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ABSTRACT 

 

Evidence suggests human cancer can be induced by viruses.  One way to test this 

hypothesis is to look for viral sequences in the human cancer genome.  Next Generation 

Sequencing (NGS) technology sequences the whole human genome in a short period of 

time.  This opens a door for a systematic analysis of the human genome and a thorough 

search for oncogenic viral sequences in cancer.  However, a huge amount of sequencing 

reads generated by NGS poses a great challenge on the computational part of data 

analysis in terms of computing speed and memory usage.  Data structures such as hash 

and tree are widely implemented to improve the performance of computing algorithms.  

Here, I described both data structures that have been developed in our center and 

compared their performance.  Hash out performed tree when mapping the reads to a small 

reference sequence database.  Subsequently, real human cancer data were analyzed by 

using the hash-based mapper and different oncoviral sequences were found in different 

cancers. 
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1 Introduction 

1.1 Next Generation Sequencing (NGS) 

Next Generation Sequencing (NGS) is a high through-put sequencing technology, in 

which genomic material (i.e. DeoxyriboNucleic Acid or DNA) of organisms can be 

sequenced in a massive parallel way.  NGS produces tens of billions of short sequence 

reads in a few days, which is considered lightening speed when compared to the Sanger 

Sequencing.  The Sanger sequencing is also called the first generation sequencing, which 

was used by the Human Genome Project to sequence the whole human genome for the 

first time.   It took 20 institutes all over the world 13 years to complete a draft of the 

whole human genome, whereas NGS takes only a few days to a week to sequence a 

whole human genome.  

1.2 The search of infectious agents in cancer benefits from NGS 

technology 

Studies [1] suggest that infectious agents, such as viruses, bacteria, parasites, etc. are 

causative to human cancer.  However, due to the long latency to malignancy and 

technical difficulties in whole genome profiling using first generation sequencing 

methods (automated Sanger sequencing) [2-4], the direct evidence was  hard to find.   

The Next Generation Sequencing (NGS) technique enables the profiling of the whole 

human genome and makes a systematic search of non-human genetic material feasible.   

With NGS data available in the lab, I focused on assessing the role of viruses in human 

cancer.   



2 
 

Study shows there are tens of known virus species or oncoviruses that can cause cancer.  

These oncoviruses are identified using several techniques.  For example, Merkel cell 

polyomavirus was recently identified by digital transcriptome subtraction [5], in which 

the human sequences were subtracted from the tumor transcriptome computationally.  

The analysis suggests that oncoviruses are transcribed in the cancer tissue and thus their 

genomic sequences are present there.  Therefore, I hypothesized that the profiles of 

identified oncovirus species in the genomic DNA samples from cancer inflected tissue 

differ from normal tissue.  To test this hypothesis, I constructed an oncovirus reference 

sequence database and mapped NGS reads from samples of brain, colon, and cervical 

cancer to this database.  Then I compared the mapping result between sequences 

generated from cancer samples and their normal counterparts.  

1.3 Computational challenges in NGS data analysis 

A few decades ago, biologists were sipping the information from cups of data produced 

in traditional biological experiments and as a consequence there was no need for 

computer scientists to help with data processes in a large scale.  With the development of 

sequencing technology, the amount of the data produced in modern biological sequencing 

experiments has increased dramatically.  Biologists are now flooded by the 

overwhelming amount of data.  This has posed challenges on many aspects of computer 

science, such as data storage, data transfer, as well as data analysis and interpretation.    

My project was to search for evidence of oncoviruses in the cancer genome compared to 

the normal human genome. A critical step of data analysis was to map NGS reads to the 

oncoviral database and identify any viral sequences from the pool of mapped reads.  
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Therefore, algorithms and data structures for the mapping (alignment) of short reads are 

important for my project.   

Many mapping algorithms and data structures have been developed.  In summary, there 

are two major categories:  

(1) Hash-based algorithms 

Some of these work by hashing the read sequences and scan through the reference 

sequence, such as human genome sequence or oncoviral database in my case.  

Some examples are RMAP [6], MAQ [7], ZOOM [8], SeqMap [9], and 

CloudBurst [10].  Others programs work by hashing the reference sequences.  For 

instance, SOAPv1 [11], PASS [12], MOM [13], and ProbeMatch [14].   

(2) Tree-based algorithms 

This type of algorithm makes use of the theory on string matching using Burrows-

Wheeler Transform (BWT) [15] and put the reference genome in a prefix tree.  

Examples are SOAPv2 [16], Bowtie [17], and BWA [18].  

