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ABSTRACT

This paper is concerned with a study of the struc­

ture of infinite dimensional manifolds, giving informa­

tion about the homology and homotopy, and leading to the 

construction of a codimensional homology functor which 

distinguishes sets of finite codimension and which sat­

isfies a Poincare duality with respect to the singular 

cohomology.

Attention is restricted to separable differentiable 

Hilbert manifolds which are Cauchy and geodesically com­

plete and which support finite dimensional vector valued 

functions with associated thin singular sets so that these 

sets can be removed via diffeomorphisms between the mani­

folds and the complements of the thin subsets. This leads 

to representations for these manifolds as the inverse limit 

of finite dimensional manifolds which are the Images of the 

given manifold under a vector valued function, with the 

structure of the inverse system being determined by a se­

quence of foliations and an associated sequence of q-pa- 

rameter groups of diffeomorphisms. There is also a strong 

homotopy equivalence between the given infinite dimensional 

manifold and the direct limit of the above mentioned finite 

dimensional manifolds,

A homology functor _p (•,Z) is then constructed by 

using the strong homotopy equivalence and the connecting 



homomorphisms of Mayer-Vletoros exact sequences which 

arise from splittings of the finite dimensional manifolds 

used In the representations. The ensuing duality is in-r 

dependent of any representation.
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CHAPTER I

INTRODUCTION

The importance of infinite dimensional manifolds in 

the study of non-linear global analysis has led to a need 

and interest to determine more information about the 

homology and homotopy of these manifolds. In particular, 

there should be natural methods of constructing homology 

functors that reflect the structure of sets of finite 

codimension, J, W, Alexander ['ll constructed anw-p 

homology in 1935• However, that has the disadvantage that 

it gives different groups for the same space, essentially 

depending upon the system of covers used to construct the 

theory.

K. Geba fis"], K« Geba and A. Granas ^13*3 , J. Bells 

and K. K, Mukherjea ^17Jhave constructed and usedcs-p 

omology functors,

Geba constructed an^-p cohomotopy theory giving an 

Alexander-Pontrjagin type duality between a closed bounded 

subset of a Banach space and its complement, Granas and 

Geba gave anc^-p cohomology functor again giving an 

Alexander-Pontrjagin type duality relating the same kinds 

of sets mentioned above.

Bells constructed an^o-p homology which is canonically 

isomorphic to the singular cohomology for an open subset 
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ofa Hilbert space, assuming that the coefficients are a 

field, or that the homology is finitely generated. In each 

dimension. Mukherjea’s theory is a similarly constructed 

o=-p cohomology. These last two constructions and their 

corresponding Poincare dualities are constructed and given 

for a manifold and not with regard to a set and its com­

plement. They both use a cutting technique which gives a 

strong homotopy equivalence between the specified manifold 

and a direct limit of finite dimensional manifolds. But, 

this surgery Is not delicate enough to pick out sets of 

finite codimension in a fashion that would allow the 

elimination of the two conditions in Bells above mentioned 

result and give a complete geometrical determination of 

finite codlmenslonal cycles.

The main problem is to represent the manifold in such 

a way as to give a natural procedure to pick out the sets 

of finite codimension. The obstruction to any such study 

is the fact that finite dimensional geometry simply doesn't 

cary over to the infinite dimensional case. The big differ­

ence is the fact that the removal of a reasonably thin sub­

set from a well behaved infinite space leaves the space 

unchanged with respect to homeomorphism type. The trick 

Is to utilize this difference and create a new infinite 

dimensional geometry; the two principle ingredients being 



the above mentioned, fact and. the use of a sequence of 

foliations.

The present work is concerned, with a study of this 

problem for a class of Hilbert manifolds along with the 

consequent construction of an -p homology functor

This paper is divided into five main chapters. The 

first four of these treat the construction of a represen­

tation theory for a manifold E of the given class in the 

form E~^Em, where denotes homeomorphism and Em is an m 

dimensional orientable manifold. This is accomplished, by 

a succession of foliations, each one being induced by a 

global p-parameter group of diffeomorphisms determined by a 

smooth function without singularities. Chapter II relates 

a manifold E to E\ K, for a suitable thin subset K. 

Chapter III gives the construction of a smooth function 

with singularities in a thin set K along with controlled 

associated solution curves.

Chapter IV treats the local p-parameter groups of 

diffeomorphisms. In Chapter V, these notions are unified 

to form a sequence of foliations which generates a required 

representation.

Then the results of Chapter V are used in Chapter VI 
to pick out sets of finite codimension in the construction 
of a homology functor, (.,z), and a canonical duality 
with the singular cohomology.



CHAPTER II

GEODESICALLY COMPLETE MANIFOLDS AND A STUDY OF 

DIFFEOMORPHISMS BETWEEN A MANIFOLD E AND THE 

MANIFOLD E\K, FOR A CERTAIN THIN SUBSET K

We establish in this chapter a simple form of the 

general principle that the removal of a suitable thin 

subset leaves an infinite dimensional manifold unchanged. 

This is for a closed locally compact subset of a smooth 

Hilbert manifold.with the help of a result of Bessaga CjD. 

which gives a diffeomorphism between the separable Hilbert 

space H and H\{o], and then for a sequence of tubes.

Definition 1^. The termonology essentially follows 

that of [ 93 , ^163 , and C183 . A C^ Banach manifold E 
Ir 

without boundary is described as followst A C diffeo- 

morphism of an open subset UcE, onto an open subset of a 

fixed Banach space B, y :U---- 5>B, is called a chart. Require

two charts,^sU---- >B and 4>iV-- v'B, to be related by stipu­

lating that \|) (Jf1: (£>(UflV)---- >^(U/|V) be a C^ isomorphism.

kA C atlas for E is a collection of charts, parwise related 

as above, which cover E. Take a maximal atlas and denote 

it by A, The manifold E is then a paracompact Hausdorff 

space with a maximal chart A denoted simply by E.

Definition 2. This is due to PalaisC183 . Fix an
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€ B satisfies the condition b, = d>.. b., 
1 'J 3 

isomorphism since 11- , de­

indexed collection of Banach spaces an(^ lsomorPhisms

( <tK ) where ----->2^, Then require = identity and

(j)^ =<t)jK . Then construct a Banach space B and canonical 

isomorphisms tt- ;B-----> B^ 3 Tlj =^1^ . Actually Bc^JB;

9 ^1,3 e B satisfies the condition b5 = . b.. This is

called amalgamation. TT; is an

fined by lljCb)^ = 0y((b), is a continuous linear two sided

inverse.

Let ^B^.,Vk$^ be a second such collection with indexing 

set a' , For (i,k) E A X Az specify a bounded linear map

^ki* Bl"—Bk 3 = Tkj’ ^en f°r the amalgamation
B/ 3 a unique TjB---- > B 9 kkT = T.,.^ given by T -f bJ = fb' 7

KJL c U L k j
/

for b^ = T^b^. T is the amalgamation of T^,

For E a manifold and eeE, let A be the charts at e
e. Also let Bx = the target of <t> . Then d( ;V---- >t <p(e) <p

V. is an isomorphism, d(<i><p’' 'I = identity, andt <Ke)

) dC^^tb'1 ) = d(<t>j<t>;‘ ) . Therefore this deter-
rJe)

mines an amalgamation Ee, the tangent space at e.

.If F is a second such manifold and f:E-----> F is and

A* the set of charts at f (e), then for ( <t> , y )f Ay A^ 3 a 

linear map d(vf (J)'1 )^(e) This then determines

an amalgamation map df jE ---- F„, x, which is the differ-y y j. \ y / 
ential of f at e.

Define the tangent bundle by T(E) = Ue and define 
e e

the bundle map TT?T(E)---- ^E by T[(E ) = e. For a charts
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with domain U and target B^, define <f) :UyBt-—> TJ1 (U) 

by requiring b ---- ^(e.b) to be the natural isomorphism

of B^and Ee« For fiE-—>f, define df»T(E)——>T(F) by 

df|Eti = df . 1 e e
We consider chiefly real CK separable Hilbert 

manifolds so that H = real separable Hilbert space.

Definition 2* (Lang C16 , Ch. IV3 ) A spray over 

a Banach manifold E of class CK is a second order differ­

ential equation over E, represented as a vector field lb 

on the tangent bundle T(E) a for the projection TT:T(E) 

-----> E we have dTT)t(v) =y > where dp is given by the 

following: TT(E)—— T(E)4 r
T(E)—---- > E

The vector field also satisfies additional properties 

to be described. Furthermore, assume 3 k £ oo.

Of course, to be a second order differential equation 

11 must satisfy the condition that for each integral curve 
B of H, Cch.ivjwe have ( tus / =/3 , where (p^/Ca) = 

d(T"^)a(l), for a 6 R = reals. In addition for veT(E), 

let Az be the unique integral curveB ofwith initial 

condition v,( Pv(o) = v). If^cTCE) is the set of vectors 

inT(E)d is defined at least on Co,!^ , then J is open 

and v---- > 5v(l) is-a morphism^---- ^TCE). Define exp:J----->e

by the equality exp(v) = H £>v(l). exp is
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Now for/t to be a spray it must satisfy the following 

equivalences:

1, a £ R is in the domain offi/^==^l is in the 

domain of and n^v(a) =7/6qv(l)

2, a,b eR. ab is in the domain of^J^T'a is in 

the domain of £>fcX1 and ^v(a) = 3v(ab),

3, a€R is in the domain ofh <5=^>"ba is in the
AV

domain of Bv and /3w(a) = l>Sv(ba),

V a e R and veT (E), ^(av) = da(a/1L(v)),

Since locally the sprays form a convex set a spray 

can be constructed if partitions of unity exist. If E is 

a C manifold for k-00 and is also modeled on the sepa­

rable Hilbert space then the results of Bonic and Frampton 

C^D assure the existence of Ck partitions of unity,

*Definition 4. Call a manifold geodesically complete 

if the following conditions hold:

1.5= T(E),

2. Every can be extended so that :R------ T(E), If

^5(/) G t(E)- ,then T(E)-0 4'(1)= /.where s / s', 

for s,s/€T(E)e;e,e G-E,.Also Bv(R)f) o-section =/,v/ o.

*According to a result of 
EH E. It seems possible to 
of preferred paths to generate 
topologically.

Anderson and Schorl 2 
use this result and a notion 
conditions like these
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3. V s,v 6 T(E) 3 a Ck map g iR—R 9 n6 (1) =
y o , v j ~ ’

rr i?, x (g (a)) where v(e)E T7B/R) and.*' q^vco'°s,v v
+ 8s,v(ao) = o.

Lemma 1_. expe:T(E)e----- >Ue C E is a diffeomorphism

of at least class c\

Proof, By condition 2 of Definition U- expe is 

defined for all vGT(E)e and is also 1-1,

By the following inverse function theorem f93 it will 

suffice to show that d(exp)e is a bijection:

Let E and F be Banach spaces, U an open subset of 
Ir

E and <p : U---- F be a C map, k >/ 1. Then

1, If x e U is a point 9 d4>x :E---- F is Injective

and its image is a direct summand, then 3 Ux in U a 

4>|Ux---- > F is a split Ck embedding.

2. If :E---- => F is surjective and its kernel is a

direct summand, then^a neighborhood Ux? ^ux—F is a
Ir

split C projection.

3. If dct^ is a bijection, then maps a neighborhood 
Ir

Ux of x, C diffeomorphically onto a neighborhood of ip(x).

To see that d^xp)g is a bijection, it is only necessary 

to evaluate along rays of the form x + av. This is done 

as follows:

d_TTB 
da

= ^_Tt3, . (Sc
da a)vc<?) s»v ,q'
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= (^9s>vt..))11ti2ao8SjV(ao))(2ao^gs LK(a2) + SS|V(ao))
aa

= (2a (a ) 4- g (a ) )d.Trc , d. P (2a g (a ))0 LS12L-2 &s,v' o'* 5v(e)(^35,v<-^ aa^ 0 S|V °
)a

= (2ao>SsiV(ao) + SsiV(ao))dn ^_.^M_))n(5j2aoBsiV(ao)) 

>a

= (2a >g (a ) + g v(%))^v,e)(2a g (a )) V O y V VJ O । v V • V \J5) kJ o | V v

/ o by conditions 2 and 3 of Definition 4 and Defini~

tion 3 of the spray. Since this is true for all rays the

bijection follows. Q.E.D,

We can now establish a result that shows that the 

removal of a thin subset leaves a manifold unchanged under 

suitable circumstances.

Theorem 1.. Let E be a geodesically complete, separable 
lr

C Hilbert manifold for 3 k^oo , Then if K c E is 

closed and locally compact 3 K K and a map f: E\K >>E 

9 f is a diffeomorphism ,where K is also closed.

Note, Since E is a C Hilbert manifold it has an 

induced Riemannlan structure,which is a special case of a 

more general Finsler structure. Hence 3 an induced metric 

? *

Proof. The proof is based upon the result of Bessaga 

["33 » which will be outlined because of its importance.

Proposition (Bessaga). If H denotes the separable
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Infinite dimensional Hilbert space, then 9 a diffeomorphism 

h;H\[o3 ----

The result follows from the following propositions:

Proposition I,. 9 an incomplete norm w3w(x) f/xfl 

where w is of class C°° on H\(o] . Also 3 a point x in the 

completion of (H,w) 3 x^(H, I'l-I/ ) and3 a function (o,«°)-2-> 

£x€H| w(x) 4 which is of class C°° => p(a) = o for a > 1, 

where lim w(p(a) - x) = o and where w(pz(a)) £ | for a > o, 
o

The proof is built upon the following argument:

Select an orthonormal basis in H. For any n 

select an infinitely (C ) differentiable monotone decreas- 

ing real valued function <pn 9 ( cph(a) = o, a
1 cph(a) = 1, a<^n

Let d = max(2n+ ,2sup <p^ (a)) and let p(a) = <^(a)en

<?□ 2
and let w be defined by w(x) = ( X (x,e ) + Ijx (x,e

—2-B- ... n •
dn 

00
Then a candidate for'x is x =Xer. 3c is Cauchy with 

respect to w, but x (H, ll-ll ).

