Tvio Dimensional Turbulent Boundary Layer
with Favorable Pressure Gradients:
Similarity Type Solution of

the Momentum Equation

A Thesis

presented to

the Faculty of the Department of Chemical Engineering

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Chemical Engineering

by
Jerry A. Bullin

May, 1970

G
C’ ‘1)
oo
e
€
T



Acknowledgments

The author would like to express his gratitude to his
advisor, Dr. A. E. Dukler} whose comments and gquidance were
invaluable in this study. The author is also grateful to
Mr. R. A, Williams and Mr. D. M. Ingels for their assistance
in programming.

Finally, the author owes special thanks to his wife,

Carol, for her perserverance in preparing the manuscript.



Two Dimensional Turbulent Boundary Layer
with Favorable Pressure Gradients:
Similarity Type Solution of

the Momentum Equation

An Abstract of a Thesis

presented to

the Faculty of the Department of Chemical Engineering’

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Chemical Engineering

by
Jerry A. Bullin

May, 1970



Abstract

The turbulent boundary layer momentum equation was
solved by using similarity variables to transform the par-
tial differential equation into a more manageable form.
Contrary to the case for laminar boundary layers, this
equation contained a term involving streamwise derivatives
which was not negligible. Thus, a method to estimate the
streamwise term was devised.

A modification of an eddy viscosity distribution for
pipe flow due to Gill and Sher was used to eliminate the
Reynolds' shear stresses. The modified Gill and. Sher equa-
tion was used for the so-called inner region of the boundary
layer while the eddy viscosity was assumed constant in the
outer region. Although the eddy viscosity distribution was
not representative of the flow for adverse pressure gradients,
it was quite satisfactory for zero and favorable pressure
gradients involving fully developed turbulent flow. As a
consequence of the eddy viscosity distribution, unacceptable
results were acquired for adverse pressure gradient cases.

The present method was evaluated for zero and favorable
pressure gradients by comparing the results with three
different flows under various conditions. Good agreement
was observed in all cases for the local and average skin
friction coefficients and velocity profiles. Except for
one boundary layer involving nonequilibrium flows, good
results were obtained for the displacement and momentum
thicknesses.

One of the major advantages of the present method was
that a minimum of input information was required. That is,
for any given boundary layer, only the approach velocity

and the streamwise pressure gradient were needed.
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Chapter I

Introduction

In 1904, Prandtl (12) introduced the concept by which
the flow past a body is divided into two regions: a very
thin layer near the body where frictional effects are very
important and the remaining flow outside this layer where
frictional effects may be neglected. The thin viscous
layer near the wall is generally referred to as a boundary
layer and may be entirely laminar or may be turbulent with
.an extremely thin laminar sublayer.

In introducing- the boundary layer concept, Prandtl
simplified the Navier-Stokes equations for the case of a
fluid flowing along a solid surface to obtain the well known
boundary layer equation. This equation and the continuity
equation are nonlinear partial differential equations whose
exact solution can be accomplished only for certain specific
situations. The existence of a known relationship between
the local shear stress and the local velocity gradients
makes the exact solution mathematically possible for these
specific situations which occur in laminar flow.

In 1908, Blasius (1) obtained the first solution of
the boundary layer equations for the case of laminar flow
over a horizontal flat plate with no pressure gradient. In
this classical solution a method called the similarity trans-
formation was used. Blasius observed that the velocity pro-
files at all points along the plate for this particular flow
could be reduced to a single profile if plotted using suit-
able scales. Thus, if the dimensionless quantity, u/u,,

where u, is the free stream velocity, is plotted as a



function of a dimensionless variable, n, where n is the
distance normal to the plate and is scaled by the boundary
layer thickness, a velocity profile independent of positiocn
along the plate is obtained. As a result, the boundary
layer equations are reduced to ordinary differential equa-
tions. Since Blasius' first solution, the method of simi-
larity transformation has been successfully appliéd to many
cases in laminar flow especially since the advent of high
speed computers. Schlichting (16) has shown that the simi-
larity method may be used for all laminar boundary layers
where the free stream velocity varies along the plate as

x™ where x is the distance from the leading edge of the
boundary layer and m is a constant dependent upon geometry.

On the other hand, due to only limited understanding
of the highly complex turbulent processes, exact solutions
of the boundary layer equations are not possible for turbu-
lent flows. The momentum equation for turbulent boundary
layers contains a shear stress term which does not occur in
the laminar boundary layer equation. For a two dimensional
boundary layer, this term involves the time averaged product
of two fluctuating velocities and is known as the turbulent
shear\stress as contrasted to the shear stress which results
from the mean velocities. As one would expect, the fluctua-
ting and mean velocities result from a decomposition of the
VelociEy field into fluctuating and mean cocmponents.

The turbulent shear stress has not been theoretically
related to the mean velocity gradient (or any other quantity
which can be effectively used). As in most cases where rigorous
theoretical relationships are not available, the solution must
depend on some empirical-:information. Thus, the turbulent

shear stress is empirically correlated with the most convenient



parameter - the mean velocity gradient. Other methods use

different empirical correlations to obtain solutions.

Review of the Approaches for Solving the Turbulent Boundary

Layer

The objective of any method for solving the boundary
layer equations is the prediction of certain mean properties
of the flow such as the velocity, the skin friction, dis-
placement thickness (which is a measure of the boundary layer
thickness), and the location of the point at which the boun-
dary layer separates from the wall or body. Information
which almost all methods require for any particular boun-
dary layer are the free-stream pressure gradient or the free-
stream velocity distribution in the streamwise‘direction and
information which specifies the conditions which exist at the
point along the plate where the calculations are to be started.
Since the calculations are very sensitive to the streamwise
pressure gradient, a very high degree of accuracy is reguired
in specifying this data. In addition, certain specialized
information such as detailed velocity profiles at the starting
point and turbulence data is essential to some methods.

A unique classification of the approaches to the solu-
tion of the boundary layer equation has recently been pre-
sented (4). The approaches are categorized into two broad
groups based upon the form of the eguation used to represent
the boundary layer, that is,

A.) Methods based on the solution of a system of ordinary

differential equations derived from integral equations.

B.) Methods based on the solution of the partial differ-

ential equations.
The momentum equation for a turbulent boundary laver in

partial differential form is
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where the bar denotes time average, u' and v' are fluctuating
velocities and u, is the free stream velocity. If Equation
1-1 is integrated across the boundary layer, the momentum
integral equation which is used in the former group is

obtained

P

dx ax (i-2)

Essentially all of the integral methods use the momentum
integral equation, a second integral equation, and an assumed
velocity distribution such as Coles "law of the wake". The
assumed velocity profile is used to determine 6 and 6*.

In addition, some methods reguire an empirical equation
for the wall shear stress.

The nature of the second integral equation can be used
to further classify the integral methods. The most signifi-
cant difference between the integral methods is in the
structure of this second equation. As pointed out by
Reynolds (14), the three major integral techniques are the
dissipation integral method, the entrainment method, and
the moment of momentum method.

The dissipation integral method uses the mean energy
integral equation, which is obtained by multiplying the
momentum equation (Equatien 1-1) by u before integrating,

as the second eguation. The mean energy eguation is
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where D is called the dissipation integral and.g* is the
dissipation energy thickness. The dissipation integral
represents the rate of energy transfer from the mean velo-
city energy to the turbulence. An addition assumption
involving either the local Reynolds' stress distribution or
“the dissipation integral and the properties of the mean
flow is required in order to solve Equations 1-2 and 1-3.
The second method is based on the process of entrain-
ment of nonturbulent fluid into the turbulent boundary.

layer region. The entrainment rate may be obtained from
the continuity equation

Entrainment ra:te = d_ '/6u dy
dx ° (1-5)

An assumption about the relationship between the entrainment
rate and either the mean flow or the turbulence is necessary
for closure.

An additional method involves the moment of momentum
integral equation which is acquired by multiplying the
momentum equation by y. An assumption is required about
the term in the moment of momentum integral eguation which

contains the integral of the turbulent shear stress. Other



moment of momentum equations may be generated by multiplying
the momentum equation by different weighting functions.

It should be noted that there are many variations of
the above integral methods. All of the methods attempt
to consider the turbulence either implicitly or explicitly.

The differential methods, on the other hand, may be
classified according t¢ the manner in which the Reynolds'
stresses are represented. One category relates the Reynolds'
stresses to the turbulenc¢é while the other uses the mixing
length and eddy viscosity approach. The former method
uses the turbulent kineti¢ energy equation with the appro-
priate boundary layer apprdéximations as an additional
equation. However, some assumptions are still necessary
for closure, for example, an assumption is required about
the relationship between the Reynolds' stresses and the mean
turbulent energy.