In order to assess the efficiency of different mapping algorithms, I compared the 

performances of exact matching using the hash-based algorithm and the tree-based 

algorithm that were developed in our lab at Center for BioMedical and Environmental 

Genomics.   
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2 Algorithms and data structures  

2.1 Construction of oncoviral database 

First, I performed internet and literature search for all known oncovirus species.  This 

search produced 339 virus names including many different subtypes.  In order to obtain 

the genomic sequences from all virual strains of all species, I eliminated the restriction of 

subtypes and condensed the list to 34 search keys (Table1).   Then I implemented a Perl 

script to extract genomic sequences that match the search keys from an existing 

comprehensive C_Sequence-formated virus database in the lab.  The Perl script algorithm 

constructed a regular expression of search keys.  The script writes the first line,  the 

following information and the sequence to a new text file when there is a match to the 

regular expression .   This search generated 6574 complete oncovirus genomes.  The 

large numbers was due to different substrains of same viruses.   

 Table1.  Search Keys for construction of oncoviral database. 
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2.2 Mapping NGS reads to oncoviral database 

2.2.1 Preprocessing NGS reads 

NGS reads produced by the sequencing machine are initially in FASTQ format.    The 

reads used in this study are from the Illumina GAIIx sequencer, which produces FASTQ 

reads of the same length.  Subsequently, FASTQ read files are passed through quality 

analysis using the programs, Pipeline for Illumina Quality Assessment (PIQA) or 

Technology Independent Quality Assessment (TIQA).   Filtering decisions were made 

based on the quality assessment report.  Reads with bad quality scores, or reads with 

unknown characters were removed.  Sometimes, reads with biased prefix were trimmed 

to remove adapter sequences while retaining the informative part of the sequences.   

After filtration, an output text file containing every unique read sequence and 

corresponding copy number in the pool of reads was produced.  This output file is in an 

Array_Subsequence or AS format.  The AS file is the input file for reads in both the hash-

based and the tree-based mapping programs presented below.  

2.2.2 Hash-based mapping algorithm 

SLIM is the software package that has been developed in our lab using a hash-based 

mapping algorithm.  The basic idea is to hash the read sequences into a hash table and 

scan through the reference sequence with the same sequence lengths as the original data 

to find the exact matches in the hash table of reads.   There are two major parts of this 

algorithm.  The first part is the conversion of each unique read sequence into its numeric 
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signature.  The second part is to use a hash function to put the numeric signature of each 

read sequence into a hash table as a key and the copy number of each read sequence as a 

value.  

2.2.2.1 Signature conversion of read sequences 

The idea of transforming read sequences to numeric signature came when implementing a 

hash function.  The first question is how to hash a string of characters in sequence reads 

with a 4-alphabet set (‘A’, ‘T’, ‘C’, ‘G’) to a hash table.  There are many ways of doing 

this.  For example, one can use the ASCII value of each of the four letters and add them 

up to get a number.  However, one of the potential problems would be the loss of 

uniqueness of the sum of the ASCII value.  To produce a unique set of signatures for each 

sequence in the sample, a schema of the signature conversion using bit operations has 

been developed in the lab (Figure 1). 



7 
 

 

 For this conversion, a 40-nucleotide (nt) long read sequence is converted based on the 

character-to-binary rule as ‘A’ 00, ‘T’ 01, ‘G’ 10, ‘C’ 11, Figure 1.  In this way, 

it is sufficient to represent each letter in two bits and where a one byte character space (8 

bits) is able to store the information of four nucleotides (e.g.  “ATCC” can be stored in 

one byte as 00011111).  In order to store the signature of an entire read sequence, an 

array of characters is created with a flexible size according to the read length (i.e.  40/4 

=10 in this case) and each byte storing a 4-nucleotide signature.   

In our current code, the 4-nucleotide signature conversion generates a reversed signature.  

For example, “ATCC” will be converted to 11110100 instead of 00011111.  This is due 

Figure 1. Schematic representation of conversion from a DNA read sequence to a 

numeric signature. 
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to the current conversion algorithm (Pseudocode 1).  However, it does not affect the 

accuracy and performance of the conversion. 

