

2
�(�)� c20

�Z
0

exp

�
�4(� � t0)

p

�
� (t0) dt0 = 0: (2.39)

For p = 0, the leading order equation is given by

d hci0
d�

+ hci0 � cin(�)�
(c10 + c20)

2
�(�) = 0: (2.40)

It is clear from above equation that the base state hci0 (�), in general, is time de-

pendent. Even when there is no solute present in the cells initially (c10 = c20 = 0),

the base state can be time dependent whenever the inlet condition cin (�) is time

dependent.

We note that in this speci�c case, the exact averaged model could also be

obtained by solving equation (2.30) for c0 and substituting the result in equation

(2.32). This leads to the averaged model in the form:

d hci
d�

+ hci � cin(�)�
(c10 + c20)

2
�(�) +

p

4

�
d2 hci
d� 2

+ 2
d hci
d�

� dcin
d�

� (c10 + c20)

2
�0(�)� c20� (�)

�
= 0: (2.41)

The L-S method also leads to the same form if equation (2.38) is multiplied by�
1 + !p

4

�
before taking the inverse Laplace transform. It can be seen easily that the

two forms of the averaged model, equation (2.39) and (2.41) are equivalent.

It should be noted that equation (2.41) is a second order equation with two initial

conditions. For � > 0, equation (2.41) gives

d hci
d�

+ hci � cin(�) +
p

4

�
d2 hci
d� 2

+ 2
d hci
d�

� dcin
d�

�
= 0: (2.42)

Multiplying equation (2.41) by � and followed by integration from � = 0 to 0+, we
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get one initial condition for hci as

hcij�=0+ =
c10 + c20

2
: (2.43)

Integration of equation (2.41) from � = 0 to 0+ gives

hci � (c10 + c20)

2
+
p

4

�
d hci
d�

+ 2 hci � cin � c20

�
= 0 @� = 0+ (2.44)

that can be further simpli�ed by using equation (2.43) as

d hci
d�

����
�=0+

= cinj�=0+ � c20: (2.45)

The averaged models given by equations(2.39) and (2.41) are exact and valid

for any p � 0. An alternate method to solve the local equation (2.32) for c0 in terms

of hci is to use perturbation expansion: If p is small, we express the local variable

c0 as

c0 =
1X
i=1

pi c0i; (2.46)

and obtain the result

c0 =

1X
i=1

�p
4

�i
(�1)i�1 di hci

d� i
� c20

1X
i=1

�p
4

�i
(�1)i�1 �i�1 (�) ; (2.47)

where �i�1 (�) is the (i� 1)th derivative of the Dirac delta distribution. We show

that the solution for c0 given by equation (2.47) is same as the exact solution of c0

given by equation (2.37). For this, we note that

L�1
�

p

1 + !p

�
=

�Z
0

exp

�
�4(� � t0)

p

�
� (t0) dt0; � � 0 (2.48)
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while for j! pj < 1, we can write

L�1
�

p

1 + !p

�
= L�1

�
p� ! p2 + !2 p3 � ::::::::::::::

	
= �

�
�

p

�
� �0

�
�

p

�
+ �00

�
�

p

�
� :::::::::: (2.49)

Thus, for j!pj < 1, we have the identity

�Z
0

exp

�
�4(� � t0)

p

�
� (t0) dt0 = �

�
�

p

�
� �0

�
�

p

�
+ �00

�
�

p

�
� :::::::::; (2.50)

while for j!pj > 1, we can write

L�1
�

p

1 + !p

�
= L�1

�
1

!
� 1

!2p
+

1

!3p2
� ::::::::::

�
= 1�

�
�

p

�
+

�
�

p

�2
1

2!
�
�
�

p

�3
1

3!
:::: = exp

�
��
p

�
: (2.51)

Thus, using equation (2.50) and the property of the distributional derivatives

�Z
0

�j (� � t0)
d hci
d�

(t0) dt0 = (�1)j d
j+1 hci
d� j+1

; (2.52)

we can express the perturbation solution given by equation (2.47) as

c0 =

�Z
0

exp

�
�4(� � t0)

p

�
d hci
d�

(t0) dt0 � c20

�Z
0

exp

�
�4(� � t0)

p

�
� (t0) dt0; (2.53)

which is same as the exact solution given by equation (2.37).

We can also solve the local equation (2.32) using a perturbation expansion in

terms of reciprocal powers of p as

c0 =

1X
n=0

c0n
pn

(2.54)
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and obtain the solution in the Laplace domain in the form

bc0 = 1X
i=0

�
� 4

p!

�i h chci � c20
!

i
; (2.55)

that is same as the exact solution given by equation (2.36) or given by equation

(2.37) in time domain.

The perturbation expansion, equation (2.47), in powers of p converges ab-

solutely provided 1
j!j >

p
4
(or equivalently, p j!j < 4) while the same in powers of

1
p
, equation (2.55), converges absolutely if 1

j!j <
p
4
(or equivalently, p j!j > 4). The

key point is that the local equation can be solved by various methods exactly using

different scaling. For example, expansion in powers of p corresponds to the long

time scaling while expansion in reciprocal powers of p may correspond to short

time scaling. Once the local equation is solved, the reduced order model is exact

and is valid for all times within the range of convergence of the local equation.

It should be emphasized that in the long time scaling, the L-S procedure cap-

tures the exponentially small terms in time through the distributional derivatives or

in the form of higher order derivatives of hci (�) : Similarly, it may be seen that the

short time scaling leads to a solution in powers of
�
�
p

�
. It is also clear that the iden-

tity given by equation (2.51) is derived for p j!j > 1 but the expansion converges for

all � and p as long as we include all terms. The same is true for equation (2.50).

Thus, whether we use a perturbation expansion method for small p or large p to

solve the local equation for c0, the averaged model is exact (within the range of

convergence of the local equation) as long as all order terms are included in the

expansion. However, truncation of the local equation at any �nite order will reduce

the accuracy of the averaged model. In such cases, it may be shown that the solu-

tion of the complete model agrees with that of averaged model up to all orders to

which the local equation is valid.
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As stated earlier, the reduced order model when expressed as a perturbation

series in p contains higher order time derivatives of hci as well as distributional

derivatives of � (�), i.e.,

d hci
d�

+ hci � cin(�)�
(c10 + c20)

2
�(�) +

1X
i=1

�p
4

�i
(�1)i�1 di hci

d� i

�c20
1X
i=1

�p
4

�i
(�1)i�1 �i�1 (�) = 0: (2.56)

However, the solution of the above model does not require any additional initial

conditions. This can be seen if we express the solution hci (�) also in a perturbation

series:

hci = hci0 +
1X
i=1

pi hcii (2.57)

Now, the evolution equation for each hcii, i = 0; 1; 2::: is a �rst order ODE, e.g.

d hci0
d�

+ hci0 = cin (�) +
(c10 + c20)

2
� (�)

d hcin
d�

+ hcin =
nX
i=1

�
�1
4

�i di hcin�i
d� i

� c20

�
�1
4

�n
�n�1 (�) ; n > 0 (2.58)

As can be seen from equation (2.58), the R.H.S. of the evolution equation for hcin
is independent of hcin and depends only on hcin�1 ; hcin�2, ..... ,hci0. Thus, the

equation (2.58) can be solved sequentially up to desired accuracy without providing

any additional initial conditions.

While the two forms of the exact averaged model, equations(2.41) and (2.41),

are valid for any �nite p, the perturbation expansion, equation (2.56), is valid only for

small p (given by the convergence criterion, p j!j < j�1j). Thus, if equation (2.56) is

truncated at some �nite order and applied to p values of order unity or larger, it can

give inconsistent (non-physical) results. [The initial conditions for the truncated

form of equation (2.56) may be obtained by multiplying it by � k (k = 0; 1; ::) and
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integrating from � = 0 to 0+.] This is due to the fact that for �nite values of p,

the higher order derivatives dominate the behavior, which is inconsistent with the

(long time) perturbation scaling. However, if the solution is also expressed as a

perturbation series in p (as in equation (2.57), the higher order derivatives describe

the behavior for shorter times, consistent with the scaling.

We now discuss another procedure for solving the truncated form of the aver-

aged model (2.56). Suppose that we truncate equation (2.56) at some �nite order.

This truncated equation can be rewritten using lower order truncated equation to

eliminate the higher order derivatives but without changing the accuracy. For ex-

ample, if we truncate the reduced order model (2.56) at O (p2) and write it for the

special case of c10 = c20 = 0 as follows:

d hci
d�

+ hci � cin(�) +
p

4

d hci
d�

�
�p
4

�2 d2 hci
d� 2

= 0 +O
�
p3
�
: (2.59)

We can rewrite this equation by using the following approximations from lower order

truncated models
d hci
d�

= cin(�)� hci �
p

4

d hci
d�

+O
�
p2
�

(2.60)

and
d2 hci
d� 2

=
dcin(�)

d�
� d hci

d�
+O (p) (2.61)

and rewrite the truncated model, equation (2.59) as

d hci
d�

+ hci+ p

4

�
cin(�)� hci �

p

4

d hci
d�

+O
�
p2
��
��p

4

�2�dcin(�)
d�

� d hci
d�

+O (p)

�
� cin(�) = 0 +O

�
p3
�

(2.62)

or,
d hci
d�

=
�
1� p

4

�
(cin(�)� hci) +

p2

16

dcin(�)

d�
+O

�
p3
�
: (2.63)
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It is straightforward to verify that the solutions of equations(2.59) and (2.63) agree

with the exact solution to O (p2). Thus, the rewriting by using lower order truncated

models appropriately, does not change the accuracy but can remove the higher

order derivatives and this procedure is consistent with long time scaling. As dis-

cussed later, this rewriting may also be used to increase the range of validity of the

model (without changing the accuracy) by a procedure called regularization.

2.3.1 Averaged Model in Terms of Exit Concentration c1

As explained above, the L-S method gives the averaged model in terms of hci,

which is the amplitude of the projection of the state vector onto ker A. However, in

applications, it is preferable to express the averaged model in terms of an exper-

imentally measured variable. For example, in the compartment model discussed

above, the volume averaged concentration hci is not easily measurable but the �ow

averaged concentration c1 can be measured. Therefore, we derive the averaged

model in terms of exit concentration c1 by rewriting the equation (2.29) as

hci = c1 � c0

Thus, the global equation (2.34) in the Laplace domain can be rewritten as

! bc1 + bc1 � dhcini (!)� (c10 + c20)

2
� ! bc0 = 0 (2.64)

while the local equation given by equation (2.36) in the Laplace domain can be

rewritten as bc0 = p

4 + 2 ! p
[! bc1 � c20] : (2.65)

and in time domain as

c0 =
1

2

�Z
0

exp

�
�2(� � t0)

p

�
dc1
d�
(t0) dt0 � c20

2

�Z
0

exp

�
�2(� � t0)

p

�
� (t0) dt0: (2.66)
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By combining equations(2.64 and 2.65), the exact averaged equation in the Laplace

domain is given by

! bc1 + bc1 � dhcini (!)� (c10 + c20)

2
� p

4 + 2 ! p

�
!2 bc1 � !c20

�
= 0 (2.67)

while in time domain, it is given by

dc1
d�

+ c1 � cin(�)�
1

2

�Z
0

exp

�
�2(� � t0)

p

�
d2c1
d� 2

(t0) dt0 � (c10 + c20)

2
�(�)

+
c20
2

�Z
0

exp

�
�2(� � t0)

p

�
�0 (t0) dt0 = 0: (2.68)

Using the identity (for c1 (� = 0) = 0)

�Z
0

exp

�
�2(� � t0)

p

�
dc1
d�
(t0) dt0 = c1 �

2

p

�Z
0

exp

�
�2(� � t0)

p

�
c1 (t

0) dt0; (2.69)

the exact averaged model in terms of exit concentration c1 may be expressed as

1

2

dc1
d�

+ c1 � cin(�) +
1

p

�Z
0

exp

�
�2(� � t0)

p

�
dc1
d�
(t0) dt0

�c10
2
�(�)� c20

p

�Z
0

exp

�
�2(� � t0)

p

�
� (t0) dt0 = 0: (2.70)

Alternatively, we can express c1 in terms of hci using equations(17b) and (31).

2.4 Some Advantages of Averaging using the L-S procedure

It is of interest to compare the L-S method with other averaging techniques

such as the Center Manifold (CM) method. While a detailed comparison is beyond

the scope of this work, we summarize here some important differences for future

investigation: (i) The L-S method of averaging can be applied to steady-state or
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equilibrium models where the governing equation is not an evolution equation ei-

ther in space or time. In contrast, the CM method and other methods based on

dynamical systems theory have limited applicability to such models. (ii) In the L-S

method, the base state can be time dependent, and, time dependent inlet condi-

tions/sources can be treated. In the CM method, base state (�xed point) is gener-

ally assumed to be time independent. While time dependent center manifolds can

be treated (Cox and Roberts, 1991), the forcing terms have to be small (quadratic

or higher order). Also, in the CM approach, the initial/inlet conditions are assumed

to be close to the �xed point. In contrast, there is no restriction on initial/inlet condi-

tions in the L-S technique. (iii) When applied to the averaging of transient models,

the L-S method can capture exponentially small terms in time while these terms

are ignored in the CM method (Carr, 1981). For example, in the compartment

model discussed above, the L-S method leads to reduced order model containing

higher order derivatives in time when a perturbation expansion is used for small

p. As illustrated above, these higher order time derivatives extend the validity of

the model to short times (or, capture the exponentially small transients). (iv) When

a perturbation expansion is used to solve for the CM, the range of validity of the

CM expansion can not be greater than that given by
���! p


��� < 1, where  is the real
part of eigenvalue close to zero and ! is frequency or wave number (Mercer and

Roberts, 1994; Cox and Roberts, 1995). In contrast, as shown in the example

above, when a perturbation expansion is used to solve the local equation in the

L-S method, the region of convergence of the expansion appears to be at least

as large as that given by
���! p


��� < 1. In addition, as illustrated above, time scale

separation is convenient but not necessary in the L-S formalism. In contrast, the

application of CM method requires time scale separation.
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Chapter 3 Exact Averaging of Laminar Dispersion

3.1 Preamble

In the most frequently cited of his articles, Sir Geoffrey Ingram Taylor examined

the dispersion of a non-reactive solute in laminar �ow through a tube and showed

that the cross-section averaged concentration satis�es, in a coordinate moving with

the mean �ow velocity, a diffusion equation (Taylor, 1953, 1954). Taylor found that

the apparent diffusion coef�cient to be equal to a2 hui2 =48Dm, where a is the tube

radius, hui is the mean velocity and Dm is the molecular diffusion coef�cient. As

the methodology and the physical arguments used by Taylor to obtain a coarse-

grained low-dimensional model with an effective dispersion coef�cient are of enor-

mous importance in the simpli�cation of many problems in the applied sciences

and engineering, the literature on Taylor dispersion theory is extensive. We refer

to the review article by Young and Jones (1991), the monograph by Brenner and

Edwards (1993) and recent articles by Gill and Subramanian (1980), Mercer and

Roberts (1990, 1994); Vandenbroeck (1990), Watt and Roberts (1995), Dorfman

and Brenner (2003), Balakotaiah (2004), Mikelic et al. (2006), Biswas and Sen

(2007), Balakotaiah (2008); Lee et al. (2008) and Balakotaiah and Chang (1995,

2003) for a discussion of the various contributions to Taylor dispersion theory.

In his seminal paper, Taylor used simple scaling and intuitive arguments to de-

rive a low-dimensional model for laminar dispersion (Taylor, 1953, 1954). His ap-

proach dealt only with the derivation of the reduced order model but not the inlet or

initial conditions that are needed to solve the model. Taylor's approach has been

extended by many authors using other techniques that take advantage of either the

separation of scales (e.g. method of multiple scales, the center manifold theorem

of dynamical systems theory, etc.) or the linearity of the classical Taylor dispersion

problem (e.g. method of moments). In our opinion, the most successful of these
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techniques for describing the long time behavior is the center manifold approach

(Carr, 1981) used by Mercer and Roberts (1990, 1994). However, as discussed

by Young and Jones (1991), a major limitation of all these techniques is their in-

ability to describe the dispersion process accurately at short times, leading to the

so called centroid displacement and variance de�cits. For example, the center

manifold approach is applicable only for times exceeding a critical value that is

determined by the non-zero eigenvalues of the transverse diffusion operator. For

comparison with experimental data, the existing reduced order models have also

other limitations. For example, most literature studies do not make a clear dis-

tinction between the cross-sectional averaged and the experimentally measured

velocity weighted or cup-mixing (or bulk) concentration. This distinction is very im-

portant especially for the case of non-uniform inlet or initial conditions where the

difference between these two concentrations is present initially. This difference is

maximum for the point release at the center where the cup-mixing concentration is

twice the cross-section averaged concentration. Most earlier studies use a single

diffusive mode (the cross-section averaged concentration) to represent the disper-

sion �ux in terms of the macroscale gradient of this mode, which is inconsistent with

the physical picture, i.e., laminar dispersion arises due to the local phenomenon of

exchange of solute between fast moving �uid near the center and the slow moving

�uid near the wall by transverse molecular diffusion. Hence, the dispersion �ux

should be proportional to the local gradient, namely, the difference between the

cup-mixing and cross-section averaged concentrations (transverse gradient) and

not the large scale gradient of the cross-section averaged concentration. Finally,

most literature studies use a parabolic reduced order model even in the convection

dominated (hyperbolic) limit that leads to many conceptual dif�culties such as up-

stream diffusion of the solute, in�nite speed of propagation and negative effective

dispersion coef�cients for fast reactions or short times.
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The main focus of this chapter is to present an alternate method for obtaining

coarse-grained low-dimensional models from the three dimensional convection-

diffusion-reaction models. Speci�cally, we show that the Lyapunov-Schmidt (L-S)

technique of classical bifurcation theory may be used to obtain coarse-grained low-

dimensional models in a systematic way. Though we use the laminar dispersion

problem to illustrate the method and compare the results obtained with other meth-

ods, the L-S method is applicable to a wide range of problems. It is best suited for

spatial averaging near one or more zero eigenvalues of the �rst Fréchet derivative

(linearization) of a governing nonlinear operator corresponding to the vanishing of

a small parameter representing the ratio of time or length scales in the system.

It can be used to eliminate the local spatial degrees of freedom (such as those

associated with the local diffusion operator) and derive accurate low-dimensional

models to any order in that small parameter. Intuitively, this method is similar to

the Maclaurin's series expansion of the nonlinear model in that small parameter.

The mathematical details of the Lyapunov-Schmidt technique and its application

to the engineering problems are already discussed in the literature (Balakotaiah

and Chang, 2003; Balakotaiah et al., 1985; Golubitsky and Schaeffer, 1984; Am-

brosetti and Prodi, 1993) and in the second chapter we reviewed it brie�y as an

averaging technique. In the next section, we apply the L-S procedure to the lami-

nar dispersion problem where the transverse Laplacian is self-adjoint with respect

to the standard cylindrical inner product.
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3.2 Transverse Averaging of Laminar Dispersion using the L-S

Method

3.2.1 Model Formulation

The detailed model describing the dispersion of a non-reactive solute in laminar

�ow in a tube is given by the transient convection-diffusion equation

@C

@t
+ U(r)

@C

@x
= Dm

�
1

r

@

@r

�
r
@C

@r

�
+
1

r2
@2C

@�2

�
+Dm

@2C

@x2
+ Sf (r; �; x; t) ;

0 < r < a; 0 < � < 2�; x > 0; t > 0 (3.1)

with inlet, initial and boundary conditions:

�
�Dm

@C

@x
+ U(r) C

�����
@x=0

= U(r) Cin(r; �; t) (3.2)

C = C0(r; �; x) @ t = 0; (3.3)

C �nite @ r = 0 ;
@C

@r
= 0 @ r = a; (3.4)

C(r; �; x; t) = C(r; � + 2�; x; t); (3.5)

where

U(r) = 2 hui
�
1� r2

a2

�
(3.6)

is the velocity pro�le, hui is the average velocity, Dm is the molecular diffusion

coef�cient and other terms have their usual meanings. Here, we have made the

usual assumptions for the continuity and momentum equation. We consider no-�ux

boundary condition at the wall and use the Danckwerts boundary condition (Danck-

werts, 1953) at inlet which is physically consistent whenever the axial molecular

diffusion term is included in the evolution equation (3.1). The term Sf (r; �; x; t)

represents sources/sinks for solute at x > 0 and t > 0.

We include the inlet and initial conditions as source/sink terms in the evolution
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equation as explained by Balakotaiah and Ratnakar (2010) and express it as

@C

@t
+ U(r)

@C

@x
= Dm

�
1

r

@

@r

�
r
@C

@r

�
+
1

r2
@2C

@�2

�
+Dm

@2C

@x2
+ Sf (r; �; x; t)

+U(r) Cin(r; �; t) �(x) + C0(r; �; x) �(t) (3.7)

with the same boundary conditions (3.4, 3.5). It can be easily seen that equation

(3.7) is identical to equation (3.1) for x > 0 and t > 0 and leads to the inlet and

initial conditions (3.2,3.3) after integration w.r.t. x from x = 0 to 0+ and w.r.t. t from

t = 0 to 0+, respectively. Here t = 0+ should be interpreted as t = " � �D with

"! 0, where �D = a2

Dm
is the transverse diffusion time.

Non-dimensionalizing the above equation (3.7) by de�ning

z =
x

L
; � =

hui t
L

; � =
r

a
; u(�) =

U(r)

hui = 2
�
1� �2

�
(3.8)

p =
hui a2
DmL

; Per =
hui a
Dm

; c(�; �; z; �) =
C(r; �; x; t)

CR
;

sf (�; �; z; �) =
Sf (r; �; x; t)L

huiCR
(3.9)

s(�; �; z; �) = sf (�; �; z; �) + u(�) cin(�; �; �) �(z) + c0(�; �; z) �(�); (3.10)

we express it as,

F (c; p) � r2
? c � p

�
@c

@�
+ u(�)

@c

@z
� p

Pe2r

@2c

@z2
� s(�; �; z; �)

�
= 0 in 
; (3.11)

with boundary conditions given by

r?c � n = 0 on @
; (3.12)
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c(�; �; z; �) = c(�; � + 2�; z; �); (3.13)

where n is outward normal to the boundary @
 (tube wall) and

r2
? c =

1

�

@

@�

�
�
@c

@�

�
+
1

�2
@2c

@�2
(3.14)

is transverse Laplacian operator in the domain 
 (tube cross-section) subjected to

the zero �ux boundary conditions on @
. Here, c (�; �; z; �) is the concentration non-

dimensionalized by some reference concentration (CR); u (�) is the dimensionless

velocity pro�le with dimensionless average velocity hu (�)i = 1; � and z are dimen-

sionless radial and axial coordinates, respectively; � is time non-dimensionalized

by the convection time � c = L
hui , and p is the local (transverse) Peclet number which

represents the ratio of two time scales, the transverse diffusion time �D
�
= a2

Dm

�
to the convection time � c. The parameter p is the non-dimensionalized local or

transverse diffusion time and could also be interpreted as the dimensionless wave

number (or frequency). In this speci�c problem, due to the zero �ux boundary

condition, the transverse operator has a zero eigenvalue for any value of p, so the

L-S procedure will lead to the exact averaging even for �nite values of p if the lo-

cal equation can be solved exactly. However, as discussed in more detail below,

in most practical cases, only small values of p are of interest and the smallness

(magnitude) of p is an indication of scale separation in the physical system. The

parameter Per is radial Peclet number (ratio of transverse diffusion time and con-

vection time based on tube radius) while s(�; �; z; �) is source/sink term including

inlet and initial conditions. The L-S procedure presented in the previous section

can be extended to the general case in which the source/sink terms include non-

linear volumetric and/or surface reactions. We restrict it here to the non-reacting

cases, i.e., s (�; �; z; �) representing inlet/initial conditions and/or sources/sinks of

solute for z > 0 and � > 0.
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In the present approach, the inlet and initial conditions are included in the trans-

verse averaging procedure. As shown later, this leads to the identi�cation of the

inlet/initial conditions of the reduced order model.

3.2.2 Transverse Averaging

We represent the detailed model given by equation (3.11) in the following form:

F (c; p; Per) � r2
?c� p

�
@c

@�
+ u(�)

@c

@z
� p

Pe2r

@2c

@z2
� s(�; �; z; �)

�
= 0 (3.15)

� Lc� pN (c; p; Per) = 0;

where the concentration c (�; �; z; �) depends on the local (transverse) variables

(�; �) as well as the macroscopic variables z and � . The parameter Pe
2
r

p

�
= hui L

Dm
= PeL

�
is also known as axial Peclet number and represents the ratio of convection time

� c and the axial diffusion time �DL = L2

Dm
. We note that L � r2

? is the transverse

diffusion (Laplacian) operator in the region 
 = f0 < � < 1 & 0 < � < 2�g with Neu-

mann (or periodic) boundary conditions on the boundary @
 = f� = 1 & 0 <

� < 2�g. This is symmetric and has a simple zero eigenvalue with a constant

eigenfunction independent of transverse coordinates. Equivalently, the eigenvalue

problem

L � r2
? = ��  in 
 ;

r? � n = 0 on @
 (3.16)

is self-adjoint (L� = adjoint operator = L) with respect to the inner product,

hv(�; �); w(�; �)i = 1

A


ZZ



� v(�; �) w(�; �) d� d� (3.17)

with A
 = �: This eigenvalue problem has a simple zero eigenvalue �0 = 0 with

a constant eigenfunction  0 (�; �) = 1. Moreover, for all j > 0; the eigenfunctions
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 j (�; �) are chosen to satisfy the orthonormality condition



 i (�; �) ;  j (�; �)

�
= �ij =

8><>: 0; i 6= j

1; i = j
(3.18)

The range of L (containing transverse decaying modes) and the ker of L (con-

taining master or transverse average mode) form an orthogonal complementary

spaces which are used to split c and F (c; p) in the L-S procedure as explained

earlier. Thus, we express concentration c as,

c(�; �; z; �) = hci (z; �) 0 + c0(�; �; z; �) (3.19)

where, hci is cross-sectional average concentration de�ned by

hci = 1

A


ZZ



� c (�; �; z; �) d� d� = hc;  0i ; (3.20)

and c0 (�; �; z; �) is the local (transverse) �uctuation. It follows from the orthogonality

conditions that

hc0;  0i = 0: (3.21)

Similarly, the projection of the operator F onto ker(L) leads to the coarse-grained

model as given by equation (2.16) in the following form:

hN (c; p; Per) ;  0i �
@ hci
@�

+
@cm
@z

� p

Pe2r

@2 hci
@z2

� hsi (z; �) = 0 (3.22)

where cm is the cup-mixing or velocity weighted concentration de�ned by

cm = hu(�); ci =
1

A


ZZ



� u(�) c (�; �; z; �) d� d� = hci+ hu(�); c0i ; (3.23)

and hsi (z; �) is transverse average of source/sink. We note that the global equa-
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tion (3.22) is not in closed form since it contains two modes (cross-section aver-

aged and cup-mixing concentrations). If we do not make distinction between the

cup-mixing concentration and cross-sectional averaged concentration, the global

equation (3.22) is in closed form. However, in that case, we neglect the effect

of transverse dependency of concentration (caused by transverse molecular dif-

fusion, velocity pro�le, and initial or inlet conditions). Therefore, the distinction

between cup-mixing concentration and cross-sectional average concentration is

necessary to include the transverse variations and to develop an accurate low-

dimensional model.

It should be noted that there is also a compelling physical (and mathematical)

reason for using the two modes hci and cm. The diffusive modes de�ned by the

eigenvalue problem, equation (3.16), are useful to describe the evolution in time.

When the velocity pro�le is not �at, the evolution in z is described in terms of the

convective modes de�ned by the following Graetz-Nusselt eigenvalue problem:

r2
?� = �� u (�) � in 


r?� � n = 0 on @
: (3.24)

This is also a self-adjoint eigenvalue problem w.r.t. the convective (velocity-weighted)

inner product

hv(�; �); w(�; �)ic =
1

A


ZZ



� u (�) v(�; �) w(�; �) d� d� (3.25)

and has a simple zero eigenvalue �0 = 0 with a constant eigenfunction �0 (�; �) = 1.

The cup-mixing concentration cm can be given by the convective inner product,

h�; �ic, of the dominant convective mode �0 with the concentration c (�; �; z; �), i.e.,

cm (z; �) = hc (�; �; z; �) ; �0ic : (3.26)
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We note that both eigenvalue problems are relevant in the transverse averaging

method. In the following discussion, we present the averaging procedure using the

diffusive eigenfunctions  i but consider some special cases where only either the

diffusive or convective modes appear.

The last term of equation (3.23) implies that the local or transverse (diffusion

and velocity gradient) effect on the macroscopic scale is included through the cup-

mixing concentration. To quantify the local effect, we need to solve the local equa-

tion for c0, which is obtained by the projection of the operator F (c; p; Per) onto

range(L) and can be rewritten as

Lc0 = p

�
@c0

@�
+ u(�)

@c0

@z
�
�
u(�);

@c0

@z

�
� p

Pe2r

@2c0

@z2
+ u0(�)

@ hci
@z

� s0(�; �; z; �)

�
(3.27)

where u0(�)
�
= u(�)� 1 = 1� 2�2

�
is dimensionless velocity �uctuation and s0(=

s�hsi) is the source �uctuation. Since L : Range(L)�! Range(L) is invertible with

the orthogonality constraint given by equation (3.21), the implicit function theorem

makes sure that the local equation (3.27) can be solved uniquely for c0 in terms of

hci.

As discussed in the previous section, the local equation can be solved in var-

ious ways. One way is to use perturbation expansion in terms of powers of p or

reciprocal powers of p: The expansion in terms of powers of p corresponds to the

long time scaling that extends the validity of the averaged model at shorter times

through the higher order derivatives in time and distributional derivatives, while the

expansion in terms of reciprocal powers of p corresponds to the short time scaling

and leads to a polynomial in �
p
. Since in most practical cases, only small p are

of interest and both perturbation expansions will lead to the exact solution of local

equation when all order terms are included in the expansion, we use the long time

scaling (expansion in p) to solve the local equation (3.27) for c0 in this section.
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3.2.3 Solution of the Local Equation

To use a perturbation expansion in p properly, we must assume the order of

other parameters present in the model such that each term has proper order in p.

Here, we assume that the radial Peclet number Per is of order p i.e., Per � O(p)

or PeL � O(p2�1),  � 1
2
. Three speci�c values of  are of interest:  = �1

2

corresponding to the classical Taylor case (where the contribution of axial molec-

ular diffusion to the overall dispersion is small as it appears only at orders p2 and

higher);  = 0 corresponding to the Taylor-Aris case (where both the Taylor contri-

bution and the axial molecular contribution or the Aris term are equally important

and appear at order p); and,  = 1
2
corresponding to the Danckwerts limit (where

the Taylor contribution is negligible). We note that for the �rst two cases, the lead-

ing order model is hyperbolic (or the solute dispersion is described by a Cauchy

problem for p = 0) while for the third case, the leading order model is parabolic and

is described by a boundary value problem, requiring an additional boundary con-

dition at the exit of the tube. Though our procedure is applicable to all cases, our

focus will be on the �rst two cases and in what follows, we present the averaging

procedure for the case of  = 0.

For the base state (p = 0), the local equation (3.27) with orthogonality con-

straint, equation (3.21), results in the local variable c0 = 0 i.e., no transverse gradi-

ent of concentration. In this limit, the cup-mixing and the cross-sectional average

concentrations are same. Hence, the local variable c0 can be expanded perturba-

tively in powers of the transverse Peclet number p starting from the �rst power, as

follows:

c0 (�; �; z; �) =
1X
n=1

pnc0n (�; �; z; �) ; (3.28)

where cn are referred as the nth order correction. This expansion is similar to

Maclaurin's series expansion where higher order corrections may be neglected
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in the limit p ! 0. Using the expansion (3.28) in the local equation followed by

comparison of the coef�cients of each powers of p, we can write the equation for

perturbed variable of each order as follows:

r2
?c

0
1 = u0(�)

@ hci
@z

� s0(�; �; z; �); (3.29)

r2
?c

0
2 =

@c01
@�

+ u(�)
@c01
@z

�
�
u(�);

@c01
@z

�
; (3.30)

r2
?c

0
n+1 =

@c0n
@�

+ u(�)
@c0n
@z

�
�
u(�);

@c0n
@z

�
� 1

Pe2r

@2c0n�1
@z2

; n � 2 (3.31)

with boundary condition and orthogonality constraint given by

r?c
0
n � n = 0 on @
 and hc0n;  0i = 0 8 n: (3.32)

[As pointed out earlier, the above equations assume  = 0 or Per is of order unity.

For other values of , the equation for c0n, n � 2 may be different]. The �rst order

correction (perturbed variable c01) can be solved uniquely in terms of cross-sectional

concentration (hci) using equations(3.29,3.32). The second order correction (c02)

can be evaluated uniquely in terms of c01 and hence in terms of hci. Similarly the

nth order correction (c0n) can be solved uniquely in terms of c0n�1 and hence in terms

of hci : Thus, we can solve each order correction c0i one by one, uniquely in terms of

the cross-sectional average concentration hci : Using the double Laplace transform

in z and � , the solution of local equation is given as follows (details in appendix):

c0 =
1X
n=1

pn
nX
j=1

@n�1c0n;j
@zj�1 @�n�j

; ; (3.33)

where, c0n;j are given by

r2
? c

0
1;1 = u0(�)

@ hci
@z

� s0(�; �; z; �) (3.34)
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r2
? c

0
n+1;j = c0n;j +

�
uc0n;j�1 �



u; c0n;j�1

��
� 1

Pe2r
c0n�1;j�2; (3.35)

with the zero �ux boundary condition at � = 1 and satisfy the constraints c0n; j(�)

= 0 for j 6 0 or j > n and


 0; c

0
n; j

�
= 0. For the special case of uniform release

and no source/sink for z and � > 0 where the source �uctuation s0 = 0, the solution

for c0 can be expressed in the form:

c0 =
1X
n=1

pn
nX
j=1

�n; j
@n hci

@zj @�n�j
; (3.36)

where �n; j(�) are given by

r2
?�1;1 = u0(�); (3.37)

r2
?�n+1; j = �n; j + u(�) �n; j�1 � hu(�); �n; j�1i

� 1

Pe2r
�n�1; j�2; n � 1 (3.38)

with the zero �ux boundary condition at � = 1 and satisfy the constraints �n; j(�)

= 0 forj 6 0 or j > n and h 0; �n; ji = 0.

For the general case of source/sink (initial, inlet or feed conditions), the so-

lution for c0 given by equations(3.33-3.35) contains extra terms that arise due to

the source �uctuation s0(�; �; z; �). In this more general case, the cup-mixing con-

centration can be expressed in terms of cross-sectional average concentration hci

(details in appendix) as follows:

cm � hci =
1X
n=1

pn
nX
j=1

hu(�); �n; ji
@n hci

@zj @�n�j

�
1X
n=1

pn
nX
j=1

�
@n�1s0

@zj�1 @�n�j
; �n; j

�
; (3.39)

where �n;j(�), given by equation (3.37,3.38), are independent of �:We refer to the
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above equation (3.39) as local equation.

It is interesting to note that the local equation (3.39) contains mixed deriva-

tive terms in time and space. These terms are very important in the accurate

description of the evolution at short times (or distances). Once again, this accu-

rate description of the evolution at short times through the proper solution of the

local equation is the main difference between our approach and those in the lit-

erature. For example, the averaged model derived by the Central Manifold (CM)

approach (Young and Jones, 1991; Mercer and Roberts, 1990; Balakotaiah and

Chang, 1995) contains only spatial derivatives of hci that results in loss of accuracy

while describing short time behavior. The main reason for this is that the master

mode in the CM approach is a (time independent) �xed or trivial state (such as

c = 0) and hence can not describe the system behavior all the way back to initial

times. For example, the CM expansion of Mercer and Roberts (1990, 1994) and

Young and Jones (1991) for the laminar dispersion problem uses the wave number

� as a perturbation parameter with base state (�; c) = (0; 0) that corresponds to

t ! 1, which is inconsistent with the initial condition at t = 0. In contrast, the

master mode (hci (z; �)) considered in the L-S procedure can be time dependent.

For example, for p = 0 and Per is of order unity, it satis�es the hyperbolic equation

@ hci0
@�

+
@ hci0
@z

� hsi (z; �) = 0: (3.40)

Once again, we emphasize the limit p = 0 or the case of transverse diffusion

time being zero. From the physics of the problem, this limit corresponds to the

case of no radial gradients in the solute concentration, which is determined by a

�rst-order hyperbolic equation or a Cauchy problem [In the Chemical Engineering

literature, this convection dominated limit with zero radial diffusion time and in�nite

axial diffusion time is called plug �ow limit]. Thus, the L-S technique uses an
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expansion around the non-trivial plug �ow base state that can vary with z and � . A

detailed comparison of the CM and L-S methods is considered in the next section.

Substitution of the local equation (3.39) in the global equation (3.22) gives the

following exact averaged model in terms of the cross-section averaged concentra-

tion hci (z; �):

@ hci
@�

+
@ hci
@z

� p

Pe2r

@2 hci
@z2

+
1X
n=1

pn
nX
j=1

hu(�);�n; ji
@n+1 hci

@zj+1@�n�j

= hsi (z; �) +
1X
n=1

pn
nX
j=1

@n hs0;�n; ji
@zj@�n�j

: (3.41)

We note that the above reduced order model is valid for z � 0 and � � 0. We can

separate the governing equation from the initial and inlet conditions by integration

w.r.t. z from z = 0 to 0+ and w.r.t. � from � = 0 to 0+, which leads to the governing

equation as

@ hci
@�

+
@ hci
@z

� p

Pe2r

@2 hci
@z2

+
1X
n=1

pn
nX
j=1

hu(�); �n; ji
@n+1 hci

@zj+1@�n�j

= hsfi (z; �) +
1X
n=1

pn
nX
j=1

@n


s0f ;�n; j

�
@zj@�n�j

; (3.42)

or, in two-mode form:

@ hci
@�

+
@cm
@z

� p

Pe2r

@2 hci
@z2

� hsfi (z; �) = 0; � > 0; z > 0 (3.43)

cm � hci =
1X
n=1

pn
nX
j=1

hu(�);�n; ji
@n hci

@zj @�n�j

�
1X
n=1

pn
nX
j=1

@n�1


s0f ; �n; j

�
@zj�1 @�n�j

; � > 0; z > 0 (3.44)
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while the inlet and initial conditions are given by

hci+
1X
n=1

pn
nX
j=1

hu;�n; ji
@n hci

@zj@�n�j
� p

Pe2r

@ hci
@z

= cm �
p

Pe2r

@ hci
@z

= hu; cini = cm;in(�) @ z = 0 (3.45)

hci+
1X
n=1

pn
n�1X
j=1

hu;�n; ji
@n hci

@zj+1@�n�1�j

= hc0i (z) +
1X
n=1

pn
@n

@zn
hc0(�; �; z);�n;ni @ � = 0: (3.46)

Here,

s0f (�; �; z; �) = sf (�; �; z; �)� hsif (z; �): (3.47)

Also note that, the existence of source/sinks of solute for z or � > 0 does not

change the initial or inlet conditions (as can be expected) but leads to additional

terms in the governing equation. In case where the source/sink terms are only due

to initial or inlet conditions, the coarse-grained model simpli�es to,

@ hci
@�

+
@ hci
@z

� p

Pe2r

@2 hci
@z2

;

+
1X
n=1

pn
nX
j=1

hu(�); �n; ji
@n+1 hci

@zj+1 @�n�j
= 0; � > 0; z > 0; (3.48)

with the same inlet and initial conditions as given by equations (3.45,3.46).

We note that the reduced order model for hci (z; �) contains higher order deriv-

atives of hci (z; �) w.r.t z and � while the original/detailed model contained only �rst

derivative w.r.t � and �rst and second derivatives w.r.t z. However, we do not re-

quire any additional initial/inlet conditions. This can be seen easily if we expand

the solution hci (z; �) also in a perturbation series in p as follows:

hci = hci0 +
1X
i=1

pi hcii : (3.49)
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This leads to the following model equations at each order:

@ hci0
@�

+
@ hci0
@z

= hsfi (z; �); � > 0; z > 0

hci0 = hc0i (z) @ � = 0 (3.50)

hci0 = hu; cini @ z = 0;

@ hci1
@�

+
@ hci1
@z

� 1

Pe2r

@2 hci0
@z2

+ hu(�); �1;1i
@2 hci0
@z2

=
@


s0f ;�1;1

�
@z

; � > 0; z > 0

hci1 =
@

@z
hc0(�; �; z);�1;1i @ � = 0 (3.51)

hci1 + hu;�1;1i
@ hci0
@z

� 1

Pe2r

@ hci0
@z

= 0 @ z = 0;

and for i > 2,

@ hcii
@�

+
@ hcii
@z

� 1

Pe2r

@2 hcii�1
@z2

+
iX

n=1

nX
j=1

hu(�);�n;ji
@n+1 hcii�n
@zj+1@�n�j

=
iX

j=1

@i


s0f ;�i; j

�
@zj@� i�j

; � > 0; z > 0

hcii +
iX

n=1

n�1X
j=1

hu(�);�n;ji
@n hcii�n

@zj+1@�n�1�j
=

@i

@zi
hc0(�; �; z);�i;ii @ � = 0 (3.52)

hcii �
1

Pe2r

@ hcii�1
@z

+
iX

n=1

nX
j=1

hu(�);�n;ji
@n hcii�n
@zj@�n�j

= 0@ z = 0:

Thus, the equation for each perturbed variable hcii is a �rst order PDE in z and �

and does not need any additional inlet/initial condition.

3.2.4 Convergence of the Perturbation Solution to the Local Equation

Due to the coupling of the diffusive and convective modes, the coef�cients ap-

pearing in the local equation or the averaged model can only be determined nu-

merically (except for the �rst few). A further complication arises due to the double

summation/mixed derivatives of hci w.r.t. z and � . Thus, we are not able to ob-
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tain any analytical results related to the convergence of the local equation or the

averaged model for arbitrary inlet or initial conditions. Here, we examine the con-

vergence of the local equation for two special cases with negligible axial diffusion:

Case 1: Flat Velocity Pro�le

In this case, u (�) = 1, i.e., u0 (�) = 0 or equivalently, there is no difference

between the cup-mixing concentration and the transverse average concentration.

Also, in this case , �i =  i 8 i and h�; �i = h�; �ic, i.e., the diffusive and convective

modes are identical. The local equation in this case is given by

r2
?c

0 = p

�
@c0

@�
+
@c0

@z
� s0(�; �; z; �)

�
(3.53)

with zero �ux boundary condition at � = 1. After taking double Laplace transform

� ! !, z ! � and c0 ! bc0, equation (3.53) can be rewritten in Laplace domain as
r2
?
bc0 = p

h
(! + �) bc0 � bs0 (�; �; �; !)i ; (3.54)

with zero �ux boundary condition at � = 1 and leads to the solution in the Laplace

domain as

bc0 = 1X
i=1

p
Dbs0 (�; �; �; !) ;  iE
�i

�
1 + p!+�

�i

�  i; (3.55)

or,

bc0 = 1X
i=1

1X
j=0

(�1)j
�
p

�i

�j+1 D
(! + �)j bs0 (�; �; �; !) ;  iE i: (3.56)

The solution in the time domain may be expressed as

bc0 = 1X
i=1

1X
j=0

(�1)j
�
p

�i

�j+1* jX
k=0

0B@ j

k

1CA @js0 (�; �; z; �)

@zk@� j�k
;  i

+
 i: (3.57)
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It follows from equation (3.56) that the solution given by equation (3.57) in

powers of p contains mixed derivatives in z and � and converges absolutely if
p(j!j+j�j)

�1
< 1, where �1 is the non-zero eigenvalue of the transverse diffusion op-

erator closest to the origin [�1 = 14:68 (3:39) for axisymmetric (non-axisymmetric)

inlet/initial conditions]. We also note that the Laplace domain solution for bc0 given
by equation (3.55) converges for all values of p. In other words, if the solution is

expressed in terms of perturbation expansion as given in equation (3.57) or (3.56),

the range of absolute convergence may be �nite while if the series can be summed

in a closed functional form as given in equation (3.55), the solution converges for

all frequencies and for all values of p. For this special case, the averaged model

is decoupled from the local equation. However, there is dispersion whenever the

inlet or initial conditions are not uniform in the transverse coordinates. All the in-

formation about dispersion is contained in the local equation and the L-S method

captures these exponentially small terms (in z and � ) in the form of mixed higher

order derivatives w.r.t. z and � .

Case 2: Steady Laminar Flow

The second limiting case we consider is that of steady-state dispersion, i.e., no

dependence of c and s on time. In this case, the detailed model is given by

1

u (�)
r2
?c = p

�
@c

@z
� s(�; �; z)

u (�)

�
(3.58)

with zero �ux boundary condition at � = 1. If the source term contains only the inlet

condition, i.e.,

s(�; �; z) = u (�) cin (�; �) � (z) ;

the averaged model is given in terms of cup-mixing concentrations, cm = hc; �0ic,

as follows:
dcm
dz

� cm;in� (z) = 0; (3.59)
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where cm;in = hcin; �0ic, while the local equation is given by

1

u (�)
r2
?c

0
m = p

�
@c0m
@z

� c0m;in(�; �)� (z)

�
; (3.60)

with zero �ux boundary condition at � = 1, where the local variable

c0m = c� hc; �0ic �0 = c� cm�0

and

c0m;in = cin � cm;in �0;

are orthogonal to the dominant convective mode �0. Here, the local equation (3.60)

can be solved exactly in terms of Graetz-Nusselt eigenfunctions �i (�; �):

c0m = L�1
" 1X
i=1

hcin; �iic
�+ �i

p

�i

#
=

1X
i=1

exp

�
��i z

p

�
hcin; �iic �i (3.61)

or, c0m =
1X
i=1

1X
j=0

(�1)j
�
p

�i

�j+1
�j (z) hcin (�; �) ; �iic �i: (3.62)

For the general source s (�; �; z), the solution of the local equation is given by

c0m = L�1
" 1X
i=1


 bs
u
; �i
�
c

�+ �i
p

�i

#

=

1X
i=1

zZ
0

exp

�
��i (z � z0)

p

��
s (�; �; z0)

u (�)
; �i

�
c

�i dz
0 (3.63)

or, c0m =
1X
i=1

1X
j=0

(�1)j
�
p

�i

�j+1�
@j

@zj

�
s (�; �; z)

u (�)

�
; �i

�
c

�i: (3.64)

We note that in this case, the natural modes appearing are the convective modes

and the cup-mixing concentration cm. Also, the solution given by equation (3.62) in

powers of p contains spatial derivatives in z and converges absolutely if pj�j
�1

< 1,
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where �1 is the �rst non-zero eigenvalue of the Graetz-Nusselt eigenvalue problem

[�1 = 12:84 (4:16) for axisymmetric (non-axisymmetric) inlet conditions]. However,

if the solution is summed in the closed functional form as in equation (3.61 or 3.63),

it converges for all frequencies and for all values of p. Once again, the local and

global equation are decoupled and all information about dispersion (or in this case

the so called mixing length) is contained in the local equation and the L-S method

captures these exponentially small terms (in z) in the form of higher order spatial

derivatives w.r.t. z.