The second method introduces an eddy viscosity according
to the following equation:

5T = gOU

dy (1-6)

The equation defining the mixing length approach is very
similar to Equation (l1-~6). In fact, they are related by

m, Ilm.
e

(1-7)

where L is the mixing length. This approach is used in

the present analysis, thus, further development is in order.
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Application of the Similarity Transformation Method to the
Eddy Viscosity-Mixing Length Approach:

The difficulty in handling the eguations in the eddy
viscosity-mixing length approach has led investigators to
use similarity variables to transform the partial differential
equations into ordinary ones. 2As a result of the similarity
type solutions of the turbulent boundary layer momentum
equation, three universal velocity distribution laws have
been proposed. These three laws have been analyzed in some
detail by Telles and Dukler (23). ‘

In the region of the boundary layer near the wall,
the "law of the wall" proposes that the velocity profiles
are independent of position along the wall when the velocity

is measured in terms of its scale, that is,

ut = uw/u, = u+(y+) (1-8)
where

y' o= uy/v
and u, = (Tw/p)l/2 = friction velocity

Since large deviations between the law of the wall and
experiment were observed at large Vaiues of y+, Coles (4)
proposed a purely empirical correction to the wall law,
that is,

v =a+B1ny 4+ K, W(y/6) " (1-9)

Based on experimental evidence Coles considered this equation

to be universal and presented numerical values of W for



various values of y/S.

In a manner similar to the wall law, a "velocity defect
law" has been proposed for the fully developed turbulent |
region of the boundary layer. This law suggests that the
mean velocity is a unique function of its difference from

the free stream velocity, that is,

— = uy = uD(y/5) (1-10)

The major limitations to these "universal" laws are that
they are asymptotic in character and apply only over limited

regions.

Two Layer Approach:

In the present approach to the solution of the turbulent
boundary layer momentum eguation, the boundary layer is
regarded as a composite layer characterized by inner and

outer regions as shown in Figure 1-1.

y/§ Outer Region

Inner Region

u
Figure 1-1

Boundary Layer Regions



According to Clauser (13), the inner reygion contains about
10 to 20% of the total thickness. The thickness depends
primarily on the wall shear stress and fluid viscosity.

In this region, the eddy viscosity varies almost linearly
with distance from the wall.

For the outer region, on the other hand, the flow is
completely independent of viscosity but is highly dependent
on the streamwise pressure gradient. In addition, the flow
is affected by the wall shear stress.

As in the inner region, the turbulent shear stress
is related to the mean velocity distribution by the eddy
viscosity. However, in this region the eddy viscosity is
assumed constant as suggested by Clauser. The eddy viscosity
distribution for an entire boundary layer is shown in

Figure 1-2.

Outer Region

€

Figure 1-2

Eddy Viscosity Distribution



Chapter II

Develorment of the Bboundary Layer

Momentum Equation and Parameters

Mathematical Statement of the Problem

For an incompressible fluid, the equations for conser-

vatiorn of mass and momentum in a turbulent boundary layer
are

continuity:

du ., v _ 0
0% ay (2-1)
momentums:
u.?.E + VEE = \).Q._ [(]_ + E/V)'?'E] - !‘. _a...:.P_
ax ay 3y 9y p dx (2-2)

where the coordinate system is defined by Figure 2-1.
Once the eddy viscosity has been specified, a unique

solution of these equations satisfying the following boundary
conditions is desired:

%
]
o
o
It
<
I
=)

y = o u = (z-2a)

o
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v

\

Figure 2-1

Coordinate System

Transformaticn c¢f Momentum Equation

Before attempting to solve Equations 2-1 and 2-2, it
is convenient to transform them into a more manageable form
by defining new independent and dependent variables. These
variables are generally called similarity variables. The
principle guidelines for defining similarity variables are
that the partial differential equations are transformed to
ordinary differential equaticns and that the resulting
equations and boundary ccnditions are as simple as possible.

After considering the above reqguirements the following
similarity transfcocrmation due to Meksyn-(lO) is used. To
satisfy the continuity eqguation (2-1), a stream function ¥

is introduced such that

_
9y 9% (2-3)



12

The variables (x,y) are first changed to (g,nl), where

g = fo Yo ax
u (2-4)
and
nl—‘_l_"_y
u, {2-5)

£ and ny correspond to the velocity potential and the stream
function of the inviscid flow at the edge of the boundary
layver for unit free stream velocity.

Following a procedure similar to Blasius the varieablecs

are changed to

)
!

_ ] 1/2
- U ¥
2vua£ (2-6)

-
it

(2vu_2)1/? £(g,n) (2-7)

Thus the new coordinates are £ and n as expressed by Egua-
ticns 2z-4 and 2-6.
All quantities in Equaticns 2-1 and 2-2 can be

expressed in terms of these new variables as shown below:

u =(.§_I"i) = u,f!
W/« (2-8)
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) = uo[_l_]l/2{f + ég(%i)n - (17+ k)nf;}

— =<§E -
oxX 2Re
Yy
(2-9)
S 4 3f"
(___> = — =° AF! -25( ) + (L + A)nfE" (2-10)
9X y ZEua & n |
(22) - gi{ae_]l/zf"
3y /. u 2 (2-11)

where the prime denote differentiation with respect to n

at constant x and X and Re are defined by

_ Ya du, _ -2£ du,
A= - 2-5 =
u, dx u, dg (2-12)
u_g
a
Re = ——
v (2-13)
The density (p) and viscosity (i) are assumed constant

for any given boundary layer.
Upon substituting Equations 2-8 through 2-11 into

Equation 2-2 and simplifying, the following is obtained
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311 + e/v)E"] = —FF" + A(L - £1)°
on
+ o2 9—f-«] £1 - 2g[9~f-] £
T
g n -

(2-14)

Taking the indicated derivative on the left side of the

above equation and rearrangin ields
g

5 3(e/v) af' 3%
Frivo o -ff" + A(1-Ff'") -~ £" 3an + 28|f' s5¢ - £" 3¢
(L + ¢/v)
(2-15)

For similarity to exist the streamwise terms must be negiigibly
small as suggested by Prandtl. However, for turbulent flow
these terms are not negligible as will be shown in Chapter TV.
Therefore, similarity does not apply for turbulent flow and
the similarity variables should be regarded only as a con-
venient change of variables.

The streamwise derivatives may be stated in another
form. Differentiating the Reynolds nurier as defined by

Equation 2-13 with respect to £ yields

dg v (2--16)

Substituting Equation 2-16 into the streamwise term gives
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2 f ! (__ ") f" (' N ') - ZRe f' (—"—' ) f“(""""' )
.

Thus, the streamwise derivatives may be expressed in terms
of Reynolds' number.

Formulation and Transformation of Eddy Viscosity Equation

In order to solve Equation 2-15, an eddy viscosity
distribution must be specified. A theoretical expression
for the eddy viscosity is not available. Furthermore,
experimental data for eddy viscosity are very rare due to
the difficulties encountered in measuring the time average
velocity gradients, especially in the outer region of the
boundary layer where they are very small. The only data
which could be located were found in Hinze (8). The eddy
viscosity formulation that will be used in this study is
basically the same as that used by Padilha (12). The boun-
dary layer is considered as a composite layer consisting 6f
inner and outer regions.

In the inner region, a modification of the Gill and
Sher (6) equation for pipe flow is used. This correlation
is an alteration of Prandtl's mixing length theory in that
the mixing length is given by an expression to account for

the viscous sublayer close to the wall, that is,

-y/¥
L =%ky(l -e ) (2-18)
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Yo a
where ¢ = Im 7 &
b

Y= maximum value of y

a = turbulent damping factor
b = constant
Thus,
—¢y/y,, 2
(e/v)y =xk%y? - T,
. . dy {2-19)

The advantages in using correlations such as Equaticn
2-19 are that they predict a continuous velocity profile
and have the ability to describe the transition region from
laminar to turbulent flow.

In the outer region, the eddy viscosity is assumed
constant., Studies made by Clauser (3) indicate that the
eddy viscosity is constant for the outer 80 to 90% of the

layer and is given by

kou. 8
240

(E/\)) o ~
(2-20)

where k2 = 0.018.
Now the problem is reduced to determining the transition
point between the inner and outer regions.

The point at which the inner region ends and the ‘outer
region begins will be known as the transition point. The
criterion used to define the transition point is the conti-
nuity of the eddy viscosity, that is, the transition point
is that point where (s/\))i = (g/v),. Hence, the eddy
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viscosity for the inner region is g¢given by Eguation 2-19
and, once the transition pcint is known, the eddy viscosity

for the outer region is given by
(e/V), = (e/v)i at transition point. (2-21)

The next step in the solution of Eguation 2-~15 is the
transformation of the eddy viscosity equations into Meksyn
coordinates. Using Equations 2~4 and 2-6 in 2-19 transforms

the eddy viscosity equation to

-én/ns 2
(e/v); = k2 (2re) Y/ 2n2ev (1 - e $ (2-22)

where ' .

