
ALGORITHMS AND DATA STRUCTURES TO DETECT

ONCOVIRUSES IN HUMAN CANCER USING NEXT

GENERATION SEQUENCING DATA

A Thesis Presented to

the Faculty of the Department of Computer Science

University of Houston

--

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Rui Zhu

December 2012

ii

ALGORITHMS AND DATA STRUCTURES TO DETECT

ONCOVIRUSES IN HUMAN CANCER USING NEXT

GENERATION SEQUENCING DATA

Rui Zhu

APPROVED:

Dr. Yuriy Fofanov, Chairman

Dr. William Widger

Dr. Nikolaos Tsekos

Dr. Mark A. Smith, Dean

College of Natural Sciences and Mathematics

iii

ACKNOWLEDGEMENTS

My sincerest appreciation goes to Dr. Yuriy Fofanov, Ph.D., for his guidance and support

throughout this endeavor. I would also like to thank Georgiy Golovko, Mark Rojas,

Otto Dobretsberger, Meenakshi Sharma, and Efren Ballesteros for their technical efforts

and suggestions, without which this project would never have reached fruition. Last, but

certainly not least; my deepest gratitude goes to my parents and my husband for their

constant encouragement and total support in my attainment of this goal.

iv

ALGORITHMS AND DATA STRUCTURES TO DETECT

ONCOVIRUSES IN HUMAN CANCER USING NEXT

GENERATION SEQUENCING DATA

A Thesis Presented to

the Faculty of the Department of Computer Science

University of Houston

--

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Rui Zhu

December 2012

v

ABSTRACT

Evidence suggests human cancer can be induced by viruses. One way to test this

hypothesis is to look for viral sequences in the human cancer genome. Next Generation

Sequencing (NGS) technology sequences the whole human genome in a short period of

time. This opens a door for a systematic analysis of the human genome and a thorough

search for oncogenic viral sequences in cancer. However, a huge amount of sequencing

reads generated by NGS poses a great challenge on the computational part of data

analysis in terms of computing speed and memory usage. Data structures such as hash

and tree are widely implemented to improve the performance of computing algorithms.

Here, I described both data structures that have been developed in our center and

compared their performance. Hash out performed tree when mapping the reads to a small

reference sequence database. Subsequently, real human cancer data were analyzed by

using the hash-based mapper and different oncoviral sequences were found in different

cancers.

vi

CONTENTS

1 Introduction ... 1

1.1 Next Generation Sequencing (NGS) .. 1

1.2 The search of infectious agents in cancer benefits from NGS technology 1

1.3 Computational challenges in NGS data analysis ... 2

2 Algorithms and data structures .. 4

2.1 Construction of oncoviral database .. 4

2.2 Mapping NGS reads to oncoviral database .. 5

2.2.1 Preprocessing NGS reads .. 5

2.2.2 Hash-based mapping algorithm .. 5

2.2.3 Tree-based mapping algorithm ... 13

2.2.4 Performance analysis .. 21

3 Analyzing cancer data using Slim mapping program .. 23

3.1 Similarity in oncovirus profile of cancer vs. normal .. 24

3.2 Tissue-specific oncovirus species .. 25

3.3 Oncoviruses that are common in cancer and normal tissue show different levels

of coverage .. 28

3.4 Five common oncoviruses are found in all examined individuals 33

3.5 Summary and conclusion ... 35

4 References ... 36

1

1 Introduction

1.1 Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) is a high through-put sequencing technology, in

which genomic material (i.e. DeoxyriboNucleic Acid or DNA) of organisms can be

sequenced in a massive parallel way. NGS produces tens of billions of short sequence

reads in a few days, which is considered lightening speed when compared to the Sanger

Sequencing. The Sanger sequencing is also called the first generation sequencing, which

was used by the Human Genome Project to sequence the whole human genome for the

first time. It took 20 institutes all over the world 13 years to complete a draft of the

whole human genome, whereas NGS takes only a few days to a week to sequence a

whole human genome.

1.2 The search of infectious agents in cancer benefits from NGS

technology

Studies [1] suggest that infectious agents, such as viruses, bacteria, parasites, etc. are

causative to human cancer. However, due to the long latency to malignancy and

technical difficulties in whole genome profiling using first generation sequencing

methods (automated Sanger sequencing) [2-4], the direct evidence was hard to find.

The Next Generation Sequencing (NGS) technique enables the profiling of the whole

human genome and makes a systematic search of non-human genetic material feasible.

With NGS data available in the lab, I focused on assessing the role of viruses in human

cancer.

2

Study shows there are tens of known virus species or oncoviruses that can cause cancer.

These oncoviruses are identified using several techniques. For example, Merkel cell

polyomavirus was recently identified by digital transcriptome subtraction [5], in which

the human sequences were subtracted from the tumor transcriptome computationally.