The two special cases examined above lead to the following observations: (i)

When all the terms are retained, the perturbation solution to the local equation

is identical to the exact solution within its range of convergence. (ii) The small-

est range of absolute convergence of the perturbation expansion is obtained for

the case of non-axisymmetric inlet/initial conditions and �at velocity pro�le. Thus,

while a rigorous proof for the general case is dif�cult due to double expansion in �

and z, it appears that the averaged model given by equation (3.41) for the general

case, converges absolutely (for Per ! 1 or negligible axial diffusion) provided

p(j!j + j�j) < 3:39. The range of absolute convergence for the case of �nite Per

has to be determined numerically and we do not pursue it here. (iii) If the pertur-

bation series can be summed to a closed functional form, the solution converges

for all frequencies and for all values of p implying the exactness of the solution

derived by L-S procedure. For further discussion on the convergence of the re-

duced order/truncated model, we refer to the recent article by Choquet and Mikelic

(2009):

3.3 Analysis of Classical Taylor-Aris Dispersion

In the classical Taylor-Aris dispersion problem (dispersion in an in�nitely long

tube), only the radial scale is present i.e., Per is the only physical parameter

present and there is no inlet condition. Hence, we can get rid off the transverse
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Peclet number p and represent the local and global equations(3.22,3.39) in terms

of the radial Peclet number Per by non-dimensionalizing time and axial coordinate

by transverse diffusion time and tube radius, respectively. De�ning t� = t
�D
= �

p

and x� = x
a
; leads to the low-dimensional model for classical Taylor-Aris dispersion

in the following form:

@ hci
@t�

+ Per
@cm
@x�

� @2 hci
@x�2

� hs�i = 0; (3.65)

cm � hci = Per

1X
n=1

nX
j=1

hu0; �n;ji
@n hci

@x�j @t�n�j

�
1X
n=1

nX
j=1

�
@n�1s�0

@x�j�1 @t�n�j
; �n;j

�
; (3.66)

where

�n;j = Pej�1r �n;j(�) = 0 for j � 0 or j > n;

and h 0; �n; ji = 0; are given by

r2
?�1;1 = u0(�); (3.67)

r2
?�n+1; j = �n; j + Per (u(�) �n; j�1 � hu(�); �n; j�1i)� �n�1; j�2; (3.68)

with the zero �ux boundary condition at � = 1, and, the source

s�(�; �; x�; t�) = �(�; �; x�) �(t�)

accounts only for the initial condition

c(t� = 0) = �(�; �; x�):
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The global and local equations(3.65,3.66) can be combined to give a coarse-

grained model in terms of hci as follows:

@ hci
@t�

+ Per
@ hci
@x�

+ Pe2r

1X
n=1

nX
j=1

hu0;�n;ji
@n+1 hci

@x�j+1@t�n�j
� @2 hci

@x�2

= h�i �(t�) + Per

1X
n=1

nX
j=1

@j h�;�n;ji
@x�j

�n�j(t�): (3.69)

Alternatively, if we do not scale x and t, we get the averaged model in terms of

powers of �D as

@ hCi
@t

+ hui @ hCi
@x

� hui
2 �D
Pe2r

@2 hCi
@x2

+
1X
n=1

�nD

nX
j=1

hu(�);�n; ji huij+1
@n+1 hCi
@xj+1@tn�j

= hC0i (x) �(t) +
1X
n=1

�nD

nX
j=1

huij @
j hC0;�n;ji
@xj

�n�j (t) : (3.70)

Thus, the zeroth order model (that corresponds to �D = 0) is hyperbolic in nature

and is given by
@ hCi
@t

+ hui @ hCi
@x

= hC0i (x) �(t): (3.71)

Similarly the �rst order model is given by

@ hCi
@t

+ hui @ hCi
@x

� hui2 �D
�
1

Pe2r
� hu(�);�1;1i

�
@2 hCi
@x2

= hC0i (x) �(t) + hui �D
@ hC0;�1;1i

@x
� (t) ; (3.72)

and so forth. The form given by equation (3.70) is convenient for physical in-

terpretation while equation (3.69) is convenient to evaluate the spatial moments

and compare them with the exact results where the same scaling is used (Barton,

1983).

The coarse-grained model equation (3.69) may be used to evaluate the spatial

moments or the actual concentration distribution to any desired degree of accu-
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racy. This section is mainly focused on the analysis of temporal evolution of spatial

moments using the averaged model (equation3.69) and comparison of the results

with those obtained by direct methods (which do not use averaging) as well as

other averaging methods such as the CM approach.

3.3.1 Temporal Evolution of Spatial Moments

The spatial moments are helpful in the understanding of the spreading process

of the solute. Once we have low-dimensional model, spatial moments of any order

can be determined. For example, integrating the coarse-grained model equation

(3.69) over the entire axial domain (x� from �1 to 1), we can �nd the zeroth

moment which can be normalized to unity. Multiplying equation (3.69) by x� and in-

tegrating over the axial domain, we get the evolution equation for the �rst moment.

Similarly, the evolution equation for k-th spatial moment (k � 1) can be derived by

multiplying equation (3.69) by x�k and integrating it w.r.t. x� over the entire domain

(from �1 to1), which results in the moment equation as follows:

dmk

dt�
� k Per mk�1 � k(k � 1) mk�2

+Pe2r

1X
n=1

nX
j=1

hu0;�n;ji
@n�jmk�j�1

@t�n�j
(�1)j+1

j+1Y
i=1

(k � i+ 1)� h�ki �(t�)

� Per

1X
n=1

nX
j=1



�k�j; �n;j

�
�n�j(t�) (�1)j

jY
i=1

(k � i+ 1) = 0: (3.73)

Here, mk are kth moment corresponding to cross-sectional average concentration

hci (x�; t�) and de�ned as follows:

mk(t
�) =

1

A


1Z
�1

2�Z
0

1Z
0

x�k� c(�; �; x�; t�) d� d� dx� =

1Z
�1

x�j hci (x�; t�) dx�: (3.74)

Similarly, �k and h�ki are kth moment corresponding to initial concentration c0(�; �; x�)

and initial cross-sectional average concentration hc0i (x�), respectively; �n(t�) is nth
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order distributional derivatives of the Dirac delta function in time t� and the trans-

verse functions �n;j de�ned by equation (3.67, 3.68), depend only on the velocity

pro�le (or geometry of the tube) and transverse boundary condition.

While any order moment can be evaluated sequentially using the equation (55),

due to presence of distributional derivatives of Dirac delta function, it is convenient

to analyze the moments in the Laplace domain (t� ! !). The moment equation

(3.73) in the Laplace domain can be written as

!Mk = k Per Mk�1 + k(k � 1)Mk�2 + Pe2r

k�1X
j=1

(�1)j k!

(k � j � 1)! hu
0; Yji Mk�j�1

+ h�ki + Per

kX
j=1

(�1)j k!

(k � j)!



�k�j; Yj

�
; (3.75)

where, ! is the Laplace domain variable,Mk(!) is the Laplace transform of the kth

moment mk(t
�), and Yj are given in appendix by

Yj =
1X
n=1

�n;j!
n�j = �

X
m

hPer u Yj�1 � Yj�2;  mi
�m + !

 m; (3.76)

where Y1 = �
X
m

hu0;  mi
�m + !

 m:

They depend on the �ow pro�le or geometry of the tube and can be expressed in

terms of eigenvalues and eigenfunctions of the transverse diffusion operator given

as follows:

 nm(�; �) =

8>>>>>>><>>>>>>>:

 snm =
p
2 sin (n�)

Jn(p�nm�)r�
1� n2

�nm

�
Jn(p�nm)

; n 6= 0

 cnm =
p
2 cos (n�)

Jn(p�nm�)r�
1� n2

�nm

�
Jn(p�nm)

; n 6= 0

 m =
J0(p�0m�)
J0(p�0m)

; n = 0

; (3.77)
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where �nm are roots of the equation:

J 0n (
p
�) = �p�Jn+1 (

p
�) + nJn (

p
��) = 0: (3.78)

Though a general initial release can be analyzed (in appendix), we consider here

the initial release of a unit amount of solute distributed evenly, i.e., h�0i = 1 and

�1 = 0, as considered by Chatwin (1970) and Barton (1983). In this case, zeroth

moment turns out as,

m0(t
�) = 1: (3.79)

This is the total amount of solute present in the system at any time, which should

be a constant as expected according to the material balance of the solute.

Centroid

The �rst moment is simpli�ed (in appendix) as

m1(t
�) = Per t� + Per

X
m

am bm �m(t
�); (3.80)

where,

�m(t
�) =

1

�m

�
1� e��mt

� �
; am = hu0;  mi = �

8

�m
; bm = h� 00;  mi : (3.81)

Here,  m are the azimuthally symmetric eigenfunctions of the transverse Laplacian

operator corresponding to non-zero eigenvalues �m, i.e.,

 m(�) =
J0(
p
�m�)

J0(
p
�m)

; (3.82)

where �m (> 0) are the roots of equation J1(
p
�) = 0. equation (3.80) derived from

the averaged model agrees with the exact result derived by Barton (1983) using

the full model. For the case of uniform release, bm = 0 and hence the second term
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Figure 3.1: Time evolution of �rst moment for point release of solute at the tube
center.

in equation (3.80) is zero that implies the centroid moves linearly with time with the

transverse average velocity.

We note from equations(3.80, 3.81) that

as t� ! 0; �m(t
�) =

1

�m

�
1� e��mt

� �! 0;

so the centroid m1(t
�) ! 0, i.e., there is no centroid displacement. This can be

seen from the Figures (3.1-3.3). The long time approximation of the centroid loca-
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tion is given by

m1;long(t
�) = Per (t

� � h�0;�11i) ; (3.83)

where

�11 = �11 = �
1

24

�
2� 6�2 + 3�4

�
;

i.e., after very long time, the centroid moves with average velocity and has a cen-

troid displacement, �Per h�0;�11i as shown by dotted line in the Figure 3.1. Again,

this long time asymptote agrees with the result derived by method of moments

(Aris, 1956) and also by Center Manifold theory (Young and Jones, 1991; Mer-

cer and Roberts, 1994). Similarly, the short time behavior can be observed by

expanding exponential dependence e��mt� in its Maclaurin's series and neglecting

the higher order terms, which results in the centroid location as

m1;short(t
�) = Per h�0; ui t�: (3.84)

This indicates that the overall movement of solute evolves linearly in time t� with its

overall macroscopic or convective velocity h�0; ui. In particular, for the special case

of point release at any radial position r = r0 or � = �0; the short time approximation

of the centroid location is given by m1;short(t
�) = Per u(�0)t

� in dimensionless form,

or, U(r0) t in dimensional form. In other words, at smaller times, the centroid moves

with the �uid velocity at the point of release (as expected).

While the general release can be analyzed, here we discuss the case of point

release and compare our results with those in the literature. The temporal evolution

of centroid for various points of solute release is shown in Figure 3.2. We see here

that the initial slope of centroid increases monotonically from 0 (corresponding to

release at the wall, �0 = 1) to 2 (corresponding to release at the center, �0 = 0)

corresponding to the velocities u(�0 = 1) = 0 and u(�0 = 1) = 2. Since, after

long time, the centroid moves with average velocity as discussed above, the slope
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Figure 3.2: Centroid displacement versus time for point release of solute at different
radial locations.

of centroid displacement versus time curve becomes unity (and independent of

the point where the solute is released). In addition, all the curves are bounded

between the curves for point release at the wall and at the center.

It is interesting to note that the intersection time for short and long time asymp-

totes of centroid is independent of radial Peclet number Per and depends only on

the type of release. This time is given by

tinter sec tion = �1�D; where �1 = �
h �0;�11i
h �0; u0i

: (3.85)
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Figure 3.3: Centroid displacement versus time for point release at the center with
varying Per:

Thus, for point release at � = �0,

�1 =

�
2� 6�20 + 3�40

�
24
�
1� 2�20

� : (3.86)

This can be seen from Figure 3.3 (for release at the center, �1 = 1
12
). For the point

release at � = 1p
2
, the value of �1 ! 1, i.e., the centroid curves at short and long

times become parallel to each other. In addition, these �gures also indicate that the

difference between the centroid position and its long time approximation increases
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with increase in the radial Peclet number Per at any �xed time. In other words, the

time after which long time approximation is valid, increases with increase in Per.

Variance

The second central moment or variance can be simpli�ed (in appendix) for unit

amount of release (h�0i = 1) distributed evenly (�1 = 0) as follows:

�2(t�) = h�2i+ 2
 
1 + Pe2r

X
m

a2m
�m

!
t� � 2Pe2r

X
m

a2m �m(t
�)

�m

+2Pe2r
X
m

am bm hu0  m;  mi
�
�m(t

�)� t�e��mt
�

�m

�
+2Pe2r

X
m

X
n 6= m

an bm hu0  n;  mi
�
�m(t

�)� �n(t
�)

�n � �m

�
(3.87)

�Pe2r

 X
m

am bm �m(t
�)

!2
;

where the term  
1 + Pe2r

X
m

a2m
�m

!
=

�
1 +

Pe2r
48

�
= Deff

is the dimensionless effective (or Taylor-Aris) dispersion coef�cient. Once again,

we note that the above expression derived from the averaged model equation

(3.69) is identical to that derived by Barton (1983) from the full model using the

Fourier-Bessel expansions. We note from equations(3.81, 3.87) that

as t� ! 0; �m(t
�) =

1

�m

�
1� e��mt

� �! 0;

and so the variance �2(t�)� h�2i ! 0, i.e., there is no variance de�cit. This can be

seen from the Figure 3.4 also, where, the temporal evolution of variance for uniform

release and point release at the center is plotted. For the case of uniform release
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Figure 3.4: Temporal evolution of variance for uniform release and point release at
the center.

(bm = 0), the variance is simpli�ed as follows:

�2uniform release(t
�)� h�2i = 2Deff t

� � Pe2r
360

+ 128Pe2r
X
m

e��mt
�

�4m
; (3.88)

which shows the variance de�cit �Pe2r
360

at large times. For any �nite Per, the vari-

ance de�cit arising at very long time, is much smaller than the effective dispersion

contribution 2Deff t
�. We note that for t� ! 0; the term �Pe2r

360
cancels out with the

series summation, 128Pe2r
P

m
1
�4m
; which results in no variance de�cit as shown in
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Figure 3.4.

The long time approximation (t� ! 1; e��mt
� ! 0) of variance for the general

release is given by,

�2long time(t
�)�h�2i = 2Deff t

�+2Per h�0;�22i�Pe2r
�
1

360
+ 2 h�0;�21i + h�0;�11i

2

�
;

(3.89)

where �n; j are given by equation (3.67, 3.68). The same result is obtained by the

complete model using CM approach (Young and Jones, 1991; Mercer and Roberts,

1990, 1994). The long time asymptote shown in Figure 3.4 by dotted line, has a

slope 2Deff and a variance de�cit equals to

�2deficit = Pe2r

�
1

360
+ 2 h�0;�22 � �21i+ h�0;�11i

2

�
:

The amount of de�cit depends upon the nature of the release and increases quadrat-

ically with Per. For example, the point release at radial coordinates (�0; �0) gives

the de�cit

�2deficit = �
Pe2r
1152

(5� 12�20 + 36�40 � 32�60 + 9�80)

while the uniform release gives the de�cit equals to �Pe2r
360
. Also, the variance

de�cit for the point release is non-monotonic in �0; i.e., the variance curves for

point release are not bounded by those for �0 = 0 and �0 = 1:

The short time approximation (t� ! 0) for the general release leads to the

variance as follows:

�2short time(t
�)� h�2i = 2t� + Pe2rt

�2 �
�0; u2 �� h �0; ui2�+O(t�3) (3.90)

This clearly shows that there is no variance de�cit at t� ! 0. For point release at
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(�0; �0), it reduces to

�2short time(t
�)� h�2i = 2t� = 2Dmt

in dimensional form, while for uniform release, it reduces to

�2short time(t
�)� h�2i = 2t� +

Pe2rt
�2

3
= 2Dmt+

hui2 t2
3

in dimensional form. It is interesting to note from equations(3.89, 3.90) or Figure

3.4 that the short time evolution of variance is governed by pure axial molecular

diffusion �
1

2

@ �2

@ t�

����
t�!0

= 1

�
while long time evolution is governed by effective dispersion

�
1

2

@ �2

@ t�

����
t�!1

= Deff

�
:

This implies that the solute spreading process is dominated by axial molecular dif-

fusion at short times and convection effects become important at larger time. Thus,

there exists a critical time scale �CD beyond which the convection effects become

important in the evolution process. This critical time scale can be quanti�ed by

analyzing the short time behavior. For the case of uniform release,

�2short time(t
�)� h�2i = 2t� +

Pe2rt
�2

3
+O(t�3)or2Dmt+

hui2 t2
3

+O(t3)

in dimensional form. The �rst term represents the effect of axial molecular diffu-

sion and the second and higher order terms represent the effect of convection. If

we have hui
2t2

3
<< 2Dmt or equivalently, t << 6Dm

hui2 , convection effects are much

less important than the molecular diffusion effects. Thus, the critical time scale
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Figure 3.5: Evolution of variance corresponding to point release at the center with
varying Per:

�CD =
Dm
hui2 (which we may term as �convection-diffusion time�) characterizes the

dominance of pure diffusion over convection effects. We note that the ratio of �D

to �CD is the square of the radial Peclet number, Per.

It is interesting to note from Figure 3.5 that the intersection time of the short

and long time asymptote of variance is independent of the radial Peclet number

Per and depends only on the nature of release. This time is given by

tinter sec tion = �2�D;
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where

�2 = 24

�
1

360
+ 2 h�0;�22 � �21i+ h�0;�11i

2

�
:

For example, �2 = 1
15
for uniform release and

�2 =
Pe2r
48
(5� 12�20 + 36�40 � 32�60 + 9�80)

for point release at (�0; �0). At the intersection point, the variance is given by

�2inter sec tion(t
�)� h�2i = 2 �2:

In addition, the convection process is dominant after times t >> tinter sec tion. How-

ever, the difference between variance and its asymptote increases with Pe2r, i.e.,

for large Per, it takes very long time where convection dominates over transverse

diffusion.

Skewness

The third central moment for the case of unit amount of solute distributed uni-

formly is simpli�ed (in appendix) as,

�3(t
�)� h�3i =

6Pe3r t
�
X
m

X
n

anam
�m �n

hu0 n;  mi+ 6Pe3r
X
m

a2m
�2m

hu0 m;  mi
�
t� e��mt

��
�12Pe3r

X
m

am
�m

(
am
�m

hu0 m;  mi+
X
n 6= m

an
(�n � �m)

hu0  n;  mi
)
�m(t

�):

(3.91)
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Figure 3.6: Evolution of the third central moment for uniform release of solute.

The above expression is identical to that given by Barton (1983) and can be further

simpli�ed to

�3(t
�)� h�3i =

Pe3r
480

�
t� � 17

112

�
+ 128Pe3r

X
m

(t��2m + 18�m � 240)
�6m

e��mt
�
: (3.92)

equation (3.91, 3.92) leads to the third central moment consistent with the initial

condition, i.e., for t� ! 0, �3(t�)� h�3i ! 0, as shown in Figure 3.6. The long time
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approximation of the third central moment is given by

�3;long(t
�)� h�3i =

Pe3r
480

�
t� � 17

112

�
: (3.93)

This expression is same as that derived by Central Manifold theory by Young and

Jones (1991). The short time analysis shows that the third central moment satis�es

the following condition

d

dt�
�3(t

�)

����
t�=0

=
d2

dt�2
�3(t

�)

����
t�=0

=
d3

dt�3
�3(t

�)

����
t�=0

= 0;

and is given by

�3;short(t
�)� h�3i =

8

3
Pe3r t

�4; (3.94)

which can be observed from the �atness of the curve near the origin in Figure

3.6. For the case of h�2i = h�3i = 0; the non-dimensional third central moment or

skewness (skew = �3
�3
) is plotted on log-log graph in Figure 3.7, which shows that

the skewness �rst increases and then decreases with time. As discussed above, if

h�2i = h�3i = 0,

�3 �
8

3
Pe3r t

�4

while

�2 � 2t� + Pe2r
3
t�2

at short times (t� ! 0). This implies that skewness evolves at short times as

skewshort(t
�) =

Pe3r t
�2pt�

3
�
1 + Pe2r

6
t�
� 3
2

; (3.95)
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Figure 3.7: Log-Log plot of skewness versus time for uniform release and h�2i =
h�3i = 0.

which is an increasing function of time. On the other hand, both the third central

moment and the variance goes linearly with time, i.e.,

�3 �
Pe3r t

�

480

and

�2 � 2(1 + Pe2r
48
)t�
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at large times (t� !1). This implies that the skewness varies at large times as

skewlong(t
�) =

Pe3r

960(1 + Pe2r
48
)
3
2

1p
2t�

: (3.96)

Thus, for smaller values of Per (Pe2r << 48), skewness varies as skew � Pe3r t
�2pt�

at short times and skew � Pe3r
1p
t�
at large times, while at larger values of Per

(Pe2r >> 48), the skewness varies as skew � t� at short times and skew � 1p
t�

at large times (i.e., independent of Per). These short and long time asymptotes

can be seen clearly in Figure 3.7. The initial slope of the log-log curve is 5
2
for

smaller values of Per and becomes unity for large Per while the slope for t ! 1

is
�
�1
2

�
, indicating that the skewness decreases slowly with time. Thus, the solute

distribution approaches the Gaussian pro�le only at very large times. In addition,

in the convection dominated limit (Pe2r >> 48 and t >> �CD), the variance varies

as square of radial Peclet number Per leading to the skewness as follows:

skewconvection(t
�) =

�
1
480

�
t� � 17

112

�
+ 128

P
m

(t��2m+18�m�240)
�6m

e��mt
�
�

h
1
24

�
t� � 1

15

�
+ 128

P
m

e��mt�

�4m

i 3
2

; (3.97)

=

8><>:
p
24 t� for t� ! 0

p
6
10

1
t� for t

� !1
(3.98)

i.e., in this limit, the skewness is independent of the radial Peclet number (Figure

3.7).

We note that the �rst three spatial moments predicted by the low-dimensional

model are identical to the exact moments derived directly from the full model. We

believe that this result extends also to the higher order spatial moments. This is

due to the fact that the reduced order model derived by L-S technique is the exact

Maclaurin's series expansion of the full model in terms of the transverse diffusion
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time. Hence, it is valid for all times and converges for any general source/sink

including point sources. In addition, while method of moments (Chatwin, 1970;

Barton, 1983) can be used to determine spatial moments, the method is limited to

linear problems only and can not provide exact concentration or any averaged con-

centration. Thus, the traditional method of determining spatial moments is not use-

ful in determining the conversion of a reacting solute. On the contrary, as shown in

previous sections, the L-S technique leads to the accurate low-dimensional model

that can be used to calculate spatial or temporal moments as well as exact con-

centration c(�; �; z; �) or any averaged concentration including experimentally mea-

surable cup-mixing concentration.

3.3.2 Comparison of Lyapunov-Schmidt and Center Manifold Approaches

for Averaging of Laminar Dispersion

In this section, we illustrate some of the advantages of L-S approach over CM

approach. In an article titled �A Complete Model of Shear Dispersion in Pipes,�

Mercer and Roberts (1994) used the CM approach to obtain a reduced order model

(Mercer and Roberts, 1994) in terms of cross-sectional average concentration to

all orders in terms of the wave number. Their model consists of the governing

equation

@ hci
@t�

+ Per
@ hci
@x�

�Deff
@2 hci
@x�2

�
1X
n=3

An Pe
n
r

@n hci
@x�n

= 0;

t� > 0; �1 < x� <1; (3.99)

and the projected initial conditions:

hci = h�i+ Per
@ h�; f1i
@x�

+ Pe2r
@2

@x�2

�
h�; f2i �

1

720
h�i
�

+
1X
n=3

Penr
@n h�; Vni
@x�n

; @ t� = 0; (3.100)
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where An are constants, Vn are some transverse functions, and

f1 = � 1
24

�
2� 6�2 + 3�4

�
;

f2 =
1

11520

�
31� 180�2 + 300�4 + 200�6 + 45�8

�
(3.101)

and so on (Mercer and Roberts, 1994). Thus, using the de�nition of moments, we

can determine them sequentially by multiplying the above model (3.99, 3.100) by

x�k and integrating from �1 to1 with k = 1; 2; 3::::For the case of unit amount of

solute released at x� = 0 (i.e., � i = 0 8 i 6= 0 and h�0i = 1), the zeroth moment is

given by

dm0

dt�
= 0; t� > 0;

m0 = h�0i = 1; @ t� = 0; (3.102)

which leads to

m0 = h�0i = 1: (3.103)

Similarly, the �rst moment is given by

dm1

dt�
� Per m0 = 0; t� > 0;

m1 = h�1i � Per h�0; f1i ; @ t� = 0; (3.104)

which leads to

m1 = Per (t
� � h�0; f1i) = 0; (3.105)

and the second moment is given by

dm2

dt�
� 2Per m1 � 2Deff m0 = 0; t� > 0;

m2 = h�2i � 2Per h�1; f1i+ 2 Pe2r
�
h�0; f2i �

1

720
h�0i

�
; @ t� = 0; (3.106)
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which leads to

m2 = 2 Pe
2
r

�
h�0; f2i �

1

720

�
+ 2Deff t

� + Pe2r
�
t�2 � 2 h�0; f1i t�

�
(3.107)

This results in the following formula for the variance:

�2 = m2 �m2
1 = 2Deff t

� + Pe2r

�
2 h�0; f2i � h�0; f1i

2 � 1

360

�
: (3.108)

We note that the centroid location and variance predicted by the complete model

(Mercer and Roberts, 1994) derived from CM approach, is same as the long time

approximation of that derived by the L-S procedure and have centroid displacement

as well as variance de�cit. We note that these results for the �rst two moments do

not change even if we include third or all other higher order terms in the wave

number (Mercer and Roberts, 1994). In fact, it is easily seen that the above model

predicts correctly the asymptotic behavior of all the moments in the limit of t ! 1

but can lead to negative moments for short times, i.e., the higher order terms (in the

wave number expansion) lead to correct asymptotic behavior of higher moments

but do not lead to any systematic improvement of the lower moments. On the

contrary, higher order terms in the reduced order model derived by L-S procedure

improve the moments in terms of distributional derivatives of Dirac-delta functions

that capture the exponentially small terms. It can be illustrated by the truncated

third order (O(p3)) model (with uniform release):

@ hci
@t�

+ Per
@ hci
@x�

� (1� hu0;�1;1i)
@2 hci
@x�2

+Pe2r

�
hu0;�2;1i

@3 hci
@x�2 @t�

+ hu0;�2;2i
Per
576

@3 hci
@x�3

�
(3.109)

+Pe2r

�
hu0;�3;1i

@4 hci
@x�2 @t�2

+ hu0;�3;2i
@4 hci
@x�3 @t�

+ hu0;�3;3i
@4 hci
@x�4

�
= �(x�)�(t�)
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that leads to the variance

�2truncated(t
�) = 2

�
1� Pe2r hu0;�1;1i

�
t� � 2Pe2r [hu0;�2;1i+ hu0;�3;1i � (t�)]

= 2

�
1 +

Pe2r
48

�
t� � Pe2r

360
� 13Pe

2
r

69120
� (t�) ; (3.110)

which contains the long time variance de�cit Pe
2
r

360
as derived by the method of mo-

ments (Aris, 1956) and the CM approach (Young and Jones, 1991; Mercer and

Roberts, 1994), as well as the term containing the Delta function. If we include all

higher order derivative terms in time but only up to second order derivative in x�,

the terms containing distributional derivatives may be summed in closed functional

form to give the exponential term

 
128Pe2r

X
m

exp(��mt�)
�4m

!
in equation (3.88). As

explained earlier, the higher order time derivative terms extend the validity of the

reduced order model derived by the L-S procedure to shorter times. In fact, to

obtain the nth spatial moment accurately for all time including t ! 0, the spatial

derivatives of order higher than n can be dropped out in the reduced order model,

but we must retain temporal derivative terms of all orders. In contrast, to obtain the

nth order spatial moment for long times (t ! 1), we need to retain only spatial or

mixed derivative terms of order �nD in the reduced order model, equation (3.70).

The CM approach as applied to the shear dispersion problem (Mercer and

Roberts, 1994) uses a perturbation expansion in terms of the wave number �
�
= @

@x

�
around the base state (�; c) = (0; 0). However, for � = 0; the projected initial con-

dition in the complete model (Mercer and Roberts, 1994) reduces to hci = h�i @

� = 0 that is inconsistent with the base state. While the complete model (Mercer

and Roberts, 1994) derived by CM approach leads to correct asymptotic moments

(t ! 1), no improvement is possible at short times because of the following rea-

sons: (i) CM theorem (Carr, 1981) states that the reduced order model derived

by the CM approach has an error of order exp
�
��1t
�D

�
, i.e., it can not capture the
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exponentially small transients and (ii) The projected initial condition (Mercer and

Roberts, 1994) is selected such that the solution given by the reduced order model

agrees with that of the exact solution in the limit of t ! 1. Thus, in the CM ap-

proach, the true dynamics is missed by the reduced order model from t = 0 to the

time of approach to the CM (which is of the order of �D
�1
). Hence, only the zeroth

moment is predicted exactly by the CM approach as it is independent of time.

The range of convergence of the complete model (Mercer and Roberts, 1994)

derived by CM approach can not be larger than that given by j�j < �1
p
. In fact,

as shown by Mercer and Roberts (1994), the actual range of convergence is even

smaller (p j�j < 2:2). In contrast, the range of convergence of the reduced order

model derived by L-S procedure is at least as large as given by j�j < �1
p
. We

also note that for the case of time dependent sources, the ansatz used for c0 in

the CM approach (Young and Jones, 1991) does not have the correct form as it is

expressed in terms of only spatial derivatives of transverse averaged concentration

while the exact expression must contain the mixed time and spatial derivatives as

illustrated. While a detailed comparison is beyond the scope of this work, we sum-

marize here some important differences for future investigation: (i) The L-S method

of averaging can be applied to steady-state or equilibrium models where the gov-

erning equation is not an evolution equation either in space or time. In contrast,

the CM method has limited applicability to such models. (ii) In the L-S method, the

base state can be time dependent, and, time dependent inlet conditions/sources

can be treated. In the CM method, base state (�xed point) is generally assumed to

be time independent. While time dependent center manifolds can be treated (Cox

and Roberts, 1991), the forcing terms have to be small (quadratic or higher order).

Also, in the CM approach, the initial/inlet conditions are assumed to be close to the

�xed point. In contrast, there is no restriction on initial/inlet conditions in the L-S

technique. (iii) When applied to the averaging of transient models, the L-S method
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can capture exponentially small terms in time while these terms are ignored in the

CM method (Carr, 1981). As illustrated earlier, the L-S method leads to reduced

order model containing higher order derivatives in time when a perturbation expan-

sion is used for small p. These higher order time derivatives extend the validity of

the model to short times (or, capture the exponentially small transients). (iv) When

a perturbation expansion is used to solve for the CM, the range of validity of the CM

expansion can not be greater than that given by
���! p


��� < 1, where  is the real part of
eigenvalue close to zero and ! is frequency or wave number (Mercer and Roberts,

1994; Cox and Roberts, 1995). In contrast, when a perturbation expansion is used

to solve the local equation in the L-S method, the region of convergence of the ex-

pansion appears to be at least as large as that given by
���! p


��� < 1. In addition, time
scale separation is convenient but not necessary in the L-S formalism. In contrast,

the application of CM method requires time scale separation.

3.4 Truncated Regularized Two-Mode Models

The classical Taylor-Aris dispersion problem discussed in the previous section,

while theoretically simpler and interesting, is unrealistic from a practical point of

view for the following reasons: (a) In real situations, the tube is of �nite length and

hence entrance and exit conditions must be considered. (b) It is dif�cult to measure

the spatial moments at any �xed time as it requires the simultaneous evaluation of

the solute axial concentrations at all different locations. (c) The cross-section aver-

aged concentration hci (z; �) is not the measured concentration in the experiments

but it is the velocity weighted or cup-mixing concentration cm(z; �). (d) The mea-

surement of cm(z; �) either at the tube exit or some other �xed location as a function

of time leads to the experimental determination of the temporal moments instead

of the spatial moments considered in the classical Taylor dispersion theory. In ad-

dition to these practical considerations, we note that while it is possible to derive

the low-dimensional model using the L-S technique to any order in the perturba-
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tion parameter, the main reason for seeking reduced order models is to include the

small scale (local) effects without complicating the model. Thus, in most practical

applications, the �rst few terms may be suf�cient to retain the essential physics of

the system with suf�cient quantitative accuracy. For these reasons, we would like

to truncate the reduced order model at some �nite order (preferably at the lowest

order at which all scales are represented) and express it in terms of experimentally

measurable quantities. In this section, we consider these practical aspects, com-

pare the different forms of the truncated models and discuss how to extend their

range of validity by a procedure called regularization (Takeshi, 1999).

We note that the two-mode form of the averaged model consisting of hci and cm ,

equations(3.43-3.46), is applicable for a semi-in�nite tube or a �nite tube provided

the axial length scale L is interpreted as the downstream distance at which the

solute concentration is measured. As we have noted earlier, the two-mode form

is more convenient than the single mode form for physical interpretation of the

local and global equations. Further, we note that in the two-mode form, the global

equation (3.43) is exact to all orders in p. Thus, any error in the averaged model is

due to the �nite truncation of the local equation (3.44) and the initial/inlet condition.

As noted earlier, the two-mode model given by equation (3.43-3.46)) is valid

only when Per = O(p) with  � 0. Due to space limitation, here we discuss only

two limiting cases within this region of parameters: Case (A) with  = �1
2
or the

convection dominated (Taylor) case in which the axial diffusion term is negligible,

and Case (B) with  = 0 or the diffusion-convection (Taylor-Aris) case in which both

axial and transverse diffusional effects are comparable. A third limiting case of

 = 1
2
or the (Danckwerts limit) in which the effect of transverse velocity gradients

and molecular diffusion are small compared to the axial diffusion and convection,

will be considered in future publications.
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3.4.1 Case A: Convection Dominated Hyperbolic (Taylor) Limit:

The case of Per = O(p�1=2) corresponds to negligible axial (or macroscale)

diffusion (mixing). In this limit, truncation of the two-mode model, equation (3.43-

3.46)) at order p leads to the model

@ hci
@�

+
@cm
@z

� hsfi (z; �) = 0; (3.111)

cm � hci = �
p

48

@ hci
@z

� p


s0f ;�1;1

�
+O(p2); � > 0; z > 0 (3.112)

with inlet and initial conditions:

cm = cm;in(�) +O(p2) @ z = 0; (3.113)

hci = hc0i (z) + p
@

@z
hc0(�; �; z); �1;1i+O(p2) @ � = 0; (3.114)

where �1;1 (�) = � 1
24

�
2� 6�2 + 3�4

�
. Based on our earlier discussion, we note that

the above truncation of the perturbation expansion is valid only for wave num-

bers or frequencies satisfying p j!j < �1. Here, �1 = 14:68 (3:39) is the �rst

non-zero eigenvalue of the transverse diffusion operator for axisymmetric (non-

axisymmetric) inlet/initial conditions. Thus, the truncated �rst order model, equa-

tion (3.111-3.114), has error of O (p2) provided the spatial frequencies contained

in the initial conditions c0 (�; �; z) or the temporal frequencies contained in the inlet

conditions cin (�; �; �) satisfy p j!j < �1. For step or pulse (Delta function) inputs

where the condition is not satis�ed, the error is O (p2) provided z; � > p
�1
. In all

other cases, the error may not be small.

The local equation (3.112) describes the micromixing (or the exchange of solute

in the transverse direction due to the combined effect of velocity gradient and mole-

cular diffusion) using the transfer coef�cient concept in terms of the difference be-

tween the two modes cm and hci. As expected, when p = 0; cm = hci and the model
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equation (3.111-3.114) reduces the plug �ow hyperbolic model which is symmetric

in z and � . Eliminating the convective mode (cm) from the local equation (3.112),

we can write the coarse-grained �rst order model in terms of hci as

@ hci
@�

+
@ hci
@z

� p

48

@2 hci
@z2

= hsfi (z; �) + p
@

@z



s0f ;�1;1

�
+O(p2);

z > 0; � > 0 (3.115)

with initial and inlet conditions:

hci � p

48

@ hci
@z

= hu(�); cin(�; �; �)i+O(p2) @ z = 0 (3.116)

hci = hc0i (z) + p
@

@z
h�1;1; c0(�; �; z)i+O(p2) @ � = 0: (3.117)

This is the classical Taylor dispersion model derived by many authors in the liter-

ature except that we have also added the inlet/initial/feed conditions to the same

accuracy as the evolution equation (3.115). Since the reduced order model (3.115)

contains a second order spatial derivative in z and there is only one inlet condition

(3.117), the model appears to be not complete. However, as explained earlier, a

second boundary condition is not required if we express the solution in a perturba-

tion series in p or we rewrite the truncated model by eliminating the higher order

derivatives using truncated lower order models. We consider both of these below.

If we express the solution of equations (3.115-3.117) as

hci = hci0 + p hci1 +O(p2) (3.118)

we obtain the following hyperbolic/Cauchy problems at each order

@ hci0
@�

+
@ hci0
@z

= hsfi (z; �); z > 0; � > 0

hci0 = hu(�); cin(�; �; �)i @ z = 0 (3.119)
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hci0 = hc0i (z) @ � = 0:

@ hci1
@�

+
@ hci1
@z

=
1

48

@2 hci0
@z2

+
@

@z



s0f ;�1;1

�
; z > 0; � > 0

hci1 =
1

48

@ hci0
@z

@ z = 0 (3.120)

hci1 =
@

@z
h�1;1; c0(�; �; z)i @ � = 0:

These equations can be solved sequentially. For example, for the case of a unit

impulse input at the inlet and no other sources or sinks, i.e.,

sf = 0; c0(�; �; z) = 0; cin(�; �; �) = �(�);

the solution may be expressed as

hci (z; �) = �(� � z) +
p

48
[z �00(� � z)� �0(� � z)] +O(p2) (3.121)

Alternatively, we can use the leading order approximation:

@ hci
@�

=
@ hci
@z

� hsi (z; �) +O(p) (3.122)

in the model equation (3.115) for z > 0; � > 0, and rewrite the coarse-grained

model as follows (without changing the accuracy):

@ hci
@�

+
@ hci
@z

+
p

48

@2 hci
@z@�

= hsfi (z; �)+
p

48

@ hsfi
@z

+p
@

@z



s0f ;�1;1

�
+O(p2); z > 0; � > 0

(3.123)

with initial and inlet conditions:

�
1� p

48

@

@z

�
hci = hu(�); cin(�; �; �)i+O(p2) @ z = 0 (3.124)
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hci (z; �) = hc0i (z) + p
@

@z
h�1;1; c0(�; �; z)i+O(p2) @ � = 0: (3.125)

Now, the reduced model (3.123-3.125) is a Cauchy problem which does not need

any additional boundary condition and has the same accuracy as the parabolic

model (3.115-3.117). Since the leading order model (for p = 0) is itself a hyper-

bolic/initial value problem, the O (p) corrections in the reduced order hyperbolic

model (3.123-3.125) represent the transverse dispersion effects.

As explained earlier, if the truncated model, equation (3.115-3.117) is used for

�nite values of p, it can lead to physical inconsistencies. While both forms, equation

(3.115-3.117) and (3.123-3.125) have the same accuracy for p! 0, in our view, the

hyperbolic model, equation (3.123-3.125), is preferred over the parabolic model to

represent the Taylor dispersion phenomena. As discussed below, the error in the

parabolic model increases rapidly for �nite values of p. Further, in some literature

studies (Mercer and Roberts, 1994; Roberts, 1992; Smith, 1988), the parabolic

model is used by adding an additional boundary condition at z = 1 (or x = L). It

is known in the chemical engineering literature (Wen and Fen, 1975; Himmelblau

and Bischoff, 1968; Wehner and Wilhelm, 1956; Froment and Bischoff, 1990) and

shown below that the addition of an exit boundary condition does not change the

variance in the limit of p! 0, but may lead to physical inconsistencies for p values

of order unity or larger. An exit boundary condition is justi�ed for PeL = huiL
Dm

= Pe2r
p

values of order unity in which case, the leading order model is not hyperbolic or

axial diffusion effect is not small and the original full PDE model must include an

exit boundary condition.

It should be emphasized again that once the reduced order model is known to

order p, it can be rewritten in other equivalent forms without losing accuracy. This

rewriting is important for several reasons such as interpretation of experimental

data, ease of numerical computations, and extension of the range of validity of the
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model (for �nite values of p). Since the cup-mixing concentration cm(z; �) is the one

that is measured experimentally, we use an equivalent form of the local equation

(3.112) as

hci = cm(z; �) + p


s0f ;�1;1

�
+

p

48

@ hci
@z

+O(p2)

= cm(z; �) +
p

48

@cm
@z

+ p


s0f ;�1;1

�
+O(p2); z > 0; � > 0 (3.126)

to express the reduced order model in terms of the experimentally measurable cm

as

@cm
@�

+
@cm
@z

+
p

48

@2cm
@z @�

= hsfi (z; �)� p
@

@�



s0f ;�1;1

�
+O(p2);

� > 0; z > 0 (3.127)�
1 +

p

48

@

@z

�
cm = hc0i (z) + p

@

@z
h�1;1; c00(�; �; z)i+O(p2) @ � = 0 (3.128)

cm = hu(�) cin(�; �; �)i+O(p2) @ z = 0: (3.129)

[Balakotaiah and Chang (2003) were the �rst to derive equation (3.127) for sf = 0,

but they did not consider the order p corrections in the initial and inlet conditions,

equations(3.128, 3.129)]. Comparing the reduced order models for hci and cm,

equations (3.123-3.125 and 3.127-3.129), we note that they are identical only for

p = 0. For p > 0, though the evolution equations equation (3.123 and 3.127) are

symmetric in z and � (for s0f = 0), the coarse-grained model is asymmetric be-

cause of the asymmetry in the inlet and initial conditions. Since the initial condition

given by equation (3.128) is not convenient to implement, we can simplify it further

without changing the accuracy to order p as follows:

cm(z; �)j�=0 =

�
1 +

p

48

@

@z

��1�
hc0(�; �; z)i+ p

@

@z
h�1;1; c0(�; �; z)i

�
+O(p2)

= hc0(�; �; z)i+ p
@

@z
h�1;1; c0(�; �; z)i �

p

48

@

@z
hc0(�; �; z)i+O(p2)
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(3.130)

Once again, the hyperbolic models de�ned by equations (3.127, 3.130, 3.129) or

equations (3.123-3.125) are preferred over parabolic model de�ned by equations

(3.115-3.117) for the following reasons: (i) cm(z; �) is the concentration measured

in experiments (ii) Like the detailed model, for negligible axial mixing, the hyperbolic

model, equations (3.127, 3.130, 3.129), is a Cauchy problem i.e., an initial value

problem in both z and � ; and does not need any additional physical constraints.

The differences between the parabolic and hyperbolic forms of the reduced

order model can be seen better by examining their solutions for the special case

of transversely uniform initial and inlet conditions, particularly an impulse input

(cin(�; �; �) = �(�) and c0(�; �; z) = 0) with no feed (sf = 0) and determining the

dispersion (or the residence time distribution, RTD) curve E(�) = c(z = 1; �), or

comparing their temporal moments. For the parabolic model, we have (with bp = p
48
)

@ hci
@�

+
@ hci
@z

� bp@2 hci
@z2

= 0; z > 0; � > 0 (3.131)

hci (z; 0) = 0; hci (0; �)� bp@ hci
@z

(0; �) = �(�); (3.132)

and the solution in the Laplace transform domain (t! !) may be written as

bE(!) = chci(1; !) = exp (�!) �1� bp! + bp!2�+O
�bp2� (3.133)

= 1� !
�
1 + bp+O

�bp2��+ !2

2!

�
1 + 4bp+O

�bp2��+O(!3) (3.134)

= M0 �M1! +
!2

2!
M2 +O(!3); (3.135)

whereMi is the i-th temporal moment (of the exit concentration). It is interesting to

note that the parabolic model predicts correctly that the centroid of the transverse

average concentration moves slower than the mean �ow (and hence takes longer
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time to reach the measuring point). The normalized second central moment of the

RTD curve is given by,

�2 =
M2

M2
1

� 1 = 2bp +O
�bp2� : (3.136)

It should be emphasized again that the model is accurate only for small values

of bp, and if applied for bp values of order unity, the results predicted by it may lose
physical meaning or need to be interpreted very carefully. For example, for bp values
of order unity, the solution of the parabolic model when the exit boundary condition

is taken as hci (1; �)! 0 is given by

bE(!) = chci(1; !) = 2�
1 +

p
1 + 4!bp� exp

 
1�

p
1 + 4!bp
2p

!
(3.137)

= 1� (1 + bp)! + !2

2!
(1 + 2bp)2 +O(!3) (3.138)

= M0 �M1! +
!2

2!
M2 +O(!3); (3.139)

leading to

�2 =

�
1 + 2bp
1 + bp

�2
� 1 = 2bp+ 3bp2

1 + 2bp+ bp2 � 2bp for bp! 0: (3.140)

Similarly, when the Danckwerts exit boundary condition (@hci
@z
(1; �) = 0 ) is used,

one obtains (Wen and Fen, 1975; Himmelblau and Bischoff, 1968; Wehner and

Wilhelm, 1956; Froment and Bischoff, 1990).