(2re) Y4 (£2)1/ %05 - a

b

The constant a is interpreted as a turbulent damping factor
which describes the points where transition from laminar to
turbulent flow takes place. The constant b is evaluated by
choosing the value which gives the best overall fit. A
value of 25.0 was used.

The eddy viscosity equation for the outer region remains
the same as given by Equation 2~21 since it is constant for
this region.

Sihce the determination of the transition point requires
Clauser's Equation 2-20, it must also be transformed. After
using the transformed variablés and rearranging, the following

results:
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(e/V), =Ak2(2Re)1/2/kl—f')dn (2-23)
(o]

Transformed Momentum Equation

The momentum Equation 2-15 may now be expressed entirely
in terms of transformed variables once the derivative of the

eddy viscosity with respect to n has been computed. Performing
the differentiation yields

For the inner region:

, -¢n/n; 2
.a(_e/.&_ = fru1 [an(l-—e 6) ]
on _
-¢n/n -¢n/n -¢n/n
+ an"{(l-e 6y 4+ &N ¢ 5}(1~e Sy
ns
(2-24)
where B = 2k2(2Re)l/2
For the outer region:
d(e/V)o _ ¢
an (2-25)

The final equation results when Equations 2-17, 2-21, 2-22,

2-24, and 2-25 are substituted into 2-15. Since the derivative
of the eddy viscosity in the outer region is zero, the momentum
eguation for this region is simplier than for the inner region.

Therefore, the momentum equation is



ft
O

For the inner region:

—en -¢n
SFEY 4 A (L-f'9) —Bn(f")2[1+(¢n/n6—l)e N8| (1-e 18)
Frovy = : g
(1 + 2¢/v)

I-h

eger } Cen [,a __]
. 2Re [ f [aRe . £ e 2

(1L + 2¢/v) (2-26a)

Qo
-~

For the outer region:

3f! O f
SEEY 4+ A(L -£'%) 4+ 2Re[f'[§ﬁé] - f"[aﬁél ]
Fronoo n

(1 + e/v) (2-26Db)

The boundary conditions given in Eqguation 2-3 are stated
below in terms of n and f:
f=0 f' - 1.0

atn=20 and as n > ®
f'= 0 £f" +~ 0

(2-27)

To avoid confusion, it is stressed again that the eguation
for the outer region is a simplification of the equation
for the inner region since the derivative of the eddy vis-

cosity in the outer region is zero.

Alternate Eddy Viscosity Formulation

Another eddy viscosity formulation which was considered
gave results almost as good as the aforementioned formulation,

This alternate distribution used Equation 2-22 for the eddy
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viscosity in the inner region while the eddy viscosity in the
outer regicn was modified by an intermittency factor as suy-

~gested by Klebanoff (9), that is, for the inner region

(e/v); = k2 (2pe) 1/ 2128w (1-e~ 91/ N5y 2 (2-28)

and for the outer region

(e/Vyo = vle/V),

i at transition point ° (2-29)

Furthermore, the transition point was assumed constant at
0.16 for this formulation and the streamwise terms were
assumed to be negligible.

Although the intermittency factor (9) is given by

Yy = 1/2[1 - erf 5(v/8 - 0.78)1, (2-30)

the derivative of the eddy viscosity for the outer region,

which is given by

s -[S(n/n5—0.78)]2]

{
/)5, n/mg=0.16

{2-31)



was assumed to be zero for this particular distribution.
¥When the derivative of (g/v), was included, the results
were unsatisfactcry for no apparent reason even after
correcting for the streamwise tecrms.

Attempts to smooth the various eddy viscosity distri-
butions at the transition point, as shown in Figure 2-2,
produced no significant improvement in the results and,

therefore, were dropped.

/,Smoothed

'
T~

e/v

- — —n e —— — —

T n/mg 1.0
Transition

Point

Figure 2-2

Smoothed Eddy Viscosity Distribution
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Other Boundary Layer Parameters

Once the momentum eguation has been solved for'any
given case, other boundary layer parameters, such as the
skin~friction coefficient, displacement thickness, momentum
thickness, and the velocity profile in term of dimensionless
coordinates, can be calculated. These parameters expressed
in terms of both regular and transformed variables are as

follows:
Local skin-friction coefficient:

L A
£ 1/ 2002 (2-32a)

or, in terms of transformed variables, £ and n,

2yl 2¢

F (
- Re (2-32b)

Displacement thickness:

* [ 7
§ = 1 - 294
.L ( )dy

Yo (2-33a)
or, in terms of & and n,
* u_g
"= 9?2 20 [Taeen an
Re u, “Jo (2-33Db)



Momentum thickness:

o
8 =./( T (1-%) ay
o U, U,

or, in terms of £ and n,

u_§& o )
o = (2)1/2 _a v/ﬁf'(l—f') an
[0}

Re U,

Dimensionless coordinates for

or, in terms of ¢ and n,

u+ = (2Re)1/{

(£5)1/2

velocity profiles are

= 2re)t/t (£ 1/2

"
I

Once the displacement and the momentum thicknesses

computed the shape factor H can be determined from

H =

*
§ /6

23

(2-34a)

(2-34Db)

- (2-35a)

(2-35b)

-(2-36a)

(2-36b)
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In addition, the average skin-friction coefficient can be
calculated for a boundary laver on a flat plate with no

pressure gradient using

Cfavg = 20/¢ (2j-38)‘



Chapter III

Method of Solution

The method used to solve the momentum equation consists
of integrating Eqguation 2-26 while ignoring the streamwise
terms, then based on these results, estimating the streamwise
~terms and re-solving the momentum equation using the correction
for the E—derivatives.. Other mefhods (16) have linearized
the momentum equation before solving in order to overcome
the long computation time when the boundary layer becomes
very thick. However, this problem is easily resolved by
using a larger integration step in the region away from the
wall. No additional error is introduced since changes in
velocity are small for thick boundary layers in the region

away from the wall.

Estimation of the Streamwise Terms

The streamwise terms may be evaluated by two different
methods - a finite difference solution of the boundary layer
or by the estimation technique described below. The major
disadvantage of the finite difference method is that the
entire boundary layer must be solved using closely spaced
points in the streamwise directicon in order to obtain a
solution at any given point.

The present technigue for approximating the streamwise
terms uses Equation 2-17 which expresses these terms in the

most convenient form, that is,
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3E'] _ pu [ Bf
e ] e )
(1L + €/v) . (3-1)

where Ac is merely a symbol to represent the terms. The
derivatives in the above equation may be approximated by
differences if solutions to the momentum equation are avail-
able for closely spaced Reynolds' numbers about a central Re.
Using this approach, the momentum equation is first solved
assuming Ac to be zero for three Reynolds' numbe?s (Re3 =
Re2 + ARe, Rez, Rel = Re2 - ARe) and the derivatives are

approximated by

(8f'>= f3 - &
9Re Re, - Rel

n (3-2a)
and
(af )= [f3 -5
9Req [ Rey - Rey (3-2b)
Thus, Equation 3-1 becomes
£1 - £ -
ore. |er[3 - f1 ) B3 5
_ 2 2|Re, - Re 2 | Re, - Re
A = 3 1 3 1

(1L + /v) ' ' (3-3)
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where the subscript "2" signifies that the estimation applies
to the central Re. It should be noted that all values in
the above equation are at constant n.

The streamwise terms are negligible in the inner region
of the boundary layer (n less than n at the transition point)
for reasons which will be discussed in Chapter IV. However,
for the outer region the g-derivatives are very significant.
Although Equation 3-3 only gives a first order approximation
of Ac, a more accurate estimate can be obtained if the fol—

lowing procedure is used:

1l.) Ignore streamwise terms, solve momentum equation
for series of three Reynolds®' numbers with all

other parameters constant.

Calculate Ac using Equation 3-3.

w N
S~

Solve momentum equation again for central Re using:
[flll = f£'7' 4 Ac] . (3_4)

Obtain least squares fit of Ac as a function of n.

(5, -
L] L]
S” S

Repeat steps 1 through 4 (except in step 1 where
the correction term is used rather than assuming
it zero) until f§ is within 95% of the previous

value.

The above method is also presented in Figure 3-1. This
method is much better than it first appears, since only

one correction for the streamwise terms is required for

5

all cases where Re is greater than 10~ and for most cases

where Re is less than 105.



Assume
A =0

Solve momentum
equation for
Rel, Re,, Re,

Calculate A= A_(n)
A c c
C by least
squares

Solve momentum
equation for
Re2

Is
i+l

| (£5) .LT.
0.95] (£5) 7]

no

END

Figure 3-1

Correction for Streamwise Terms

28
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Convergence Technique for f§ and N

In order to integrate the momentum eguation (Eguation
2-26), one must first assume values for f§ and N Thus,
some technique is needed to converge upon the proper values
of these parameters, that is, assume f} and N s integrate
the momentum eguation, update f§ and Ng and integrate again,
until the £f§ and ng are found which satisfy the boundary
conditions as given by Eguation 2-27. _

However, before discussing the convergence technique,
the convérgence criterion should be established, that is,
what condition should be used to define the edge of the
boundary layer. According to the boundary conditions
(Equation 2-27) for the momentum equation, as n approaches
infinity f' goes to zero. However, as in all numerical
methods involving asymptotic boundary conditions, the
boundary conditions are never reached exactly. Therefore,
some specified limits are required.