The analysis suggests that oncoviruses are transcribed in the cancer tissue and thus their

genomic sequences are present there. Therefore, I hypothesized that the profiles of

identified oncovirus species in the genomic DNA samples from cancer inflected tissue

differ from normal tissue. To test this hypothesis, I constructed an oncovirus reference

sequence database and mapped NGS reads from samples of brain, colon, and cervical

cancer to this database. Then I compared the mapping result between sequences

generated from cancer samples and their normal counterparts.

1.3 Computational challenges in NGS data analysis

A few decades ago, biologists were sipping the information from cups of data produced

in traditional biological experiments and as a consequence there was no need for

computer scientists to help with data processes in a large scale. With the development of

sequencing technology, the amount of the data produced in modern biological sequencing

experiments has increased dramatically. Biologists are now flooded by the

overwhelming amount of data. This has posed challenges on many aspects of computer

science, such as data storage, data transfer, as well as data analysis and interpretation.

My project was to search for evidence of oncoviruses in the cancer genome compared to

the normal human genome. A critical step of data analysis was to map NGS reads to the

oncoviral database and identify any viral sequences from the pool of mapped reads.

3

Therefore, algorithms and data structures for the mapping (alignment) of short reads are

important for my project.

Many mapping algorithms and data structures have been developed. In summary, there

are two major categories:

(1) Hash-based algorithms

Some of these work by hashing the read sequences and scan through the reference

sequence, such as human genome sequence or oncoviral database in my case.

Some examples are RMAP [6], MAQ [7], ZOOM [8], SeqMap [9], and

CloudBurst [10]. Others programs work by hashing the reference sequences. For

instance, SOAPv1 [11], PASS [12], MOM [13], and ProbeMatch [14].

(2) Tree-based algorithms

This type of algorithm makes use of the theory on string matching using Burrows-

Wheeler Transform (BWT) [15] and put the reference genome in a prefix tree.

Examples are SOAPv2 [16], Bowtie [17], and BWA [18].

In order to assess the efficiency of different mapping algorithms, I compared the

performances of exact matching using the hash-based algorithm and the tree-based

algorithm that were developed in our lab at Center for BioMedical and Environmental

Genomics.

4

2 Algorithms and data structures

2.1 Construction of oncoviral database

First, I performed internet and literature search for all known oncovirus species. This

search produced 339 virus names including many different subtypes. In order to obtain

the genomic sequences from all virual strains of all species, I eliminated the restriction of

subtypes and condensed the list to 34 search keys (Table1). Then I implemented a Perl

script to extract genomic sequences that match the search keys from an existing

comprehensive C_Sequence-formated virus database in the lab. The Perl script algorithm

constructed a regular expression of search keys. The script writes the first line, the

following information and the sequence to a new text file when there is a match to the

regular expression . This search generated 6574 complete oncovirus genomes. The

large numbers was due to different substrains of same viruses.

 Table1. Search Keys for construction of oncoviral database.

5

2.2 Mapping NGS reads to oncoviral database

2.2.1 Preprocessing NGS reads

NGS reads produced by the sequencing machine are initially in FASTQ format. The

reads used in this study are from the Illumina GAIIx sequencer, which produces FASTQ

reads of the same length. Subsequently, FASTQ read files are passed through quality

analysis using the programs, Pipeline for Illumina Quality Assessment (PIQA) or

Technology Independent Quality Assessment (TIQA). Filtering decisions were made

based on the quality assessment report. Reads with bad quality scores, or reads with

unknown characters were removed. Sometimes, reads with biased prefix were trimmed

to remove adapter sequences while retaining the informative part of the sequences.

After filtration, an output text file containing every unique read sequence and

corresponding copy number in the pool of reads was produced. This output file is in an

Array_Subsequence or AS format. The AS file is the input file for reads in both the hash-

based and the tree-based mapping programs presented below.

2.2.2 Hash-based mapping algorithm

SLIM is the software package that has been developed in our lab using a hash-based

mapping algorithm. The basic idea is to hash the read sequences into a hash table and

scan through the reference sequence with the same sequence lengths as the original data

to find the exact matches in the hash table of reads. There are two major parts of this

algorithm. The first part is the conversion of each unique read sequence into its numeric

6

signature. The second part is to use a hash function to put the numeric signature of each

read sequence into a hash table as a key and the copy number of each read sequence as a

value.

2.2.2.1 Signature conversion of read sequences

The idea of transforming read sequences to numeric signature came when implementing a

hash function. The first question is how to hash a string of characters in sequence reads

with a 4-alphabet set (‘A’, ‘T’, ‘C’, ‘G’) to a hash table. There are many ways of doing

this. For example, one can use the ASCII value of each of the four letters and add them

up to get a number. However, one of the potential problems would be the loss of

uniqueness of the sum of the ASCII value. To produce a unique set of signatures for each

sequence in the sample, a schema of the signature conversion using bit operations has

been developed in the lab (Figure 1).

