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ABSTRACT

This paper is concerned with a study of the struc-
ture of infinite dimensional manifolds, giving informa-
tion'about the homology and homotopy, and leading to the
construction of a codimensional homology functor which
distinguishes sets of finite codimension and which sat-
isfies a Poincare duallity with respect to thé singular
cohomology.

Attention is restricted to separable differentiable
Hilbert manifolds which ars Cauchy and geodesically com=~
plete and which support finite dimensional véctor valued
functions with associated thln singular sets so that these
sets can be removed via diffeomorphisms between the mani-
folds and the complements of the thin subseté. This leads
to representations for these manifolds as the inverse limit
of finite dimensional manifolds which are the images of the
given manifold under a vector valued function, with the
structure of the inverse system being determined by a se-
gquence .of foliations and an associated sequehce of g-pa-
rameter groups of diffeomorphnisms., There is also a strong
homotopy equivalence between the given infinite dimensionsal
manifold and the direct limit of the above mentioned finite
dimensional manifolds,

A homology functor Em (+,2) is then constructed by

=Db
using the strong homotopy equivalence and the'connecting



homomorphisms of Mayer-Vietoros exact sequences which
arise from splittings of the finite dimensional manifolds
used in the representations. The ensuing duality is in-

dependent of any representation,
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CHAPTER I
INTRODUCTION

The importance of infinite dimensional manifolds in
the study of non-linear global analysis hgs led to a need
and interest to determine more information ahout the
homology and homotopy of these manifolds., In particular,
there should be natural methods of constructing homology
functors that reflect the structure of sets of finite
codimension, J. W. Alexander [17] constructed an «-p
homology in 1935, However, that has the disadvantage that
it gives different groups for the same space, essentially
depending upon the system of covers used to consﬁruot the
theory,

K. Geba [12), K. Geba and A, Granas [ 13 ), J. Eells
L9), and K. K. Mukherjea [ 17]have constructed and usedoo ~p
omology functors,

Geba constructed ane’-p cohomotopy theory giving an
Alexander-Pontrjagin type duality between a closed bounded
subset of a Banach space and its complement., Granas and
Geba gave aneo~p cohomology functor again giving an
Alexander-Pontrjagin type duality relating the same kinds
of sets mentioned above,

Eells constructed ane -p homology which is canonically

lsomorphic to the singular cohomology for an open subset



ofa Hilbert spacé, assuming that the coefficlents are a
field or that the homology is finitely generated in each
dimension., Mukherjea's theory is a similarly constructed
o -p cohomology. These last two constructions and their
corresponding Poincare dualities are constructed and given
for a manifold and not with regard to a set and its com-
plement, They both use a cutting technique ﬁhich gives a
strong homotopy equivalence between the specified manifold
and a direct limit of finite dimensional manifolds, Bbut,
this surgery 1s not delicate enough to pick out sets of
"finite codimension in a fashion that would ailow the
elimination of the two conditions in Eells above mentioned
result and give a complete geometrical determination of
finite codimensional cycles.,

The main problem is to represent the manifold in such
a way as to give a natural procedure to pick out the sets
of finite codimension. The obstruction to any such study
is the fact that finlite dimensional geometry simply doesn't
cary over to the infinite dimensional case. ‘The big differ-
ence 1s the fact that the removal of a reasonably thin sub-
set from a well behaved infinite space leaves the space
unchanged with respect to homeomorphism type. The trick
ls to utilize this difference and create a new infinite

dimensional geometry; the two principle ingredients being



the above mentioned fact and the use of a sequence of
foliations.

The present work is concerned with a study of this
problem for a class of Hilbert manifélds along with the
consequent construction of an oo -p homology functor '

H o _p(e12).

This paper is divided into five maln chapters, The
first four of these treat the construction of a represen=~
tation theory for a manifold E of the given class in the
form E‘ﬁ&Em, Wwhere ~ denotes homesomorphism and Em is an n
dimensig;;l orientable manifold. This is accomplished by
a succession of foliations, each one being induced by a
global p-parameter group of diffeomorphisms determined by a
smooth function without singularities. Chapter II relates
a manifold E to ENK, for a suitable thin subset K,

Chapter III gives the construction of a smooth function

with singularities in a thin set K along with controlled

assocliated solution curves,

Chapter IV treats the local p-parameter groups of
diffeomorphisms, In Chapter V, these notions are unified

to form a sequence of foliations which generates a required

representation,.

Then the results of Chapter V are used in Chapter VI
to pick out sets of finite codimension in the construction

of a homclogy functor, H“D“p(.,z), and a canonical duality
with the singular cohomology. |



CHAPTER 1II

GEODESICALLY COMPLETE MANIFOLDS AND A STUDY OF
DIFFEOMORPHISMS BETWEEN A MANIFOLD E AND THE

MANIFOLD E\K, FOR A CERTAIN THIN SUBSET K

We establish in this ghapter a simple form of the
general principle that the removal of a suitable thin
subset leaves an infinite dimensional manifold unchanged,
This is for a closed locally compact subset of a smooth
Hilbert manifold,with the help of a result of Bessaga[fj],
which gives a diffeomorphism between the separable Hilbert

space H and H\{o}, and then for a sequence of tubes,

Definition 1, The termonology essentiélly follovs

that of [9) , [16), ana [18) . 4 c* Banach manifold E
without boundary is described as follows: A C° diffeo-
morphism of an open subset UcE, onto an cpen suﬁset of a
fixed Banach space B, Yy :U—=>B, is called a chart, Require
two charts,y:U—>B and ¢:V—>B, to be related by stipu-
lating that Yo' p(UAV)—>Y(UAV) Dbe a Ck'isomorphism.

A Ck atlas for E is a collection of charts, parwise related
as above, which cover E., Take a maximal atlas and denote
it by A, The manifold E is then a paracompact Hausdorff

space with a maximal chart A denoted simply by E.

Definition 2. This is due to Palais[18) , Fix an
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indexed collection of Banach spaces {Bi%rA and isomorphisnms
|

( ¢U) where @U:Bj——->Bi. Then require ¢, = identity and

®W @m ==¢1|-K . Then construct a Banach space B and canonical

isomorphisms 7, ;B——> B, 3 TI, =<méﬂ3 « Actually Bt:TTB;
]

i
> {k} € B satisfies the condition by = &by, This is

called amalgamation. 7T, is an isomorphism since i; , de-

fined by J%(b)j = q%i(b), is a continuous linear two sided

inverse,
Let iBL,vmg be a second such collection with indexing
set A', For (i,k)e AXA specify a bounded linear map
/ ' A
Tyyé By—>B, 3 WQT11¢U = Tkj' Then for the amalgamation

/ . ! t
B 3 a unique T,Bf—-}B > ®T = T}, given by T {b%: {bk%

/
for b,_ = Tkibi‘ T is the amalgamation of Tki'
For E 2 C* manifold and ec¢E, let A_ be the charts at

e. Also let By = the target of ¢, Then a(y¢")  iV—>

Vo is an isomorphism, d(<b¢4)ua= identity, and

-l -1 _ -4 | . - -
d(e, $3 )%k)d(¢;m )Qk)" a( o, ¢; %“; Therefore this deter

mines an amalgamation Ee’ the tangent space at e,
If F is a second such manifold and f:E—>F is C'and
A the set of charts at f(e), then for ( ¢,07)€AX.4'3 a

:B -—bB' This then determines

Ple) ( Yy
an amalgamation map dfe:Eé——a Ff(e)’ which 1s the differ-

linear map d(wf¢' )

ential of f at e,
Define the tangent bundle by T(E) ={)Ee and define
[

the bundle map Tf;T(E)~—>E by TM(E,) = e, For a chart¢



with domain U and target By define ¢ :U¥XB,~—> 1i'(U)
by requiring b —>¢(e,b) to be the natural iSomorphism

of B¢and E,. For f1E—>f, define &f:T(E)—>T(F) by

df|E, = df,.

We consider chiefly real ck separable Hilbert

manifolds so that E%: H = real separable Hilbert space,

Definition 3. (Lang [16 , Ch, IV]) ) A spray over

a Banach manifold E of class CX is a seccond order differ-
ential equation over E, represented as a vector field L
on the tangent bundle T(E) > for the projection M:T(E)
—>E we have drifh(v) =vy , where dy is givén by the
following: TT(E)-ibL—~ T(E)

| {7

T(E)—Lem> E

The vector field also satisfies additional properties
to be described, Furthermore, assume 3 £ k £ oo

Of course, to be a second order differential equation
N must satisfy the condition that for each integral curve
B of n Cch.IV]we have ( ne),=l3, where (nEY(a) =
d(TTB)a(l), for ae R = reals, In addition for veT(E),
let B, be the unique integral curve? of ) with initial
condition v,( By(o) = v), IfEcT(E) is the set of vectors
in T(E)> R 1is defined at least on [o0,1) , then 3 is open
and v—> Bv(l) is' a morphism ¢ —>T(E), Define exp 1§—>E

by the equality exp(v) =17 Qxl). exp is Ck'z,



Now for fito be a spray it must satisfy the following
equivalences: |
1, a€eR is in the domain of &1 is in the
domain of B,, and nB(a) =TT B (1)
2, e,b &R, ab is in the domain ofﬁj¢5§a is in
the domain of g,, and Bbv(a) = B (ab),
3. a€R 1is in the domain of%v¢=>ba is in the
domain of B, and B(a) = bB,(va).
L, VY aeR and veT(E), N(av) = adafah(v)).
Since locally the sprays form a convex set a spray
“can be constructed if partitions of unity exist, If E is
a Ck manifold for 3« k<¢e and 1s also modeled on the sepa-
rable Hilbert space then the results of Bonic and Frampton

C4) assure the existence of C° partitions of unity,

Definition Q? Cal; a manifold geodesically complete
if the following conditions hold:
1. 3 = T(E). |
2, EveryhB can be extended so that B, sR—— T(E), If
& (1) € T(E)-é- ,thenAT(E)-én BS,(l)-_- ¢,where s £ sh
for s,s’eT(E)e;E',e ¢ E,Also BV(R)() o-séction =@,v#£ o,

¥According to a result of Anderson and Schori 2
-EH E, It seems possible to use this result and a notion
of preferred paths to generate conditions like these
topologically,



. |
3. Vs,v e T(E) Ja C° map g 1B—> R3nB, (1) =

Trﬁ(«z +q\vces(gs,v(a)) where v(e)€ 7B (R) and

Zaoégs,v<ao) + gs,v(ao) = O.
da
Lemma 1, expe:T(E)e----—~>Ue C E is a diffeomorphism
1

of at least class C~,

Proof. By condition 2 of Definition 4 exp,_ is
defined for all veT(E)e and is also 1 - 1,

By the following inverse function theorem [ 9] it will
suffice to show that dbxp% is a bijection:

Let E and F be Banach spaces, U an open subset of
E and ¢: U—>F be a ck map, k2 1. Then

1, If xe€eU is a point 2 dcpx tE—— F is injective
and its image is a direct summand, thenE]Ux inU >
¢[Ux—--> F is a split ck embedding.

2, If d¢ :E—>F is surjective and its kernel is a
direct summand, then ja neighborhood U, > ¢lUx-—-—-> F is a
split Ck projection,

3. If d4¢, is a bijection, then ¢ maps a neighborhood
Ux of x,Ck diffeomorphically onto a neighborhood of w(x);

To see that dﬁxp% is a bijection, it is only necessary
to evaluate along rays of the form x + av, This is done

as follows:

1] =4 ms (8 )],

S+av q, aa (ao+ @) y(e) S,

d_ g
da



= 4T, (1Q§ o8s, v(a ))(Zaobgs v(ao_) + gs’v(ao))

vieyt T P s, e))

ya
= (zaoigs,v(ao) * 8g,y(2 ))dTrvmﬁa%%vtqa3 dafiJZaogs v(ag))
a
= (2a dgg (a)) + gs'v(ab))dnbvm(g%%sﬂqﬂfl(£%k§ oBs, v(a ))
bk ’
= (2238, (a,) + & (a NE (228  (a))
da

# o by conditions 2 and 3 of Definition 4 and Defini~

tion 3 of the spray. Since this is true for all rays the

bijection follows, ' Q.E.D,
We can now establish a result that shows thaé the

removal of a thin subset leaves a manifold unchanged under

suitable circumstances,

Theorem 1., Let E be a geodesically complete,separable

Ck Hilbert manifold for 2 & kéoeo , Then if K C E is

closed and locally compact'3‘§ > K and a map f: ENE——>E

~r

35fF is a diffeomorphism ,where K is also closed.

Note, Since E is a Ck Hilbert manifold it has an
induced Riemannian structure,which is a special case of a

more general Finsler structure., Hence J an ihduced metric
P .
Proof, The proof is based upon the result of Bessaga

(3] ,» which will be outlined because of its importance.