Proposition II. h^x) = p(w(x)) + x is a 0°°isomorphism 

mapping ----- > H B ^(x) = x for w(x) j.

The main point to the argument for this proposition 

is to fix a vector x and use the Banach contraction prin­

ciple on the function 4>:[2o,«o)---- ^Lo,c°) defined by
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(j)(a) = w(x-p(a)) for a > o and ^(o) = w(x-x). Proposition 

l^=~/(t>actually maps £6,o°)^—-^{p.o"), Also I^Ca)- <J>(b)| = 
lw(x-p(a)) - w(x-p(b))|^ w(p(a)-p(b)) = w( S^P^t)dt) 

a
5 w(p'(t))dt^ I a-bl sup wfp^t) )-4 la-b|. 

q qitSVj
Therefore applying the contraction principle to

(Co ,|o0), 4>) one can conclude that 9 a unique solution a for

(p(a) = a. This means thatV xe-HBa unique ax 0 

w(x-p(ax)) = ax and since xiH, then ax> o. Consequently^

a 1 to 1 mapping ----- > H with h~’ (x) = x - p(ax).

This is easily checked since with h1(x) = x +p(w(x)), 

hUh’^x)) = x - p(a ) + p(w(x-p(a )) = x - p(a ) + p(a ) = x.
J. JL vL «*L JL JL

Proposition III. Let w(' ) be a norm in H of class 0°°

on H\{c^ 5 w(x)Oxll. Then3 a C°diffeomorphism h

5 £xe H | Hx||£ 13 °-^->{x eH I w(x) <

The map i^is ChgCo) = o
1 h,>(x) = (X(lixu)lfxl/ + 1 - ‘X(x))x
V ^T3Ey

where "X is a monotone increasing real valued function of 

class cf0 3 CX(a) = o, a

(X.(a) = 1, a 1

The map h is then given by h(x) = ih^Ch^ChgCSx))).

The fact that h^ is a <3°° diffeomorphism follows from 

the following: If (|/(y,a) = a - w(y-p(a)), then since for 

y e H, y - p(ay)^- o==y? is differentiable on a neighbor­

hood of (y ,a ) C H X (o,eo). Also DJ/ > 1 - o.
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Then the following implicit function theorem C7»Ch, 10 

can "be used, to give the result: Let E,F,G be Banach 

spaces, f a differentiable map of an open subset 

Ac E% F a A >G. Let (xo,yo) & A f (xQ,yo) = o 

and with Dof(x ,y ): F^^-^G a linear homeomorphism .
2 o o

Then "3 an open UQ of xq in E s V connected neighborhood

U of xq, with Uc U , "9 a unique continuous mappings :U——> F 

3 o<(xo) = yQ and (x, o<(x)) e A and f(x,o<(x)) = o

V x€.U, In addition is 0°° in U and its derivative

is given by d=<x = - (Dgf (x,c<(x)) )** (D1f (x,o<(x))).

Here we let E = H, F = G = (o.oo), ^D2lf(ao,xo)|i=

= ll^a^^ao,xo^ H °* This gives the desired conclusion. 

Now the generalization to the Hilbert manifold comes

by a reduction to the case where we can consider the closed 

locally compact subset to behave as if it were only a 

smooth finite dimensional closed submanifold. Then we can 

construct a tubular neighborhood about this set, which is 

actually a trivial neighborhood bundle, and give a diffeo- 

morphism by defining the analogue of the function p at 

each fibre of the neighborhood bundle. Each point of K is 

pushed to a point in the completion of a new norm.

First assume that K satisfies the condition that if 

k £ K,3an arbitrarily small chart about k which contri­

butes only a minimal number, d^, of coordinates to K in some 

suitable coordinatization of the chart.
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For a set of this type we can choose a cover (U, ).।el 
with the following properties, where disc means open ball: 

1,

2,

disc in a chart(U, ) is star finite, with U. a
Ki Ki

If D, = the k. dimensional disc
Ki 1

ordinates contributing to K and

spanned by d, co-
• Ki
Dk = the boundary

i
of D, , then (D, ) is a star finite collection.

Ki Ki
For a point k e K, select a disc contained in some

chart and contributing the minimal d^ coordinates to K.

Then every point in K 0has at most d^ coordinate contri­

butions to K, Also Djj.fi K is compact and closed so we can 

cover this set by a finite collection of discs (U, ), where
Ki

U, contributes the minimal d, coordinates to K. Now (point 
Ki * ki

set boundary U Uv )f|K is compact. So then for this set 
Ki

select a finite cover (U, ) with the property that U,
la l.,^

does not intersect U^. Continue on inductively 3 at any 

stage with (U, )} which is finite then U,
i,»V ,in 1|,1, ,in

does not intersect any U, for m < n - 2 and also
i,,^, ,iw 

• •
Dk only intersects a finite collection (D, ).

V1? 1h-i

Now if IL U ((U, )) does not cover K then

K\uk U (Uk )J^is closed. For if 9 a sequence (ka) 

from this set converging to some k'in U. U ( (U, ))
klA. 1.
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Then It

e

This shows that K com-

was constructed, to contain any limit point of the above 

by the

converges to some

((uk
i.,1

a Dk.

K\Uk V)

u <(X 1
1 * y 

ponent of K in view of the fact that ((U^

and. hence a subsequence d

above construction. Therefore kz

1 n

)) \1S a 
i ^’9

intersection, which is then closed, and. open in K.

Now do the same thing for any point k € K and. then 
obtain the cover U U, U ((Ui_ )) ,Then select a

k.K k h,„

denumerable subcover I ) U, I ((U,«. )), If a
y k.u i,

intersects some D^' , then by the construe-

tion of the collection we need only take that collection 

which contains maximal components and we have the cover 

with the desired properties.

Now we generate trivial tubular neighborhoods about 

closed smooth finite dimensional submanifolds of E. Recall

that"if M c E is a submanifold a tubular neighborhood of 

M in a vector bundle T1 :B------ > M is an open neighborhood Z

of the zero section of M in B and an isomorphism g:Z—>U 

of Z onto an open set in E containing M 5 the following

commutes:
f - section
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A vector bundle B------->M is compressible if given an

open neighborhood Z of the zero section, then 3 an iso­

morphism g^ :B—-?> Zo where ZQ is open in Z and contains the 

zero section 5- the following commutes:
B > ZQ

Now Lang £163 constructs a tubular neighborhood by- 

considering the exact sequence

c -----5T(M) -—>T(E)  ^N(M) —~>o

of vector bundles, for N(M) the normal bundle over M, and 

then by showing the existence of a set c = exp f) 

N(M)) = exp(N(M)) so that is a vector bundle and serves 

as a tubular neighborhood. He also demonstrates the exis­

tence of a compression, if we use the fact that for M 3 

a partition of unity C, for a bundle with a structure 

of a Hilbert bundle. This takes the form of a diffeomorphic 

retraction for the fibre over m e M which is expressed as 
r (v) = am(n^(v^v for (h. ) a suitable partition of unity

m T1+’ll v|i’ "Y-* 1

and am(i) denoting a real number so that all vectors in Hm 

of length<aDi^j are elements contained in the required 

open neighborhood Z of the zero section and where H is the m
fibre over m. Now since M is finite demensional N(M) is m
diffeomorphic to H and hence N(M) inherits a -restricted ac­

tion of the general infinite separable linear group GL(oo) 
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from the Hilbert bundle which we can then compress so that 

we can consider an induced action of GL(c>o) on the tubular 

neighborhood of M by defining gv = expmrm(gv) for v = 

expmrm(v). This is simply a deformation of the action on 

each fibre in N(M). Therefore, we have a tubular neighbor­

hood which we denote by^M with an induced action of GL^).

We can now apply Kuiper’s resultE151 that GL(o°) is 

contractable and hence a Hilbert bundle over a space domi­

nated by a CW complex with a GL(c»o) structure is contract­

able. Therefore,^! is a trivial tubular neighborhood bun­

dle.

We are now in a position to apply the (Bessaga) result

to construct a diffeomorphism f :E\M---- t>E by constructing

maps hljm, h2jln,hBl, where ^ ^(e) = e + P^fe) for

w and p constructed in the fibres. The map ho is then m m 2,m
given by<h2 m(o) = o and

[ h9 (e) = ( 7v(lieii) e + 1 - ^(e))
V 2’B ^Te)

h (e) = t h~' (h*1 (h9 (2e))) for e e H \ m. Since this

map is the identity outside the corresponding closed tube 

of radius I the map f is defined to be the identity on the 

complement of the tubular neighborhood.

Consider now the closed locally compact set to be 

covered as before by the star finite collection 3

K c- U D, for D, a d, dimensional disc in U, and (D, ).
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star finite. Define K =U D, and'K =Ud, . Then define 
di di X,

the required diffeomorphism by first considering K. Con­

struct now a collection (f .) of diffeomorphisms inductive-
J• •

ly as followst Let D^ = X and identify D^ with the M 
r- 1 1 II 1

making sure that | D,eUU..Then start by setting down the 
0-^ Fth'.le J

diffeomorphism f^iExA^---- >E, where . Assume that

we have given f :E \ An_^—“>E, where

An_1 = fn-2fn-3 6 1 (^n-11 VKi * Then since all of the

maps are assumed to be diffeomorphisms
fn-2fn-3- ’fl<V V C B X An-1 1S 8 C1°Sed 

set in the relative topology. Now the diffeomorphism fn_^ 

maps this set to a closed set. Therefore, define 
• n-1

■fn-lfn-2 fl(KnX VK1>-

Now since all of the f^, j^n -1 are diffeomorphisms, they 

map the relevent remaining portions of the trivial tubes 

‘Ydiffeomorphlcally so that An is a closed set sur­

rounded by a trivial tubular neighborhood. Then define 

fn:E\An---- >E by mapping within the fibres as previously

described, f is the Identity outside some closed subtube, 

so that outside the tubular neighborhood we again define 

f to be the identity.

Then let f =]If^iE\ K-----  E. This is well defined and

1 to 1 because f is a composition of diffeomorphlsms which 

are not the identity only on a star finite collection of 

tubular neighborhoods. It Is also onto. For if e€E does
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not intersect any of the tubes then f(e) = e. If e Inter- 
b • 

sects some finite collection of tubes then 3 some e'e fl' 
ho® I 1

d e -ITfj^Ce) rTlfite').

Each D, \ K is closed, in E \ K since D, \ K = d. a,i e i

= D. H (E\K), Therefore each D, \ K is a closed, finite d-i 1 ’ d.^

dimensional submanifold, considered to be G. E,as the image 

of the map f. We can then construct a star finite collec­

tion of trivial tubes f (\ K)3 • Now we can con­

struct a map f :E\ f(K\K)---- >E in the same way f was

constructed.. Define f|= f|E\K\l<, Then f f | :E\K----->E

is a diffeomorphism.

To handle the general closed locally compact subset, 

consider the closed set Kc =^k eK | k has a neighborhood 

chart arbitrarily small with an infinite number of coordi­

nate contributions in K for every coordinatization,3 •

This set is closed, for if e is the limit of a se­

quence £k^ k^ £ Kothen we can take an arbitrarily small 

chart Ue containing a subsequence of this.{Kj.)
1 V

3 arbi­

trarily small neighborhood charts about each k^ which are

contained in U with an infinite number of local coordinates e
contributing to K and hence forcing Ue to also contribute 

an infinite number of coordinate contributions to K,

Now Kc has the property that for keKc3 arbitrarily 
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small neighborhood, charts contributing only a finite 

number of coordinate contributions to Kc for some 

coordinatization of V^., For if contributes an 

infinite number of coordinates to Kc and. hence to K in 

every coordinatization, we could then select such a chart

containing a set (k^) U k-, for k^.k £ , constructed

B (k^) UkcOcOcV^ for an open O,sVx e {(k^) (J 

k^j 3 an open neighborhood °x G a 0x IJ 1<3 =

0, We can assume that 0 is chosen so that 0(1 K is com­

pact, and therefore k^ ----->k, and hence the metric length

of the coordinates contributing to K in a coordinatization 

of also must converge to o. Hence every point of K Pi V". 

is contained in an arbitrarily small chart with a coordi­

nate structure contributing only a finite number of co­

ordinates to K, Therefore, these points cannot belong to

Kc and hence the only contribution for Kc can come from 

only a finite number of coordinates.

We can apply the previous result to obtain a dlf-

feomorphism F1 :E\K ---- >E, where K G K . K\K1 c c c c
is closed in E x Kc because K\KC = K H Exk^, 

Again since F1 is a diffeomorphism, F1(K\K ) is 

closed and satisfies the condition that 3 arbitrarily
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small chartscontributing only a minimal number, d^, of 

coordinates to F^(K\Kc). Therefore 3 a diffeomorphlsm 

FotE \ F1 (K \ Krt)-----> E for some set F. (K\ Kj^F. (K\KJ,

Let K = K V f;YF(K\K )). Then Fo FJ $E\K----->E is a

diffeomorphism where F^| = FIEx'k. This is true because 

F^ and Fg are both 1 to 1 and e e E is the image of the 
point F^Fg^e)), which is an element of E \ K since 

E\ F17k\2c),

Q.E.D.

Theorem 2. Add the additional hypothesis that E is

Cauchy complete to those of Theorem 1. Then if K =

Um,, for M, a closed finite dimensional submanifold,3 
bl 1 1
a diffeomorphism fsE\K ——E

Proof, Select a sequence of trivial tubes (^M^) 

and the corresponding diffeomorphisms f^:E\M.---- E so
thatTM^ c_ e |j>(M^,e) l/2^+^} for the metric p of E

and so that H M, c Q M, and so that Q l7f M, C U M,
i^| 1 1 ieA 1 bA 1

for any infinite set A C Z.