7

 For this conversion, a 40-nucleotide (nt) long read sequence is converted based on the

character-to-binary rule as ‘A’ 00, ‘T’ 01, ‘G’ 10, ‘C’ 11, Figure 1. In this way,

it is sufficient to represent each letter in two bits and where a one byte character space (8

bits) is able to store the information of four nucleotides (e.g. “ATCC” can be stored in

one byte as 00011111). In order to store the signature of an entire read sequence, an

array of characters is created with a flexible size according to the read length (i.e. 40/4

=10 in this case) and each byte storing a 4-nucleotide signature.

In our current code, the 4-nucleotide signature conversion generates a reversed signature.

For example, “ATCC” will be converted to 11110100 instead of 00011111. This is due

Figure 1. Schematic representation of conversion from a DNA read sequence to a

numeric signature.

8

to the current conversion algorithm (Pseudocode 1). However, it does not affect the

accuracy and performance of the conversion.

#signature conversion

Signature_Size = Read_Length / 4

IF Read_Length % 4 != 0

 Signature_Size++

ENDIF

FOR i in 1 to Signature_Size

 Signature[i] = 0

ENDFOR

FOR i in 1 to Read_Length

 SWITCH Read[i]

 CASE 'A' or 'a': x=0

 CASE 'T' or 't': x=1

 CASE 'G' or 'g': x=2

 CASE 'C' or 'c': x=3

 DEFAULT: RETURN

 ENDSWITCH

 x = x << (i%4)*2

 Signature[i/4] += x

ENDFOR

One of the advantages of developing a unique signature for each non-redundant read

sequence is to minimize memory usage. Once the reads have been converted, there is no

need to store read sequences. Signatures can be easily converted back to read sequences

Pseudocode 1. Signature conversion for hash-based mapper.

9

by following specific rules. Also, the storage of numeric signatures is much more

compact than storing character strings. For example, to store a 40-nucleotide (nt) long

read sequence as a character array, one would require 40 bytes for each character plus

one byte for “\0” at the end. When converted to a numeric signature, one byte can store

the signature of four characters and only 10 bytes are needed. Numeric conversion

produces a 4-fold reduction in memory usage.

Another advantage of using a numeric signature is that computation speed increases

dramatically. The conversion itself does not impose much overhead due to the efficiency

of bit operations. However, a big portion of time will be saved by reducing the

comparison between two m-long character arrays (, is the length of one read

sequence) to the comparison between two integers () during the mapping process.

2.2.2.2 The hash function and collision resolution

2.2.2.2.1 Determine the size of the hash table

The size of the hash table is determined by the number of reads and the population rate of

the table. The number of reads to be hashed is provided by the input read file. The

population rate is 0.25 by default and can be changed when needed. Once these two

parameters are known, the size of the hash table is determined by using the nearest prime

number of the anticipated maximum capability of the hash.

10

The reason to choose a prime number as the final size of hash table is to enable linear

probing for collision resolution.

2.2.2.2.2 The data structure of the hash table

Once the size of the table is determined, two parallel arrays can be allocated: one is the

array of keys and the other is the array of values. The array of keys in our application

contains the numeric signatures from all converted read sequences. As explained in the

Figure 1, each signature is an array of characters based on the length of reads.

Therefore, the array of keys is a two dimensional array. The array of values stores the

copy number of each read and is of same size and index as the array of keys.

2.2.2.2.3 The hash function

Upon successful signature conversion from the reads, the job of the hash function is to

ensure all the numeric signatures of the reads can be hashed into the hash table. The

modulus operation is sufficient for the first index in the hash table:

Where is a hash function. When Signature is converted from up to 32nt-long reads,

it means that the size of the character array of Signature is 8 bytes or less. In this case,

Signature can be easily converted to a 64-bit long unsigned integer number to be used to

compute the index using the above function. However, when Signature is converted from

reads that are more than 32nt-long, only the first 8 bytes of the Signature can be used in

the above function. Then the remaining bytes have to be compared when collision

happens.

11

2.2.2.2.4 Collision counter and collision resolution

Collision is monitored by using the variable, Collision_Counter. The Collision_Counter

keeps track of the number of collisions and monitors the performance of the hash. One

way to resolve the collision is to use linear probing:

Where is a hash function, is the size of hash table, and is the number of

collisions.

 is a linear function in of the form: , which is has the following two

properties:

 Property 1:

 Property 2: The set of values must

be a permutation of , that is, it must contain every integer between

and inclusive.

In order to satisfy Property 2, and need to be relatively prime. Since is chosen as a

prime, therefore, we choose to have here (Pseudocode 2).

12

 #collision resolution

’’’Index here is the first index created by the hash function in above

section’’’

Collision_Number = 0

FOR Collision_Number in 0 to MAX_COLLISIONS_NUMBER

 IF Keys[Index] is empty

 Keys[Index] set to current Signature

 Values[Index] set to current CopyNumber

 increment NumberOfElementsInHash

 RETURN

 ENDIF

 ELSE

 compare the Signatures byte by byte

 IF equal

 add the current CopyNumber to Values[Index]

 RETURN

 ENDIF

 Index = (Index + ((Collisions_Number+1)<<4)) %

SizeOfHashTable

 Increment Collision_Counter

 ENDELSE

ENDFOR

2.2.2.3 Operations

The purpose of creating the hash table is to enable quick searching of subsequences in

reference genomes and retrieving of the copy numbers corresponding to each

subsequence. Therefore, once the hash table is created, no deletion operations will be

performed. The insertion and lookup operations are sufficient to serve our purpose here.