Proposition (Bessaga)., If H denotes the separable
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infinite dimensional Hilbert space, then 3 a diffeomorphism

The result follows from the following propositions:

Proposition 1, J an incomplete norm w3 w(x) £l

where w is of class C° on H\{o. Also 3 a point X 1in the
completion of (H,w)>Xe¢(H, il ) and3d a function (00)-B
{erlw(x)é%} which is of class C” > p(a) = o for a » 1,

where 1im w(p(a) - %) = o and where W(p’(a)) £ % for a > o,

4o

The proof is built upon the following argument:

Select an orthonormal basis {eﬁ% in H. For any n
select an infinitely (C?) differentiable monotone decreas-

. . !
ing real valued function g, 3 @(a) = o, a 25w

—

@(a) = 1, as 3

o0

Let 4 = max(2n+1,23up cp,; (2)) and let pla) = Z qq)(a)en
LY

o 2 o0 y?
and let w be defined by w(x) = (2 (x,e ) + IIx —Z(x,e )G’nNB)‘
. h=1 ——-2—2— . - nTy n

dn

o0
Then a candidate for X is X =Zep. X is Cauchy with
T B

respect to w, but x ¢ (H, ),

Proposition II, hl(x) p(w(x)) + x is a C isomorphism

mapping HM{o}—>H 3 hy (x) = x for w)> /.
The main point to the argument for this proposition
is to fix a vector x and use the Banach contraction prin-

ciple on the function ¢: [o,0)—>[0,») defined by



d(a) = w(x-p(a)) for a > o and §(o) = w(x-X). Proposition
1=pactually maps [bgm)3ﬁ9{§,w). Also [¢(a)~ o(b)l=
lw(z-p(a)) = w(x-p(b))| £ w(p(a)-p(b)) = W(f:b?t)dt)
§wFE)at < lasvlsup w(p'(t))¢ la-nl,

Therefore applyiﬁé the contraction principle to
(Co,®),¢$) one can conclude that 9a unique solution a for
P(a) = a. This means thatV xeH da unique a, >0 3
w(x-p(ax)) = a, and since %¢H, then a,> o, Consequently3

a 1 to 1 mapping hle\{dg—mé> H with h{'(x) =X = p(ax).
This is easily checked since with hl(x) = x +p(w(x)),

hl(h;(X)) = x - play) + p(w(x-p(ay)) = x - p(a;) + play) =

Proposition III. Let w(*) be a norm in H of class C~

onTe

on H\{o > w(x)¢ixl. Then3a C diffeomorphism h,iH>>H
S {erlux[[s 13 "-“—TL>{er| w(x) £ %—3
The map h,is hz(o)

h, (x)

2

o)

(k(uXH)£XQ +1 - Ax))x

where N is a monotone increasing real valued function of

class ¢ 3 (Ma) = o, a £

njE

Aa) = i, az1 ‘
The map h is then given by h(x) = %h; hf(h2(2x))).
The fact that h1 is a C“’diffeomorphism.foliows from
the following: If {/(y,a) = a - w(y-p(a)), then since for
yeH y-pla)+ o==>/ 1s differentiable on a neighbor-

hood of (yo,ayo ) C HX (o,@). AlsoDV¥>1-3>o,

11

X
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Then the following implicit function theorem [7,CH,10 )
can be used to give the result: Let E,F,G be Banach
spaces, f a differentiable C” map of an open subset

TuTo

Ac EXF > A5G, Let (x,,y,) € A >f(x,y ) =o0

and with sz(xo,yo): P56 a linear homeomorphism .

Then 3 an open Uo of X, in E » Y connected neighborhood

U of X » With U c UO,E] a unique continuous ﬁappingacauﬂké'F
3 cX(xo) =y, and (x, ¥(x)) e A and f(x,«(x)) = o

¥ x&U, 1In addition « is C” in U and its derivative

is given by d«, = -(sz(x,d(x)))°l(le(x,d(x))).

Here we let E=H, F =G = (0,0), HDZW(éo,xo)”=
=”DaW(ao,xo)H > o. This gives the desired conclusion,

Now the generalization to the Hilbert manifold comes
by a reduction to the case where we can consider the closed
locally compact subset to behave as if it were only a
smooth finite dimensional closed submanifold., Then we can
construct a tubular neighborhood about this sét, which is-
actually a trivial neighborhood bundle, and give a diffeo-
morphism by defining the analogue of the function p at
each fibre of the neighborhood bundle. Each point of K is
pushed to a point in the completion of a new norm,

First assume that K satisfies the condition that if
k ¢ K,Jen arbitrarily small chart about X which contri-

butes only a minimal number, dk' of coordinates to K in some

suitable coordinatization of the chart,



For a set of this type we can choose a cover (Uk )d
B i H

with the following properties, where disc means open ball:

1, (U ) is star finite, with U, a disc in a chart,
i i
2, 1If Dk = the k dimensional disc spanned by dk CO~
i
ordinates contributing to K and Dk = the boundary
i

, then (D ) ig a star finite collection,
Ky Ky
For a point ke K, select a disc Uk contained in some

of D

chart and contributing the minimal dk coordinates to K.
Then every point in KﬂUk has at most dk coordinate contri-
butions to K, Also Dk(]K is cecmpact and closed SO0 We can

cover this set by a finite collection of disecs (Uk ), Where
i
U, contributes the minimal d, coordlnates to K, Now (point

ky i

set boundary k)Uk )N K is compact, So then for this set
i

select a finite cover (Uk ) with the property that Uk

i\’ i; i.’ i;

does not intersect Uk' Continue on inductively » at any

stage with (U, ),which is finite then ﬁk
i,1, » 1n i,i, i,
does not intersect any ﬁk form £ n - 2 and also
i‘, i;’ '] im ’
D, only intersects a finite collection (D ).
il,' i';' in il ' i’*’ i"'"
Now if U, k} ((U, )l'does not cover K then
i,1, N
K\U L} ((U )) is closed, For if 3 a sequence (k )
K, 1 ™ . &
from this set converging to some k' in Uy ((U ))
hz
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Then it converges to some Dk and hencea subsequenceC
i“if i,
a D, by the akove construction. Therefore X' e
j]' ’iMl
K\Uk U ((Uk . . ))bzl'
i,1, 3

This shows that X ﬂ U, | (U ))<is a com-
k Ky g, 1™
1" 3 n

ponent of K in view of the fact that Uk U ((u ))

L]

N2t

K1,1, 1
was constructed to contain any limit point of the above
intersection, which is then closed and open in‘K.

Now do the same thing for any point k¥ € K and then

obtain the cover L) Uy U ((Uk )).Then select a
KeK il'j‘z’ j‘h hz)
denumerable subcover L) Uk* L} ((Uk‘
: 101, 1

){. If a

21

- : . h

Dkx intersects some Dkw , then by the construc-
i,i, 1, 1,1, 1

tion of the collection we nged only take that collection

m

which contains maximal components and we have the cover
with the desired properties,

Now we generate trivial tubular neighbofhoods about
closed smooth finite dimensional submanifolds of E, Recall
that ' if M < E is a submanifold a tubular neighborhocd of
M in a vector bundie NsB—M is an open:neighborhood Z
of the zero section‘of M in B and an isomorphism g:2-—>7TU

of Z onto an open set in E containing M 2 the following

FJZ'\Z [=sectlion

M= E

commutes:
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A vector bundle B >M is compressible if glven an
open neighborhood Z of the zero section, then 3 an iso-
morphism glzB—~%>Zo where Z_is open in Z and conteins the

zero section 2 the following commutes:
9
B

22,
TT\JM/”'Z"

Now Lang [16) constructs a tubular neighborhood by

considering the exact sequence
6 —~>T(M) —>T(E) —> N(M) —>o0

of vector bundles, for N(M) the normal bundle over M, and
then by showing the existence of a set VM c UIyI = exp (N

N(M)) = exp(N(M)) so that V, is a vector bundle and serves

M
as a tubular neighborhood., He also demonstrates the exis-
tence of a compression, if we use the fact that for M B

a Ck partition of unity{:hj , for a bundle with a structure
of a Hilbert bundle, This takes the form of a diffeomorphic
retraction for the fibre over m ¢ M which is expressed es

(Ea .}u )) . .
rm(v) = miyM’y for (hi) a suitable partition of unity

1+ pvip )%
and am(i) denoting a real number so that all vectors in Hm

of length<.am(i) are elements contained in the required

open neighborhood Z of the zero section and where Hm is the
fibre over m, Now since M is finite demensional N(M)m is
diffeomorphic to H and hence N(M) inherits a restricted ac-

tion of the general infinite separable 1inear'group GL(o0)



from the Hilbert bundle which we can then compress so that
we can consider an induced action of GL(e0) 6n the tubular
neighborhood of M by defining gv = expmrm(g?) for v =
expmrm(V). This is simply a deformation of the action on
each fibre in N(M), Therefore, we have a tubular neighbor-
hood which we denote by’lM with an induced action of GL o).

We can now apply Kuiper's result[ 15) that GL(c?) is
contractable and hence a Hilbert bundle over a space domi-
nated by a CW complex with a GL(&) structure is contract-
able., Therefore, ‘TM is a trivial tubular neighborhood bun-
dle.

We are now in a position to apply the (Bessaga) result

.

to construct a diffeomorphism f:E\M—>E by constructing

mnaps hl,m’ hz,m’hm' where hl,m(e) = e + pmwm(e) for
w_ and p_ constructed in the fibres, The map h is then
m m 2,m
given by hz’m(o) = 0 ~ and
h (e) = ( A{wen) e + 1 - A(e))
2,111 * Wm(e)

’(h

1,m z,m(ze))) for e ¢ H \'m, Since this

_ 1 ~i ;
hm(e) = 2 hz’m(h

map is the identity outside the corresponding closed tube
of radius I the map f is defined to be the identity on the
complement of the tuﬁular nelghborhood,

Consider now the closed locally compact ;et to be
covered as before by the star finite collection (Ui%“ 3

KC-UIh_ for Dd a di dimensional disc in Ui and (ﬁ

).
i i d; ‘i

16
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star finite, Define K =UTD, and ¥ =UD, . Then derine
i i : :
the required diffeomorphism by first considering %1 Con~

struct now a collection (fj) of diffeomorphisms inductive=

ly as follows: Let Dy = 'ﬁi and identify Dy with the M
. 1 i
making suvre that ﬁ'DchJU..Then start by setting down the
) i Finite .
diffeomorphism fle\\Al——4>E, where Al = Dd . Assume that
1

we have given fn_le‘\A —~—>%, where

n=-1

ne1 = Tpopfpog e T (K _MK,). Then since all of the

maps are assumed to be diffeomorphlsms
fn-z n-3 “f (K'\ &)I( C EN An_1 is a closed

set in the relative topology. Now the diffeomorphism f

A

n-1
maps this set to a closed set Therefore, define

Ap= £, 1f,0 £, (K N\ UK ).

Now since all of the fj j<n -1 are diffeomorphisms, they
map the relevent remaining portions of the trivial tubes
qu diffeomorphically so that A is a closed set sur-
rounded by a trivial tubular nelghborhood ‘Then define
fn:E‘\Anf~€>E by mapping within the fibres as previously
described, fn is the identity outside some closed subtube,
so that outside the tubular neighborhood we again define
f to be the identity,

Then let T ~Tff tEN K—-— E. This is well defined and

1 to 1 because f is a composition of diffeomorphisms which

are not the identity only on a star finite collection of

tubular neighborhoods. It is also onto, For if e €E does



not intersect any of the tubes then f(e) = e, If e inter-

sects some flnite collection of tubes thena‘ some e’ e n‘TD
Be-T& ®)~ﬂf“)

Each D, \ K 1s closed in E\X since Dy \ X =

1 i

= ﬁd {\ (E\K). Therefore each Dd\‘% is a closed finite
i i

d

dimensional submanifold considered to be E,as the image
of the map f., We can then construct a star finite collec-

tion of trivial tubesifrf(Dd \ %)3 . Now we can con-
i

struct a map T :E\ f(ﬁ‘\§3-4~>E in the same way f was
constructed., Define f|= Tf|E \'1'”{\3?. Then ¥ £ :E\E—>E
is a diffeomorphism,

To handle the general closed locally compact subset,
consider the closed set Kb =:{k:eK |k has a neighborhood
chart arbitrarily small with an infinite number of coordi-
nate contributions in K for every coordinatization.g .

This set is closed, for if e 1s the limit of a se-
quence Eki \ki € K}Sthen wie can take an arbitrarily small
chart U  containing a subsequence of thig{Kkg 3 3 arbi-

trarily small neighborhood charts about each ki,which are
A\
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contained in Ue with an infinite number of local goordinates

contributing to K and hence forcing Ue to also contribute

an infinite number of coordinate contributions to K,

Now Kc has the property that for keKcaarbitrarily
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small neighborhocd charts Vk contributing only a finite

number of coordinate contributions to Kc for some
coordinatization of Vk' For if Vk contributes an

infinite number of coordinates to K0 and hence to X in
every coordinatization, we could then select such a chart

Vv, containing a set (ki) U x; for k;,k € Vo constructed

3 (ki)U kc 0c 0 cV, for an open O,aner\ {(ki)u

k
k% 3 an open neighborhood Ox C Vk 3 Ox /] E(ki)_U k% =
@, We can assume that O is chosen so that OflK is com-

pact, and therefoxre ki ——>k, and hence the metric length

of the coordinates contributing to K in a coordinatization
of Vk also must cohverge to o, Hence every point of K/)Vk
1s contained in an arbitrarily small chart with a coordi-
nate structure contributing only a finite number of co-

ordinates to K., Therefore, these points cannot belong to
Kc and hence the only contribution for Kc can come from
only a finite number of coordinates,

We can apply the previous result to obtain a dif-

el -

feomorphism Fl tEN Kc ~>E, Where KCC Kc' K\Kc
is closed in ENK, because K\KIEc = KN E\?{c.

Again since F, 1is a diffeomorphism, Fl(K\‘Ec) is

closed and satisfies the condition thatJarbitrarily



small chartst contributing only a minimal number, dk’ of

coordinates to Fl(K\'Kc)' Therefore 3 a diffeomorphism

Va4 o~

FytE Fl(K\Kc)-—-—-} E for some set Fy(K\K )DF; (KN\K_).
Let X = K, U F{(F(X\%)). Then F, Fj| E\E—E 1s a

- e 1Vh ¢’’’ 1
diffeomorphism where F,| = FIE\K. This is true because
F1 and F’2 are both 1 to 1 and e¢E is the image of the

- -} ~ -1
point F1%F2(e)), which is an element of ENK since Fz(e)e

E\F, (K \T{c).
Q.E.D.

Theorem 2. Add the additional hypothesis that E is
Cauchy complete to those of Theorem 1. Then if K =

k}Mi, for M a closed finite dimen310ha1 submanifold 3
K
a diffeomorphism f:E\K —E ,

Proof., Select a sequence of trivial tubes (°TM1)
and the corresponding diffeomorphisms fi:E‘yMi-—%>E s0
that T, {e | ply,e) < 1/21*1} for the metricp of E

and so that ﬂ“TM C UM and so that ﬂ(’TM CUM
|7[ \ €A - ieA

for any infinite set 4 C Z.

k-1

Then let f =TIf.E\ K—>E. f is 1 to 1 and C

S |

7}
since e ¢ E cannot be an element of more than a finite
nunmber, Ng» of tubes. Hence f(e) = TTf (e). Also this

mep is onto, For consider the sequence:

E_""'>E \M1C E""""?E ~ Mz [« E""‘"""b""'—-—-—>”‘ ’

20
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Then for Fn = fﬁ fi and any given e¢ E, assume 7 a sequence
A _
(en)'a e = Fi(el)" ©a€ = Fn(en)"" Now for n>n3» N,
n-m-{ n-l

< 141 i
N S 1/ttt g 2 /2= 172
F(en'enn $ < fv(em+i’em+i+1) < 21/2 ~

Therefore since E is Cauchy complete the sequence must

converge to e,

Now e ¢ any Mi because ele M1 since e, is constructed

by the action of the function T; :E——>E\MN, and e, ¢ M,

since ey is constructed by the action of the function
Tl e W ':1‘ -
fi 1:E‘\Mi_1c:E >E‘\Ji, and because e, 1is mapped per

pendicular tg M, D Mj(\Mi by ?i for j £1i. Hence the

limit cannot be in any Mj for j& i Vi, Therefore since
17Tu, ¢ Un, rfor any infinite intersection, & can be
contained in only finiiely many tubes, C€all this number
q. Then e = f(e) = xj £y (¢). If the sequence started
out with any other 1> 1 the same conclusion would result.