M1 = 1

�2 = 2bp � 2bp2(1� e�1=bp) � 2bp for bp! 0: (3.141)

Thus, the variance predicted by the parabolic model is the same for all exit bound-

ary conditions examined in the limit of bp ! 0. [In the Chemical Engineering litera-

ture (Himmelblau and Bischoff, 1968; Froment and Bischoff, 1990), the limit bp = 0
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Figure 3.8: Dispersion curves predicted by the low-dimensional �rst order hyper-
bolic model [The dispersion curves include a Dirac-delta function of magnitude
Exp(�48

p
) at � = 0, which is not shown in the �gure].

is called the plug �ow while the opposite limit of bp ! 1 is called the segregated

�ow. In the latter case, there is no molecular diffusion either in the axial or ra-

dial directions and the dispersion of the solute is purely due to transverse velocity

gradients.]

For the hyperbolic model, the dispersion (RTD) curve is obtained by solving

@cm
@�

+
@cm
@z

+ bp @2cm
@z @�

= 0; � > 0; z > 0 (3.142)
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cm(z; 0) = 0; cm(0; �) = �(�): (3.143)

The solution in the Laplace transform domain may be written as

bE(!) = ccm(1; !) = exp�� !

1 + !bp
�

(3.144)

= 1� ! +
!2

2!
(1 + 2bp) +O(!3) (3.145)

Thus, the hyperbolic model predicts that the centroid of the cup-mixing concentra-

tion moves with the mean �ow. The normalized second central moment of the RTD

curve is given by

�2 =
M2

M2
1

� 1 = 2bp: (3.146)

In fact, the dispersion curve may be expressed explicitly as

E(�) = exp

�
�� + 1bp

��
�(�) +

1bpp� I1
�
2
p
�bp
��

; (3.147)

and is shown in Figure 3.8 (without the Dirac delta function of magnitude exp
�
�1bp
�

at � = 0) for various values of bp(= p
48
). We note that for small values of bp, the

predictions of the parabolic model (with any exit boundary condition) and hyperbolic

model agree and the behavior is close to that of plug �ow (with small variance

�2 � 2bp). As bp increases (or transverse or local gradients increase), the hyperbolic
model predicts that the peak of the RTD curve shifts to � values below unity (as

can be expected based on the physics). For bp = 1
2
(or, p = 24), the predicted RTD

curve is very similar to that of an ideal CSTR (E(�) = e�� with peak at � = 0) and

for bp > 1
2
, the predicted curve has long tails, typical of laminar �ow. For the extreme

case of bp ! 1 (segregated �ow limit or the limit where radial diffusivity goes to
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zero), the true RTD curve is given by

E(�) =

8><>: 0; � < 1
2

1
2�3
; � > 1

2

(3.148)

and the second central moment goes to in�nity. The hyperbolic model predicts

qualitatively correct behavior even for large values of bp, including the extreme (seg-
regated �ow) limit of bp!1. Thus, the hyperbolic model (which is a Cauchy prob-

lem) can predict RTD curves ranging from the plug �ow (PFR) limit to the perfectly

mixed (CSTR) limit, and also the bypass and segregated �ow limits associated with

laminar �ow (but only qualitatively). We conclude that the hyperbolic model given

by equations(3.127, 3.130, 3.129) and expressed in terms of experimentally mea-

surable cup-mixing concentration, retains the proper physics, requires no extra inlet

or exit conditions, can describe dispersion effects better than the parabolic model

equations(3.115, 3.116, 3.117) and is valid in a much larger domain of the physical

parameter space, i.e., for all bp. This last property is due to use of physically mean-
ingful cup-mixing concentration (or use of two modes with a transfer coef�cient)

and rewriting the local equation (equation3.112) as equation (3.126). This regu-

larization is a crucial step in expanding the range of validity of the coarse-grained

model (qualitatively). A good analogy between the parabolic and hyperbolic mod-

els (and the regularization procedure) is the approximation of the function e�bp for
small bp by fP (bp) = 1 � bp and fH(p) = 1

1+bp . Both approximations have the same
accuracy for bp ! 0 but the �rst approximation breaks down qualitatively for bp > 1

while the second approximation is valid qualitatively for all bp. The second (Pade)
approximation is a regularized version of the �rst function and is closely connected

with how we write the local equation. In this speci�c case for no feed source, we
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replace the local equation (87b)

cm =

�
1� bp @

@z

�
hci (3.149)

by the regularized version

hci =
�
1 + bp @

@z

�
cm: (3.150)

From a physical point of view, this regularization of the local equation forces the

use of the two-mode model, or equivalently, the elimination of hci from the local

equation, instead of the physically relevant concentration cm.

3.4.2 Case B: The Taylor-Aris Limit:

When Per is of order unity, both axial and transverse diffusional effects are

comparable and the truncation of the averaged model at (O(p)) gives

@ hci
@�

+
@cm
@z

� p

Pe2r

@2 hci
@z2

� hsfi (z; �) = 0; � > 0; z > 0 (3.151)

cm � hci = �
p

48

@ hci
@z

� p


s0f ;�1;1

�
+O(p2); � > 0; z > 0 (3.152)

with inlet and initial conditions:

cm �
p

Pe2r

@ hci
@z

= cm;in(�) +O(p2) @ z = 0; (3.153)

hci = hc0i (z) + p
@

@z
hc0(�; �; z); �1;1i+O(p2) @ � = 0; (3.154)

where �1;1 (�) = � 1
24

�
2� 6�2 + 3�4

�
. The conditions for validity of this model are

same as those for the Taylor model. The global equation (3.151) represents the

macroscopic (overall) evolution of the solute with axial mixing. The local equation

(3.152) represents the local or microscopic phenomena (exchange of solute be-

tween fast �owing �uid near the tube center and slow moving �uid near the tube

wall) as the transfer between the two modes cm and hci. equations (3.153, 3.154)
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represents the modi�ed inlet and initial conditions caused by velocity gradient and

transverse diffusion.

Eliminating the convective mode (cm) from the local equation, we can write the

coarse-grained �rst order model in terms of hci as

@ hci
@�

+
@ hci
@z

� p

�
1

48
+

1

Pe2r

�
@2 hci
@z2

= hsfi (z; �) + p
@

@z



s0f ;�1;1

�
+O(p2) ; � > 0; z > 0 (3.155)

with initial and inlet condition as

hci � p

�
1

48
+

1

Pe2r

�
@ hci
@z

= cm;in(�) +O(p2) @ z = 0; (3.156)

hci = hc0i (z) + p
@

@z
hc0(�; �; z); �1;1i+O(p2) @ � = 0; (3.157)

This is same as classical Taylor model except with modi�ed inlet and initial con-

dition. Once, hci is known, cm can be calculated. Once again, we see that the

reduced order model equation (3.155) contains a second spatial derivative term,

but there is only one inlet condition equation (3.156). Hence model is not complete

without a second boundary or inlet condition. This can be avoided by using leading

order approximation equation (3.122) in the coarse-grained model equation (3.155)

for t > 0; z > 0 which leads to the following hyperbolic model,

@ hci
@�

+
@ hci
@z

+ p

�
1

48
+

1

Pe2r

�
@2 hci
@z@�

= hsfi (z; �) + p
@

@z



s0f ;�1;1

�
+p

�
1

48
+

1

Pe2r

�
@ hsfi
@z

O(p2) ; � > 0; z > 0 (3.158)

with the same inlet and initial condition as given by equations (3.156, 3.157). It is

interesting to note that after using leading order approximation, the parabolic model

is transformed into a Cauchy (initial value) problem which is easier to solve. Sim-
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ilarly, using the regularized version (equation3.126) of the local equation (3.152),

the reduced �rst order model can be written in terms of cm as follows:

@cm
@�

+
@cm
@z

+
p

48

@2cm
@z@�

� p

Pe2r

@2cm
@z2

= hsfi (z; �)� p
@

@�



s0f ;�1;1

�
+O(p2); � > 0; z > 0 (3.159)

with inlet and initial conditions:

cm �
p

Pe2r

@cm
@z

= cm;in(�) +O(p2) @ z = 0; (3.160)

cm +
p

48

@cm
@z

= hc0i (z) + p
@

@z
hc0(�; �; z); �1;1i+O(p2) @ � = 0; (3.161)

We note that the reduced order model (3.159) also contains a second order spatial

derivative in z, which again can be avoided by using the leading order approxi-

mation for � > 0; z > 0 and rewriting the model without changing accuracy as

follows:

@cm
@�

+
@cm
@z

+

�
p

48
+

p

Pe2r

�
@2cm
@z@�

= hsfi (z; �) +
p

Pe2r

@ hsfi
@z

� p
@

@�



s0f ;�1;1

�
+O(p2); � > 0; z > 0

(3.162)

with inlet and initial conditions same as given by equations (3.160, 3.161). We

note that the above reduced order model is more appropriate to describe the solute

dispersion as it is hyperbolic and is written in terms of experimentally measurable

concentration cm. The initial conditions (3.161) can be further simpli�ed by inverting
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as

cm = hc0(�; �; z)i+p
@

@z
hc0(�; �; z); �1;1i�

p

48

@

@z
hc0(�; �; z)i+O(p2) @ � = 0;

(3.163)

For the case of uniform impulse input (cin(�; �; �) = �(�) and c0(�; �; z) = 0) and

no feed (sf = 0), the solution of parabolic form given by equation (3.155-3.157) is

same as that of parabolic model (3.131, 3.132) with bp = p
48
+ p

Pe2r
. Similarly for this

case, the solution of hyperbolic model given by equations (3.158, 3.155, 3.156)

or equations (3.162, 3.163, 3.160) is same as that of hyperbolic model equations

(3.142, 3.143) with bp = p
48
+ p

Pe2r
. Here, bp�= p

48
+ p

Pe2r

�
is the well known effective

dispersion coef�cient in dimensionless form. However, in the hyperbolic model, bp
is an effective local exchange/transfer time.

3.5 Conclusions and Discussion

The main contribution of this work is the presentation of a systematic averag-

ing procedure based on the Lyapunov-Schmidt (L-S) method for deriving coarse-

grained low-dimensional models from the detailed diffusion-convection-reaction

equations. As outlined in earlier section, this method has some advantages com-

pared to other methods presented in the literature. When there is scale separation

in the detailed model, the L-S method is equivalent to the exact Maclaurin's series

expansion of the detailed model in terms of the small parameter representing the

scale separation. While we have illustrated it here only for the non-reacting solute

dispersion case, it can be applied to a wide range of reacting as well as non-

reacting cases described by diffusion-convection-reaction models. For the case of

classical Taylor dispersion problem, we have derived the reduced order model to

all orders in the transverse diffusion time. By summing the resulting in�nite series

in closed functional form, we were able to show that the reduced order model de-

rived by the L-S technique is exact in the sense that it can predict the moments of
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the solute distribution exactly for all times.

A second contribution of this work is the analysis of the solute dispersion at

short times using the coarse-grained model derived by the L-S method. Speci�-

cally, we have shown that, as expected, the centroid displacement arises due to

the fact that for point release at (r0; �0), the centroid moves with the local �uid ve-

locity u(r0) at short times while it moves with the mean velocity at large times.

Thus, it is not possible to predict the location of centroid (and hence the second

central moment or the variance) correctly by any coarse-grained model that is not

valid for t! 0. Similarly, the short time approximation of variance shows that solute

spreading process evolves with pure diffusion for t! 0, and after some critical time

�CD =
Dm
hui2 , convection effects start to contribute and introduce asymmetry in the

concentration distribution. For long times (t � �D =
a2

Dm
), the spreading process

is governed by the Taylor (when Per � O( 1p
p
)) or Taylor-Aris mechanism (when

Per � O(1)). Thus, the solute spreading process may be divided into three time

intervals; 0 < t < �CD where axial molecular diffusion dominates, t 2 (�CD; �D)

where the dispersion is due to the combined effects, and t >> �D where convec-

tion and transverse diffusion dominates. Our analysis in section 4.1 also shows

that for the practical case of Per >> 1, the skewness of the solute concentration

pro�le increases as
�

t
�D

�
for short times while it decreases as

p
�D
t
for long times.

Thus, while the Gaussian pro�le is approached for t ! 1 (Chatwin, 1970), the

skewness is never zero for any �nite time and goes through a maxima for t values

of order �D. In our view, this important observation has not been recognized in the

literature.

A third contribution of our work is the clear distinction between the dominant

convective mode represented by the cup-mixing concentration (cm) and the dom-

inant diffusive mode represented by the cross-sectional averaged concentrations

(hci). We have shown how these two modes arise naturally in the averaging of the
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convective diffusion equation. With the use of these two modes, the local gradients

can be quanti�ed more accurately than the traditional use of a single concentration

mode and its large scale gradient. In our opinion, there is a fundamental physi-

cal inconsistency in representing the Taylor dispersion phenomenon using a single

diffusive mode (the cross-section averaged concentration) and its large scale gra-

dient. This parabolic description of the dispersion �ux, �rst used by Taylor (1953)

and later by many others, makes the local phenomenon of exchange of solute be-

tween the (fast moving or large scale) convective mode (cm) and nearly stationary

and small scale diffusive mode(hci) into a large scale phenomenon (effective diffu-

sion on the larger scale). It is mainly for this reason, the traditional coarse-grained

parabolic models fail to describe the solute dispersion process accurately for short

times or for the case of a reactive solute, for fast reactions and for �nite values of

the transverse diffusion time. In fact, as shown elsewhere (Balakotaiah and Rat-

nakar, 2010), the single mode description of the Taylor dispersion phenomenon

for reacting �ows in terms of hci can lead to negative effective dispersion coef�-

cients! Based on these and other comparisons, we conclude that Taylor dispersion

phenomena are better described in terms of hyperbolic models using either a sin-

gle convective mode (for the non-reactive case) or multiple concentration modes

coupled through the concept of a transfer coef�cient (Balakotaiah and Ratnakar,

2010).

Finally, it should be noted that exact averaging is possible in the classical Taylor-

Aris problem due to two special properties, namely, linearity of the model and the

existence of zero eigenvalue for the transverse diffusion operator for all values of p.

Due to these properties, it was possible to derive the coarse-grained model to all

orders in p and sum the resulting in�nite series for the moments in closed functional

form so that the dispersion due to point sources (in space or time) can be treated

accurately. However, in many practical applications involving homogeneous and
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multiphase reacting systems with point sources or sinks (e.g. spark-ignited internal

combustion engine models, wall catalyzed reactions with small metallic crystallites

acting as reaction sources or sinks and homogeneous reactions with concentrated

feeding of one or more of the reactants), we have found that the traditional Taylor

dispersion approach is not adequate as the coarse-grained models may not con-

verge when the local Damköhler number exceeds a critical value. In such cases,

the higher order terms in the coarse-grained model derived using the L-S method

are necessary to determine the region of convergence of the reduced order model

and to improve its accuracy.
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Chapter 4 Reduced Order Model for recative disper-
sion in Catalytic monoliths

4.1 Preamble

The monolith reactor is widely used in the treatment of exhaust gases from

automobiles, oxidation of volatile organic compounds, catalytic partial oxidation

or combustion of hydrocarbons, removal of nitrogen oxides from power plant and

furnace exhaust gases and many other applications. The monolith reactor consists

of a large number of parallel channels of diameter in the range 0.2 to 10 mm and

length 1 to 100 cm through which the reactant, product and carrier gases �ow. The

catalyst containing various precious metals is deposited on the wall of the monolith

channels as a porous washcoat layer with a mean thickness of about 10 to 50 �m.

In most applications, the Reynolds number is well below 2000 and hence the �ow

in the channel is laminar (though in some cases it may not be fully developed). The

reactants are transported mainly by convection in the axial direction, by molecular

diffusion in the radial direction, while the transport in the washcoat may be due

to a combined mechanism of molecular and Knudsen diffusion. In addition to the

above applications, the problem of laminar �ow in a channel with a porous layer on

the wall is also important in coated tube chromatography, catalytic micro-reaction

engineering, reactive dissolution of porous media and contaminant transport in soil

and other applications.

In the automobile exhaust treatment applications, the monolith operates under

highly transient conditions where the inlet composition and temperature vary with

time. Various control and optimization algorithms related to fuel ef�ciency and

emissions constraints may be implemented in real time if reduced order models

for various sub-systems are available. In addition to this important application,

the development of low-dimensional models for catalytic reactors has other advan-

105



tages such as speed-up of transient reactor calculations by three to �ve orders of

magnitude (Joshi et al., 2009a), parametric studies and bifurcation analysis of cat-

alytic reactors, estimation of kinetic and transport parameters from limited number

of macroscopic experimental observations (or the solution of the so called inverse

problem), and incorporation of the model in larger scale process and optimization

schemes. These reasons are the primary motivation for the present study.

The literature relevant to this work falls into two groups: one dealing with mono-

liths and catalytic after-treatment aspects and the second dealing with coarse

graining of diffusion-convection-reaction models. As the literature is extensive in

both groups we review here only the recent literature that is directly relevant to this

work and refer to monographs or review articles for older literature.

The most widely used monolith models in the chemical engineering literature

are the one-dimensional two-phase models that use various average concentra-

tions with effective external heat and mass transfer coef�cients (Froment and Bischoff,

1990; Heck and Farrauto, 2009; Cybulski and Moulijn, 2006). For example, for the

case of an isothermal monolith, the two-phase model consists of a species balance

equation for some average concentration in each phase and an interphase trans-

fer term. (In the �uid phase, the average concentration used is the experimentally

measurable mixing-cup or velocity weighted concentration, while in the solid phase

the concentration used is the average solid-�uid interfacial concentration). The gra-

dients in the washcoat are accounted for by using the effectiveness factor concept,

which is only applicable for the case of a single reaction (Joshi et al., 2009). As

reviewed by Chakraborty and Balakotaiah (2005), though these two-phase mod-

els are derived for describing the interphase transport at steady-state and in the

absence of reactions, the common practice is to use them for unsteady state con-

ditions and with chemical reactions. The validity of this assumption for steady-state

conditions has been established in the literature by making the transfer coef�cients
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as a function of the local Damköhler number and position and calculation of these

transfer coef�cients for the case of wall reaction or reaction in the washcoat (Tron-

coni and Forzatti, 1992; Gupta and Balakotaiah, 2001; Bhattacharya et al. 2004).

More recently, various averaging methods have been used to obtain the two-phase

models as well as other such reduced order models for monoliths and other re-

acting systems (Chakaraborty and Balakotaiah, 2005; Mikelic et al., 2006). In our

view, the main unresolved issue at present is the validity of the transfer coef�cient

concept for reacting systems under transient conditions.

A second important concept in obtaining the reduced order models is that of the

dispersion coef�cient, popularized by the work of Taylor (1953) and Aris (1956).

While this concept was initially introduced to describe the spreading of a non-

reactive solute in laminar �ow in a channel due to velocity gradients and molecular

diffusion, it has also been used extensively for reacting systems (Brenner and Ed-

wards, 1993). This approach uses a single concentration mode and obtains the

reduced order model in parabolic form with an effective velocity, dispersion coef-

�cient and rate constant (for reacting systems). However, in recent years, some

shortcomings of the Taylor-Aris parabolic model have been identi�ed (Balakota-

iah and Chang, 2003; Balakotaiah, 2004; Balakotaiah and Ratnakar, 2010). To

overcome these, several authors have introduced, derived and justi�ed the use

of hyperbolic models (Camacho,1993; Mauri, 1991; Maas, 1999; Balakotaiah and

Chang, 2003; Mikelic et al., 2006; Ratnakar and Balakotaiah, 2011) to describe

dispersion effects under non-reactive as well as reactive conditions. The main

goal of most of these earlier works was to obtain an effective transport equation

(parabolic or hyperbolic partial differential equation) in terms of a single concentra-

tion mode. However, earlier work on coarse-graining of reacting �ows has shown

that it is not possible to obtain a reduced order hyperbolic model in terms of a

single mode (Chakraborty and Balakotaiah, 2005). The current work is a further
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extension of this earlier work where we obtain reduced order models in the form of

multiple interacting modes. The main focus of the present work is on the minimum

number of modes needed to express the reduced order model, the expressions

for the solid-�uid interfacial �ux in terms of various concentration modes and the

proper initial and inlet conditions to be used on the reduced order model.

In this chapter, we consider a detailed partial differential equation model that de-

scribes the transient diffusion, convection and reaction in a monolith channel with

a porous washcoat layer and average it over the transverse dimensions to obtain a

reduced order model in terms of the axial length scale and time. The reduced order

model is expressed in terms of physically meaningful or measurable concentration

modes. We provide a physical interpretation of the various terms and the effective

transport coef�cients that appear due to transverse averaging. We also obtain the

appropriate inlet and initial conditions to be used on the reduced order model. We

examine various limiting cases of the general model and compare our results with

those in the literature. Our main conclusion is that the traditional transfer or disper-

sion coef�cient concepts that are extensively applied either for non-reacting cases

or for steady-reacting cases are not applicable in the general case in which various

transport, reaction and transient processes in different phases interact. For exam-

ple, we show that the traditional external mass transfer coef�cient concept where

the �ux at the �uid-solid interface is expressed in terms of the difference between

two concentration modes is not applicable under transient reacting conditions. In

our approach, the reduced order model is expressed in terms of interacting multiple

modes.

This chapter is organized as follows. In the next section, we present a detailed

model for a monolith channel with a porous washcoat layer on the wall in which a

reaction occurs. In section 3, we average the detailed model over the small trans-

verse scales to obtain a coarse-grained model. We also present the reduced order

108



0=x Lx =

a

aλ









− 2

2

12
a
ru

a

aλ

wΩ∂

fΩ∂

fΩ

wΩ

Figure 4.1: Schematic diagram of a single straight monolithic channel of circular
cross-section and with a uniformly thick washcoat.

model in single and various multi-mode forms. In section 4, we examine the solid-

�uid interfacial �ux and obtain expressions for it in terms of various concentration

modes. We also identify the effective mass transfer coef�cients that appear in

these �ux expressions. In section 5, we examine some limiting cases of the model

and compare our results with those in the literature or with the exact numerical so-

lutions. In the last section, we summarize the main contributions of this work and

discuss some possible extensions.

4.2 Model Formulation

We consider a straight monolith channel of circular cross-section in which the

�ow is laminar and fully developed and having a washcoat of uniform thickness in

the circumferential direction as shown in Figure 4.1. We consider here only the

case in which the concentration of the reactant is small so that any non-isothermal

(temperature) effect may be neglected. We also assume that the length to diameter

ratio of the channel is large so that axial diffusion may be neglected in both the

solid and �uid phases. With these assumptions, the detailed model describing the
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transient diffusion, convection and reaction in the channel may be expressed as

@Cf
@t0

+ Uf (r)
@Cf
@x0

= Dfr2
?0Cf in 
f ; 0 < x0 < L; t0 > 0 (4.1)

"wc
@Cw
@t0

= Dwr2
?0Cw �Rw(Cw) in 
w; 0 < x0 < L; t0 > 0 (4.2)

with zero �ux boundary condition at the outer surface @
w given by

n
w �Dwr?0Cw = 0 on @
w; (4.3)

and the continuity of concentration and reactant �ux at the �uid-washcoat interface

as given by

Cf = Cw on @
f ; (4.4)

Jfw = �n
f �Dfr?0Cf = �n
f �Dwr?0Cw on @
f : (4.5)

The initial and inlet conditions are given by

Cf = Cf0 (r; �; x
0) @ t0 = 0; (4.6)

Cw = Cw0 (r; �; x
0)@ t0 = 0; (4.7)

Cf = Cf;in (r; �; t
0)@ x0 = 0; (4.8)

where 
f and 
w represent the cross-sectional area of the �ow channel (�uid)

and the washcoat, respectively as shown in Figure 4.1. Cf and Cw are the solute

concentrations in �uid phase and washcoat, respectively. [Remark: Cw is the con-

centration in the interstitial space of the washcoat]. Here, Df andDw are molecular

diffusivity of the reacting species in the �uid phase and effective diffusivity in the

washcoat, respectively. "wc is the porosity of the washcoat, which is assumed to
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be a constant (independent of position and time). The function

Uf (r) = 2u

�
1� r2

a2

�

is the velocity pro�le in the channel with average �uid velocity u. Rw (Cw) is the

global rate expression for the consumption of the reactant in moles per unit time

per unit washcoat volume. In equations(1e), Jfw is the �ux of the reactant at the

�uid-washcoat interface from �uid phase into the washcoat. The operator

r2
?0 =

1

r

@

@r

�
r
@

@r

�
+
1

r2
@2

@�2

is the transverse Laplacian, n
f and n
w are unit normal vectors radially outward

to the �uid-washcoat interface @
f (r = a) and the outer washcoat boundary @
w

(at r = a+ �a) ; respectively.

The above model may be written in dimensionless form by de�ning

� =
r

a
; x =

x0

L
; t =

u t0

L
; uf (�) =

Uf (r)

u
; � =

Df

Dw

; p =
u a2

Df L
;

(cw; cf ) = (Cw; Cf ) =CR; R (cw) =
Rw (CRcw)

Rw (CR)
; Da =

Rw (CR)

CR

L

u
;

and including the inlet/initial conditions as source/sink terms in the evolution equa-

tion as explained by Balakotaiah and Ratnakar (2010) and Ratnakar and Balako-

taiah (2011). Thus, we can express the detailed model in the domain of interest

as

F (c; p; �) � Lc� p

�
@c

@t
+ u (�; �)

@c

@x
+Da � (�; �) R (c)� s (�; �; x; t)

�
= 0 in 


(4.9)

111



with the zero �ux boundary condition at the outer surface of the washcoat

n
�r? c =
@c

@�
= 0 on @
 (� � = �+ 1); (4.10)

where

Lc =
1

�
r? � (D r? c) =

1

�

�
1

�

@

@�

�
�D (�)

@c

@�

�
+
D (�)

�2
@2c

@�2

�
is the transverse diffusion operator in the region 
 (= 0 < � < �+ 1; 0 < � � 2�) in

the dimensionless transverse variables (�; �) in cylindrical coordinates. Here, � is

the capacitance function. Though our procedure is valid for general case in which �

varies with position, the focus here will be on the special case in which � is constant

in each phase. x is the dimensionless axial coordinate and t is the dimensionless

time, non-dimensionalized by convection time �C
�
= L

u

�
, uf (�) is the dimensionless

velocity pro�le through the open part of the channel. The parameter � is the ratio

of diffusion coef�cient of the reactant in �uid phase to that in the washcoat. The

perturbation parameter p is the local (transverse) Peclet number which can be

interpreted as the ratio of two time scales, namely, the transverse diffusion time

�D =
�

a2

Df

�
and the convection time �C or transverse to axial length scales. The

parameter p represents the scale separation in the physical system: It could also be

interpreted as the dimensionless frequency/wave number in the macro variables x

or t. The Damköhler number, Da, represents the ratio of convection time (�C) to

the characteristic reaction time �R
�
= CR

Rw(CR)

�
in the washcoat.

The concentration is non-dimensionalized by some reference concentration

(CR) and is expressed as

c (�; �; x; t) =

8><>: cf (�; �; x; t) ; 0 < � < 1 (� 
f )

cw (�; �; x; t) ; 1 < � < �+ 1 (� 
w)
(4.11)
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Similarly, the dimensionless velocity pro�le may be expressed as

u (�; �) =

8><>: uf (�) = 2
�
1� �2

�
; 0 < � < 1

0; 1 < � < �+ 1
; (4.12)

the molecular diffusivity expressed as

D (�; �) =

8><>: 1; 0 < � < 1

1
�
; 1 < � < �+ 1

; (4.13)

the reaction/catalyst activity pro�le as

� (�; �) =

8><>: 0; 0 < � < 1

1
"wc
; 1 < � < �+ 1

; (4.14)

the capacitance function � as

� (�; �) =

8><>: 1; 0 < � < 1

"wc; 1 < � < �+ 1
; (4.15)

and the source term s (�; �; x; t) as

s (�; �; x; t) = c0 (�; �; x) � (t) + u (�) cin (�; �; t) � (x)

=

8><>: sf (�; �; x; t) = cf0 (�; �; x) � (t) + u (�) cfin (�; �; t) � (x) ; in 
f

sw (�; �; x; t) = cw0 (�; �; x) � (t) : in 
w
(4.16)

It should be noted that equations (4.9, 4.10) is equivalent to the equations (4.1-4.8)

for x > 0 and t > 0 and leads to the same inlet/initial condition (equations 4.6 - 4.8)

after integrating w.r.t. x from x = 0 to 0+ and w.r.t.. t from t = 0 to 0+. Here t = 0+

should be interpreted as t = " � �D: Also, the activity pro�le � vanishes in 
f
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because there is no (homogeneous) reaction occurring in the channel. In the more

general case, the source function s (�; �; x; t) can also represent the source/sink

terms at x > 0 and t > 0. We show later that the inclusion of inlet/initial conditions

as source terms in the evolution equation leads to the identi�cation of inlet/initial

conditions for the averaged model. It should also be noted that the model given

by equations(4.9, 4.10) can be extended to the more general case of a monolith of

arbitrary cross-section where catalyst activity, diffusivity and velocity may be func-

tions of transverse coordinates. However, for simplicity, we consider the present

case of a straight circular channel with a washcoat of uniform thickness. [For an

extension of the averaging procedure to other channel and washcoat geometries,

see Bhattacharya, 2004].

4.3 Transverse Averaging

Since the details of transverse averaging using the Lyapunov-Schmidt method

have been discussed in prior work (Balakotaiah and Chakraborty, 2002; Balakota-

iah and Chang, 2003; Ratnakar and Balakotaiah, 2011), we report here only some

steps in the application of the procedure and focus on the results.

We note that the operator that appears in transverse averaging is L = 1
�
r? �

(D r? ), which is symmetric and has a simple zero eigenvalue with an eigenfunc-

tion that is independent of transverse coordinates. Equivalently, the eigenvalue

problem

L i �
1

�
r? � (D r?  i) = ��i i in 


n
 � r?  i = 0 on @
 (4.17)

is self-adjoint (L� = adjoint operator= L) with respect to the (capacitance weighted)

114



inner product de�ned by

hu; vi = 1

A


2�Z
0

1+�Z
0

� � (�; �) u (�; �) v (�; �) d�d� (4.18)

with

A
 =

2�Z
0

1+�Z
0

� � (�; �) d�d� = �[1 + "wc� (�+ 2)];

and has a simple zero eigenvalue �0 = 0with a constant eigenfunction  0 (�; �) = 1.

Moreover, all eigenfunctions  j may be chosen such that they are normalized w.r.t..

inner product de�ned by equations (4.18), i.e.,



 i;  j

�
= �ij =

8><>: 0; i 6= j

1; i = j
(4.19)

The concentration c is expressed as

c (�; �; x; t) = hci (x; t)  0 + c0 (�; �; x; t) (4.20)

where, the projection of c on to ker(L) is the (capacitance weighted) cross-sectional

averaged concentration;

hci (x; t) = hc;  0i =
1

A


ZZ



� � (�; �) c (�; �; x; t) d�d�; (4.21)

and the projection of c on to Range(L�) is the concentration �uctuation about its

average value, satisfying the following orthogonality constraint

hc0;  0i = 0: (4.22)

Similarly, in codomain, projecting the operator F onto ker(L� = L) ; we get the
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global equation (I � E)F � hF;  0i 0 = 0 as follows

@ hci
@t

+ hui @cm
@x

+Da h� (�; �) R (c)i � hsi = 0 (4.23)

where, cm is the cup-mixing or velocity weighted averaged concentration de�ned

by

cm =
hc; ui
hui = hci+ hc

0; u0i
hui ; (4.24)

and hsi is the transverse average of the source/sinks. The reaction term can be

simpli�ed as

� R (c) = �R (hci) +
1X
i=1

�
R[i]

i!
(hci) (c� hci)i (4.25)

= �R (hci) + �R0 (hci) (c� hci) +O
�
(c� hci)2

�
;

and hence

h� R (c)i = h�iR (hci) + h�iR0 (hci) (hciw � hci) = h�iR (hciw) +O
�
(c� hci)2

�
;

(4.26)

where hciw is the activity weighted averaged concentration (which is same as wash-

coat average concentration because the activity pro�le within the washcoat is uni-

form in the transverse directions) and is given by

hciw =
hc; �i
h�i = hci+ hc

0; �0i
h�i : (4.27)

Thus, using equations (4.26), we simplify the global equation (4.23) as follows:

@ hci
@t

+ hui @cm
@x

+Da h�iR (hciw)� hsi = 0 (4.28)

We note that the global model equations (4.28) is exact for linear kinetics and is
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valid for non-linear kinetics to �rst order when the transverse variation in concen-

tration is small. Also, it is not closed since it contains three concentration modes

hci ; cm and hciw appearing naturally. The mode hci appears due to transient nature

of the problem while the modes cm and hciw appear due to transverse dependency

of velocity pro�le and catalytic activity, respectively. These modes contains the ef-

fect of concentration variation at smaller scales. To quantify these smaller scale

effects, we solve the local equation for c0 which is obtained by projecting F onto

range (L), leading to the following equation:

EF � Lc0 � p

264 @c0

@t
+ @

@x
(uc0 � hu0c0i) +DaR0 (hci) (�c0 � h�0c0i)

+ u0 @hci
@x
+Da �0 R (hci)� s0 (�; �; x; t)

375 = 0 in 
 (4.29)

with the zero �ux boundary condition at outer surface of the washcoat

n
�r? c
0 = 0 on @
; (4.30)

where c0 represents the �uctuation/deviation from the cross-sectional average and

s0 = s � hsi. Since L : range (L) ! range (L) is invertible with the orthogonality

constraint (4.22), it follows from implicit function theorem that the local equation

(4.29) with boundary condition (4.30) can be solved for c0 uniquely in terms of all

the modes appearing in the local equation.

Here, we use the perturbation expansion in local (transverse) Peclet number

p to solve the local equation. To use the perturbation expansion in p properly, we

must assign the order of other parameters present in the model such that each term

can be compared in terms of order of p properly. Here, we assume Da � O(p1).

Time or length scale separation (perturbation in power series of small p) exists only

when we have 1 � 0 (slow kinetics compared to transverse diffusion time). We

consider here the case of Damkohler number of order unity, i.e., 1 = 0: It should
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be noted that in this case, the leading order model (corresponding to p = 0) is

hyperbolic (�rst order partial differential equation) in x and t :

@ hci
@t

+ hui @ hci
@x

+Da h�iR (hci)� hsi = 0; (4.31)

For p = 0, the local equation (4.29) with boundary condition (4.30) and orthog-

onality constraint (4.22) leads to c0 = 0; i.e., there is no transverse variation in

concentration. In this limit, all the modes are same and the global equation be-

comes exact. Since c0 = 0 for p = 0, the perturbation expansion of c0 in terms of p

may be expressed as follows:

c0 (�; �; x; t) =
1X
i=1

pici (�; �; x; t) (4.32)

where ci is the ith order correction. Using the expansion (4.32) in the local equation

(4.29), we can write the equation for each order correction as follows:

Lc1 = u0
@ hci
@x

+Da �0 R (hci)� s0 (�; �; x; t) ; in 
 (4.33)

Lc2 =
@c1
@t
+

@

@x
(uc1 � hu0c1i) +DaR0 (hci) (�c1 � h�0c1i) ; in 
 (4.34)

Lci =
@ci�1
@t

+
@

@x
(uci�1 � hu0ci�1i) +DaR0 (hci) (�ci�1 � h�0ci�1i) ; in 
 8 i � 3

(4.35)

subject to the same zero �ux boundary condition (4.30) and the same orthogo-

nality constraint (4.22). It should be noted that other values of 1 will lead to dif-

ferent form of equations for each order correction ci. It can be easily seen from

equations (4.33, 4.34 and 4.35) that ith order correction ci can be solved in terms

of �rst(i� 1)st order corrections while the �rst order corrections can be solved in

terms of hci.
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While it is possible to derive the low-dimensional model to any order in the

perturbation parameter using this approach, the main purpose of obtaining the

reduced order model is to retain all the essential physics occurring at small scales

without increasing the complexity of the model. For most practical applications,

the �rst few corrections may be suf�cient to capture the small scale (local) effects

with suf�cient quantitative accuracy. Therefore, we consider the solution of the

local equation up to the �rst order in p and express it in terms of measurable or

physically meaningful quantities.

Solving the equations (4.33), we get

c1 = � (�; �)
@ hci
@x

+Da � (�; �) R (hci)� � (�; �; x; t) (4.36)

where the transverse functions � and �; and � are given by

L� = u0; L� = �0; L� = s0 (�; �; x; t) ; in 
 (4.37)

with the same boundary condition (4.30) and the same orthogonality constraint

(4.22). It is easy to show that if LH1 = h1 and LH2 = h2; then hH1; h2i = hH2; h1i

as long as H1; H2; h1 and h2 satisfy the orthogonality constraint (4.22) and, H1 and

H2 satisfy the zero �ux boundary condition (4.30): Thus, using this property with

equations(4.24-4.27), other modes can be written as

hui (cm � hci) = hc0; u0i

= p

�
h�; u0i @ hci

@x
+Da h�; �0i R (hci)� h�; s0i

�
+O(p2) (4.38)

h�i (hciw � hci) = hc0; �
0i

= p

�
h�; u0i @ hci

@x
+Da h�; �0i R (hci)� h�; s0i

�
+O(p2) (4.39)

These transverse functions and the coef�cients appearing in the above equations
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(4.38, 4.39) are listed in Table 4.1.

Thus, the global equation (4.28) and local equations (4.38 and 4.39) form the

averaged model. We can combine these equations to write a �rst order coarse-

grained model in terms of hci as follows:

@ hci
@t

+ hui @ hci
@x

+ p
@

@x

�
h�; u0i @ hci

@x
+Da h�; �0i R (hci)� h�; s0i

�
+Da h�iR (hci)

+pDa R0 (hci)
�
h�; u0i @ hci

@x
+Da h�; �0i R (hci)� h�; s0i

�
� hsi = 0 +O

�
p2
�

:

(4.40)

It should be noted that the above coarse-grained model is valid for x; t � 0:We can

separate the governing equation from inlet(/initial) conditions by integrating w.r.t..

x (=t) from x (=t) = 0 to 0+: The governing equation for x; t > 0 is given by

@ hci
@t

+ [hui+ pDa (h�; �0i+ h�; u0i) R0 (hci)] @ hci
@x

+ p h�; u0i @
2 hci
@x2

+ [h�i+ pDa h�; �0i R0 (hci)]Da R (hci) = 0 +O
�
p2
�

(4.41)

with inlet and initial conditions as follows:

hui hci+ p h�; u0i @ hci
@x

+ pDa h�; �0i R (hci) + pDa R (hci) h�; u0i

= hu cini+ pDa R0 (hci) h�; ucini+O
�
p2
�
@ x = 0 (4.42)

hci � pDa R0 (hci) h�; c0i � p

�
�;
@c0
@x

�
� hc0i = 0 +O

�
p2
�
@ t = 0: (4.43)

The reduced order model given by equations (4.41-4.43), which is accurate to �rst

order in p, is one of the main results of this work. We note that for p = 0, it reduces

to the zeroth order hyperbolic model. For 0 < p � 1, the governing equations

(4.41) contains four �rst order correction terms. The term containing h�; u0i is the
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Table 4.1: Various transverse functions and coef�cients for fully developed laminar
�ow in a circular channel with a washcoat of uniform thickness

�

Fluid �f =
(1+2)
4(1+)

�2 � 1
8
�4 � (2+8+9

2)
24(1+)2

+ �2

8(1+)22w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

Washcoat �w = � �
4w(1+)

�
�2 � 2 (1 + w)Ln (�)

�
+ (1+4)

24(1+)2

+ �

8(1+)22w

�
2w + 4w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

�

Fluid �f = �
w

4(1+)
�2 + w(1+2)

8(1+)2

� �

8(1+)2w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

Washcoat �w =
�

4(1+)

�
�2 � 2 (1 + w)Ln (�)

�
� �w

8(1+)2

� �

8(1+)2w

�
2w + 4w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

�

Fluid �f = � �2

4
+ (1+2)

8(1+)
+ �2

8(1+)2w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

Washcoat �w =
�
4w

�
��2 + 2Ln (�)

�
� 1

8(1+)

+ �

8(1+)22w

�
2w + 4w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; u0i -(1+6+11
2)

48(1+)3
+ �2

8(1+)32w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; u0i
= (1+4)w

24(1+)3
� �

8(1+)3w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; �0i

h�; u0i (1+4)

24(1+)2
+ �2

8(1+)22w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; �0i - 2w
8(1+)3

+ �

8(1+)3

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; �0i - w
8(1+)2

� �

8(1+)2w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

2 @�
@�

���
�=1�


(1+)

2 @�
@�

���
�=1�

- w
(1+)
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Taylor dispersion that arises due to velocity gradients. The term h�; �0i arises due

to activity variation in the transverse direction. The terms containing h�; �0i and

h�; u0i arise due to the coupling between chemical reaction and transverse velocity

gradients.

It can be seen from equations (4.41) that if the coarse-grained model is rep-

resented in terms of a single mode, the apparent mean velocity and effective

Damköhler number depend on kinetics and may lead to unphysical results for

fast non-linear reactions. For example, the reaction term can change sign where

pDa R0 (hci) > � h�i
h�;�i and so on. The single mode model has other disadvantages

discussed elsewhere (Balakotaiah and Ratnakar, 2010). Therefore, we regularize

the local equations and express the low-dimensional model in multi-mode form as

follows:
@ hci
@t

+ hui @cm
@x

+Da h�iR (hciw) = 0 (4.44)

hui (cm � hci) = p

�
h�; u0i @cm

@x
+Da h�; �0i R (hciw)

�
+O(p2) (4.45)

� (hciw � hci) = p

�
h�; u0i @cm

@x
+Da h�; �0i R (hciw)

�
+O(p2), x; t > 0 (4.46)

where, the inlet and initial conditions can be simpli�ed by using leading order ap-

proximations as follows:

cm + pDa R (cm)

�
u

hui ; �
�
=

cm;in + pDa R0 (cm;in)

�
�;
ucin
hui

�
+O

�
p2
�
@ x = 0; (4.47)

hci = hc0i+ p

�
�;
@c0
@x

�
+ pDa R0 (hc0i) h�; c0i+O

�
p2
�
@ t = 0 (4.48)

where cm;in = hucini
hui is the inlet cup-mixing concentration. The local equations (4.45,

4.46) are regularized version of local equations (4.38, 4.39). It should be noted
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that the initial/inlet conditions for the reduced order model depend not only on

the transverse dependency of the inlet/initial conditions of the detailed model but

also contain order p terms that depend on the kinetics for the case of non-uniform

catalyst activity pro�le. [For an explanation of regularization and how it expands

the the range of validity of the reduced order model, we refer to the article by

Chakraborty and Balakotaiah, 2005].

The concentrations hci and hciw are not easily measurable and not used in

practice. To express the reduced order model in a convenient form for applications,

we de�ne two different inner products in �uid phase and washcoat as follows:

hu; vif =
1

A
f

2�Z
0

1Z
0

� u (�; �) v (�; �) d�d� ; hu; viw =
1

A
w

2�Z
0

1+�Z
1

� u (�; �) v (�; �) d�d�

(4.49)

where A
f = � and A
w = �� (�+ 2) : If "f is the fraction of the cross-section

area of the channel open to �ow and "w is the fraction of cross-section area of the

washcoat, i.e.,

"f =
A
f

A
f + A
w
=

1

(1 + �)2
; and "w = 1� "f =

A
w
A
f + A
w

=
� (�+ 2)

(1 + �)2
; (4.50)

then we can de�ne the volume ratio of washcoat to �ow channel (w) and capaci-

tance ratio () as

w =
"w
"f
; and  =

"wc"w
"f

: (4.51)

Thus the inner products can be written as follows:

hu; vi =
hu; vif +  hu; viw

1 + 
(4.52)
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and hence,

hui = 1

1 + 
; h�i = w

1 + 
; hci =

hcif +  hciw
1 + 

;
h�ci
h�i = hciw (4.53)

cm =
huci
hui = hucif = cmf ; hsi =

�
hcf0if +  hcw0iw

�
� (t) + hucinif � (x)

1 + 

(4.54)

where hcif and hciw are the cross-sectional average concentrations in �uid phase

and washcoat, respectively. cmf is the cup-mixing concentration in the �uid-phase.

Now, integrating the dimensionless form of the full model equation (4.9) over the

�uid phase (
f ), we get the averaged equation for �uid phase as follows:

@ hcif
@t

+
@cm
@x

� hsif =
1

2�

2�Z
0

2

p

@c

@�

����
�=1�

d� = �J (4.55)

which is exact and valid to all orders in p (provided the exact �ux J is also deter-

mined to all order in p). Similarly, integrating the same equation (4.9) over wash-

coat (1 < � < 1 + �) with zero �ux boundary condition (4.10) leads to the averaged

equation in washcoat as follows:

@ hciw
@t

+
w

Da R (hciw)� hsiw = �

1

�

1

2�

2�Z
0

2

p

@c

@�

����
�=1+

d� =
1


J (4.56)

which is also exact in p for the case of linear reactions and accurate to O (p2) for

non-linear reactions. Here, J is the dimensionless diffusive �ux from �uid phase

to the washcoat, averaged over the periphery of the �uid-washcoat interface. An

expression for the �ux J can be obtained by subtracting equations (4.55) from
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equations (4.56):

J = � 

1 + 

�
@cm
@x

� w

Da R (hciw)� hsif + hsiw +

@

@t

�
hcif � hciw

��
(4.57)

It should be noted that only two of the above equations (4.55, 4.56 and 4.57) are

independent. They contain four unknowns, namely, the averaged concentration

in washcoat and �uid phase (hciw and hcif ), cup-mixing concentration (cmf ) and

peripheral averaged interfacial �ux (J). Hence, we need two local equations to

close the model. Using equations (4.44-4.48) and equations (4.53, 4.54) we can

write the difference between cross-sectional average concentrations in �uid phase,

washcoat and overall cross-section as follows:

hciw � hci =
1



�
hci � hcif

�
=

1

1 + 

�
hciw � hcif

�
=

p

h�i

�
h�; u0i @cm

@x
+ h�; �0iDa R (hciw)� h�; s0i

�
: (4.58)

while the difference between cup-mixing and cross-sectional averaged concentra-

tion in �uid phase can be written as follows:

cm�hcif =
p

hui

��
� +



w
�; u0

�
@cm
@x

+

�
� +



w
�; �0

�
Da R (hciw)�

�
� +



w
�; s0

��
(4.59)

Now, we can write the averaged model in several forms in terms of various concen-

tration modes (hcif ; hciw ; cmf ; hci) and interfacial �ux (J). However, as discussed

by Balakotaiah and Ratnakar (2010), we need at least three modes (two modes in

�ow channel to express the effect of transients and convection, and one mode in

washcoat to describe the transients and reaction) to describe the various phenom-

ena accurately. The three mode form of the averaged model in terms of hciw ; cmf
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and hci is given by

@ hci
@t

+ hui @cm
@x

+ h�iDa R (hciw) = 0 (4.60)

cm � hci =
p

hui

�
h�; u0i @cm

@x
+Da h�; �0i R (hciw)

�
+O(p2) (4.61)

hciw � hci =
1



�
hci � hcif

�
=

p

h�i

�
h�; u0i @cm

@x
+Da h�; �0i R (hciw)

�
+O(p2)

(4.62)

hci =
hcif +  hciw

1 + 
(4.63)

with inlet/initial conditions as follows:

cm + pDa R (cm) hu; �if = cm;in + pDa R0 (cm;in) h�; ucinif +O
�
p2
�
@ x = 0;

(4.64)

hci = hc0i+ p

�
�;
@c0
@x

�
+ pDa R0 (hc0i) h�; c0i+O

�
p2
�
@ t = 0 (4.65)

Here, the global equations (4.60) represents the reactant balance in the whole

domain (�ow channel + washcoat) while the local equations(4.61, 4.62) represent

the concentration differences due to transverse diffusion and catalytic reaction in

the �ow channel and washcoat.