Since f' is used as a boundary conditicn in the
convergence technique for f§ and Ng + f" is used to define
the edge of the boundary layer,.

As one would expect, large variations in the boundary
layer thickness (né) are found for wvarious specified
cut-off limits, due to the asymptotic nature of f£" in the
vicinity of the edge of the boundary layer. The only parts
of the momentum equation which are affected by these varia-
tions in ng are those terms involving the eddy viscosity.
Hence, the cut-off conditions which gave the best overall
results were chosen.

An influence function technique is used to update £}
and Ns in the convergence routine. According to Meissinger

(11), if the problem solution f(n,a) and the parameter
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influence coefficient %g(n’u) are known for a particular
point where o = 0,, then it is possible to make a first

order prediction of the system behavior at a neighboring

point having the new parameter value 0y = Go + Aa.
Meissinger's influence function technique for the

turbulent boundary layer momentum egquation is presented

in Appendix B. However, as an example to demonstrate the

method, the influence function technique for the laminar

boundary layer momentum equation is shown here. The trans--

formed equation for laminar flow on a flat plate is (16)-
f£" 4+ 2£''"' = 0 . {3-5)

In this example the prime denotes differentiation with
respect to n as before. The boundary conditions are the
same as for the turbulent boundary layer (Equation 2-27)

and will be repeated for clarity

' f =0 ‘ £' > 1.0
atn =20 as n > ®
f' =0 £f'" - 0

(3-6)
Again, as in the case of the turbulent boundary layer, £}

must be found. For convenience a will be used for f§ in

this development. Thus

n=0 (3-7)



Eqguation 3-5 is differentiated with respect to the influence

parameter o to obtain

2 . .
95 + S5 n v 2[5 =0
datan dn” do dotdn y (3-8)

The order of differentiation is not material, therefore;

Eguation 3-8 can be written as

Using
v = 4
da (3-10)
in the above equation yields
fu" + £'''Uu + 2U''YT = 0 {3-11)

where the prime denotes differentiation with respect to n
as usual., The boundary conditions for Egquation 3~11 are
derived as follows:

(3-12a)
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N

[éﬂ] = 4 _ii] - é_[éi_i = 0
dn n=0 dn*da n= da*dn n=0

al§F]

Hn=0 a(o) = 0
RECErL
[dn2 [dn2
n=0 n=0 (3~12b)
[éfp_k a? EIE-
2 )

an an do n=0 do

{(3-12¢)

These boundary conditions also apply to the turbulent
boundary layer, Equation 3-~12 specifies all boundary
conditions necessary for the direct solution of Eguation
3-11 once f and f" are known. After assuming f§ and Ng s
Egquations 3-5 and 3-11 may be solved simultaneously.

The influence function which produces successive
estimates of o (or f)) is developed as follows: It is

obvious that.

(£') e = gkf"’n=o]= e (e (3-13)

where g denotes a function. Expanding Equation 3-13 in a

Taylor series and terminating after the second term gives:

»
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(£ = w0t + ey taa A :
do » (3-14)

After using Equation 3-10 and recognizing that.

(gnitt = 1.0 ' (3-15)

vhen the proper f! (or o) is found, one obtains

(g0t + wntae = 1.0

(3-16)

Upon rearranging, the influence function in its final form

is acguired

. Py 1 .
(f2)1+1 _ 1.0 - (fm) + (gt

(unt

PSS (3-17)
Thus, the new value for f§ is given by the old value plus
a correction term. _ .
.The convergence réﬁtine may now be expressed as follows:
1.) Assume values for f! and U (the value of n at the
point where f£f" becomes less than 0.001 is used for
Ng-)e N
2.) Converge on a f§ for the assumed n

‘6 :
3.) Repeat step 2 until'(na)l+l = (na)l and (fg‘)l+l =
(£9)' within specified limits.

The convergence method is more easily comprehended in the
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form of a simple flbw diagram as shown in Figure 3-2.

ter Regions of Boundary Layer

Establish Inner and Ou

Once a convé¥géncée téchnique for Ns and f§ has been
found, the transitién point defining the end of the inner
¥égion and the beginhihg 6f the cuter region may be determined.
The transition poiht 18 génerally expressed as a fraction of
thé boundary layeé¥ thiekness.

As discussed ih Chapter II, the inner and outer regions
d¥e established by assuming a transition point and using the
value of (s)i at thé assumed transition point for (e),. Then
the momentum thiéknéss is ¢alculated by using Clauser's equa-~
tion for the eddy viséosity in the outer region (Egquation
2;20). This momentgm thickness will be denoted by 6;. If
5@ is larger than § (as ¢alculated by integration of Equa-
tion 2-32), the assumed transition point is too large. When
the two values of thée moméntum thickness are equal the transi-
tion point has beén 1l6éated. This procedure is demonstrated
in diagram form in Figure 3-3.

When the aforéméntioned method was used, it was noted
that for any partiéular value of the dimensionless velocity
gradient term, A, the transition point is essentially constant.
These results suggest a universal curve of transition point
as a function of A as shown in Figure 3-4. Furthermore, the
curve of transition point as a function of A was found to be
independent of Reyn®lds' number within the limits shown in
Figure 3-4. Thereforé, once the curve has been established
for the range of pressure gradients of interest, the transi-

tioh point determihatidon may be dropped.



Assume
fo. g

Solve
momentum
equation

(£ * by | £

Calculate- ﬁpdate

influence
function

. IS
(gmy it (gt

LT. LIMI

no

(ﬁé)i+l =

(nd)calc'd

- Is
(n5)1+l-(n6)l

no

Update
Ng

LT. LIMI

END

Figure 3-2

Convergence Technique for f3 and Mg



Assume a
transition point

Obtain solution
of momentum
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*
Calculate SC Update
transition
based on (¢g), point

* * no
o~ ¢ |.LT.
LIMIT
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END
Figure 3-3

Determination of Transition Point

36



T Y e e s i

P .‘otw.‘|vy||y B T

tion

I

i

|

]
its

!
'
|

'

1

“

'

B

|

.

im

'
.
i
'

1
1
i
b
.

t

ien

less Pressure
idence L

vs.

imension
Grad
Conf

of Boundary Layer Thickness)
D

Figure 3-4
Transition Point (Frac

less

TITTTLEL T IS dnaite bl Gt ...#11.”.%; LTI

mension

- di

oL . | Suiontey SR St

P Iy T T T I T

PRApORpl Supe g

DIttt 0 : i = St
SRRt St LTI e SO ettt b3 S e Rt L SR

£ = : T SSOTUOTSUSWTP it

St Sou il et b AT R e i B S : : R S

T T, T e e - quTog UOT3TSURIL L. -

o e SO o e e e I I DT T
R A N s e SIS SETAEt R SEa k,.l.h“rl.u SR AT e S ALt
T Tt s Sy T b o rr i i o
SRS S e T B e B TR Al St cr el L SO T.M




38

Numerical Technigues

The momentum eguation is integrated by using the Runge-
Kutta integration routine in IBM's Continuous Systems Modeling
Program (CSMP) (20,21). The main program is shown in Appendix
A along with definitions of symbols used. An IBM 360/Model 44
Computer was utilized. .

CSMP has many features which are particularly useful
in solving two point boundary value problems. These include
an a@plications—oriented language, simplified user-oriented

. input and output, and more specifically, an integration step.

size which may be easily changed as needed for the various ”

regions of the solution.

Summary
A brief summary of the method of solution is:
1.) Solve momentum equation by Runge-Kutta integration
in CSMP,
2.) Converge on f! and Ng using Meissinger's influence
function technique.
3.) Correct for streamwise terms.
4,) Establish inner and outer regions for each value
of XA as needed.
‘One of the major advantages of this method is that a solution
‘may be obtained at any point along the boundary layer with-

out solving the entire boundary layer.



Chapter IV

Discussion of Results and Comparison

to Experiment

As sfated in Chapter III, the streamwise terms in the
momentum eguation were found to be not negligible in the
outer region. .This fact is demonstrated in Figure 4-1 and
Table 4-1. 1In Figure 4-1, the velocity Rrofile (Re =
1.0 X 107, A = 0.0) has been plotted in terms of the dimen-
sionless coordinates u/u, and n for calculations where the
zeroth (no ccrrection) and first approximation of the strzem-
wise terms were used. The affect of streamwise terms on
the skin friction coefficient, the momentum and displacement
thicknesses, and the calculated boundary layer thickness is
shown in Table 4-1. In order to show that successive approxi-
mations of the streamwise terms will approach a constant value
for each'n, values of Ac, an approximation for the stream-
wise terms, for the first five estimations have been plotted
for the above mentioned conditions in Figure 4-2. Since
the integration process tends to reduce errors significantly
and since Ac is a correction in f''}, good results can be
expected with only a rough approximation of AC. For all
cases encountered in this study with Reynold's numbers
above 2 X 105 only one correction was needed for the stream-
wise terms.