Hence the mab is onto.

Qo El Dr



CHAPTER I1II

Ck E; APPROXIMATIONS WITH THIN SINGULARITIES

The next step in the plan of this work 1is to establish
the existence of maps which start the foliation. These are
to be smooth functions fp:E——4>Rp on a geodgsically and
Cauchy complete Hilbert manifold E. ‘The techniques that
are used result from an application of approximating tech-

nigues of Eells and MacAlpin [ 10,

Definition 1., If M and N are finite dimensional differ-

entiable manifolds and f:M—— N is a Ck map, thgn f is a
M, - sard map if k > max(m-n,o0), where m = dim M and
n = dim N, and [lf, is Lebesque n - measure on N, where the
term Sard map meansxa(f(cf)) = o for Cf the set of critical
points of f,

If E and F are finite or infinite dimensional mani-
folds and f;E——4>F‘is a smooth map and if f(Cf) has no in-
terior point in F call f a smooth Sard map.

The case exploited here is when E is a Cauchy com-
plete)separable Hilbert manifold without boundary and
F = Rp, P = 1, ,m, - - where RP is  the real Buclidean
space of dimension p. The main proposition which must

be reworked is the following: (Eells and MacAlpin) Let E be

a smooth separable Hilbert manifold without boundary. Then



the smooth Sard maps are dense in the fine topology on
c®(&,RP).
The following theorem is the desired generalized

specialization of the above mentioned result,

Theorem 1, Let E be a Ck Cauchy complete separable
Hilbert manifold without bdundary and let QI:E—~€>HP be
an open bounded continuous function. Then 7] a smooth Sard

E approximation f toQ’a'Hmasingular set of £ is a
closed locally compact subset of E,

Before the proof of this result can be given the

necessary machinery for the construction of approximating

functions ﬁust be established,

Proposition (Eells and MacAlpin), Let X be an open

subset of a separable Hilbert space H, For each pair of
disjoint closed subsets Co’ C1 in X Ja MFASard function
(Q-l(l) = Clc

Since this proposition is of fundamental importance,

-1
¢:x—o, 13 o) = c_,
the proof will be reviewed in the following sequence of

lemmas,

Lemma (Eells and MacAlpin), Consider an open subset
X € H. Then for any closed subset CC X and a neighbor-

hood V of C 3 VeX,3 a countable collection (U;) of

izl
open discs of H 3 those with even (resp.odd) subscripts
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are in and cover V (resp,X\C) and > the centers of (Ui)’

(ai%yare linearly independent points in H.
2|

Proof The proof is essentially an application of
Lindelgf's theorem, For at each X ¢ V select an open
disc U(x,rx) of radius Ty which is contained in V. Then
Lindelgf's theorem assures the existence of a countable
sub cover of V by discs of the form U(x,rx/z). Similarly
aza countable cover of X \ C, by sets of the form UYxﬁri/Z).

Now V¥ U(xi,rxi/Z) select dises U,; 3 U(xi,rxi/z)c U

C U(xi,rxi). Select discs U21+1 similarly from the discs

21

I
U(xy,T ). Require also that the centers (a;) form =
i : 1%]

linearly independent set,

{x € X[ P(x,A)
X \ A, Then

Now for A ¢ Xand r > o, let (A,r)

L f})wheref denotes metric, Also let Ac

the following lemma is standard U16 ).

Lemma (Lang) Let V1 = U1 and for k¥ % 1 define

c c
V2k+1= U2k+1 n (Ul ,1/k) ﬂ et m (U2k-1 |1/k) ° Similarly
: . |
let V, = Uy and V,, = Uy [} (U, ,3/K) [} ﬂ (Usy_ 20 1/%).

In the first case the k come from the cover of X \ C and

the sets represent an open locally finite refinement of

(U21+1),In the second case the kX come from the cover of

i’f'
V and the sets represent a locally finite refinement of
(Ups)e

7
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The following is the construction of the function @

according to (Eells and MacAlpin).

ILet C = Ci and V = X N\ Co. Then smooth functions

J i
X~~>R, j ¢ iand (-1) = (~-1) , are constructed by

~

fij‘

composing smooth functions Ty (iB—> R with the norm jxuajl .

J

fii S oon U

N For j ¢ i f‘ij 1 outside U= U(aj,rj)

fii"" o for X \U.1 f

i3 o on U(aj,rj»l/i)

o) <fij(x) £ 1 between

The functions rij are built upon functions of the form
b
1

.y -
Se"q e*® dt, Using the gradient of the Hilbert structure
a

for H,Vf‘ij(x) = O_Lij( lx-aj] ) (x-aj), whgre ok.lj is a suit-
able smooth f‘unction‘:)oil.l(t) = 0 only if t = or or t= r,.

Then define f.l(x) :_-Aﬂfij(x). It is evident from the con-

struction that f'.1>o on Vi Vf‘i(x) =§Bij(x) (x-—aj) R

f‘i =0 on X o U.l

Now Vfi(x) =Z,Eij(x) (x-aj), where 'Bij are smooth real valued

functions > .B i.l(x) = oiii( lx-ail )nfi.(x) = o0 only if

J<i J
. J
X =4, or x £ V,. Then define £(x) = 7 f,, (x) and

1l
f (x) =if2+1(x). These are locally finite sums and

1

H

f =0 on C,

£y oonV and{f">oonX\c
1

t
f =00
nCO
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Then define Q1 X——=> [ o,1] by O(x) = ka)/({kx)+ ?%X))-
From the definition @%o) = Co-and 41?1) = Cl' Also

I

Y= (£'gr’ - £/ (e + )P =§Kijj for smooth functions

K..
‘] . .
Determine a countable open covering (Wp_)p>1 of
~{ ,
X \CO k’Cl =0 (0,1)D each wb meets only finitely many Vj'

If xewp is a critical point of @, then o =XKJ(X) fj(x) 2

the sum is taken over the index set«{jlvj {)Wp £ Q)’g y
o =ZKJ(X) ij(x) "'fZKj(X)Bjk(X) (x-ak) where Kj 4 o in

J I
W,. Since Bjj(x) = 0 only X = &, Or x{;Vj ==y either

X = aj oxsz nk(x-ak) = (an)x -Zﬁk a, = O, _But because
(ai}”is linear independentiﬂk # o, Therefore, x is con=-
tained in the linear spaniakl Ji2k avynu, # ¢z .
If Mp denotes Wp intersected with that span, then Mp is
finite dimensional and the finite dimensional form of the
Morse-Sard theorem applies. But the importaht observation
for this work is that this set of critical points lies
locally in a finite dimensional subset of X. This happens
in sﬁch a way that the functions fij’ andTT{£j and hence
the locally finite sumijﬁajalong with f are transverse
to a smooth path within a finite dimensional span.

The puspose of the functions of the type constructed
above is to generate controlled partitions of unity. Bonic

and Frampton C4) have shown that if E is a ck Hilbert mani-
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fold for k £o® , then E admits CX partitions of unity. In
fact J., Eells was the first to cohstruct Cdﬁartitions of
unity for a Hilbert manifold, The construction of (Bonic
and Frampton) is based upon the following scheme:

Lev V be an open subset of E and x€V, >Then use one
of the above @ to obtain a function @:E——$>R‘9 @ 2 o,
d(x) > o andix l@(xbo% €V, where V is the union of
such sets.

Consequently if (Ux) is an open covering of Eda re-
finement of (Ux) consisting of sets of the form%_x[@(x))os
@ is a function of the type described above.g « Since E
is separable and hence Lindelgf,a a countable subcover
(wj) of this refinement with the representation wj ={ x|

(pj(x) > o,‘?j?o.’g . Then let V, ={x] fpl(x)io and

Vet =i XICPT+1(X)> o, (P.(x) {L1/r, ,@r(x)[ 1/1‘% .

Vx ¢ EJan integer n_ 5 (@._ (x)> o and for j ¢ n_,
p's ny X

%(x) > o. Then x € Vv, and consequently (Vn) is a cover

X

of E
« Choose mX ? o<Lmx

< q% (x) and define v =i:x’
x
ng(x) > mx%. Now V_ is a nelghborhood of x;VxﬂVn = ¢

r+l

&
for large n. Select g, €C(R''",R) 3 g, 4 (t;, ,tr+1)’°

<=$’ti L 1/r, 1 =1, T and t. 4, > o and also in this

—-—

neighborhood g, , has no singularities. Then define §£+1

gr+1 6 (¢1W“X¢;+1) o diag, This is Ck and EXI§£+1>§§=
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\'

Il Also YV x, all but a finite number of éj- vanish on

Vx.Then we have the following formula:

= 23841
< . g .
dgr+1 = BQ; dwi and using the gradient
— ?%V@
Véry = 30 .

As before this gives a transversal direction for the
gradient structure in such a way so that the critical points
are locally within a finite demensional span., Then the

final partition of unity is constructed by defining

z =7 gi which is a locally finite sum. Also for all x

124

g lv, € Ck(VX.R+). Therefore & € C (E,RT) and since

- K
inversion in RV is a Cwmap,g‘l C(E,B+).Therefore;-define
. == .
?he collection (hj)jzi by hj =g gj . Again, the hj are
maps whose singularities are locally in a finite dimen-
sional span since it is a quotient of maps which satisfy

that property, This collection of maps is the required

partition of unity.

Proof of Theorem 1. First let X be an open subset of

: D
H and consider YK:X—>R . Then for any continuous € >

£ 1x—>R" we make the suitable approximation .,

Let (Ui)izl be a countable cover of X by open discs in
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X with centers (a,), 1 95 1V-Va) | £ {0,dxev,

!
whereéj(x) = g(x)/Z. Take a locally finite scalloped re=-
finement, which is simply the refinement of a cover de-
scribed in the previous lemmas and denoted by ('Vj)j71 Then?

i ]

a corresponding partition of unity (hj) Let bj =W(aj).

j21’
Since\Vis an open map we can consider rj = dist(bj,bdy (Uj))'

Then ry £ [W(x)—bi\ Vx ¢ Ui‘ Then take a collection of

vectors (v?) for all jand 1€ ig p D lv%l '8 rj and

9

(bj+v,) 1¢i<p

are linearly independent vectors and orthogonal
with respect to a fixed orthogonal basis for Rp. Since W
is bounded we can consider a vector r ¢ RY> u} + T is

bounded away from o € Rp,so that if we assume W':(d+ r is
the function we are dealing with then we can assume that

bj ¥'bk and (E:bj+v§) is linearly independent for any

1<isp
finite collection of j,

Define f = :Z:g—(bj+v§) hj/p‘ Then as béfore take a
"

countable open cover (W_)

p'py1 of X 3 Wp meets only finitely

i
b.+vy)(dh .
‘ -
This then is a finite sum of linearly independent vectors

~

many Vi' Then for x ¢ wp, dfx =

L

so that the critical set is contained in the union of the
critical sets of the hiywhich"are locally contained in finite

dimensional spans. Hence the critical set for f is locally
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compact,
Now to see that f is a approxXimation consider the

following: P A
[ £(x)- ¥ (0] =‘}Z((bjwij)-w(xnhj(_x)/p l |

F- .
< f 7 \((bj+v3)rW(x))\hj(X)/p
Vo)

Y P / :
N 2€(X)72hj(xvp = 2{t0) = ).

=)
Since we assumed that we were approximatiﬁg forb‘+ r,
then simply take f-r for the approximation.
The extension to the entire manifold E follows (Eells
and MacAlpin)., Using the smooth Riemannian étructure with

metric‘P let V, ¢ Vi C U, (1»1) be locally finite open

coverings of E by charts,
Then by induction choose a continuous<g;xU1 —> gt
withE\‘(x) 4 min(g(x)/z,))(x,bdyUl)). Then take a Sard{j

approximation to\Von U1, call it f1:U1-4>Rp. Here
lW(x)-fl(x)'-—4>o as x— bdy Uy ==$7f1 can be extended to

a continuous function by defining £y =W on E\ Uy
T a ., s A . b . =C
Now assume €;and fy are defined and let wi+1“Ui+an/T nvi

g\ + E‘ (E i+1
and let h'awi+1 ~——>R" be a mapz);ﬂ(x)(min( (x)/2 {P(X'bdywi+1))

v} x:ewi+l. Then choose a'Sardgg apprcximation to f on

i



Wy yp 081 18 £y g ol

fi41 =\Von E\wi+1. Define f(x) = 1lim fi(x)klx € E,

£i1E—>ERP is a Sard map > £lv, = £y for 1< J. Also
W) -£ 0l € 2 Tzt = £,

12}

0 _
(W, 1——~>H . Then extend fi+1 by letting
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Now since f{v.1 = fj for 1 £ j, we are assured that the

critical set is locally compact. This follows since the
6nly rlaces that the critical set is possibly not finite
dimensional is at bdyVi for some i,but since fjl is con-
structed to converge to fi for j7 1 on bdyVi then any
sequence of critical valueswithin a suitably small chart
intersecting bdyVi must contain a convergent subsequence,
Therefore since the critical set is closed by definition
the result féllows.

QcE- Dn

Bemark From this point on, the notion of coordinate
projection will refer to a map f¢ -— RP and p smooth

homeomorphisms of Bl, denoted by (li{( 3 11(: f(E) and

_\f,?

projections (pi) x for Py tf (E)—— 11, where 1i is the i

[«1¢

coordinate space,

It will also be assumed without mention that all the

appropriate open functions f:E—-—)Rp sétisfy the condition

that for a suitably small open neighborhood 0 < f(E),

then (f'l(Q),<b) is a connected chart, for a map ¢ .