We can also write the averaged model in other forms such as in terms of aver-

aged concentration in washcoat and �uid phase
�
hciw and hcif

�
and cup-mixing

concentration (cmf ) as follows:

@ hcif
@t

+
@cmf
@x

= � J = �
�

@ hciw
@t

+ wDa R (hciw)
�

(4.66)
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cmf � hcif =
p

hui

��
� +



w
�; u0

�
@cmf
@x

+

�
� +



w
�; �0

�
Da R (hciw)

�
(4.67)

cmf � hciw = p

��
�

hui �
�

h�i ; u
0
�
@cmf
@x

+

�
�

hui �
�

h�i ; �
0
�
Da R (hciw)

�
(4.68)

Now, the local equation (4.67) is expressed in terms of the difference between con-

vective mode cmf and diffusive mode hcif in the �ow channel where the coef�cient
p
hui

D
� + 

w
�; u0

E
is the dimensionless Taylor dispersion coef�cient that depends

on the volume fraction of the �ow channel as well as the ratio of diffusivity in �ow

channel and washcoat. The second coef�cient p
hui

D
� + 

w
�; �0

E
represents the

effect of washcoat catalytic reaction on dispersion in the �ow channel. The local

equations(4.68) represents the mass transfer between convective mode cmf in the

�ow channel and reactive mode hciw in the washcoat. The corresponding inlet and

initial condition with O (p) modi�cation are given by

cmf + pDa R (cmf ) h�; uif = cm;in + pDa R0 (cm;in) h�; ucinif @ x = 0; (4.69)

hcif = hcf0if + p
@

@x
h�; cf0if + pDa R0 (cf0) h�; cf0if @ t = 0; (4.70)

and

hciw = hcw0iw + p
@

@x
h�; cw0iw + pDa R0 (cw0) h�; cw0iw @ t = 0 (4.71)

As stated in the introduction, in the literature, the transfer coef�cient concept is

used to express the interfacial �ux in terms of the difference between various con-

centration modes that includes the interfacial concentration. This is examined in

the next section.

4.4 Interfacial �ux and internal and external transfer coef�cients

The peripheral average concentration and �ux at the �uid-washcoat interface

play an important role in the understanding of the intra and interphase gradients.
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In this section, we introduce the peripheral average concentration mode and rep-

resent the interfacial �ux in terms of the difference between various concentration

modes and determine the external or internal mass transfer coef�cients, when they

are meaningful.

The peripheral average �uid-washcoat interfacial concentration is de�ned by

hcsi =
1

2�

2�Z
0

c (� = 1; �) d� =
1

�

2�Z
0

1+�Z
0

� c (�; �) �2 (� � 1) d�d� ; (4.72)

where, �2 (� � 1) is the standard cylindrical Dirac-delta function at the �uid-washcoat

interface (� = 1). Thus, the peripheral average surface concentration may be ex-

pressed as follows:

hcsi � hci = p

�
c1;

A

�
�2 (� � 1)

�
= p

�
h�; u0i @cmf

@x
+ h�; �0iDa R (hciw)

�
(4.73)

where the transverse function � (�; �) is given by

L� =
A

�
�2 (� � 1)� 1, 0 < � < 1 + � (4.74)

subject to the zero �ux boundary condition at the outer surface of washcoat as
@�
@�

���
�=1+�

= 0 and the orthogonality constraint h�i = 0. This can be further simpli�ed

as follows:

� =

8><>: �f : r2
?�f = �1 in 
f

�w :
1
�
r2
?�w = �1 in 
w

(4.75)

subject to zero �ux boundary, @�
@�

���
�=1+�

= 0, orthogonality constraint h�;  0i = 0

and the continuity �f = �w at � = 1: It must be noted that this transverse function

� (�; �) does not satisfy the �ux continuity at the interface due to presence of Dirac-
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delta function �2 (� � 1) : In fact, we can show from equations(4.75) that

 
1

�

@�w
@�

����
�=1

� @�f
@�

����
�=1

!
=
1

2

A

�
: (4.76)

However, this condition is automatically satis�ed when solved for � (�; �). We have

listed � (�; �) and coef�cients (h�; u0i h�; �0i) in equations (4.73) in Table 4.1.

Now, the interfacial �ux can be expressed as follows:

J = � 

1 + 

�
@cmf
@x

� w

Da R (hciw)

�
+p



w

�
h�; uif

@2cmf
@x@t

�Da h�; �0i R0 (hciw)
�
@cmf
@x

+ wDa R (hciw)
��

(4.77)

while the difference between cup-mixing concentration cm and average interfacial

concentration cs using Table 4.1 may be expressed as follows:

cmf � hcsi = p

��
�

hui � �; u0
�
@cmf
@x

+

�
�

hui � �; �0
�
Da R (hciw)

�
(4.78)

= p

��
� 3 + 11

48 (1 + )

�
@cmf
@x

+
w

6 (1 + )
Da R (hciw)

�
(4.79)

Similarly, the difference between average interfacial concentration cs and average

concentration in washcoat hciw) using Table 4.1 as follows:

hcsi � hciw = p

��
� � �

h�i ; u
0
�
@cmf
@x

+

�
� � �

h�i ; �
0
�
Da R (hciw)

�
(4.80)

=
p�

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

8 (1 + ) 2w

�
@cmf
@x

� w

Da R (hciw)

�
(4.81)

It can be seen from equations (4.77) and equations (4.80-4.82) that the difference

between the concentration modes hcsi and hciw is proportional to the interfacial
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�ux J to leading order, i.e.,

hcsi � hciw = �
�
�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

(82w)
pJ (4.82)

Equivalently, the interfacial �ux can be expressed in terms of the difference (or

driving force), (hcsi � hciw) using the internal transfer coef�cient concept (Balakota-

iah, 2008). The internal mass transfer coef�cient is de�ned as the ratio of average

peripheral �ux to the concentration difference, i.e.,

kint =

1
2�

2�Z
0

(�Dw
@c
@r

��
r=a+

)d�

hcsi � hciw
: (4.83)

Therefore, the dimensionless internal mass transfer coef�cient or Sherwood num-

ber (Sh
i) may be expressed as

Sh
i =
kintR
w
Dw

= ��
4

2w
(1 + )

�
� � �

h�i ; �
0
��1

=
23w�

2w + 3
2
w � 2 (1 + w)

2 Ln (1 + w)
� (4.84)

[Here, R
w is the effective washcoat thickness, de�ned as the washcoat cross-

sectional area over the �uid-washcoat interfacial perimeter]. The internal Sher-

wood number is plotted in Figure 4.2. We note that when the washcoat thickness

is small ("w ! 0 or w ! 0), the curvature effect may be neglected and Sh
i ap-

proaches the thin washcoat limit of 3, verifying the previous results of Balakotaiah

(2008) and Joshi et al. (2009).

In the chemical reaction engineering and heat and mass transfer literature, the

interfacial �ux is also expressed in terms of the concentration modes cmf and hcsi

using the external mass transfer coef�cient. We note from equations (4.77) and

4.79) that J is not proportional to the difference (cmf � hcsi). It is also not pro-
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Figure 4.2: Variation of the internal Sherwood number with washcoat volume frac-
tion.
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portional to the difference
�
hcif � hcsi

�
. However, combining equations(4.67, 4.77

and 4.79), we can express the �ux in terms of the interfacial mode hcsi and the two

external �uid phase modes cmf and hcif as

J =
24

p

�
3 hcif � hcsi � 2cmf

�
+O (p) (4.85)

It can be seen from above expression that in the general case in which the trans-

verse or local gradients are due to the interaction of catalytic reaction, velocity

gradients and molecular diffusion in the channel and varying inlet or initial condi-

tions, the �ux J can not be written in terms of difference between an external mode

and the interfacial mode but depends on both external modes and the interfacial

mode and must be expressed as

J = �1

�
hcif � cmf

�
+ �2

�
hcif � hcsi

�
; (4.86)

where �1 = 48
p
and �2 = 24

p
for the fully developed laminar �ow through cylindrical

channel. However, for the three special cases of steady-state conditions, or no

reaction case, or �at velocity pro�le, the the interfacial �ux can be expressed in

terms of the difference (or driving force), (cm � hcsi) using the external transfer

coef�cient concept. The external mass transfer coef�cient is de�ned as the ratio of

average peripheral �ux to the concentration difference, i.e.,

kext =

1
2�

2�Z
0

(�Df
@c
@r

��
r=a�

)d�

cm � hcsi
(4.87)

Therefore, the dimensionless external mass transfer coef�cient or Sherwood num-
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ber (She) may be expressed as

She =
kext(4R
f )

Dm

(4.88)

[Here, dh = 4R
f is the hydraulic diameter of the �ow channel de�ned as the

four times �ow area over the �uid-washcoat interfacial perimeter]. Thus, in spe-

cial cases of steady-state conditions, or no reaction case, or �at velocity pro�le,

the interfacial �ux can be expressed in terms of the difference (or driving force),

(cm � hcsi) as follows:

cmf � hcsi = Sh�1e p J (4.89)

where the external Sherwood number She in these cases is given by

She;ss =

�
�

hui � �;
1

w
�0 � u0

��1
=
48

11

She;non�react = � 

1 + 

�
�

hui � �; u0
��1

=
48

3 + 11
(4.90)

She;flat = ker;flat = w h(1 + w) �� �; �0i�1
���
flat

= 8:

In the next section, we simplify the general multi-mode model for these special

cases and give a physical interpretation of transfer/dispersion coef�cients in the

�nal reduced order models. We also obtain the solution of the reduced order model

for some special cases and compare it with exact solutions when available.

4.5 Limiting cases of the reduced order model

4.5.1 Thin washcoat and wall reaction limits ("w � 1)

When the washcoat thickness is small compared to the channel hydraulic di-

ameter, the curvature effect can be neglected and diffusion in the washcoat can be

treated by assuming that it is a �at layer. In this case, the main simpli�cation is in
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the local equation that gives the difference between average interfacial concentra-

tion cs and average concentration in the washcoat hciw). For a thin washcoat, the

reduced order model equations may be expressed as follows:

@ hcif
@t

+
@cmf
@x

= � J = �
�

@ hciw
@t

+ wDa R (hciw)
�

(4.91)

cmf � hcif = p

�
� 1
48

�
1 + 3

1 + 

�
@cmf
@x

+
1

24

�
w
1 + 

�
Da R (hciw)

�
(4.92)

cmf � hcsi = p

�
� 1
48

�
3 + 11

1 + 

�
@cmf
@x

+
1

6

�
w
1 + 

�
Da R (hciw)

�
(4.93)

hcsi � hciw = �p
�w

12 (1 + )

�
@cmf
@x

� w

DaR (hciw)

�
(4.94)

with the initial and inlet conditions given by equations (4.70, 4.71). A further sim-

pli�cation of the above model can be obtained if the gradients in the washcoat are

neglected without diluting the catalytic sites. This wall reaction case corresponds

to the limit of "w ! 0 (or w ! 0) but Lt
w!0

(wDa) = Das is �nite and of order unity.

For this wall reaction case, the difference between average interfacial concentra-

tion cs and average concentration in the washcoat hciw vanishes and we obtain the

three mode model:

@ hcif
@t

+
@cmf
@x

= � J = �Das R (hciw) (4.95)

cmf � hcif = p

�
�1
48

@cmf
@x

+
1

24
Das R (hciw)

�
(4.96)

cmf � hciw = p

�
�1
16

@cmf
@x

+
1

6
Das R (hciw)

�
(4.97)

which corresponds to the laminar �ow through circular channel with catalytic re-

action at the wall (and the assumption of no accumulation of reactant on catalytic

sites on the wall). The above model equations were derived earlier by Balakotaiah

(2004), the main addition being the O(p) corrections to the inlet and initial con-
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ditions and the expression for the �ux. We note that even for this widely studied

case, the �ux at the wall is given by

J =
24

p

�
3 hcif � hcsi � 2cmf

�
; (4.98)

which is the same expression as that obtained for a washcoat of �nite thickness.

This limiting case is the simplest example that illustrates one of the main results of

this work, i.e., under unsteady-state conditions and when velocity gradients exist

in the �uid phase, the �ux of the reactant to the wall cannot be written as a transfer

coef�cient times the difference between any two concentration modes. Here, the

coef�cient 1
48
is the dimensionless Taylor-diffusivity under non-reactive conditions.

The addition of wall reaction couples the three modes and adds the terms with

coef�cients 1
24
and 1

6
, in equations (4.96, 4.97). Only for the case of steady-state

conditions, the �ux may be expressed in terms of two modes:

cmf � hciw =
11

48
pDas R (hciw) =

11

48
pJ (4.99)

where the coef�cient 48
11
is the dimensionless external mass transfer coef�cient

(Sherwood number, She).

4.5.2 steady-state model:

An important limiting case that is of interest in applications is the steady-state

operation of the monolith. For this case, it is possible to solve the detailed model

to obtain analytical expressions for the reactant conversion for the special case of

linear kinetics and the limits of very small and large Schmidt numbers, or �at and

parabolic velocity cases (Bhattacharya et al., 2004a,b; Gupta and Balakotaiah,

2001). These solutions can be used to compare the accuracy of the reduced order

model.

For steady-state conditions, the multi-mode model describing the evolution of
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the cup-mixing concentration along the length may be expressed as

dcmf
dx

= �J (4.100)

J = wDa R (hciw) (4.101)

=
(82w)�

2w + 3
2
w � 2 (1 + w)

2 Ln (1 + w)
� (hcsi � hciw)

� p
(4.102)

=
(cmf � hcsi)

p

48

11
(4.103)

with modi�ed inlet condition given by

cmf + pDa R (cmf ) h�; uif = cm;in +R0 (cm;in) h�; ucinif @ x = 0: (4.104)

The above model can be further simpli�ed by eliminating the �ux and the interfacial

mode hcsi to obtain a single differential equation coupled to an algebraic equation:

dcmf
dx

+ wDa R (hciw) = 0 (4.105)

cmf � hciw
p

= wDa R (hciw)
"
11

48
+

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

23w

#
(4.106)

The term in square brackets of equations(4.106) de�nes the overall mass transfer

resistance which is de�ned, in dimensional form, as

ko =

1
2�

2�Z
0

(�Df
@c
@r

��
r=a�

)d�

cmf � hciw
: (4.107)

and in nondimensional form (overall Sherwood number) based on hydraulic diam-

eter, as
1

Sho
=

Df

4koR
f
=

1

She
+
�

4
w

1

Sh
i
(4.108)
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where the external and internal Sherwood numbers are as de�ned previously.

For the special case of linear kinetics (R (hciw) = hciw), the inlet condition given

by equations (4.104) simpli�es to

cmf (0) =
h1 + pDa �; ucinif
h1 + pDa �; uif

= �1 cm;in +O(p2) (4.109)

The second equality in equations(4.109) de�nes the Fourier coef�cient �1, which

approaches unity for p! 0 whileDa is of order unity. This coef�cient also depends

on the type of inlet release and approaches unity for the special case in which the

inlet concentration is independent of the transverse coordinates. This result is

consistent with analytical and numerical solutions presented in the literature (Bhat-

tacharya et al., 2004a,b; Gupta and Balakotaiah, 2001) where it was observed that

�1 depends only on the product pDa and �1 = 1 + O ((pDa)2). We note that for

nonlinear kinetics or for the case of fast reactions (where pDa is of order unity),

the inlet condition, equations (4.104) has to be solved in combination with the local

equation (4.106) to determine cmf (0) and hciw (0). As discussed elsewhere, these

equations could have multiple solutions (Gupta and Balakotaiah, 2001).

As stated earlier, an analytical solution may be obtained for the exit cup-mixing

concentration for the special case of linear kinetics. In this case, the solution of

equations (4.105, 4.106) and (4.109) leads to

cmf (x) = [1 +O(�
4
s] cm;in exp

 
�1
p

�2s

1 + �2s
Sho

x

!
; (4.110)

where �2s = pwDa. Thus, for the special case of linear kinetics and uniform inlet

condition, the exit conversion is given by

{e = 1� exp

0@�1
p

�2sh
1 + �2s

Sho

i
1A (4.111)
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Figure 4.3: Steady state exit conversion {e corresponding to uniform feed condi-
tions versus transverse peclet number p at various Thiele modulus for wall reaction
case (comparison to exact solution).

This result shows the main advantage of the reduced order models, i.e., simple

and explicit expressions for quantities of practical interest (such as the exit reac-

tant conversion) in terms of the parameters characterizing the system. Figure 4.3

shows a plot of the exit conversion as a function of p for different values of �2s for

the special case of wall reaction (where �2s = pDas and Sho = 48
11
). When the

predicted conversion is compared to the exact numerical solution (Bhattacharya

et al., 2004), the agreement is found to be excellent for small p and �2s values (as

can be expected). While the model validity is restricted to small values of �2s, it is
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found that even in the limit of very high local Damk::ohler number or Thiele modulus�
�2s !1

�
, the exit conversion is predicted with reasonable accuracy in the mass

transfer controlled regime:

{e;1 = 1� exp
�
� 48
11p

�
; p < 1: (4.112)

Comparing equations(48a) with the exact solution (Balakotaiah and West, 2002)

{e1;exact = 1� 0:819 exp
�
�3:656

p

�
; p < 1 (4.113)

we observe that the �rst Fourier coef�cient and the asymptotic Sherwood number

decrease by about 20 and 30%, respectively as �2s increases from zero to in�nity.

As discussed elsewhere (Tronconi and Forzatti, 1992 ; Joshi et al., 2009a), the

accuracy of the low-dimensional model may be improved by making �1 and Sho

a function of position and �2s. Also, as stated in the introduction, the main advan-

tages of the reduced order model are for nonlinear reactions, where the bifurcation

features can be analyzed more easily, and the determination of kinetics or effective

diffusivity from measured exit conversions. While these applications are the main

motivation for the present work, we do not pursue them here.

4.5.3 Taylor dispersion with diffusion into the washcoat

The third limiting case we consider is that of transient dispersion of a non-

reactive solute in laminar �ow in a channel with diffusion into the porous washcoat.

In this case, the reduced order model may be simpli�ed by setting Da = 0, which

gives

@ hci
@t

+ hui @cmf
@x

= 0 (4.114)

cmf � hci =
p

hui h�; u
0i @cmf

@x
+O(p2) ; (4.115)
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with inlet/initial conditions as follows:

cmf = hu cfinif +O
�
p2
�
@ x = 0 (4.116)

hci = hc0i+ p

�
�;
@c0
@x

�
+O

�
p2
�
@ t = 0 ; (4.117)

where the �rst equation (4.114) represents the species balance in �uid plus wash-

coat and second equation (4.115) is due to solute transfer between convective

mode cmf and stationary mode hci. It should be pointed out that this case was

considered by Balakotaiah and Chang (2003) but they did not derive the O (p) cor-

rections to the inlet and initial conditions. For this non-reactive case, the model can

be written in terms of single convective mode cm in hyperbolic form as follows:

@cmf
@t

+ hui @cmf
@x

+ p�
@2cmf
@x@t

= 0 (4.118)

cmf = cm;in @ x = 0; (4.119)

cmf = hc0i+ p

�
�;
@c0
@x

�
+

p

hui h�; u
0i @ hc0i

@x
@ t = 0: (4.120)

The last term in equations(4.118) represents the Taylor dispersion term that arises

due to velocity gradients and transverse molecular diffusion. The dimensionless

dispersion coef�cient � is given by

� = � 1

hui h�; u
0i

=
(1 + 6 + 112)

48 (1 + )2
� �2

8 (1 + )2 2w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�
:

(4.121)

It is interesting to note that the �rst term on R.H.S. of equations(4.121) is same as

that derived by Balaokotaiah (2004) for capillary chromatography, where  repre-

sents the capacitance ratio of solid to �uid phases. Since the advantages of the
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hyperbolic model were discussed by Balakotaiah and Chang (2003), Mikelic et al.

(2006) as well as other authors, we do not repeat them here. In stead, we consider

the evolution of inlet condition only (i.e., c0 = 0) and present solutions of the above

model for a pulse input as these results are of practical interest in determining the

effective diffusivities of species in porous washcoat. We examine the residence

time distribution (RTD) curve or the dispersion curve which is the exit concentra-

tion cmf (x = 1; t) corresponding to a unit impulse (Delta function) input in the �uid

phase cmf (0) = � (t). It can be seen easily from equations(4.118-4.120) that the

dispersion curves in Laplace domain (t! �) and time domain are given by

E (�) = exp

�
� �

hui+ p��

�
(4.122)

E (t) = exp

�
�1 + hui t

p�

�"
� (t) +

1

p�

r
hui
t
I1

 
2
p
hui t
p�

!#
: (4.123)

The cumulative RTD function F (t) is the integral of the density function E(t). These

are plotted against time for typical values of values of parameters used in monolith

applications: p = 1; "f = 0:8 and "wc = 0:5 (or, p = 1; w = 0:25 and  = 0:125),

in Figures 4.4 and 4.5, respectively. [Note: The Dirac-delta function of magnitude

exp
�
� 1
p�

�
is not shown in Figure 4.4]. It is interesting to note that the dispersion

curve has longer tails for higher value of the diffusivity ratio �: This is due to the

fact that the solute is trapped in the washcoat and takes much longer time to exit

the system when the diffusivity in the washcoat is small compared to that in the

�uid. [In catalytic after-treatment applications, typical � values are between 10 and

1000]. It should be noted that the model results are only qualitatively correct for

very large values of � since scale separation breaks down in the limit � ! 1.

(Note: In deriving the model, we have implicitly assumed that � is of order unity, or

equivalently the diffusion time of the reactant in the washcoat is small compared to

the convection time. Thus, the reduced order model is accurate for large values of
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Figure 4.4: Predicted dispersion/RTD curves for non-reacting case corresponding
to various diffusivity ratios � at "f = 0:8, "wc = 0:5 (or, w = 0:25,  = 0:125) and
p = 1:

� only if �p is small).

The dimensionless variance of the dispersion curve is given by

�2D = 2p� (4.124)

which is shown in the Figure 4.6 against "f for "wc = 0:5 at various diffusivity ratio

�. We see that as expected, the variance increases as the washcoat thickness

increases, i.e., the more solute get trapped in the washcoat if its thickness is large.
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Figure 4.5: Predicted cumulative RTD function or F-curve for non-reacting case
corresponding to various diffusivity ratio � at "f = 0:8, "wc = 0:5 (or, w = 0:25,
 = 0:125) and p = 1:

It can also be seen from equations(4.121) and (4.124) that the variance increases

linearly w.r.t.. the diffusivity ratio � for any value of "f . However, in the limit of very

thin washcoat ("f ! 1), we get the Taylor limit given by �2D =
p
24
.

In the limit of small p and large times, the dispersion curve is simpli�ed as

follows:

E1 (t) =
1p
4�p�

�
hui
t3

� 1
4

exp

�
� 1

p�

�p
hui t� 1

�2�
(4.125)
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Figure 4.6: Dimensionless dispersion coef�cient for various difusivity ratios for
Taylor dispersion with diffusion into washcoat with parabolic velocity pro�le for
"wc

�
= 

w

�
= 0:5:

equations(4.125) indicates that instead of the extremely rapid Gaussian decay of

the density function at large times from the mean value; the tail of the dispersion

curve decays much more slowly as t� 3
4 exp

�
� hui

p�
t
�
. This result and equations(4.121)

may be used to determine the value of � from measured RTD curves.

4.5.4 Flat Velocity Pro�le

The last limiting case we consider is that of a �at velocity pro�le in the channel.

This limit may be attained in developing laminar �ows with a low Schmidt number.
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The transverse functions for this case are listed in the Table 4.2.

Table 4.2: Transverse functions and coef�cients for �at velocity pro�le/developing
�ow

�
=
- 
w
�

Fluid �f =


4(1+)
�2 � (1+)

8(1+)2

+ �2

8(1+)22w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

Washcoat �w =
�

4(1+)w

�
��2 + 2 (1 + w)Ln (�)

�
+ 

8(1+)2

+ �

8(1+)22w

�
2w + 4w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

�

Fluid �f = � �2

4
+ (1+2)

8(1+)

+ �2

8(1+)2w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

Washcoat �w =
�
4w

�
��2 + 2 (1 + w)Ln (�)

�
� 1

8(1+)

+ �
8(1+)2w

�
2w + 4w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

h�; u0i
=
2

2w
h�; �0i

= - 2

8(1+)3
+ �2

8(1+)32w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

� 
w
h�; u0i

=
� 
w
h�; �0i

h�; u0i = 

8(1+)2
+ �2

8(1+)22w

�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

� 
w
h�; �0i

2 @�
@�

���
�=1�


(1+)

2 @�
@�

���
�=1�

- w
(1+)

For this special case, the cup-mixing concentration cmf and �uid phase aver-

aged concentration hcif are identical and the intraphase dispersion terms due to

velocity gradients vanish. It can also be seen from Table 4.2 and equations (4.77
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and 4.78) that the difference between external modes (cm and hcsi) is proportional

to the interfacial �ux and can be written using the external transfer coef�cient con-

cept. Thus, the reduced order model can be simpli�ed in this case as follows:

@ hcif
@t

+
@cmf
@x

= � J = �
�

@ hciw
@t

+ wDa R (hciw)
�

(4.126)

J =
(82w)�

2w + 3
2
w � 2 (1 + w)

2 Ln (1 + w)
� (hcsi � hciw)

� p
=
8

p
(cm � hcsi) .(4.127)

We note that the expression for the internal Sherwood number has not changed

and is identical to that obtained for the parabolic case while the external Sherwood

number has changed from 48
11
to 8. The inlet and initial conditions are in similar form

as in equations(4.70, 4.71) except that the transverse functions and coef�cients

should be determined by Table 4.2. For the case of no reaction, the evolution of

inlet condition is simpli�ed to the form of telegrapher's like equation as follows:

@cmf
@t

+ hui @cmf
@x

+
p (1� hui)

Sho

�
@2cmf
@t2

+
@2cmf
@x@t

�
= 0 (4.128)

cmf = cm;in @x = 0; cmf =
@cmf
@t

= 0 @t = 0 (4.129)

where, Sho is overall Sherwood number. The above equations (4.128, 4.129) can

be simpli�ed further by using the leading order approximation,

@cmf
@t

= �hui @cmf
@x

+O (p)

to write in terms of mixed derivative form of the hyperbolic model:

@cmf
@t

+ hui @cmf
@x

+ p�
@2cm
@x@t

= 0; x; t > 0; cm = cm;in @ x = 0: (4.130)

We note that the above model is of the same form as the reduced order model
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for Taylor-dispersion with diffusion into the washcoat with parabolic velocity pro�le

except that the dimensionless dispersion coef�cient � for this case is given by

� =
1

Sho

�


1 + 

�2
=

�


1 + 

�2�
1

She;flat
+
�w
4

1

Sh
i

�
=

�


1 + 

�2 "
1

8
+
�
�
2w + 3

2
w � 2 (1 + w)

2 Ln (1 + w)
�

(82w)

#
(4.131)

and is plotted in Figure 4.7 against "f for "wc = 0:5 at various diffusivity ratio �. We

see that as expected, the variance increases as the washcoat thickness increases,

i.e., more solute is trapped in the washcoat if its thickness is more. Thus, even with

the �at velocity pro�le with no reaction case, the RTD curve is asymmetric and may

have longer tail if the diffusivity ratio � is high.

4.5.5 Comparison of Two-phase and Reduced Order Models

As discussed above, the reduced order model derived here leads to the same

results as those obtained by the traditional two-phase model for steady-state con-

ditions. However, in the transient reacting case where the cross-section average

concentration hcif and cup-mixing concentration cm differ at order p (given by equa-

tions 4.59), the two-phase model may lead to an error in the solution at order p.

We demonstrate this here by examining the accuracy of the two-phase model by

comparing the solution with that of the reduced order model for the case of wall

reaction or very thin washcoat ("w ! 0). In this case, the traditional two-phase

model (in dimensionless form) is given by

@cmf
@t

+
@cmf
@x

= �J = �Das R (hciw) ; (4.132)

cmf � hciw =
11

48
pJ =

11

48
p Das R (hciw) ; (4.133)

cmf jx=0 = cm;in (t) and cmf jt=0 = 0: (4.134)
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The above model may be solved to determine the exit concentration for the case of

linear kinetics. In the Laplace domain (t! �), the solution (transfer function) may

be expressed as

ctwo�phase (�)

cm;in (�)
= exp

�
�
�
�+

Das
1 + 11

48
pDas

��
(4.135)

Similarly, for the case of wall reaction, the reduced order model describing the

evolution of inlet condition, in dimensionless form, may be expressed as follows:

@ hcif
@t

+
@cmf
@x

= � J = �Das R (hciw) ; (4.136)

cmf � hcif = p

�
�1
48

@cmf
@x

+
1

24
Das R (hciw)

�
; (4.137)

cmf � hciw = p

�
�1
16

@cmf
@x

+
1

6
Das R (hciw)

�
; (4.138)

cmf jx=0 = cm;in (t) and hcif
���
t=0
= 0 : (4.139)

It can be seen that the main difference between the reduced order model, equations(4.136-

4.139), and the two-phase model, equations(4.132-4.134), is the (Taylor) disper-

sion in the �uid phase. The two-phase model does not distinguish between the

cup-mixing concentration cm and the cross-section average concentration hcif . As

we have shown above, in general, the difference between cm and hcif is of order

p and hence can not be ignored. This difference may be higher for non-uniform

feeding of solute. For example, for a feed at the central location of the channel, the

cup-mixing concentration is twice the average concentration, i.e., cm = 2 hcif .

When the reduced order model, equations(4.136-4.139), is solved for the exit

cup-mixing concentration for the case of linear kinetics, the solution (transfer func-

tion) in Laplace domain (�) may be expressed as

c (�)

cm;in (�)
= exp

"
�
 

�+Das +
p�Das
8

1 + p�
8
+ 11

48
pDas

�
1 + p�

264

�!# : (4.140)
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Thus, the ratio of exit concentrations predicted by the traditional two-phase model

and the reduced order model can be simpli�ed to order p as

ctwo�phase (�)

c (�)
= 1� p

48
� (�+ 6Das) +O

�
p2
�

(4.141)

Since the reduced order model is accurate to order p; it can be seen from equations

(4.141) that the two-phase model has an error of order p (as can be expected

intuitively). This error may be signi�cant even at low-frequencies ( or slowly varying

inlet conditions), depending on the values of transverse Peclet number p and the

Damköhler number, Das. Similarly, the error may be signi�cant at moderate to high

frequencies even for small values of p. For example, for typical values of � � 1,

p � 0:2, Das = 10, the error in two-phase model is about 25%. Thus, for the general

transient reacting case, where the dispersion effect in the �uid phase is signi�cant,

the use of three-mode reduced order model is recommended.

4.6 Conclusions and Discussion

The main contribution of this work is the derivation of an averaged multi-mode

model for a monolith reactor with a porous washcoat on the wall. The reduced

order model given by equations(4.66-4.71), consists of the governing equations

along with the initial and inlet conditions to �rst order accuracy in the transverse

diffusion time. We have also examined various limiting cases of the model and

given a physical interpretation of the various terms and the effective coef�cients

that appear in the reduced order description.

A second contribution of this work is the derivation and interpretation of an ex-

pression for the �ux of the reacting species at the �uid-washcoat interface and how

it may expressed in terms of various concentration modes. We have shown that

for steady-state conditions, the interfacial �ux may be expressed as the product

of a transfer (exchange) coef�cient times the driving force, and the driving force
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appears as the difference between the two concentration modes. This traditional

description also applies when the velocity gradient in the �uid phase is neglected

or in the absence of reactions. However, in the general case of varying inlet condi-

tions, velocity gradients and reaction in the washcoat, the interfacial �ux depends

on the interfacial mode as well as two external concentration modes, namely, the

cup-mixing and �uid phase average concentrations. In our view, this is an impor-

tant result that extends to many other multi-phase reacting systems (e.g. gas-liquid

and gas-liquid-solid reactors).

The results of this work also support our earlier observation that a minimum

number of modes are required in the reduced order description of reacting sys-

tems so that the reduced order model captures the main qualitative features of the

detailed model. As shown in this work, a reduced order model expressed in terms

of single concentration mode (that can not be related to directly measurable quanti-

ties) has a much smaller domain of validity in the parameter space compared to the

regularized multi-mode form. For example, a single mode model may lead to un-

physical results (such as negative effective diffusivity), especially for fast reactions

or short times. Single mode models are also ineffective in distinguishing between

kinetic and mass transfer controlled regimes. In contrast, regularized multi-mode

models using the concept of transfer or exchange between various modes do not

have these de�ciencies.

As stated in the introduction, the main utility of the reduced order model de-

veloped here is in the real time simulations of catalytic after-treatment systems in

which the inlet conditions vary with time (Joshi et al., 2009a). The models used

in these simulations do not make a distinction between hcif and cmf and hence

ignore the dispersion in the �uid phase. As shown in this work, the error due to

this approximation for general transient reacting case is of order p. This can be

signi�cant even for low frequency inlet condition, depending on the value of the
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Damkohler number. In addition, even for small p, the error may be large for inlet

conditions having variation with moderate to high frequency.
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Chapter 5 Summary and Future Scope of the Work

5.1 Summary

We presented a systematic averaging procedure based on the Lyapunov-Schmidt

(L-S) method for deriving coarse-grained low-dimensional models from the de-

tailed diffusion-convection-reaction equations for various reactors such as catalytic

monoliths, tubular reactor and two-compartment system. We demonstrated the

several advantages of this method compared to other methods presented in the lit-

erature such as center manifold (CM) or method of moments. For example, (i) the

L-S method can be applied to steady-state or equilibrium models where the gov-

erning equation is not an evolution equation either in space or time. In contrast,

the CM method has limited applicability to such models. (ii) In the L-S method, the

base state can be time dependent, and, time dependent inlet conditions/sources

can be treated. In the CM method, base state (�xed point) is generally assumed

to be time independent. Also, in the CM approach, the initial/inlet conditions are

assumed to be close to the �xed point. In contrast, there is no restriction on ini-

tial/inlet conditions in the L-S technique. (iii) When applied to the averaging of

transient models, the L-S method can capture exponentially small terms in time

while these terms are ignored in the CM method. As illustrated earlier, the L-S

method leads to reduced order model containing higher order derivatives in time

when a perturbation expansion is used for small p. These higher order time deriv-

atives extend the validity of the model to short times (or, capture the exponentially

small transients). (iv) When a perturbation expansion is used to solve for the CM,

the range of validity of the CM expansion can not be greater than that given by���! p


��� < 1, where  is the real part of eigenvalue close to zero and ! is frequency or
wave number. In contrast, when a perturbation expansion is used to solve the local

equation in the L-S method, the region of convergence of the expansion appears
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to be at least as large as that given by
���! p


��� < 1. In addition, time scale separation
is convenient but not necessary in the L-S formalism. In contrast, the application

of CM method requires time scale separation.

When there is scale separation in the detailed model, the L-S method is equiv-

alent to the exact Maclaurin's series expansion of the detailed model in terms of

the small parameter representing the scale separation. While we have illustrated it

here only for few cases, it can be applied to a wide range of reacting as well as non-

reacting cases described by diffusion-convection-reaction models. For the case of

classical Taylor dispersion problem and two-compartment system, we have derived

the reduced order model to all orders in the transverse diffusion time. By summing

the resulting in�nite series in closed functional form, we were able to show that

the reduced order model derived by the L-S technique is exact. For example, in

case of laminar dispersion, it can predict the moments of the solute distribution

exactly for all times. In case of two-compartment model where exact solution can

be determined, the reduced order model matches the exact solution when all order

of terms are included. Here we also show that the higher order terms (appear-

ing as higher order time derivatives) in reduced order model contribute less to the

spreading process at longer times but are very important at shorter time.

We analyze the solute dispersion at short times using the coarse-grained model

derived spatial moments for general sources including point sources. Speci�cally,

we have shown that there is no centroid displacement or variance de�cit in the

solution. For a point release at (r0; �0), the centroid moves with the local �uid

velocity u(r0) at short times while it moves with the mean velocity at large times.

Thus, it is not possible to predict the location of centroid (and hence the second

central moment or the variance) correctly by any coarse-grained model that is not

valid for t! 0. Similarly, the short time approximation of variance shows that solute

spreading process evolves with pure diffusion for t! 0, and after some critical time
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�CD =
Dm
hui2 , convection effects start to contribute and introduce asymmetry in the

concentration distribution. For long times (t � �D =
a2

Dm
), the spreading process

is governed by the Taylor (when Per � O( 1p
p
)) or Taylor-Aris mechanism (when

Per � O(1)). Thus, the solute spreading process may be divided into three time

intervals; 0 < t < �CD where axial molecular diffusion dominates, t 2 (�CD; �D)

where the dispersion is due to the combined effects, and t >> �D where convection

and transverse diffusion dominates. Our analysis in section 4.1 also shows that for

the practical case of Per >> 1, the skewness of the solute concentration pro�le

increases as
�

t
�D

�
for short times while it decreases as

p
�D
t
for long times. Thus,

while the Gaussian pro�le is approached for t ! 1, the skewness is never zero

for any �nite time and goes through a maxima for t values of order �D. In our view,

this important observation has not been recognized in the literature.

We show the clear distinction between the dominant convective mode repre-

sented by the cup-mixing concentration (cm) and the dominant diffusive mode rep-

resented by the cross-sectional averaged concentrations (hci). These modes arise

naturally and quantify the local gradients more accurately in terms of transfer coef-

�cient as compared to the traditional use of a single concentration mode with dis-

persion coef�cient. In our opinion, there is a fundamental physical inconsistency in

representing the Taylor dispersion phenomenon using a single diffusive mode (the

cross-section averaged concentration) and its large scale gradient. This parabolic

description of the dispersion �ux, �rst used by Taylor and later by many others,

makes the local phenomenon of exchange of solute between the (fast moving or

large scale) convective mode (cm) and nearly stationary and small scale diffusive

mode(hci) into a large scale phenomenon (effective diffusion on the larger scale).

It is mainly for this reason, the traditional coarse-grained parabolic models fail to

describe the solute dispersion process accurately for short times or for the case of

a reactive solute, for fast reactions and for �nite values of the transverse diffusion
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time. In fact, the single mode description of the Taylor dispersion phenomenon for

reacting �ows in terms of hci can lead to negative effective dispersion coef�cients!

Based on these and other comparisons, we conclude that Taylor dispersion phe-

nomena are better described in terms of hyperbolic models using either a single

convective mode (for the non-reactive case) or multiple concentration modes cou-

pled through the concept of a transfer coef�cient. It is one of the most important

result for developing the low-dimensional model for various complex systems.

Here, we derive and interpret an expression for the �ux of the reacting species

at the �uid-washcoat interface and how it may expressed in terms of various con-

centration modes. We have shown that for steady-state conditions, the interfacial

�ux may be expressed as the product of a transfer (exchange) coef�cient times

the driving force, and the driving force appears as the difference between the two

concentration modes. This traditional description also applies when the velocity

gradient in the �uid phase is neglected or in the absence of reactions. However,

in the general case of varying inlet conditions, velocity gradients and reaction in

the washcoat, the interfacial �ux depends on the interfacial mode as well as two

external concentration modes, namely, the cup-mixing and �uid phase average

concentrations. In our view, this is an important result that extends to many other

multi-phase reacting systems (e.g. gas-liquid and gas-liquid-solid reactors).

The main utility of the reduced order model developed here is in the real time

simulations of catalytic after-treatment systems in which the inlet conditions vary

with time. Therefore, we show that a minimum number of modes are required in

the reduced order description of reacting systems so that the reduced order model

captures the main qualitative features of the detailed model. As shown in this

work, a reduced order model expressed in terms of single concentration mode

(that can not be related to directly measurable quantities) has a much smaller

domain of validity in the parameter space compared to the regularized multi-mode
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form and may lead to unphysical results (such as negative effective diffusivity),

especially for fast reactions or short times. Single mode models are also ineffective

in distinguishing between kinetic and mass transfer controlled regimes. In contrast,

regularized multi-mode models using the concept of transfer or exchange between

various modes do not have these de�ciencies. For example, the models used for

catalytic monoliths in the literature do not make a distinction between hcif and cmf

and hence ignore the dispersion in the �uid phase. As shown in this work, the error

due to this approximation for general transient reacting case is of order p. This can

be signi�cant even for low frequency inlet condition, depending on the value of the

Damkohler number. In addition, even for small p, the error may be large for inlet

conditions having variation with moderate to high frequency.

5.2 Future Scope

Now we discuss some possible extension of the work. Here, we applied L-S

procedure for diffusion-convection-reaction in simple geometries with linear kinet-

ics. One straightforward extension is for other �ow geometries such as porous

media or washcoat with arbitrary shapes and to include effect of axial diffusion in

both the solid and �uid phases. A second possible extensions is to include the non-

isothermal effect and multiple reacting species and average the coupled species

and energy balances simultaneously. A third possible extension is to derive higher

order averaged models and examine the convergence of the reduced order model.

For the case of �ow in a tube with a wall reaction, our earlier work has shown

that whenever the local expansion does not converge, it is possible to obtain az-

imuthally asymmetric solutions. In our view, convergence and accuracy aspects

are an important component of reduced order description of chemical reactors.
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Part II

Reactive Transport of Gelling Acids and Wormhole

Formation in Carbonates
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Chapter 6 Introduction

6.1 Preamble

One of the main activities of the production engineers is the reservoir stimula-

tion where a solvent is injected into the formation. It has been observed that the

hydrocarbon production rate decreases with time as a result of production opera-

tions. In particular, when hydrocarbons �ow from far-�eld to the wellbore during

production, particles eroded from the reservoir migrate and deposit near wellbore

region that restrict the �ow of hydrocarbons into the well. Similarly, formation dam-

age near the wellbore during drilling operation reduces the �ow conductivity in the

reservoir that again leads to diminution of hydrocarbon production. Therefore, ma-

trix stimulation is very necessary to enhance the permeability of the damaged zone

near wellbore region to increase the production rate. Figure 6.1 shows a schematic

diagram of a reservoir with damaged zone near wellbore. Typical radii of wellbore,

damaged zone and reservoir are 0:33 ft, 1�10 ft 500�2000 ft, respectively. The per-

meability of the damaged zone, Kdmg, is much lower (typically 10 times lower) than

the permeability, Kres, of the undamaged reservoir (Economides, 1993). There-

fore, a solvent is injected into the formation for matrix stimulation to dissolve some

of the material present that greatly enhance or recover the permeability of near the

wellbore region.

The most common matrix treatment is acidizing where an acidic solution such

as mineral acids like HCl, organic acids like formic or acetic acids, chelating agents

like EDTA is injected into the wellbore (William et al., 1979; Schechter, 1992;

Economides et al., 1993; Economides and Nolte, 2000). It involves dissolution

of the rock by a reactive �uid that enhance oil �ow to the wellbore and increases

the hydrocarbon production rate from a reservoir. When an acid is injected through

the wellbore, it dissolves the formation rock and increases the �ow conductivity.

159



Figure 6.1: Schematic view of a wellbore, damaged zone and reservoir.

Dissolution results in the production of CO2 from the acid-carbonate reactions as

follows

Ca C O3 + 2 H
+ $ Ca2 +H2O + CO2

Ca Mg (CO3)2 + 4 H
+ $ Ca2+ +Mg2+ + 2H2O + CO2 (6.1)

where, calcite (Ca C O3) is the typical carbonate. CO2 is assumed to be in the

liquid phase under high pressure reservoir conditions. HCl is the most commonly

used acid because it is inexpensive and reacts with the carbonate with a high rate
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of reaction. Slower reacting acids like organic acids or the chelating agents are

used when the reservoir temperature is high or when retardation of reaction rate

is desired. As the acid penetrates into the porous rocks, it dissolves the rock and

increases the �ow conductivity by creating conductive channels called wormholes

(Daccord, 1987; Hung et al., 1989; Hoefner and Fogler, 1988; Fred and Fogler,

1998, 1999; Bazin, 2001). The wormholes bypass the damaged zone around the

wellbore, leaving highly permeable channels for oil to �ow back after the treatment.

The formation of wormholes depends on various factors such as acid injection

rate, volume of acid injected, types of acid, mineralogy, heterogeneity (i.e., non-

uniformities in porosity or permeability) in the formation and temperature (Williams

et al., 1979, Wang et al., 1993; Fred and Fogler, 1998, 1999; Buijse, 2000; Panga

et al., 2005; Kalia and Balakotaiah, 2007, 2009, 2010). For example, the uniform

dissolution patterns are formed at very high injection rate while face dissolution pat-

terns are formed at very low injection rate (Fredd and Fogler, 1998) as can be seen

from Figure 6.2. Similar effects on dissolution patterns at various injection rates are

observed in other experimental studies (Economides et al., 1993; Economides and

Nolte, 2000; Golfer et al., 2002). These experiments are performed with a core of

few inches, where acidic solution is injected at constant rate and pressure at the

exit is �xed. When acid is injected at a very high rate, it penetrates into the medium

but gets out unreacted due to insuf�cient residence time. As a result, the porosity

of the medium increases slowly and uniformly that leads to an uniform dissolution

pattern shown in Figure 6.2. At low injection rates, most of the acid is spent just

before it can penetrate further into the medium. As a result, the whole face of the

medium get dissolved as �ow of acids proceeds that leads to a compact or face

dissolution pattern shown in Figure 6.2. At intermediate �ow rates, resident time

is comparable to the reaction time and hence narrow conductive channels called

wormholes are created shown in Figure 6.2. Thus, though acid injection increases
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Figure 6.2: Dissolution patterns formed at different injection rates of acidic solution
(Fredd and Fogler, 1998).

the �ow conductivity of reservoir near the wellbore, due to difference in dissolution

patterns at various injection rates, different rates of permeability enhancement is

observed at different injection rates (Fredd and Fogler, 1998) as shown in Figure

6.3. However, It is interesting to note from this Figure that the rate of increase

in permeability is non-monotonic with injection rate of acidic solutions, the maxi-

mum rate of increase in permeability corresponds to some intermediate injection

rate (0.06 cm3min�1) while low injection rate (0.01 cm3min�1) or high injection rate

(1.0cm3min�1) of acidic solution leads to comparably slower increase in perme-

ability as can be seen from Figure 6.3. In fact, when the amount of acid required to
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Figure 6.3: Increase in permeability due to dissolution with 0.25 M EDTA at various
injection rates in a core (0.8-2 mD) of length 10.2 cm and diameter 3.8 cm (Fredd
and Fogler, 1998).

increase the permeability by a given factor is noted for different types of patterns,

it is found that the formation of wormholes requires the least amount of acid. This

may be seen from breakthrough curve as shown in Figure 6.4, where the amount

of acidic solution required in each experiment is plotted against the injection rate.