Pseudocode 2. Collision resolution for hash-based mapper.

13

To insert a particular read sequence , one would examine array location .

If there is a collision, array locations are examined until an

empty slot is found. Similarly, to lookup a particular subsequence in the reference

genome, one would examine the same sequence of locations in the same order until a

matched subsequence is found. The time complexity of linear probing is dependent on

the maximum number of collisions. In the worst case, all sequences are hashed to one

location, which makes the insertion and lookup operations. The space complexity

of -nt long reads with a population rate is

 due to actual storage

of Signature of reads is

 bytes.

2.2.3 Tree-based mapping algorithm

The SCRUFFY software package developed in the lab implements a Tree-based mapping

algorithm. The idea is to first sort all the read sequences alphabetically and put them into

a radix tree, to scan through the reference sequences to find exact matches and retrieve

copy numbers for each mapped read from the tree.

2.2.3.1 Sorting the reads alphabetically by LSD radix sort

One feature of our mapping is that the read sequences in one mapping task are of same

length. This allows the use of a least significant digit (LSD) radix sort on each letter of

the reads.

The basic sorting operation of radix sort is a counting sort, which is not a comparison

sort. The lower bound for comparison sorting is not applied [19]. A

counting sort operates by counting the occurrence of each to-be-sorted object and uses

14

arithmetic on those counts to determine the positions of each object in the output. The

time and space complexities are both linear in the number of objects, for the

Pseudocode 3 [20].

#counting sort

''' allocate an array Count[0..k] ; initialize each array cell to zero ; THEN '''

FOR each input item x:

 Count[key(x)] = Count[key(x)] + 1

ENDFOR

total = 0

FOR i = 0, 1, ... k:

 c = Count[i]

 Count[i] = total

 total = total + c

ENDFOR

''' allocate an output array Output[0..n-1] ; THEN '''

FOR each input item x:

 store x in Output[Count[key(x)]]

 Count[key(x)] = Count[key(x)] + 1

ENDFOR

RETURN Output

The LSD radix sorting algorithm is easy to understand. Suppose we have an input of a

set of reads of strings of length over the alphabet {A,T,G,C},

Pseudocode 3. Counting sort used by radix sort.

15

and outputs in increasing alphabetical order. The algorithm will look at the last

position in all the reads (the least significant digit or LSD) and counting sort all

the reads based on letters at this position. Once sorted, it continues to count sort reads

based on positions . Upon completion of the iteration to position ,

the set of reads is sorted alphabetically. (Figure 2) The time and space complexities

are both .

2.2.3.2 Radix Tree

Once the read sequences are sorted alphabetically, a radix tree can be built for rapid

searching and copy number retrieval used in our mapping protocols.

2.2.3.2.1 The idea of radix tree

Radix tree is an optimized compact tree to store strings with a high occurrence of

prefixes. Its edges are common prefixes from the parent node to a child node. For

Figure 2. Example of LSD radix sort on 4nt-long sequences.

16

instance “ACTA” and “ACTC” have same prefix “ACT”, which is the edge from root to

one child node, seen in Figure 3,. The last letters “A” and “C” are different and become

edges from that child node to two different grandchild nodes. The copy number will be

stored in the node to easily retrieve the corresponding copy numbers of each path.

A radix tree is a data structure selected for quick searching in SCRUFFY because of the

characteristics of the DNA sequences. There are only four letters in the sequences

{A,T,C,G}, but the number of read sequences can be in millions. Therefore, there will

be a very high occurrence of prefixes in the pool of reads. The compact feature of radix

Figure 3. Schematic representation of a radix tree developed from four 4 nt-long

sequences.

17

tree is most applicable here to minimize the space complexity. Also, since the height of

the tree is not larger than the length of the read sequences, the constant , the worst

traversal time , is also a constant for a lookup.

2.2.3.2.2 The node of radix tree

To understand the tree structure, each node is designed to have the following member

variables.