Although the streamwise terms were of-considérable
importance in the outer region of the boundary layér, they
were negligible in the inner region. It can be seen from

Equation 2-~1 that the streamwise terms must be zero at the
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Tabkle 4-1

Affect of Successive Approximations of

Streamwise Terms on Boundary Layer Parameters

L 2 (1) * . +
Approximation cleO § ,in. 9,in. H Mg U,
0(2) 0.231 0.075 " 0.058 1.29 52,0 29.4

1 : 0.242 0.055 0.042 1.30 37.0 28.8

2 ' 0.245 0.058 0.045 1.28 - 43.8 128.6

3 0.240 0.058 0.044  1.30 39.8 28,9

4 0.244 0.057 0.044 = 1.29° 42.0 28.6

5 0.242 0.057 0.044 ©1.29 40.0 28.7

(1) All parameters are dimensionless unless otherwise noted.

{2) No correction for streamwise terms.

¥
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wall (n = 0) since f and f' are zero at this point. Even
though the streamwise terms are smaller in absolute value
in the inner region, the primary reason that they are negli-
gible in this region is that the absclute value of £''' is
much larger in the innexr region.than in the outer region.
Therefore, in the inner region the value of the streamwise
terms are very small relative to £''' and have no appreciable
effect on the reéults. '

Although good agreement with the data was obtainéd
for favorable and zero pressure gradients as will be dis-
cussed later, completely unacceptable results were obtained
for adverse preséure gradients (positive A's). As stated
in Schliéhting (16), the parameters f£', £", and £''' should
have general distributions of the type shown in Figures
4-3 and 4-4 for favorable and adverse preéssure gradients,
respectively. The parameter f£" which is directly related
to the shear stress is seen to decrease monotonically over
the entire boundary layer for zero and favorable pressure
gradients. On the other hand, for adverse pressure gradients,
f" is seen to increase from some initial value at the wall
to a maximum at some point in the boundary iayer then de-
crease to zero at the free stream. The above behavior of
f" has been verified by experiment and is well established.
In the present study the shear stress for all adverse pressure
gradient cases (except those with small A's, say less than
+0.1) was found to decrease monotonically from the wall in
the inner region, then, when the transition point separating
the inner and outer regioﬁs was reached, the shear stress
was observed to increase for a period as shown in Figure
4-4b. Accordingly, f''' which is directly proportional to

the derivative of the shear stress was found to vary as
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shown in Figure 4-4c.

After careful study of Figure 4-4 and Equations 2-15
and 2-26, it was concluded that the eddy viscosity distri-
bution Was not representative of the flow for adverse pres-
sure gradients. In particular, highly artificial conditions
were 6bsérved at the transition point. These conditions
suggéstéd that the transition of the eddy viscosity from.
the innér region to the outer region was not representative
at all. Furthermore, "smoothing" the eddy viscosity distri-
butiénh ih the neighborhood of the transition point produced
no encéouraging results.

In addition, for zero and favorable pressure gradients
the eddy viscosity was not representative of the flow for
certain combinations of Reynolds' number and turbulence
damping factor "a". For values of "a" above approximately
75 the numerical value of ¢ in the eddy viscosity equation
(Equation 2-22) becomes negative for Reynolds' numbers below
a partieular value (depending upon the values of "a" and )).
From Eguation 2-22 it can be seen that, when ¢ is negative,
the exponential term in the eddy viscosity increases with n
instead of decreasing with n which could not possibly be the

case.,

Results
Calculated velocity profiles in terms of ut and y+
are shown in Figures 4-5, 4-6, and 4-7 for Reynolds' numbers
of 1.0 X 10° and 1.0 X 10’ and A's of 0, -0.5, and -1.0,
respectively. Local skin friction coefficients were calcu-
lated over a range of Reynolds' numbers for the following cases:
1.) No pressure gradient (A = 0)
a.) a=1
b.) a = 50



47

2.) Favorable pressure gradient (A = -0.5)
a.) a=1
b.) a = 50

3.) Favorable pressure gradient (A = -1.0)
a.) a =1 |
b.) a = 50

The results are presented in Figures 4-8, 4-9, and 4-10,
respectiVely; The constahﬁ'"a" is a turbulence dampihg
factof. A .value of 1.0 represents fully developed turbulence..
The average skin friction coefficient could be calculated for .

zero pressure gradients oniy and is shown in Figure 4-11.

Comparison gg.Calculafed and Experimental Results

Since no exact solutions of the turbulent boundary
layer equations are possible at the present, the primary
basis for an evaluation of any prediction method is the
comparison with experimental data. In order to evaluate
the present method, the results were compared to three
flows under various conditions.

The lcocal and average skin friction coefficients for
zero pressure gradients are compared to experimental déta
in Figures 4-12 and 4-13, respectively. The Smith and
Walker (19) data was taken for an incompressible turbulent
boundary layer along a smooth, flat plate having zero pres-
sure gradient. The local surface-shear stress was measured
by a floating - element - type device similar to that used
by Dhawon (5). The average skin frictiqn coefficient was
computed using the momentum thickness obtained from inte-
gration of the velocity profiles. The local skin friction
coefficient as calculated by the present method agrees very

closely with the data especially after considering that the
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data had a scatter of about *1%. The results for cfavg were
about 5% above the data. However, Smith and Walker state

that the experimental c are slightly lower than expected.

The cfavg data froiagghlichting (16, Figure 21-2, page
538) were taken by several investigators. The data points
in Figure 4-13 represent the scatter of all the various
data from Schlichting. In general, the calculated values
are within the scatter of the experimental data.

No experimental data could be located for favorable

pressure gradient cases.

Flat Plate Flow with Zero Pressure Gradient:

"The zero pressure gradient flow of Smith and Walker
(19) which was used for comparison with skin friction co-
efficients is also used here. The experimental investigators
concluded that the virtual origin of the turbulence was at
X = 0 for all practical purposes. Figures 4-14, 4—15, 4-16,
and 4-17 show the calculated and experimental velocity pro-
files in terms of the dimensionless coordinates ut vs. y+
6 and 1.0 X

, respectively. Since there was no pressure gradient, A

and u/u, vs. n for Reynolds® numbers of 3.33 X 10
107
was, of course, zero. A maximum deviation from the experi-
mental data of 2.0% for Re = 3.33 X 106 and of 1.5% for

Re = 1.0 X 107 was observed. However for the latter case
the first data point appears to be unrepresentative as can
be seen in Figure 4-16 and should be disregarded. The local
skin friction coefficient, displacement thickness, momentum
thickness, and shape parameter (H) are compared to the data
in Table 4-2. Excellent agreement (within 3.0%) was found
for Ce in both cases. The displacement thickness and the
momentum thickness were found to be almost 8% above the

experimental values.
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Equilibrium Flow with Favorable Pressure Gradient:

Equilibrium boundary layers are characterized by

*
=2

A
eTRR fo¥
& 1%

w (4-1)

as first suggested by Clauser (3). The nondimensional
velocity defect distribution is invarient along the direc-
tion of flow for equilibrium boundary layers. Herring and
Norbury experimentally studied two equilibrium flows with
values for E of -0.35 and -0.53. The former flow was used
for comparison. 1In order to determine the virtual origin
-0of the flow, Smith and Cebeci (18) used the velocity distri-
bution (obtained by trial and error) shown in Figure 4-18
to match the momentum thickness at x = 2 feet, the first
streamwise point where data was taken. Due to the virtual
origin, the experimental lengths along the wall are trans-
lated 4.37 feet.

Calculated and experimental velocity profiles at x = 3
feet and 5 feet in terms of u' vs. y+ and u/u, vs. n are
shown in Figures 4-19, 4-20, 4-21, and 4-22, respectively,
while the other boundary layer parameters (cf, 6*, 6 and H)
are compared in Table 4-3. The dimensionless pressure
gradient term, A, was -0.866 for both cases. Although the
agreement in u+ for the x = 3 feet cases was excellent
(within 0.5%) for y+ above 90, theAexperimental values of
u+ rose above the logarithmic line for y+ below 90 and the
calculated values were within only 10% of the experimental
data. On the other hand, for x = 5 feet cases, the velocity

profiles agreed to within 2% except for the first data point
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from the wall. In many cases, the first data point may be
unrepresentative due to the size of the probe and the near-
ness of the wail. The skin friction coefficient agreed to
within 4% for both cases while the displacement and momentum
thicknesses were below the exverimental values by 6% for

x = 3 feef and 7% for x = 5 feet. Thus,rthe overall égree;

ment betwecen the calculations and experiment was good.