Then let f =Tlf, :E \ K---- ^E. f is 1 to 1 and C^1
17/1 X

since e e E cannot be an element of more than a finite

number, n , of tubes. Hence f(e) = TI f,(e). Also this e ) i
map is onto. For consider the sequencei

1 2



21

Then for ?n = V an<^ an^ Siven e €. E, assume 3 a sequence 

(en) 3 e= F1(e1), . . ,en_1 = Fn(en), " . Now for n > N,

Therefore since E is Cauchy complete the sequence must 

converge to e.

Now e any because since e^ is constructed,

by the action of the function f^1 :E------ ^ExM^ and. e^ £

since e^ is constructed by the action of the function

f^*1 i:E\M^_^cE----->E\M^, and because e^ is mapped per­

pendicular to Mj fl Mj, by f^ for j i. Hence the

limit cannot be in any Mj for j i V i, Therefore since

<2 for any infinite intersection, e can be

contained in only finitely many tubes. Call this number
_ x -q. Then e = f(e) = 17 f^ (e). If the sequence started 

out with any other i> 1 the same conclusion would result.

Hence the map is onto.

Q.E.D,



CHAPTER III

Ck £ APPROXIMATIONS WITH THIN SINGULARITIES

The next step in the plan of this work is to establish 

the existence of maps which start the foliation. These are 

to be smooth functions f »E-----> R^ on a geodesically and.

Cauchy complete Hilbert manifold. E. 

are used, result from an application 

niques of Eells and. MacAlpin [JLOD .

The techniques that

of approximating tech-

Definition If M and N are finite dimensional differ-

enttable manifolds and f:M----- N is a C map, then f is a

- Sard map if k > max(m-n,o), where m = dim M and 

n = dim N, and Lth is Lebesque n - measure on N, where the 

term Sard map means ZZ(f(C^)) = o for C„ the set of criticaln i i
points of f.

If E and F are finite or infinite dimensional mani­

folds and f:E---- ^F is a smooth map and if f(C^) has no in­

terior point in F call f a smooth Sard map.

The case exploited here is when E is a Cauchy com­

plete^ separable Hilbert manifold without boundary and 

F = Rp, p = 1, -• ,m,- - where Rp is the real Euclidean 

space of dimension p. The main proposition which must 

be reworked is the following: (Eells and MacAlpin) Let E be 

a smooth separable Hilbert manifold without boundary. Then 
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the smooth Sard maps are dense In the fine topology on 

C°(E,RP).

The following theorem is the desired generalized 

specialization of the above mentioned result,

kTheorem Let E be a C Cauchy complete separable 

Hilbert manifold without boundary and let :E---- Rp be

an open bounded continuous function. Then 3 a smooth Sard 

£ approximation f tol/s the singular set of f is a 

closed locally compact subset of E.

Before the proof of this result can be given the 

necessary machinery for the construction of approximating 

functions must be established.

Proposition (Eells and MacAlpin), Let X be an open 

subset of a separable Hilbert space H. For each pair of 

disjoint closed subsets C , in X 3 a Wj- Sard function 
(p:X--- >[o,L)5 ^'(o) = Co,<tl) = Cp

Since this proposition is of fundamental importance, 

the proof will be reviewed in the following sequence of 

lemmas.

Lemma (Eells and MacAlpin). Consider an open subset 

X C H« Then for any closed subset C C X and a neighbor­

hood V of C 3 VcXxH a countable collection (U.)..1 of 

open discs of H3 those with even (resp.odd) subscripts 
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are in and cover V (resp,X\C) and y the centers of (U^), 

(a^l^are linearly independent points in H.

Proof The proof is essentially an application of 
H

Lindelof’s theorem. For at each x g V select an open

disc U(x,rx) of radius rx which is contained in V, Then 
M

Lindelof’s theorem assures the existence of a countable 

sub cover of V by discs of the form U(x,rx/2), Similarly

3 a countable cover of X X C, by sets of the form u'(x', rxi/2).

Now V U(x. ,r /2) select discs U9. 3 U(x, ,r /2)CZ U9.
JL Jx • A. JL Jx. • -L

C UCx^r^). Select discs similarly from the discs

U^x1. ,r i ). Require also that the centers (a. ) form a
1 xi 1 i’d 

linearly independent set.
Now for A c X and r > o, let (A,r) = ^x 6 X J)(x,A) 

C rjj wheredenotes metric. Also let Ac = x \ A, Then 

the following lemma is standard U16D .

Lemma (Lang) Let and for k > 1 define
C A C

V2k+1= U2k+1 H / ) (U2k_1,1/k). Similarly

let V2 = U2 and V2k = U2k (U2 ,l/k)P|"- ' / I (u2k-2’1/k)*

In the first case the k come from the cover of X \ C and 

the sets represent an open locally finite refinement of 

(Uo. ), In the second case the k come from the cover of 
21+1 iii

V and the sets represent a locally finite refinement of
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The following is the construction of the function (Q 

according to (Bells and MacAlpin).

Let C = C. and V = X X C . Then smooth functions i o
j i

-----) R, j 4 i and (-1) = (-1) , are constructed by- 

composing smooth functions r^j!R---- with the norm |x-a^.j ,

Cf.. 5 o on U, For j < i (f. , = 1 outside U.= U(a.,r.) 
> -L I * J J J J
(f,.= o for X \ U. < f. . = o on U(a.,r -1/1)

x X -L I -L J v v

V ° between

The functions

) (x-a^.), where is a suit-for H, X7f j (x) = oc

r^j are built upon functions of the form

e q dt. Using the gradient of the Hilbert structure

able smooth function B (t) = o only if t =3 or or t $ r^.

It is evident from the con-

i

i

These are locally finite sums and

and

x or x V^, 

f (x) =^f2+i(x) 

C f > o on V 

I f' = o on C 
o

U1

), where are smooth real valued

functions 9 . (x) = o4 ( Jx-aj ) IT f, . (x) = o only if
-L-L 11 1 jii XJ

Then define f (x) = (x) and

Then define f^(x) 

struct ion that X f o on "V

X V VIA

f* = o on Gj.
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Then define CP :X-

o

ak 
Therefore, x is con-

From the definition <p(o) = CQ and ^ (1) = C^. Also

V<P= (f,,\7f/ - f'vf" )/(fz + f'')^ =yKjX7fj for smooth functions

o. But because

Kj-

Determine a countable open covering (Wp)p>i °f
-I -

X X C \J C1 = (P (o,l)3 each meets only finitely many V ..O 1 p J
If x £ Wp is a critical point of (P , then o =^~Kj(x)

the sum is taken over the index set^jlV^/^Wp j

K^(x)^.k(x) (x-ak) where K. o in 

or x^V, =~? either
J J •Ar JJ K ')>1 * K

1 k
tained in the linear span^ a.

If denotes W intersected with that span, then M isP P P
finite dimensional and the finite dimensional form of the

Morse-Sard theorem applies. But the important observation 

for this work is that this set of critical points lies 

locally in a finite dimensional subset of X. This happens

in such a way that the functions and71*^j and hence 

the locally finite sum^lTf^^ along with f are transverse 

to a smooth path within a finite dimensional span.

The puspose of the functions of the type constructed 

above is to generate controlled partitions of unity. Bonic 

and Frampton have shown that if E is a Hilbert mani-

Wp. Since pjj(x) - o only x = a^ 

x = a. or^k(x-ak) = (Z^)x -^k
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kfold, for k <■ o° , then E admits C partitions of unity. In 
cPfact J. Eells was the first to construct C partitions of 

unity for a Hilbert manifold.. The construction of (Bonic 

and. Frampton) is based, upon the following scheme:

Lev V be an open subset of E and. x e V, Then use one 

of the above <P to obtain a function (p :E---- ^>R 9 <P o,
(!} (x) > o and. £ x | (P( x)>o^ C-V, where V is the union of 

such sets.

Consequently if (Ux) is an open covering of E^a re­

finement of (Ux) consisting of sets of the form £ x[ Cp(x)>o 9

(P is a function of the type described, above. , Since E 

is separable and hence Lindelof,9 a countable subcover

(W^) of this’refinement with the representation x|
cP.(x) > o.^j o,3 . Then let (x) > o3 and

Vr+1 =£ x|(pr+1(x)> o, (P((x)^l/r, )$r(x)Z l/r3 .

Vx g E 3 an integer nx (P . (x) > o and for j n 
nx X’

(P. (x) > o. Then x G V and consequently (V ) is a cover
J . nx n .
of E, Choose m 3 o<m < (P (x) and define V„ =£ x| 

a x ’
< (X)> mA Now V is a neighborhood of x 9 V Av = 0”

x x x*1 n

for large n. Select gr+|€C(Rr+1 ,R) 3 ,tr+l^°

C 1/r, i = 1, ,r and tr > o and also in this

neighborhood gr+j, has no singularities. Then define g^ 1 = r+Ji

sr+l 15 ^r-H 0 diaS. This is Ck and [ x|gr+1>o^ =
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Vr+^. Also V x, all but a finite number of g< vanish on

Vx.Then we have the following formula:

_ 67*4.1
dg^.i = t—2~~ dtp. and using the gradientr+i ^q?. 1

As before this gives a transversal direction for the 

gradient structure in such a way so that the critical points 

are locally within a finite demensional span. Then the 

final partition of unity is constructed by defining 

g = y. g^ which is a locally finite sum. Also for all x 

8 IVg. Ck(Vx,R+). Therefore g £ C^(E,R+) and since 

inversion in R+ is a C^map.g'1 C(E,R+) .Therefore, define 

the collection (h.).?1 by h. = g"f g. . Again, the h, are 

maps whose singularities are locally in a finite dimen­

sional span since it is a quotient of maps which satisfy 

that property. This collection of maps is the required 

partition of unity.

Proof of Theorem 1_. First let X be an open subset of
1 11 P r*

H and consider ^|X:X---- R . Then for any continuous c

f iX----- >R+ we make the suitable approximation ,

Let be a countable cover of X by open discs in
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X with centers (a ). 5 | ^(x)-^(a. ) | Z_ F (x) ,VxeU. ,
1 1/1 1 1

where £'(x) = E(x)/2. Take a locally finite scalloped, re­

finement, which is simply the refinement of a cover de­

scribed. in the previous lemmas and denoted by Then^

a corresponding partition of unity (hj) Let bj =^(ap.

Since is an open map we can consider r^ = dist(b^,bdy (Uj)).

Then r^ V x e Then take a collection of

vectors (v^) for all j and 1 £ i p 9 lvj | r .
J

and

1 £ i$ p are linearly independent vectors and orthogonal

with respect to a fixed orthogonal basis for RP. Since

is bounded we- can consider a vector r c RP=> + r is

bounded away from o G Rp,so that if we assume (j/= (^ + r is

the function we are dealing with then we can assume that

b. 4 b, and (b .+v^)1. is linearly independent for any
J K J J J-^isp

finite collection of j.

Define f = VX (b.+v^) h 
L • J J 
i'i J

Then as before take a

countable open 

many Vi, Then 

This then is a

cover (W ) d of X 3 W meets only finitely p P^l p
£, — 4

for x € Wp, dfx <t,j+Vj)(dhA/P'
i=i j

finite sum of linearly independent vectors

so that the critical set is contained in the union of the

critical sets of the h^, which are locally contained in finite

dimensional spans . Hence the critical set for f is locally
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compact.

Now to see that f is a approximation consider the

following: p

' / T k(b.wh-l#(x))lh.
L- ur J J J

1 3
P z

< 2f(x)21~h,(x)/p = ZU
i--l d J

Since we assumed that we were approximating for^ + r, 

then simply take f-r for the approximation.

The extension to the entire manifold E follows (Eells 

and MacAlpin). Using the smooth Riemannian structure with 

metric p let c (i^l) be locally finite open

coverings of E by charts.

Then by induction choose a continuous «U^ —R+ 

withE^x) < min(C(x)/2,^ (x,bdyU^)), Then take a Sard Ct 

approximation to Von , call it f1-----^Rp. Here

l^(x)-f^(x)|----->o as x---- y’bdy =“> fcan be extended to

a continuous function by defining f^ =l^on E\ U^.

C — n cNow assume and f. are defined and let W. , 1=U. । 1 i+l i+l” i 11 i

and let E, :W1+1 —^R"1" be a map 3 S (x)Zmin(E(x)/2 ,y3(x,bdyWi+1)) 

X/ Then choose a SardE+( approximation to f^ on
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W. . call it f. . sW. ,------ >RP. Then extend, f. . 1 by lettingi+l » i+l i+l i+l

fi+1 = on E\Wi+1. Define f(x) = lim f^(x)V x g E.

f :E----->rP is a Sard map 9 f[V^ = for i 4 j. Also

lV(x)-f(x)|6 ICfxl/Z1 = C(x).
1^1

Now since f= f^ for i < j, we are assured that the

critical set is locally compact. This follows since the 

only places that the critical set is possibly not finite

dimensional is con­

structed to converge to f^ for j i on bdyV^ then any 

sequence of critical values within a suitably small chart 

intersecting bdyV^ must contain a convergent subsequence. 

Therefore since the critical set is closed by definition 

the result follows.

Q.E.D.

coordinate space.

for p1

Remark From this point on, the notion of coordinate

where 1^ is the i

projection will refer to a map f: ----- R^ and p smooth
1 

homeomorphisms of R , denoted by (1.) 3 1. c f(E) and
1 1

projections (p.) 

It will also be assumed without mention that all the 

appropriate open functions f:E----- )R^ satisfy the condition

that for a suitably small open neighborhood 0 c. f(E), 

then (f”1 (0), (|>) is a connected, chart, for a map .
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Definition 2, Call a continuous bounded open func­

tion fiE----- ' RP directionally transverse if the following

is satisfied: Consider the collection (pAf), ■ , wherei l$i$ p 
is the retraction onto = the i coordinate projec­

tion, Assume for convention that p^f(E) = (o,d) for all 

E and also require that for c<d, (p^f )”^ (o,cjis bounded. 