Definition 2, Call a continuous bounded open func-

tion fiE—— Rp directionally transverse if the following

is satisfied: Consider the collection (p.lf‘)‘s.ISP , Where
Py is the retraction onto Ri = the 1 coordinate projec-
tion. Assume for convention that pif(E) = (o,d) for all

E and also require that for c¢<4d, (pif)'l(o,d]is bounded.
As an example consider € € E and the functionlyg(e)
= /D(E,e) for the metricP. Construct a diffeomorphism
g:E—>EN\ e which is not the identity only in an arbitra-
rily small neighborhood of e, If we assume that this
metric function is not bounded above, then using a suit-

able homeomorphism r:R+——%>(o,d) for d<ee , = a com-

position r Q)E giE—>EN e >g* >(0,d) glving a
bounded open function so that (rlyg g)-l(o,c] is bounded
for ¢<d. Now E approximate as in Theorem 1 for a dif-
ferentiablegjwhich satisfies the property that E;(e)‘é
sﬁp( [b-d}, Ibl ), where b = rivg g(e) and E:(e)——~>o as
b—>0 or b—>d, This approximation f is open, bounded
above and below, and satisfies the condition that f'l(o,i
for ¢<d is closed and bounded, From now on we make the

assumption that the locally finite open covers Vi C -\fic

Ui which are used in the peacing together process of Theo-

rem 1 are constructed by taking two such star finite open

32

covers for rlﬂg g(E) and then taking the invérse images, thus
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actually getting two star finite covers,

The notion of a maximum solution curve will be re-
called in Chapter IV, For now consider this to be a smooth
curve G;(t), where (I%(o) = x and satisfying the property

that f(G;(t)) is monotone increasing with the parameter

t € Rl,If,the above approximation were constructed for a

directionally transverse functionfﬁkﬁ—->Rp, then we con-

sider the collection pif(Uk(t)) .

Theorem 2, Let £1E—>RP be a directionally transverse
approximation for E satisfying the conditions of Theorem 1,
Then if pif(cx(t))‘$o ¢ 4 as t increases or pif (ck(t))&b>
o as t decreases, JacKcE and 3 t € Rr's O (t,) = a , where

K i1s defined below,

Proof Assume pif(q'x(ﬁ))¢c < d as t increases, For

convenience we use the notation T = pif, Then let 1 =

—-' —
inf(j lf(e) € vy ). Since the covers are star finite
! —
f(c) € only Vj for je nf = a finite set,So we can choose

a sequence (en%»lcj E N Ui(\ Vj0 for j €T, . Then we can

choose an é;. . so that it is differentiable in W. [‘ U.
l'Jol " JO l

and if X, = coordinate representation of e, inU then

i’

v gi 3 (xn)-—--§o as n—>o© because g (i)———?o as
*Yo

XD bdyW; N U.l and for the sake of continuity é?i 3
® Yo
is smoothed out to be equal to zero on the set E \\WJ and

°©
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differentiable everywhere, and so that finally ?j = ?i +

o
.« NowT. = T \V. d af|= VT}= VT, C.
gi"]o' ow 3, IVJ an | | £+ V{l,J

takes the form ((3L Hi(xn))xn- Ehi(xn)a? + v£;,jo(Xn))

because d?i:=ii bk dhk, which is a locally finite sum and

each dhk has that representation. This then generates a
Sequence which converges to o as n—->o2, There is a slignht
ambiguity in referring to convergence to o, for this is
understood to be the zero section of the tangent bundle or
if the norm is introduced then o ¢ F{l.

Now let K = those points of Ui contained in the locally

finite dimensional span which determine the critical points

of ?i.This is & locally compact connected set and if ?ﬁ (Ui)
= (b;,d,), then for b, ¢ b < ¢ 44y, ?;1[b,c] is closed

and bounded and then ?£J‘E b,cJ ) K is a bounded closed
subset of g 1ocaily compact,connected,complete,ANB, hence
n =-1
T, .
compact, Now since (Z—y\i(xn)ai) C f‘i C b,e) NK there
must be a convergent subsequence converging to a. Now

j{ni(xn) # o unless x, 1is contained in span(a?) and this is
what we assume doesn't happen, For then X, € K. In that case

since ( 6?1 3 (xn))-%> o, then (( qui(xn))xn)—~:? -a,
'Yo

If 'lim Z’Ti(xn) = o, then -a =0 € U, (| H. Let a3 =
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-a, if 1lim i(xn) =0 .

- £ i
a/lim i(xn) otherwise

Hence Xn —>a €K, Now by continuity and the mono-
tonicity of F(@X(t)), and by the fact that a maximum
solution curve is defined for every point and any curve
which is a restriction of the maximum can be extended
through this maximum curve, if we understand that Xn =

Cﬁx(tn), then @X(tn) —>a and f( Gk(tn)) must converge
to ¢ and attain the value ¢ for some value to' il.e.,
f(a) = 1( Gk(to))‘

The case where ?((Tx(t))dfb > 0 as t decreases is

true by the same argument,

Q.E.D,



CHAPTER IV

DIFFERENTIABLE FUNCTICONS WITHOUT SINGULARITIES
AND LOCAL p- PARAMETER GROUPS OF

DIFFEOMORPHISHMS

“We formulate here the principle that if a differ-
entiable map f:E—~ﬁ>BP is given without singﬁlarities in
such a way so that the maximum solution curves are defined
on all levels, then a local p- parameter group of diffeo~-

morphisms is generated so that for r,r ¢ f(E), f“l(r)i%

f;l(E), where X denotes diffeomorphism, As before 3 < k¢
c©. .This process is important in generating a foliation
technique,

We refer to Leng [ 16J and Palais [18] and [20] for
the details concerning the material in the following

definitions,

‘Definition 1,4 c¥lvector field X on & C* manifold

-E is & ‘Ck'1 cross section of the tangent bundle T(E) i,e.,
-XsE—>T(E) > nX = 1identity, where 1T is the projection
of the bundle, A solution curve of X is a Cl_map Gé:(b,c)
—>E 3 9= X0 .If o ¢ (b,c), we call O_(0) = e the |
initial condition., ¥ e € E, - a solution curve g, of X
so that every solution curve of X with initial condition

e iIs a restriction of ge' This is called a maximum solu-



37

tion curve,

<+

There are functions t° 1E— (0,c]), t~ t1E—=—> [~o>,0)

definedby requiring that the domain of (Se is (t-(e),t+(e)).

These are the positive and negative escape time functionals
for X,

It t_l(e) ¢ s < tT(e) and € = Qfe(S),4then Q0. =
e

G e G g where [ iR—> R is defined by requiring that [ (t)

= s+ t, and also tT(e) = tt(e) - s and t7(e) = t7(e) - s.

-+

t7 is upper semi-continuous and t~ is lower semi~-continuous,

Let D = D(X) = {(e,t) € E X Rl 17 (e) 2 t ¢ t+(e)} and
¥te R let Dt = Dt(X) =‘{é € E ‘(e,t) € ﬁg . Define

¢:D—>E by @(e,t) = q,(t) and let @ :D—— E be defined

by @t(e) = Gé(t). The index set (Qt) is called the maximum

local one parameter group generated by X, D Cc E XY R is open

and @ :D—>E is a Ck map, VYVt € R, Dt is open in E and

O+ is a Ck- isomorphism of D, onto D-t with_(@-t as its

t
inverse, If e ¢ Dt and mt(e) € DS, then e E'Dt+s agd

Op,s(e) = 0 (0. (e)).

Definition 2.A Ck'l-vector field on a Ck manifold E

without boundary is called strongly trénsverse to a Ck func-
tion f:E—>R on a closed interval [b,cj if for some §> o

-1
the following conditions hold for V = £ ~(b=§,c+§) :

K-

1, Xf is of class C ' and £ o on V.,
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2, If e eV and.Gé is the maximum solution curve
of X with initial condition e, then CSe(t) is
defined and not in V for some £t » o and also

for some t £ o,

Definition 3. Let E be a C" manifold and fiE—3R

a Ck function. Then X € T(E)e is called a pseudo-gradient
vector for £ at e if :
<
1. nx[Lzudfell

2. Xf = af_(x)3 Ndfetlz

A vector field X is a pseudo-gradient vector field
if Xe is a pseudo~gradient vector, A pseudo-gradient
vector field can easily be constructed as follows-(Palais):
First a pseudo-gradient vector Xe is constructed at
a point e, Then it is extended to a local constant vector
field in a neighborhood Ue of e, Then let O ={€ € Ue'

. 2
Xf > jfar_lt  and llx—(l < zlidf_‘lg. Since all of these
e e e e

functions are continuous in Ue’ 0 is open., Now V e € E,
define such a neighborhood Oe > there is a pseudo-gradient
vector field X® for f in Oe. Then take a Ck partition of

for E > ¥b e B, Te(b) € E with support of
k-1

unity (vb)beB

elpd . .
vy, C Ogpy - Then let X = MZBva .- This is a €

vector)and since the pseudo-gradient vectors at T(E)e are

convex , X is a pseudo-gradient vector field,
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The function g(t) = £(g(t)) is & strictly monotone in-
: !
creasing function. This follows because gl (t) = dfq&$6(t))

o 2
= g Xsw ) 2 H d*o.@}' = o

Lemma 1, Let E be a connected, geodesically and
Cauchy complete separable Ck Hilbert manifold, and let.
£fiE—YR be a ¢ bounded function with no singularities
so that £( G (t)):B—>f(E), Then if f(E) = (b,d) and if
¢ € (b,d) and W = f_l(c), W is a closed submanifold and 3
a ¢*- isomorphism FiW X (b,d)—YE> VYT ¢ (b,d) the map
e—>F(e,c) is a oKk isomorphism of — £~ 1 (3) which is the

identity fof ¢ = ¢,

[}

Proof. Let X denote the pseudo-gradient vector field
for f, which in this case is really the traditional gradient
field, Since £(¢(t)) maps onto f(E),X is strongly trans-
verse to f and Xf > de”z > 0. Also since t——4>1/t is ¢*°
for t £ o, we can define Y = X/Xf, which is a pseudo-
gradient vector field. Then let (wt) be the maximum local
one parameter group generated by Y. t—~492Ke) is a2 maximum
integral curve of Y with initial condition e, Since

g_f(@t(e)) = Yf = xf/xf = 1, we have f(@t(e)) = f(e) + t,
dt

Since £(§(t)) is strictly monotone increasing,E]a unique

t, for c € (b,d) so that f(o‘(to)) =cC .

Therefore, d_(e) is defined for all t so that we can
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define F:W¥X (b,d)—>E by F(w,t) = <Pt_c(w), which is of
class Ck according to the facts in Definition 1, F(w,c) =
(W) = wand £(F(w,t)) = £(@_ (W) = f(w) +t-c=
c+t=-c=t, Therefore, FiWY (b,d)—>E and w—> F(w,c)

-1(3). 1If we define F i:E—— W x (b,d) by

k

maps W into f
F(e) = ( @c_f(e)(e),f(e)), then F is C and;FF =

@ e)-cl oope) (@) = P (e) = e. similarly FF = identity.

Therefore F and F are both 1 to 1 and onto,

Q'EOD'

Lemma 2, Consider now a Ck directionallj transverse
function f:E—> R® so that for every point e € E there is
a coordinate system of the type described in Remark III,1
and Definition III,2 so that the p lines intérsect only at
f(e). Also assume that pif satisfles the hypothesis of
Lemma 1 for 1¢i<p, Then for r,Tef(E), £ (r)f ™ () &
Ep,r' where Z denotes diffeomorphism and gPr T is a closed

submanifold of codimension p.

Proof, Consider a suitably small disc Or C £(E)

about r, Now consider f restricted to £71(0.) = U.. Then
with respect to the coordinate projectidns about r, we

have pif:Ur———>(bi,di). For convenience it is assumed that

dfe and.

b, = bj and 4y = dj' Then since d(pif)e = (dpl)

f(e)
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since pi is surjective and hence dp.1 # o, We‘have d(pif)e

# o, Therefore, if we actually only assume that f is with-
out singularities and pif have their maXimum integral curves
defined over the entire manifold, the hypothesis of Lemma 1

- —1
ls satisfied, Therefore F,:W_ y (b,d)—>U_., DNow £ ~(r)
P 1 I‘i r
= f} wr « Ve also have the p local one parameter groups of
! i
i _ 1 P
diffeomorphisms (@t ). Then for any r € C&J f 1(r)_—. {\w?
P [
= (\wr X (cr
i i

1
1

-1
). There are maps g :f (r)—>f"" (T),
1 - ? ! :
g,1T (T)—>17"(r) defined by g (w) = @_o o @ o @c (w)
T T, T
P 1 1
- 1 i P
and 82(W) = @—c 6 ¢ ¢lc °© 0 dzc (vi). Obviously by the
Ty Ty Tp
i
definition of the collections (Qt), g,8, = 1identity and
8,8, = identity., Therefore each gj is Pbijective and since

they are ck maps we have the result that f-;(r)ég £~ H(T).

Now for T ¢ O, we can construct a finite chain (0, ) D

Ork[] Ork-l-l 4 ¢ and 3 r, =rend r =T, Since we then

have for q ¢ 0. () © that £ (r )& 7 (q) £

Ty Tl
) . X -1 g o=l =y
thenby induction £ “(r) % f ~(r),

(
(Prepr)

Since the p local groups are determined by p commuting
projections in the sense that the derivative of the com-
position determines a transverse direction, the local p-

parameter groups constructed above are locally abelian,
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To see that £ ~(

r) = E is a closed submanifold

F
of codimension p, We observe that f-l(r) = f}wr , Where
! i

wr is a cloeosed submanifold of codimension 1 and where
i

locally the p-parameter groups which determine the wr are
i

transverse with respect to each other,
QIE'I).

P

Note, Since f-l(r) = (]wr , it may happen that for
P>1 the relative topology of 'i Ep'r)k EPis not the same
as that determined by the Riemann structure of Ep,r’ which
is the structure used in the above result to give diffeo-
morpnisms by. following solution curves. .