(ue) g

Experiment\

Cd

™
.

X - Feet

Figure 4-18
Velocity Profile Used to Match the Momentum

Thickness at x = 2 feet (Herring and Norbury)
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Flow with Favorable Pressure Gradient on an Aerofoil-like
Body:

Schubauer and Klebanoff (17) experimentally investi-.
gated a turbulent boundary layer along an aerofoil-like
body as shown in Figure 4-23. The flow was characterized
by a varying favorable pressure gradient for the first
17.5 feet. Velocity profiles in terms of u+_vs. y+ and
u/u, vs. n are shown for x = 5.5, 6.5, 10.5, 17.5 feet in
Figures 4-24 throuéh 4-31, respectively.- The  corresponding
dimensionless ?ressure gradient term, A, which was used,
is -0.400, -0.225, -0.077, and zero, respectively. Disre-
garding the first éxperimental point, the velocity profiles
agreed to within 4%. The other boundary layer parameters
are presented in Table 4-4 along with experimental vaiues.
Although the skin friction coefficients agreed to within
3%, the displacement ‘and momentum thicknesses agreed within
a 5 to 15% range. However, one must recognize that this

is not equilibrium flow.

Tunnel Wall
T

NWorking Side

&——— Flow

e S —

o> -

x=17.5" o ' ' '
Blister on

Tunnel Wall -

Figure 4-23

Boundary Layer Wall Used by Schubauer & Klebanoff
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Results Using Alternate Eddy Viscosity Distribution

As discussed in Chapter II, an alternate eddy viscosity
formulation was considered. This distribution used the same
eddy Viscosity'equation,as the previous method for the inner
region. However, the eddy viscosity in the outer region was
modified by Klebanoff's intermittency factor, and, in addition,
the transition point defining the inner and outer regions was
assumed éqnstant at 0.1e6. - | |

For this distribution, the eddy viscosity in fhevouter
region varies directly with the intérmittency factor lyj,_
that is,

(s/v)oY = y(e/V)jy 16 ' (4-2)

However, the derivative of (e/v)OY was assumed zero.

This method 1is also different from the previous method
in that the streamwise terms were assumed zero. When a
correction for the streamwise terms was used the results
agreed very poorly with the data. In the case where the
derivative of the eddy viscosity in the outer region was
used, corrections for the streamwise terms did improve
the results slightly.

In order to avoid confusion, the results from this
method are presented in Appendix C. Velocity profiles
are compared with the Re = 1.0 X 107 case of Smith and
Walker and with the Re = 5.23 X lO6 case of Schubauer
and Klebanoff in Figures C-1 and C-2, respectively. The
other boundary layer parameters for thése two éases afe
compared in Table C-1. 1In geheral, the results from this,

method are slightly inferior to the previous method.



Chapter V

Summary of Results and Recommendations

The turbulent boundary layer momentum equation was
solved by using a similarity transformation to convert
the partial differential equation into a more manipulative
equation which contained a term involving streamwise deri-
vatives. The Runge-Kutta integration routine in IBM's
Continuous Systems Modeling Program was used to integrate
the momentum equation. Since the streamwise terms were
found not to be negligible, a successful method was devised
to estimate these terms.

A modification of the Gill and Sher eddy viscosity
distribution was shown to apply for zero and favorable
pressure gradient cases. However, for adverse pressure
gradients, the eddy viscosity distribution was not repre-
sentative of the flow.

Good agreement was observed for the local and average
skin friction coefficients and the velocity profiles when
compared to experimental data. Except for one boundary
layer involving nonequilibrium flow, good results were
obtalned for the dlsplacement and momentum thickness.

Furthermore, for any given boundary layer, the only
input information regquired in the present method was the
approach velocity and the streamwise pressure gradient.

Obviously, the normal extension of this study would
be to obtain solutions for the adverse pressure gradient
cases or, more precisely, en eddy viscosity distribution
which would apply to these cases. The new eddy viscosity
distribution should be formulated such that it would be
representative of the unusual conditions just prior to

separation of the boundary layer from the wall.
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See page 50 for Figure 4-18.
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See page 51 for Figure 4-23,
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Table 4-2

Comparison of Experiment and Calculated Boundary Layer Parameters

SMITH AND WALXER

~ % ' ’
Re (1) A cfx1o‘ § ,in. 0,in. H
Experimental 3.33x10°  0.000 0.293 0.066 1 0.0480 1.37
Calculated 3.33x10°  0.000 0.288 0.070 0.0522 1.34
Experimental 1.00X107  0.0090 0.249 0.052 0.0390 1.33
Calculated 1.00x107  0.000 0.242 0.055 C.0422 1.30

(1) All parameters are dimensionless unless otherwise ncted.
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Table 4-3

Comparison of Experimental and Calculated Boundary Layer Parameters

Experimental

Calculated

Experimental
Calculated

(1) All parameters are dimensionless unless otherwise noted.

Re(l)

4.72x10°
4.72x108

3.49%10°
3,49x10°

HERRING AND NORBURY

-0.866
-0.866

-0.866
-0.866

c.X10

0.355
0.341

0.358
0.351

* 1]
§ ,in.

0.111
0.105

0.111
0.104

8,in.

0.086
0.081

0.086
0.078

H

1.29
1.30

1.29
1.31

LL



Table 4-4
Comparison of Experimental and Calculated Boundary Layer Farameters

SCHUBAUER AND KLEBANCFF

! *
Rre (1) A cX10% & ,in. 8,in. H
. Experimental 4.25X106 -0.400 0,315 0.087 0.065 1.35
Calculated 4.25X106 -0.400 0.314 0.092 0.071 1.30
Experimental 5.23X 106 -0.225  0.294 0.101 0.076 1.33
Calculated 5.23X106 -0.,225 0.287 0.116 0.089 1.32
Experimental 9.-16X106 -0.077 0.253 0.180 0.135 1.33
Calculated 9.16X106 -0.077 0.253 0.204 0.157 1.30
Experimental 1.61X107 0.060 0.23C 0.310 0.23C 1.28
Calculated 1.61X107 0.000 0.225 0.346 0.268 1.29

(1) All parameters are dimensionless unless otherwise noted.
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Appendix A

Program for Turbulent Boundary Layexr Calculations

The pregram used in solving the momentum egquation is
presented following this page. A definition of the symbols
used in the program is given in Table A-1. Contrary to a
Fortran IV Program, the input data statements are at the
beginning of the program in CSMP. '

When more than one estimation of the streamwise
terms is needed, ERRORK (the estimated value for the
streamwise terms) from the first run is expressed in
equation form as a function of n by using a separate
least squares program. Then ERRORK is used in the
boundary layer program in equation form as ERRCRI.

This procedure may be repeated as many times as needed.

Before running the program, attention should be
given to the values of the following parameters in the

program:

(1) RE, (2) DELRE, (3) FPPO, (4) LAMDA, (5) FIN1l, (6) DELT1,
(7) DELT2, (8) PRDELl, (9) PRDEL2, (10) OUTDL1l, (ll) OUTDL2,
(12) TRANSP, (13) A



Program for Turbulent Boundary Layer Calculations

LABEL TURBULENT BOUNDARY LAYER

*

/ DIMENSION F2P(3,200),F1P(3,200),FOP(3,200),EPNU(3,200)
/ DIMENSION ERROR (200)

*

* DATA INPUT AND INITIAL CONDITIONS

FIXED KOUNT , KOUNT2 , KOUNT4 ,KOUNT3,I,J,K,N,L,J4,J16

INCON  KOUNT=0, KOUNT2=0,KOUNT3=0,KOUNT4=0,J=1,K=1,I=1,L=0,J4=3,J16=0
PARAM - KC=0.4, A= 1.0, B=25.0, ETA0=0.0, DISP0=0.0,... |
FPO=0.0, FO=0.0, WPPO=1.0, WPO=0.0, MOMO=0.0, WO=0.0,...
DELT=0.01, FINTIM=0.50, PRDEL1=0.02, OUTDL1=0.02,...
EDL1=0.0, EDL2=0.0, PRDEL2=0.5, OUTDL2=0.5, DELT1=0.0l, DELT2=0.25,...
LAMDA= 0.000, FPPO=5.700,FPPO0=5.700,TRANSP=0.16,...
ETADEL=38.,250, RE=1,20E7,FIN1=39.00,DELRE=0.2E7,

ETA=TIME+ETAO

Y=COMPAR (ETA/ETADEL, TRANSP)

BETA= 2,0%KC**2%RE**(Q,5%2,0%*0,50

PHI= (2.0%*0.25*RE**0.25*%FPPOO**0,5*ETADEL-A) /B
PHIR1=PHI*ETA/ETADEL
PHIR=ZHOLD ( (130.0-PHIR1l) ,PHIR1)