As an example consider e e E and the function —(e) 

= ^(6,6) for the metricJD , Construct a diffeomorphism 

gsE----->EX e which is not the identity only in an arbitra­

rily small neighborhood of e. If we assume that this 

metric function is not bounded above, then using a suit­

able homeomorphism r:R+----->>(o,d) for d.^-00,3 a com­

position r (jJ — g:E---- >E\ e ------>R+ ----->(o,d) giving a

bounded open function so that (r g)-^(o,cZ] is bounded 

for c<d. Now £ approximate as in Theorem 1 for a dif­

ferentiable £ which satisfies the property that ^.(e) < 

sup( (b-d| , |b I ), where b = rty- g(e) and ^(e)---- >o as

b----->> o or b---- >d. This approximation f is open, bounded

above and below, and satisfies the condition that f”^(o,c] 

for c < d is closed and bounded. From now on we make the 

assumption that the locally finite open covers c c

which are used in the peacing together process of Theo­

rem 1 are constructed by taking two such star finite open 

covers for rty— g(E) and then taking the inverse images,thus 
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actually getting two star finite covers.

The notion of a maximum solution curve will be re­

called in Chapter IV. For now consider this to be a smooth 

curve ^(t), where ^Tx(o) = x and satisfying the property 

that f(^.(t)) is monotone increasing with the parameter 
i

t G R .If the above approximation were constructed for a 

directionally transverse function^f:5----- >8^, then we con­

sider the collection

Theorem 2. Let f:E----->R^ be a directionally transverse

approximation for E satisfying the conditions of Theorem 1. 

Then if p^f ( 0"x( t)) ^c < d as t increases or p^f ( 6"x(t) Mb^ 

o as t decreases, SaeKcE and 3 tQ€ = a , where

K is defined below.

Proof Assume p^f( crx(t))^c < d as t increases. For

convenience we use the notation f = p^f. Then let i =

inf(j |.f(c) €. 
- 

f(c) € only Vj

Since the covers are star finite

for j g rr. = a finite set. So we can choose

e n
that

a sequence (en)ft^ C 

choose an E- so
1 ’ J6

lb fl Vj for jQ € . Then we can

it is differentiable in W. U.

and if xn = coordinate representation of en in U^, then

V » 4 (x )----->o as n---- >oo because 4 (x)-----?>o as
i , j0 n i ,.jo

x----- > bdyW/ f) U. and for the sake of continuity
i i i Jo

is smoothed out to be equal to zero on the set E \ W- and
Je
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differentiable everywhere, and so that finally f . = f. +
r _ °o 1
C A . Now f. = f |V. and df|= V f.+ V f • •L1’Jo Jo 1 "'Jo

takes the form ((^ Il < U ) )x - p], (x )a? + VC (x )) 
ele i X XX **“ X X -X* X X

because df^ = 'Z. b^ dh^, which is a locally finite sum and 

each dh^ has that representation. This then generates a 

sequence which converges to o as n---- There is a slight

ambiguity in referring to convergence to o, for this is 

understood to be the zero section of the tangent bundle or
1 

if the norm is introduced then o g ,

Now let K = those points of contained in the locally

finite dimensional span which determine the critical points 

of f^.This is a locally compact connected set and if f. (IL)

= (b ,d.), then for b. < b < c < d., f/Cb,oJ is closed 11 1 1 1

and bounded and then f£" 1 C bfc"3 fl K is a bounded closed 

subset of a locally compact,connected )complete| ANR, hence 

compact. Now since ( (xn)a?) C C b,c3 fl K there

must be a convergent subsequence converging to a. Nov;
^l^i(xn) o unless xn is contained in span(a^) and this is 

what we assume doesn’t happen,For then xn £ K. In that case 
since ( £, (xm))-----> o, then ((Z/?.(x ))x )—-a,

-L * 11 n n

If lira /].(x ) = o, then -a = o e U. fl H. Let a =
n 1 n 1
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C-a, if lim i(xn) = o .

-a/lim j/xn) otherwise

Hence >a 6 K. Now by continuity and the mono­

tonicity of f(Tx(t)), and by the fact that a maximum 

solution curve is defined for every point and any curve 

which is a restriction of the maximum can be extended 

through this maximum curve, if we understand that xn = 

(yv(t ), then O' (t ) ----a and f( (5"„(t )) must converge

to c and attain the value c for some value tQ, i,e., 

f(a) = f(Q'x(to)).

The case where f((Tx(t))b > o as t decreases is 

true by the same argument.

Q.E.D



CHAPTER IV

DIFFERENTIABLE FUNCTIONS WITHOUT SINGULARITIES

AND LOCAL p- PARAMETER GROUPS OF

DIFFEOMORPHISMS

“We formulate here the principle that if a differ­

entiable map f;E---- “> Rp is given without singularities in

such a way so that the maximum solution curves are defined 

on all levels, then a local p- parameter group of diffeo-
— -I A,

morphisms is generated so that for r,r G f(E), f (r) 

f ^(r), where 7. denotes diffeomorphism. As before 3 £ 

00. This process is important in generating a foliation

technique.

Vie refer to Lang ^16*3 and Palais £18'] and for 

the details concerning the material in the following 

definitions.

kDefinition 1_.A C -vector field X on a C manifold 
k-1E is a C cross section of the tangent bundle T(E) i.e,,

X:E----->T(E) 9 fl X = identity, where IT is the projection

of the bundle, A solution curve of X is a C^ map (ye:(b,c) 

----->E 3 o'= Xd .If o G (b,c), we call C)^(o) = e the 

initial condition. V e €. E, 3 a solution curve G"e of X 

so that every solution curve of X with initial condition

e is a restriction of T . This is called a maximum solu- e
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tion curve.

There are functions t+ :E-----7 (o»^3» t~ :E----- > ,o)

define4by requiring that the domain of Q e is (t (e), t'1’ (e)), 

These are the positive and negative esca.pe time functionals 

for X,

If t“^(e) s < t+(e) and e = (yo(s),. then (y^ =

s» where"^g!R-—R is defined by requiring that (t)

= s + t, and also t+(e) = t+(e) - s and t~(e) = t"(e) - s. 

t is upper semi-continuous and t is lower semi-continuous.
Let D = D(X) = ^(e.t) E % fil t~(e) z_ t t+(e)} and

V t e R let Dt = Dt(X) = fe 6 E I (e’t) D3 * Define

(piD-----> E by (p(e,t) = Q"e(t) and let E be defined

by <P^.(e) = ^(t). The index set (<P^) is called the maximum 

local one parameter group generated by X, D q E y R is open 

and q? :D-----> E is a C map, V t € R, D^. is open in E and
1cis a C - isomorphism of D^. onto with. as its 

inverse. If e e D, and cP, (e) € D , then e £ D. andu u S UtS

•’tts161 =

k-1 kDefinition 2,A C -vector field on a C manifold E 

without boundary is called strongly transverse to a func­

tion f:E----->R on a closed interval Eb.c’J if for some > o
the following conditions hold for V = f 1(b-S,c+J) :

k-l1. Xf is of class C and o on V.
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2. If e e V and. (T is the maximum solution curve e
of X with initial condition e, then 0e(t) is 

defined and not in V for some t > o and also 

for some t o.

Definition Let E be a manifold and f iE-----

a function. Then X 6 T(E)e is called a pseudo-gradient 

vector for f at e if :

1. ||X||^2||dfe|I
22. Xf = df (X)^. |{dfe(|

A vector field X is a pseudo-gradient vector field 

if Xg is a pseudo-gradient vector, A pseudo-gradient 

vector field can easily be constructed as follows (Palais):

First a pseudo-gradient vector Xg is constructed at 

a point e. Then it is extended to a local constant vector 
field in a neighborhood Ue of e. Then let 0 = ^e" C Ue I 

X<f > ||df_(| and £ 2|(df_lj?, Since all of these

functions are continuous in U , 0 is open. Now V e £ E, 

define such a neighborhood 0e 9 there is a pseudo-gradient 

vector field X for f in 0e. Then take a C partition of 

unity ^or E 9 V b € B, ^eCb) £ E with support of

Vb c °e(b) * Then let X = 2?vbxG(P • Thls ls a ck~1 
bcB

vector^and since the pseudo-gradient vectors at T(E)g are 

convex , X is a pseudo-gradient vector field.
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The function g(t) = f((j(t)) is a strictly monotone in­

creasing function. This follows because g/(t) = df (<r(t)) 

= 4<WX6Ct>)5 ll I 2 >

Lemma Let E be a connected, geodesically and 
k Cauchy complete separable C Hilbert manifold, and let 

f:E---- H be a bounded function with no singularities

so that f((T(t)):R---- >f(E). Then if f(E) = (b,d) and if

c € (b,d) and W = f~^(c), W is a closed submanifold andr3 

a C^- isomorphism F:V/X(b,d)-—} E 5 \/ c £ (b,d) the map

e-----^>F(e,c) is a isomorphism of W---- :>f‘"'*"(c) which is the

identity fof c = c.

Proof. Let X denote the pseudo-gradient vector field 

for f, which in this case is really the traditional gradient 

field. Since f(<J"(t)) maps onto f(E),X is strongly trans­

verse to f and Xf > lldflf^ > o. Also since t >l/t is 0°° 

for t / o, we can define Y = X/Xf, which is a pseudo­

gradient vector field. Then let be the maximum local 

one parameter group generated by Y. t----?^.(e) is a maximum

integral curve of Y with initial condition e. Since

d f (. (e)) = Yf = xf/xf = 1, we have f(^P. (e)) = f(e) + t. 
dt r
Since f(<S(t)) is strictly monotone increasing, 3a unique 

tQ for c £ (b,d) so that f(<T(to)) = c .

Therefore, <Pt(e) is defined for all t so that we can
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define F:W^ (b,d)----->E by F(w,t) = <Pt_c(w), which is of
Ir . .

class C according to the facts in Definition 1, F(w,c) =

^(w) = w and f(F(w,t)) = f (<pt-c(w)) = f(w) + t - c = 

c + t - c = t. Therefore, F:W \ (b,d)----->E and w >F(w,c)
1 . __

maps W into f~ (c). If we define F sE-----  W x (b,d) by

F(e) = ( <Pc_f (e j (e) ,f (e)), then F is Ck and FF =

^f(e)-c^ ^c-f(e)^e^ " " e* Similarly FF = identity.

Therefore F and F are both 1 to 1 and onto,

Q.E.D.

kLemma 2. Consider novr a C directionally transverse 

function f:E---- >> Rp so that for every point e G E there is

a coordinate system of the type described in Remark 111,1 

and Definition III,2 so that the p lines intersect only at 

f(e). Also assume that p^f satisfies the hypothesis of 

Lemma 1 for l<i$p. Then for r,ref(E), f-1 (r) f”1 (r) ■£. 

Ep,r, wheredenotes diffeomorphism and Ep,r is a closed 

submanifold of codimension p.

Proof. Consider a suitably small disc 0r C f(E) 

about r. Now consider f restricted to f”^(0_) = U . Then 
r r

with respect to the coordinate projections about r, we

have Pj^f sUr-----^(b^,d^). For convenience it is assumed that

bl b. and d. = d,. Then since d(p.f) = (dp,)^z .df and 
j -L j xc .1 f (e}
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4 o, we have dCp^^f)since is surjective and hence dp^

•4 o. Therefore, if we actually only assume that f is with­

out singularities and p^f have their maximum integral curves

defined over the entire manifold, the hypothesis of Lemma 1
— 1is satisfied. Therefore F. :W V (b,d)---- U , Now f ~(r)P i rt r

= 0 VJ . We also have the' p local one parameter groups of
1 1 - -1-

diffeomorphisms ). Then for any r € 0^, f (r)= ft W—
P -1 1 1

= Q W y (cr )• There are maps g^if (r)-----^f-1 (r),
i p j 1

g9:f (r)----- •>f“'!'(r) defined by g1 (w) = <P o o o $ (w)
r- Cr1 p il

- 1 1 P
and g9(vi) = ($ o c <p o o (D (w). Obviously by the

' "C-p ~C-Y* C7'rl ri rP
i

definition of the collections , 6^62 = identity and

g2^1 = identity. Therefore each g^ is bijective
1^ —1/X/

they are C' maps we have the result that f (r)%

and since

f-^r).

Now for r 0^ we can construct a finite chain (or )" 3 
rk

$ an<i r1 = r and r = r. Since we then 
rkH rk+l 1 n

have for q e 0 0 0 that f"-1 (r, ) £ f-1 (q) ^f‘l(r,1)
rk rk+l K k+1

— 1 c-4 —1then by induction f (r) f (r).

Since the p local groups are determined by p commuting 

projections in the sense that the derivative of the com­

position determines a transverse direction, the local p-

parameter groups constructed above are locally abelian.
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-1 P-r
To see that f (r) = E Is a closed submanifold 

f
of codimension p, we observe that f-1(r) = f) W , where 

। i

VJ is a closed submanifold of codimension 1 and where 
ri

locally the p-parameter groups vfhich determine the V/ are 
1 i

transverse with respect to each other,
Q.E,I).

Note, Since f "(r) = C\ V/ , it may happen that for 

p> 1 the relative topology of eP’1*/. Ep is not the same 
T) "p 

as that determined by the Riemann structure of E ' , which 

is the structure used in the above result to give diffeo- 

morphisms by. following solution curves.

In Chapter V the notation E£EP,rx E^ is used, keeping 

in mind the fact that the topology of the product is deter­

mined by the bijection E<------ > EP,rX E^.



CHAPTER V

AN INVERSE LIMIT REPRESENTATION FOR MANIFOLDS

The machinery has been set down so that a represen-

tation theorem for infinite dimensional separable Hilbert

manifolds can be formulated in the form of an inverse

system of finite dimensional open manifolds, which are in­

duced as the image of smooth maps Pp’E----->R^ and with the

inverse limit structure being determined by systems of

foliations.