 

 

#signature conversion 

 

Signature_Size =  Read_Length / 4 

IF Read_Length % 4 != 0 

 Signature_Size++ 

ENDIF 

FOR i in 1 to Signature_Size 

 Signature[i] = 0 

ENDFOR 

FOR i in 1 to Read_Length 

 SWITCH Read[i] 

  CASE 'A' or 'a': x=0 

  CASE 'T' or 't': x=1 

  CASE 'G' or 'g': x=2 

  CASE 'C' or 'c': x=3 

  DEFAULT: RETURN 

 ENDSWITCH  

 x = x << (i%4)*2 

 Signature[i/4] += x 

ENDFOR  

 

 

One of the advantages of developing a unique signature for each non-redundant read 

sequence is to minimize memory usage.  Once the reads have been converted, there is no 

need to store read sequences.  Signatures can be easily converted back to read sequences 

Pseudocode 1. Signature conversion for hash-based mapper. 
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by following specific rules.   Also, the storage of numeric signatures is much more 

compact than storing character strings.  For example, to store a 40-nucleotide (nt) long 

read sequence as a character array, one would require 40 bytes for each character plus 

one byte for “\0” at the end.   When converted to a numeric signature, one byte can store 

the signature of four characters and only 10 bytes are needed.  Numeric conversion 

produces a 4-fold reduction in memory usage.   

Another advantage of using a numeric signature is that computation speed increases 

dramatically.  The conversion itself does not impose much overhead due to the efficiency 

of bit operations.  However, a big portion of time will be saved by reducing the 

comparison between two m-long character arrays (    ,   is the length of one read 

sequence) to the comparison between two integers (    ) during the mapping process.  

2.2.2.2 The hash function and collision resolution 

2.2.2.2.1 Determine the size of the hash table 

The size of the hash table is determined by the number of reads and the population rate of 

the table.  The number of reads to be hashed is provided by the input read file.  The 

population rate is 0.25 by default and can be changed when needed.  Once these two 

parameters are known, the size of the hash table is determined by using the nearest prime 

number of the anticipated maximum capability of the hash. 
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The reason to choose a prime number as the final size of hash table is to enable linear 

probing for collision resolution. 

2.2.2.2.2 The data structure of the hash table 

Once the size of the table is determined, two parallel arrays can be allocated: one is the 

array of keys and the other is the array of values.  The array of keys in our application 

contains the numeric signatures from all converted read sequences.   As explained in the 

Figure 1, each signature is an array of characters based on the length of reads.   

Therefore, the array of keys is a two dimensional array.  The array of values stores the 

copy number of each read and is of same size and index as the array of keys.  

2.2.2.2.3 The hash function 

Upon successful signature conversion from the reads, the job of the hash function is to 

ensure all the numeric signatures of the reads can be hashed into the hash table.  The 

modulus operation is sufficient for the first index in the hash table: 

                                      

Where        is a hash function.  When Signature is converted from up to 32nt-long reads, 

it means that the size of the character array of Signature is 8 bytes or less.  In this case, 

Signature can be easily converted to a 64-bit long unsigned integer number to be used to 

compute the index using the above function.  However, when Signature is converted from 

reads that are more than 32nt-long, only the first 8 bytes of the Signature can be used in 

the above function.  Then the remaining bytes have to be compared when collision 

happens. 
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2.2.2.2.4 Collision counter and collision resolution 

Collision is monitored by using the variable, Collision_Counter.  The Collision_Counter 

keeps track of the number of collisions and monitors the performance of the hash.  One 

way to resolve the collision is to use linear probing: 

                                              

                         

Where      is a hash function,    is the size of hash table, and   is the number of 

collisions.  

     is a linear function in   of the form:          , which is has the following two 

properties: 

     Property 1:            

     Property 2: The set of values                                             must 

be a permutation of                   , that is, it must contain every integer between   

and     inclusive. 

In order to satisfy Property 2,   and   need to be relatively prime.  Since   is chosen as a 

prime, therefore, we choose to have          here (Pseudocode 2). 
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   #collision resolution 

’’’Index here is the first index created by the hash function in above 

section’’’ 

Collision_Number = 0 

FOR Collision_Number in 0 to MAX_COLLISIONS_NUMBER 

 IF Keys[Index] is empty 

  Keys[Index] set to current Signature 

  Values[Index] set to current CopyNumber 

  increment NumberOfElementsInHash  

  RETURN 

 ENDIF 

 ELSE 

  compare the Signatures byte by byte 

  IF equal 

   add the current CopyNumber to Values[Index] 

   RETURN 

  ENDIF 

  Index = (Index + ((Collisions_Number+1)<<4)) % 

SizeOfHashTable 

  Increment Collision_Counter 

 ENDELSE 

ENDFOR 

 

 

2.2.2.3 Operations 

The purpose of creating the hash table is to enable quick searching of subsequences in 

reference genomes and retrieving of the copy numbers corresponding to each 

subsequence.  Therefore, once the hash table is created, no deletion operations will be 

performed.  The insertion and lookup operations are sufficient to serve our purpose here.   