In Chapter V the notation EﬁiEp’rx Ep is used, keeping
in mind the fact that the topology of the product is deter-

mined by the bijection E{~——> EP'Tx Ep»



CHAPTER V
AN INVERSE LIMIT REPRESENTATION FOR MANIFOLDS

The machinery has been set down so that a represen-
tation theorem for infinite dimensional separable Hilbert
manifolds can be formulated in the form of an inverse
system of finite dimensional open manifolds, which are in-
duced as the image of smooth maps fp:E—~—>Bp and with the
inverse limit structure being determined by systems of

foliations,

Definition 1., A separable infinite dimensional mani-

fold E is foliated by a collection (EP'T| EP'T is a closed

submanifold without boundary of codimension p and T e Ep <

RP.) if E = y ES'P with dim E, = p. Also require that

PiTA DT

EPT ) Ep,? = Bforr £T and E y A denotes

diffeomorphism in the differentiable case,

Define a saturated system of foliations of E to be a

system ((E™'F) | m >p)d>VY m, E= U E™T so that each
7 _

Em+1,r is contained in a unique E®'S and each EX'S is

e By with

m+l,r
foliated by a subsystgm (E | r e Em+1,m

_ m,r m,Tr
dim Em+1,m = 1, Require also thaleEe’ = e, Where E;’'

is the unique leaf of the foliation of codimension m con-

taining e,
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Lemma 1, Under the above conditions3d a bijection

E<r—~>££m , for an inverse system determined by the sat-
nyp

urated system of foliations.

Proof Construct a function pmsE——%>Em by defining

pm(e) = re,m , where re,m is the parameter glement of
m,x m+1 | m+1 ' _
Ee » Define Pn ’Em+1 ‘>Em by Pp (re,m+1) - re,m '

where both parameter elements are elements of some set

m+1,x

E , Which is unique since each E is contalned in
m+l1l,m

a unique E™S, ©This map is well defined because e 1s an

element of a unique Em+1,r

and a unique E™*S ang is clearly
onto for the same reasons, Therefore by composing these

maps to obtain the collection (pnm) form>» n > p, We

obtain an inverse system (Em) pnm [ pnm is onto) with limit
%Em' Now define the correspondence E<¢ >£Em by mapping

mep myp
e—> (p,(e)lmyp). This is 1 to 1, Forif (p (e)) =

m,r

(pm('e-)), then r_ = p_(e) = p (e) =réVm, and e,e € EZ

m

. But in that case

|

N ngr which is © unless r, = T

e,gE nEm’r = ﬂEg’r = e =

myp € n3e

]

ol

The map is onto by definition, Therefore the bijection
is established,

Q'E.D.
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Definition 2, A connected manifold E satisfies con~

dition O if for e e E, the metric functionype = ﬁ(e, |
satisfies the condition that for r,T ¢ p(E), chosen
arbitrarily close, theﬁ }ié(r,F) is an open chart and hence
considered as an open subset of the Hilbert space H, It is
assumed,of course, that we deal only with the separable
case,

We can deform the function by taking an arbitrarily
small chart about e and then construct a diffeomorphism

fiE=>E\Ne which is not the identity only within that small

chart. Then the compositionjpefsE >EN\N e—=>R gives a map
EF~¥>(o,x0‘if we assume for the moment that the original
metric function is unbounded. Then since each point of E
is a finite distance from e, we can construct a diffeo-~
morphic retraction «1(o,~2)—>(0,4) 3 d<oeo, and then obtain
the composition cLPesz———>(o,d).Then by simply denoting the
above composition by }De,fg(o,b] for b < 4 is a bounded
closed subset of E, Also if E™ is a closed submanifold con-
m

tained in .Pé[r,53 then a similar metric function p E —>

(0,d] for d ¢ e can be constructed for e ¢ E?. Assume that

Em

C U= E™R"C P'é fr,TJ7cH, If d is finite choose
r arbitrarily close to d so that we can consider Y; (r,aJ .

Each component can now be considered as an open subset of

H since U has the simple form ED X RP, The result of Eells
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described in Chapter III can be spplied to construct a
function | :C—> [r,d] , where C represents the closure

- - -
of this component, and so that W’(r) = jaé(r) and U/(d)

is a point, Then consider the function p:E —3(0,d] de-

fined so that )olf;(o,r] =)De and j)LF; Cr,d] = Q} « Then

.[de) is a disjoint collection of points, each in a sepa-
rate component, thereby allowing arbitrarily small dis-
joint neighborhoods to be constructed about each point which
support a diffeomorphism %sE—-DE AN ﬁ?d%. Then the com=- - |
position gives a map,@fjsE———)E ~ F"'(d)—-—’) (o0,4). If 4 was
not finite then the above construction can be used, Simi-
larly, if for the original metric function.fe the assumption
is made that if this function takes on a maximum finite value
d,then for r arbitrarily close to d P;(r,d] is an open sub-
set or chart of H the latter construction applies., In any
case, a metric function can be constructed, deformed slight-

ly, whose image 1s a finite open interval,

Theorem 1, Let E be a connected, sepafable, geodesi~
cally and Cauchy complete, Ck Hilbert manifold satisfying
condition O of Definition 2, where 3¢ k<o , Then V ge¢
Z,3J a homeomorphism E Q’éEm, where Em}: R® and the inverse

™2y

limit structure is determined by a saturated system of fol-

lations. Also E splits in the sense that 3 E and E _ 3
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BE = EmandEm+ﬂ Em_::: E .

4 v Em-- m-1

Proof For some point € & E, consider the metric

function Per assumed to be deformed so that‘)>e:E——J>

(o,d) for d finite, Then since fé(o,bj is bounded for
b { 4, we can apply Theorem III.2 to obtain an approxima=-

tion ?le——-é(o,d) so that T. has singularities in a

1
closed locally compact subset K 2 if for any maximum solu-

¥ e 3
tion curve o , (dfl)mn > o0, then 3 a to S0 tha? CT(tO)

s a singularity, ©Now as in the proof of Thoerem II.1 K
= (K\\Kc) UK, so that K, C K and is closed and 2 =]

diffeomorpﬁisms F1 and F, so that F

P g
E \ Fl(K \ Kc)—-5E. These maps are constructed by cover-

> tE \.Kc_f—~§ E and F

1 2!

ing first Kc by a countable collection of finite dimensional
closed manifolds and then constructing trivial tubes which
support a collection of maps. A similar construction takes
place for Fl(K \ Kc). Now if instead we take these closed
finite dimensional manifolds and extend them by taking all

the points on the maximum solution curves with initial con-
ditions in these manifolds we obtain two collections which

can be covered by finite dimensional manifolds and then extend
to trivial tubes, which may constitﬁte a non-star finite

collection of tubes, But we still have thé éase where we

want to remove from the manifold E a countabie collection



of finite dimensional submanifolds, so Theorem 1I.2 can
be applied for the collection determined by KC and also
Fi (K\K,) so that we get a diffeomorphism gIlsE\Kt——%>E,
where Kt denotes the total collection of submanifolds re-
moved and so that all the maximum solution curves in E \K'
are defined on the entire manifold in the sense that for
every c ¢ (o,d), t, so that £, (o (t_)) = c,for £, = ?lg.
Then Lemma IV,2 applies to give a foliation in terms of a
local turned global l-parameter group of diffeomorphisms,
Therefore E % (0,d)X EX*F ror any r € (0,d). where E’T

is a closed bounded submanifold,

Now fqr any 49€ Z, we can choose g points e; so that
(,Pei?gs%is a collection of directionally transverse func-
tions and have no singularities 1in a small neighborhood
of a point e 3they transverse g 1linearly independent
directions at e, This 1is possible by choosing the chart
Ué = exp T(E)e and then choosing q points e in U_ , which
are linearly independent and so that the corresponding dis-
tance functions transverse q linearly independent direc-

tions through e)and so that in a small disc about e there

are no singularities, Then define a function .F‘E““”>

g% by>P(e) = ( Pei(e), ﬂFe (e)). Then since each

}De 1s directionally transverse in the sense of
i ,

Definition III, 2 we can apply Theorem III,.2

48
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to get an approximation ?ﬁ 9 for any q coordinate lines,

in the sense of Definition III.2,. contained in ?é(E),then

the corresponding projections (pi?qqu

that if d(pi?é)m” —70, then Ja t_ so that o(t)) is a

satisfy the condition

singularity., Therefore Lemma IV.2 applies to give a local
g~parameter group of diffeomorphisms, Now in fact this a
global abelian group;because if there is a hole in ?A(E),
then two loecally parallel lines determining coordinate lines
in two different systems, which are on different éides or
homologically separated from the hole in the sense that

these lines may be contained in a neighborhood of some plane
passing through the hole which isn't locally'conneoted,
determine the same function pi?é with respect to each co-
ordinate system., Therefore the diffeomorphism determined
by goling around the loop about the hole is actually determin-
ed by following solution curves which are parallel with
respect to parallel coordinate lines on different sides of
the hole, Therefore going around the loop gives the identity.

Now to continue on, we apply a metric function fe ’Eq,r
J
—>(0,d) constructed as in Definition 2 above and with the
qQ,r
condition that in some neighborhood of a point e € E ’
this function has no éingularities and transverses a direc~

tion which is linearly independent with respect to the first q
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directions. Thefefore since Eq,r is closed, and contained

in E, it is Cauchy complete and we get a Eé approximation

fy
small neighborhood about e, This is possible by letting

:Eq’r——4>(o,d) so that EA has no singularities in a

this small neighborhood be the first set V1 in the cover
which determines the dominated locally finite cover by
charts used in Theorems III,1 and III.2 and by letting ?1

= f on U, 5 V,, where U, is a small extension of V. so
ej 1 1 1

1

1 and U1 is the first set

in the dominating cover of the above theorems, Then we can

thatfe‘has no singularities in U
bJ

define a function T +1:E-—f>Rg+1 defined by letting T

q q+1(e)

= fq(e) + ?i(xe), where X is an appropriate element in the

global g-parameter group of diffeomorphisms.' Therefore,

since (dfq+1)e = (dfq+1)e + (df; dx) -1, # onto mapé———>
-1

X "e is a critical point in Eq, we can then conclude that
the critical set is still closed and locally compact since

it is then of the form KX E_, Then 7 as before a diffeomor-

q
& _
phisnm ng———éE‘\K? where K contains the critical set and all
the points determined by maximum solution curves which con-
tain a critical point, Also as before, if (d(p.T )) —>
. i . a+1 7 o
o,then there is a t 3 G(to) is a critical point., Now in -
order to maintain the notion of a foliation we must take

note of the fact that g does not necessarily map Eq,r;_~>
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Eq'r. But if for er_e Eg'r We map er-f>g(er) and then
T
map g(er)—~%>E by the element of the g-parameter group of

a,8

g¢e)

diffeomorphisms which maps E ———>Eg'r we get a composition

. r :
which maps ES'T5E2+T, Since the total critical set k¥ =
r r :

critical points and the appropriate maximum solution curves
plus the covering collections of finite dimensional manifolds
and all the appropriate solution curves is still of the form
t
Kr‘x E

q under a diffeomorphism, then the last map in the

above composition is the same as a parallel projection, and
hence e, cannot be mapped to an element of Kt. Also this is
a compositionof adiffeomorphism and a projection and since

EX Eq X Eg;r)locally Ja differentiable mapaEcelI"ri}'f?-> Eg;r)and
which simply deforms the solution curves of the appropriate
projections of the vector valued function ?§+1 because the
map g is constructed by an infinite composition of maps with
non identity support within trivial tubular neighborhoods of
finite dimensional manifolds containing parallel copies of
Eq, chosen so small that in local coordinate charts contain-

ing the tubes no leaf is ever orthogonal to-a fibre, and
since each map of this infinite éomposition'maps within a
fibre over the base manifold as in Theorem II.2, Now since
the Eq represents an abelian g-parameter group of diffeo-
morphisms we can combine the newly constructed composite
maps by varying the parameter r'eEq to obtain a new map

which by an abuse of notation will be denoted by g:E 22—)

E‘\Kt,which 1s differentiable, and does not disturb any of
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the solution curves, plus the additional fact that 1t maps
each leaf into the same leaf and thus preserves the folia-

tion, Actually, all that is happening is that E\Kt is be-

ing retracted into itself differentiably by catching some
of the critical levels from the various E?'* in fibres of
the various trivial tubes and deforming the entire struc-
ture to give larger breaks about areas of Kt, thus giving
a measure of how any possible geodesically complete struc-

ture on a leaf EX'T is not preserved under the diffecmor-

phisms of the g-parameter group, Then as befored a com-

g+l = fq+1 &1
abelian qg+l~parameter group of diffeomorphisms and with the

position f E—>R3*! 5o that there is a global

property that fq(E) = E_is mapped onto by f since there

q q+1

are no singuiarities in a neighborhood Eq)(Vl, where V, is

1
determined by some parameter value ro. Hence the splitting

for E is determined by taking QQ+D+ = all of those

qQ+1
points above and?}ro for the q+4l-parameter value, Similarly
%Q+Q- = those points with parameter value in the q+1 co-
ordinate ¢ rye

Now we must proceed inductively with the above pro-
cess in a maner to get a saturated system of foliations,

Therefore the only thing that needs to be determined is
that/]Eg'r= e, To do this, consider the following:
m

E is a separable manifold. Therefore we can continue
the above inductive process for each 1nteger’m;;q “and

eliminate each coordinate line in a small local chart about
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some fixed e, € E by letting each such coordinate line cor-
respond successively to a new transverse diréction in the
m-parameter group of diffeomorphisms, This inductive pro-
cess continues word for word as that described above and
glves two systems (Egér) and (Em%a% , where it is under-

stood that r = r(eo). By definition of the construction

m,Tr T . ' )
f? ENT o 8™ - ¢ because if some e £ e_ is an element
m29, eo ,,fj& eO o o}

of lﬂ Eg'r , then e has the same coordinate representation
as ez sigce every local coordinate line 1s a transverse
direction and every'parameter in each coordinate line at
some stage belongs to a new leaf of one of the foliations,

Hence e = e _.
o}

Now to see that [)Em'r= LEm'r= e wWe construct a
oy © £ e ‘
1 m, T ‘ n,T 1, T 94T
homeomorphism g’\CIi(Ee , hm-q) —>L1E.' . 8 1E; )Ee

nag (o] ) m%y (o]
is represented as any element in the abelian g-parameter

group of diffeomorphisms which is determined by following

. g+, T %+I, r
a path denoted by l(fq(eo).fq(e)). The map gsze; —> E

1s given by a map in the abelian q+l-parameter group which

is determined by following a path in E denoted by

q+1
1(fq+1(e°),fQ+1(e)). Now construct h, by following a path

1(fQ+1(eo),r(e)) starting from fq+1(eo)' where gl(e) = e,

and all of these paths are taken in E +

Q+1° This is then

given by the following diagram:
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&2
EZ:+1 T ¢ Eg:l r
i I h
\Vd N4 1
&y
g4 T < Eg'r
o)

Inclusion = 1 , theréfore obviously i 8, = 82. Now
by the construction of the m-parameter groups the q-para-
meter group can be considered as a subgroup of the g+l-
parameter group on intersecting the domains, So we have

8, h;, the map determined by starting from fq+1(eo) and

going along the path l(fq+1(eo),r(3)) and then along the

L]

path 1(r(€),fQ+1(e)), where these paths are considered in

E and determining elements of the q+l-parameter group.

q+1

But the union of these paths joins fq+1(eo) and fq+1(e)

énd hence gives the same map as that determined by

1(r (e ), fq+1(e)), which is By Hence the diagram com-

q+1
mutes, We continue the rest of the construction inductively,

with the inductive step the same as that above, Hence

since each gm-q is ? diffeomorphism we getngsE . ’hm q)h“
IE _,‘[)Em,r. But we can mep L(E™'T ,h ) --——:>LEm T =)
M7t . ,,,,,)t (o] »\7,?’ O

Ez T by considering squares of the form:

(o]
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172 j+1 -

A+ T o gdti+l,r

eo eo
1 Ryt

Vv v}

hlh2 hj
Eq+j-1 ,I‘< Eq+j ,I'

€ e

o o .