Definition 1. A separable infinite dimensional mani­

fold E is foliated by a collection (eP,3?| E^’1" is a closed

submanifold without boundary of codimension p and r e E
P CL

RP.) if E = (J Er,P with dim E = p. Also require that 
r p -

„p,r = 0 for r / r and eP*1*^. EP,r. denotesEP’rn

diffeomorphism in the differentiable case.

Define a saturated system of foliations of E to be a

system ((Em,r)| m > p)d V m» E = U Em,r so that each
r

gm+l,r containect j.n a unique Em,s and each E™'8 is

foliated by a subsystem (Em+1*r| r € Em+1 m cl Rm+1), with 

dim E^ - = 1. Require also that/)Em,r = e, where E®,r
m+l,m e ’ e

is the unique leaf of the foliation of codimension m con­

taining e.



Lemma 1., Under the above conditions9 a bijection

E<----->LE , for an inverse system determined by the sat-m 
urated system of foliations.

Proof Construct a function Pm’E---- Em by defining

p (e) = r . where r is the parameter element of m e,m * e,m

E™'r. Define PBm+1 >Em by ,

where both parameter elements are elements of some set 

Em+i m , which is unique since each Em+^»r is contained in 

a unique E * . This map is well defined because e is an 

element of a unique Em+^’r and a unique Em,s and is clearly 

onto for the same reasons. Therefore by composing these 

maps to obtain the collection (Pnm) f°r m n p, we 

obtain an Inverse system (Em? pnm | p m Is onto) with limit 

LEm, Now define the correspondence E<---- > LEm by mapping

e-----> (pm(e)|m>p). This Is 1 to 1 , For if (Pm(e)) =

(pm(e)), then r = Pm(e) = p^te) = r- V m, and e,e e E®’r 

0 E»,r which Is j6 unless r = r-. But in that case 
e e e

e,e^r)E*’r= riE^r = e =e.

The map Is onto by definition. Therefore the bijection 

is established.

Q.E.D.
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Definition 2, A connected manifold E satisfies con­

dition 0 if for e & E, the metric function = p(e, » ) 

satisfies the condition that for r,r g y^e(E), chosen 

arbitrarily close, then ys^r,?) is an open chart and hence 

considered as an open subset of the Hilbert space H. It is 

assumed,of course, that we deal only with the separable 

case.

We can deform the function by taking an arbitrarily 

small chart about e and then construct a diffeomorphism 

f«E—~>E\e which is not the identity only within’ that small 

chart. Then the compositionyDefiE----->E \ e—^-R gives a map

E---- } (o,oo) lf we assume for the moment that the original

metric function is unbounded. Then since each point of E 

is a finite distance from e, we can construct a diffeo- 

morphic retraction <^<- »(o,^)----> (o,d) 3 d < , and then obtain

the composition c<pefjE----->(o,d),Then by simply denoting the

above composition by

closed subset of E. Also if Em is a closed submanifold con­

tained in y3gCr,rJ then a similar metric function j>eiEm----->

(o,d3 for d< oo can be constructed for e g Em. Assume that 

Em C U = EmX Rm G j)"^Cr,r 3 c H. If d is finite choose 

r arbitrarily close to d so that we can consider (r,dj .

Each component can now be considered as an open subset of 

H since U has the simple form Em X Rp, The result of Eells

e,Pe(°f'bj for b < d is a bounded
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described. In Chapter III can be applied to construct a 

function l|/ :C---- > » where C represents the closure
. .-i _i . .-I

of this component, and so that vjJ (r) = Joe(r) and- (d-) 

is a point. Then consider the function y> :Em—^(OjdZl de­

fined so that y | (o,r3 = y> e and p |y’g Cr.dD = Q? . Then

jD''(d) is a disjoint collection of points, each in a sepa­

rate component, thereby allowing arbitrarily small dis­

joint neighborhoods to be constructed about each point which 

support a diffeomorphism ^:E-—*>E x-------------- Then the com­

position gives a map^TTfjjE----->E x^-l(d)-----^(o.d). If d was

not finite then the above construction can be used. Simi­

larly, if for the original metric function the assumption 

is made that if this function takes on a maximum finite value 

d,then for r arbitrarily close to d ^(r,dD is an open sub­

set or chart of H the latter construction applies. In any 

case, a metric function can be constructed, deformed slight­

ly, whose image is a finite open Interval.

Theorem 1, Let E be a connected, separable, geodesi- 
k cally and Cauchy complete, C Hilbert manifold satisfying 

condition 0 of Definition 2, where 3 4 k 4 co , Then V qe 

Z,3 a homeomorphism E where Em c Rm and the inverse

limit structure is determined by a saturated system of fol­

iations. Also E_ splits in the sense that 9 E and E 5 m m+ m-
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E (I E = E and E , f) E = E 1 , m-f. U m- m m+ '' m- m-1

Proof For some point e € E, consider the metric

function e, assumed to be deformed so that pesE----->

(o,d) for d finite. Then since J?g(o,b3 is bounded for 

b 4 d, we can apply Theorem III.2 to obtain an approxima­

tion :E----->(o,d) so that f^ has singularities in a

closed locally compact subset K 9 if for any maximum solu­

tion curve cr , (df^) ——> o, then 3 a tQ so that <r(to) 

is a singularity. Now as in the proof of Thoerem II.1 K

= (K\KC) U Kc so that Kc C K and is closed and 9 3 

diffeomorphisms and Fg so that F^iE x Kc ~> E and Fgi

E \ F^(K \ Kc)-—^E. These maps are constructed by cover­

ing first Kc by a countable collection of finite dimensional 

closed manifolds and then constructing trivial tubes which 

support a collection of maps. A similar construction takes 

place for F^tK \ Kc). Now if instead we take these closed 

finite dimensional manifolds and extend them by taking all 

the points on the maximum solution curves with initial con­

ditions in these manifolds we obtain two collections which 

can be covered by finite dimensional manifolds and then extend 

to trivial tubes, which may constitute a non-star finite 

collection of tubes. But we still have the case where we 

want to remove from the manifold E a countable collection
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of finite dimensional submanifolds, so Theorem II.2 can 

be applied for the collection determined by Kc and also 
-1 t Fjl(K\Kc) so that we get a diffeomorphism g^ :E\K ---- >E,

where denotes the total collection of submanifolds re­

moved and so that all the maximum solution curves in E xK^ 

are defined on the entire manifold in the sense that for 

every c G (o,d), tQ so that f^ ( 0"(to)) = c,for f1 = f1g. 

Then Lemma IV,2 applies to give a foliation in terms of a 

local turned global 1-parameter group of diffeomorphisms. 

Therefore E~ (o,d)XE^,r for any r€(o,d), where E^,r 

is a closed bounded submanifold.

Now for any q£ Z, we can choose q points e^ so that 

( ) . is a collection of directionally transverse func-

tions and have no singularities in a small neighborhood 

of a point e 9 they transverse q linearly independent 

directions at e. This is possible by choosing the chart 

Ue = exp T(E)e and then choosing q points e^ in Ue , which 

are linearly independent and so that the corresponding dis­

tance functions transverse q linearly independent direc­

tions through e}and so that in a small disc about e there 

are no singularities. Then define a function p :E---- -■>

R^- by^p(e) = ( (e), (e)). Then since each

p is directionally transverse in the sense of 
r ei 

Definition III, 2 we can apply Theorem III.2 
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to get an approximation f 3 for any q coordinate lines, 

in the sense of Definition III, 2contained, in f^(E)}then

the corresponding projections satisfy the condition

that if d(p.f ) ----- ?o, then 3 a t^ so that <y(t ) is ai q uro o o

singularity. Therefore Lemina IV.2 applies to give a local 

q-parameter group of dlffeomorphisms, Novr In fact this a 

global abelian groupbecause if there is a hole in f^(E), 

then two locally parallel lines determining coordinate lines 

in two different systems, which are on different sides or 

homologically separated from the hole In the sense that 

these lines may be contained in a neighborhood of some plane

passing through the hole which isn’t locally connected, 

determine the same function Px fHi q with respect to each co­

ordinate system. Therefore the diffeomorphism determined 

by going around the loop about the hole is actually determin­

ed by following solution curves which are parallel with 

respect to parallel coordinate lines on different sides of

the hole. Therefore going around the loop gives the identity.

Now to continue on, we apply a metric function p :E^,r
Vej

----- >(o,d) constructed as In Definition 2 above and with the
q,r

condition that In some neighborhood of a point e c E

this function has no singularities and transyerses a direc­

tion which Is linearly independent with respect to the first q



50

directions. Therefore since Eq,r is closed, and contained 

in E, it is Cauchy complete and we get a approximation 

T^sE^’1*---- ^>(o,d) so that has no singularities in a

small neighborhood about e. This is possible by letting

this small neighborhood be the first set in the cover 

which determines the dominated locally finite cover by 

charts used in Theorems III.l and III,2 and by letting f^ 

i so 

st set 

n we can 

fq+l(e)

= fq(e) + fjCxe), where x is an appropriate element in the 

global q-parameter group of diffeomorphisms. Therefore, 

since (dfq+1)e = (dfq+i)e + dx^x“1e onto 

x*"^e is a critical point in E% we can then conclude that 

small extension of V

above theoremsdominating cover of the

define defined by letting

that^e. has no singularities in U 

in the

£ and is the

on U. *) V. , where U. is a : j 1 1 ’ 1

a function f_ 4 tE-

the critical set is still closed and locally compact since

it is then of the form KX E . Then 3 as before a dlffeomor- 
tphism g:E-----E \ K, where K contains the critical set and all

the points determined by maximum solution curves which con­

tain a critical point. Also as before, if (d(p.f 1)) ----- >
1 q+l

o,then there is a tQ3 is a critical point. Now in 

order to maintain the notion of a foliation we must take 

note of the fact that g does not necessarily map E^,r----- >
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Eq,r. But If for e e E^* we map e ---- 5>g(e ) and. then
r er r

map g(er)-----)>E by the element of the q-parameter group of

diffeomorphisms which maps E^(’r)---- we a comPosltl°n

which maps E^*r-^->E^'r. Since the total critical set =
er er

critical points and the appropriate maximum solution curves 

plus the covering collections of finite dimensional manifold, 

and all the appropriate solution curves is still of the form

X Eq under a diffeomorphism, then the last map in the 

above composition is the same as a parallel projection, and 

hence e^ cannot be mapped to an element of K^. Also this is 

a composition of adiffeomorphism and a projection and since

E$E„X E^,r.locally 3 a differentiable map3E<^,r-^->EC^,r.and
Q er ) er er

which simply- deforms the solution curves of the appropriate 

projections of the vector valued function fq+l because the

map g is constructed by an Infinite composition of maps with 

non identity support within trivial tubular neighborhoods of 
finite dimensional manifolds containing parallel copies of .. 
Eq, chosen so small that in local coordinate charts contain­

ing the tubes no leaf is ever orthogonal to a fibre, and 

since each map of this infinite composition maps within a 

fibre over the base manifold as in Theorem II.2, Now since 

the Eq represents an abelian q-parameter group of diffeo- 

morphisms we can combine the newly constructed composite 

maps by varying the parameter r eEq to obtain a new map 

which by an abuse of notation will be denoted by g:E 
E\K^; which is differentiable, and does not disturb any of 
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the solution curves, plus the additional fact that It maps

each leaf Into the same leaf and thus preserves the folia-
"1^

tlon. Actually, all that Is happening is that ExK is be­

ing retracted into itself differentiably by catching some

of the critical levels from the various E^,r in fibres of 

the various trivial tubes and deforming the entire struc­

ture to give larger breaks about areas of K^, thus giving 

a measure of how any possible geodesically complete struc­

ture on a leaf E^,r is not preserved under the diffeomor- 

phisms of the q-parameter group. Then as before3 a com­

position fq+1 - fq+i S’E----- so that there is a global

abelian q+1-parameter group of diffeomorphisms and with the 

property that fq(E) = Eq is mapped onto by f j since there 

are no singularities in a neighborhood E^X , where is 

determined by some parameter value ro. Hence the splitting

for Eq+-j_ is determined by taking ^q+^4_ = those 

points above and rQ for the q+l-parameter value. Similarly

Ed+^- = those points with parameter value in the q+1 co­

ordinate/ r , x o
Now we must proceed Inductively with the above pro­

cess in a maner to get a saturated system of foliations. 

Therefore the only thing that needs to be determined is 

that E™,r= e. To do this, consider the following* 
h e
E is a separable manifold. Therefore we can continue 

the above Inductive process for each integer m $ q 'and 

eliminate each coordinate line in a small local chart about
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some fixed eQ G E by letting each such coordinate line cor­

respond successively to a new transverse direction in the 

m-parameter group of diffeomorphisms. This inductive pro­

cess continues word for word as that described above and 

gives two systems (Em,r) and (E ) , where it is under-
eo m

stood that r = r(eo). By definition of the construction 

E™,r = LEm,r = e because if some e 4 e is an element 
Sr ° °n i- O m’-fc O

of A Em,r , then e has the same coordinate representation 
%

as eQ since every local coordinate line is a transverse 

direction and every parameter in each coordinate line at 

some stage belongs to a new leaf of one of the foliations. 

Hence e = e . o
Now to see that C\ Em,r= LEm,r= e we construct a

•J e «=- e 

homeomorphism giL(E™,r, h n) ---- ^LEm,r. g1:E<l’r---- >E<i,r
eo 1 eo e

is represented as any element in the abelian q-parameter 

group of diffeomorphisms which is determined by following 

a path denoted by 1 (f (e ) ,f (e)). The map g9tE^l,r—->E^l,r 
o

is given by a map in the abelian q+1-parameter group which 

is determined by following a path in denoted by

1 (eo) »f^+2 (e)) • Now construct h^ by following a path

1 (fq+l ir(e)) starting from fq+1(eo)i where g1(e) = eQ 

and all of these paths are taken in E This is then 

given by the following diagram:
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.q+1, r

Eq,r 
eo

Inclusion = i , therefore obviously i Eg = s2 NoW 

by the construction of the m-parameter groups the q-para- 

meter group can be considered as a subgroup of the q+l- 

parameter group on intersecting the domains. So we have 

g^ h^, the map determined by starting from fq+i(ec) and- 

going along the path l(f„ 1 (e ),r(e')) and then along the q-rl O

path 1(r(e),fq+^(e)), where these paths are. considered in 

an(l determining elements of the q+1-parameter group.