Here, the number of pore volume of acidic solution is de�ned as the ratio of total

volume of acidic solution injected and the initial pore volume of the rock at break-

through and Q is the injection rate of the acid; and breakthrough is de�ned when

permeability of the core increases by a certain factor (100 in this case) from its

initial value.

Figure 6.4 shows that breakthrough curve has a minima where optimum amount

of acid corresponds to some intermediate injection rate, Qopt. The existence of the
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Figure 6.4: Breakthrough curve (here, pore volume to breakthrough is de�ned as
the number of pore volume of acidic solution injected to increase the permeability
of the core by a factor 100).

optimum is due to the competition between transport and reaction phenomena. In

other words, the optimum exists when residence time (time available for a partic-

ular proton to be in contact with the carbonate rock due to transport of acid) is

comparable to the reaction time (the time it will take to consume a proton when it

is in contact with the carbonate rock). Therefore, the injection rate higher or lower

than Qopt leads to the higher pore volume of acid required for breakthrough as can

be seen from Figure 6.4. This is because when acid is injected at higher rate,

its resident time is smaller, i.e., it has very little time to react and hence, the core

permeability increases very slowly (Figure 6.3) and the number of pore volume re-

quired for breakthrough, PVBT is larger. Similarly, when acid is injected slowly, it
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Figure 6.5: Breakthrough curve and wormhole patterns for various acids with dif-
ferent reactivity.

has more than enough time to react so lots of acids get consumed unnecessarily

but acid front proceeds very slowly. As a result, in this case, the permeability in-

creases slowly (Figure 6.3) and higher PVBT is required. Due to the same reason,

lower optimum rate is observed for low-reacting acids as can be seen from Figure

6.5 where breakthrough curve and wormhole patterns are demonstrated for acids

of different reactivity. Here, HCL is the strong acid and DTPA is the weakest one.

From wormhole patterns in Figure 6.5 for various acids, it can be seen that the

diameter of the conducting channel (wormhole) is bigger for slow reacting acids.

Since wormhole pattern is formed corresponding to some optimum injection

rate where PVBT (the pore volume of acidic solution required for breakthrough)

is minimum, the wormhole formation is of great importance for the economic pur-

poses. While the experimental discussed above describes the in�uence of some

of the factors on optimum injection rate (Qopt), one of the main design parameters
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of interest, and on wormhole formation, they do not provide suf�cient insight into

scale-up of laboratory results on to actual �eld-scale treatments. For example, in

laboratory experiments where length of the core is larger than the diameter of the

core, only one conducting channel (wormhole) is formed while at the �eld scale

where the height of treatment zone is much larger than the radius of penetration,

several conducting channels (wormholes) are formed. Similarly, the quantitative

analysis from these experiments is not straightforward. In addition, most of these

studies are performed for Newtonian type acids, which in case of heterogeneity in

the reservoir (permeability variation within the reservoir), �ow preferentially to the

high-perm region and increase its permeability further. As a result, more acids are

drawn to the high-perm region that over-stimulated the high-perm region while the

low-perm region is under-stimulated. Therefore, diverting acids like gelled acids,

surfactant based viscoelastic acids or emulsi�ed acids are used in the �eld to get

more uniform stimulation (MaGee et al., 1997; Buijse and Domelen, 2000; Chang

et al., 2001; Lynn and Nasr-El-Din, 2001; Taylor and Nasr-El-Din, 2003; Nasr-El-

Din et al., 2006, 2008; Gomaa and Nasr-El-Din, 2010; Gomaa et al., 2011).

In-situ gelled acids use pH to control the cross-linking of the polymer chains in

the solution, which controls the �uid viscosity and �ow diversion. For example, at

very low pH, polymer chains are not cross-linked but as pH increases to a certain

point, they start cross-linking until pH exceeds some limit (Rose, 2004; MaGee et

al., 1997). Therefore, when a in-situ gelling acid at very low pH (and hence low

viscosity) is injected, it preferentially �ows to the high-perm zone and dissolves it.

Consequently, the pH of the �uid increases as it gets spent at the rock face. Once

the pH reaches to certain range, the polymer chains in the �uid start cross-linking

and form a gel that creates a plug of high resistance (low mobility) in the high-perm

zone and divert the �uid from high-perm to the low-perm region where the �ow

resistance is lower. Thus, the diversion of the acid leads to stimulation of hard-
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to-access low-perm zones and increases the overall permeability of the reservoir

uniformly. The following section gives a summary of experimental and theoretical

studies performed on acidizing.

6.2 Literature Review

Several experimental and theoretical studies have been performed to predict

conditions under which wormholes are formed and to understand the effect of in-

jection rate, temperature, reaction kinetics, geometry of the system, heterogeneity,

mineralogy etc. In the following sections, we brie�y review the experimental obser-

vations and predictions by existing models in the literature on wormhole formation.

6.2.1 Experimental Studies with Newtonian Acids

One of the earliest works on carbonate acidization has been reported byWilliams

et al. (1979) where highest possible injection rates was recommended to avoid

face dissolution near the well-bore. The earlier studies were based mostly on lime-

stones (Lund et al. 1973, 1975) where hydrochloric acid (HCl) were injected from

one end of the linear core. In these studies, one wormhole with multiple branches

were observed. Experiments on radial and linear cores made of plaster were per-

formed by Daccord et al. (1987, 1993a, 1993b) where water is used as injecting

�uid. Since plaster is soluble in water, the patterns in these studies found to be

similar to the patterns formed during reactive dissolution of a porous medium with

an acidic solution due to chemical reaction. For example, at very slow injection

rate, only the front part of the core was dissolved while at very high injection rate,

entire core was dissolved uniformly. However, at intermediate injection rate, only

selective part of the core was dissolved that formed wormholes as shown in Figure

6.6. Similar to Lund et al. (1973, 1975), Hoefner and Fogler (1989) conducted lin-

ear core experiments by injecting HCl in limestone and dolomite cores. Dissolution

patterns and nature of breakthrough curves observed in these experiments were

similar to ones shown in Figures 6.2 and 6.4, respectively, but due to the nature of
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Figure 6.6: Wormholes created by injecting water through a radial core (of diameter
2 mm and length 50 mm) made of plaster (Daccord, 1987).

injection, one wormhole with multiple branches was observed at intermediate in-

jection rates. Wang (1993) also performed experiments on limestone and dolomite

to study the in�uence of rock mineralogy, acid concentration and temperature on

optimum injection rate and PVBT and established the existence of a minima in

breakthrough curves. Frick (1994) studied the effect of permeability, injection rate,

acid concentration and temperature on wormhole formation by conducting radial

core experiments on limestones. Bazin et al. (1995) conducted core�ow experi-

ments on limestone and dolomite cores of diameter 50 mm and length 50 to 200
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mm with 2M HCl at room temperature. They performed pre and post imaging of

the cores using CT scanning (with 0.2�0.2�3 mm pixel size) and found different

types of dissolution patterns for different injection rates. They also studied the ef-

fect of heterogeneity by studying different types of carbonates and concluded that

heterogeneity does not affect the type of dissolution pattern at a certain injection

rate but change in the mineralogy of the rock changes the type of wormhole pat-

terns. Similar effect of mineralogy was observed by Hoefner and Fogler (1989).

Fredd and Fogler (1998) conducted linear core experiments on limestones (of di-

ameter 3.8 cm and length 10.2 cm) by injecting various acids having signi�cantly

different reaction and transport rates compared to HCl, at constant injection rate.

They studied the in�uence of reaction and transport mechanisms on wormhole

formation and optimum injection rates; and observed more branched and thinner

wormholes for fast reacting acids while less branched and thicker wormholes for

slow reacting acids as in Figure 6.5. As reactivity of acid increased, PVBT was

found to decrease and optimum injection rate was found to increase. Gol�er et al.

(2002) performed dissolution experiments by injecting under-saturated salt solution

into a porous medium made of salt grains and observed the dissolution patterns

very similar to the patterns formed during acidization. Ziauddin and Bize (2007)

conducted core �ow experiments and studied the effect of heterogeneity in the

carbonate samples using several imaging techniques where they categorized dif-

ferent carbonate types according to spatial porosity distribution based on imaging

and acidizing results.

6.2.2 Experimental Studies with Diverting Acids

Most of the experiments with diverting acids involve the study of pressure pro�le

in single core and �ow diversion in dual core set-ups. In a single core set-up, di-

verting acids are injected with a constant rate, pressure at the exit is �xed and inlet

pressure is monitored with time. A dual core set-up consists of two cores (usually
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of identical geometry but of different initial permeability) which are mounted paral-

lel to each other so that pressure drop across both the cores be the same at all

times. The pressure at exit of both the cores is same and kept constant, and, acid

is injected with constant rate that splits into both the cores according to the ratio

of their mobilities. Experiments have shown that unlike Newtonian acids, diverting

acids leads to enormous increase in pressure drop across the core/cores (MaGee

et al., 1997; Buijse and Domelen, 2000; Chang et al., 2001; Lynn and Nasr-El-Din,

2001; Taylor and Nasr-El-Din, 2003; Nasr-El-Din et al., 2006, 2008; Gomaa and

Nasr-El-Din, 2010; Gomaa et al., 2011). It is because the viscosity of these acids

increases in certain pH range ( MaGee et al., 1997; Rose, 2004). MaGee at al.

(1997) showed that the in-situ cross-linked acids crosslink in the formation during

treatment and are a thin gel during pumping and cleanup and hence, are ideally

suited for acid diversion in carbonate formations. Buijse and Domelen, (2000)

conducted experiments with emulsi�ed based diverting acids and concluded that

low diffusivity of these acids provides for ef�cient wormholing at low injection rates,

forms thinner wormholes and penetrates deep into the formation. Chang et al.

(2001) experimented with viscoelastic surfactant (VES) based in-situ gelled acids

and suggested that these acids have superior diversion capability by its sustained

viscosity as opposed to polymer based in situ gelled acid, which breaks down the

viscosity when pH exceeds the higher limit of pH range of gel formation. Lynn

and Nasr-El-Din (2001) showed that adding polymer to a regular acid changes its

physical and chemical properties such that it behaves as a shear-thinning and slow

reacting �uid. Nasr-El-Din et al. (2006) and Amro (2006) concluded that in-situ-

gelled acid improved acid placement in carbonate reservoirs by offering the bene�t

of increasing viscosity inside the formation. Welton and van Domelen (2008) dis-

cussed the development of a unique in-situ-crosslinkable acid system that uses a

blend of HCl/formic acid as the base acid and a synthetic polymer-gelling agent.
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They noted that HCl/formic acid blends were more robust and maintained higher

viscosities for longer periods and some synthetic polymer-acid-gelling agents pro-

vided high initial viscosity. Gomaa et al. (2011) examined �ow of in-situ-gelled acid

in dual-core experiments on carbonates with Computed-tomography (CT) scan as

can be seen from Table 6.1 and Figure 6.7, and noted that at low or high �ow rates

Table 6.1: Set of dual-core experiments with diverting acids at various injection
rates (Gomaa et al., 2011).

of acids (experiments 3: 1 cm3min�1, Khigh

Klow
� 25; experiments 8: 15cm3min�1,
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(a)

(b)

(c)

Figure 6.7: Dissolution patterns and �ow diversion in dual-core experiments with
diverting acids at various injection rates (a) experiments 3 (Gomaa et al., 2011)
with injection rate, Q = 1cm3min�1 and permeability ratio, Khigh

Klow
� 25, (b) experi-

ments 8 (Gomaa et al., 2011) with injection rate, Q = 15cm3min�1 and permeabil-
ity ratio, Khigh

Klow
� 20, (c) experiments 10 (Gomaa et al., 2011) with injection rate,

Q = 2:5cm3min�1 and permeability ratio, Khigh

Klow
� 21.
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Khigh

Klow
� 20), diversion is negligible while at intermediate injection rates (experi-

ments 4: 1.5 cm3min�1, Khigh

Klow
� 22; experiments 10: 2.5cm3min�1, Khigh

Klow
� 21),

diversion is signi�cant.

6.2.3 Mathematical Studies

Numerous mathematical models are developed in literature to describe the

acidization process in reservoirs with Newtonian acids. These models can be clas-

si�ed mainly into four categories: (a) network models developed by Daccord et

al. (1993a, 1993b), Fredd and Fogler (1998), etc., (b) the capillary tube models

developed by Hung at al. (1989), Huang et al. (1997, 1999), Buijse et al. (2005),

Gdanski (1999), and (c) continuum models reported by Liu et al. (1996), Gol�er et

al. (2002), Panga et al. (2005), Kalia and Balakotaiah (2007, 2009), Ratnakar et

al. (2012).

Network Models

Network models developed by Daccord et al. (1993a, 1993b) and Fredd and

Fogler (1998), describe the reactive dissolution by representing the porous medium

as a network of tubes which are interconnected at the nodes. In these models, the

�ow of tube is described by Hagen-Poiseulle equation where reaction occurs at the

wall of tube that increases tube radius. While these models predict the experimen-

tally observed trends, the PVBT predicted by these models are much higher than

the experimental results. To improve the predictions, Fredd and Fogler used phys-

ically representative network model that includes the channeling effects. However,

predictions even after some improvements, were quantitatively very high as com-

pared to experimental ones. In addition, since these models are applied at pore

scale (� �m), the lab/core scale (� cm) or �eld scale predictions (� km) involve

very high magnitude of length scale separation (104 � 109) and require huge num-

ber of mesh and hence, these models are computationally prohibitive and almost

impractical. Also, the effect of heterogeneity and change in pore connectivity due
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to dissolution are very dif�cult to incorporate in network models.

Capillary Models

Capillary tube models assume the existence of wormholes. In these models,

a wormhole is represented as a capillary tube where transport and reaction are

analyzed in detail (Hung at al., 1989; Huang et al., 1997, 1999; Buijse et al., 2005;

Gdanski, 1999). This semi-analytical approach on the contrary with network mod-

els, is very simple and computationally very fast and can describe the wormhole

propagation and its interaction with other wormholes. For example, Bujse(2000)

and Huang et al. (1997) showed that the growth rates of multiple wormholes in

a domain depends on separation distance between them, which is in accordance

with experimental observations.

While these models are very simple, they need prior informations such as

wormhole densities and expression for �uid leakage (which depends on worm-

hole structure and medium heterogeneity), which are very dif�cult to obtain. In fact

there is no theoretical or experimental works available in literature on wormhole

density. In addition, capillary models do not capture wormhole initiation, dissolu-

tion patterns and effect of heterogeneity or pore scale reaction and transport on

wormhole formation.

Continuum Models

Continuum models (Liu et al., 1996; Gol�er et al., 2002; Panga et al., 2005;

Kalia and Balakotaiah, 2007, 2009; Ratnakar et al., 2012) describe the transport

and reaction phenomena at intermediate or Darcy scale (that is bigger than the

pore scale and smaller than the core/�eld scale). Darcy-scale (� mm) are the

length scale where Darcy-law is applicable. These models requires information

on the pore-scale processes, which are obtained from a pore scale model. Thus,

these models are computationally less expensive as compared to the network mod-

els and can describe the effect of pore-scale reaction and transport mechanisms,
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heterogeneities, wormhole density, geometries, etc. on carbonate dissolution and

optimum conditions, unlike the capillary tube models. However, the model de-

veloped by Liu et al. (1996) does not consider the effect of mass transfer on

the reaction rate and is valid only in the kinetic regime where dissolution is very

slow as compared to transfer of solute from bulk to the soild-�uid interface. Sim-

ilarly, though Gol�er et al. (2002) reproduced the experimentally observed disso-

lution patterns numerically by using Darcy-Brinkman formulation and a local non-

equilibrium model, the model is valid only in the mass transfer controlled regime

where the transfer of solute from bulk to �uid-solid interface is slower than the

rate of dissolution. These limitations were removed in two-scale continuum models

(Panga et al. 2005; kalia and Balakotaiah, 2007, 2009; Ratnakar et al., 2012) which

captured both the extremes of reaction (kinetic and mass transfer controlled) simul-

taneously by using two concentration variables and a mass transfer coef�cient. A

good match was obtained when the model predictions are compared with 2D salt

pack experiments conducted by Gol�er et al. (2002). Panga et al. (2005) intro-

duced a qualitative optimum criterion to predict wormhole formation that depended

on the �uid petro-physical properties but was independent of the domain size. The

continuum model approach has also been adapted to model in�ltration �ow of a

reactive �uid in porous medium.

Mathematical models discussed above, describe the reactive dissolution of

porous media with Newtonian acids only which can not describe the carbonate

acidizing with diverting acids due to strong dependency of pH on �uid viscosity.

Unfortunately, viscosity of diverting acids depends strongly on pH and there are no

rheological models available in literature that describe pH dependent viscosity and

reactive transport of in-situ gelling acids in porous media.
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6.3 Objectives

Since gel dynamics is the key for �ow diversion from high-perm zones to low-

perm zones in formation and hence for optimal stimulation, the main objective of

this work is to understand gel dynamics and mechanism of �ow diversion, and, use

these understanding to develop guidelines for optimal stimulation of carbonates at

�eld scale. It involves developing a rheological model for in-situ gelling acids that

can account for dependency of pH, temperature and shear rates on �uid viscosity

and developing a two-scale continuum model that can describe the reactive trans-

port of in-situ gelling acids in porous media such as carbonates.

This work is focused on reactive dissolution of carbonates by in-situ gelling

acids and comparison with that by Newtonian acids. We also compare the theoret-

ical results with available experimental predictions. This part of thesis is organized

in following manner. In chapter 7, we develop an experimental based novel empir-

ical rheological model for rheology of in-situ gelling acids that accounts for effects

of temperature, pH and shear rates on its viscosity. Here, we develop equivalent

Darcy law for in-situ gelling acids to describe the �uid �ow in porous media at

Darcy scale that include the non-Newtonian (shear thinning) and diverting behav-

ior of in-situ gelling acids. In the end of this chapter, we incorporate rheological

model and equivalent Darcy law into two-scale continuum (TSC) model that can

describe the transport and reaction of in-situ gelling acids at Darcy scale where

pore-scale effects are included by effective properties used in the model and by

structure-property relations. In chapter 8, we present gel dynamics and �ow di-

version in single and dual core set-ups, respectively, using one dimensional (1-D)

version of the model. Since 1-D model can not explain the dissolution patterns, in

chapter 9, we use two dimensional (2-D) version TSC model to analyze the various

dissolution patterns. Chapter 10 presents the three dimensional (3-D) simulations

of wormhole formation that is more accurate when compared to experimental ob-
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servations. In the last chapter 11, we conclude our main results and discuss the

possible extension of the current work.
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Chapter 7 Mathematical Model for In-situ Gelling Acids

7.1 Preamble

There are three types of mathematical models in literature to study the disso-

lution phenomena in porous media: (i) network models, (ii) capillary tube models,

and (ii) continuum models discussed in the previous chapter. Due to the length

scale associated with carbonates as shown in Figure 7.1, the network models

(which use conservation laws at pore scales (� 0:1 � 10�m) to describe core

scale (� 10 � 50cm) phenomena) are computationally prohibitive. On the other

hand, though capillary models are computationally very fast, due to their inabil-

Figure 7.1: Schematic of different length scales associated in a lcarbonate core
used in laboratory experiments.
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ity to predict wormhole initiation and dissolution patterns, they can not be used

to study the effect of pore-scale phenomena on wormhole formation. Thus, in this

work, we use continuummodels that describe the conservation laws at Darcy-scale

(that makes it computationally less expensive than network models) and retains

the pore-scale effects through pore-scale models for effective properties such as

transfer/dispersion coef�cients and structure-property-relations. However, these

models in the literature are applicable only to Newtonian acids.

Diverting acids such as in-situ gelling acids are non-Newtonian (shear thinning)

in nature and have viscosity that depends strongly on pH. In fact, the pH dependent

viscosity is the main difference between diverting acids and other (Newtonian/non-

Newtonian) acids. It is also the reason for gel formation, which is the key element

for �ow diversion from high-perm to low-perm zones in reservoirs. Therefore, the

predictions of wormhole patterns (and other useful relationships such as the de-

pendence of the optimum acid volume and wormhole density on injection rate or

reaction parameters) in carbonate stimulation with diverting acids require a math-

ematical model that accounts for the �ow, reaction and rheological effects of di-

verting �uids. Since, such model is not available in literature, in this chapter, we

develop (i) an experimental based empirical rheological model for diverting acids

that accounts for the effects of pH on viscosity; and, (ii) a mathematical model

based on two-scale continuum model (Panga et al., 2005) that can describe the

reactive transport of in-situ gelling acids in porous media at Darcy-scale and retain

the essential features of pore-scale phenomena by pore-scale models.

7.2 Rheological Modeling for Diverting Acids

In general, the physio-chemical properties (viscosity, density etc.,) of a �uid

depend on the three state variables, temperature, pressure/shear rate and con-

centration/pH. While several experimental studies are available on pH dependent

viscosity of diverting acids, there are no theoretical or empirical pH dependent rhe-
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ological models available in the literature. Therefore, we use experimental data by

Rose (2004) to develop an empirical rheological model that accounts for the effect

of pH on viscosity. Before we discuss it into detail, we brie�y review the effect of

temperature and shear rates on viscosity which is well established in literature.

7.2.1 Effect of Temperature on Viscosity

It is found that viscosity of most of the liquids decreases with increase in temper-

ature while this may not be true for the gases. However, the effect of temperature

on viscosity is very small and can be described mathematically as follows:

� = �0 Exp

�
��T � T0

T0

�
� �0

�
1� �

T � T0
T0

�
; � > 0 for liquids, (7.1)

where T0 is the reference temperature, � is the temperature coef�cient of viscosity

and �0 is the viscosity of �uid at reference temperature T0. Experiments (Nasr-El-

Din, 2008) show that viscosity of in-situ gelling acids also follow the same trends

and decreases exponentially with temperature. It should be noted that the linear

relationship is valid only in the small temperature range near T0, i.e., T�T0T0
<< 1

(For � = 1 and T0 = 300K; equation (7.1) can be used over a 0 � 30 K change).

However, the range of validity is larger for smaller �. The temperature coef�cient of

viscosity, � varies from �uid to �uid and is positive for most of the liquids. The effect

of � on viscosity as a function of temperature is shown in Figure 7.2. It can be seen

from Figure 7.2 that for small values of �, viscosity decreases linearly with temper-

ature. In fact, experimental data for gelled acids (Nasr-El-Din et al., 2008) shows

that the viscosity of in-situ gelling acids decreases almost linearly with tempera-

ture. Since, � is small for most liquids, the effect of temperature on viscosity may

be negligible. However, viscosity may change signi�cantly if temperature change

is very large.
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Figure 7.2: Effect of temerature coef�cient of viscosity, �, on viscosity vs tempera-
ture pro�le.
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7.2.2 Effect of Pressure/Shear Rate on Viscosity

Several experimental studies have been performed to study the �ow behavior of

non-Newtonian �uids. The experimental data for steady-state laminar �ow of poly-

meric �uids in tubular reactors (Bird et al., 1987) suggests that the non-Newtonian

shear thinning �uids exhibit more blunt velocity pro�le than the Newtonian �uids.

Also, the pressure drop increases much less rapidly with the mass �ow rate for

these �uids as compared to the Newtonian �uids (where it is linear). This implies

that the viscosity of the polymeric �uids depends on the velocity gradient (or shear

rate, �
). Furthermore, the `recoiling effect' is observed after cessation of steady-

state �ow for polymeric �uids (Fredrickson, 1964), i.e., when a dye is released in a

steady �ow of polymeric �uids, the dye line stretches to parabola. But, when �ow

is stopped, the die line comes back towards the inlet. This is a manifestation of

elasticity or the notion of fading memory. Similarly, tube siphon effects (Tranner,

1970) indicate the existence of non-zero normal stresses for polymeric �uids.

Non-Newtonian �uids are generally classi�ed into three groups depending on

the relationship between shear rate and stress : (1) time-independent non-Newtonian

�uids, (2) time dependent non-Newtonian �uids, and (3) viscoelastic non-Newtonian

�uids. Time-independent �uids are those for which shear rate ( �) is a unique but

may be non-linear function of shear stress (� ) at all times (Bird et al., 1960), i.e.,

�
 = f(� ); (7.2)

where f may be a non-linear function. These �uids are also named as 'gener-

alized Newtonian �uids' and can be characterized by �ow curves of � vs. �
 as

in Figure 7.3. These are: (i) Bingham plastic and yield-pseudoplastic for which a

threshold shear stress is required to shear the �uid and cause �ow, (ii) Pseudo-

plastic or shear thinning �uids whose apparent viscosity decreases with increase
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Figure 7.3: Schematic diagram illustrating the time independent non-Newtonian
�uid behavior.
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in shear rate or stress, and (iii) dilatant or shear thickening �uids whose apparent

viscosity increases with increases in shear rate. Time-dependent �uids are those

for which shear rate depends not only on shear stress but also on the shearing time

or shear stress rate history. These are thixotropic or rheopectic �uids, depending

upon whether the shear stress decreases or increases w.r.t. shearing time at a

given shear rate. Thixotropic �uids are also called time-dependent shear thinning

�uids, and rheopectic �uids are known as time-dependent shear thickening �uids.

Viscoelastic �uids are those that exhibit both the elastic and the viscous proper-

ties, and shows partial recovery upon removal of the imposed shear stress. Various

rheological models are published to explain the behavior of non-Newtonian �uids.

Here, we review some of the well-known models.

Generalized Newtonian Models

The generalized Newtonian �uid models (Oldroyd, 1949, 1950) are obtained by

simply replacing the constant viscosity by a non-Newtonian viscosity as follows:

� = ��( �) �
; (7.3)

where � is the non-Newtonian apparent viscosity and �
 =

r
1
2

� �
 :

�

�
is the mag-

nitude of the rate of shear tensor �
. This is the simplest non-Newtonian model

which can describe only the non-Newtonian viscosity, but none of the normal

stress, time-dependent and elastic effects. For Bingham �uids, � is replaced by

� � � 0, because they exhibits a yield stress � 0: Numerous empirical models for

the non-Newtonian viscosity � as a function �
 or � are proposed (summarized

in Corapcioglu, 1996). The most widely used rheological model to describe �ow

through porous media is the power-law model (Bird et al., 1960) that represents

the non-Newtonian viscosity � as

�(
�
) = H

�

n�1

; (7.4)

184



where H is called the consistency coef�cient and n is called the power index. This

is a two-parameter model that gives a linear log-log plot of shear stress vs. shear

rate. For the special case of n = 1, it represents the Newtonian �uid where the

consistency coef�cient H is equal to the viscosity of the �uid. Because of its inher-

ent simplicity, the power-law is of considerable interest in applications and is used

to approximate the rheological behavior of both the shear thinning or psuedoplas-

tic (n < 1) and the shear thickening or dilatant (n > 1) �uids over a large range

of �ow conditions. However, the major limitation of this model is that it predicts

in�nite viscosity at vanishingly small shear rate/stress. In other words, it can not

describe the constant viscosities �0 and �1 at very low and very high shear rates

where most of the �uids follow Newtonian behavior (Figure 7.4). These trends can

be described only by the models containing at least four parameters. The simplest

four-parameter model (Meter and Bird, 1964) is given by,

� = �1 +
�0 � �1

1 +
�

�
�m

��1�1 (7.5)

where, �1 and �0 are minimum and maximum limiting viscosities at in�nitely large

and in�nitely small shear rate (or stress), respectively. The parameter �1 is a

dimensionless parameter and �m represents the shear stress at which the ratio
���1
�0��1

reduces to half. For the case of �1 = 1, � reduces to Newtonian viscosity

� = �0+�1
2
. We do not discuss time-dependent non-Newtonian �uids as they are

rarely used.

Viscoelastic Models

The third category of non-Newtonian �uids is the viscoelastic non-Newtonian

�uids (we do not review here the time dependent non-Newtonian �uids as they

are not of interest in acidization). A good description of the viscoelastic behav-

ior of these �uids can be illustrated by `silly putty' which bounces when rolled and
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Figure 7.4: Schematic diagram illustrating the general viscosity behavior of a shear
thinning �uid.
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dropped onto a hard surface, while �ows easily when squeezed slowly. The time-

independent �uids can not explain the fading memory and elastic effects exhibited

by the viscoelastic �uids as the time derivative or time integral is excluded in con-

struction of these models. The viscous effects can be described by the Newton's

law of viscosity while elastic effects can be described by the analogy of Hooke's ex-

pression which represents perfect memory i.e., the solid/�uid returns to its original

position after removal of imposed shear stress.

One of the simplest mechanical models used to describe both the viscous and

elastic effects is the Maxwell's model (Maxwell, 1867):

�+�1
@�

@t
= ��0

�
; (7.6)

where �1 is a time constant called the relaxation time and �0 is zero shear rate

viscosity. When the relaxation time is negligible or the stress tensor changes very

slowly with time, the derivative term is negligible and the model becomes New-

tonian model with viscosity �0. Similarly, if there are rapid changes in stress tensor

with time or the relaxation time is very high, the derivative term dominates and the

model becomes Hookean solid with elastic modulus �0
�1
. This is a linear viscoelastic

model. If time derivative of the shear rate is included in Maxwell's model (Maxwell,

1867), it results in Jeffrey's model (Jeffrey, 1929) given as

�+�1
@�

@t
= ��0

 
�
 + �2

@
�


@t

!
; (7.7)

where �2 is known as retardation time. If we have a mixture of Newtonian sol-

vent
�
� s = ��s

�

�
and a Maxwellian polymeric �uid

�
� p+�1

@�p
@t
= ��p

�

�
where

� s+� p = � ; it can be better described by Jeffrey's model (with �0 = �s + �p and

�2 =
�s

�s+�p
�2) that gives better �exibility in �tting experimental data.

Though there are various types of rheological models (described above) that
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accounts for the effect of shear rates on viscosity, Lynn and Nasr-El-Din (2001)

showed that diverting acids like in-situ gelling acids are shear thinning acids. For

this reason, we adopt power-law model described in equation (7.4), with power

index, n, less than unity. In addition, power-low models are the simplest and most

widely used in the literature, and, can account for the effect of shear rate on vis-

cosity for most of the practical cases.

7.2.3 Effect of pH on Viscosity

As discussed previously, in-situ gelled acids use pH to control the cross-linking

of polymeric chains in solution to form a gel in a certain pH range and increase the

viscosity enormously that leads to �ow diversion and hence uniform stimulation

of the carbonate formation. Though the experimental data for viscosity of in-situ

gelling acids depending on pH are available in literature, there are no theoretical or

empirical rheological models which exist to describe the effect of pH on viscosity of

in-situ gelling acids. Since, �uid rheology (depending on pH) is one of the key factor

for �ow diversion, here, we develop an empirical model for pH dependent viscosity

based on experimental data (Rose, 2004) shown in Figure 7.5. We note from

Figure 7.5 that (i) the polymeric solution starts cross-linking to form the gel in the

pH range 4 - 6, (ii) the pH corresponding to maximum viscosity remains constant,

i.e., does not depend on the shear rate (pHm= 5.47) and, (iii) viscosity vs. pH

pro�le is asymmetric, i.e., viscosity increases slowly before maxima and decreases

sharply thereafter. Based on the above observations, we need a model with at least

four parameters to describe the base value, mean, variance and skewness of the

viscosity curve that can be given by the expression

� (pH) = �0

"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
; (7.8)

where, �0, �m, pHm and a are the four parameters used in the model.
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Figure 7.5: Experimental data for viscosity of ZCA (1.5 % SGA-III) vs pH.
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It should be noted that four-parameter pH dependent rheological model in equa-

tion (7.8) can describe all types of diverting acids having pro�le same as in Figure

7.5. This is due to the most general form of the model where each parameter

represents the particular feature of the viscosity behavior of in-situ gelling acids.

For example, �0 is the base viscosity at pH = 0 or 7. It represents the viscosity of

the �uid before it starts cross-linking. The parameter �m is the maximum possible

increment in the viscosity w.r.t. base value due to gel formation as can be seen

from Figure 7.6. In this �gure, increase in viscosity from the base value is plot-

ted against pH for different values of �m (= 10; 20, 30) while other parameters are

kept constant (a = 10:0 and pHm = 5:0). We note from this �gure that (i) higher �m

leads to higher increase in viscosity due to gel formation, (ii) �m equals to the same

factor by which viscosity of diverting acid increases from the base value due to gel

formation. Similarly, the parameter pHm is the pH value where increase in viscosity

due to gel formation is maximum as can be seen from Figure 7.7 In this �gure, vis-

cosity pro�le is plotted against pH at pHm = 2:0, 3:5 and 5:0 while other parameters

are kept constant (�m = 20 and a = 10). It can be seen from this �gure that the

parameter pHm also introduce asymmetry in pro�le. For example, when pHm = 3:5

(exactly in the middle), the pro�le is symmetric while pHm < 3:5 and > 3:5 leads

to asymmetric pro�le with positive and negative skewness, respectively. The para-

meter a is the measure of the pH-range of gel formation which is, loosely, inverse

of the variance (width) of the viscosity vs pH pro�le, i.e., if a increases, pH range

of gel formation decreases as can be seen from Figure 7.8. Thus, all the features

of viscosity vs. pH pro�le for in-situ gelling acids can be represented by the four

parameter empirical model given by equation (7.8) indicating that it is the most

general model possible (to describe the effect of pH on viscosity). Now, based

on the effects of temperature, pressure/shear rates and pH on �uid viscosity dis-

cussed above, a complete rheological model for diverting acids can be developed
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Figure 7.6: Effect of �m on viscosity vs pH pro�le for a = 10 and pHm = 5:
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Figure 7.7: Effect of pHm on viscosity vs. pH pro�le for �m = 20 and a = 10:
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Figure 7.8: The effect of the parameter a on viscosity vs. pH pro�le.
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as explained in following section.

7.2.4 A Complete Rheological Model

A complete rheological model for in-situ gelling acids can be obtained by com-

bining equations (7.1), (7.4) and (7.8) which describe the effect of temperature,

shear rate and pH on viscosity, respectively. Thus, the complete rheological model

can be given as follows:

�a

�
T;

�
; pH

�
= �0

�

n�1
�
1� �

T � T0
T0

�"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
;

(7.9)

where �a is the apparent viscosity. The above model contains six parameters:

(i) �0, the base viscosity that is equivalent to consistency factor in the power-law

model. (ii) n, the power index that accounts for the effect of shear rate. (iii) �,

the temperature coef�cient of viscosity that includes the effect temperature in the

model. (iv) �m, the maximum increment in viscosity w.r.t. base viscosity due to in-

situ gelling (this may depend on the polymer concentration) (v) pHm, the pH value

that corresponds to the maximum viscosity, and (vi) a, the parameter that measures

the range of pH values in which polymer starts cross-linking leading to the gel

formation. The last three parameters account the effect of pH/concentration. These

parameters, in general, depends on types of polymers/cross-linkers/additives and

their concentrations and the kinetics for cross-linking and breaking of the gel [Note:

If the cross-linking and breaking is due to metal ions such as Fe+++, the kinetics

may be assumed to be fast and the effect of kinetics on the rheological model may

be neglected].

Since the rheological model in equation (7.9) is empirical, these parameters

must be determined experimentally. Using the isothermal experimental data (Rose,

2004) shown in Figure 7.5, the following set of values of the parameters (for the
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isothermal case, � = 0) is the best �t:

�0 = 195:96;n = 0:5;�m = 23:83; a = 23:4; pHm = 5:47 (7.10)

The non-linear least square �tting of the data is performed based on the Levenberg-

Marquardt method which minimizes the square error function (sum of squares of

the difference between the theoretical and experimental values at given pH points)

and evaluates the best �t of the parameters iteratively. It can be seen from Figure

7.9 that the empirical rheological model given by equation (7.9) is a reasonable �t

to the experimental data (Rose, 2004). However, in most of the lab experiments

and works reported in literature (MaGee et al., 1997), the pH range of gel formation

is designed typically between 2-4, so we adopt following rheological parameters

�0 = 1;n = 1;�m = 23:83; a = 23:4; pHm = 2:47 (7.11)

in our simulations to compare with existing experimental results in literature. How-

ever, these parameters depend on types of polymers and additives and their con-

centrations.

Now, we have the complete rheological model (7.9) for in-situ gelling acids to

account for the effect of temperature, shear rate and pH (gelling phenomena) on

viscosity. In the next section, we discuss the extension of two-scale continuum

model to describe the reaction and transport of in-situ gelling acids in carbonates

rocks (porous media).

7.3 Two-scale Continuum Model (TSC) for in-situ gelling Acids

The two-scale continuum model was developed by Panga et al. (2005) and

used by Kalia and Balakotaiah (2007, 2009, 2010) to analyze the phenomenon

of reactive dissolution of the carbonate rocks with Newtonian acids. In this case,
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Figure 7.9: Comparison of experimental and theoretical plot for viscosity vs. pH for
various shear rates.
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the �uid viscosity remains constant and �ow equation is represented by Darcy

law. Since in the current work, the viscosity is non-linear function of concentration,

shear rate even in isothermal case, we modify the model for in-situ gelling acids by

incorporating general rheological model given in equation (7.9) and by developing

an equivalent Darcy-law that is valid for all types of �uids including non-Newtonian

ones.

7.3.1 Darcy Law for in-situ gelling Acids

The non-linear relationship between velocity and pressure drop adds to the

challenges in understanding the �ow dynamics of non-Newtonian �uid in porous

media. Since length-scales associated with porous media vary from micro-scale

to macro-scale, it is very important to �nd the momentum equation or Darcy law

equivalent at mesoscale. Here, we explain in brief the development of Darcy law

equivalent model using the procedure described by Christopher and Middleman

(1965). We start with well-known Blake-Kozeny equation given by

"3dp
�v2s(1� ")

(��P )
L

=
150�(1� ")

�vsdp
; (7.12)

for �ow of Newtonian �uids through a packed bed, where " is the porosity, dp is the

particle diameter, � is the �uid density, L is the bed length, � is the �uid viscosity,

(��P ) is the overall pressure drop across the bed and vs is the super�cial veloc-

ity. The above relation reproduces experimental data for packed bed of uniform

spheres rather well up to Reynolds number of about 10. From the Blake-Kozeny

equation, we can derive Darcy equation as follow:

vs =
"3d2p

150(1� ")2
1

�

(��P )
L

=
kd
�

(��P )
L

; (7.13)
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where kd is the permeability of the porous media and is de�ned as

kd =
"3d2p

150(1� ")2
: (7.14)

Now, we obtain Hagen�Poiseuille equation (Bird et al., 1960) for in-situ gelling

acids (or power-law �uids) by solving one dimensional momentum balance (as-

suming steady, laminar and incompressible �ow) through a capillary with no-slip

boundary condition that leads to the average velocity, hvi ; as

hvi =
�
(��P )
4HL

D

�1=n
n D

2(3n+ 1)
; (7.15)

where D is the capillary diameter. Similarly, we can �nd the average �uid velocity

corresponding to other rheological models (Corapcioglu,1996).

Once we know the relationship between overall pressure drop and average ve-

locity for a capillary, we can derive the Darcy-law equivalent for porous media by

substituting (i) average velocity, hvi ; in capillary with vs
"
, where vs is the super-

�cial/Darcy velocity; (ii) capillary diameter, D; with hydraulic diameter of porous

media, DH , given by,

DH =
4 � �ow area
wetted perimeter

=
4"

av(1� ")
=

2" dp
3(1� ")

; (7.16)

where av is the area per unit volume of the solid; (iii) particle diameter, dp; with
(1�")
"

q
150kd
"
, and scaling the length of capillary L by tortuosity �(=25

12
); i.e., L = �L.

Thus, the Darcy law equivalent for a non-Newtonian �uid �owing through a porous

medium can be given by

vs =

�
kd
�eff

(��P )
L

�1=n
; (7.17)
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where �eff is the viscosity term given by

�eff =
H

12

�
9 +

3

n

�n
(150kd")

(1�n)
2 ; (7.18)

where the constant `150' in the bracket depends on pore connectivity and should

be measured experimentally.

It should be noted that �eff does not have the same units as viscosity and

is given in terms of power-law parameters (consistency factor, H and power-law

index, n) and rock-properties such as permeability, kd; and porosity, ": Since per-

meability, kd, depends only on the porous media, the rheological properties of �uids

are accounted by effective viscosity terms. In addition, these models are valid for

non-uniform particle sizes as none of the parameters are directly dependent on

particle diameter. The above model in equation (7.17) was tested experimentally

with dilute polymer solution �owing through packed porous material and the ac-

curacy of the correlation was acceptable for most engineering design purposes

(Christopher and Middleman, 1965).

7.3.2 Two-Scale Continuum Model

Here we describe brie�y the main features of the two-scale continuum model

(TSC) and refer to Panga et al. (2005) for details. The TSC model describes the

phenomenon of reactive dissolution in carbonates as a coupling between transport

and reaction processes occurring at two scales: Darcy scale and pore scale. The

transport process such as convection and dispersion are important at core scale

(much larger than the pore scale or darcy-scale), whereas, diffusion and reaction

are the main mechanism at the pore scale. The transport processes are described

by conservation laws such as continuity equation, momentum balance, species

balances and dissolution equation at darcy-scale, whereas, reactive dissolution

changes the pore-structure continuously, which changes effective properties (such
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as transfer/dispersion coef�cients) and rock properties such as (permeability, pore

radius etc.) used in the model and hence, these properties must be expressed at

pore-scale.

Darcy-scale Models

Darcy-scale models contains the momentum balance, continuity equation, species

balance and dissolution equation. The momentum balance for in-situ gelling (power-

law) acids is given by equivalent Darcy law as follows:

kUkn�1U = � 1

�eff
K �rP; (7.19)

where

U = (Ux0 ; Uy0 ; Uz0) ;

is the Darcy velocity vector, k�k represents the norm of a vector/matrix, K is per-

meability tensor, �eff is the pH-dependent effective viscosity term that is given by

�eff = �0�0

�
K"

K0"0

� (1�n)
2

"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
; (7.20)

P is pressure,

r =

�
@

@x0
;
@

@y0
;
@

@z0

�
;

represents the gradient vector and �0 is the base viscosity (equivalent to that of

the brine solution). It should be noted that the effective viscosity term given in

Equation (7.20) is de�ned only for pH in between 0 and 7. If pH is out of this range,

the effective viscosity term is independent of pH and does not contain the terms in

the square bracket. In addition, the parameters such as �0; �m; a and pHm depend

on polymer concentrations. Based on the literature on polymers, it is reasonable to

assume that �m and �0 vary exponential and linearly, respectively while a and pHm

remain constant, i.e.,

200



�m � 1
�max � 1

=
1� exp

�
��1 Cp

Cp;in

�
1� exp (��1)

(7.21)

�0 � 1
�p0 � 1

=
Cp
Cp;in

(7.22)

where, the typical values of �max; a and pHm are given by

�max = 23:83; a = 23:4; pHm = 2:47 (7.23)

The porosity increment due to dissolution on velocity pro�le is described by

overall mass balance or continuity equation in �uid phase given by

@"

@t0
+r �U = 0; (7.24)

where the �rst term ( @"
@t0 ) represents the change in pore volume due to reactive

dissolution that leads to increase in local porosity ("). Similarly, we keep track

of concentrations of acid and polymers to analyze gel dynamics using species

balance that is given by diffusion-convection-reaction model as follows:

@ ("Cf )

@t0
+r� (U Cf ) =r� ("D0

e�rCf )� kcav (Cf � Cs) ; (7.25)

@ ("Cp)

@t0
+r� (U Cp) =r�

�
"D0

ep�rCp
�
; (7.26)

where Cf and Cp are the cup-mixing concentrations of the acid and polymer, re-

spectively. Cs is concentration of the acid at �uid-solid interface, D0
e and D0

ep are

effective dispersion tensor of acid and polymer, respectively, kc is local mass trans-

fer coef�cient and av is the interfacial area per unit volume of solid available for

reaction.

It should be noted that the amount of acid diffusing from bulk �uid phase to
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�uid-solid interface is the same as being consumed during dissolution. Thus, the

�ux balance at the �uid-solid interface can be written as

kc (Cf � Cs) = R (Cs) ; (7.27)

where R(Cs) is the reaction rate. We can also write the evolution of porosity �eld

by equating the amount of solid dissolved to the amount of acid consumed using

the stoichiometry of the reaction as follows:

@"

@t0
=
R (Cs) av�c

�s
; (7.28)

where �s is the density of the solid phase and �c is the dissolving power of the acid

de�ned as grams of solid dissolved per mole of acid reacted. It should also be

noted that the reaction, in general, may be highly non-linear and very complex. But

for simplicity, we assume linear kinetics, i.e., R(Cs) = ksCs, where ks is the reaction

rate constant. In this case, the interfacial concentration Cs can be written in terms

of the cup-mixing concentration of acid as

Cs =
kcCf
kc + ks

: (7.29)

In addition, we also use the Stokes-Einstein relation:

�effD
0
e = constant; �effD

0
ep = constant; (7.30)

that relates the local diffusion coef�cient as the �uid viscosity changes due to gel

formation.
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Initial and Boundary Conditions

The initial, inlet and boundary conditions depend on speci�c problems and are

discussed in detail in literature (Kalia and Balakotaiah, 2009). For example, inlet

conditions for Darcy-law (for velocity and pressure) depends on whether the system

is being operated at constant injection rate or at constant pressure drop. Here, we

consider injection rate is constant and exit pressure is �xed, i.e.,

U=(Ux0 ; Uy0 ; Uz0) = (u0; 0; 0) @ x0 = 0; (7.31)

P = Pexit @ x0 = L; (7.32)

where L is the length of the core. Similarly, for species balance equations (con-

centrations of acid and polymer), we use Danckwert's condition at inlet and zero

�ux condition at the exit as follows:

Ux Cf � "D0
eX

@Cf
@x0

= u0Cf;in @ x0 = 0; (7.33)

Ux Cp � "D0
epX

@Cp
@x0

= u0Cp;in @ x0 = 0; (7.34)

@Cp
@x0

=
@Cf
@x0

= 0 @ x0 = L: (7.35)

At transverse boundaries, zero-�ux boundary conditions are used for pressure and

concentrations as given by

n �rP = n �rCf = n �rCp = 0 on transverse boundaries (7.36)

Initially, we assume that the core is saturated with brine solution, i.e., no acid or

polymers is present in the core. Also the core is heterogeneous where porosity is

generated by random number generation distributed uniformly with mean h"0i = 0:2
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and heterogeneity magnitude 4" = 0:15; i.e.,

Cf = Cp = 0; " = h"0i+ "0 @ t = 0; (7.37)

where "0 varies from - 4" to 4"; randomly.