Pseudocode 2. Collision resolution for hash-based mapper. 
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To insert a particular read sequence  , one would examine array location             . 

If there is a collision, array locations                       are examined until an 

empty slot is found.  Similarly, to lookup a particular subsequence in the reference 

genome, one would examine the same sequence of locations in the same order until a 

matched subsequence is found.  The time complexity of linear probing is dependent on 

the maximum number of collisions.  In the worst case, all   sequences are hashed to one 

location, which makes the insertion and lookup      operations.  The space complexity 

of  -nt long reads with a population rate           is   
  

  
  due to actual storage 

of Signature of reads is 
 

 
 bytes. 

2.2.3 Tree-based mapping algorithm 

The SCRUFFY software package developed in the lab implements a Tree-based mapping 

algorithm.  The idea is to first sort all the read sequences alphabetically and put them into 

a radix tree, to scan through the reference sequences to find exact matches and retrieve 

copy numbers for each mapped read from the tree.  

2.2.3.1 Sorting the reads alphabetically by LSD radix sort 

One feature of our mapping is that the read sequences in one mapping task are of same 

length.  This allows the use of a least significant digit (LSD) radix sort on each letter of 

the reads.    

The basic sorting operation of radix sort is a counting sort, which is not a comparison 

sort.  The            lower bound for comparison sorting is not applied [19].  A 

counting sort operates by counting the occurrence of each to-be-sorted object and uses 
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arithmetic on those counts to determine the positions of each object in the output.  The 

time and space complexities are both linear in the number of objects,         for the 

Pseudocode 3 [20]. 

  

 

#counting sort 

 

''' allocate an array Count[0..k] ; initialize each array cell to zero ; THEN ''' 

FOR each input item x: 

     Count[key(x)] = Count[key(x)] + 1 

ENDFOR 

total = 0 

FOR i = 0, 1, ... k: 

     c = Count[i] 

     Count[i] = total 

     total = total + c 

ENDFOR 

  

''' allocate an output array Output[0..n-1] ; THEN ''' 

FOR each input item x: 

     store x in Output[Count[key(x)]] 

     Count[key(x)] = Count[key(x)] + 1 

ENDFOR 

RETURN Output 

 

 

The LSD radix sorting algorithm is easy to understand.  Suppose we have an input of a 

set of   reads                     of strings of length   over the alphabet {A,T,G,C}, 

Pseudocode 3. Counting sort used by radix sort. 
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and outputs   in increasing alphabetical order.  The algorithm will look at the last 

position       in all the reads (the least significant digit or LSD) and counting sort all 

the reads based on letters at this position.  Once sorted, it continues to count sort reads 

based on positions                .  Upon completion of the iteration to position  , 

the set of reads   is sorted alphabetically. (Figure 2)  The time and space complexities 

are both      .  

 

  

  

 

2.2.3.2 Radix Tree 

Once the read sequences are sorted alphabetically, a radix tree can be built for rapid 

searching and copy number retrieval used in our mapping protocols.   

2.2.3.2.1 The idea of radix tree 

Radix tree is an optimized compact tree to store strings with a high occurrence of 

prefixes.  Its edges are common prefixes from the parent node to a child node.  For 

Figure 2. Example of LSD radix sort on 4nt-long sequences. 
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instance “ACTA” and “ACTC” have same prefix “ACT”, which is the edge from root to 

one child node, seen in Figure 3,.  The last letters “A” and “C” are different and become 

edges from that child node to two different grandchild nodes.   The copy number will be 

stored in the node to easily retrieve the corresponding copy numbers of each path.   

 

 

 

 

 

 

A radix tree is a data structure selected for quick searching in SCRUFFY because of the 

characteristics of the DNA sequences.  There are only four letters in the sequences 

{A,T,C,G},  but the number of read sequences can be in millions.  Therefore, there will 

be a very high occurrence of prefixes in the pool of reads.  The compact feature of radix 

Figure 3. Schematic representation of a radix tree developed from four 4 nt-long 

sequences. 
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tree is most applicable here to minimize the space complexity.  Also, since the height of 

the tree is not larger than the length of the read sequences, the constant  , the worst 

traversal time    , is also a constant for a lookup.     

2.2.3.2.2 The node of radix tree  

To understand the tree structure, each node is designed to have the following member 

variables. 