But the union of these paths joins fq+j[(eo) an^ fq+]/e) 

and hence gives the same map as that determined by

l(f„,i(e^).(e)), which is gn. Hence the diagram com- q+i o q+1 c

mutes. We continue the rest of the construction inductively,

with the inductive step the same as that above. Hence

since each g „ is a diffeomorphism we get L(Em,r , h ) 
m-q + e^ m-q o

LE™,r^r P| E™,r. But we can map L(E™’r ,h n) ---- i>LEm,r = Cj

Em,r by considering squares of the formi 
eo
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hlh2 hj+l 
j,r _______________E% <

1

V
hlh2 hd

Eq+ j-1 .r^__________ __

Eq+j+l,r 
%

hd+i

Eq+d,r

The compositions indicated, in the diagram are well de­

fined because each h^ is constructed with respect to a q+i- 

parameter group, with each q+i-k-parameter group being con­

sidered as a subgroup of q+j-parameter group by intersect­

ing the appropriate domains of the maps. Therefore the 

horizental compositions give diffeomorphisms. Now since 

the diagram obviously commutes we have L(Em,r, h ) zt
** o

LE®,r = fl E™,r = e^. Therefore A Em’r^ e , and since 
^e0 eQ o e o' 

e £ A E™'r then e = flE™'r, 
e e

Therefore, the existence of a saturated system of fo­

liations has been established and E«-^LE , where E = f (E), «- m m m

It is also clear from the construction of the foliations 

that if we give LE^ the topology consisting of open sets 

which are the images under the correspondence of open sets 

of E, then E ^7 EE , and since the maps determining our fo- 

nations are onto, the topology of E„c LE_ is the same as' m -e m
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the manifold, topology of E^C Rm, The topology behaves 

like a modified, box topology for LEm c

Since the splitting for Em has been established the 

theorem follows.

Q.E.D.

Remark In any representation E^LE^, we can choose 

a point e e E and take a diffeomorphic image of Em passing 

through e, where this is determined as the transverse mani­

fold of the m-parameter group of diffeomorphism.

a generalized Palais-

formulated as follows:

Definition 3. Let LE denote U E with the weak --------------- — m V m
-'t ______

topology. That is A C LE is closed (openK---------z A
ID

Em is closed (open)M m p. Then

Svarc lemma C193 can be

Theorem 2. Given a manifold E with the hypothesis

of Theorem 13 E C LE , then E — LE , m m’
strong homotopy equivalence.

where - denotes a

The proof will follow after a series of lemmas.

Lemma 2, LE is dense E.——— - m

Proof For e e E fix a transverse manifold E pass- ------ — m
ing through e, where h:E LE , Then a neighborhood basis <r m
can be given at e fc E by (Um)>^ for Um C E™,r)C Dm,where Dm

~Rm, chosen so that f|p.h(U ) = r. (e)6E. .Clearly since
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e = nEi,r, Ou = e and some element of the sequence 
e m

(e^ | em = (r1(e), ,rm(e),o,o, )) is contained in

every neighborhood Ue of e.

Q.E.D.
Lemma 2- F°r a compact KcE^LE^, 9 a homotopy h^: 

►"■’-'I
K---- >E3 h = id, h. | K /) E . = id and h. (K) C E^, for largeo t '' n 1 n
n and for En embedded in K as a transverse manifold pass­

ing through some point e E as in the remark above,

Proof Since through each point k e K, we can put a 

closed transverse manifold E , and then since E is geo- m, k 
desically complete, then construct a trivial tubular neigh­

borhood Ie , as in Chapter II, Now since K is compact we 
m,k .

can cover K by a finite number of the tubes ( Em , ).But m,

then since LE is dense in LE and therefore in the homeo- -» m a- m
morphic image E, we can find a point of LE in each IE , m m । k . •

But since there are only finitely many tubes, we then can 

assume that 3 some large n m so that En contains these 

points. Also when we construct the tubular neighborhoods 

with the orientable manifolds E , r E we can assume m,^1- n.k^
that | E , D I E . by the continuity of the exp function 

n, it in ।
which is the basis for the construction of the trivial tubes.

Therefore, we can assume that K is covered by the finite col­
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lection ( 1E , ). Now take the point e, & E which is in n,in
the tube^E , and. connected to the base manifold by a 

n,^

path in the fibre containing it. Then to each point of 

this path we can apply the n-parameter group of diffeo- 

morphisms and extend this set to En / !• Then by the con­

tinuity of exp in the construction of the trivial tubes we 

can assume the E is contained as a section of E , .n n,^

But since these are all trivial tubular neighborhoods each 

one can then be considered to be a trivial tube with base 

En« Hence, again by the continuity of the exp we can as­

sume that these can be deformed so that there is just one 

trivial tube Ie containing K. Therefore we can define h^ 

as the retraction in the trivial tube defined so that

h = id and h. I H = e where H is the fibre over e e , o 1 ' e e n

Q.E.D.

Lemma Let A be a closed subspace of a compact space 

X and let f:X---- ^E be a map 'Sr f 1 AtA—LE . Then 'S ao o 1 m
m"’z

homotopy f. :X-----  E of f 5 f1 :X----- LE and f. [ A = f I A,t oi m tf o'

Proof Consider a compact KQLE^, Then the intersec- 

tion is contained in some E . For cover K LE by sets n -=» m
(0 n Em) and take a finite subcover, 0 can be the trivial 

tubular neighborhood of Lemma )• Then there is a maximum m
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e= n appearing. Then in Lemma 3 let K = f0(^) with the n 

chosen here to be equal to n above. Define = h^. fQ.

Q.E.D.

The proof of Theorem 2 is now standard (Palais).

For n > o, let a 6 Then let a =CfJ]and

let f. :Sn —E be a homotopy of f^ with fn tSn -----  LEm byt ol -»> m
Lemma 4. Then under the injection itLE LE we have m m
i# E*f^"3 = a. Therefore i^ is onto. 1 TA7/^

To prove that i# is 1 to 1 let b£ ^n(EEm) 3 i#b = o.

Then let b = E f 3 • Now i(f (Sn)) C LEm cl E. But o^ o —m
since i«b = o 3 f. :Sn y. I-----  E 3 f- (Sn) = base point and

r i .
f is the original fQ, Therefore by identifying SnX1 to

a point we have ftSn X l/Sn X 1 = Dn+1----->E so that Ef I SnJ

= b. Then by Lemma 3 a homotopy a f = f with

f. iDn+1---- > E and f. iDn+1 ---- LE and f. I Sn = f I Sn.
t t -> m t I o’

Therefore b = f f 1 | Sn3 and since f, »Dn+^ ----->LE , then
1 1 m

, o j-l ril^‘b
b = o and i# TTn^^Em)—“^'^(E) is onto for all n.

Since E is an ANR we have both E and LE. dominated by m
CW complexes. Therefore the weak homotopy equivalence is the 

same as strong homotopy equivalence in the category.

Q.E.D



CHAPTER VI

A HOMOLOGY FUNCTOR H^ (’.Z)

We now have the machinery of Chapter V at our dis­

posal, which in a sense can be considered to constitute 

a saturated foliation category, to obtain a homology theory 

which distinguishes the subsets of cofinite dimension. The 

theories of Geba E12D , Geba and Granas E133 , Bells E93 , 

and recently Mukherjea C171 consider the possibility of 

constructing homotopy and homology functors which are de­

fined with respect to cofinite dimensional sets and which 

give various duality isomorphisms, Mukherjea uses a strong 

homotopy equivalence M—along with Poincare duality in 

finite dimensions to construct a cohomology functor 

HC"*P(M,G) which is determined by a direct system construct­

ed from the injection maps of the homology of Mn and the 

dualities, A similar homology functor could be defined, but 

the connecting homomorphisms would be unnatural in the sense 

that 'one must first appeal to a duality to obtain an inverse 

system which then automatically gives a duality.

In the following, the notions and fundamental facts 

about sheaves are used and for details we refer to D.G.Bourgin 

E53 an<^ BredonE?63 . It will also always be assumed that 

the infinite dimensional manifolds E under consideration are
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those which satisfy the conditions of Theorem V,l. This 

then gives a manifold E LE 3 LE — E where E is a m m m

finite dimensional orientable manifold 3 E C R and so m
that there is a splitting E = E , U E and E . = E m m+ v m- m-1 m+He.m-

Definltion 1_, The only sheaves considered will be 

those with stalks isomorphic to Z = integers and taken 

over paracompactifying families of supports.

Consider the Mayer-Vietoris sequence —^m-p'^m-i-’^)
♦ H*-p —>H^ (E„.Z)^->H(m_1)_p(EIn_1,Z)—> ,

where the homology is specified as the Borel-Moore theory. 

Define H^^CE.Z) = L( C;(Em'Z)'

Theorem 1_, For any representation LEm % E,3 a
nduality isomorphism H^^CE.Z) A. H^(E,Z), where <p is a 

paracompactifying family and where we consider this to be 

the equivalent of the singular cohomology with support in

<p since E is locally contractible.

Proof By Theorem V.2 E - LE . Then H?(E,Z)

HP(LE ,Z) LH.R(E ,Z). Now for the orientable E there

is the Poincare duality H^^p(Em,Z)^-^ ^>E(Em,Hin(S®Z))

H^XE .Z), where H (S®Z) = 6 ® Z is the orientation sheaf for 
m m m

E which in this case is trivial and G is the sheaf whose m m
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presheaf structure for an open U c Is given by U----- >

H#(Em,Em x U) Hm(Em,Em X U), Since Em is orientable 

this sheaf is actually isomorphic to Z I E^. Consider

the diagram p

H^'^CE ,Z)<----- —------  HP(E ,H (S0Z))
m-p m* m m

^m-p
V

n(Em .(m-1J-p m-1
HP(E 11(S®Z))

where is induced from the injection and is them u °m-p

connecting boundary of the Mayer-Vietoris sequence. To 

prove the desired result we only need check for commuta­

tivity of the diagram.

Locally with respect to a presheaf structure and with 

fP denoting a representative of a cohomology class with 

respect to that structure we have Dft 1 i* fp = fpH i (T » 
m-1 m ' * m~l

and ^m-p DmfP = fP(crp)^m-p <ym-p-If supp 'fPc^m-l then these 

two expressions are equal up to a sign depending upon the 

orientation of E , If supp fp<t 1 , then fp H IS" 1 
m m-1 m-1

= o. But then m_pD* fP = a contribution to a boundary. 

For consider the following diagram which defines »
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cPIl"1(e ,z)®c<p"'’(e ,z)-^c (e Z)—o 
m-p' m+’ m-p' m-* m-p' m,

fl6*-1 , , ip<Ph>r .
o----- C, (E . .Z)-----  C/ -x (E ,Z)®C, .X (E ,Z)(m-l)-p^ m-1’ * (m-l)-pk m+* ' (m-l)-pv

1 P 1 P M 
where 1 cr = ( <r ,-<S ) and. >\( 6 , Q )= c + or . m_p Is 

defined as i"1 h*1 . Now = It ( <5 m-p)* Therefore

if supp fp 0"m_1 then i'1 d ( ^-p 0 m-p ) mUst be a

boundary element since<T can be considered to be strict- m-p
ly contained in Em Therefore the original diagram com­

mutes up to a sign and if we make the convention that the 

orientation of E is chosen to make the diagram commute m
we then have t,H,P(Em,HB1(saz)) -X L^.(Em-Z) ^Em'Z> 'X 

HP(E,Z) % LH^pfE^Z) K Hro_p(E,Z).

Q.E.D.

Definition 2, In the previous definition and theo­

rem, we had an oo-p homology theory which is isomorphic 

to a sheaf cohomology which is equivalent to the singular 

cohomology with integer coefficients. In view of the use 

of the Mayer-Vietoris connecting maps in the inverse 

system which defines the homology, it does distinguish 

sets of finite codimension to some extent. But since there 

may be many representations E LEm, the question still
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remains that if given two such representations LE 
^4

LF and. the identity i:E-------- >E, which takes the form 

where Li^ = 1 since both representations are homeomor-
1 

phic to E and. i is defined, by the composition E^---- E——>

Pm
E---------> Fm for the projection pm of the second system; then

ip|i"h

->4Hm-p<Fn>z> 
A
4'

hP(e,z)

commute.

It would therefore be most natural to unify these 

functors with a sheaf-theoretic homology with smooth locally

closed sets of codimension p of the form LM^ serving as
*^in

the building blocks of a chain theory leading to an<x> -p

homology functor. A smooth locally closed subset is un-
kderstood to be of the form UHM, where M is a C submanl-

fold of codimension p, U a smooth open set with a C bound­

ary which is a submanifold without boundary and with the con­

dition that any point set boundary of Mp is of codimension p+1
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k and. of class C . We of course use the term submanifold.

here in the sense of being closed, and. without boundary.

Since any point set boundary above sould be closed it 
k would then be also a C submanifold. It is understood

thet k refers to the class of E.