 Copy: the sum of the copy numbers of all subsequences (or prefixes) till the node

 Depth: the position of the first letter in the edge in the context of read sequence

 Motif: a character array storing the prefix from the root to the node

 First_Location: the first occurrence of one particular prefix in the sorted array of

read sequences

 Last_Location: one position after the last occurrence of the particular prefix

referred to by the First_Location

 Node_A: pointer to a child node if the first letter of the edge is ‘A’

 Node_T: pointer to a child node if the first letter of the edge is ‘T’

 Node_G: pointer to a child node if the first letter of the edge is ‘G’

 Node_C: pointer to a child node if the first letter of the edge is ‘C’

2.2.3.2.3 Creation of radix tree from sorted reads

The tree is created by recursively calling the constructor of the node, Radix_Tree_Node

(Pseudocode 4 and Figure 4). The initial call will pass the object of _Sorted_Reads,

_First_Location = 0, _Last_Location = total number of reads in the object

18

_Sorted_Reads, and _ParentNode_Depth = 0. In this way, the tree will be created from

the root to the leaf node. When all the letters from _First_Location to _Last_Location

are the same letter, the code will continue to check if the letters in the next position are

the same. When different letters are found, new child nodes are created corresponding to

each letter by recursive calls.

constructor of the Node

'''member variables are indicated in the previous section'''

'''assume object _Sorted_Reads has the following functions:

 get_read_length()

 get_copy_number(index)

 get_read_sequence(index)

'''

create FUNCTION Radix_Tree_Node (_Sorted_Reads, _First_Location,

_Last_Location,

 _ParentNode_Depth)

 First_Location = _First_Location

 Last_Location = _Last_Location

 initialize all other member variables to 0 or NULL

 Motif_Length = _Sorted_Reads->get_read_length()

 allocate Motif based on the Motif_Length

 //exiting condition: only one sequence left

 IF _Last_Location - _First_Location == 1

 assign whole sequence to Motif

 assign corresponding copy number to Copy

 assign Motif_Length to Depth

 RETURN

 ENDIF

 //not exiting:

 //count the sum of the copy number till the current Node

 FOR i in First_Location to Last_Location

Pseudocode 4. Implementation of Radix_Tree_Node constructor, showing the

creation of the whole tree by recursively calling the constructor.

19

 Copy += _Sorted_Reads->get_copy_number(i)

 ENDFOR

 //assign characters in the parent Node to Motif of current Node

 FOR i in 1 to _ParentNode_Depth

 Motif[i] = _Sorted_Reads->get_read_sequence(_First_Location)[i]

 ENDFOR

 //count the number of reads having A/T/G/C at current position

 FOR k in _ParentNode_Depth to Motif_Length

 Copy_A = 0

 Copy_T = 0

 Copy_G = 0

 Copy_C = 0

 FOR j in First_Location to Last_Location

 SWITCH _Sorted_Reads->get_read_sequence(j)[k]

 CASE 'A' or 'a': Copy_A++

 CASE 'T' or 't': Copy_T++

 CASE 'G' or 'g': Copy_G++

 CASE 'C' or 'c': Copy_C++

 DEFAULT: RETURN

 ENDSWITCH

 ENDFOR

 IF all reads have same letter (A/T/G/C) at the current position

 assign this letter to Motif[k]

 CONTINUE

 ENDIF

 BREAK

 ENDFOR

 Depth = k;

 IF Depth >= Motif_Length

 RETURN

 ENDIF

 IF the count of any of the letters is greater than 0 (i.e. Copy_A >0)

 //recursive call to create new Radix_Tree_Node for this letter

 Node_A= new Radix_Tree_Node (_Sorted_Reads, First_Location,

 First_Location + Copy_A, Depth+1)

 ENDIF

 RETURN

ENDFUNCTION

20

2.2.3.3 Operations

Since the radix tree serves as a data structure for string searching, there is no need for

insertion and deletion operations once the tree is built. The only operation needed is

lookup. To lookup a particular subsequence in the reference genome, one should follow

the path defined by the subsequence and also compare each letter to the Motif of the

Nodes in the path. The comparison of each letter in a string will add some overhead to

the lookup operation.

Figure 4. Representation of a radix tree that has been implemented in

SCRUFFY. The tree is developed from the same example of four 4nt-long

sequences.

21

2.2.4 Performance analysis

Both hash and radix tree data structures enable fast searching for exact matches in

mapping. There are two mapping programs developed in our lab. One is Slim, which

uses hash for exact mapping. The other is Scruffy, which uses a radix tree for exact

mapping. To evaluate their performance, both mapping programs were run with same

sets of reads, where each set contained different number of reads ranging from 1,000 (1k)

to 100,000,000 (100mil). All data were collected on the same machine using one

processor. Each data point was collected three times and the mean was plotted with the

standard deviation as shown with the associated error bars.

Memory usage by both programs includes the same inputs (the object of read sequences

and the reference database) and the same outputs (coverage, reads used in mapping, and

report). The time consumed for I/O and scanning through the reference database are also

similar between these two programs. If a difference between performances is seen, it

would arise from the different data structure used for the mapping process (Table 2).

Operations Hash Radix Tree

Create Data

Structure

Signature conversion

Collision resolution (linear probing)

Radix Sort of reads

Recursive calls

Lookup

 + collision resolution

Table 2. Factors affecting performances of each data structure. (is the length of

the reads)

22

The oncoviral database is the smallest database in the lab, and consists of about seven

thousand viral genomic sequences. As seen in the Figure 5, the performances of two

programs are similar below 10 million reads. When the number of reads increased to 100

million, Slim out performed Scruffy in both time and space complexities. This is because

when the reference database is small, there is less occurrence of collision during the

lookup. The time for lookup in hash is closed to

 due to the signature conversion.