 Copy:  the sum of the copy numbers of all subsequences (or prefixes) till the node 

 Depth:  the position of the first letter in the edge in the context of read sequence 

 Motif:  a character array storing the prefix from the root to the node 

 First_Location:  the first occurrence of one particular prefix in the sorted array of 

read sequences 

 Last_Location:  one position after the last occurrence of the particular prefix 

referred to by the First_Location 

 Node_A:  pointer to a child node if the first letter of the edge is ‘A’ 

 Node_T:  pointer to a child node if the first letter of the edge is ‘T’ 

 Node_G:  pointer to a child node if the first letter of the edge is ‘G’ 

 Node_C:  pointer to a child node if the first letter of the edge is ‘C’ 

2.2.3.2.3 Creation of radix tree from sorted reads 

The tree is created by recursively calling the constructor of the node, Radix_Tree_Node 

(Pseudocode 4 and Figure 4).  The initial call will pass the object of _Sorted_Reads, 

_First_Location = 0, _Last_Location = total number of reads in the object 



18 
 

_Sorted_Reads, and _ParentNode_Depth = 0.  In this way, the tree will be created from 

the root to the leaf node.  When all the letters from _First_Location to _Last_Location 

are the same letter, the code will continue to check if the letters in the next position are 

the same.  When different letters are found, new child nodes are created corresponding to 

each letter by recursive calls.  

  

# constructor of the Node 

'''member variables are indicated in the previous section''' 

'''assume object _Sorted_Reads has the following functions: 

  get_read_length() 

  get_copy_number(index) 

  get_read_sequence(index) 

''' 

create FUNCTION Radix_Tree_Node (_Sorted_Reads, _First_Location, 

_Last_Location,  

                 _ParentNode_Depth) 

  First_Location = _First_Location 

 Last_Location = _Last_Location 

 initialize all other member variables to 0 or NULL  

 Motif_Length = _Sorted_Reads->get_read_length() 

 allocate Motif based on the Motif_Length  

 //exiting condition: only one sequence left 

 IF _Last_Location - _First_Location == 1 

  assign whole sequence to Motif 

  assign corresponding copy number to Copy 

  assign Motif_Length to Depth 

  RETURN 

 ENDIF  

 //not exiting: 

 //count the sum of the copy number till the current Node 

 FOR i in First_Location to Last_Location 

Pseudocode 4. Implementation of Radix_Tree_Node constructor, showing the 

creation of the whole tree by recursively calling the constructor. 
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  Copy += _Sorted_Reads->get_copy_number(i) 

 ENDFOR  

 //assign characters in the parent Node to Motif of current Node 

 FOR i in 1 to _ParentNode_Depth 

  Motif[i] = _Sorted_Reads->get_read_sequence(_First_Location)[i] 

 ENDFOR 

 //count the number of reads having A/T/G/C at current position 

 FOR k in _ParentNode_Depth to Motif_Length 

  Copy_A = 0 

  Copy_T = 0 

  Copy_G = 0 

  Copy_C = 0  

  FOR j in First_Location to Last_Location 

   SWITCH _Sorted_Reads->get_read_sequence(j)[k] 

    CASE 'A' or 'a': Copy_A++ 

    CASE 'T' or 't': Copy_T++ 

    CASE 'G' or 'g': Copy_G++ 

    CASE 'C' or 'c': Copy_C++ 

    DEFAULT: RETURN 

   ENDSWITCH   

  ENDFOR   

  IF all reads have same letter (A/T/G/C) at the current position 

   assign this letter to Motif[k] 

   CONTINUE 

  ENDIF   

  BREAK 

 ENDFOR 

 Depth = k; 

 IF Depth >= Motif_Length 

  RETURN 

 ENDIF 

  

 IF the count of any of the letters is greater than 0  (i.e. Copy_A >0 ) 

  //recursive call to create new Radix_Tree_Node for this letter 

 Node_A= new Radix_Tree_Node (_Sorted_Reads, First_Location,          

                                                                     First_Location + Copy_A, Depth+1) 

 ENDIF 

 RETURN 

ENDFUNCTION 
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2.2.3.3 Operations 

Since the radix tree serves as a data structure for string searching, there is no need for 

insertion and deletion operations once the tree is built.  The only operation needed is 

lookup.   To lookup a particular subsequence in the reference genome, one should follow 

the path defined by the subsequence and also compare each letter to the Motif of the 

Nodes in the path.  The comparison of each letter in a string will add some overhead to 

the lookup operation. 