EX=EXP (~PHIR)
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NOSORT

1000

1001

1004

PHIRLO=Z7HOLD ( (130-PHIR1l) ,PHIR1)
EXLO=EXP (~PHIRLO)

BRACl=1.,0-EX
BRAC2=BRAC1+PHI*ETA/ETADEL*EX

X2=BETA/2,0*ETA**2*FPP*BRACL1**2
EPONU1=ZHOLD ( (TRANSP-ETA/ETADEL) ,X2)
IF(Y)1000,1000,1001

EQUATION FOR THE INNER REGION

FPPPl= (~F*FPP+LAMDA* (1, 0~FP**2)~BETA*FPP**2*ETA*BRACL*BRAC2) /...
(1.0+BETA*ETA**2*FPDP*BRACL**2)

FPPP=FPPP1

EPONU=X2

IF(I.EQ.l) ETAl6=ETA

ERRORK=0, 0

GO TO 1002

CONTINUE

IF (ETA.LT.ETA16) GO TO 1004

CIF((J4-4% (J+1)).EQ. 0) J=J+1

J4=J4+1

IF(I.LT.4) GO TO 1004
K=J

CONTINUE

98



1002

1005

IF(X.LE. 0)K=1
EPONU=EPONU1l
IF(I.LT.4)ERROR(K)=0.0

EQUATION FOR THE OUTER REGION

FPPP2= (~F*FPP+LAMDA* (1.0~FP**2)) /(1. 0+EPONU)+ERROR (K)
ERROR1= (0.608~0.1778*ETA+3,394E~3*ETA**2) *1, 0E-4
IF (I.EQ.4)ERROR1=0.0

FPPP=FPPP2+ERROR1

ERRORK=ERROR (K)

CONTINUE

EDEL1=ETA

EDEL=ZHOLD ( (FPP~0.001) ,EDEL1)

FPP=INTGRL (FPPO,FPPP)

FP=INTGRL (FPO, FPP)

F=INTGRL (FO,FP)

IF(Y)1005,1005,1006

MEISSINGER INFLUENCE FUNCTION TECHNIQUE
BZ1=BRACL1**2*BETA*ETA**2*FPPP*WPP
BZ2=BETA*ETA**3*FPP*FPPP/B* (2, 0%RE) ¥*0,25/FPPOO**(0, 5*EX*BRACL
BZ=BZ1+BZ2

CZ=F*WPP+FPP*W+2, 0*LAMDA*FP*WP

DZ1=BETA*ETA*BRACl1*#*2%2, 0*I'PP*WPP
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1006

1007

DZ2=BETA*ETA**2*FPP**2%* (2, 0*RE) **0,25/B/FPP00**0, 5*EX*BRACL
DZ=DZ1+DZ2
EZ1=BETA*ETA**2/ETADEL*EXLO*BRACL* (PHI*2, 0*FPP*WPP + ...
0.5*(2,0*RE) **0,25/B/FPPO0**(, 5*ETADEL*FPP**2)
EZ2=BETA*ETA**2/ETADEL*FPP**2*(EXLO*ETA/Z.O*(2.0*RE)**O.25/...
B/FPPO0**0.5)* (1,0-2,0*EXLO) *PHI

FZ=EZ1-EZ2

GZ=-1.,0-BRACL#**2*BETA*¥ETA**2*FPP

WPPP1l= (BZ+CZ2+DZ+EZ) /GZ

WPPP=WPPP1

GO TO 1007

WPPP2=-1, 0% (F*WPP+FPP*W+2, 0*LAMDA*FP*WP) / (1. 0+EPONU)
WPPP=WPPP2

STORE PARAMETERS FOR ESTIMATING STREAMWISE TERMS
IF(I.GT. 3) GO TO 1007

EPNU (I,J)=EPONU

F2P (I,J)=FPP

F1P (I,J)=FP

FOP(I,J)=F

CONTINUE
WPP=INTGRL(WPPO,WPPP)
WP=INTGRL (WPO ,WPP)
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W=INTGRL (WO, WP)

IF (KOUNT4.EQ. 0) GO TO 1020
EPOUSD=EPONU/ ( (2. 0*RE) **0, 25*FPP00**0, 5*ETADEL)
YODEL=ETA/ETADEL

* CALCULATE OTHER BOUNDARY LAYER PARAMETERS
UPLUS=2,0%*0,25*RE**(0, 25*%FP/FPP00**0.50
YPLUS=2.0**0.25*RE**0.25*FPPOO*?O.SO*ETA
IDISP=1,.0-FP
DISP=INTGRL (DISP0O,IDISP)

IMOM=FP* (1.0-FP)
MOM=INTGRL (MOMO , IMOM)

1020 CONTINUE

SORT

METHOD RKSFX

*

TERMIN

IF (ETA0)100,100,101

* RESET INITIAL CONDITIONS TO VALUES AT ETA=0.50
100  ETAO=0.50
FPPO0=FPP0
* FPPO=FPP

FPO=FP

58
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101

40

FO=F
WPPO=WPP

WP 0=WP

Wo=W

IF (KOUNT4,EQ. 0) GO TO 103
DISPO=DISP
MOMO=MOM
DELT=DELT2
PRDEL=PRDEL2
OUTDEL=0UTDL2
FINTIM=FINl
GO TO 102

KOUNT=KOUNT+1

IF (KOUNT-1)40,40,41

WRITE (6,13)

WRITE (6,14)
WRITE(6,15)ETA,FP,WP,FPP,FPPOC,ETADEL,EDEL, EZ, PHI

UPDATE FPPO

FPPO1=FPP00

FPPOO=FPPOL+ (1.0~FP) /WP
IF(FPPOO.LE. 0.0) FPPQ0=0,00001
FPPO0= (2.0*FPP0O0+1. 0*FPPOL1) /3.0

(]
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RESET INITIAL CONDITIONS FOR NEXT LOOP

N=J

J=1

K=1

J4=3

J16=0
ETA0=0.0
FPPO=FPPOO
FP0=0.0
F0=0.0
WpPP0=1.0
WPC=0.0
W0=0.0
DISP0=0.0
MOMO0=0.0
DELT=DELT1
PRDEL=PRDEL1
OUTDEL=0UTDL1

PINTIM=0.50
FINETA=FIN1+0.,50

IF (KOUNT-40) 30,31, 31
WRITE(6,12)RE,A

6
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60
61
35

36

51

GO TO 34

CHECK CONDITIONS FOR CONVERGENCE

IF (KOUNT2.EQ. 1) GO TO 60

IF (KOUNT2.EQ. 0) GO TO 61

IF (ABS (FPPO1l-FPP00)-0.00100)35,35,33

IF (ABS (FPP01-FPP00)-0.00100)35,35,33

IF ( (FINETA-EDEL) .LT. 0.01 .AND. KOUNT2 .EQ. 0)FIN1=FINl+ 3.0
IF ({FINETA-EDEL) .LT. 0.01 .AND. KOUNT2 .EQ. 1)FIN1=FIN1+1l.50
IF (ABS (ETADEL-EDEL)-0.01) 51,51, 36

EDL2=EDL1

EDL1=ETADEL

ETADEL=EDEL

IF (ETADEL.EQ.EDL2 .AND. ABS (ETADEL-EDLl).LE.0.25) GO TO 51
GO TO 33

IF ( (FINETA-ETADEL) .GT. 1.0) GO TO 52
IF (KOUNT2.EQ.0) GO TO 52

WRITE (6,10)

WRITE (6,11)RE,A,LAMDA,ETADEL,XC, B

IF (ROUNT4.EQ. 0) GO TO 53

CF=FPP00* (2.0/RE) **0.5

H=DISP/MOM

DISP=DISP* (2. 0/RE) **0.5

49



MOM=MOM* (2.0/RE) **0,5
WRITE(6,20)DISP,MOM,CF,H
53 KOUNT4=1

* THIS SECTION CALCULATES THE CORRECTION TERMS
IF(I~-3) 54,55,34
54 RE=RE-DELRE
GO TO 56
55 RE=RE+DELRE
ETADRL=0. 80 *ETADEL
FINL1=ETADEL+1l.0 . :
56 KOUNT=0
KOUNT 2=0
"KOUNT3=0
KOUNT 4=0
IF(I-3) 58,57,57
57 D0O199 L=1,200
199 ERROR (L)=0.0
DO 200 L=1,N
DFP=(F1P (1,L)-F1P(3,L))/(DELRE*2,0)
DF=(FOP (1,L)~FOP(3,L))/(DELRE*2.0)
ERROR (L) =2. 0*RE* (F1P (2,L) *DFP-F2P (2,L) *DF) / (1. 0+EPNU (2,L) )
200 - CONTINUE
58 I=T+1
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GC TO 33