However, the lookup in the radix tree takes a bit more time, and the recursive call

to create the tree also adds to the overhead in both time and memory consumption.

Figure 5. Comparison of time and space complexities between Scruffy (radix

tree) and Slim (hash) programs for mapping to Oncoviral Database with exact

matches.

23

3 Analyzing cancer data using Slim mapping program

Based on the better performance of hash, the Slim program was used in the subsequent

data analysis. Data from three types of cancer were obtained for analysis. The goal of

the analysis was to compare oncovirus genomic sequences present in cancerous tissue to

those in normal tissues in several patients. Therefore, the following steps were

performed to determine the differences in the oncovirus profile between cancer and

normal tissue from the mapping results.

To assess the role of oncovirus in cancer, one can ask questions such as:

1) How different (similar) is the profile of oncovirus in cancerous tissue compared

to that in normal tissue?

2) Are there any cancer-specific or normal tissue-specific oncoviruses in each

patient?

3) What are the common oncovirus species in both cancer and normal tissue from

each patient?

4) Does the copy number of oncovirus change in cancerous tissue compared to that

of normal tissue?

The answers to these questions will shed light on the potential role of oncoviruses in

cancer development.

24

3.1 Similarity in oncovirus profile of cancer vs. normal

To reveal the similarity between two sets of oncovirus species, the Jaccard similarity

coefficients of each pair of samples (cancer vs. matched normal) were calculated by

dividing the size of the intersection to the size of the union of the sample sets:

The result is shown in Table 3. As we can see, all the pairs have at least 50% similarity.

These data suggest that at least 50% of the oncovirus species are shared between cancer

and matched normal tissue. This is not a surprise because each tissues pairs arise from

the same patient. Each patient is expected to be susceptible to a subset of oncoviruses.

It’ll be interesting to see what kinds of oncoviruses are present in all individuals. This

point will be discussed in the last section of results.

Secondly, the degree of similarity seen in different types of cancer differs. For the

patients with brain tumor, the average similarity is 57%. This is quite different from the

average similarity of 78% for patients with colon cancer and 92% for patients with

cervical cancer. This difference could be due to the source of genomic DNA. In patients

with brain tumor, blood DNA was used as the normal counterparts while in patients with

colon and cervical cancer, DNA from normal solid tissues was used instead of blood

derived DNA. Comparisons between same solid tissue types are expected to be more

similar than comparisons between solid and liquid tissues.

Last, even in the three healthy persons, many oncoviruses are mapped and share more

than 50% oncoviruses (10 out of less than 20 oncovirus species in each person are shared

25

among all three persons). This can be explained by the long latency of oncovirus

infection. More information will be needed to assess this observation, such as age,

family history for cancer, etc.

Table 3. Number of mapped oncoviruses and similarity between the set of cancer

and the set of matched normal samples.

Sample

Type

Person ID Number of Oncoviruses Mapped Similarity

(%) Cancer Normal Common

Brain 13 20 13 12 57%

 14 12 14 10 63%

 51 20 10 10 50%

Colon 24466 9 12 9 75%

 26807 15 14 13 81%

Cervical 19210_1 36 36 35 95%

 19210_2 35 35 33 89%

Healthy

person

72 N/A 19

 74 N/A 16 10*

 75 N/A 15

* common among the three healthy person.

3.2 Tissue-specific oncovirus species

Next I determined which are the oncovirus species can be found in cancer but not in the

matched normal tissue samples and vice versa. If oncoviruses are the sole cause of

cancer, more oncoviruses would be expected in cancerous tissue than in normal tissue.

However, the result (Table 4) is different from the expectation. The result varied among

the different types of cancer. In glioma patients, as expected, more oncovirus species are

observed in cancerous tissue than in normal tissue. While in patients with colon or

cervical cancer, this is not the case. Some patients showed more, while the majority of

them have less viral species in the cancerous tissue than in normal tissue. This can be

26

due to the different sources of normal tissue, such as blood in the case of glioma or

normal solid tissues of colon and cervical sample.

Table 4. Oncovirus species found only in cancer compared to those in the normal

counterpart in cancer patients.