Figure 4.  Representation of a radix tree that has been implemented in 

SCRUFFY.  The tree is developed from the same example of four 4nt-long 

sequences. 
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2.2.4 Performance analysis 

Both hash and radix tree data structures enable fast searching for exact matches in 

mapping.  There are two mapping programs developed in our lab.  One is Slim, which 

uses hash for exact mapping.  The other is Scruffy, which uses a radix tree for exact 

mapping.  To evaluate their performance, both mapping programs were run with same 

sets of reads, where each set contained different number of reads ranging from 1,000 (1k) 

to 100,000,000 (100mil).  All data were collected on the same machine using one 

processor.  Each data point was collected three times and the mean was plotted with the 

standard deviation as shown with the associated error bars. 

Memory usage by both programs includes the same inputs (the object of read sequences 

and the reference database) and the same outputs (coverage, reads used in mapping, and 

report).  The time consumed for I/O and scanning through the reference database are also 

similar between these two programs.   If a difference between performances is seen, it 

would arise from the different data structure used for the mapping process (Table 2 ). 

 

 

Operations Hash Radix Tree 

Create Data 

Structure 

Signature conversion 

Collision resolution (linear probing) 

Radix Sort of reads 

Recursive calls 

Lookup   
 

 
  + collision resolution       

Table 2.  Factors affecting performances of each data structure. (  is the length of 

the reads) 
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The oncoviral database is the smallest database in the lab, and consists of about seven 

thousand viral genomic sequences.  As seen in the Figure 5, the performances of two 

programs are similar below 10 million reads.  When the number of reads increased to 100 

million, Slim out performed Scruffy in both time and space complexities.  This is because 

when the reference database is small, there is less occurrence of collision during the 

lookup.  The time for lookup in hash is closed to   
 

 
  due to the signature conversion.  

However, the lookup in the radix tree takes a bit more time,       and the recursive call 

to create the tree  also adds to the overhead in both time and memory consumption. 

  

 

 

 

 

Figure 5.  Comparison of time and space complexities between Scruffy (radix 

tree) and Slim (hash) programs for mapping to Oncoviral Database with exact 

matches. 
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3 Analyzing cancer data using Slim mapping program 

Based on the better performance of hash, the Slim program was used in the subsequent 

data analysis.  Data from three types of cancer were obtained for analysis.  The goal of 

the analysis was to compare oncovirus genomic sequences present in cancerous tissue to 

those in normal tissues in several patients.  Therefore, the following steps were 

performed to determine the differences in the oncovirus profile between cancer and 

normal tissue from the mapping results. 

To assess the role of oncovirus in cancer, one can ask questions such as:    

1) How different (similar) is the profile of oncovirus in cancerous tissue compared 

to that in normal tissue?     

2) Are there any cancer-specific or normal tissue-specific oncoviruses in each 

patient?     

3) What are the common oncovirus species in both cancer and normal tissue from 

each patient?   

4) Does the copy number of oncovirus change in cancerous tissue compared to that 

of normal tissue?   

The answers to these questions will shed light on the potential role of oncoviruses in 

cancer development. 
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3.1 Similarity in oncovirus profile of cancer vs. normal 

To reveal the similarity between two sets of oncovirus species, the Jaccard similarity 

coefficients of each pair of samples (cancer vs. matched normal) were calculated by 

dividing the size of the intersection to the size of the union of the sample sets:  

 

The result is shown in Table 3.  As we can see, all the pairs have at least 50% similarity.  

These data suggest that at least 50% of the oncovirus species are shared between cancer 

and matched normal tissue.  This is not a surprise because each tissues pairs arise from 

the same patient.   Each patient is expected to be susceptible to a subset of oncoviruses.  

It’ll be interesting to see what kinds of oncoviruses are present in all individuals.  This 

point will be discussed in the last section of results. 

Secondly, the degree of similarity seen in different types of cancer differs.  For the 

patients with brain tumor, the average similarity is 57%.  This is quite different from the 

average similarity of 78% for patients with colon cancer and 92% for patients with 

cervical cancer.  This difference could be due to the source of genomic DNA.  In patients 

with brain tumor, blood DNA was used as the normal counterparts while in patients with 

colon and cervical cancer, DNA from normal solid tissues was used instead of blood 

derived DNA.  Comparisons between same solid tissue types are expected to be more 

similar than comparisons between solid and liquid tissues.  

Last, even in the three healthy persons, many oncoviruses are mapped and share more 

than 50% oncoviruses (10 out of less than 20 oncovirus species in each person are shared 
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among all three persons).   This can be explained by the long latency of oncovirus 

infection.  More information will be needed to assess this observation, such as age, 

family history for cancer, etc.   

Table 3.  Number of mapped oncoviruses and similarity between the set of cancer 

and the set of matched normal samples. 