The compositions indicated in the diagram are well de-

fined because each hi is constructed with respect to a g+i-
parameter group, with each g+i-k-parameter group being con-
sidered as a subgroup of g+ j-parameter group by intersect-
ing the appropriate domains of the maps, Therefore the

horizental compositions give diffeomorphisms. Now since

the diagram obviously commutes we have L(Ez'r, g #
€ o
T h{\i EMT = e . Therefore QEg"r:: e, and since
o 1 o )
b\«’,t,
e ¢ (1EMT thene = [}Em,r'
- e w2y €

Therefore, the existence of a saturated system of fo-

liations has been established and E<>LE , where E_ = fm(E).

I\w,t

It is also clear from the construction of the foliations

that if we give‘&Em the topology consisting of open sets
"‘”t

which are the images under the correspondence of open sets

of E, then E QﬂéEm' and since the maps determining our fo-

"

liations are onto, the topology of Emcngm is the same as
"4
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the manifold topology of Emc:Rm. The topology behaves
like a modified box topology for LEmc: TTEm.
6.
Since the splitting for Em hég been established the

theorem follows,
QOEO Dl

Bemark In any fepresentation E:;éEm, we can choose
-3
a point e E and take a diffeomorphic image of Em passing
through e, where this is determined as the transverse mani-

fold of the m-parameter group of diffeomorphism.

Definition 3, Let LE denote UE with the weak

m%, 3

topology, That is A C LE_1s closed (open)——=> A N
. P
Em is closed (open)V m » p. Then a generalized Palais-

Svarc lemma C19:1can be formulated as follows:

Theorem 2. Given a manifold E with the hypothesis

of Theorem 13 E f::é]_:_,Em, then E~= gEm, where = denotes a
™21 ~

strong homotopy equivalence.

The proof will follow after a series of lemmas,

Lemma 2, LE_ is dense E,

Proof For e € E fix a transverse manifold E, pass-
ing through e, where h:E‘QféEm. Then a nelghborhood basis

me

can be given at e € E by (Umzwl1 for qm(: Eg.rx bm,where D&

Pa m Y,
~R", chosen so that (\pin(Um) = r.(e)éE,.Clearly since
" . i i
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€ =f\E§'r, (\Um = € and some element of the sequence
m7, M4, :
(em ]em = (rl(e), ,rm(e),o,o, )) is contained in

every neighborhood Ue of e,

Q.E.D,
Lemma 3, For a compact Kc:EfxgEm,.a a homotopy ht"
m7/$

K—>Esh = id, h [K () E = id and h (K) C E_, for large
n and for En embedded in K as a transverse manifold pass-

ing through some point e E as in the remark above,

Proof Since through each point k € K, we can put a

closed transverse manifold Em Kk and then since E 1s geo-
1]

desically complete, then construct a trivial tubular neigh-

6y
borhood ,Em as in Chapter II., Now since K is compact we

K

can cover K by a finite number of the tubes (‘C’TEm ).But

i
then since g@m is dense in LEm and therefore in the homeo-

é.

™74 maq L i

morphic image E, we can find a point of LEmvin each [Em
_ 5 :

.k

’ki'

w7

But since there are only finitely many tubes, we then can
assume thatg]some large n > m so that En contains these
points. Also when we construct the tubular neighborhoods

with the orientable manifolds Em,kin En,ki We can assume

o
2 [E k. Dy the continuity of the exp function
i Mm%y

which is the basis for the construction of the trivial tubes,

th tOT’E
a2 n,k

Therefore, we can assume that K is covered by the finite col=-
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lection (GTEn Now take the point e; € En which is in

k)
1

the tubéq%n Kk and connected to the base manifold by a
1
i
path in the fibre containing it. Then to each point of
this path we can apply the n-parameter group of diffeo-
morphisms and extend this set to En X I. Then by the con~

tinuity of exp in the construction of the trivial tubes we

o
can assume the En is contained as a section of ’En k.*
s K.

i

But since these are all trivial tubular neighborhoods each
one can then be considered to be a trivial tube with base
En’ Hence, again by the continuity of the exp we can as-
sume that these can be deformed so that there is Jjust one
trivial tube qﬁn containing K. Therefore we can define ht
as the retraction in the trivial tube definéd so that

h
o

1d and h, | H. = e where H_  is the fibre over e E .
1 e e n
Qo El D!

Lemma 4, Let A be a closed subspace of a compact space

X and let f_:X—E be a map 3 T | A:A—-—-—:;]:Z{Em. Then 3 a
homotopy ft:X——— E of fo > f1:X~——_%Em and ftl A= fo' A,

wp
oLt <£1, ’

Proof Consider a compact Krlgﬁm. Then the intersec-~
h?,t
tion is contained in some En' For cover Kf\LEm by sets

»,

(o f\Em) and take a finite subcover, O can be the trivial

tubular neighborhood of Lemma 3, Then there is a maximum m
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= n appearing, Then in Lemma 3 let K = fo(x) with the n

chosen here to be equal to n above, Define ft = ht fo.

Q.E,.D.

The proof of Theorem 2 is now standard (Palails).

For n2 o, let a € ‘ﬂh(E). Then let a =[ff$]and

let £, 18" —> E be a homotopy of f_ with f;
m%q

Lemma 4, Then under the injection i{%ﬁm —— LE_ We have

m7,

i*[ffil = a, Therefore i, is onto, ™

187 — LE_ by

To prove that i, is 1 to 1 let be-ﬂn(EEm) 3 1,b = o,

- n E
Then let b= [ f_] . Now i(f (§7))C LE < E, But

+

since i b = o Eiftzsn'x I— E o fl(sn) = base point and
fo is the original fo. Therefore by identifying Sn)(l to

a point we have T18® X 1/8% x 1 = D™1—DE so that [T 1 5]

= b, Then by Lemma 4 J & homotopy T, 5 T. = F with

t (o)
- . n+l = _n+l - n n
f‘tzD —— E and f‘t:D -—-->_I;Em and f‘t |87 = fo‘ s,

m7,

Therefore b = [?1| Sn] and since ?1:Dn+1 —>LE_, then
: -

to "%
b= oand i, T1,(LE )—>T[(E) is onto for all n,

Since E is an ANR we have both E and g@m dominated by
m7
CW complexes, Therefore the weak homotopy équivalence is the

same as strong homotopy eguivalence in the categcry.

Q.EOD.



CHAPTER VI

A HOMOLOGY FUNCTOR H_, _ (+,2)

We now have the machinery of Chapter V at our dig-
posal, which in a sense can be considered to constitute
a saturated foliation category,to obtain a homology theory
which distinguishes the subsets of cofinite dimension, The
theories of Geba [12], Geba and Granas [ 131 , Eells[L 9,
and recently Mukherjea{:17] consider the possibility of
constructing homotopy and homology functors which are de-
fined with respect to cofinite dimensional sets and which
give various duality isomorphisms, Mukherjea'uses a strong
homotopy equivalence M:{gmn along with Poincare duality in

finite dimensions to construct a cohomology functor

ﬁZ‘p(M,G) which is determined by a direct system construct-
ed from the injection maps of the homology of Mn and the
dualities, A similar homology functor could be defined, but
the connecting homomorphisms would be unnatural in the sense
that one must first appeal to a duality to obtain an inverse
system which then automatically gives a duality,.

In the following, the notions and fundamental facts
about sheaves are used and for details we refer to D,G,Bourgin
L 5] and G, BredonL6) . It will also always be assumed that

the infinite dimensional manifolds E under consideration are



those which satisfy the conditions of Theorem V.1, This

" s lad '
then gives a manifold E kéfEm 2 _I_;Em — E where EIn is a

mip

finite dimensional orientable manifold 3 Em C Rm and so

that there is a splitting Em = Em+ U Em- apd Em—l = Em+
NE_ _.

Definition 1., The only sheaves considered will be
those with stalks isomorphic to Z = integers and taken

over paracompactifying families of supports,

Em-
Consider the Mayer~Vietoris sequence ——%>H$_p(Em+,Z)
a’En\— @I Em 3""f- o
o B T (B ,2) —>H T (B 2= E gy (B g,20—> ,

where the homology is specified as the Borel-Moore theory.

Define Hoo.,p(E'Z) =<_L‘( H;l’.c:np(Em'z)’ ém-p)'

Theoren 1, For any representation <E.Em & E,Jda
dvality isomorphism H__(E,2) & HI:(E,Z)M,%Where ¢ is a
paracompactifying famlly and where we consider this to be
the equivalent of the singular cohomology with support in

™

9 slnce E is locally contractible,

Proof By Theorem V.2 E = LE ., Then H;(E,2) =
"
P JUR
q@égEm’Z) x %@ﬁSEm,Z). Now for the orientable E_there

WEp, x D ~
is the Poincare duality Hj " (B , 2} Ho(E ,H (592)) &

61

HﬁSEm,Z), where Hm(SQZ) = em@ Z is the orientation sheaf for

Em which in this case is trivial and em 1s the sheaf whose
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presheaf structure for an open U C Em is given by U——>

He(E_,E N\ U) = H (E

,E_ N U), Since E_ is orientable
m' m’m m

this sheaf is actually isomorphic to 2 lEm. Considerxr

the diagram

D
Pl B P m p
Hm_p(Em.Z)\ ngEm,Hm(swz) )
*
dpep . i
\Y m=1 Vi
@1 Ena p
H(pet)mp Bpag 2V B (B, 5, (5€2))

% )
where im is induced from the injection and ‘Bm-p is the

connecting boundary of the Mayer-Vietoris sequence, To
prove the desired result we only need check for commuta-
tivity of the diagram, R

Locally with respect to a presheaf structure and with
fp denoting a representative of a cohomology class with
respect to that structure we have D;_

#4D _ oD
it = TNLT,

and X;_p D fP = fp(Gb)Xl_p<Sm_p.If supp ffc G _; then these

two expressions are equal up to a sign depending upon the

orientation of E . If supp Pe o , then P n 1€ _

m-1 1

= 0, But then ém_pD; t? = a contribution to a boundary,

For consider the following diagram which defines 3 m-p;
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P e 2ec? e 2o (B 2)
Cm p(Em+’ m- p m--’ m-p ' m, °©
>\
¢1Ema 1 @lﬁrnf (E Z)QCQ\E‘M— (E )
° C(m—l)-p(Em-l'z) (m 1)-p ' "m+’ (m=1)=-p "m-"’
where ic = (¢,~C ) and N ( 61, Gz)z 01 +'g~2. gm_p is
. - -1 1 2 .
defined as 1 31" . Now T pop =R (6 pup® ©p.ph Thevefore
. p 5=l 1 2
if supp ¥ ¢ (ym-l then i Q ( n-p 0 P ) mugt be a

boundary element since<Ym_p can be considered to be strict-

ly contained in E Therefore the original diagram com-

m-]-'
mutes up to a sign and if we make the convention that the

orientation of Em-is chosen to make the diagram commute

p p p
we then have €I_,ngn(Em,Hm(S®Z)) X LHR(E,,2) R BD(LE ,2) &

g (E ,2Z) & H_ _p(E2).

p
HL(E,Z) = m pEne

QoEa Do

Definition 2. 1In the previous definition and theo-

rem, we had an e©-p homology theory which is isomorphic

to a sheaf cohomology which is equlvalent to the singular
cohomology with integer coefficients, In view of the use
of the Mayer-Vietoris connecting maps in the inverse

system which defines the homology, it does distinguish

sets of finlte codimension to some extent. But since there

may be many representations E QﬂiEm’ the question still
Mg
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remains that if given two such representations EQ;}Em¢:
mzg

> E, which takes the form

LFm and the identity i:E

Ay
Voo v
Em >Fm
! \
im-l
Em-l 5Fm--l
Where‘éim = 1 since both representations are homeomor-

m?i

i
phic to E and im ls defined by the composition Emj—~>E%~—>

Pnm

E > Fm for the projection 2 of the second system; then
does ég(im)* ar = commute,
QEp s LH ’
&Hm_p(EmyZ) ) »‘67,—7’1!1 P m
rvn,% /\\ ’t
~ i* v
HQP(E ,Z) < b (E, 2)

It would therefore be most natural to unify these
functors with a sheaf-theoretic homology with smooth locally
closed sets of codimension p of the form MpC{PMg serving as
the building blocks of a chain theory 1eadinéq10 anco =p

homology functor, A smooth locally closed subset Mp is un-

derstood to be of the form UN M, where M is a Ck submani-

fold of codimension p, U a smooth open set with a Ck bound-
ary which is a submanifold without boundary and with the con-

dition that any point set boundary of M° is of codimension p+1
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and of class Ck. We of course use the term submanifold
here in the sense of being closed and without boundary.
Since any point set boundary above sould be closed it
would then be also & CX submanifold. It is understood
thet k refers to the class of E,

For M a submanifold of codimenslon p and of class Ck
let M /N E = U Mg, where M; is a component, Now since M
and Em are two closed submanifolds then Mg is a manifold
but possibly with a boundary. However, this can happen
only i1f M winds about in E so that some collecticn con=-
sidered as a subspace of covectors smoothly fits orthogo-
nally to the transverse manifold Em, where for cqnvenience
all of the transverse manifolds of the systemALEm, each
one corresponding to the m-parameter group of"g;apter v

is considered to be passing through some fixed m ¢ M, But
then cover each point of M; by an open set in E considered
to be contained within the unique tubular neighborhood of
M, Then we can take a finite subcover since_M; with a
boundary will be compact. Therefore, we can differentiably
deform M by a finite number of deformations each with sup-
port within one of the above sets so that M \ M 1is
pushed off Em into some En for n > n,- Then.we have a new

collection l)N; so that each N; is a closed submanifold

without boundary. This process can now be carried on in-



ductively and since M has codimension p there are in total
only a finite number of local deformation directions possi-
. — _ _ c
ble, Hence we may consider LM = LN so that N = LJNm,
where N; is a component which is a closed finite dimen-~
sional manifold without boundary and so that there is a

splitting for N , with N = N, N Eny 8nd N o= N N

Em-' The fact that E ﬁf{gEm is actually used in the above

Lk 24

argument in the sense that we were able to push off some Em
in a direction determined by a covector and maﬁ into a new

En because all the coordinate directions are represented

in the system %Em‘ We will assume then that %Mm satisfies

the conditionéw;pecified for its homeomorphigwimage %Fm.