For M a submanifold of codimension p and of class 

let M fl = U Mc, where Mc is a component. Nov; since M mm m
and E are two closed submanifolds then Mc is a manifold m m
but possibly with a boundary. However, this can happen 

only if M winds about in E so that some collection con­

sidered as a subspace of covectors smoothly fits orthogo­

nally to the transverse manifold E , where for convenience 

all of the transverse manifolds of the system LE , each 
4- m

one corresponding to the m-parameter group of Chapter V

is considered to be passing through some fixed m e M, But 

then cover each point of by an open set in E considered 

to be contained within the unique tubular neighborhood of 

M. Then we can take a finite subcover since Mc with am
boundary will be compact. Therefore, we can differentiably 

deform M by a finite number of deformations each with sup­

port within one of the above sets so that Mc \ ^Mc is 
m m

pushed off Em into some En for n > m. Then we have a new 

collection U N° so that each Nc is a closed submanifold 
m m

without boundary. This process can now be carried on in­



66

ductively and since M has codimension p there are In total 

only a finite number of local deformation directions possi­

ble. Hence we may consider LM LN so that N = U N°, 

where N° is a component which is a closed finite dimen­

sional manifold without boundary and so that there is a 

splitting for N , with N . =• N fl E and N = N flm m+ m 11 m+ m- m 1

E„ . The fact that E LE_ is actually used in the above m- <- m-"H 
argument in the sense that we were able to push off some Em 

in a direction determined by a covector and map into a new 

En because all the coordinate directions are represented 

in the system LE . We will assume then that LM satisfies <- m. -> m
the conditions specified for its homeomorphic image LN .

We denote the point set boundary of a set X as X. Now 

for MP = U fl M as given above, we consider L(U D M ) =

*0 cLM^. Since U fl M can be considered as an open submani- m m-H 
fold or simply an open subset of a finite dimensional mani­

fold without boundary, then the point set boundary, when 

it exists, is a-closed submanifold and can have a boundary 

only if the boundary of this open set is contained in the

interior of M° since all the sets in question are smooth,

But U as an open set of E was specified to have a smooth

boundary of codimension 1 so that M^ has a boundary which

is smooth and of codimension p+1. Hence it would be im­

possible for the point set boundary of U A M° to be con- 
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boundary of U which is a manifold without boundary to have 

a boundary. Hence we can consider to be the union of 

manifolds without boundries and LM^ to satisfy the same pro- 

perties as those specified for LMP, 
m

Lemma 1. LMP C: MP and LMP - Mp. ------------ -=> m m "•H

Proof Consider the first case . LMP is dense in MP.•— 1 ■1 m
-■’■I,

For the sequence (m^l nn = (r^ (m) .r^Cm), ,r^(m),o,o )e

Mp, for r^(m) designating the parameter correspbnding to 

the i-parameter group.) gives a collection with an element 

in each arbitrarily small neighborhood of m € Mp, Now the 

parameter of course, refers to the transverse manifolds E^, 

But since M is itself a closed submanifold of codimension p, 
kand also of class C , we can join the point of M,which orig­

inally determined the positioning of the transverse manifolds, 

to the point m above. This path will be of finite length 

and hence compact. So then each point of the path can be 

covered by a neighborhood so that at most p local transverse 

directions of the i-parameter groups are not.defined. But 

since a finite subcover can be selected there are only a 

finite number of total directions of the transverse 1-para- 

meter groups not defined within the entire open cover. So 

then if in the sequence (m^), we take all values of i large 

enough, will be a point of M f) E^. Since is the union 
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of closed finite dimensional manifolds without boundary, 

trivial tubular neighborhoods can be constructed and by 

restricting everything to U, the proof proceeds exactly 

as that of Theorem V,2.
The case for LM^ " is proved in the same fashion, m

Q.E.D,

Remark 1,. Some recent work of Herrera E143 suggests 
the notion of pairing — LM^ with an algebraic element 

c which is an element of some functor associated with eo -p
Mp in order that a presheaf of chains might be constructed. 

It would seem that in general we would still be confronted 

with a situation where the definition of a boundary would 

be impeded because of the notion of an infinite number of 

faces. But a natural notion of codimension-which allows 

one to canonically drop to a set of 1 higher codemension 

will overcome any possible trouble.

Definition At this point we define prechain 

groups for smooth open V C E, It is without loss of 

generality to assume that any structure which gives rise 

to a sheaf is defined over a basis of smooth sets in a 

smooth manifold, since these sets will form a cofinal sub­

collection of any collection cf open sets. Below, = 
M fl U | V. This means that consideration is restricted to 

the manifold V and we say MOV as a reminder that M may be 
the restriction of a closed submanifold of E.

PJoo-p^v,z^ ls generated by pairs (M^c^ ) where Mp 
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represents a smooth locally closed set as specified in 

Definition 2 above and c^^ = |Jcm_p | cm_p € ^(M^Z) 

and the connecting maps ^m_p are the Mayer-Vietoris bound­

aries of the exact sequence
— CM-Z> —>Ci)-p(Crz> —

difr/ (pl T*J

H(m-l)-p(Mm+’2)®H(m-l)-p(Mm-’Z)~> ’which is lnduced from 

the splitting of each component of Now Mm is the
union of components of manifolds without boundary but some 

may have dimension m-p.However, E LE^ and at some 
ppoint of a component every covector from M beyond some ith 

stage is eliminated as a transverse direction and hence the 

dimension of that component at that point is i-p. So con­

sider the original component and the point to be contained 

in this new component of local dimension i-p which in view 

of the fact that this new component is a smooth submanifold 

must globalize so that the whole component has dimension i-p. 

There is also then a Poincare duality H^p(MP,Z)4-^— 

H°,(mP,Z®9 ), where 6 is an orientation sheaf with presheaf 
Wn m m m
structure given as followst

is considered as an open manifold without boundary 

and contained in The contravariant functor for the pre­

sheaf structure is U Q Mp---- >H (MP,MP\MP H U,Z), where Um m—p m m m •
is taken in E so that we may consider U Cl MP = U Q Mp 

m m m

for Um This then gives a presheaf structure locally 
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isomorphic to Z if the component has dimension m-p and lo­

cally isomorphic to o otherwise.

Lessaz. LH^ (MP,Z) H°p<p,zaa) <LH°(m”,Z0 9 ) 
•'"H

9 Z®6 LH _D(S@Z) % L(em®Z) (L©m)®Z. Also H°p4P,Z®e) 

% H®p(Mp,Z®<t)p), where ($)P is an Sells type orientation sheaf 

C83 of the pair (E,M) restricted to the open set Mp, con- 

sidered open in M. Consequently kHm (M^,Z) is indepen- 
u D r* T) dent of the homotopic decomposition LM^ fn^'1 *

Proof By Lemma IM— LMP. Therefore for a sheaf A, m
H°(MP,A) H°(LMP A)£ LH°(MP A I MP). Let A = LH „(S0Z).

ciw ’ »tic- m «- »wx m m <- m-p

where the inverse system is actually that of L(©m®Z) with 

the connecting maps being the boundries of relative Mayer- 

Vietoris exact sequences

C-p('€’Mm+MCn Um >-
—>C'p<^-^x n vm),Z)^->H^n.p(MP.1^.1x(Mp.1n
Um)fZ)—. The map is actually defined by mapping genm®Z 

-----  ^mgenm®Z, where genn denotes generator, which is per­

missible since these functors are locally free in the sense 

of determining locally free groups. By excision the terms 

in the above exact sequence are either of the form Hm p(RJ, 

R*\oiZ) or H (r3 rJ \ o,Z), where denotes the half space.
p 4.' + +



71

Since R^x o is a deformation retract of Rp, the terms in the 
+ +

exact sequence containing these pairs are o. Also

Hm_p(Rj,Z) £ Cz if j = m-p

(_o if j V m-p

Therefore, we have exact sequences either of the form cr— 

o----->o or o----- )Z-~—>o or o---- > Z—-> Z, Hence ^_gen = genm m m-1

Now since these groups are locally free , we then have the 

relation L(6 0Z) % (L© )®Z,m in
In order to show that ^°,(MP,Z®9)<^ H°(LMP,Z®9) r- 

Z®©^) we only need to examine the following diagram 

as in the proof of Theorem 1 above:

Cp(Mn'Z)<—-------  )

* din-pj, j 1

Dm-1
H(m-1 )-p>(Mm-l *Z)<------- --- CM-l ’H(m-1 Vp^ >

The horizontal maps are given by either the standard Poincare 

duality or the zero map if the dimension of the corresponding 

component of Mp is not m-p. Since we know that each point is 

finally included in components which all have the appropriate 

dimension m-p for m >z nQt for nQ depending on the particular 

point, the diagram commutes by the proof of Theorem 1. There, 

fore the required isomorphism is established;

$>p is defined first for M and then restricting to the
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open MP, considered, as an open set in M. The presheaf 

structure over U ft M is given by U ft M----> H (C (U,U\

(M 0 U),Z)). H*(C*(U,U x (M n U), Z)) HP(RP,RPx o)

= Z. Now we can infer from Lemma 1 that »Umx (Mp 

0 Um)) — (U,Ux (Mrn U)) since this is true for each term 

of the pair and all the spaces and relative pairs are dom­

inated by CW complexes. Therefore, 

HP(U,U\(MP A U),Z) HP(L(U ,U X(MP 0 U )),Z) 
ill m iii hl

LHP(U ,U \(MP A U ),Z). 
m m m m

There is also the following sequence of duality isomorphisms, 

consisting of Poincare and relative Poincare dualities:

HP(U ,U\(MPA U ),Z)---- <MP A U ,Z)--------------- >H°(MPA U ,Z)—-?
m’ m m m ’ m-p m m . m m*'

Hm-p^Mm’Mm X ^Mm Um^,Z^‘ It is assumed that we are locally 

at a stage so that the dimenson of the component under

consideration is m-p. We then have the commutative diagram:

P Uni)'Z)

j j
HP(U 1tU .ftU „(MP -i fMP .x (MP .ftU ,

m-1 m-1 m-111 m-1 (m-l)-p m-1 m-1 m-1 m-1

The horizontal maps are given by the above sequence of du­

alities, the vertical map on the left is that of the inverse 

system given above and the vertical map on the right is the 

Mayer-Vietoris connecting map as previously defined. The 

commutativity follows because all the groups in question are 
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free with one generator for a local component and the maps 

in question map generators to generators in a unique fash­

ion, It is also clear that all the maps commute with the 

restriction maps of the sheaf structures since these are 

only restriction maps of inclusions. Therefore, upon tak­

ing the corresponding direct limits in the sheaf structures 

we have LH (S®Z)£ (L© )0Z^<I)P®Z, 
m-p' V m' ;

1 U T)

We can conclude that (M^,Z) is independent of any 
D z^. IDdecomposition Fr — LM1 because the above relations are actu- m

pally dependent only upon the covectors of M and the support

of an element  co -p
position for Mp,

is independent of any homotopic decom-

Q.E.D.

Note We must keep in mind that as in the proof of

Theorem 1 the relation (MP,Z)£ H°(MP,Z®6) is given by 
<s- m-p m1 <pih> r

fudging the orientation sign of ©m, but in a fashion only 

dependent upon p, so that this fudge factor is passed on
p

uniformly to Z®(J) since it is a uniform orientation rever­

sal of E •m

Definition 4. Given two pairs (Mp, c^ ) and (Np, 

d so that MP- LMP and NP - LNP let L = (MPX Mp) U 

(Np \ NP), Now Mp X Mp is either empty or the point set 

boundary Mp of Mp, which is a smooth closed submanifold of 
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codimenslon p+1 and of course without boundary. Now for a 

fixed representation E LE we then have from the discus- 

sion in Definition 2 and Lemma 1 that (M^UnPJXL 

L((MPANP) "\ L ), where L = Mp U N^. Since the bound-
' m m m m m m

aries in question arise from at most two smooth closed sub­

manifolds of codimension p-1 and of course without boundary 

we can assume without loss of generality as in the discussion 

of Definition 2 that all the summands of the direct limits 

are the union of components which themselves are unions of 

finite dimensional manifolds without boundary, although when 

intersecting with an open set of E, the submanifolds may be 

open. The only difference above is that we are taking the 

union of two smooth locally closed sets of codimension p+1 

whose covectors at points of their intersections may not de­

termine the same subspace.

Define (MP.c^_p) + (Np,d^_p) =

= ((MPU NP)\ L),?„_p + d_ _p).

where cOO —p -p is defined by considering the compo­

sition

'I (ML Z)------------------------------------- >H Lm,Z).
m-p m m-p m m m-p m m m

Since c = Lc _we take c = the image of c<*= -p <f- m-p m-p & m-p

under the above composition. Since the maps of that com­

position are only a natural restriction and inclusion, they 

must commute with the Mayer-Vietoris connecting maps of the
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Inverse systems. Also LH (M^ U\ L ,Z), where of course 
<- m-p mm m

the maps of this inverse system are induced by the Mayer- 

Vietoris splitting of (M^ U N^) \ L^, is independent of any 

homotopic decomposition (M^bN^) \ L—L((M^UnP) \ L ) be- 
ill ILL ILL

cause the homology inverse system only picks out locally, 

cells of dimension m-p. Hence these cells must come from 

either Mp or Np if these sets intersect locally in a fash- mm
ion that the covectors determine two different subspaces,

If this happens then the inverse system must have support in 

either Mp or Np, whichever determines the initial m-p dimen­

sional support cell, because then for the system to have sup­

port outside this particular codimensional set would force

a support cell at some stage n-p for n > m to be contained in

E , but not in M UN since the codimension would then be ■ n’ n v n

determined by some subspace of the span of the two spaces 

determined by the covectors of and N^.But then the interior 

of this support cell would clearly span some points not in

U N^ , We should take note that we are using the fact 

that E LE in that all coordinate directions at each point m
are determined by the system LEm, Now if locally the sets 

Mp and Np determine the same p dimensional cospace then clear­

ly the support of the -p cocell can be taken in either set

or simultaneously and the results of Lemma .2 guaran­

tee that it determines the same algebraic element locally.

We can then add c and d so that "c +5 m-p m-p ob -p oo -p



76

- Lc + Ld = L(c + d ). Now this addition m-p m-p m-p?

is then well defined and independent of any representation

LE E from the above discussion, m

We define an equivalence relation (m^jC _p)^(N'P,d _p)

<J==> (MP,c _) + (NP,-d „) = (MPU NP\ L,o), where o =

Lo for o the zero determined by the functor H TX(e,Z). m m m—p

Then let ^^(7,2) '= PJ^ _p (V,Z)/^ .