Sample 

Type 

Person ID Number of Oncoviruses Mapped  Similarity 

(%) Cancer  Normal  Common 

Brain  13 20 13 12 57% 

 14 12 14 10 63% 

 51 20 10 10 50% 

Colon  24466 9 12 9 75% 

 26807 15 14 13 81% 

Cervical 19210_1 36 36 35 95% 

 19210_2 35 35 33 89% 

Healthy 

person 

72 N/A 19   

 74 N/A 16 10*  

 75 N/A 15   

*  common among the three healthy person. 

 

3.2 Tissue-specific oncovirus species 

Next I determined which are the oncovirus species can be found in cancer but not in the 

matched normal tissue samples and vice versa.  If oncoviruses are the sole cause of 

cancer, more oncoviruses would be expected in cancerous tissue than in normal tissue.  

However, the result (Table 4) is different from the expectation.  The result varied among 

the different types of cancer.   In glioma patients, as expected, more oncovirus species are 

observed in cancerous tissue than in normal tissue.   While in patients with colon or 

cervical cancer, this is not the case.  Some patients showed more, while the majority of 

them have less viral species in the cancerous tissue than in normal tissue.   This can be 
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due to the different sources of normal tissue, such as blood in the case of glioma or 

normal solid tissues of colon and cervical sample.   

Table 4.  Oncovirus species found only in cancer compared to those in the normal 

counterpart in cancer patients. 

 

Cancer 

Type 

Patient 

ID 

Cancer-only oncoviruses Normal tissue-only 

oncoviruses 

Glioma 13 Human herpesvirus 3 DNA, 

sub_strain: vOka 

HIV-1 isolate SF33 from 

USA   Human herpesvirus 3 DNA, 

sub_strain: pOka 

 

  Human herpesvirus 3 strain 

VarilRix 

 

  Human herpesvirus 3 strain 

VariVax 

 

  Human herpesvirus 3 strain 22  

  Human herpesvirus 3 strain 8  

  Human papillomavirus type 6 , 

isolate CAC23z 

 

  Recombinant Hepatitis C virus 

J6 (5'UTR(Cell-U6)-NS2)/JFH1 

 

 14 Human herpesvirus 3 strain 

VarilRix 

Human papillomavirus type 

71 isolate Qv22792   Human herpesvirus 3 strain 22 Recombinant Hepatitis C 

virus J6(5'UTR(Cell-U3)-

NS2)/JFH1 

   Recombinant Hepatitis C 

virus J6(5'UTR(Cell-U6)-

NS2)/JFH1 

 51 Human papillomavirus type 71 

isolate Qv22792 

 

  Hepatitis C virus subtype 1b 

from Hubei 

 

  Hepatitis C virus subtype 1a 

isolate HCV-1a/US/BID-

V323/2001 

 

  Human herpesvirus 1 transgenic 

strain 17 

 

  Human herpesvirus 5 transgenic 

strain Merlin 

 

  Recombinant Hepatitis C virus 

J6(5'UTR(Cell-U6)-NS2)/JFH1 

 

Colon 24466  Human papillomavirus type 

20    Human herpesvirus 3 DNA, 

sub_strain: pOka    Hepatitis C virus subtype 1b 

from Hubei 

 26807 Rous sarcoma virus - Schmidt-

Ruppin D genomic RNA 

 

  Rous sarcoma virus strain 

Schmidt-Ruppin B 
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Cancer 

Type 

Patient 

ID 

Cancer-only oncoviruses Normal tissue-only 

oncoviruses 

Cervical 19210_1 Hepatitis C virus subtype 1b 

from Hubei 

Human papillomavirus type 

20 

   Recombinant Hepatitis C 

virus J6(5'UTR(Cell-

U3WTS1)-NS2)/JFH1 

 19210_2 Human papillomavirus type 20 Hepatitis C virus subtype 1b 

from Hubei   HIV-1 isolate SF33 from USA Recombinant Hepatitis C 

virus J6(5'UTR(Cell-U3)-

NS2)/JFH1 

   Recombinant Hepatitis C 

virus J6(5'UTR(Cell-

U3WTS1)-NS2)/JFH1 

 

 

 

In glioma patients, multiple herpesviruses are commonly found in cancer in all three 

individuals but with different viral types and strains.  This data suggests that the 

herpesvirus can be a candidate cause to glioma.  In patients with colon cancer, the Rous 

Sarcoma virus was found in cancer from one individual but not in the other.  This 

suggests that it may be causative for a subtype of colon cancer or it is merely a secondary 

infection after cancer is initialized rather than the primary cause to colon cancer.   In 

patients with cervical cancer, the result seems less clear.  Viruses that are cancer-specific 

in one patient are present only in normal tissue in another patient.  This may due to 

contaminated normal samples by cancer cells during biopsy or DNA preparations.  More 

data from different individuals will be needed to clarify this result.   
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3.3 Oncoviruses that are common in cancer and normal tissue show 

different levels of coverage  

I then took a look at the viruses shared between cancerous and normal tissue of patients.   