Pore-scale Models

The physio-chemical parameters like permeability, transfer coef�cients, etc.

that appear in Darcy scale model depend on pore-scale structure and must be eval-

uated at the pore scale. Thus, the Darcy-scale model given above from equation

(7.19) to equation (7.30) is complete as long as all these parameters are speci�ed.

Structure-Property-relations: The structure of carbonate matrix changes con-

tinuously with dissolution, which changes the local porosity, permeability, mean

pore radius and area per unit volume available for reaction, continuously. Thus,

the choice of correlations that relates the change in local permeability to porosity

due to dissolution plays very important role, i.e., if bad correlations are used, the

simulation results may lead to quantitative errors, though qualitative trends pre-

dicted may be correct. Since, a de�nite way of relating the change in medium

properties to the change in medium structure does not exits in literature, we use

semi-empirical relations proposed by Civan (2001) that relates medium property

such as permeability to the structure parameter such as porosity as follows:

K

K0

=
"

"0

�
" (1� "0)

"0 (1� ")

�2�
;
rp
rp0

=

r
K"0
K0"

;
av
av0

=
"rp0
"0rp

; (7.38)

where � is a constant that depends on the structure of the medium. Here, "0, K0;

rp0 and av0 are initial porosity, permeability, mean pore radius and the interfacial

area available for reaction per unit volume of the core, respectively. Figures 7.10,

7.11 and 7.12 show the variation in permeability, pore radius and area per unit
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Figure 7.10: Variation in permeability with porosity due to dissolution for typical
values of � = 0:5, 1:0 and 1:5:
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Figure 7.11: Change in pore radius with porosity due to dissolution for typical val-
ues of � = 0:5, 1:0 and 1:5:
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Figure 7.12: Change in area per unit volume available for reaction as porosity
changes due to dissolution for typical values of � = 0:5, 1:0 and 1:5:

volume available for reaction as porosity of the medium changes. These �gures

are plotted for different values of � that is one of the characteristics of carbonate

rocks. Higher � implies the higher rate of change in permeability for a �xed change

in porosity due to dissolution. The same is true with the rate of increase in pore

radius and rate of decrease in area per unit volume. However, the change in area

per unit volume, av, is due to competition between increase in porosity and increase

in pore radius, i.e., av increases with porosity but decreases with pore radius; and
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so for lower value of � where initial rate of increase in pore radius is very small,

the area per unit volume, av, may initially increase with porosity as can be seen in

Figure 7.12.

It must be noted that the structural-property correlation gives the relation be-

tween the change in porosity and permeability due to dissolution, but the initial

porosity "0 and the initial permeability K0 are not correlated and depend on the

types/characteristics of the rock. In other words, the high porosity rock may have

very low initial permeability and vice-versa. However, the change in porosity and

permeability due to dissolution follow the structural-property correlation (which is

true when pores are connected).

Transfer and Dispersion Coef�cients: The mass transfer and the dispersion of

the acid at the pore scale are described by the following relations (Balakotaiah and

West, 2002; Panga et al., 2005):

Sh =
2kcrp
Dm

= Sh1 +
0:7

m
1
2

Re
1
2
p Sc

1
3 ; (7.39)

D0
eX = �0sDm +

2�X kUk rp
"

; D0
eT = �0sDm +

2�T kUk rp
"

; (7.40)

where Sh is the Sherwood number or dimensionless mass-transfer coef�cient; Sh1

is the asymptotic Sherwood number; m is the pore length to diameter ratio; Rep is

Reynolds number at pore scale that signi�es the dominance of inertia over vis-

cous forces and is expressed as Re = kUk rp
�

where � is kinematic viscosity; Sc is

the Schmidt number which is the ratio of kinematic viscosity, �, to the molecular

diffusivity, Dm; �0s and Sh1 depend on tortuosity or pore geometries; �T and �X

depend on pore connectivity and heterogeneity in the medium. The dispersion co-

ef�cient for the polymer can also be expressed in a similar way where diffusivity

is smaller because of high molecular weight of polymers. The �rst terms in these
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Figure 7.13: Schematic diagram of a single core set-up.

correlations represent the contributions due to molecular diffusion while second

terms represent the convective contributions. Molecular contribution are dominant

for smaller pores while for larger pores, convective contributions are comparable to

the contributions by molecular diffusion.

The two-scale continuum model, described in previous section, is valid for ki-

netically controlled dissolution limit (ks << kc), where the acid is transferred from

bulk to the rock surface very fast but the rate of consumption is slow, to mass-

transfer controlled dissolution limit (ks >> kc), where consumption rate is fast but

availability of acid at the rock is slow. It is very crucial, especially for in-situ gelling

acids where dissolution process may start in kinetically controlled limit and end up

in mass-transfer controlled limit due to enormous increase in viscosity that slows

down the solute transfer rate.

7.3.3 Dimensionless Form of the Model

Single Core Set-up

The two-scale continuum (TSC) model described above is presented for a sin-

gle core set-up shown in Figure 7.13, where Q0 is the inlet �ow rate of acidic

solution to the core and is kept constant through out the dissolution process. Pexit

is the pressure at the exit of the core that is maintained at a constant value. L

is the length of the core. Now, we non-dimensionalize the TSC model by using

dimensionless quantities listed in Table (7.1). Here, u0 is the inlet velocity to the

core; Cfin and Cpin are inlet concentrations of acid and polymer, respectively; K0;
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Table 7.1: List of dimensionless quantities used for single core analysis.

Quantity
Dimensionless

form
Quantity

Dimensionless

form

x x0

L
k K

K0

t u0t0

L
Av

av
av0

u U
u0

r rp
rp0

cp
CP
Cp;in

Nac
�cCf;in
�s

cf
Cf
Cf;in

Da ksav0L
u0

cs
Cs
Cf;in

�2 2ksrp0
Dm0

p (P�Pexit)K0

u0L�0
�2 ksav0L2

Dm0

�
�eff
�0

Sh 2kcrp
Dm

De
D0
e

Dm0
PeL

�2

Da
= u0L

Dm0

Dep
D0
ep

Dm0
Dpa

Dm0
Dmp0

av0 and rp0 are initial values of permeability, area per unit volume available for re-

action and mean pore radius of the core, respectively; �c is the acid capacity; Dm0

and Dmp0 are initial molecular diffusivities of the protons and polymer, respectively;

and �0 is the base viscosity. Thus, the TSC model in dimensionless form can be

written as follows:

r� (M �rp) = �r � u = Da

�
1 +

�2r �

Sh

��1
Av cf ;

@�

@t
+r� (u cf ) =

1

PeL
r� ("De�rcf ) ;

@ ("cp)

@t
+r� (u cp) =

1

PeL
r� ("Dep�rcp) ; (7.41)

@"

@t
= NacDa

�
1 +

�2r �

Sh

��1
Av cf ;
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where the �rst equation for pressure is obtained by combining Darcy-law in equa-

tion (7.19), continuity equation (7.24) and dissolution equation (7.28) with mobility

tensor,M; and effective viscosity term, �; given by

M =
k

� kukn�1
;

: � = �0

�
k
"

"0

� (1�n)
2

"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
; (7.42)

�0 = 1 +
�
�p0 � 1

�
cp;

�m � 1
�max � 1

=
1� exp (��1cp)
1� exp (��1)

:

The second equation is obtained by combining species balance (7.25) and disso-

lution equation (7.28) where � is given by

� = "

�
cf +

1

Nac

�
: (7.43)

The inlet/initial/boundary conditions are given by

" = "0 + bf ; cf = 0 @ t = 0;

ucf �
"De;X

PeL

@cf
@x

= 1; u = 1; ucp �
"Dep;X

PeL

@cp
@x

= 1 @ x = 0; (7.44)

p = 0;
@cf
@x

= 0;
@cp
@x

= 0 @ x = 1;

n �rp = n �rcf = n �rcp = 0 on transverse boundaries,

where u is the axial component of velocity, x is axial coordinate and n is the trans-

verse direction perpendicular to the �ow. Here "0 is base porosity �eld and bf is a
random �uctuation in the initial porosity �eld. Here,Da is the core-scale Damkohler

number that signi�es the ratio of convection time to reaction time, �2 is pore-scale

Thiele modulus that signi�es the ratio of diffusion time to reaction time at pore

scale, Sh is the Sherwood number that signi�es the effect of mass-transfer due
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to convection to molecular diffusion, PeL is the axial Peclet number that signi�es

the ratio of axial diffusion time to the convection time, and Nac is the acid capacity

number de�ned as the volume of solid dissolved per unit volume of the acid. When

mean pore radius is very small as compared to mean pore length, i.e., rp
Lp
<< 1, i.e.,

the convective contribution to mass transfer at the pore scale can be neglected and

the Sherwood number (Sh) remains almost constant (= Sh1 � 3:0). The structural

property-relationship in dimensionless form is given as follows:

k =
"

"0

�
" (1� "0)

"0 (1� ")

�2�
; r =

r
k"0
"
; Av =

"

"0r
; (7.45)

Now, the above continuum model in equation (7.41) with the rheological model in

equation (7.42) and structural-property correlation in equation (7.45) is closed and

highly non-linear in nature. Next, we present the dimensionless form of the model

for general multicore set-ups.

Multi-core Set-ups

The TSC model described above can also be written for the multi-core set-

up shown in Figure 7.14, where an acidic solution is injected at a constant rate

Q0; pressure at the exit, Pexit is maintained a constant value and n_core number

of cores are mounted in a parallel �ow arrangement. In this case, through the

total inlet �ow rate is constant, the inlet �ow rate through individual core is not

constant and depend on the effective mobilities of all the cores at any given time.

Due to this reason, the TSC model and boundary and initial conditions for each

core in this system is similar to that given for a single core set-up except the inlet

conditions for pressure equation. Thus, instead of constant �ow condition, the

following conditions are appropriate in this case due to parallel arrangement:

Pi = Pj 8 i; j = 1 : n_core; and
n_coreX
i=1

Ux;i = u0 @x
0 = 0; (7.46)
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Figure 7.14: Schematic diagram of a multicore set-up.

where, Pi and Ux;i are pressure and x-velocity in ith core.

Now we non-dimensionalize the model using the dimensionless quantities listed

in Table 7.2, whereM0i is the initial mobility of the �uid in the ith core, ri is the ratio

of initial pore radius of ith core to the reference value (rp0), vi is the ratio of initial

interfacial area per unit volume of the ith core available for reaction to the reference

value (av0), and other quantities are same as discussed in previous section. We

can choose reference value of rock properties (K0; rp0 and av0) corresponding to

one of the cores (say low-perm core). Thus, the continuum model for multicore

with linear kinetics can be written similar to equation (7.41) as follows:

r� (Mi�rpi) = �r � ui = Da

�
1 +

�2ri ri�i
Sh

��1
Avi cfi ;
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Table 7.2: List of dimensionless quantities used for dual core analysis.

Quantity
Dimensionless

form

x x0

L

t u0t0

L

ui
Ui
u0

cpi
CPi
Cf;in

cfi
Cfi
Cf;in

csi
Csi
Cf;in

pi
(Pi�Pexit)K0

un0L�0

�0
�0

12�p0

�
9 + 3

n

�n
(150K0"0)

(1�n)
2

�i
�eff;i
�0

ki
Ki

K0;i

M0i
K0;i

K0

Avi
av;i
av0;i

ai
av0;i
av0

ri
rp;i
rp0;i

ri
rp0;i
rp0

Nac
�cCf;in
�s

Da ksav0L
u0

�2 2ksrp0
Dm0

�2 ksav0L2

Dm0

Sh 2kcrp
Dm

PeL
�2

Da
= u0L

Dm0

Dpa
Dm0
Dp0

214



@�i
@t

+r� (ui cfi) =
1

PeL
r� ("iDei�rcfi) ;

@ ("icpi)

@t
+r� (ui cpi) =

1

PeL
r� ("iDepi�rcpi) ; (7.47)

@"i
@t
= NacDa

�
1 +

�2ri ri�i
Sh

��1
Avi cfi i = 1 : n_core

where �i = "i

�
cfi +

1
Nac

�
: The mobility, Mi; and effective viscosity term, �i; are

given by

Mi =
M0iki

�i kuik
n�1 ;

�i = �0i

�
M0iki

"i
"0i

� (1�n)
2

"
1 + (�mi � 1)Exp

(
�a (pHi � pHm)

2

pHi (7� pHi)

)#
; (7.48)

�0i = 1 +
�
�p0 � 1

�
cpi;

�mi � 1
�max � 1

=
1� exp (��1cpi)
1� exp (��1)

:

The inlet/initial/boundary conditions are given by

"i = "0;i + bf ; cf;i = 0 @ t = 0;

uicf;i �
"iDei;X

PeL

@cf;i
@x

= uicfin; uicp;i �
"iDepi;X

PeL

@cp;i
@x

= uicpin; @ x = 0; (7.49)
n_coreX
i=1

(ui) = 1; pi = pj8i; j = 1 : n_core @ x = 0;

pi = 0;
@cfi
@x

= 0;
@cpi
@x

= 0 @ x = 1;

n �rpi = n �rcfi = n �rcpi = 0 on transverse boundaries,

and the structural property-relationship in dimensionless form is given as follows:

ki =
"i
"0;i

�
"i (1� "0;i)

"0;i (1� "i)

�2�
; ri =

r
ki"0;i
"i

; Av;i =
"i

"0;iri
; 8 i = 1 : n_core: (7.50)

It should be noted that unlike for Newtonian acids, the continuum model for in-situ
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gelling acids have the strong coupling between momentum balance (Darcy-law)

and species balances through the highly non-linear viscosity term. In case of multi-

core set-up, since the inlet condition through each core is coupled with other cores,

the solution in each core depends on the solution in other cores. In the following

chapter, we present the solution technique for the general case of multi-core set-up.

Disclaimer:

It must be noted that diverting acids like in-situ gelling acids have very com-

plex rheological behavior that depends strongly on pH of the medium and concen-

tration of additives such as polymer, cross-linkers and breakers. They are also

non-Newtonian (shear thinning) in nature. Since, there are no theoretical models

available in the literature that describe these behavior, as a �rst attempt performed

on theoretical studies of reactive dissolution of carbonates with in-situ gelling acids,

we use various simpli�cations in the two-scale continuum model presented in this

work. Based on these simpli�cations/assumptions, we present the simulation re-

sults and analyze the dissolution process. Therefore, as long as these assump-

tions are valid, the model results are valid. We list these assumptions one by one

as follows:

1. The rheological model developed here is based on the experimental data

(Rose, 2004) as shown in Figure 7.9 that may not have the similar features of

other in-situ gelling acids. Therefore, the parameters used in the rheological

model may have to be modi�ed accordingly.

2. The two-scale continuum model developed here does not account the poly-

mer �ltration. In some cases, cross-linked polymer molecules are very big

in size as compared to micropores in carbonates, and so, they get �ltered

as dissolution proceeds. As a results, diffusivity and reaction rate of protons

with carbonates changes that change the gel formation and its dynamics.
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However, for simplicity, we neglected the �ltration (adsorption/desorption) of

polymers and cross-linkers in this work.

3. The kinetics of cross-linking and breaking of the gel is also neglected in this

work. Here, we assume that kinetics of cross-linking and breaking is very

fast and depends on pH and polymer concentration. Also, cross-linkers and

breakers have different properties than the polymer, and may propagate at

different speed as dissolution occurs. But, here we have considered all the

additives (polymer, cross-linkers and breakers) as a single species and used

only one species balance for these constituents (along with one species bal-

ance for protons).

4. The multi-step chemistry and ionic equilibrium due to formation of carbonic

acids are neglected in these studies. Here, we have assumed the reaction

is irreversible and occurs in a single step (which might not be the case for

retarding acids such as EDTA, DTPA etc.). In addition, CO2; produced due

to dissolution of carbonates with acids, are dissolved in the solution and form

carbonic acids. As a result, ionic equilibrium is achieved that restrict the pH

in narrow range (around pH 4). This effect is very important for in-situ gelling

acids as the pH-range of gel formation may overlap this equilibrium.

5. The relation between local permeability and porosity due to dissolution is

described by modi�ed Kozeny relation, which is well suitable to packed-bed

but may not be applicable to porous media in general. In addition, the porosity

and permeability may not be correlated in practice, whereas in this work,

these are correlated as the same (Kozeny) relation. Similarly, the correlations

for dispersion and transfer coef�cients are taken from packed bed literature.

6. Initially, the porosity �eld is distributed using uniform random number gener-

ation. However, this may not be true in general. For example, initial porosity
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�eld may be distributed randomly with normal or log normal distribution.
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Chapter 8 Numerical Techniques for Wormhole For-
mation

8.1 Preamble

In this chapter, we present the solution techniques to determine the numerical

solution of the two-scale continuum (TSC) model described in chapter 7. Here we

consider the general case of multicore set-ups as shown in Figure 7.14, where

n_core is the number of cores (identical in shape and size) mounted in parallel

�ow arrangement. n_core = 1 corresponds to single core set-up while n_core = 2

represents the dual core set-up. Q0 (or u0) is the total inlet �ow rate (velocity) that

is kept constant. The pressure at the exit, Pexit is maintained at a �xed value. The

inlet �ow-rate through each cores, u0;i is split according to their mobility ratio.

The TSC model contains Darcy-law and material balance equations (continuity

equation, species balance equations and dissolution equations) as given below:

r� (Mi�rpi) = �r � ui = Da

�
1 +

�2ri ri�i
Sh

��1
Avi cfi ; (8.1)

@�i
@t

+r� (ui cfi) =
1

PeL
r� ("iDei�rcfi) ; (8.2)

@ ("icpi)

@t
+r� (ui cpi) =

1

PeL
r� ("iDepi�rcpi) ; (8.3)

@"i
@t
= NacDa

�
1 +

�2ri ri�i
Sh

��1
Avi cfi i = 1; 2; (8.4)

where

�i = "i

�
cfi +

1

Nac

�
; (8.5)
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the subscript i stands for ith core; the mobility,Mi; is given by

Mi =
M0iki

�i kuik
n�1 ; (8.6)

and effective viscosity term, �i; is given by

�i = �0i

�
M0iki

"i
"0i

� (1�n)
2

"
1 + (�mi � 1)Exp

(
�a (pHi � pHm)

2

pHi (7� pHi)

)#
; (8.7)

�0i = 1 +
�
�p0 � 1

�
cpi;

�mi � 1
�max � 1

=
1� exp (��1cpi)
1� exp (��1)

:

The inlet/initial/boundary conditions are given by

"i = "0;i + bf ; cf;i = 0; cp;i @ t = 0; (8.8)

uicf;i �
"iDei;X

PeL

@cf;i
@x

= uicfin;i; uicp;i �
"iDepi;X

PeL

@cp;i
@x

= uicpin;i; @ x = 0;

@cfi
@x

= 0;
@cpi
@x

= 0 @ x = 1; (8.9)

n �rcfi = n �rcpi = 0 on transverse boundaries,

pi = pj8 i; j = 1:n_core;
n_coreX
i=1

(ui) = 1; @ x = 0;

pi = 0; @ x = 1; (8.10)

n �rpi = 0 on transverse boundaries,

and the structural property-relationship in dimensionless form is given as follows:

ki =
"i
"0;i

�
"i (1� "0;i)

"0;i (1� "i)

�2�
; ri =

r
ki"0;i
"i

; Av;i =
"i

"0;iri
; 8 i = 1; 2: (8.11)
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Figure 8.1: Finite volume descretization in 1D (solid circles denote the node points
where concentrations, porosity and pressure are de�ned; w and e de�ne the west
and east face of the element where velocity vector are de�ned).

Figure 8.2: Finite volume descretization in 2D (solid circles denote the node points
where concentrations, porosity and pressure are de�ned; w and e denote the west
and east faces of the element where x-component of velocity vector are de�ned;
s and n denote the south and east faces of the element where y-component of
velocity vector are de�ned).

Here, we use �nite volume discretization for spatial gradients as shown in Figures

(8.1, 8.2 and 8.3) implicit �rst order Euler method coupled with extrapolation tech-

niques for time derivatives. The discretization of these derivatives leads to large

number of linear equations that we solve using multigrid linear solvers. Figure 8.4
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(a)

(b)

Figure 8.3: Finite volume descretization in 3D (solid circles denote the node points
where concentrations, porosity and pressure are de�ned; w and e denote the west
and east faces of the element where x-component of velocity vector are de�ned;
s and n denote the south and east faces of the element where y-component of
velocity vector are de�ned; b and t denote the bottom and top faces of the element
where z-component of velocity vector are de�ned), (a) meshing (b) control volume.
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shows the main steps involved in obtaining the numerical solution of the model.

Initially, the concentration (of acid and polymer) and porosity �eld are given and

boundary conditions are speci�ed. Based on these input, we solve for pressure

and velocity �eld in each core. Once, we have velocity pro�le, we use them to

solve for concentration and porosity �elds at next time step, then update the pres-

sure and velocity pro�le at that time. We continue the procedure until breakthrough

is achieved, i.e., the overall pressure across the core drops by the factor 100.

As described earlier, we start with the initial and boundary conditions given for

concentration (of protons and polymer) and porosity �eld as well as the quantities

(such as permeability, viscosity, mobility etc.) that appear in the model equations.

Initially, porosity is �eld is generated using random number generation distributed

uniformly between 0.05 to 0.35 with average porosity, h"0i = 0:2 and heterogeneity

magnitude, 4" = 0:15: Initial mobility, M0;i for ith core is known that gives the inlet

velocity, uin;i through each core (identical in shape and size) as follows:

uin;i =
M0;i

j=n_coreX
j=1

M0;i

: (8.12)

Once, we have the inlet velocities, we replace the inlet conditions given in equation

(8.10) for pressure equation by equation (8.12) and rewrite the boundary equations

for pressure as follows:

�M @p

@x
= ui = uin;i =

Meff;i

j=n_coreX
j=1

Meff;i

; @ x = 0;

pi = 0; @ x = 1; (8.13)

n �rpi = 0 on transverse boundaries,

Initially, the cores are assumed to be saturated with brine solution, so we assume
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Figure 8.4: The main steps used in obtaining numerical solution of the two-scale
continuum models in single or dual core set ups.
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there are no acid or polymer present in the cores initially and juj = 1. Now we

explain the main steps used in solving the model one by one in detail.

8.2 Pressure Pro�le

To solve for the pressure pro�le, we �rst discretize the pressure equation (8.1)

using control volume approach. Figure 8.3 (b) shows a schematic of the control

volume used for discretization. The faces of the control volume are placed at the

center of two adjacent nodes and are denoted by e, w, n and s corresponding to

east, west, north and south boundaries of the control volume, i.e.,

4x = 4xe +4xw
2

;4y = 4yn +4ys
2

;4z = 4zt +4zb
2

; (8.14)

where, 4xe; 4xw; 4yn; 4ys; 4zt and 4zb are distance from node point to east,

west, north, south, top and bottom boundaries, respectively and are given by

4xe = xi+1 � xi; 4xw = xi � xi�1;

4yn = yj+1 � yj; 4ys = yj � yj�1; (8.15)

4zn = zk+1 � zk; 4zb = zk � zk�1;

where (xi;yj; zk) denotes the coordinate of the node (i; j; k) : Here, we assume the

uniform

meshing, i.e.,

4xe = 4yn = 4zt =
1

Nx � 1

and

xi = i4xe; yj = j4yn; zk = k4zt:

for internal nodes.

At the boundaries of the core domain, the control volume is shown in Figure

8.1. Though this Figure corresponds to one-dimensional grids, it is same for 2D
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and 3D discretization as shown in Figure 8.5, i.e., at i = 1, the node lies on west

(a) (b)

(c) (d)

(e) (f)

Figure 8.5: Surface of control volume at the boundaries, (a) west boundary, i = 1,
(b) east boundary, i = Nx, (c) south boundary, j = 1, (d) north boundary, j = Ny,
(e) bottom boundary, k = 1, (a) top boundary, k = Nz.

boundary (4xw = 0); at i = Nx, the node lies on east boundary (4xe = 0); at

j = 1, the node lies on south boundary (4xs = 0); at j = Ny, the node lies on north
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boundary (4xn = 0); at k = 1, the node lies on bottom boundary (4xb = 0); and,

at k = Nz, the node lies on top boundary (4xt = 0).

Now we use integrate the pressure equation (8.10) over the control volume (x

from w to e; y from s to n; z from b to t; depending on dimension of the problem) for

each core as follows:

1

4x4y4z

eZ
w

nZ
s

tZ
b

r� (M �rp) dxdydz

=
1

4x4y4z

eZ
w

nZ
s

tZ
b

Da

�
1 +

�2r r�

Sh

��1
Av cf dxdydz; (8.16)

which leads to discretized equation as follows:

1

4x

�
M
@p

@x

�e
w

+
1

4y

�
M
@p

@y

�n
s

+
1

4z

�
M
@p

@z

�t
b

=

$
Da

�
1 +

�2r r�

Sh

��1
Av cf

%
i;j;k

= fi;j;k: (8.17)

It should be noted that r.h.s. of above equation is calculated based on earlier

values of concentrations, porosity and velocity pro�le. Now, we can write derivative

terms in equation (8.17) using central difference and boundary conditions (8.13) as

follows:

M
@p

@x

����
e

=

8><>: Me
pi+1;j;k�pi;j;k

4xe ; i < Nx

0; i = Nx

(8.18)

M
@p

@x

����
w

=

8><>: Mw
pi;j;k�pi�1;j;k

4xw ; i > 1

�u0;icore; i = 1
(8.19)

M
@p

@y

����
n

=

8><>: Mn
pi;j+1;k�pi;j;k

4yn ; j < Ny

0; j = Ny

(8.20)
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M
@p

@y

����
s

=

8><>: Ms
pi;j;k�pi;j�1;k

4ys ; j > 1

0; j = 1
(8.21)

M
@p

@z

����
t

=

8><>: Mt
pi;j;k+1�pi;j;k

4zt ; k < Nz

0; k = Nz

(8.22)

M
@p

@z

����
b

=

8><>: Mb
pi;j;k�pi;j;k�1

4zb ; k > 1

0; k = 1
(8.23)

Thus the equation (8.17) can further be written for internal nodes as

1

4xMe
pi+1;j;k � pi;j;k

4xe
� 1

4xMw
pi;j;k � pi�1;j;k

4xw
1

4yMn
pi;j+1;k � pi;j;k

4yn
� 1

4yMs
pi;j;k � pi;j�1;k

4ys
1

4zMt
pi;j;k+1 � pi;j;k

4zt
� 1

4zMb
pi;j;k � pi;j;k�1

4zb
= fi;j;k; (8.24)

)

Me

4x4xe
pi+1;j;k +

Mw

4x4xw
pi�1;j;k +

Mn

4y4yn
pi;j+1;k

+
Ms

4y4ys
pi;j�1;k +

Mt

4z4zt
pi;j;k+1 +

Mb

4z4zb
pi;j;k�1

�

0B@ Me

4x4xe +
Mw

4x4xw +
Mn

4y4yn

+ Ms

4y4ys +
Mt

4z4zt +
Mb

4z4zb

1CA pi;j;k = fi;j;k; (8.25)

where, since the effective properties like mobilities are known at node points based

on earlier values of concentration, porosity and velocity pro�le, the mobilities at the

surfaces are calculated as follows:

4xe
Me

=
xi+1 � xe
Mi+1;j;k

+
xe � xi
Mi;j;k

; (8.26)

4xw
Mw

=
xi � xw
Mi;j;k

+
xw � xi�1
Mi�1;j;k

; (8.27)
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4yn
Mn

=
yj+1 � yn
Mi;j+1;k

+
yn � yj
Mi;j;k

; (8.28)

4ys
Ms

=
yj � ys
Mi;j;k

+
ys � yj�1
Mi;j�1;k

; (8.29)

4zt
Mt

=
zk+1 � zt
Mi;j;k+1

+
zt � zk
Mi;j;k

; (8.30)

4zb
Mb

=
zk � zb
Mi;j;k

+
zb � zk�1
Mi;j;k�1

: (8.31)

The discretized equation (8.25) can further be written in standard form as

east pi+1;j;k + west pi�1;j;k + north pi;j+1;k+

south pi;j�1;k + top pi;j;k+1 + bottom pi;j;k�1�

(east+ west+ north+ south+ top + bottom) pi;j;k = source; (8.32)

where,

east =
Me

4x4xe
; (8.33)

west =
Mw

4x4xw
; (8.34)

north =
Mn

4y4yn
; (8.35)

south =
Ms

4y4ys
; (8.36)

top =
Mt

4z4zt
; (8.37)

bottom =
Mb

4z4zb
; (8.38)

source = fi;j;k: (8.39)

Similarly, equation (8.17) can be simpli�ed for the boundaries using relation given

in equations (8.18-8.23) that gives the similar form form of discretized equation as

given in equation (8.24), except there will be no term containing east for i = Nx and
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so on., i.e.,

east = 0 for i = Nx (8.40)

west = 0 for i = 1 (8.41)

north = 0 for j = Ny (8.42)

south = 0 for j = 1 (8.43)

top = 0 for k = Nz (8.44)

bottom = for k = 1; (8.45)

source =

8><>: fi;j;k +
uin;icore
4x for i = 1

fi;j;k else
(8.46)

Thus, the discretized equation leads to system of linear equation that can be solved

by using linear solvers (based on Gauss-Jacobi, Gauss-Seidel, SOR etc.). Since

heterogeneity in the formation creates the transverse component of velocity, it very

important to calculate the pressure pro�le as accurate as possible to capture the

branching and dissolution patterns more accurately. For these reasons, we use

advance multigrid techniques (Wesseling, 1992) that converges faster than any

other technique available in the literature.

After we solve the pressure pro�le, we can determine the velocity pro�le at the

faces of the control volumes using Darcy-law, u = �M �rp. Thus, the velocity in

x, y and z-directions for internal nodes can be given as,

ux;e = �Me
pi+1;j;k � pi;j;k

4xe
; ux;w= �Mw

pi;j;k � pi�1;j;k
4xw

; (8.47)

uy;n = �Mn
pi;j+1;k � pi;j;k

4yn
; uy;s= �Ms

pi;j;k � pi;j�1;k
4ys

; (8.48)

uy;t = �Mt
pi;j;k+1 � pi;j;k

4zt
; uy;b= �Mb

pi;j;k � pi;j;k�1
4zb

; (8.49)
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It should be noted that

ux;eji;j;k = ux;wji+1;j;k ; uy;tji;j;k = uy;bji;j+1;k ; uz;tji;j;k = uz;bji;j;k+1 ; (8.50)

for internal nodes.

8.3 Concentration and Porosity Evolution

Once we calculate the velocity pro�le, we use them to solve the species bal-

ance and dissolution equations. We use the operator splitting method for species

balance and dissolution equation, where upwind scheme is implemented for the

convective term and second order discretization scheme for the dispersive term.

For time derivative, we use the implicit �rst order (Euler) method and solve the

system of linear equations using the multigrid techniques. We also use the extrap-

olation techniques to increase the order of accuracy of the solution.

8.3.1 Operator Splitting

The balance equations for concentrations and porosity given in equations (8.2

- 8.4), can be written as follows:

@F1
@t

= LDCF+ LRF; (8.51)

where, F1=

0BBBB@
�

"cp

"

1CCCCA ; the diffusion-convection operator, LDCF, is given by

LDCF =

0BBBB@
1

PeL
r� ("De�rcf )�r� (u cf )

1
PeL
r� ("Dep�rcp)�r� (u cp)

0

1CCCCA (8.52)
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and reaction operator, LRF; is given by

LRF =

0BBBB@
0

0

NacDa
�
1 + �2r r�

Sh

��1
Av cf

1CCCCA : (8.53)

Now we use operator splitting where we solve the diffusion-convection operator

�rst and then use the solution to solve the reaction operator as follows:

F�1 � Fn1
4t = LDCF

�; (8.54)

Fn+11 � F�1
4t = LRF

n+1; (8.55)

where LDC and LR represents the discretized version of diffusion-convection and

reaction operators, respectively. We repeat the same steps with half time steps

and use extrapolation to �nd more accurate solution. It should be noted that we

used implicit Euler (�rst order) method for discretization of time derivatives. Here,

superscripts `*', `n' and `n + 1' represent the intermediate (or virtual) time, older

(previous) time and new (or next) time.

8.3.2 Finite Volume Discretization for Diffusion-Convection Operator

The diffusion-convection operator from �rst splitting (equation 8.54) can be writ-

ten in operator form as follows:

�� � �n

4t =
@�

@t
=

1

PeL
r�
�
"�De�rc�f

�
�r�

�
u c�f

�
; (8.56)

("cp)
� � ("cp)n

4t =
@"cp
@t

=
1

PeL
r�
�
"�Dep�rc�p

�
�r�

�
u c�p

�
; (8.57)

"� � "n

4t =
@"

@t
= 0: (8.58)
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The equation (8.58) leads to constant porosity through out this step, i.e., "� = "n:

Now, we use this result and integrate equations (8.56 and 8.57) w.r.t. x from w to

e; y from s to n; z from b to t (as done in previous section) as follows:

�� � �n

4t =
1

4x4y4z

eZ
w

nZ
s

tZ
b

r� (D �rc� � u c�) dxdydz ; (8.59)

with c� = c�f ; D = "�De

PeL
for acids and c� = c�p; D = "�Dep

PeL
for polymers. It simpli�es the

equation (8.56) as follows:

"
c� � cn

4t =
1

4x

�
D
@c�

@x
� uxc

�
�e
w

+
1

4y

�
D
@c�

@y
� uyc

�
�n
s

+
1

4z

�
D
@c�

@z
� uzc

�
�t
b

:

(8.60)

Now, we can write derivative terms in equation (8.17) using central difference and

convective term using upwinding scheme at internal nodes and boundaries (with

boundary conditions (8.9) as follows:

D
@c�

@x
� uxc

�
����
e

=

8><>: De
c�i+1;j;k�c�i;j;k

4xe � (0; ue)max c�i;j;k � (0; ue)min c�i+1;j;k; i < Nx

�uec�i;j;k; i = Nx

;

(8.61)

D
@c�

@x
� uxc

�
����
w

=

8><>: Dw
c�i;j;k�c�i�1;j;k

4xw � (0; uw)max c�i�1;j;k � (0; uw)min c�i;j;k; i > 1

�uin;icorecin; i = 1
;

(8.62)

D
@c�

@y
� uy

����
n

=

8><>: Dn
c�i;j+1;k�c�i;j;k

4yn � (0; un)max c�i;j;k � (0; un)min c�i;j+1;k; j < Ny

0; j = Ny

;

(8.63)
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D
@c�

@y
� uy

����
s

=

8><>: Ds
c�i;j;k�c�i;j�1;k

4ys � (0; us)max c�i;j�1;k � (0; us)min c�i;j;k; j > 1

0; j = 1
;

(8.64)

D
@c�

@z
� uz

����
t

=

8><>: Dt
c�i;j;k+1�c�i;j;k

4zt � (0; ut)max c�i;j;k � (0; ut)min c�i;j;k+1; k < Nz

0; k = Nz

;

(8.65)

D
@c�

@z
� uz

����
b

=

8><>: Db
c�i;j;k�c�i;j;k�1

4zb � (0; ub)max c�i;j;k�1 � (0; ub)min c�i;j;k; k > 1

0; k = 1
:

(8.66)

Thus the equation (8.60) simpli�es further in following form:

east c�i+1;j;k + west c�i�1;j;k + north c�i;j+1;k+

south c�i;j�1;k + top c�i;j;k+1 + bottom c�i;j;k�1��
node + nodw + nodn + nods + nodt + nodb �

"

4t

�
c�i;j;k = source� "cn

4t ;(8.67)

where,

east =

8><>:
1
4x

�
De
4xe � (0; ue)min

�
; i < Nx

0; i = Nx

; (8.68)

west =

8><>:
1
4x

�
Dw
4xw + (0; uw)max

�
; i > 1

0; i = 1
; (8.69)

node =

8><>:
1
4x

�
De
4xe + (0; ue)max

�
; i < Nx

ue
4x ; i = Nx

; (8.70)
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nodw =

8><>:
1
4x

�
Dw
4xw � (0; uw)min

�
; i > 1

0; i = 1
; (8.71)

north =

8><>:
1
4y

�
Dn
4yn � (0; un)min

�
; j < Ny

0; j = Ny

; (8.72)

south =

8><>:
1
4y

�
Ds
4ys + (0; us)max

�
; j > 1

0; j = 1
; (8.73)

nodn =

8><>:
1
4y

�
Dn
4yn + (0; un)max

�
; j < Ny

0; j = Ny

; (8.74)

nods =

8><>:
1
4y

�
Ds
4ys � (0; us)min

�
; j > 1

0; j = 1
; (8.75)

top =

8><>:
1
4z

�
Dt
4zt � (0; ut)min

�
; k < Nz

0; k = Nz

; (8.76)

bottom =

8><>:
1
4z

�
Db
4zb + (0; ub)max

�
; k > 1

0; k = 1
: (8.77)

nodt =

8><>:
1
4z

�
Dt
4zt + (0; ut)max

�
; k < Nz

0; k = Nz

; (8.78)

nodb =

8><>:
1
4z

�
Db
4zb � (0; ub)min

�
; k > 1

0; k = 1
: (8.79)

and

source =

8><>: �uin;icorecin
4x for i = 1

0 else
: (8.80)
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Here, the effective diffusivities are known based on earlier values of concentration,

porosity and velocity. So, the effective diffusivities at the surfaces can be calculated

as follows:

4xe
De

=
xi+1 � xe
Di+1;j;k

+
xe � xi
Di;j;k

; (8.81)

4xw
Dw

=
xi � xw
Di;j;k

+
xw � xi�1
Di�1;j;k

; (8.82)

4yn
Dn

=
yj+1 � yn
Di;j+1;k

+
yn � yj
Di;j;k

; (8.83)

4ys
Ds

=
yj � ys
Di;j;k

+
ys � yj�1
Di;j�1;k

; (8.84)

4zt
Dt

=
zk+1 � zt
Di;j;k+1

+
zt � zk
Di;j;k

; (8.85)

4zb
Db

=
zk � zb
Di;j;k

+
zb � zk�1
Di;j;k�1

: (8.86)

Thus, the discretization of transient diffusion-convection operator leads to system

of linear equations (8.67) that can be solved by using linear solvers. We use ad-

vance multigrid techniques (Wesseling, 1992) to solve this equation. Similar disc-

tretized system of equation for polymer concentration can be used by following

the same procedure. Once, we solve for these concentrations and porosity �eld

at intermediate step, we use these solution to solve the second splitting (reaction

operator) given in equation (8.55) to �nd the solution at the next time step.

8.3.3 Solution of Reaction Operator

The second part of the operator splitting method is the solution of reaction op-

erator given in equation (8.55) that can be rewritten as

�n+1 � ��

4t =
@�

@t
= 0; (8.87)

("cp)
n+1 � ("cp)�

4t =
@"cp
@t

= 0; (8.88)

"n+1 � "�

4t =
@"

@t
= NacDaeffc

n+1
f : (8.89)
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where effective Damkohler number, Daeff ; is given by

Daeff = Da

�
1 +

�2r r�

Sh

��1
Av: (8.90)

The equation (8.87) leads to � =constant, or, �n+1 = �� )

cn+1f =
"�

"n+1

�
c�f +

1

Nac

�
� 1

Nac

: (8.91)

Similarly, equation (8.88) gives;

cn+1p =
"�c�p
"n+1

: (8.92)

Thus, if "n+1 is known, we can calculate concentration of acid and polymer from

equation (8.91 and 8.92). To calculate "n+1, we rewrite equation (8.89) by using

equation (8.91) as follows:

"n+1 � "�

4t = NacDaeffc
n+1
f = Daeff

�
"�

"n+1
�
Nacc

�
f + 1

�
� 1
�
; (8.93)

that gives the quadratic equation in porosity "n+1 as

�
"n+1

�2 � ("� �Daeff4t) "n+1 �Daeff4t "�
�
Nacc

�
f + 1

�
; (8.94)

that has two roots:

"n+1 =
1

2
("� �Daeff4t)�

q
("� �Daeff4t)2 + 4Daeff4t "�Nacc�f : (8.95)

One of these roots is negative and other is positive, we choose the positive roots

(as porosity can not be negative). Thus the porosity at next time step is calculated
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as

"n+1 =
1

2
("� �Daeff4t) +

q
("� �Daeff4t)2 + 4Daeff4t "�Nacc�f : (8.96)

Once we calculate the new porosity �eld, we update the concentrations of acid and

polymer using equation (8.91 and 8.92).

8.3.4 Extrapolation

Earlier, we presented the numerical method to solve the concentrations of acid

and polymer, and porosity �eld at next time step (at tn+1) based on their values at

the current time step (at tn). The discretization for temporal derivatives are per-

formed using implicit Euler method which has �rst order accuracy in time (O(4t)).

For 3-D problems which is computationally very expansive, very small time steps

may be very dif�cult and time taking in obtaining solutions. For these reasons,

higher order methods are used. But in literature, it is shown that �rst order method

coupled with extrapolation technique is not only leads to higher order accuracy but

also speed up the calculations.

It can be seen by simple example of solving a linear problem,

dc

dt
= ��c (8.97)

c = c0 @t = 0; (8.98)

which has exact solution as

c = c0 exp (��t) (8.99)

that gives the exact solution at nth time step (tn = n4t) as follows:

cn;exact = c0 exp (��n4t) � c0

�
1� n�4t+ n2

2
�24t2 +O (4t)3

�
(8.100)
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Using the implicit �rst order Euler method, we get the solution at nth time step

(tn = n4t) with step size 4t as

c1n = c0

�
1

1 + �4t

�n
� c0

�
1� n�4t+ n (n+ 1)

2
�24t2 +O (4t)3

�
(8.101)

while with step size 4t
2
as

c2n = c0

 
1

1 + �4t
2

!2n
� c0

 
1� n�4t+

n
�
n+ 1

2

�
2

�24t2 +O (4t)3
!
: (8.102)

We can see that solutions from Implicit Euler method given in equations (8.101 and

8.102) have the �rst order accuracy. If we extrapolated these solution as follows:

c = 2c2n � c1n � c0

�
1� n�4t+ n2

2
�24t2 +O (4t)3

�
; (8.103)

which has accuracy to second order.

Thus, here, based on the variables at current time step tn, we determine the

two solutions at next time steps tn+1 with the step size, 4t and 4t
2
: Let cf1; cp1; "1

are solutions (acid concentration, polymer concentration and porosity, respectively)

with step size 4t and cf2; cp2; "2 are solutions when step size is 4t
2
: Then the

extrapolated solutions (cf1; cp1; "1) can be written as

cf = 2cf2 � cf1 (8.104)

cp = 2cp2 � cp1 (8.105)

" = 2"2 � "1: (8.106)

As shown earlier, these extrapolated solution have second order accuracy O(4t2)

in time. In the following chapters, we use the solution technique describe here, to
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determine the solution for pressure pro�le, concentrations of acid and polymer, and

porosity evolution; analyze the acidization process with gelling acids; and, compare

the results with that of Newtonian acids and those available in literature.
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Chapter 9 One Dimensional Analysis: Gel Dynamics
and Flow Diversion

9.1 Preamble

As discussed earlier, stimulation with Newtonian acids leads to over-stimulation

of high-perm zones and under-stimulation of low-perm zones. In particular, when

Newtonian acids are injected into the wells, they preferentially �ow through the

high-permeability or low resistance region and increase the permeability of those

regions. As a result, more acid is drawn to the high-perm region while low-perm

region is under-stimulated. Therefore, in-situ gelling acids are used in stimulation

that use pH to control viscosity. So, when in-situ gelling acids are injected into the

wells, they also �ow preferentially through the high-perm zones and increase their

permeability. But, as dissolution occurs, pH of the medium increases and reaches

to a threshold value where polymers added to acidic solution, start cross-linking.

As a result, gel is formed in the high-perm regions that offers very high resistance

due to enormous increase in viscosity. Consequently, acids are diverted to the low-

perm regions and stimulate these regions. Thus, the use of in-situ gelling acids,

unlike Newtonian acids, enable us to stimulate least-accessible low-perm zones

that leads to uniform stimulation of carbonates. However, there are no theoreti-

cal studies performed with in-situ gelling acids and though, several experimental

studies are presented in the literature, they are not suf�cient enough to provide the

information such as on the design a �uid (in terms of rheological parameters) and

process conditions that lead to maximum diversion. Also, its very dif�cult to predict

the optimum injection rates and amount of �ow diversion for general acids.

Since gel formation is the key for optimal stimulation of carbonates with in-

situ gelling acids, in this chapter, we study systematically the gel dynamics in a

single core set-up as shown in Figure 9.1(a) and identify the mechanism of �ow
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diversion from high-perm core to low-perm core in a dual core set-up as shown in

Figure 9.1(b). For this, we use simplest one-dimensional version of the TSC model

(a)

(b)

Figure 9.1: Schematic diagram of (a) single core set-ups (b) dual core set-ups in
laboratory core experiments.

and simulate it using the techniques described in previous chapter. In the single

core set-up shown in Figure 9.1(a), an acidic solution is injected at a constant rate

through a carbonate core of length L where pressure at the exit is kept constant.

Similarly, in dual core set-ups as shown in Figure 9.1(b), two carbonate cores of

different permeability are mounted parallel, where acid is injected at a constant
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rate and pressure at the exit is �xed. In this set-up, the �ow splits in both the

cores depending on their effective mobility ratio. Here, we analyze the acidization

with in-situ gelling acids in single and dual core set-ups one by one and estimate

the gel properties such as front-speed and width and �ow diversion using scaling

analysis. We also analyze the effect of rheological parameters on optimum injec-

tion rates and dissolution phenomena and compare the predictions from simulation

with available experimental results.