We denote the point set boundary of a set X as X, Now

for M¥° = U A\ M as given above, we consider %(U n Mm) =

m2,5,

.£M§' Since U N M; can be considered as an open submani-
n?old or simply an open subset of a finite dimensional mani-
fold without boundary, then the point set boundary, when
it exists, 1s a'closed submanifold and can have a boundary
only'if the boundary of this open set is contained in the
interior of M; since all the sets in question are Smooth,
But U as an open set of E was specified to have a smooth
boundary of codimension 1 so that ¥ has a boundary which

1s smooth and of codimension p+l., Hence it would be im=-

possible for the point set boundary of U N Mg to be con-
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tained in its interior, for thls would force the smooth

boundary of U which is a manifold without boundary to have

a boundary. Hence we can consider Mg to be the union of

manifolds without boundries and QME

w4

perties as those specified for_%Mg.

™2y

to satisfy the same pro-

Lemma 1, ILMP = M° ana LMP = MP,
=== =+ 3'n S m

™o, miy,
Proof Consider the first case . QME is dense in Mp.
For the sequence (n&l m, = (rl(m),rz(m), ,ri(m),o,o ) €

M?, for ri(m) designating the parameter  corresponding to
the i-parameter group,) gives a collection with an elenment
in each arbitrarily small neighborhood of m e Mp. Now the

parameter of course, refers to the transverse manifolds Ei'

But since M is itself a closed submanifold of codimension p,
and also of class Ck, we can join the point of M,which orig-
inally determined the positioning of the transverse manifolds,
to the point m above, This path will be of finite length
and hence compact, So then each point of the path can be
covered by a nelghborhood so that at most p local transverse
directions of the i-parameter groups are not:defined. But
since a finite subcover can be selected there are only a
finite number of toﬁal directions of the transverse i-para-
meter groups not defined within the entire open cover, So
then if in the sequence (mi), we take all jgiues of 1 large

enough, m; will be a point of M N E;. Since M is the union



of closed finite dimensional manifolds without boundary,

trivial tubular neighborhoods can be constructed and by
restricting everything to U, the proof proceeds exactly
as that of Theorem V.2,

The case for.QMﬁ = Mp is proved in the same fashion,
m?,(('
Q.E.D.,

Remark 1, Some recent work of Herrera.E143 suggests
the notion of pairing P = EME with an algebraic element
cu)_p which is an element ogdsome functor assoclated with
MP in order that a presheaf of chains might be constructed,
It would seem that in general we would still be confronted
with a situation where the definition of a boundary would
be impeded because of the notion of an infinite number of

faces, But a natural notion of codimension .which allows

one to canonically drop to a set of 1 higher codemension

will overcome any possible trouble,

Definition 3. At this point we define prechain

groups for smooth open VC E, It is without loss of

generality to assume that any structure which gives rise

to a sheaf 1s defined over a basis of smooth sets in a
smooth manifold, since these sets will form a cofinal sub-

collection of any collection of open sets. Below,-Mp =
MAU |V, This means that consideration is restricted to

the manifold V and we say MNV as a reminder that M may be
the restriction of a closed submanifold of E.

PJ;o_p(V,z) is generated by pairs (MP,ec ) where MP

© =p

68



69

represents a smooth locally closed set as specified in

. B o D
Definition 2 above and Coup = éﬁcm_p | cm-p € Hm_p(Mm,Z)

and the connecting maps sm-p are the Mayer~Vietoris bound-
aries of the exact sequence

— " (R, 2) —

4
LAY

p _
m-p' m’ H(m-1)°P(Mm“1'z) >
g (P Z)QHQML (M°_,2z)—> ,which is induced from
(m=-1)-p" m+’ (m-1)-p* "m-’ '

the splitting of each component of MP,), Now M_ 1is the
union of components of manifolds without boundary but some
may have dimension < m-p.However, E Q'Lﬂi and at sone

\’/'(
point of a component every covector from N

beyond some ith
stage is eliminated as a transverse direction and hence the
dimension of that component at that point is:imp. So c¢on-
sider the original component and the poinﬁ to be contalned
in this new component of local dimension i-p which in view
of the fact that this new component is a smooth submanifold
must globalize so that the whole component has dimension i-p.
I

.
There is also then a Poincare duality H;f;(Mg,ZK-——»

gﬁéMﬁ,Z@@m), where em is an orientation sheaf with presheaf
stru¢ture given as follows:

Mﬁ is considered as an open manifold without boundary
and contained in Mm' The contravariant functor for the pre-

. P P P D
sheaf structure is U N Mmf——th_p(Mm,Mm‘\Mm NnuU,z), where U

is taken in E so that we may consider U N Mp

- P
m - Um N Mm

for Um C.Mz, This then gives a presheaf structure locally
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isomorphic to Z if the component has dimensibn m-p and lo=-

cally isomorphic to o otherwise,

oinl p p
Lemma 2, é‘fm-p(Mm'Z) A~ m;M ,Z80) ~ “?;; (um,z®e )
~ r~ r~ o v/p
3 Z®e ~éﬁm_ (302) ~ :I;L(emsz) ~ (éfm)wz. Also %5“ , Z209)

”'%IJMP z0¢P), where ¢ is an Eells type orientation sheaf

8] of the pair (E,M) restricted to the open set MP, con-

sidered open in M. Consequently LHWMM(Mp Z) is indepen-
h>,'l‘

dent of the homotopic decomposition Mp”'_;Mg

m>%

Proof By Lemma 1 M< LMg. Therefore for a sheaf A,

"3

O (P ~ 10 P ~ O P p _

H (17,A) %}Légblm,A)~$%lhr(IIm,A I M ). Let A= ‘I:Hm_p(swz).
N swyt m?,:(,.

where the inverse system is actually that of'£(9m®z) with

m’zl
the connecting maps being the boundries of relative Mayer-

Vietorls exact sequences
Wo (P 1% p P D Y —
m p(Mm+’Mm;\(M n U ), )®Hm p(Mm ,Mm \(M _N U ),2)

(M LN Lo Um),Z) Him1) oM NP D

Um),Z)—~%>. ‘The map is actually defined by mapping gen 82
— émgenmﬂz, where genn denotes generator, which is per-

missible since these functors are locally free in the sense
of determining locally free groups, By exclsion ‘the terms

in the above exact sequence are either of the form Hm_p(Rj,

Jo ,
RN\ ¢,Z) or Hm_p(Ri,Bi‘\O,Z), where Rﬁ denotes the half space.
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Since Rﬂ\ o is & deformation retract of Ri, the terms in the
exact sequence containing these pairs are o, Also
J ~ i~ e
Hm_p(R ,Z) > \Z if j = mn-p
o if j # m=-p .
Therefore, we have exact sequences either of the form o~

o——=)0 0r 0——>Z~—>0 or o—> Z—>Z, Hence Bmgenm = gen 4.

Now since these groups are locally free , we then have the

relatlonh%(emez)ex &?em)wz.

In order to show that Hy(°,zee)s HIYMD,z80) n Liy (1P,

o 6:7,0[ i
z&em) we only need to examine the following diagram
as in the proof of Theorem 1 above:
;m; p Dm 0,..pP
Hm_p(Mm,Z)<——~———— %“§Mm,Hm_p(S®Z))
*
- |
D
- P m-1 0,..D _
B(ne1)-p{Mpa172)< By By )-p (592))

The horizontal maps are given by either the standard Poincare
duality or the zero map if the dimension of the corresponding
component of Mg is not m-p, Since we know that each point.is
finally included in components which all havé the appropriate
dimension m-p for m 3 Do for ng depending on the particular

point, the diagram commutes by the proof of Theorem 1., There,

fore the required isomorphism is established;

P is defined first for M and then restricting to the
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open Mp, considered as an open set in M, The presheaf
%, %
structure over UN M is given by U N M—> H (C (U,UN
® %
(M N U),2z)). H(C(U,UN (MNnU), 2))~ 52(E,8PN o)

. , D
= Z. Now we can infer from Lemma 1 that&%fUm,Um\~(Mm
N Uﬁ))fﬁ (U,UN (M N U)) since this is true for each term

of the palir and all the spaces and relative pairs are dom~
inated by CW complexes, Therefore,
p P P p
B (U, 0N A U),2) HO(L(U,UNO NTU D)), 2)
b v N
5%% (Um'Jm\(“m N Um),z).
There is also the following sequence of duality isomorphisms,

consisting of Poincare and relative Poincare dualities:

Hp(U U\(M nu),z)— P n U, z)-——-nx °Pn v z)f-—;
m p'm m m’

P wP~ (P .
H_ p(Mm M (Mm N Um),z). It is assumed that we are locally
et a stage Em so that the dimenson of the component under

consideration is m~-p, We then have the commutative diagram:

~

2P (U_,U_~\ (Mpn U ), 2)m——emee—> g (M Mp\(Mp Nu_),z)
m' 'm m m’’ m-p'  m’' m ' m m’’

! |
HP (U g o U N (M5 400 ) 215 Hnet )op Mpet Mpeg N (p g0 4))
The horizontal maps'are given by the above séquence of du-
alities, the vertical map on the left is that of the inverse
system given above and the vertical map on the right is the
Mayer-Vietoris connecting map as previously defined, The

commutativity follows because all the groups in question are



free with one generator for a local component and the maps
in question map generators to generators in a unique fash-
ion, It is also clear that all the maps commute with the
restriction maps of the sheaf structures since these are
only restriction maps of inclusions. Therefore, upon take-
ing the corresponding direct limits in the sheaf structures

we have LH _(S82)# (L6 )9z~ d*8z.
vf;( m-p '"<;f, m ’
_ Pt

We can conclude that'éﬂm_p(Mg,Z) is independent of any

73

decomposition Mpfi_gMg because the above relations are actu-

"%,
ally dependent only upon the covectors of Mp

of an element . is independent of any homotopic decom-

-p
position for Mp.

and the support

Q.E.D.

Note We must keep in mind that as in the proof of

4
Theorem 1 the relation LH "
- < M=p

m2

fudging the orientation sign of em, but in a fashion only

S SN i
(M7, 2)A Hy (M°,200) is given by

dependent upon p, so that this fudge factor is passed on
uniformly to Z@¢p since it is a uniform orientation rever-

sal of E_.
m

Definition 4, Given two pairs (MP, ¢ p) and (N7,

o
D~ p D~ D _ WP D
d_, _,) so that M ;M_]%Mm and N M%Nm let L = (WP\¥P)(

(PPN N°). Now N\ WP is either empty or the point set

boundary MP of Mp, which i1s a smooth closed submanifold of
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codimension p+1 and of course without boundary, Now for a
fixed representation E X LEm we then have ffom the discus-
sion in Definition 2 and izmma 1 that (MPUNP)\L =
_I;((anlnNg) \ L), where L_ = Mg U Ng.‘ Since the bound-
m;‘i‘ies in question arise from at most two smoéth closed sub-~
manifolds of codimension pjl and of course without boundary
we can assume without loss of generality as in the discussion
of Definition 2 that all the summands of the direct limits
are the union of components which themselves are unions of
finite dimensional manifolds without boundary, although when
intersecting with an open set of E, the submanifolds may be
open, The pnly difference above is that we are taking the
union of two smooth locally closed sets of codimension p+1
whose covectors at points of their intersections may not de-
termine the same subspace,

Define (Mp,cao_p) + (WP,d ) =

= -p
(Py ¥)\ 1),o o T o)
where E;:-p + E«:-p is defined by considering the compo-
sition |
O”“” (M2, 2)—>H HI:?MII;\L Z)———’>H(::Z\(LM§1 N L,Z).
Since Copop = :acm_p‘we take Eﬁ_p = the image of Chmp

under the above composition, Since the maps of that com-
position are only a natural restriction and inclusion, they

must commute with the Mayer-Vietorls connecting maps of the
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inverse systens, Also<£Hm_p(M§\JN§ N Lm,Z), where of course
fhe maps of this invergg system are induced by the Mayer-
Vietoris splitting of (Mg U N2)\ L, is independent of any
homotopic decomposition (MPUNP) N LEL((MDUND) \ L) be-
cause the homology inverse system onlgv;icks out locally,
cells of dimension m-p, Henqe these cells must come from
either Mg or Ng if these éets intersect locally in a fash-
ilon thaf the covectors determine two different subspaces.
If this happens then the inverse system must have support in
either Mp or Np, whichever determines the initial m=-p dimen-
sional support cell, because then for the system to have sup-
port outside this particular codimensional set would force

a support cell at some stage n-p for n> m to be contained in

E s but not in M | N, since the codimension would then be

determined by some subspace 6f the span of the two spaces
determined by the covectors of MP and Np.But.then the interior
of this support cell would clearly span some points not in

Mﬁ v Ng . We should take note that we are using the fact
that E Q.iEm in that all coordinate directions at each point
are detegggned by the system(&Em. Now if locally the sets

MP and N determine the same'; dimensional cdspace then clear-
1y the support of the « -p cocell can be taken in either set
¥P or NP simultaneously and the results of iemma‘z guaran-
tee that it determines the same algebraic element locally,

We can then add cm-p and dm-p so that ca:-p + q” —p
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R = L(c a . Now this addition
= Lopp + 1 = Llog g+ p) -
h7,1’ h>% m’,{)

is then well defined and independent of any representation

LEm ~ E from the above discussion.
MZ%’ p
We define an equivalence relation CMp,c _p)h(N a )
= (e, )+ P,-a__) = (PUN’\L,0), where o =
Lo_ for o_ the zero determined by the functor H_ _(*,2).
« I m m=p
Then let J_ _ (v,2)'= PJ_ _ (V,2)/~ .
A boundary homomorphismzoo_p is defined ss follows:

\w-p’ J,,_p (v,2) ———?J;o_(p+1) (V,z2), where:

(P, e ) = (P, L d.

for the connectl
Yoo~ -p Mp Criw p\) .BMp nn ng
: ol
homomorphism of the exact sequence — Ho_ p(Mi Z ) r—>
e ol Ry . .
H; (p+1)(Mm'Z) (p+1)(M ,Z)—>., This is the same

form used by Herrera [14] for his semianalytlic chains, al-
though his notation is ambiguous due to the omission of a

symbol, He uses the notation b p D for the connecting
My ,M

homomorphism, with the positioning of Mg in the symbol forc-
ing it to be the dominating space in the above exact sequence,
But since Mg does not contain ﬁi in general,'this would be
wrong. The above change is the only possible one. Since

MP i1s a closed submanifold of codimension 1 within MpV,



77

where ¥ = M N U |V for M N U the smooth iocally closed
sets specified in Definition 2, and since ﬁp is actually
the point set boundary of M 1 U restricted to V, we can
assume the existence of a unique tubular neighborhood of

ﬁp of codimension 1 considered as a subset of M [} V by
constructing a tubular neighborhood of codimension 1 about
the point set boundary of M () U and then reétricting to V.
We must also be careful to remember that ﬁp is always taken
as the point set boundary of M N U\l V and taken with res-
pect to the relative topology of E (\ V. But as above, we
can consider this to be a restriction of the boundary of
the set M N U < E since V is a smooth open set,.