I compared the average coverage of oncovirus in cancer to that in normal tissue.  

According to the hypothesis, I expected that oncoviruses would have higher coverage in 

cancer than that in normal.   Results show the coverage differences are obvious (Figure 6) 

but not always high coverage in cancerous tissue.  It was very interesting to see that three 

groups of patients have three different profiles.   

In the group of glioma patients (Figure 6, Glioma_13_Common, Glioma_14_Common, 

and Glioma_51_Common), almost all species of oncoviruses are higher covered in cancer 

than in normal.  This indicates glioma may be associated with a wide spectrum of 

oncoviruses.  In the group of patients with cervical cancer (Figure 6, 

Cervical_19210_1_Common, and Cervical_19210_2_Common), only papillomavirus 

consistently showed significantly higher coverage in cancer.  It suggests cervical cancer 

is related to one or more typical oncovirus, such as papillomavirus.  In the group of 

patients with colon cancer (Figure 6, Colon_24466_Common, and 

Colon_26807_Common), however, almost all the oncoviruses are covered less in cancer 

than in normal.  This was totally unexpected.  If there are no errors in the experiments, 

such as mixing cancer and normal tissues, it implies that colon cancer may not be a virus-

causing cancer type.   
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Figure 6.  Oncoviruses that are common in cancer and normal tissue show 

different levels of coverage. 
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 Figure 6.  (cont) 
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Figure 6.  (cont) 
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Figure 6.  (cont) 
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3.4 Five common oncoviruses are found in all examined individuals  

There are five common species of oncoviruses present in both healthy and cancer-

affected individuals.  Four of them are different strains or types of herpesvirus and one is 

papillomavirus type 82.  As we can see in Figure 7, the there is low coverage of these 

oncoviruses  in healthy individuals.  A slight increase in coverage of all cancer samples is 

observed.  The most striking fact was the dramatically elevated level of coverage in 

normal tissues from cervical and colon cancer patients.   

Another interesting observation was the spectrum of these five oncoviruses are consistent 

among all samples with herpesvirus 6B Z29 (green) and papillomavirus (purple) the most 

dominant and HHV-3 the least (light blue).   
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Figure 7.  Average coverage of common oncovirus species in all individual 

examined.  Five oncoviruses are shared among all individual and the average 

coverage of each of them are shown as stack with five different colors in every 

sample.  Color representations can be found on the top of graph.  Source data are 

present in Table8. 
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3.5 Summary and conclusion 

This was a pilot work towards a more comprehensive and sophisticated project with more 

data and a larger viral database.   There are certain limitations to the result of this work.  

Due to the limited overall nucleotide coverage ( less than 1 ) of the sequencing reads, the 

regions in the samples that are not sequenced will result in false negative.  On the other 

hand, virus genomes contain sequences that are highly homologous to human genomic 

sequence, which will lead to false positive.  Improvements can be made by increasing the 

overall coverage of sequencing of each sample, such as deep sequencing, and also by 

eliminating human sequences from virus genome or examine expression of virus instead 

of genomic material. 

In spite of all the limitations in the data, this work provides a systematic work flow from 

raw sequencing data to a meaningful biological outcome.  Sequencing data were 

processed by following the routine in the lab.  Mapping results were interpreted in four 

steps regarding finding the difference between the cancerous and normal samples.   First, 

I took a look at the overall similarity of cancer result compared to the normal and found 

that the oncovirus species were of great similarity between them.  Next, I listed all the 

cancer-only and normal-only virus species and compared among three groups of patients.  

I then examined the viruses shared by cancer and normal and compared their coverage.  

Last, I found the five oncoviruses shared by all individuals including the healthy and 

cancer-affected and compared the coverage of them.  

The preliminary result shows that the profiles of oncoviruses are different depended on 

cancer types.  Glioma is more likely to be related to multiple oncoviruses.  Cervical 
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cancer is only associated with a certain type of oncoviruse.  Colon cancer may not be 

solely caused by oncoviruses.   More data and further experiments are needed to make a 

solid conclusion. 
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