Cancer

Type

Patient

ID

Cancer-only oncoviruses Normal tissue-only

oncoviruses

Glioma 13 Human herpesvirus 3 DNA,

sub_strain: vOka

HIV-1 isolate SF33 from

USA Human herpesvirus 3 DNA,

sub_strain: pOka

 Human herpesvirus 3 strain

VarilRix

 Human herpesvirus 3 strain

VariVax

 Human herpesvirus 3 strain 22

 Human herpesvirus 3 strain 8

 Human papillomavirus type 6 ,

isolate CAC23z

 Recombinant Hepatitis C virus

J6 (5'UTR(Cell-U6)-NS2)/JFH1

 14 Human herpesvirus 3 strain

VarilRix

Human papillomavirus type

71 isolate Qv22792 Human herpesvirus 3 strain 22 Recombinant Hepatitis C

virus J6(5'UTR(Cell-U3)-

NS2)/JFH1

 Recombinant Hepatitis C

virus J6(5'UTR(Cell-U6)-

NS2)/JFH1

 51 Human papillomavirus type 71

isolate Qv22792

 Hepatitis C virus subtype 1b

from Hubei

 Hepatitis C virus subtype 1a

isolate HCV-1a/US/BID-

V323/2001

 Human herpesvirus 1 transgenic

strain 17

 Human herpesvirus 5 transgenic

strain Merlin

 Recombinant Hepatitis C virus

J6(5'UTR(Cell-U6)-NS2)/JFH1

Colon 24466 Human papillomavirus type

20 Human herpesvirus 3 DNA,

sub_strain: pOka Hepatitis C virus subtype 1b

from Hubei

 26807 Rous sarcoma virus - Schmidt-

Ruppin D genomic RNA

 Rous sarcoma virus strain

Schmidt-Ruppin B

27

Cancer

Type

Patient

ID

Cancer-only oncoviruses Normal tissue-only

oncoviruses

Cervical 19210_1 Hepatitis C virus subtype 1b

from Hubei

Human papillomavirus type

20

 Recombinant Hepatitis C

virus J6(5'UTR(Cell-

U3WTS1)-NS2)/JFH1

 19210_2 Human papillomavirus type 20 Hepatitis C virus subtype 1b

from Hubei HIV-1 isolate SF33 from USA Recombinant Hepatitis C

virus J6(5'UTR(Cell-U3)-

NS2)/JFH1

 Recombinant Hepatitis C

virus J6(5'UTR(Cell-

U3WTS1)-NS2)/JFH1

In glioma patients, multiple herpesviruses are commonly found in cancer in all three

individuals but with different viral types and strains. This data suggests that the

herpesvirus can be a candidate cause to glioma. In patients with colon cancer, the Rous

Sarcoma virus was found in cancer from one individual but not in the other. This

suggests that it may be causative for a subtype of colon cancer or it is merely a secondary

infection after cancer is initialized rather than the primary cause to colon cancer. In

patients with cervical cancer, the result seems less clear. Viruses that are cancer-specific

in one patient are present only in normal tissue in another patient. This may due to

contaminated normal samples by cancer cells during biopsy or DNA preparations. More

data from different individuals will be needed to clarify this result.

28

3.3 Oncoviruses that are common in cancer and normal tissue show

different levels of coverage

I then took a look at the viruses shared between cancerous and normal tissue of patients.

I compared the average coverage of oncovirus in cancer to that in normal tissue.

According to the hypothesis, I expected that oncoviruses would have higher coverage in

cancer than that in normal. Results show the coverage differences are obvious (Figure 6)

but not always high coverage in cancerous tissue. It was very interesting to see that three

groups of patients have three different profiles.

In the group of glioma patients (Figure 6, Glioma_13_Common, Glioma_14_Common,

and Glioma_51_Common), almost all species of oncoviruses are higher covered in cancer

than in normal. This indicates glioma may be associated with a wide spectrum of

oncoviruses. In the group of patients with cervical cancer (Figure 6,

Cervical_19210_1_Common, and Cervical_19210_2_Common), only papillomavirus

consistently showed significantly higher coverage in cancer. It suggests cervical cancer

is related to one or more typical oncovirus, such as papillomavirus. In the group of

patients with colon cancer (Figure 6, Colon_24466_Common, and

Colon_26807_Common), however, almost all the oncoviruses are covered less in cancer

than in normal. This was totally unexpected. If there are no errors in the experiments,

such as mixing cancer and normal tissues, it implies that colon cancer may not be a virus-

causing cancer type.

29

Figure 6. Oncoviruses that are common in cancer and normal tissue show

different levels of coverage.

30

 Figure 6. (cont)

31

Figure 6. (cont)

32

Figure 6. (cont)

33

3.4 Five common oncoviruses are found in all examined individuals

There are five common species of oncoviruses present in both healthy and cancer-

affected individuals. Four of them are different strains or types of herpesvirus and one is

papillomavirus type 82. As we can see in Figure 7, the there is low coverage of these

oncoviruses in healthy individuals. A slight increase in coverage of all cancer samples is

observed. The most striking fact was the dramatically elevated level of coverage in

normal tissues from cervical and colon cancer patients.

Another interesting observation was the spectrum of these five oncoviruses are consistent

among all samples with herpesvirus 6B Z29 (green) and papillomavirus (purple) the most

dominant and HHV-3 the least (light blue).

34

Figure 7. Average coverage of common oncovirus species in all individual

examined. Five oncoviruses are shared among all individual and the average

coverage of each of them are shown as stack with five different colors in every

sample. Color representations can be found on the top of graph. Source data are

present in Table8.