Since we ultimately only need to consider components
of Mg which contribute support cells of dimension m-p, we
can assume that we are at a stage where the covector of the
trivial tube locally determines a transverse direction which
projects onto Em and hence is deformed into Mm. This then
gives locally a tubular neighborhood of M in M2 of co-
dimension 1., But since our boundary homomorphism in the

above exact sequence is defined by the following diagram:

ARL —p oo Qe p
Cm_p(Mm,Z? >Cm_p(Mm,Z)———>o
d
Q1% . ' PIETIA P
p L
-1
where'ﬁ.p =i"yn’ y» 1t then becomes a local restriction map

m
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about ﬁg within this local tube, where the closures are al-

ways understood to take place with respect to the relative
topology of V., Hence we can assume that our boundary homo=-

morphism is actually equivalent to the composition

M OVN M». Ol M'I\

<P'M~ P oy P
—p (M 2) >H o My nV\M )2 )= m-(p+1)(Mm'z)’ where

the first map is an inclusion and the second is a boundary
homomorphism in the exact sequence of the pair (M \V,Mp),

@M, aim, av

using the fact that H (M nv, MP 12) ® H p(Mm{\V \Mp z).

Of course, we must remember that our attention is actually

restricted to some component of Mm, but since all coordinate

directions are engulfed by the transverse directibn of the

system LE = E, every point of LMp is eventually contained
m7A, A

in a component of some Mp with the propertles specified

above,

Note Although Borel-Moore homology is specified for
the use of sheaves we can treat this homology as being
equivalent to the Singular or éech Theories for manifolds
of the class being used, -

The next lemma will give a uniqueness for Bc”_p with
respect to pairs (Mp,cup_p) € PJu>_p(V,Z) with respect to
anj homotopy decomposition for MP with respect to any re-
presentation EX LEm. We can then pass to a uniqueness

mag’

with respect to {x>_p(v,z) by applying Herrera's result [147]
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at each stage of the inverse systems,

Lemma 3., 00 -p is independent of any homotopy de-

composition MP & _I;Mpm, where M = M N UIV=MONUN V,
m2

for M and U satisfying the conditions of Definitlion 2 and

the total object being considered a submanifold within the

manifold V, For a pair (Mp,gx)np) € PJ _p(V,Z). Baa_p

is given by the composition
3
j QO [ g .
H°(Mp,z®¢>p)-——> H, (Mnv \MP, 2e0P )—> H1 NV, MA VN MP, zaoP)

~ H (Mp Z®¢p+1 , Where § is the connecting map of the exact

sequence of the pair (MNV, MAV\MP) and J is & natural re-

striction map.,

Proof From the above discussion we know that -p
is defined by taking the inverse 1limit with respect to Mayer-

Vietoris conneetlng maps of the comoosition

P oF QIH. VAR (pf
M Z) > Hm p(MmﬂV\\M AR m (p+1)(Mm,Z)

Py y ‘ vD
But as before ‘g(an V,anV\Mm) _g(mmnvm,mmnym\m )

o (MAV,MAV N\ MP) from Lemma 1 since LM AV, & MV and

LM IR MECEMi]V‘\Mp and since the%relative pairs are dom-

h\?

inated by relative pairs of CW complexes,
Then we can again apply the dualities

(Ple o) 1 ol * D !
m p(Mm Z) > Hm p(anV N M y Z)=——> (p+1)(M Z)

AN

D D D

m j* m /J\ m‘ T

O (vP —_ y° P 1 v
H- (M, Z&9 > H —_ p

%«'S m? 288,) M(anvm\ Mo, 288 ) Wﬁlmﬂv WM WV M, 200 )
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where the commutativity of the square on the right is due

to the standard commutativity of the squares formed by re-
lating the dual homology and cohomology sequences by duality
maps. The first square commutes since 1 and j are only natur-
al inclusions and restrictions,

Then by the proof of Theorem 1 the inverse systems with
connecting maps which are Mayer-Vietoris boundaries commute
with the aboveAmaps, including the relative case which is
treated in exactly the same fashion as the absoiute homology
functor. Therefore in passing to the inverse limit we have
ch -p beiﬁg iepresented under duality by the composition
HO(MP,Z®¢p)-—-J——> HO (MAV N\ WP, 280P )~—> B! (M0 VM0 VNIP, Zo0P),

But since have the tubular neighborhoéd of codiﬁension
1 of ﬁp considered to be a neighborhood in the space MNV,

3 an Eells type orientation sheaf as described in Lemma 2,
Hence we can apply the Eells spectral sequence [ 8] to give
%?-MSVM AV, AV NP, Ze0P) & H:“(Pﬁip,zwpawl), Wwhere this 1s con-
structed with respect to the manifold V, with MOV as a
closed submanifold and ﬁp as a closed submanifold of MNV,
and of course all manifolds are without boundary, Then there
is a pairing ¢p®®1¢t ®p+1 described as follows:

We consider the uniquely determined isomorphism
8P (8P, 8™ o, 2)em’ (R!, R\ 0, 2) ~ BP*1 (RP¢RY, R RN 0 URA o¥R?, 2) &

Hp+1((Rp,Rp\o)X(Rl,Rl\o),Z) which is a form of the relative
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K&nneth theorem which in this case gives a cénonical pair-
ing since the groups are free on a finite numbér of genera-
tors., The terms on the left of this tensor pairing represent
the presheaf structures of ¢ and ¢} and (BPXRI,RpxRI\o U
Rp\oXRl)C:(Rp,Bp\o) forces the right terms of the tensor
pairing to represent the presheaf structure of ¢p+1 which is
the Eells orientétion sheaf for the pair (an,ﬁp). Therefore,
upon taking direct limits and passing to the asppropriate
sheaf structures we have the pziring ®p®®1&®p+1 which gives
BO( 1P, za6Peol ) & B P, zadP+l),

Therefore, gcx)_p is completely 1ndependent of any homo-
topic decomposition Mpci%yg arising from some representation

my

E;$<£Em since the support of the image under ch>-p is com-

pletly determined by the covectors of MP and there is a ca-

""7/1'/
nonical lisomorphism with respect to the algebraic structure.

Q.E.D,

Bemark 2. Now since the definition given for addition
and the boundary in the groups PJ;O_p(V,Z) ig'independent
of any homotopic decomposition we can conclude that all of
these maps are independent of the equivalence relation by
simply performing the operations in eaqh finite dimension
and taking 1inverse limits with respect to the systems we
have defined with the Mayer-Vietoris connecting maps and then

apply (Herrera's) results,which give the prechain homology
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theory we have described for semianalytic sets of finite
dimension. But since Emc: R™ is a relatively simple orien=-
table Ck manifold his results apply. Hence we can pass to

the groups J _ _. (V,2)., Also 3 = 0 andzcn_p

oo-(p+1)§w-p

commutes with addition since this is true at each finite

dimensional stage, although the fact that .Bgo_(p+1) d o =]

= O ls simply due to the fact that ﬁp has no pcint set
boundary. We of course also agree to admit the pair (¢,0) ¢
Tao (V12D |

Now for W V there is a natural restriction map
{£>_p(V,Z)—T~>J;D_p(W,Z) induced by the natural restriction
map of (Herrera) at each finite dimensional stage along with
the fact that a natural restriction map commutes with a Mayer-
Vietoris boundary, Then also the restrictions commute with
all of the other maps defined above so that we may pass to
an induced sheaf which will simply be denoted by Joo
Then define ‘kw_p (E,2) = Hp(MJ, &)

Theorem 2, ‘Hoo_p(E,Z)QHw_p(E',Z) for B  _,(E,Z) defin-

ed as in Theorem 1 for a specific representation Ec%é%Em.

™>
This is then canoniqal in the sense of Definition 2. g

Proof For the fixed representation E X LEm We can
e P

. . A
project i@ _p(V,Z) to each Em and by definition obtaine the

relation<§Jm_p(Vm,Z) = {y}_p(v,z) where the maps of the in-
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verse system are the Mayer-Vietorlis maps defined on the

pairs, Now, Herrera defines his prechain groups for pairs
(M,c) where M is a semianalytic locally closed set of dimen-
sion m-p and ¢ € H;?;(M,Z) with Borel-Moore hoiology
specified, But since Em is an orientable open C submani=-
fold contained in R™ there is no more homology information
needed then that contained in the system by restricting our
attentioﬁ to smooth locally closed sets of the type Npﬂ Em,
where NP is described in Definition 2. This is because Em'
can be smoothly triangulated,and since the inverse system
<£Em is determined by m~parameter groups of diffeomorphisms ,
?%ere is a set Np(\ E obtained by locally extending all
transverse directions above a set in Em which is smooth and
locally closed in the above sense. Therefore, by passing to
the sheaf structure the Herrera theory guarantees that
H;f;(Em,Z)c: ﬁgﬁz[TJm_p) Then since the Mayer-Vietoris bound-
aries of the inverse system commute with the restriction maeps

of the presheaf structure, we then have'Hoo_p(E.Z) o~
9IE.., .
gHm_pFEm,Z)cx Ha)_p(E,Z). The last isomorphism follows be-
cause the Mayer-Vietoris connecting maps in Theorem 1 were
actually defined with respect to local suppoft.
Therefore, since‘HdD_p(E,Z)has elements with support

uniquely specified the following diagram must commute, where

'£ﬁ5145£55 are two representations of Theorem V.1 of E,
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L(ip ), )
h @“'M
Hy_p(Epr2) > éIiHm_p(Fm,Z)
A @ ~
j= . %
* p
HY(E ,Z) < Ho(E:2)

Hence we have a canonical isomorphism,
Q.E.D,

Remark 3., If f:E—>F is 2 map between two manifolds
satisfying the conditions of Theorem V.1 with the properties
that f is differentiable and for e € E, ker dfe: coker dfe::
0, then there is a uniquely defined map‘gf;:gHm_p(ﬁhz)~——>

LHm p(IE;,Z) provided fm defined by the cogpositlon Em—e>E
g

> F - Fm respects orientation, This is defined by
mapping & support cell of dimension m=-p onto a support cell
of dimension m~-p as a result of the conditions above., Then
locally this maps H (N Z)-—-—-—‘?Hm p(fm(N) Z). Then by pass-

ing to the sheaf structure and taking the homology the re=-

quired map is defined,

Remark 4, 1In 1935,J.W. Alexander C17) defined o©-p-1
cells in a separable Hilbert space so that there is a homolo-
gy theory and a duality with respect to a compact metric
space K ¢ H, But since the duality is betweén Hp(K,Z) and
the <0 -p-1 homology of H\XK, and since H\X is diffeomorphic

to H at least when K is a manifold, it would seem that these



are homologies constructed in some way so that they are

determined by non-cofinal systems of support sets.
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CHAPTER VII
CONCLUSION

We have studied separable infinite dimensional mani-
folds by assuming a smooth local Hilbert structure which
allows a diffeomorphism to be constructed between each
fibre of the tangent space and a neighborhood of the base
point on the manifold, This allows the construction of
trivial tubular neighborhoods of closed finite dimensional
submanifolds, Then arbitrarily small neighborhoods of this
type support diffeomorphisms so that upon taking the infinite
product of such diffeomorphisms we have E E‘E N K, for K a
thin subset, |

The whole technique can then be considered as a general-
ized foliation category, consisting of sequences of folia-
tions which are ordered so that each sequence is a collection
of elements so that a higher order element féliates any lower
order element with an associated collection of m-parameter
groups, With the m~parameter group being a subgroup of the
n-parameter group for n > m by intersecting domains of defini~
tion, Each m-parameter group is globally abelian and gene-
rates an m dimensional submanifold considered as an open set
of R® and a closed transverse submanifold of E, These groups

are generated by approximating distance functions, defined
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with respect to the metric of E, with smoothlfunctions that
have singularities in a thin subset so that ény maximum solu-
tion curve,defined by composing the approximating function
with a projection, is defined globally, Then the above prin-
ciple of removing thin subsets differentiably allows the
group structure to be defined,

In such a foliated category a H (+,2) functor has

. oO-p

been established with the use of a Mayer-Vietoris splitting
of the manifolds associated with the m-parameter groups,

This functor distinguishes sets of finite codimension and
satisfies a duality with HP(.,26¢P) in terms of a Poincaré
duality isomorphism,

At the center of the principle of the removai of thin
subsets differentiably is a renorming process which utilizes
different Cauchy completions., It seems possible to generalize
the above structure to give a space generated by a collection
of sequences of foliations with a topology and associated
structure detgrmined by combining the associated collection
of functors Hba_p(',z), one for each sequence, and relating
them by a functor which is dependent upon the m-parameter
groups and local collections of completions.

It also seems reasonable that a decent generalization

will take into account Finsler instead of just Hilbert struc-

tures,
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