52 FIN1=ETADEL+0.25
KOUNT2=1
GO TO 33

10 FORMAT (////,10X,'RE',14X,'A",13X, 'LAMDA', %X, "ETADEL' ,10X, 'K' ,15X,
$'B')

11 FORMAT (/,6E15.4,////)

12 FORMAT (' EXCEEDED 50 LOCPS RE=',iE15.4,' A=',1E15.4)

13 FORMAT (//.'l THE FOLLOWING VALUES SHOW THE CONVERGENCE TREND')

14 FORMAT(//,8¥,'ETA',12X,'FP',12X, 'WP',11X, 'FPP"',10X, 'FPPC',8X,
$'ETADEL',8X,'EDEL',8X,' EZ',9X,'PHI',//)

15 FORMAT (9E14.5)

20 FORMAT {1X, 'DISP =',1El4.4,3X,'MOM =',1E14.4,3X,'CF ="',

$1E14.4,3X,'H =',1E14.4,//)
33 EPONU=0,0
102 CALL RERUN

34 CONTINUE

END

*

PRINT  ETA,F,FP,FPP,FPPP,YPLUS,UPLUS,EPON

PRTPLT ERRORK (ETA,FPP,DELT) , EPCNU (WP ,EPOUSD,YODEL)

V6



95

Table A-1

Definition of Symbols in Progran

Symbol in Program

A

B
BETA
CF
DELRE

DELT1
DELT2
DISP
EDEL
EPONU
EPOUSD
ERROR1

ERRORK
ERROR (K)

ETA
ETADEL
EX

F

FIN1

]

Symbol in Text or Definition

™ U W

Cf

Increment of Re to be used for
estimation of streamwise termns
Integration step size for n<0.50
ntegration step size for n>0.50
8" (uo/uf)

Calculated value of Ng

e/v

e/ (u,d)

Statement to input the estimated

streamwise terms in equation form
Dummy for ERROR (K)

Array for storage of estimated
streamwise terms

n

g

EXP {~¢n/ng)

£

Value of n at which the integration
is to belstopped. Generally start

with FINl = ng + 3.0
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FP = f!

FPP = f"

FPPO = f,"

FPPP1 = f''"' for n/n(S < transition point
FPPP2 = f''' for n/n6 > transition point
H = H

KC = k

LAMDA = A

MOM = 0(u./u,)

OUTDL1 = Print increment for n < 0.50
OUTDL 2 = Print increment for n > 0.50

PHI = ¢

PRDELL = Plot increment for n < 0.50
PRDEL?2 = Plot increment for n > 0.50

PE = Re

TRANSP = Transition point from inner region to

outer region of the boundeary layer

expressed as fracticn of n/n;
v

UPLUS = ut
U = Meissinger influence function
UPPP = U''' (prime denotes differentiation

with respect to n)
YODEL = y/$

YPLUS vl
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2Zpvendix B

Meissinger's Influence Function Technique

As stated in Chapter V, due to the length of the equa-
tions involved, Meissinger's influence function technique
for solving the turbulent boundary layer momentum equation
is presented here. This technique provides a means to up-
date f£," and N e

Letting

Q= ¢n/n, (B-1)

and rearranging the turbulent boundary layer momentum equa-
ticn as given in Equation 4-20, one obtains:
£100 4 (1-e” D Zpnlener o4 £E£n - A (1-£12)
v

% ¢
A 1

+ BnE"2 (-2 ¢ gnr20e(1-e79) = 0

¥ ¥
D E

(B~-2)

The symbols, A, Bl’ C, D, and E, are merely used to identify
the various terms and have no relation to other parts of the
text.

According to Meissinger's influence function teéhnique,
Equation B-2 is differentiated with respect to the influence
parameter f£,". Again o will be used to represent f£," for

convenience. Recalling that
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éo (B-3)
and noting that

a f' . §~[§£]= é_[§£]= '

do do'dn dntdo (B~-4)
Equation B-2 gives the following when differentiated:
LR
da (B~-5a)
O.Bl _ (1_e—Q)28n2fHUIII
do, L
G
o
+ (l—e—Q)zﬁnzf"’U" + 28n2(lme—Q)emQQa
v
Ba {B-5h)
ac . Ca = fu" + £"U + 2Af'U?
da (B-5¢)
80 . p = 280 (1-e"D %y 4+ 28n£7? (1-e” D) e 0
do o o
(B-54)
SE = g = 28nge”?(1-e" £
o
do.

+ an"ze—QQa[(l-e—Q) - Q(l~e_Q) + Qe-Q]

(B-5e)



where Q_ . dQ _i1 (2Re)1/4n6 (a)—l/2 . Solving for U'‘'’

do 2b
in Equation B-5 results in the fcllowing:

gree =B0t +'C0L+DOL+E0(

(1 + G,) (B-6)

of Da’ Ea' and Ga are defined by Equation B-5b,

c, d, and e. The boundary conditions for Equation B-6 are

where Ba’ C

identical to those derived for laminar boundary layers in

Equation 5-8. They are-

u
atn =0 R VR

u" =1 (B-7)

Equation B-7 gives all the boundary conditions necessary
for the direct solution of Eguation B-6 once £, f', £", and
f''' are known. Thus, the influence function which produces
successive estimates of f," is given by

i+l i

(£")™77 _ 1.0 = (£,)7 | (¢ wyi

(Um')i (B-8)
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Appendix C

Comparison of Results Using Alternate Eddy

Viscosity Distribution with Experimental Data
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Table C-1

Comparison of Calculations Using Alternate Eddy

Viscosity with Experimental Data

SMITH AND WALKER

Re = 1.0 X 10/ A= 0.0
2 * .
cleO § ,in. ¢,in. H
Experimental 0.249 0.052 0.039 1.33
Calculated 0.233 0.057 0.044 1.32
SCHUBAUER AND KLEBANOFF
Re = 5.23 x 10° A = -0.225
' 2 * .
cfX10 § ,in. ¢$,in. H
Experimental 0.244 0.101 0.076 1.33

Calculated 0.286 0.124 0.094 1.31
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Appendix D

Nomenclature

Turbulence damping factor, dimensionless
Constant in eddy viscosity eguation = 25.0,

dimensionless

= Average skin fricticn coefficient = 20/x,

dimensionless

Local skin friction coefficient, dimensionless

= Dissipation integral in Equaticn 1-3

Dimensionless pressure gradient which characterizes

equilibrium boundary layers

= Dimensicnless similarity variable

Value of f" at the wall, dimensionless
* .
Shape factor = § /8, dimensionless

Constant in eddy visccsity equaticn, dimensionless

= Constant in Clauser's eddy viscosity eguation

for the outer region, dimensionless

= Mixing length, ft.

Pressure, psi

Reynolds' number

Velccity in streanmise_direction, ft./sec.
Fluctuating component of velocity in x~direction
Streamwise approach velocity, ft/sec. _
Streamwise velocity at the outer edge of boundary

layer, ft/sec.

= Velocity in terms of wall law, dimersionless

= Dummy variable used in Meissinger's influence

functicon technique, defined by Egquation 5-6,

dimensionless



MoK o<

<

m

Greek

B> > < wm e

T
w

Velocity in y direction, ft/sec.

Fluctuating compcnent of velocity in y-direction
Coordinate in direction'of.streamwise flow, ft.
Coordinate in direction normal to surface along
which the boundary layer flows, ft.

Value of y at outer edge of loundary layer
Distance in y-direction in terms of wall law,

dimensionless

Symbols

Dummy variable for f§, dimensionless

Constant = 2/(2 Re)l/zk, dimensionless

Klebarcff's intermittency factor, dimensionless
Finite difference

Symbol for streamwise terms in momentum equation,
defined by Equation 5-14, dimensionless

Stream function

Intermediate variable in developing 0,

(Equation 4-3) A

Dimensicnless similarity variable

Value of n at outer edge of boundary layer,

‘"dimensionless

Momentum thickness, in.
Displacement thickness, in.
Displacement thickness as calculated by Clauser's
eddy viscosity equation (Equation 3-3), in,
Dersity, lb/ft.3

Shear stress at the wall, lb/ft.2

Abscluvte viscosity, 1b/ft.sec.
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= Kinematic viscosity,.lb/f"c.2

v

$ = Boundary layer thickness, in.

6** = Dissipaticn energy thickness, in.

£ = Eddy viscesity, lb/ft.2

= Dimensionless pressure gradient, defined by

Equation 4-10

£ = Independent similarity variable in x-directicn,
ft.

) = Expression in Gill and Sher eddy viscosity

- distribution, defined in Equation 3-1

Subscripts

(), = Denotes inner region of boundary layer

( ): = Denotes outer region of boundary layer

( )n = Denctes differentiation at constant n

( ) = Denotes evaluation at n = «

Superscripts

Prime denotes differentiation with respect to 7

() - = Tire averaged