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

n
o

m
al

ca
n

ce
r

072A 074A 075A 13 14 51 19210_1 19210_2 24466 26807

healthy glioma cervical colon

N
o

rm
al

iz
e

d
 A

ve
ra

ge
 C

o
ve

ra
ge

Human herpesvirus 7 strain RK Human herpesvirus 6B DNA, strain: HST
Human herpesvirus 6B strain Z29 Human papillomavirus type 82 subtype IS39/AE2
Human herpesvirus 3 (HHV-3), isolate HJ0

35

3.5 Summary and conclusion

This was a pilot work towards a more comprehensive and sophisticated project with more

data and a larger viral database. There are certain limitations to the result of this work.

Due to the limited overall nucleotide coverage (less than 1) of the sequencing reads, the

regions in the samples that are not sequenced will result in false negative. On the other

hand, virus genomes contain sequences that are highly homologous to human genomic

sequence, which will lead to false positive. Improvements can be made by increasing the

overall coverage of sequencing of each sample, such as deep sequencing, and also by

eliminating human sequences from virus genome or examine expression of virus instead

of genomic material.

In spite of all the limitations in the data, this work provides a systematic work flow from

raw sequencing data to a meaningful biological outcome. Sequencing data were

processed by following the routine in the lab. Mapping results were interpreted in four

steps regarding finding the difference between the cancerous and normal samples. First,

I took a look at the overall similarity of cancer result compared to the normal and found

that the oncovirus species were of great similarity between them. Next, I listed all the

cancer-only and normal-only virus species and compared among three groups of patients.

I then examined the viruses shared by cancer and normal and compared their coverage.

Last, I found the five oncoviruses shared by all individuals including the healthy and

cancer-affected and compared the coverage of them.

The preliminary result shows that the profiles of oncoviruses are different depended on

cancer types. Glioma is more likely to be related to multiple oncoviruses. Cervical

36

cancer is only associated with a certain type of oncoviruse. Colon cancer may not be

solely caused by oncoviruses. More data and further experiments are needed to make a

solid conclusion.

4 References

1. zur Hausen, H., The search for infectious causes of human cancers: where and

why (Nobel lecture). Angew Chem Int Ed Engl, 2009. 48(32): p. 5798-808.

2. Prober, J.M., et al., A system for rapid DNA sequencing with fluorescent chain-

terminating dideoxynucleotides. Science, 1987. 238(4825): p. 336-41.

3. Hutchison, C.A., 3rd, DNA sequencing: bench to bedside and beyond. Nucleic

Acids Res, 2007. 35(18): p. 6227-37.

4. Metzker, M.L., Emerging technologies in DNA sequencing. Genome Res, 2005.

15(12): p. 1767-76.

5. Feng, H., et al., Human transcriptome subtraction by using short sequence tags to

search for tumor viruses in conjunctival carcinoma. J Virol, 2007. 81(20): p.

11332-40.

6. Smith, A.D., Z. Xuan, and M.Q. Zhang, Using quality scores and longer reads

improves accuracy of Solexa read mapping. BMC Bioinformatics, 2008. 9: p.

128.

7. Li, H., J. Ruan, and R. Durbin, Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res, 2008. 18(11): p. 1851-8.

37

8. Lin, H., et al., ZOOM! Zillions of oligos mapped. Bioinformatics, 2008. 24(21): p.

2431-7.

9. Jiang, H. and W.H. Wong, SeqMap: mapping massive amount of oligonucleotides

to the genome. Bioinformatics, 2008. 24(20): p. 2395-6.

10. Schatz, M.C., CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics, 2009. 25(11): p. 1363-9.

11. Li, R., et al., SOAP: short oligonucleotide alignment program. Bioinformatics,

2008. 24(5): p. 713-4.

12. Campagna, D., et al., PASS: a program to align short sequences. Bioinformatics,

2009. 25(7): p. 967-8.

13. Eaves, H.L. and Y. Gao, MOM: maximum oligonucleotide mapping.

Bioinformatics, 2009. 25(7): p. 969-970.

14. Kim, Y.J., et al., ProbeMatch: rapid alignment of oligonucleotides to genome

allowing both gaps and mismatches. Bioinformatics, 2009. 25(11): p. 1424-1425.

15. Burrows, M., Wheeler, D.J., A block-sorting lossless data compression algorithm.

Technical Report, 124 Palo Alto, CA: Digital Equipment Corporation; 1994.

16. http://soap.genomics.org.cn/. Accessed on 6/19/2012.

17. Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol, 2009. 10(3): p. R25.

18. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-60.

19. Cormen, T.H. and Books24x7 Inc., Introduction to algorithms, second edition.

2001, MIT Press: Cambridge, Mass.

http://soap.genomics.org.cn/

38

20. http://en.wikipedia.org/wiki/Counting_sort#The_algorithm. Accessed on

6/19/2012.

http://en.wikipedia.org/wiki/Counting_sort#The_algorithm