9.2 Single Core set-up

Figure 9.1(a) shows the schematic of a single core set-up where an acidic solu-

tion is injected through a carbonate core of length L with a constant injection rate;

Q0 and exit pressure (back pressure), Pexit; is �xed. Since, the two-scale contin-

uum model for acidization process contains several (�ow, kinetics and rheological)

parameters, the dimensionless form of the model which has minimum number of

parameters, is better to analyze the effects of those parameters on dissolution

process. For this reason, we use the dimensionless form of the model to analyze

the acidization process.

9.2.1 Dimensionless TSC Model

The dimensionless form of the two-scale continuum model is described in pre-

vious chapter. Here, we use the one-dimensional version of the model for single

core set-up that is given as follows:

@

@x

�
M
@p

@x

�
= �@ux

@x
= Da

�
1 +

�2r �

Sh

��1
Av cf ;

@�

@t
+
@uxcf
@x

=
1

PeL

@

@x

�
"De

@cf
@x

�
;

@ ("cp)

@t
+
@uxcp
@x

=
1

PeL

@

@x

�
"Dep

@cf
@x

�
; (9.1)

@"

@t
= NacDa

�
1 +

�2r �

Sh

��1
Av cf ;
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where �rst equation for pressure is the combination of Darcy-law, continuity equa-

tion and dissolution equation. The second equation is the combination of species

balance and dissolution equation, where � is given by

� = "

�
cf +

1

Nac

�
: (9.2)

The third and forth equations represent the species balance for polymer and poros-

ity evolution, respectively. The effective mobility,M; and effective viscosity term, �;

are given by

M =
k

� kuxkn�1
;

: � = �0

�
k
"

"0

� (1�n)
2

"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
; (9.3)

�0 = 1 +
�
�p0 � 1

�
cp;

�m � 1
�max � 1

=
1� exp (��1cp)
1� exp (��1)

:

The inlet/initial/boundary conditions are given by

" = "0 + bf ; cf = 0 @ t = 0;

ucf �
"De;X

PeL

@cf
@x

= uincfin; u = uin; ucp �
"Dep;X

PeL

@cp
@x

= uincpin @ x = 0; (9.4)

p = 0;
@cf
@x

= 0;
@cp
@x

= 0 @ x = 1;

where u is the axial component of velocity, x is axial coordinate. Here "0 is base

porosity �eld and bf is a random �uctuation in the initial porosity �eld. Here, Da

is the core-scale Damkohler number, �2 is pore-scale Thiele modulus, Sh is the

Sherwood number, PeL is the axial Peclet number and Nac is the acid capacity

number de�ned as the volume of solid dissolved per unit volume of the acid. In this

case, we assume that the rp
Lp
<< 1, i.e., the convective contribution to mass transfer
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at the pore scale is neglected and hence the Sherwood number (Sh) is almost

constant (= Sh1 = 3:0). The structural property-relationship in dimensionless

form is given as follows:

k =
"

"0

�
" (1� "0)

"0 (1� ")

�2�
; r =

r
k"0
"
; Av =

"

"0r
; (9.5)

Now, we simulate the model using the technique described in previous chapter.

We use the typical values of �ow and reaction parameters, listed in Table 9.1, for

Table 9.1: List of parameters and dimensionless numbers used in the simulation
Quantity Value
Cf;in 20%(wt) = 0:68 M
Cp;in 2%(wt)
"0 0.2
ks 1:4� 10�4 cm/s
Dm0 6:0� 10�6cm2/s
�c 200.04 g(solid)/mol(acid)
�s 2.71 g/cm3

Nac 0.05
�p0 10 cp
�0 1 cp
�m 23.83
a 23.4
pHm 2.47
n 1
K0 1 mD
rp0 10 �m
av0 50 cm�1

L 10 cm
Sh1 3.0
�2 0.047
�2 1:17� 105
� 1
�0s 0.5

simulation. In following sections, we present the simulation results based on these

values of parameters.
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Figure 9.2: PH/concentration pro�le from 1-D simulation for Da = 100:

9.2.2 Gel Dynamics

Here, we solve the one-dimensional (1-D) version of the model and observe

the variation of concentration/pH in axial direction as shown in Figure 9.2. It can

be easily seen from this �gure that there are two fronts (reaction and gel) present

in the core, unlike for the case of Newtonian acids where only one (reaction) front

is observed. In this �gure, the red color represents the inlet concentration (at

pH =0.68), the light orange color represents the reaction zone where most of the

protons are used to dissolve the medium (in pH range, 0:68 � 1:7), the pink color

represents the brine solution (at pH = 7) and green color represents the pH range

of gel formation (pH = 1:6 � 3:8) as can be seen from viscosity pro�le in Figure 9.3.

Since, polymers is not consumed during dissolution, it propagates faster assuming

there is no �ltration (polymer molecules are too small compared to smallest pore
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Figure 9.3: Viscosity pro�le (presence of gel) in the core the from 1-D simulation
for Da = 100:

size in the core to get �ltered or adsorbed on the rock). Thus, polymers are present

everywhere in the core after very short time. Hence, when proton concentration

falls suf�ciently (pH increases to 1.6), the polymers start cross-linking and form

gel.

Since, pH-range of reaction zone (where most of the reaction takes place or pH

falls signi�cantly from inlet value) corresponds to pH = 0:68 � 1:7 and pH-range of

gel formation corresponds to pH = 1:6 � 3:8; the reaction front lies behind the gel

front. However, the speed of propagation of both the fronts are same and can be

expressed by scaling analysis (in appendix) as follows:

ufront =
1� exp (�Nac)

1� "0 exp (�Nac)
u0; (9.6)
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Figure 9.4: Gel propagation (viscosity pro�le) at Da = 100 in the core for various
pore volume of acid injected.

where, ufront is the front speed in steady propagation. It can be seen that the front

speed ufront depends on the injection speed, u0; as well as the acid capacity num-

ber, Nac. For Nac = 0:05 and "0 = 0:2, the dimensionless front speed in equation

(9.6) from scaling analysis corresponds to roughly 0:06 that matches the simula-

tion results in Figure 9.4, where gel front travels dimensionless distance x = 0:25

when pore volume of acid is injected from 4:95 to 24:95 in dimensionless time t = 4

(which leads to the same value of front velocity, x
t
= 0:06). While the speed of

both (reaction and gel) fronts are same, the diffusivity of protons in reaction zone

is much higher compared to that in gel due to very high viscosity in the later re-

gions. Therefore, the width of reaction front, lX;C , is much smaller as compared

to the width of gel front, lX;Gel, (in mass-transfer controlled dissolution) as can be

seen from Figure 9.2. The scaling analysis leads to the width of these fronts in
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dimensionless form as follows:

lX;C =
u0
av

�
1

ks
+

2rp
Dm0Sh

h�ic
�
h4pHiC exp (�Nac)Ln10 (9.7)

lx;Gel =
u0
av

�
1

ks
+

2rp
Dm0Sh

h�igel
�
h4pHigel exp (�Nac)Ln10

where h4pHiC is the pH-range of reaction zone and h4pHiGel is the pH-range

of gel formation. rp is average pore radius that depends on initial permeability

as rp �
p
K0 and havi is average area per unit volume available for reaction that

depends on initial permeability as av � 1p
K0
. h�ic and h�igel are average viscosity

of reaction zone and gelled acid, respectively and are given by

h�ic =
1

h4pHic

Z
pHc

� dpH � �p0:

h�igel =
1

h4pHiGel

Z
pHGel

� dpH � 13:13�p0: (9.8)

Thus, the width of both the fronts increases as the injection rate (Da�1) increases

or initial permeability increases. The increase in the width of these fronts with initial

permeability is also observed from simulation as shown in Figure 9.5 that veri�es

the scaling analysis at least qualitatively. It can be seen easily from equations

(9.7) that if the dissolution process is kinetically controlled
�
�2

Sh
h�igel << 1

�
, the

width of both fronts is almost same (lX;C � lX;Gel _ u0
p
K0) and increases linearly

with injection rate but non-linearly with initial permeability; while for mass transfer

controlled dissolution
�
�2

Sh
h�igel >> 1

�
, the width of gel front is bigger than that of

reaction front (lX;C _ h�ic u0K0 and lX;Gel _ h�igel u0K0). In the latter limit, the

width of both the fronts increases linearly with injection rate and initial permeability.

In the current analysis, h4pHiGel equals to 2.2 (gel is formed between pH-range

1.6 - 3.8) and h�igel is 131:3: The typical value of h4pHireact is 1.2 that leads to
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Figure 9.5: Width of gel and reaction fronts in cores of different initial permeabilities
at constant injection rate, u0 = 9:8� 10�4cm s�1:
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lX;C = 0:025 and lX;Gel = 0:15 (which can be seen from Figure 9.2). Thus, for the

case studied here, the dimensionless gel width is about 15% of the domain size

and about 13 times larger than the width of reaction front, which can be seen from

Figure 9.2.

Overall Pressure-drop

It must be noted that resistance offered by gel formation is the main difference

between stimulation of carbonates with in-situ gelling acids and Newtonian acids.

In the case of Newtonian acids, the viscosity remains constant while permeability

is increased due to dissolution. As a result, effective mobility increases with disso-

lution and hence pressure drop across the core decreases with time. On the con-

trary, for the case of in-situ gelling acids, since effective viscosity of gel is very high,

the effective mobility of in-situ gelling acids is reduced tremendously, which results

in large increase in pressure drop as can be seen in Figure 9.6: Thereafter, as

permeability of the core increases due to dissolution, the pressure drop decreases

with time. Eventually, the gel exits the core, so the pressure drop falls sharply

and we get the breakthrough. Thus, unlike for Newtonian acids where pressure

drop decreases monotonically, the pressure pro�le for in-situ gelling acids is non-

monotonic in time (Figure 9.6) and matches with the experimental trends (MaGee

et al., 1997; Gomaa et al., 2011). This result plays very important role in designing

lab experiments where pressure has to be stay within certain limit.

9.2.3 Breakthrough Curves and Optimum Injection Rate

The effect of injection rate on acidization curve is shown in Figure 9.7, where

pore volume to breakthrough (PVBT ) is plotted against dimensionless injection rate

(Da�1). The pore volumes of breakthrough (PVBT ) is de�ned here as the number of

pore volume of acid required to increase the effective mobility of the core by a factor

100. It can be seen from this �gure that similar to the experimental observation

(Fredd and Fogler, 1998), a minimum exists in breakthrough curves for both in-situ
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Figure 9.6: Overall pressure drop for gelling and Newtonian acids from 1-D simu-
lation at Da = 100:

gelling acids and Newtonian acids. We note that the optimum injection rate (Da�1)

is smaller for in-situ gelling acids as compared to Newtonian acids. We estimate

the optimum Damkohler number (injection rate at the minimum) for in-situ gelling

acids using a procedure similar to that used by Panga at al. (2005) as follows:

uopt =

r
"De

kckc
kc + kc

av;

Daopt = �

s
h�ic

"0 hAvi

�
1 +

hri�2

Sh
h�ic

�
: (9.9)
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Figure 9.7: Comparison of breakthrough curves for gelling acids and Newtonian
acids at �2 = 0:047:

Thus, in the mass-transfer controlled dissolution (kc << ks), the optimum injection

rate for in-situ gelling acids can be simpli�ed as

uopt;Gel =
huiopt;New
h�ic

; huiopt;New =
p
"0Dm0kc0av0 (9.10)

while in the kinetically controlled dissolution (kc << ks) as

uopt;Gel =
huiopt;Newp

h�ic
; huiopt;New =

p
"0Dm0ksav0: (9.11)
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Here, hri is the overall increase in average pore radius from its base value while

hAvi is the overall decrease in area per unit volume from its base value, due to

dissolution. Since we de�ned the breakthrough when mobility is increased by a

factor 100, we assume hri � 5 and hAvi � 0:2: Thus it can be calculated from

the equation (9.9), for the parameter values used in current analysis, the optimum

injection rate (Da�1) for in-situ gelling acid is less than that of the Newtonian acids

by about a factor 4, which can be veri�ed by Figure 9.7. It is because, the gel for-

mation slows down the mass-transfer of protons from bulk �uid phase to the solid

surface. Therefore, lower injection rate corresponds to ef�cient stimulation or opti-

mum for acidization. In addition, the pore volume of acid injected until breakthrough

is higher for in-situ gelling acids as compared to that for Newtonian acids. This is

due to the fact that it is 1-D simulation where there is no place for �ow diversion,

thus gel formation retard the dissolution process without leak-off or �ow diversion.

Therefore, higher PVBT is required at optima as observed in experiments (Fredd

and Fogler, 1998) where slow reacting acids lead to higher PVBT : However, for 2-D

and 3-D simulations lead to the lower PVBT for in-situ gelling acids as compared to

the Newtonian acids, described in later sections.

It should also be noted from equations (9.10) and (9.11) that optimum injec-

tion rate for both types of acids (in-situ gelling and Newtonian) changes with initial

permeability in the same manner, i.e., in the kinetically controlled dissolution,

uopt �
p
av0 � K

1=4
0 ; (9.12)

while in the mass-transfer controlled dissolution,

uopt �
p
kc0av0 �

r
av0
rp0

� K
1=2
0 : (9.13)

In other words, the optimum injection rate for both acids decreases with initial per-
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Figure 9.8: Effect of initial core permeability on breakthrough curves for gelling
acids at �2 = 0:047:

meability that can also be veri�ed from Figure 9.8 where breakthrough curves for

in-situ gelling acids are plotted for different initial permeability.

It should be noted from the breakthrough curves shown in �gures 9.7 and 9.8

that in the face dissolution regime (for very low injection rate or Da�1), PVBT is

same and is independent of types of acid. In fact, in this asymptotic regime, PVBT

can be estimated (Panga et al., 2005) as

PVBT;face =
1� "0
"0Nac

; (9.14)
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which gives PVBT;face � 80 for the parameters listed in Table 9.1 and used in

current simulation, which matches with the simulation results. This validates the

accuracy of the model as well as simulations.

9.3 Dual Core Analysis

In this section, we consider a dual core set-up as shown in the Figure 9.1(b)

and identify the mechanism of �ow diversion. Here, the total injection velocity, u0;

and exit pressure, Pexit; are kept constant, and, fr signi�es the �ow diversion, the

fraction of total injection rate �owing through low-perm core. As explained earlier,

the dimensional form of two-scale continuum model has several parameters and

so very dif�cult to analyze while the non-dimensional form of the model contains

the minimum number of parameters and easy to analyze.

9.3.1 Dimensionless TSC Model

The dimensionless form of the continuum model for dual core with linear kinet-

ics (as described in previous chapters) can be written in one dimension as follows:

@
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+
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; (9.15)

@"i
@t
= NacDa

�
1 +

�2ri ri�i
Sh

��1
Avi cfi i = 1; 2;

where

�i = "i

�
cfi +

1

Nac

�
:

The mobility,Mi; and effective viscosity term, �i; are given by

Mi =
M0iki

�i kuxik
n�1 ;
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�i = �0i

�
M0iki

"i
"0i

� (1�n)
2

"
1 + (�mi � 1)Exp

(
�a (pHi � pHm)

2

pHi (7� pHi)

)#
; (9.16)

�0i = 1 +
�
�p0 � 1

�
cpi;

�mi � 1
�max � 1

=
1� exp (��1cpi)
1� exp (��1)

:

The inlet/initial/boundary conditions are given by

"i = "0;i + bf ; cf;i = 0 @ t = 0;

uicf;i �
"iDei;X

PeL

@cf;i
@x

= uin;icfin;i; uicp;i �
"iDepi;X

PeL

@cp;i
@x

= uin;icpin;i; @ x = 0;(9.17)

2X
i=1

(ui) = 1; p1 = p2 @ x = 0;

pi = 0;
@cfi
@x

= 0;
@cpi
@x

= 0 @ x = 1;

and the structural property-relationship in dimensionless form is given as follows:

ki =
"i
"0;i

�
"i (1� "0;i)

"0;i (1� "i)

�2�
; ri =

r
ki"0;i
"i

; Av;i =
"i

"0;iri
; 8 i = 1; 2 (9.18)

In this diversion study, we assume the initial permeability of the high-perm core is

4 times higher than that of low-perm core, i.e., M10 = 1, M20 = 4; "0;1 = "0;2 = "0;

r1 = 1, r2 = 2; and a1 = 1, a2 = 0:5. Now we use this1-D version of the two-

scale continuum (TSC) model and simulate it with typical values of parameters

listed in Table9.1 and identify the mechanism of �ow diversion.

9.3.2 Flow Diversion in non-Reacting Case

Before we analyze the reactive dissolution, we �rst consider the non-reacting

case where viscosity and overall permeability remain constant. In this case, the in-

let velocity is given by Darcy-law and expression of mobility and viscosity in equa-

tion (9.16) as

uni �
Mi0

M
1�n
2

i0

or, ui �M
1+n
2n
i0 :

257



So, the �ow splits through both the cores according to their effective mobility, and

the fractional amount going through low-perm core is given by

fr =
u10

u10 + u20
=

 
M

n+1
2n
1

M
n+1
2n
1 +M

n+1
2n
2

!
=

8><>: 0:20; n = 1

0:11; n = 0:5
: (9.19)

Thus, we can see that if the power index n is close to 1 (Newtonian behavior), 20

% of the acid �ows through low-perm core while if the power index n is 0:5 (highly

non-Newtonian behavior), only 11 % of the acid goes through low-perm core. In

other words, the higher power index is desired for practical purposes as it leads to

more �ow of acid through low-perm core.

9.3.3 Flow Diversion by in-situ gelling Acids

Now, we consider the case of reactive dissolution. As discussed in the previous

section, the width of the gel front increases with the injection rate and the initial

permeability of the core. Therefore, larger gel width is expected in high-perm core

as compared in the low-perm core, which can be seen from simulation results

shown in Figure 9.9. Since the effective viscosity of the gel is very high (h�igel �

131), more resistance is offered in the high-perm core due to larger gel width and

hence, the �ow is diverted to the low-perm core as shown in Figure 9.10. Here,

we can see that initially, the amount of acid that �ows through each of the cores, is

proportional to their initial permeability. Then, due to gel formation as dissolution

proceeds, more �ow is diverted from high-perm core to low-perm core due to larger

gel width in the high-perm core. The amount of �ow diversion keeps increasing until

the gel is fully developed (to its maximum width) in high-perm core. Thereafter,

gel propagates with a steady speed and gel width remains constant. As a result,

�ow diversion remains almost constant until the gel starts getting out of the high-

perm core. For steady propagation, scaling analysis leads to the amount of �ow
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Figure 9.9: Gel dynamics in dual core set-up at �2 = 0:07 and Da = 100 from 1-D
simulation.

diversion, fr that satis�es the following relation (details in appendix B):

u1
u2

����
x=0

=
fr

1� fr
=

 
1 + �1 (1� fr)

�
1 + �2

p
M2

�p
M2

1 + �1 fr
�
1 + �2

p
M1

�p
M1

!�
M1

M2

�
; (9.20)

where �1 and �2 depend strongly on the rheological properties as given by the

following expressions:

�1 =

�h�igel
�p0

� 1
�
h4pHiGel

exp (�Nac)

Da
Ln10 ;

�2 =
�2 h�igel
Sh

: (9.21)
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Figure 9.10: Flow splitting in dual core set-up at �2 = 0:047 and Da = 100:

In the limit of mass-transfer controlled dissolution
�
�2 =

�2h�igel
Sh

>> 1
�
, equation

(9.20) simpli�es to
u1
u2

����
x=0

=
fr

1� fr
=
�1�2 +M�1

2

�1�2 +M�1
2

: (9.22)

For Da = 100; �1 = 0:58 and �2 = 2:05 corresponding to h�igel = 131:3, �p0 = 10;

h4pHiGel = 2:2, Nac = 0:05, �2 = 0:047 and Sh = 3:0 (Table 9.1). In this case,

equation (9.20) leads to fr = 0:4; i.e., 40 % of acid �ows through low-perm core

that matches the simulation result shown in Figure 9.10. In this case, the ratio of

amounts of acid �owing in low-perm and high-perm cores is 0.6 that can be seen

from Figure 9.11. This ratio is measure of �ow diversion. For example, if this ratio

is unity, the diversion is maximum. Similarly, for Newtonian acids, this ratio is same

as permeability ratio of cores. This ratio can be increased by increasing �1 and
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Figure 9.11: Ratio of inlet �ow rates in low-perm to high-perm cores from 1-D
simulation at �2 = 0:047 and Da=100.

�2, which depend strongly on rheological properties and injection rates (equation,

9.21). Since diversion occurs at short times until gel is fully developed as can

be seen in Figure 9.11, this ratio can further be increased using intermittent �ow

condition where acidic solution is injected for short times followed by injection of

non-reacting (brine) solution, repeatedly.

9.4 Conclusion and Discussion

We used the 1-D version of the two-scale continuum model to analyze the stim-

ulation of single and dual core laboratory experiments with in-situ gelling acids for

the case of constant injection rate. The scaling analysis, presented in the appen-

dix B, for gel dynamics such as gel width and gel propagation in a single core, is
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veri�ed by the simulation results. For example, the scaling criteria show that the

speed of reaction and gel fronts are independent of rheology and depend only on

acid capacity number and injection rate, which is also observed in simulations. In

particular, the speed of reaction front is found to be the same as that of gel fronts.

Similarly, the scaling analysis shows that the width of these fronts are strongly de-

pendent of rheological parameters which are also observed in the simulations. In

fact, the width of gel front is found to be very large as compared to that of reaction

front due to very high viscosity of the gelled acids.

Since the gelled acid has very high viscosity, the gel formation reduces the

effective mobility. Hence, the pressure drop across the core increases tremen-

dously unlike for the case of the Newtonian acid where pressure pro�le decreases

monotonically. The similar trends is observed in laboratory experiments. There-

fore, it is very important to estimate the increase in pressure drop for proper design

of the laboratory experiments.

We showed from scaling analysis and from simulations that the high-perm core

is offered more resistance due to larger gel width, which is the key mechanism

for �ow diversion. We express the amount of diversion in terms of rheological

parameters, which can be used to design the injecting �uids to achieve maximum

diversion by controlling the rheological parameters. We reasoned that the �ow

diversion, fr; can also be maximized by using intermittent �ow conditions where

acidic and non-reacting solutions are switched periodically until breakthrough.

We have developed the scaling criteria for optimum injection rate of in-situ

gelling acid and showed that it is smaller by a factor h�ic and
p
h�ic in limits of

mass-transfer and kinetically controlled dissolutions, respectively, when compared

with Newtonian acids. Here h�ic is the average viscosity of acidic solution in re-

action zone. The same result is obtained from simulations. It is because the gel

formation reduces the molecular diffusivity of protons. In addition to that, in mass-
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transfer controlled dissolution, the gel formation hinders the transfer of protons from

bulk to the rock surface. Both of these effects reduces the effective reaction rate or

increases the reaction time. Since, wormhole formation is due to coupling between

transport and reaction processes, the convection time also has to be increased

to form a wormhole. Hence the lower injection rate is required corresponding to

wormhole formation (or optimum).
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Chapter 10 Two-Dimensional and Three-Dimensional
Simulations: Dissolution Patterns

10.1 Preamble

Though the one-dimensional analysis of acidization processes discussed in the

previous chapter provides most of the qualitative features of the gel dynamics and

�ow diversion in single and dual core set-ups, they can not predict dissolution

patterns due to absence of transverse direction. Because the formation of worm-

hole/dissolution patterns are due to competition between length-scales in �ow and

transverse directions (In the �ow direction, convection and reaction are the domi-

nant processes while in the transverse direction, dispersion and reaction are dom-

inant processes), two-dimensional or three-dimensional simulations are needed to

understand the different dissolution patterns. In addition, one-dimensional analysis

gives the qualitative trends correctly but may be quantitatively less accurate, espe-

cially for high heterogeneity �eld. For these reasons, 2-D and 3-D simulations are

very important to study the effect of rheological parameters or �ow and reaction

parameters on dissolution patterns.

In this chapter, we analyze the dissolution process by using the 2-D and 3-D

version of the two-scale continuum model. First, we consider the 2-D dissolution

in the single core set-up as shown in the Figure 9.1(a) where we use the model,

expressed in dimensionless form in equations (9.1 - 9.5), and compare the results

of in-situ gelling acids with that of Newtonian acids. Then, we study the �ow diver-

sion in dual core set-ups shown in Figure 9.1(b) where we use the dimensionless

form of the model, expressed for dual core set-ups in equations (9.15 - 9.18), and

compare the results with experimental data available. Finally, we consider the 3-

D simulations in a single core set-up, where we show that the results from 2-D

simulations contain all the essential feature of 3-D simulations.
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10.2 2-D Simulations

10.2.1 Single Core Analysis

Model Equations

The 2-D version of the Two-scale continuum model for single core set-up can

be written in dimensionless form as follows:

@
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@t
= NacDa

�
1 +

�2r �

Sh

��1
Av cf ;

where subscript 0X 0 and 0T 0 denote the axial (x�) and transverse (y�) directions,

respectively. The mobility,M; and effective viscosity term, �; are given by

M =
k

� kukn�1
;

: � = �0

�
k
"

"0

� (1�n)
2

"
1 + (�m � 1)Exp

(
�a (pH � pHm)

2

pH (7� pH)

)#
; (10.2)

�0 = 1 +
�
�p0 � 1

�
cp;

�m � 1
�max � 1

=
1� exp (��1cp)
1� exp (��1)

:

and � is given by

� = "

�
cf +

1

Nac

�
: (10.3)

The inlet/initial/boundary conditions are given by

" = "0 + bf ; cf = 0 @ t = 0;
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ucf �
"De;X

PeL

@cf
@x

= uincfin; u = uin; @ x = 0 (10.4)

ucp �
"Dep;X

PeL

@cp
@x

= uincpin @ x = 0;

p = 0;
@cf
@x

= 0;
@cp
@x

= 0 @ x = 1; (10.5)

@p

@y
=
@cf
@y

=
@cp
@y

= 0 on transverse boundaries.

The structural property-relationship in dimensionless form is given as follows:

k =
"

"0

�
" (1� "0)

"0 (1� ")

�2�
; r =

r
k"0
"
; Av =

"

"0r
: (10.6)

Now, we use the technique describe in previous chapter to simulate the 2-D version

of the model with parameter values given in Table 9.1. and present the results

below.

Effective Mobility

The wormholing phenomena is very complex process that is governed by com-

petition between transport and reaction mechanisms. When acid is injected through

a core of �nite length, it dissolves the medium and increases the porosity. As a

result, permeability increases. Therefore, for Newtonian acids where viscosity is

constant, the effective mobility increases monotonically with pore volume of acid

injected as can be seen from Figure 10.1. However, in case of gelling acids, as

dissolution proceeds, the pH is increased and polymer starts cross-linking that in-

creases the viscosity enormously. The rate of increase in viscosity is much higher

than the rate of increase in permeability. Therefore, effective mobility decreases

in case of gelling acid as can be seen from Figure 10.2, which matches the ex-

perimental trends (Fred and Fogler, 1998), qualitatively. However, as discussed in

earlier section that after gel reaches to its maximum width, it stops increasing the

viscosity and starts propagating forward. But permeability keeps increasing due to

dissolution. As a result, the effective mobility starts increasing as in Figure 10.2
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Figure 10.1: Evolution of effective mobility in time for Newtonian acids at various
injection rates from 2-D simulation.

and we achieve the breakthrough.

Pore volume to Breakthrough and Dissolution Patterns

The rate of increase in �ow conductivity depends on how fast the acid is be-

ing injected. It is observed experimentally (Fredd and Fogler, 1998) that the rate

at which permeability increases due to reactive dissolution is non-monotonic with

injection rate. Similar trend can also be seen from 2-D simulation with gelling acids

and Newtonian acids as in Figures 10.1 and 10.2. For example, at very high in-

jection rate, protons do not have suf�cient time to react with the rock and most of

the acid get out unreacted. Similarly, at very low injection rates, more acid is con-

sumed, as most of the rock is dissolved. Therefore, to increase the �ow conductiv-

ity to the same factor, large amount of acid is required in these extreme cases. In
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Figure 10.2: Evolution of effective mobility in time foi gelling acids at various injec-
tion rates from 2-D simulation.

fact, when pore volume of breakthrough (PVBT), de�ned here as pore volume of

acid required to increase the effective mobility of the core by a factor 100, is plotted

against injection rate (Da�1), a minimum exists as shown in Figure 10.3. A similar

trend is observed in experiments (Fredd and Fogler, 1998).

It should be noted that the optimum injection rate (Da�1) is smaller for gelling

acids as compared to Newtonian acids. As discussed in earlier sections that the

scaling analysis leads to the optimum injection rate (Da�1) for gelling acid less than

that of the Newtonian acids by a factor 4, the 2-D simulation matches that prediction

which can be seen from Figure 10.3. It is because, the gel formation slows down

the mass-transfer of protons from bulk �uid phase to the solid surface. Therefore,
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Figure 10.3: Breakthrough-curves for Newtonian and gelling acids at �2 = 0:047:

lower injection rate corresponds to ef�cient stimulation or optimum for acidization.

In addition, the pore volume of acid injected until breakthrough is smaller for gelling

acids as compared to that for Newtonian acids at optimum. This is because of

gel formation that bypasses the high-perm path and stimulates the least accessi-

ble zones as can be seen from Figure 10.4. When Newtonian acids are injected

through the core, they �ow preferentially through the least resistance or high-perm

path, and form the conducting channels (wormholes). Since, these channels are

bigger than the other pores, more acid is drawn to these channels which become

wider due to dissolution. On the contrary, in case of gelling acids, due to gel forma-

tion, the acid is forced to go around the gel plugs. Figure 10.5 shows the pro�le of

proton concentrations (pH) for Newtonian and gelling acids when one pore volume

of acid is injected. It can be observed from this Figure that the pH-range of gel

formation is right ahead to the reaction zone. Here the red color corresponds to in-
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(a)

(b)

(c)

(d)

Figure 10.4: Dissolution patterns at optimum for gelling acids and Newtonian acids
from 2-D simulation in a core of 5 cm length at (a) color-scale for porosity, (b) ini-
tial heterogeneious porosity �eld, (c) porosity �eld (wormhole structure) at break-
through for Newtonian acids, and (d) porosity �eld (wormhole structure) at break-
through for in-situ gelling acids.
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(a) (b)

(c)

Figure 10.5: pH pro�le and demonstration of reaction and gelled zones (a) color-
scale for pH, (b) Newtonian acids, and (c) in-situ gelling acids.

let concentration, pink color corresponds to brine solution, the yellow-orange color

corresponds to reaction zones and green color corresponds to gelling zones. It is

already shown that the width of gelling and reaction zone depends on �ow and re-

action parameters as well as rheological properties (Ratnakar et al., 2012). Since,

unlike Newtonian acids, gelling acids lead to the gel formation around the worm-

hole, acid is forced to go around the gel plugs and thereby, creating a highly fractal

wormhole pattern leading to more branching and more uniform stimulation. Thus,

despite the additional branching in this case, the total amount of acid required for

breakthrough with gelling acids is smaller as compared to Newtonian acids that
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can be seen from PVBT-curve in Figure 10.3.

It may also be observed from Figure 10.4 that the average wormhole diameter

in dissolution with Newtonian acids is larger than that obtained by using gelling

acids. Scaling analysis, presented in appendix B, leads to the wormhole diameter,

dw, or characteristic transverse length scale, `T , as follows:

dw � `T =

s
"De

av

�
1

ks
+
1

kc

�
: (10.7)

It is obtained by comparing the contribution of transverse dispersion to that of dis-

solution. In the mass-transfer controlled dissolution (ks >> kc), the wormhole di-

ameter simpli�es to dw �
q

"De
avkc

that is independent of �uid rheology because both

dispersion and mass-transfer coef�cients decreases with the same factor due to

increase in viscosity. However, in the current work, dissolution process is kineti-

cally controlled (ks << kc), and wormhole diameter simpli�es to dw �
q

"De
avks

that

depends strongly on �uid rheology. Thus, in this case, the wormhole diameter is

smaller for gelling acids as compared to Newtonian acids because the diffusion

of protons is lowered due to gel formation. The same observation in Figure 10.4

validates the scaling criteria and simulations.

The dissolution patterns also depend on the injection rate of acidic solution as

can be seen from Figure 10.6. For example, when acid is injected at fast rate,

some acid exits unreacted and dissolves the medium slowly and uniformly that

leads uniform dissolution. At very low injection rate, the acid dissolves whole face

as it proceeds that leads to the face dissolution patterns. The intermediate injec-

tion rate leads to very localized porosity enhancement creating the narrow chan-

nels called wormholes. Similar trends are observed in experimental studies (Fredd

and Fogler, 1998). It is interesting to note that the dissolution patterns formed by

gelling acids and Newtonian acids are very different. Gelling acids leads to more
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(a)

(b)

Figure 10.6: Dissolution patterns in a core of length 10 cm and height 4 cm at
�2 = 0:047 for (a) Newtonian acids and (b) in-situ gelling acids.
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branching rather than widening the conducting channels that leads to more ef�cient

stimulation. Since Newtonian acids preferentially �ow through the least-resistance

or high-perm zones, gelling acids are diverted from high-perm zones to the low-

perm zones. There are two wormholes formed with both acids. But the wormhole

in lower part of the core is dominant in case of stimulation with Newtonian acids

which implies that the lower part of the core corresponds to high-perm zone and

upper part corresponds to low-perm zones. But, when gelling acid is used for stim-

ulation, the dominant wormhole is formed in upper part of the core. Thus, gelling

acids enable us to achieve uniform stimulation by creating conducting channels in

least-accessible low-perm zones. In the next section, we analyze the �ow diversion

from high-perm to low-perm zones in detail.

10.2.2 Dual Core Analysis

Model Equations

The 2-D version of the TSC model for dual core set-up in dimensionless form is

given by
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where

�i = "i

�
cfi +

1

Nac

�
; (10.12)

and effective mobility and viscosity term are given by
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The inlet/initial/boundary conditions are given by
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and the structural property-relationship in dimensionless form is given as follows:
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Here also, we assume the initial permeability of high-perm core is 4 times higher

than that of low-perm core, i.e.,M10 = 1,M20 = 4; "0;1 = "0;2 = "0; r1 = 1, r2 = 2;

and a1 = 1, a2 = 0:5. Now we simulate the above 2-D version of model the
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parameter values listed in Table9.1 and discuss the effect of injection rate on �ow

diversion.

Flow Diversion

Figure 10.5 shows that the pH range of gel formation lies right ahead to the

reaction zone. Since viscosity of Newtonian acids remain constant, there is no

diversion with these acids. But due to pH dependence viscosity of gelling acids,

gel is formed ahead of the reaction zone and it forces the acid to go around the

wormhole. Here, we consider a dual core set-up as shown in the Figure 9.1(b)

and use 2-D version of the models (9.15 - 9.18) to study the mechanism of �ow

diversion.

The simulation results show that initially, �ow is divided into the two cores based

on initial permeability as can be seen from Figure 10.7 as observed from 1-D sim-

ulations. As the dissolution occurs, more acid is diverted to the low-perm core until

gel reaches to its maximum width. Thereafter, the gel propagates with steady rate

and offers almost constant resistance in both cores until the gel starts exiting one of

the cores (Figure 10.7). The ratio of injection rates in low-perm to high-perm cores

is shown in Figure (10.8). This ratio represents the amount of �ow diversion. For

example, if it is unity, it corresponds to maximum diversion and completely uniform

stimulation. In the �gure, it can be seen that this ratio reaches its maximum value in

a very short time then starts decreasing slowly. In other words, the �ow is diverted

from high-perm to low-perm for very short time until gel is fully developed and exits

the cores. Therefore, the intermittent injection or staged injection approach, where

in-situ gelling �uid stage is followed by a neat acids (or brine solution) stage, may

be more ef�cient than injecting a single stage of gelled acids and can lead to even

more uniform diversion.
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Figure 10.7: Flow diversion in a dual core set-up from 2-D simulation, inset show
the plot at shorter times.

Effect of Injection Rates

Since, rate of increase in permeability (or mobility) is non-monotonic with in-

let �ow rates, it is possible that even when acidic solution is injected at constant

rate, the rate of increase in mobility in both the low-perm or high-perm core may

be different due to difference in �ow regimes. For example, when inlet �ow rate

corresponds to the optimum in high-perm core, the low-perm core will lie in face

or conical dissolution regime. In this case, the rate of increase in mobility may be

higher in high perm core than the low-perm core. Similarly, when inlet �ow rate

corresponds to optimum in low-perm core, high-perm core will lie in uniform disso-

lution regime. And thus, in this case, rate of increase in mobility in low-perm core
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Figure 10.8: Fractional �ow (ratio of �ow rates in low-perm to high-perm cores),
inset show the plot at shorter times.

may be quite high as compared to that in high-perm core. For these reasons, here

we analyze the effect of injection rate on diversion for two cases: (i) when injec-

tion rate is corresponding to near the optimum in high-perm core, and (ii) when

the injection rate is close to the optimum in the low-perm core. In the �rst case

where injection rate corresponds to optimum in high-perm core, most of the acid

�ows in the high-perm core and less diversion occurs as can be seen from disso-

lution patterns in Figure 10.9(a). These patterns match the experimental results

(Gomaa et al., 2011) shown in Figure 10.9(b) at least qualitatively. In this case,

gel propagates faster in high-perm as compared to low-perm core and hence exits

the high-perm core very fast while it stays in low-perm core for longer. As a result,
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(a)

(b)

Figure 10.9: Disoolution pattern in dual core study when optimum exist in high-
perm core (a) simulation results (b) experimental results (Gomaa, et al., 2011).
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diversion occurs only for very short time and �ow is diverted back from low-perm to

high-perm core. In the second case where injection rate corresponds to optimum

in low-perm core, acid penetrates the low-perm core to more depth and diversion

occurs comparably for longer time as can be seen from Figure 10.10(a), which

leads to more diversion from high-perm to low-perm core. The dissolution patterns

in this case match the experimental observation (Gomaa et al., 2011) shown in

Figure 10.10(b). Thus, by controlling the �ow conditions, more uniform stimulation

can be achieved using properly designed in-situ gelling acids.

Thus, 1-D and 2-D simulations provide suf�cient insight on acidization process,

at least qualitative. For example, dynamics of gel formation and mechanism of �ow

diversion remain same in both 1-D and 2-D simulations. In fact, results from low-

dimensional simulations are easy to visualize and interpret. However, when simula-

tion results need to be compared with experiments, 3-D simulations becomes very

important as they are the correct representation of the experiments. In addition, 1-

D and 2-D simulations predict the qualitative trends correctly but quantitatively may

not be reliable. Therefore, in the next section, we use 3-D version of the model and

compare the simulation results with available experimental data.

10.3 Three-dimensional Simulations of Wormholing with In-situ

Gelling Acids

In this section, we consider the single core set-up as shown in Figure 9.1(a)

with dimensions 5cm � 2cm � 2cm, and, simulate the 3-D version of the TSC

model given in dimensionless form as follows:
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(a)

(b)

Figure 10.10: Disoolution pattern in dual core study when optimum exist in low-
perm core (a) simulation results (b) experimental results (Gomaa, et al., 2011).
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where subscript 0X 0 and 0T 0 denote the axial (x�) and transverse (y� and z�)

directions, respectively. The mobility, M; and effective viscosity term, �; are given

by
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The inlet/initial/boundary conditions are given by

" = "0 + bf ; cf = 0 @ t = 0; (10.22)
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where Ly (= 0:4) and Lz (= 0:4) are dimensionless size of the domain in y� and

z� directions, respectively. The structural property-relationship in dimensionless

form is given as follows:
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Now, we solve the above model with parameter values given in Table 9.1 by using

the numerical technique described in earlier chapter and present the results below.

10.3.1 Overall pressure drop

The main difference between gelling acids and Newtonian acids is the �uid rhe-

ology. Because of the dependence of �uid viscosity on pH for gelling acids, it is

found that the pressure response (pressure drop across the core with time) de-

pends on the type of �uid being injected. This may be seen in Figure 10.11(a) and

(b) where overall pressure drop across the core is plotted against the number of

pore volumes of acid injected. It can be seen that the pressure drop across the core

for Newtonian acids decreases monotonically as dissolution occurs but for gelled

acids, the pressure �rst increases and then decreases which is also found in the ex-

periments (Gomaa and Nasr-El-Din, 2010) as in Figure 10.11(c). As the dissolution

proceeds, the porosity and hence permeability is increased, so for Newtonian acids

where viscosity is constant, pressure drops monotonically. But in case of gelling

acids, gel is formed that offers high resistance to the �ow and hence pressure is in-

creased tremendously. Once the gel is fully developed (i.e., the point of maximum

resistance is achieved), it is pushed forward with steady speed by the incoming
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(a) (b)

(c)

Figure 10.11: Comparison of pressure pro�le from 3-D simulations and experi-
ments; (a) Pressure pro�le for gelling acids, (b) pressure pro�le for Newtonian
acids, and (c) experimental pro�le (Gomaa, et al., 2011).
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Figure 10.12: Breakthrough curves for gelling acids and newtonian acids from 3-D
simulation at �2 = 0:047:

injecting �uid. As a result, the overall permeability increases but viscosity remains

almost constant. Thus, the pressure starts decreasing. This non-monotonic pres-

sure pro�le for gelling acids plays very important role in designing and interpreting

laboratory core experiments. Note that in these simulations, we use 3-dimensional

version of the model for a single core set-up with dimensions 5cm � 2cm � 2cm,

where acid is injected at constant rate and exit pressure is kept �xed. Once the

gel starts exiting, the pressure decreases sharply and breakthrough is achieved

eventually.

10.3.2 Breakthrough Curves and Dissolution Patterns

Here, we de�ne breakthrough time as the time it takes to increase the overall

mobility by a factor 100. When pore volume of acid to breakthrough (PVBT) is

plotted against injection rate as in Figure 10.12, the model predicts the trend that
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Figure 10.13: Experimental breakthrough curve for DTPA (Fredd and Fogler,
1998).

is similar to that found in lab experiments and for Newtonian acids, it matches very

close to that of DTPA (Fredd and Fogler, 1998) shown in Figure 10.13. In fact, it can

be seen from the �gure 10.12 for Newtonian acids and Figure 10.13, the optimum

injection rate is very close to each other (� 0:05 cm3min�1) and the pore volume

to breakthrough, PVBT at the optimum is also very close (� 10 PV ). It should be

noted that the optimum injection rate for gelling acids is smaller as compared to the

Newtonian acids and matches the scaling criteria discussed in earlier sections. In

case of gelling acids where gel is formed during dissolution, the viscosity increases

enormously that lowers the diffusivity and mass-transfer coef�cient. Therefore, the

optimum stimulation for gelling acids corresponds to smaller injection rate as com-

pared to Newtonian acids. It is interesting to note from Figures 10.14(a) and (b) that

the dissolution pattern formed at breakthrough by gelling acids and by Newtonian
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(a)

(b)

Figure 10.14: 3-D dissolution patterns at optimum for (a) Gelling acids (0:01cm3s�1)
and (b) Newtonian acids (0:04cm3s�1).
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acids are very different. Here, we start with 3-dimensional randomly distributed

porosity �eld with average porosity, h"0i=0:2, heterogeneity magnitude, �" = 0:15

and heterogeneity length scale, `HT = 0:5mm, and obtain these dissolution pat-

terns by contour plot of porosity = 0.9 at breakthrough. We can see from these

patterns that use of gelling acids leads to more branching rather than widening the

conducting channel (as observed from 2-D simulations) and hence leads to more

uniform stimulation.

Similarly, the effect of inlet �ow rate on dissolution patterns can be seen from

Figure 10.15, where dissolution patterns are shown for three dissolution regimes,

namely, conical, wormhole and rami�ed, for in-situ gelling acids, Newtonian acids

and from experiments (Fredd and Fogler). The corresponding regime is shown

on the breakthrough curve. It can be seen from this �gure that the qualitative

results from simulation match with that from experiments. For example, the break-

through curve has a minima, i.e., the rate of increase in mobility of the core is

non-monotonic with injection rate and is the highest at some intermediate injection

rate. The number of pore volume to breakthrough at this intermediate injection rate

is least. This intermediate injection rate leads to thinner channels (wormholes) in

the core as compared to the case when acidic solution is injected with lower or

higher �ow rates than this intermediate value. When acid is injected with higher

rate, the some acid gets out unreacted that gives the rami�ed dissolution patterns.

Similarly, when acid is injected with lower rates, it proceeds slowly and dissolve

more rocks that creates conical/face dissolution patterns.

10.4 Conclusion and Discussion

We used the 2-D and 3-D version of the two-scale continuum model to analyze

the stimulation of core laboratory experiments with in-situ gelling acids for the case

of constant injection rate. We showed that effective mobility of the core increases

monotonically when Newtonian acids are used for stimulation, which is also found
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(a)

conical conical conical

wormhole wormhole wormhole

rami�ed rami�ed rami�ed

(b) (c) (d)
Figure 10.15: (a) Breakthrough curves for in-situ gelling acids and Newtonian
acids; Dissolution patterns in wormhole, conical and rami�ed dissolution regimes
(b) for in-situ gelling acids, (c) for Newtonian acids, and (d) from experiments (Fredd
and Fogler, 1998).
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in the laboratory experiments. However, the effective mobility of the core changes

non-monotonically when in-situ gelled acids are used for stimulation. Due to disso-

lution, porosity of the rock increases and so, the permeability of the rock increases.

However, in case of in-situ gelling acids, due to the gel formation, viscosity of the

�uid increases enormously and so the effective mobility decreases as along as gel

is present in the core. When gel gets out, the effective mobility starts increasing

continuously.

The rate of increase in mobility is found to be the highest for some intermediate

injection rate that leads to the existence of a minimum in the breakthrough curve

(as observed in experimental studies). This optimum injection rate depends on

types of acid. For example, we showed using scaling analysis that the optimum

injection rate for in-situ gelling acid is smaller by a factor h�ic and
p
h�ic in limits of

mass-transfer and kinetically controlled dissolutions, respectively, when compared

with that for Newtonian acids. In case of in-situ gelling acids, gel is formed during

dissolution process that not only decreases the molecular diffusivity of the protons

but also hinders the transfer of protons from bulk to the rock surface. As a result,

effective rate of reaction is retarded or the reaction time is increased. Therefore,

to form a wormhole, acidic solution needs to be injected at smaller rates so that it

has high enough convection time to compete with reaction time, which is veri�ed

by simulations.