A boundary homomorphism oo~p is defined as follows:

»„-p' J«,_p <»'z> —>J^-(p+l) (V-Z)- where

„(MP,c ) = (Mp, L ^.„(c _,> ) for > the connecting
O»”P —P <^r J-P 1U~P ..p

m m

(MP Z)------homomorphism of the exact sequence -----/

symbol. He uses the notation ^Mp,Mp
m m

for the connecting

homomorphism, with the positioning of in the symbol forc­

ing it to be the dominating space in the above exact sequence. 

But since MP does not contain Mp in general, this would be m m
wrong. The above change is the only possible one. Since

Mp is a closed submanifold of codimension 1 within MOV, 

Hm-P
(»l m'L • <p( _n

Hn-(p+l)("H Im|Z)—>Hm-(p+l)(M™-Z)—Thls ls the same 

form used by Herrera C1^3 for his semianalytic chains, al­

though his notation is ambiguous due to the omission of a
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where Mp = M Cl U I V for M fl U the smooth locally closed 

sets specified in Definition 2, and since is actually 

the point set boundary of M fll U restricted to V, we can 

assume the existence of a unique tubular neighborhood of 

Mp of codimension 1 considered as a subset of M 0 V by 

constructing a tubular neighborhood of codimension 1 about 

the point set boundary of M Q U and then restricting to V. 

We must also be careful to remember that is always taken 

as the point set boundary of M fl U | V and taken with res­

pect to the relative topology of E fl V. But as above, we 

can consider this to be a restriction of the boundary of 

the set M fl U c E since V is a smooth open set..

Since we ultimately only need to consider components 

of which contribute support cells of dimension m-p, we 

can assume that we are at a stage where the covector of the 

trivial tube locally determines a transverse direction which 

projects onto E and hence is deformed into M . This then m m
gives locally a tubular neighborhood of in of co­

dimension 1. But since our boundary homomorphism in the 

above exact sequence is defined by the following diagram:

(MP,Z)——(MP,Z)----->om-p m* ' m-p m’ *

Wn ’T) x I x ,~P
°—^CO-(p+l)(Mm'Z) —> Cffi-(p+l)(Mm -Z>

where a . =f' rf' , it then becomes a local restriction map 
Mp m
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about Mp within this local tube, where the closures are al­ia

ways understood to take place with respect to the relative 

topology of V. Hence we can assume that our boundary homo­

morphism is actually equivalent to the composition

H n MmnV\MP,Z ----- , wherem-p m m-p m m m-(p+l) m

the first map is an inclusion and the second is a boundary 

homomorphism in the exact sequence of the pair

using the fact that V,m£;Z) H^p(Mm f\ V \ Z).

Of course, we must remember that our attention is actually 

restricted to some component of M , but since all coordinate 

directions are engulfed by the transverse direction of the 

system<LEm E, every point of LM^ is eventually contained 

in a component of some with the properties specified 

above,

Note Although Borel-Moore homology is specified for 

the use of sheaves we can treat this homology as being 
V

equivalent to the Singular or Cech Theories for manifolds 

of the class being used.

The next lemma will give a uniqueness for oo_p with 

respect to pairs (Mp,c ) € PJ^ _(V,Z) with respect to QO ""P 00 ■*P
any homotopy decomposition for Mp with respect to any re­

presentation E LE . We can then pass to a uniqueness m
with respect to _p(V,Z) by applying Herrera’s result C1^*]
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at each stage of the Inverse systems.

Lemma 2- co -p is independent of any homotopy de­

composition MP - LMPm, 

for M and U satisfying

where Mp= M H U I V = M (1 U O, 

the conditions of Definition 2 and 

the total object being considered a submanifold within the

manifold V. For a pair (Mp,c ) G PJ (V,Z), 
oo ■t»n w p w y

is given by the composition

H°(MP,Z®0P)-- H°(MnV\MP,Z®(|)P)~^>Hn1(M fl V,M0 V X MP, Z®<t>P)
fllA' ?| vlKnv

H°(MPtZ®(|>P+1), where £ is the connecting map of the exact 
fliij

sequence of the pair (M A V,Mf\V \ Mp) and J* is a natural re­

striction map.

Proof From the above discussion we know that
-P

is defined by taking the inverse limit with respect to Mayer-

m

Vietoris connecting maps of the composition

---- > H (IOV\MP Z —x (MP Z .
m-p m m-p m m m-(p+l) m

But as before V,Mn V\S) =L(MmnV ,M nVmNMP) 
m m ' m m m m''■ m m

— (M/lV,MflVx MP) from Lemma 1 since LM f) V Ck MfV and
m m

LMm/] VmX M ClV\MP and since the relative pairs are dom-

inated by relative pairs of CW complexes.

D m

^Mm-Z8e=n)—> 

m-p
Dm

Then we can again apply the dualities

(MPZ)—-> H^1 (M flV X MP , Z)-----)
m m-p m‘ m m ’

A
Dm

*
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where the commutativity of the square on the right Is due 

to the standard commutativity of the squares formed by re­

lating the dual homology and cohomology sequences by duality 

maps. The first square commutes since 1 and j are only natur­

al inclusions and restrictions.

Then by the proof of Theorem 1 the Inverse systems with 

connecting maps which are Mayer-Vietoris boundaries commute 

with the above maps, including the relative case which is 

treated in exactly the same fashion as the absolute homology 

functor. Therefore in passing to the inverse limit we have 

\ being represented under duality by the composition y oo -p 

H°(MP,Z®(t)P)-----> H°(MaVXMP,Z®(t)P)—V.Mfl V \ MP, Z®<t)P).

But since have the tubular neighborhood of codimension 

1 of Mp considered to be a neighborhood in the space M/1V, 

3 an Bells type orientation sheaf as described in Lemma 2. 

Hence we can apply the Bells spectral sequence C 831 to give 
H1 (M /IV,M f\V \ MP, Z0(()p) H°(MP,Z?>(|)P®(|)1), where this is con-

structed with respect to the manifold V, with M (] V as a 

closed submanifold and Mp as a closed submanifold of M/]V, 

and of course all manifolds are without boundary. Then there 

is a pairing <t)p®(p^ described as follows:

We consider the uniquely determined Isomorphism 
HP (BP, RP\ o, Z) SH1 (R1,R1\o, Z) HP+1 (RP/ R1,RPX R^ o U RP\ o^R1 , Z) % 

HP+^((Rp,Rpxo)X(r1,r\o),Z) which is a form of the relative
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Kunneth theorem which in this case gives a canonical pair­

ing since the groups are free on a finite number of genera­

tors. The terms on the left of this tensor pairing represent 

the presheaf structures of 4? and and ,B^rKo U

R^oYR1 ) — (Rp,Rp\o) forces the right terms of the tensor 

pairing to represent the presheaf structure of (|)p+^ which is 

the Bells orientation sheaf for the pair (MfiV,Mp). Therefore, 

upon taking direct limits and passing to the appropriate 

sheaf structures we have the pairing (})pS<|)^#t$p'1’^ which gives 

H° (Mp, H° (Mp, Zgi<t)p+1).

Therefore, _p is completely independent of any homo- 

topic decomposition MP— LMP arising from some representation 

E LEm since the support of the image under 

pletly determined by the covectors of Mp and there is a ca­

nonical isomorphism with respect to the algebraic structure.

Q.E.D.

Remark Mow since the definition given for addition 

and the boundary in the groups PJco_p(V,Z) is" independent 

of any homotopic decomposition we can conclude that all of 

these maps are independent of the equivalence relation by 

simply performing the operations in each finite dimension 

and taking inverse limits with respect to the systems we 

have defined with the Mayer-Vletorls connecting maps and then 

apply (Herrera’s) results,which give the prechain homology

is com
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theory we have described, for semianalytic sets of finite 

dimension. But since Em c Rm is a relatively simple orien- 

table C manifold his results apply. Hence we can pass to 

the groups _p (V,Z). Also >1^.(p+1 = ° anairo_p

commutes with addition since this is true at each finite 

dimensional stage, although the fact that „p

= o is simply due to the fact that has no point set 

boundary. We of course also agree to admit the pair (</,o) £

Now for W c V there is a natural restriction map

J ^(V,Z)-----_(W,Z) induced by the natural restriction
OO —p « oo —P

map of (Herrera) at each finite dimensional stage along with 

the fact that a natural restriction map commutes with a Mayer- 

Vietoris boundary. Then also the restrictions commute with 

all of the other maps defined above so that we may pass to 

an induced sheaf which will simply be denoted by J 

Then define ^_p (E,Z) =

Theorem 2. _p(E,Z) R H^ _p(E,Z) for (E,Z) defin­

ed as in Theorem 1 for a specific representation E 

This is then canonical in the sense of Definition 2,

Proof For the fixed representation E LEm we can 

project J (V,Z) to each E and by definition obtaine the exo -p m d
relation LJ ^(V„,Z) = J ^(V.Z) where the maps of the in- m-p m’ e° -p
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verse system are the Mayer-Vietoris maps defined on the

pairs. Now, Herrera defines his prechain groups for pairs

(M,c) where M is a semianalytic locally closed set of dimen- 
<p IM

sion m-p and c e H (M,Z) with Borel-Moore homology 
m'" k

specified. But since Em is an orientable open C submani­

fold contained in Rm there is no more homology information

needed then that contained in the system by restricting our 

attention to smooth locally closed sets of the type 0 E , 

where Np is described in Definition 2. This is because E , m 
can be smoothly triangulated,and since the inverse system

LEm is determined by m-parameter groups of diffeomorphisms , 
nthere is a set fl E obtained by locally extending all

transverse directions above a set in E which is smooth and m
locally closed in the above sense. Therefore, by passing to

the sheaf structure the Herrera theory guarantees that 

H^p(Em,Z) ), Then since the Mayer-Vietoris bound­

aries of the inverse system commute with the restriction maps 

of the presheaf structure, we then have (E,Z)co —P
41ELH (E ,Z) H (E,Z), The last isomorphism follows be- m-p. m ' co -p

cause the Mayer-Vietoris connecting maps in Theorem 1 were 

actually defined with respect to local support.

Therefore, since _p(E,Z)has elements with support 

uniquely specified the following diagram must commute, where 

LEmLFm are two representations of Theorem V.l of E.



84

LHmED(Em,Z) ----------------
<- m-p m

Hg(E ,Z)<---------------

LH^** (F ,Z) 
(5- m-p m

hP(e,z)

Hence we have a canonical isomorphism.

Q.E.D.

Remark If f »E---- t> F is a map between two manifolds

satisfying the conditions of Theorem V.l with the properties 

that f is differentiable and for eg E, ker <ife- coker df x 

o, then there is a uniquely defined map Lfm:LHm p(E^, Z)----->

<£-Em p^’Z) provided f defined by the composition Em->> E 
<f " Pm 
---- ) F ----- Fm respects orientation. This is defined by 

mapping a support cell of dimension m-p onto a support cell 

of dimension m-p as a result of the conditions above. Then 
(Dliv (PIUM)

locally this maps Hm_p(N,Z)---- Hm„p(fm(N),Z). Then by pass­

ing to the sheaf structure and taking the homology the re­

quired map is defined.

Remark 4. In 1935»J«W, Alexander C1D defined o°-p-l 

cells in a separable Hilbert space so that there is a homolo­

gy theory and a duality with respect to a compact metric 

space K C H, But since the duality is between HP(K,Z) and 

the co -p-1 homology of H \K, and since H \ K is diffeomorphic 

to H at least when K is a manifold, it would seem that these 
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are homologies constructed in some way so that they are 

determined by non-cofinal systems of support sets.



CHAPTER VII

CONCLUSION

We have studied, separable infinite dimensional mani­

folds by assuming a smooth local Hilbert structure which 

allows a diffeomorphism to be constructed between each 

fibre of the tangent space and a neighborhood of the base 

point on the manifold. This allows the construction of 

trivial tubular neighborhoods of closed finite dimensional 

submanifolds. Then arbitrarily small neighborhoods of this 

type support diffeomorphisms so that upon taking the infinite 

product of such diffeomorphisms we have E S' E x. K, for K a 

thin subset.

The whole technique can then be considered as a general­

ized foliation category, consisting of sequences of folia­

tions which are ordered so that each sequence is a collection 

of elements so that a higher order element foliates any lower 

order element with an associated collection of m-parameter 

groups, with the m-parameter group being a subgroup of the 

n-parameter group for n m by intersecting domains of defini­

tion. Each m-parameter group is globally abelian and gene­

rates an m dimensional submanifold considered as an open set 

of Rm and a closed transverse submanifold of E. These groups 

are generated by approximating distance functions , defined 



87

with respect to the metric of E, with smooth functions that 

have singularities in a thin subset so that any maximum solu­

tion curve.defined by composing the approximating function 

with a projection, is defined globally. Then the above prin­

ciple of removing thin subsets differentiably allows the 

group structure to be defined.

In such a foliated category a Ho0_p(*,Z) functor has 

been established with the use of a Mayer-Vietoris splitting 

of the manifolds associated with the m-parameter groups. 

This functor distinguishes sets of finite codimension and 

satisfies a duality with HP(*,Z®(i)P) in terms of a Poincare 

duality isomorphism.

At the center of the principle of the removal of thin 

subsets differentiably is a renorming process which utilizes 

different Cauchy completions. It seems possible to generalize 

the above structure to give a space generated by a collection 

of sequences of foliations with a topology and associated 

structure determined by combining the associated collection 

of functors „p(*»Z), one for each sequence, and relating 

them by a functor which is dependent upon the m-parameter 

groups and local collections of completions.

It also seems reasona.ble that a decent generalization 

will take into account Finsler instead of just Hilbert struc­

tures.
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