We also show that the gel front is ahead of the reaction front in case of in-situ

gelling acids. Hence, when in-situ gelling acids are injected, protons are forced

to go around the wormhole and bypass the high-perm path. As a result, least-

accessible low-perm zones are stimulated and more branched but thinner worm-

holes are created. In fact, the wormhole diameter, when estimated using scaling

analysis, is found to be smaller for in-situ gelling acids as compared to that for

Newtonian acids. Due to thinner and branched wormholes, the number of pore
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volumes to breakthrough for in-situ gelling acids is less as compared to that of

Newtonian acids. In addition, the dissolution patterns obtained from 2-D and 3-D

simulations match the qualitative trends of experimental observations, i.e., the con-

ical wormholes are formed at smaller injection rate, rami�ed wormholes are formed

at higher injection rates, and, thinner and more branched wormholes are formed at

the intermediate injection rates.

The effect of inlet �ow rate on �ow-diversion is also presented. We show that

for optimal stimulation, inlet �ow rate should correspond to wormholing in low-

perm core and uniform or rami�ed in high-perm core. Finally, when compared the

results from simulations and scaling laws to that with available experimental data,

we showed that 2-D simulations results predict the experimental trends very well;

and 3-D simulation results matches very accurately with experimental observation.

For example, we were able to match the optimum injection rate and PVBT for DTPA

with that of experimental results by Fredd and Fogler (1998).
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Chapter 11 Summary and Future Scope of the Work

11.1 Summary

One of the main results of this work is the formulation of an empirical four-

parameter model to describe the effect of pH on viscosity of in-situ gelling acids

that form gel in certain pH range. The model �ts the experimental data (Rose,

2004) very well and describes all the key feature of the rheology of in-situ gelling

acids. The four parameters �0, �m, pHm and a involved in the model signify the

base viscosity (at pH =7), maximum increase in viscosity from its base value, pH

point where viscosity is maximum and pH-range of gel formation, respectively. This

model is the simplest to implement. For example, three parameters, �0, �m and

pHm; of this model can be evaluated directly from the pro�le of viscosity against

pH. In other words, only one parameter is required to be determined by regression,

which is much easier work as compared to regression in terms of more than one

parameter.

A second result of this work is the extension of the two-scale continuum model

to describe reaction and transport of in-situ gelling acids in carbonate rocks. We

developed equivalent Darcy law for in-situ gelling acids, where permeability de-

pends only on the porous media while the effect of non-Newtonian and gelling be-

haviors are accounted in the effective viscosity term that depends on temperature,

pH and other medium properties. We also used the well known Stokes-Einstein

relation to account for the effect of viscosity on the diffusivity of acid and additives.

We solve the two-scale continuum model, using operator splitting and implicit

�nite volume discretization where discretized equations are solved by advanced

multigrid techniques, to analyze the stimulation of single and dual core laboratory

experiments with in-situ gelling acids for the case of constant injection rate. As ob-

served in experimental studies, our simulation results show that when Newtonian
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acids are injected, the overall pressure drop across the core decreases monoton-

ically with pore volume of acid injected. But when in-situ gelled acids are used,

the pressure increases �rst and then decreases. The increases in pressure is due

to gel formation. When in-situ gelled acids is injected, it dissolves the rock and

increases the pH. As a result, polymer start cross-linking and form a gel that in-

creases the viscosity of the �uid enormously. Therefore, even though dissolution

increases permeability by increasing porosity, very high increase in viscosity leads

to the large decrease in effective mobility and hence large increase in overall pres-

sure drop across the core. Therefore, it is very important to estimate the increase

in pressure drop for proper design of the laboratory experiments.

This process occurs in three stages. The �rst stage is the gel development

where gel formation starts and gel width keeps increasing. At this stage, perme-

ability not changed much but due to gel formation viscosity of the �uid increases

enormously. So, the effective mobility drops very low and overall pressure drop

across the core builds up very high. The next stage is gel propagation where gel

has achieved its maximum width and propagates with a steady speed. At this

stage, viscosity is almost constant while permeability keeps increasing slowly. As

a result, effective mobility starts increasing slowly and overall pressure drop starts

decreasing slowly until the third stage is reached which is gel exiting the core. This

is the last stage where gel starts exiting the core. So the viscosity drops down very

fast or the effective mobility increases very fast and hence, overall pressure drop

start decreasing very fast.

The rate of increase in mobility is found to be the highest at some interme-

diate injection rate rather than at low of high �ow rate. It leads to the existence

of a minimum in the breakthrough curve, which is also observed in experimental

studies. This optimum injection rate depends on types of acid. For example, we

showed using scaling analysis that the optimum injection rate for in-situ gelling acid
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is smaller by a factor h�ic and
p
h�ic in limits of mass-transfer and kinetically con-

trolled dissolutions, respectively, when compared with that for Newtonian acids. In

case of in-situ gelling acids, gel is formed during dissolution process that not only

decreases the molecular diffusivity of the protons but also hinders the transfer of

protons from bulk to the rock surface. As a result, effective rate of reaction is re-

tarded or the reaction time is increased. Therefore, to form a wormhole, acidic

solution needs to be injected at smaller rates so that it has high enough convection

time to compete with reaction time, which is veri�ed by simulations.

We also show that the gel front is ahead of the reaction front in case of in-situ

gelling acids. Hence, when in-situ gelling acids are injected, protons are forced

to go around the wormhole and bypass the high-perm path. As a result, least-

accessible low-perm zones are stimulated and more branched but thinner worm-

holes are created. In fact, the wormhole diameter, when estimated using scaling

analysis, is found to be smaller for in-situ gelling acids as compared to that for

Newtonian acids. Due to thinner and branched wormholes, the number of pore

volumes to breakthrough for in-situ gelling acids is less as compared to that of

Newtonian acids. In addition, the dissolution patterns obtained from 2-D and 3-D

simulations match the qualitative trends of experimental observations, i.e., the con-

ical wormholes are formed at smaller injection rate, rami�ed wormholes are formed

at higher injection rates, and, thinner and more branched wormholes are formed at

the intermediate injection rates.

We presented the scaling analysis for gel dynamics such as gel width and gel

propagation in a single core, and showed that the speed of both (reaction and gel)

fronts depends on the injection velocity as well as on the acid capacity number.

We also showed that while the front speed is independent of the rheological para-

meters, the gel width depends strongly on the rheological parameters. The width

of both the reaction and the gel fronts larger in high-perm core and increases with
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injection rate. The larger gel width in the high-perm core is the key mechanism

for �ow diversion. Due to larger gel width, the high-perm core is offered more re-

sistance that diverts the acid to �ow through low-perm core. We also obtained an

expression for the amount of diversion in terms of rheological parameters, which

can be used to design the injecting �uids to achieve maximum diversion by con-

trolling the rheological parameters. The �ow diversion, fr; can also be maximized

by using intermittent �ow conditions where acidic and non-reacting solutions are

switched periodically until breakthrough.

The effect of inlet �ow rate on �ow-diversion is also presented. We show that

for optimal stimulation, inlet �ow rate should correspond to wormholing in low-perm

core and uniform or rami�ed in high-perm core. Finally, we compare the results

from simulations and scaling laws to that from experiments available in literature

and showed that 1-D and 2-D simulations results very well predict the experimen-

tal trends; and 3-D simulation results matches very accurately with experimental

observation. For example, we were able to match the optimum injection rate and

PVBT for DTPA with that of experimental results by Fredd and Fogler (1998). Simi-

larly the scaling criteria developed in this work for gel properties such as front width

and speed, optimum injection rate and amount of �ow diversion, matches very well

with the simulation results.

11.2 Future Work

The diverting acids like in-situ gelling acids have very complex rheological be-

havior that depends strongly on pH of the medium and concentration of additives

such as polymer, cross-linkers and breakers. They are also non-Newtonian (shear

thinning) in nature. The current (six parameter) rheological model is empirical.

therefore, one of the important extension of the current work can be evaluation of

parameters based on �uid composition and chemistry of gel formation (kinetics of

cross-linking and gel break-up).
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The two-scale continuum model developed here does not account the effect of

polymer �ltration or adsorption/desorption. In some cases, cross-linked polymer

molecules are very big in size as compared to micropores in carbonates, and so,

they get �ltered as dissolution proceeds. As a results, diffusivity and reaction rate of

protons with carbonates changes that change the gel formation and its dynamics.

Therefore, the current model can be extended to include the effect of �ltration or

adsorption/desorption of polymers and cross-linkers. In addition, we have taken

all additives (polymer, cross-linker and breakers) as a single species assuming

they all have similar properties. However, in general, they may possess different

physio-chemical properties such. In that case, the current model may be extended

in terms of more concentration modes corresponding to these additives, which can

also account for kinetics of cross-linking and breaking.

Here, we have assumed the reaction is irreversible and occurs in a single step,

which might not be the case for retarding acids such as EDTA, DTPA etc.). In ad-

dition, CO2; produced due to dissolution of carbonates with acids, are dissolved in

the solution and form carbonic acids. As a result, ionic equilibrium is achieved that

restrict the pH in narrow range (around pH 4). This effect is very important for in-

situ gelling acids as the pH-range of gel formation may overlap this equilibrium. So,

the another important extension of the work is to include the multistep chemistry

and effect of ionic-equilibria in dissolution process.

We presented scaling analysis for gel dynamics, gel width, propagation speed,

etc. and validated with numerical simulations. Another important extension of

current work is to design the lab/core experiment to verify the model as well as the

results predicted by scaling analysis.

Other possible extensions include the analysis 3-D models, radial �ow and �eld

scale operation to estimate wormhole properties such as density, length, fractal

dimension etc. in extended domains; improvement of pore scale mass-transfer and
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dispersion effects; analysis of constant pressure operation, analysis of acidi�cation

with time dependent inputs; sensitivity analysis with respect to reaction kinetics

and structure-property-relations; and, extension to other diverting acids such as

emulsi�ed and viscoelastic acids.
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Appendix A: Solution of Local equation in Laminar
Dispersion

In this appendix, we solve the local equation given in chapter 3 by equation

(3.27) to determine the exact concentration pro�le of a non-reacting solute in a

laminar �ow in a tube. We also analyze the �rst few moments and present the

asymptotic behavior at very small and large times.

A.1 Eigenvalue problem in Cylindrical Coordinate

The eigenvalue problem (EVP) in 2D cylindrical coordinate (�; �) with no �ux

boundary condition on the wall is given by

L � r2
? =

1

�

@

@�

�
�
@ 

@�

�
+
1

�2
@2 

@�2
= ��  in 
 ;

5 � n = 0 on @
: (A.1)

The boundary condition can also be written as @ 
@�
= 0 @ �=0,1 and  (� + 2�) =

 (�). Using separation of variables, we write  (�; �) =  � (�)  � (�) and multiply

the EVP (A.1) by �2

 (�;�)
that simplify the problem as follows:

�

 �

@

@�

�
�
@ �
@�

�
+ � �2 = � 1

 �

@2 �
@�2

; 0 < � < 1; 0 < � < 2�

@ �
@�

= 0 @ � = 0; 1 (A.2)

 � (� + 2�) =  � (�) :

We see in equation (A.2) that the L.H.S. is solely function of � while R.H.S. is that of

�. Hence Both the L.H.S. and the R.H.S. must be a constant (independent of � and

�). From the boundary condition in �, this constant must be positive and square of
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any integer, i.e.,

�

 �

@

@�

�
�
@ �
@�

�
+ � �2 = � 1

 �

@2 �
@�2

= n2; n = 0; 1; 2; ::: (A.3)

which gives the normalized  � as

 �n =

8>>>><>>>>:
 s�n =

p
2 sin (n�) ; n 6= 0

 c�n =
p
2 cos (n�) ; n 6= 0

 0 = 1; n = 0

: (A.4)

Now, the EVP in � can be given by arranging the equation A.3 as follows:

�2
@2 �

@�2
+ �

@ �
@�

+
�
� �2 � n2

�
 �; 0 < � < 1;

@ �
@�

= 0 @ � = 0; 1: (A.5)

The solution of above equation A.5 is given in terms of linear combination of Bessel

functions of �rst and second kind. However, the boundary condition at � = 0

suggests that the coef�cient of Bessel function of second kind has to be zero,

implying the solution in the form:

 �(�) = A Jn (
p
��) ; (A.6)

where A is a constant and � is obtained by using boundary condition at � = 1.

From the recurrence formula for Bessel functions (See Watson 1995, §3.2), we

know that

d

d�
Jn (

p
��) = �p�Jn+1 (

p
��) +

n

�
Jn (

p
��)

=
p
�Jn�1 (

p
��)� n

�
Jn (

p
��) (A.7)
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=

p
�

2
[Jn�1 (

p
��)�p�Jn+1 (

p
��)] :

Hence, the eigenvalues �nm are roots of the following equation

J 0n (
p
�) = �p�Jn+1 (

p
�) + nJn (

p
��) =

p
�Jn�1 (

p
�)� nJn (

p
�) = 0: (A.8)

The constant A is determined by normalizing the eigenfunction  �(�), i.e.,

A2
1Z
0

2�J2n (
p
��) d��1 = 1:

From the property of Bessel function (see Watson 1995, §5.11), we can write

1Z
0

2�J2n (
p
��) d� =

�
1� n2

�

�
J2n (

p
�) + J 02n (

p
�) : (A.9)

But, J 02n
�p

�
�
= 0 (boundary condition at � = 1), so the normalization constant is

given by

A2 =

��
1� n2

�

�
J2n (

p
�)

��1
, or, A =

1�r�
1� n2

�

�
Jn
�p

�
�� : (A.10)

Hence, the eigenfunction in � is given by,

 nm�(�) =
Jn
�p

�nm�
�r�

1� n2

�nm

�
Jn
�p

�nm
� : (A.11)
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Thus, the eigenfunctions of transverse operator L (= r2
?) is given as follows:

 nm(�; �) =

8>>>>>>><>>>>>>>:

 snm =
p
2 sin (n�)

Jn(p�nm�)r�
1� n2

�nm

�
Jn(p�nm)

; n 6= 0

 cnm =
p
2 cos (n�)

Jn(p�nm�)r�
1� n2

�nm

�
Jn(p�nm)

; n 6= 0

 m =
J0(p�0m�)
J0(p�0m)

; n = 0

; (A.12)

where �nm are mth roots of the equation:

J 0n (
p
�) = �p�Jn+1 (

p
�) + nJn (

p
�) = 0: (B11b)

A.2 Solution of Local Equation

The local equation in case of solute dispersion in a laminar �ow is given in

chapter 3 by equation (3.27) as follows:

r2
�;�c

0 = p

�
@c0

@�
+ u(�)

@c0

@z
�
�
u(�);

@c0

@z

�
� p

Pe2r

@2c0

@z2
+ h0(�; �; z; �)

�
in 
 (A.13)

5 � n = 0 on @
;

where hc0; 1i = 0 and the source function h0 is given by

h0(�; �; z; �) = u0(�)
@ hci
@z

� s0(�; �; z; �); (A.14)

with hs0; 1i = 0: We take Laplace Transformation of equation (A.13) w.r.t. t ! !

and z ! � and write the equation in Laplace domain as

r2
�;�
bc0 = p

�
!bc0 + u(�)�bc0 � Du(�); �bc0E� p

Pe2r
�2bc0 +H 0(�; �; �; !)

�
(A.15)
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where, bc0 and H 0 are Laplace transform of c0 and h0, respectively.

It may be seen from the equation (A.15) that bc0 = 0 around base state p = 0,
Hence bc0 can be expanded around the base sate using Liapunov-Schmidt expan-
sion as, bc0 = 1X

m=1

pm bc0m (A.16)

where bc0m are given as
r2
�;�
bc01 = H 0

r2
�;�
bc02 = !bc01 + �

�
ubc01 � Du; bc01E�

r2
�;�
bc0n+1 = !bc0n + �

�
ubc0n � Du; bc0nE�� 1

Pe2r
�2bc0n�1 (n � 2) (A.17)

If we let bc0n = nX
j=1

!n�j �j�1 bc0n;j; (A.18)

then we have,

r2
�;�
bc01;1 = H 0(�; �; �; !) (A.19)

and

!n+1�j�j�1r2
�;�
bc0n+1

= !
nX
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!n�j�j�1bc0n;j + �
nX
j=1
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�
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Pe2r
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!n�j�j�1bc0n�1;j
=

nX
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�
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� 1
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)

r2
�;�
bc01;1 = H 0(�; �; �; !) (A.21)

r2
�;�
bc0n+1;j = bc0n;j + �ubc0n;j�1 � Du; bc0n;j�1E�� 1

Pe2r
bc0n�1;j�2; (A.22)

where bc0n;j = 0 8 j > n & j < 0 and
Dbc0n;j; 1E = 0. [Remark: It must be noted

that all bc0i;j are solely function of �; i.e., independent of �; because the �uctuation
velocity u0(�) is independent of �.]. Thus, the solution of local equation is given

by combining and taking inverse Laplace Transform of equations(A.16, A.18 and

A.22) that leads to the result as follows:

c0 =
1X
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pn
nX
j=1

@n�1c0n;j
@zj�1 @�n�j

; : (A.23)

where, c0n;js are given by
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�;� c
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u; c0n;j�1

��
� 1

Pe2r
c0n�1;j�2;

Thus, the cup-mixing concentration,

cm = hci+ hu0c0i ;

can be written in Laplace domain as follows:

ccm � chci = 1X
n=1

pn
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j=1

D
u0; !n�j�j�1 bc0n;jE = 1X

n=1

pn
nX
j=1
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�
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where �n;j are given by

r2
�;� �1;1 = u0 (A.26)

r2
�;��n+1;j = �n;j + (u�n;j�1 � hu;�n;j�1i)�

1

Pe2r
�n�1;j�2

with �n;j = 0 8 j > n & j < 0 and h�n;j; 1i = 0. After taking inverse Laplace

Transform, the cup-mixing concentration can be given as follows:

cm � hci =
1X
n=1

pn
nX
j=1

�
@n�1h0

@zj�1 @�n�j
; �n;j

�
: (A.27)

Thus, by using the equation (A.14), the cup-mixing concentration cm is given by

cm � hci =
1X
n=1

pn
nX
j=1

hu0; �n;ji
@n hci

@zj @�n�j
�

1X
n=1

pn
nX
j=1

�
@n�1s0

@zj�1 @�n�j
; �n;j

�
(A.28)

A.3 Moment Analysis

The coarse grained model for the classical Taylor dispersion problem in an in�-

nitely long tube with initial release �(�; �; x�) is obtained in chapter 3 from equation

(3.69) as follows:

@ hci
@t�

+ Per
@ hci
@x�

+ Pe2r

1X
n=1

nX
j=1

hu0; �n;ji
@n+1 hci

@x�j+1 @t�n�j
� @2 hci

@x�2
� h�i �(t�)

�Per
1X
n=1

nX
j=1

�
@j� 0

@x�j
; �n;j

�
�n�j(t�) = 0;(A.29)

where �n+1; j are given by equations (3.67, 3.68). Now, using the following de�ni-

tion of 2-D spatial moments,

mj(t
�) =

1

A


1Z
�1

2�Z
0

1Z
0

x�j� c(�; �; x�; t�) d� d� dx� =

1Z
�1

x�j hci (x�; t�) dx� (A.30)
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with the following relations,

1Z
�1

x�j
@i hci
@x�i

dx� =

8><>: (�1)i
Qi

n=1(j � n+ 1)mj�i if j � i

0 if j < i
; (A.31)

�j(�; �) =

1Z
�1

x�j �(�; �; x�) dx�;


�j
�
=


�j(�; �);  0

�
(A.32)

and the properties of distributional derivative of Dirac-delta function,

1Z
�1

f(x�)�r(x� � x�0)dx
� = (�1)r @

rf

@x�r
jx�=x�0 ; (A.33)

the equation for kth moment can be written as follows:

dmk

dt�
� k Per mk�1 � k(k � 1) mk�2 � h�ki �(t�)

+Pe2r

1X
n=1

nX
j=1

hu0; �n;ji
@n�jmk�j�1

@t�n�j
(�1)j+1

j+1Y
i=1

(k � i+ 1) (A.34)

� Per

1X
n=1

nX
j=1



� 0k�j; �n;j

�
�n�j(t�) (�1)j

jY
i=1

(k � i+ 1) = 0:

This equation can be used to obtain the spatial moments sequentially. We can also

write the moment equation in the Laplace domain (mk(t
�)!Mk(!)) as follows:

!Mk = k Per Mk�1 + k(k � 1)Mk�2 + h�ki

�Pe2r
1X
n=1

nX
j=1

hu0; �n;ji!n�jMk�j�1(�1)j+1
j+1Y
i=1

(k � i+ 1)

+ Per

1X
n=1

nX
j=1



� 0k�j; �n;j

�
!n�j (�1)j

jY
i=1

(k � i+ 1): (A.35)
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If we assume

Yn;j = !n�j �n;j and Yj =
1X
n=1

Yn;j =

1X
n=1

�n;j!
n�j; (A.36)

then Yj = 0 8 j � 0; and by de�nition of �n;j, we can write

L Y1 = u0(�) + !Y1;

L Y2 = !Y2 + Per (u(�) Y1 � hu(�); Y1i) ;

L Y j = !Yj + Per (u(�) Yj�1 � hu(�); Yj�1i)� Y j�2; j � 3 (A.37)

and express the solution as

Y1 = �
X
m

hu0;  mi
�m + !

 m

Y2 = �Per
X
m

hu Y1;  mi
�m + !

 m = Per
X
m

X
n

hu0;  ni
�n + !

hu  n;  mi
�m + !

 m (A.38)

Yj = �
X
m

hPer u Yj�1 � Yj�2;  mi
�m + !

 m; 8 j � 3

where  m are eigenfunction of transverse Laplacian operator corresponding to

non-zero eigenvalues �m.

[Remarks: Since �n;j are solely function of �; i.e., independent of �, so Yn;j and

Yj. Hence eigenfunctions  m are given as

 m =  0m =
J0
�p

�0m�
�

J0
�p

�0m
� ; (A.39)

where J0
�p

�0m�
�
is the zeroth order bessel function and �m (= �0m) are the zeroes

of the equation

J 00
�p

�m
�
=
p
�mJ1

�p
�m
�
= 0; (A.40)
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because other eigenfunctions contain sine and cosine functions which leads to

zero after taking inner product with the function that are independent of � such as

u0(�) or u0(�)Yj(�). Now, using relations (A.36), we can further simplify the moment

equation (A.35) in the Laplace domain as follows:

!Mk = k Per Mk�1 + k(k � 1)Mk�2 + Pe2r

k�1X
j=1

(�1)j k!

(k � j � 1)! hu
0; Yji Mk�j�1

+ h�ki + Per

kX
j=1

(�1)j k!

(k � j)!



� 0k�j; Yj

�
: (A.41)

A.3.1 Zeroth Moment

The zeroth moment (k = 0) given by,

!M0 = h�0i =)M0 =
h�0i
!

=) m0(t
�) = h�0i (A.42)

For the case of unit amount of solute released, h�0i = 1;

m0(t
�) = 1: (A.43)

A.3.2 First Moment

From equation (A.41), the �rst moment may be expressed as

!M1 = Per M0 + h�1i � Per h � 00; Y1i : (A.44)

Using the relation (A.38) for Y1 we get,

M1 = Per
h�0i
!2

+
h�1i
!
+ Per

X
m

hu0;  mi h � 00;  mi
!(�m + !)

; (A.45)
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which after inverting the Laplace transform, gives,

m1(t
�) = h�1i+ Per h�0i t� + Per

X
m

hu0;  mi h � 00;  mi
�m

�
1� e��mt

� �
: (A.46)

For the case of h�0i = 1 and h�1i = 0 (unit amount of solute released with zero �rst

moment or symmetrically placed around x� = 0), the �rst moment can be written

as,

m1(t
�) = Per t

� + Per
X
m

hu0;  mi h � 00;  mi
�m

�
1� e��mt

� �
: (A.47)

For the case of cross-sectionally uniform release, � 0j(�; �) = 0 8 j; the expression

for the �rst moment simpli�es to,

m1;uniform(t
�) = Per t

�: (A.48)

For t� ! 1 (the long time approximation); e��mt� ! 0; and the �st moment be-

comes

m1;long(t
�) = Per t

� + Per
X
m

hu0;  mi h � 00;  mi
�m

= Per t
� � Per h � 00;�11i ; (A.49)

where, �11 = �
X
m

hu0; mi; m
�m

= � 1
24

�
2� 6�2 + 3�4

�
:

For the case of short time (t� ! 0), the �rst moment can be written by using

the series expansion of e��mt� as follows:

m1;short(t
�) = Per t

� + Per
X
m

hu0;  mi h � 00;  mi
�m

�
�mt

� +O(t�2)
�

= Per t
� + Pert

�
X
m

hu0;  mi h � 00;  mi t� +O(t�2)

= Per t
� (1 + hu0; � 00i) +O(t�2) ;
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or,

m1;short(t
�) = Per hu; �0i t� +O(t�2) : (A.50)

A.3.3 Second Moment

The second moment is given from equation (A.41) as,

!M2 = 2 Per M1+2M0�2Pe2r h u0; Y1i M0+ h�2i�2Per h � 01; Y1i+ 2Per h � 00; Y2i :

(A.51)

Using the relation (A.38) for Y1 and Y2; we get

M2 = 2 Per

 
Per

h�0i
!3

+
h�1i
!2

+ Per
X
m

hu0;  mi h � 00;  mi
!2(�m + !)

!

+2
h�0i
!2

+ 2Pe2r h�0i
X
m

hu0;  mi
2

!2(�m + !)

+
h�2i
!
+ 2Per

X
m

hu0;  mi h � 01;  mi
!(�m + !)

+ (A.52)

2Pe2r
X
m

X
n

hu0;  ni hu  n;  mi h � 00;  mi
! (�n + !) (�m + !)

;

which after inverting the Laplace Transform, gives

m2(t
�) = h�2i+ 2 (h�0i+ Per h�1i) t� + Pe2r h�0i t�2

+2Per
X
m

hu0;  mi h � 01;  mi
�m

�
1� e��mt

� �
+2Pe2r

X
m

hu0;  mi h � 00 + h�0iu0;  mi
�m

�
t� � 1� e��mt

�

�m

�
(A.53)

+2Pe2r
X
m

hu0;  mi hu  m;  mi h � 00;  mi
�m

�
1� e��mt

�

�m
� t�e��mt

�
�

+2Pe2r
X
m

X
n 6= m

hu0;  ni hu  n;  mi h � 00;  mi
(�n � �m)

�
1� e��mt

�

�m
� 1� e��nt

�

�n

�
:

The last term in equation (A.53) can also be written in form as
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2Pe2r
X
m

( X
n 6= m

h u  n;  mi
(�n � �m)

(hu0;  ni h� 00;  mi+ hu0;  mi h � 00;  ni)
)�

1� e��mt
�

�m

�
:

Hence, the variance �2 = m2 � m2
1; can be calculated from equations(A.46) and

(A.53) as

�2(t�) = h�2i+ 2 ( h�0i+ Per h�1i) t� + Pe2r h�0i t�2

+2Per
X
m

hu0;  mi h � 01;  mi
�m

�
1� e��mt

� �
+2Pe2r

X
m

hu0;  mi h � 00 + h�0iu0;  mi
�m

�
t� � 1� e��mt

�

�m

�
(A.54)

+2Pe2r
X
m

hu0;  mi hu  m;  mi h � 00;  mi
�m

�
1� e��mt

�

�m
� t�e��mt

�
�

+2Pe2r
X
m

X
n 6= m

hu0;  ni hu  n;  mi h � 00;  mi
(�n � �m)

�
1� e��mt

�

�m
� 1� e��nt

�

�n

�

�
 
h�1i+ Per h�0i t� + Per

X
m

hu0;  mi h � 00;  mi
�m

�
1� e��mt

� �!2
:

For the case of h�0i = 1 and h�1i = 0;variance can be written as,

�2(t�) = h�2i+ 2t� + 2Per
X
m

hu0;  mi h � 01;  mi
�m

�
1� e��mt

� �
+2Pe2r

X
m

hu0;  mi h � 00 + u0;  mi
�m

�
t� � 1� e��mt

�

�m

�
+2Pe2r

X
m

hu0;  mi hu  m;  mi h � 00;  mi
�m

�
1� e��mt

�

�m
� t�e��mt

�
�
(A.55)

+2Pe2r
X
m

X
n 6= m

hu0;  ni hu  n;  mi h � 00;  mi
(�n � �m)

�
1� e��mt

�

�m
� 1� e��nt

�

�n

�
�2Pe2r t�

X
m

hu0;  mi h � 00;  mi
�m

�
1� e��mt

� �
�
 
Per

X
m

hu0;  mi h �0;  mi
�m

�
1� e��mt

� �!2
:
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For the case of uniform release, the second moment is given by

m2;uniform(t
�) = h�2i+ 2t� + Pe2r t

�2 + 2Pe2r
X
m

hu0;  mi
2

�m

�
t� � 1� e��mt

�

�m

�
= h�2i+ 2

�
1� Pe2r hu0;�11i

�
t� + Pe2rt

�2

�2Pe2r hu0;�21i+ 2Pe2r
X
m

hu0;  mi
2

�2m
e��mt

�

= h�2i+ 2
�
1 +

1

48
Pe2r h�0i

�
t� + Pe2r t

�2 (A.56)

�Pe
2
r

360
+ 2Pe2r

X
m

hu0;  mi
2

�2m
e��mt

�
;

where,

�21 =
X
m

hu0;  mi
2

�2m
=
X
m

h�11;  mi
�m

=
1

1152
(7� 24�2 + 18�4 � 4�6):

For the case of uniform release, the variance is,

�2uniform(t
�) = h�2i+ 2

�
1 +

1

48
Pe2r

�
t� + Pe2r t

�2 � Pe2r
360

+2Pe2r
X
m

hu0;  mi
2

�2m
e��mt

� � Pe2r t
�2

= h�2i �
Pe2r
360

+ 2

�
1 +

1

48
Pe2r

�
t� (A.57)

+2Pe2r
X
m

hu0;  mi
2

�2m
e��mt

�
:

For t� !1 (the long time approximation); e��mt� ! 0, and the variance becomes

�2long(t
�) = h�2i+ 2t� + 2Per

X
m

hu0;  mi h � 01;  mi
�m

+2Pe2r
X
m

hu0;  mi h � 00 + u0;  mi
�m

�
t� � 1

�m

�
+2Pe2r

X
m

hu0;  mi hu  m;  mi h � 00;  mi
�m

�
1

�m

�
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+2Pe2r
X
m

X
n 6= m

hu0;  ni hu  n;  mi h � 00;  mi
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�2Pe2r t�
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;

or,
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; (A.58)

where,

�22 = Per
X
m

X
n

hu0;  mi hu  m;  ni ;  n
�m�n

= Per �22

=
Per
11520

�
101� 420�2 + 480�4 + 240�6 + 45�8

�
:

For the case of short time (t� ! 0) the variance can be simpli�ed by using the

series expansion of e��mt� as follows:

�2short(t
�) = h�2i+ 2t� + 2Per

X
m

hu0;  mi h � 01;  mi
�m

�
�mt

� � �2mt
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2
+O(t�3)

�
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or,
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�Pert�2
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+O(t�3) ;
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X
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X
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so if we assume �1 = 0, the variance evolves as follows:
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or,

�2short(t
�) = h�2i+ 2t� + Pe2rt

�2 �
�0; u2 �� h �0; ui2�+O(t�3): (A.60)

A.3.4 Third Moment for uniform release

The third moment is given in Laplace domain by equation (A.41) as follows:

!M3 = 3 Per M2 + 6M1 � 6Pe2r h u0; Y1i M1 + 6Pe
2
r h u0; Y2iM0 + h�3i ; (A.61)
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using relations (A.38-A.40), (A.42,A.43), (A.45) and (A.52) for uniform release, we

have,

M3 = 6 Pe2r
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(A.62)
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Taking its Laplace inverse, we get the third moment as,
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(A.63)
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1A ;

the third central moments can be found from the above results. For the case of

h�0i = 1 and h�1i = 0; the third central moment,

�3 = m3 � 3m1m2 + 2m
3
1;

is given as,
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�3(t
�) = h�3i+ 6Pe3r t�

X
m

X
n

hu0;  ni hu0 n;  mi h u0;  mi
�m �n

+6Pe3r
X
m

hu0;  mi
2 hu0  m;  mi
�2m

�
t� e��mt

�� (A.64)

�12Pe3r
X
m

hu0;  mi
�2m

8><>:
hu0; mihu0 m; mi

�m

+
P

n 6= m
hu0; nihu0  n; mi

(�n��m)

9>=>;�1� e��mt
� �

:

The long time approximation in this case will be as,

�3(t
�) = h�3i+ 6Pe3r t�

X
m

X
n

hu0;  ni hu0 n;  mi h u0;  mi
�m �n

�12Pe3r
X
m

hu0;  mi
�2m

8><>:
hu0; mihu0 m; mi

�m

+
P

n 6= m
hu0; nihu0  n; mi

(�n��m)

9>=>;
= h�3i � 6Pe3r t�

X
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hu0;  ni hu0 n;�11i
�n

�12Pe3r
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m

hu0;  mi
�2m

hu0;  mi hu0 m;  mi
�m

�6Pe3r
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m

X
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(�n � �m)

�
1

�2m
� 1

�2n

�
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hu0;  ni ( hu n;�11i � h n;�11i)
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�12Pe3r
X
m

hu0;  mi
�2m

hu0;  mi hu0 m;  mi
�m

�6Pe3r
X
m

X
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hu0;  mi hu0;  ni hu0  n;  mi
�n�m

�
1

�m
+
1

�n

�
= h�3i+ 6Pe2r t� (hu0;�22i � Per hu0�21i )

�6Pe3r
X
m

X
n

hu0;  mi hu0;  ni hu0  n;  mi
�n�m

�
1

�m
+
1

�n

�
:

But the last term can be simpli�ed as,
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= �2 hu0�11;�21i =
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53760
:

This gives long time behavior of third central moment as follows:

�3(t
�) = h�3i+

Pe3r
480

�
t� � 17

112

�
: (A.65)
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Appendix B: Scaling Laws

In this appendix, we use scaling analysis to analyze gel dynamics in a single

and dual core set-ups. Here, we estimate the speed and width of gel fronts and

reaction fronts in a single core set-up and formulate the amount of �ow diversion

of acidic solution from high-perm to low-perm cores in a dual core set-up. We also

develop scaling criterion for optimum injection rate for stimulation of carbonates

using in-situ gelling acids.

B.1 Gel Dynamics

B.1.1 Speed of Reaction and Gel Fronts

To analyze the gel dynamics, we consider one-dimensional version of the two-

scale continuum model described in previous section, as follows:

"
@c

@t0
+ u0

@c

@x0
= �keff c ; (B.1)

@"

@t0
= Nackeff c; (B.2)

where c = Cf
Cf;in

is dimensionless acid concentration; keff = av (k
�1
s + k�1c )

�1 is

overall reaction rate constant that signi�es the effect of mass-transfer and true

kinetics on dissolution; and Nac ==
�cCf;in
�s

is acid capacity number. Here, we

neglect the axial dispersion term and assume that the velocity pro�le is constant.

Now, de�ning the wave coordinates as

t� = t0 and x� = x0 � uf t
0; (B.3)
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we simplify the model using coordinate transform
�
@
@t0 =

@
@t� � uf

@
@x� ; and

@
@x0 =

@
@x�

�
,

as follows:

"
@c

@t�
+ (u0 � "uf )

@c

@x�
= �keff c; (B.4)

@"

@t�
� uf

@"

@x�
= Nackeff c; (B.5)

where uf is the front velocity. Assuming the steady wave propagation, we can

further simplify the model by setting @
@t� = 0, which leads to the model in steady

wave coordinates as

(u0 � "uf )
@c

@x�
= �keff c ; (B.6)

uf
@"

@x�
= �Nackeff c: (B.7)

Now, we use the steady wave model given by equations (B.6, B.7) to estimate the

speed of propagation and width of reaction and gelling fronts in single core set-up.

The Reaction front is the zone where reaction occurs or proton concentration falls

signi�cantly, while the gel front is the zone where proton concentration corresponds

to the pH-range of gel formation.

We can simplify equations (B.6, B.7) to write a single ordinary differential equa-

tion (ODE) as
(u0 � "uf )

uf

@c

@"
=

1

Nac

: (B.8)

It should be noted that behind the reaction front, the core is dissolved completely,

while ahead to front, the core remains undissolved because all the protons are

consumed earlier. Thus, we can write the following boundary conditions:

" = "0; c = 0@ x!1 ; and " = 1; c = 1@ x! 0: (B.9)
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From Integration of the equation (B.8 ) from x ! 0 to x ! 1 with the conditions

given in equation (B.9), the front speed can be expressed in terms of acid capacity

number, Nac, as follows:

uf =
1� exp (�Nac)

1� "0 exp (�Nac)
u0 (B.10)

that can further be simpli�ed for very small acid capacity (Nac << 1) as

uf =
Nac

1� "0
u0: (B.11)

It is interesting to note from equation B.10 that the speed of propagation, u0 is

independent of concentration pro�le and rheological and kinetic parameters, and

depends only on acid capacity number. Therefore, both reaction and gel fronts

propagate with the same speed, uf . Also, the speed of fronts depends linearly on

inlet �ow rate and is higher for an acid of higher capacity number.

B.1.2 Width of Reaction and Gel Fronts

It is well known that the width of front depends on strongly on dissolution ki-

netics. Since mass-transfer coef�cient depends on �ow pro�le and molecular diffu-

sion, Dm

�
= Dm0

�

�
and viscosity depends strongly on pH; the dissolution kinetics,

keff is very complex function of proton concentration and is given in terms of Sher-

wood number, Sh
�
= 2kcrp

Dm

�
; as follows:

1

keff
=
1

av

�
1

ks
+

2rp
Sh Dm0

�

�
; (B.12)

In equation (B.12), all the parameters except viscosity (�) are almost constant due

to dissolution. Since viscosity depends on pH, we express the equation (B.6) in

terms of pH by setting concentration c = 10�pH

Cin
that leads the equation (B.6) to the
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following form:

1

av

�
1

ks
+

2rp
Sh Dm0

�

�
Ln10 dpH =

dx�

(u0 � "uf )
� dx�

exp (�Nac)u0
: (B.13)

Thus, we can determine the widths of reaction front and gel front by integrating

equation (B.13) in appropriate pH-range. For example, the width of reaction front,

lx;c; as follows:

lx;c =
u0 exp (�Nac)

av

�
1

ks
+

2rp
Sh Dm0

h�ic
�
Ln10 h�pHci ; (B.14)

where h�ic is the average viscosity of reaction front de�ned over pH-range of

reaction-zone, pHc as

h�ic =
1

h�pHci

Z
pHc

� dpH: (B.15)

Similarly, the width of gel front, lx;gel; can be expressed as follows:

lx;gel =
u0 exp (�Nac)

av

�
1

ks
+

2rp
Sh Dm0

h�igel
�
Ln10 h�pHgeli ; (B.16)

where h�igel is the average viscosity of gel de�ned over pH-range of gel formation,

pHgel as

h�igel =
1

h�pHgeli

Z
pHgel

� dpH: (B.17)

Thus, in mass-transfer controlled dissolution (kc << ks), the ratio of width of these

fronts simpli�es to
lx;gel
lx;c

=
h�igel h�pHgeli
h�ic h�pHci

(B.18)

that depends strongly on rheological properties. Whereas in kinetically controlled

dissolution, the width of these fronts are independent of rheology.
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B.2 Flow Diversion in Dual-core Set-up

We consider dual-core set-up, where fr is the fraction of �uid �owing through

low-perm core. The core 1 has lower permeability than core 2. The �ow splits in the

ratio of overall resistance ( k
�
) of these cores. The permeability is almost constant

until gel develops but viscosity keep increasing due to gel formation. The speed of

front propagation in low-perm core 1 (uf1) and high perm core 2 (uf2) can be given

by

uf1 =
1� exp (�Nac)

1� "0 exp (�Nac)
fr u0; uf2 =

1� exp (�Nac)

1� "0 exp (�Nac)
(1� fr) u0: (B.19)

Here, we write rock properties as

K1 =M1K0;K2 =M2K0; rp1 =
p
M1rp0; rp2 =

p
M2rp0; av1 =

av0p
M1

; av2 =
av0p
M2

;

which leads to width of gel fronts as

lx;gel;1
L

= fr �1
p
M1

�
1 + �2

p
M1
�
;
lx;gel;2
L

= (1� fr)�1
p
M2

�
1 + �2

p
M2

�
;

(B.20)

where �1 and �2are given by

�1 =
u0 exp (�Nac)Ln10 h�pHgeli

ks av0 L
=
exp (�Nac)Ln10 h�pHgeli

Da
;

�2 =
2ks rp0
Sh Dm0

h�igel =
�2

Sh
h�igel : (B.21)

Thus, the �ow splitting can be expressed in terms of ratio of overall resistances in

both the cores as

fr

1� fr
=

Meff;1

Meff;2

=

h
�p0
K1

�
1� lx;gel;1

L

�
+

h�igel
K1

lx;gel;1
L

i�1
h
�p0
K2

�
1� lx;gel;2

L

�
+

h�igel
K2

lx;gel;2
L

i�1
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=
M1

M2

h
1 +

�
h�igel
�p0

� 1
�
(1� fr)�1

p
M2

�
1 + �2

p
M2

�ih
1 +

�
h�igel
�p0

� 1
�
fr �1

p
M1

�
1 + �2

p
M1

�i ;

which can be rewritten as

fr

1� fr
=
M1

M2

 
1 + (1� fr) �1

p
M2

�
1 + �2

p
M2

�
1 + fr �1

p
M1

�
1 + �2

p
M1

� !
; (B.22)

where �1 and �2 are given by

�1 = �1

�h�igel
�p0

� 1
�
=
exp (�Nac)Ln10 h�pHgeli

Da

�h�igel
�p0

� 1
�
;

�2 = �2 =
�2

Sh
h�igel : (B.23)

It should be noted that equation (B.22) results into a quadratic equation in fr.

However, there is only one solution feasible (in the range of 0 < fr < 1). In mass-

transfer controlled dissolution (kc << ks or �2 >> 1), equation (B.22) can further

be simpli�ed as
fr

1� fr
=
M1

M2

�
1 + (1� fr) �1�2M2

1 + fr �1�2M1

�
; (B.24)

that leads to a linear equation in the form

fr

1� fr
=
�1�2 +M�1

2

�1�2 +M�1
1

: (B.25)

It can be seen from equations (B.25) and (B.23) that the �ow diversion strongly

dependent on rheological parameters. For Newtonian acids, h�igel = �p0, i.e.,

�1 = 0 and hence �ow splits into the ratio of permeability of cores, M1

M2
: For the case

of in-situ gelling acids, �1 and �2 can be very large and so the �ow diversion, i.e.,

fr ! 0:5 @ �1�2 !1: Thus, in-situ gelling acids diverts the �ow of protons in least

accessible low-perm core leading to more uniform stimulation.
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B.3 Optimum Injection rate

The strong coupling between transport and reaction processes leads to vari-

ous types of dissolution patterns for a given acid depending on the injection rates.

Experiments with Newtonian acids show that for high injection rate, porosity and

permeability increase uniformly and slowly that leads to uniform dissolution pat-

terns and require large amount of acids. Similarly at low injection rates, lots face

dissolution patterns are formed large amount of acids is required. At the inter-

mediate injection rate, very thin factal type channels are formed that are called

wormholes and require least amount of acids. Panga et al. (2005) compared the

characteristic length scales in �ow and transverse directions to estimate the cri-

terion for optimum injection rate. Here, we use the same procedure to develop a

criterion for optimum injection rate for the case of in-situ gelling acids.

In the transverse direction, transverse dispersion and reaction are the domi-

nant processes. So, the transverse length scale can be obtained by solving follow-

ing diffusion-reaction equation:

"D0
eT

@2Cf
@y02

= keffCf : (B.26)

that gives the characteristic transverse length scale, `T ; as

`T =

s
"D0

eT

keff
: (B.27)

Similarly, in the �ow direction, convection and reaction are dominant processes. So

the axial/longitudinal length scale can be obtained by solving convection-reaction

model:

u
@Cf
@x0

= keffCf ; (B.28)
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that gives the longitudinal length scale, `x; as

`x =
u

keff
: (B.29)

Here, u is the averaged velocity inside the wormhole which is much greater than

the average injection velocity, i.e.,

u

hui �
�
LT
dw

�2
;

where dw is the wormhole diameter and LT is the length of separation between

wormholes in transverse direction. Since, wormholes are formed due to compe-

tition between these diffusion-convection-reaction processes, the �ow and reac-

tion parameters should be such that the characteristic transverse and longitudinal

length scales must be comparable to each other to form a wormhole. In other

words, wormholes are formed when `T � `x; which leads to criteria for optimum

injection rate (that corresponds to wormhole formation) as follows:

u �
p
"D0

eTkeff : (B.30)

In case, where the ratio of wormhole diameter and length of separation is of same

order, the optimum injection rate can be given as

huiopt � u �
p
"D0

eTkeff : (B.31)

Here, keff is the effective rate constant that is disguised by mass-transfer and is

given as

1

keff
=

�
1

ks
+
1

kc

�
1

av
=

�
1

ks
+
2rp h�ic
Dm0Sh

�
1

av
(B.32)
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and D0
eT

�
� Dm0

h�ic

�
is the effective diffusivity, where h�ic is the average viscosity of

the �uid in reaction zone. This simpli�es the optimum injection rate further as

huiopt �
vuut "Dmksav

h�ic
�
1 +

2ksrph�ic
Dm0Sh

� �vuut "Dmksav

h�ic
�
1 +

�2h�ic
Sh

� : (B.33)

Thus, it can be seen from above equation (B.33) that the optimum injection rate for

in-situ gelling acids is smaller as compared to that of Newtonian acids. In particular,

in mass-transfer controlled dissolution (kc << ks), the optimum injection rate for in-

situ gelling acids is h�ic times smaller than that for Newtonian acids, i.e.,
huiopt;Gel
huiopt;New

�
1
h�ic
, while in kinetically controlled dissolution (kc >> ks), the optimum injection

rate for in-situ gelling acids is
p
h�ic times smaller than that for Newtonian acids,

i.e., huiopt;Gel
huiopt;New

� 1p
h�ic

: In other words, stimulation with in-situ gelling acids should

be performed at lower injection rates as compared to stimulation with Newtonian

acids.
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