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ABSTRACT

The Quark-Gluon Plasma (QGP) and its phase transition on the Quantum Chromodynamics

(QCD) phase diagram have been at the forefront of high energy physics research for the past

few decades. In order to study the QGP and its thermodynamic behavior, many experiments have

been undertaken to recreate this state of matter at particle colliders like the Large Hadron Col-

lider (LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National

Laboratory. In addition to experiment, several theoretical models of the QGP have been developed

which can then be compared to experimental results. In this thesis, we attempt to successfully

implement one of these models, the ideal Hadron Resonance Gas (HRG) model, along with an

extension of the model which includes van der Waals type interactions between pairs of baryons

and antibaryons, called the Van der Waals Hadron Resonance Gas (VDW-HRG) Model.

In order to determine if our implementations of the two models were successful, we compare

our results for several observables at zero chemical potential to the results obtained in [1]. The

observables calculated include the system’s pressure, energy density, entropy density, the speed of

sound, and the specific heat at constant volume. After determining that our implementation of

the VDW-HRG model was successful, we then venture out into finite chemical potential and again

calculate the system’s pressure, energy density, entropy density, number density and the second

order fluctuation of baryon number using the VDW-HRG model. Our results at finite chemical

potential using the VDW-HRG model qualitatively behave as one would expect them to on the

QCD phase diagram, further verifying the success of our implementation.
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1 Introduction

1.1 Background

During the first few microseconds after the Big Bang, it is believed that our universe consisted of

a quark-gluon plasma (QGP) [6], a high temperature/density phase of strongly interacting matter

in which quarks and gluons are liberated from hadrons and are free to move over the entire volume

of the system. Through ultra-relativistic heavy ion collisions at various particle accelerator labo-

ratories like the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven Laboratory, it is possible to recreate this state of matter and study its

properties. In order for these accelerators to recreate conditions necessary to form this unique state

of matter, very energetic beams of massive ions, such as gold or lead nuclei, are collided head-on

at speeds very near the speed of light. The resulting fireball, which can reach a temperature of

several trillion degrees kelvin, is the quark-gluon plasma.

From the 1930s through the 1960s, as dozens of new hadrons were being discovered in exper-

iment, it became clear that these “elementary” hadrons must be composed of more fundamental

constituents. Several methods were implemented to try to organize and classify all of these new

hadrons, the goal being to see if there were more fundamental particles that could explain relation-

ships between similar hadrons. This search led to the proposal of the Eightfold Way by Murray

Gell-Mann in 1961 [7] and eventually to the independent proposals of the quark model by both

Gell-Mann and George Zweig in 1964 [8, 9]. The Eightfold Way was a method to categorize hadrons

based on their spin angular momentum, electric charge and strangeness. In order to better under-

stand why hadrons could be categorized in this way, Gell-Mann and Zweig independently proposed

the idea of the quark model. In this model, the fundamental constituents of all hadrons would be

smaller particles, called quarks, with fractional electric charge. Gluons would be the force carry-

ing particles for strong interactions, called gauge bosons, who would act as “glue” and hold the

quarks together to form hadrons. The quark model also led to the discovery of color charge in

strong interactions, where both quarks and gluons have associated color charges. Color charge was
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a necessary addition to the theory as there were some hadrons that violated the Pauli exclusion

principle, see [10]. The idea of color charge was initially proposed by Oscar Greenberg in 1964

[10] but it wasn’t until 1973 when the full formulation of the modern concept of color charge was

articulated by Murray Gell-Mann, William Bardeen and Harald Fritzsch.

In normal hadronic matter, the dynamics of quarks and gluons are restricted by what is called

color confinement. This mechanism confines the color charged particles, quarks and gluons, within

hadrons below a temperature of approximately 2 trillion degrees kelvin, called the Hagedorn temper-

ature. Above this temperature, quarks and gluons undergo another phenomenon called asymptotic

freedom. This phenomenon, which was discovered in 1973 by David Gross, Frank Wilczek and

David Politzer and who all shared the Nobel Prize in Physics for this breakthrough in 2004 [11, 12],

causes strong interactions to become asymptotically weaker as the energy of the interaction gets

larger and the interaction distance gets smaller. This discovery was extremely important as prior

to its finding, it was believed that quantum field theory interactions suffered from infinitely strong

interactions at short distances. These are called Landau poles and make the theories fundamentally

inconsistent at small length scales. However, now it is believed that the discovery of asymptotic

freedom allows for field theories such as QCD to be completely consistent down to any length scale

by eliminating all Landau poles. 1

The asymptotic freedom phenomenon manifests itself in QCD by allowing for quarks and gluons

to break the color confinement rule and become “deconfined” above the Hagedorn temperature

mentioned previously. In particle accelerator experiments, this amounts to giving each particle

being collided an energy of roughly 175 MeV. Once quarks and gluons have been deconfined and

are then liberated from their corresponding hadrons, they form the quark-gluon plasma. The QGP

has been shown to behave as an almost perfect fluid with very low viscosity rather than forming a

quasi-ideal gas of quarks and gluons [14, 15]. At high densities and low temperatures, the QGP is

also believed to behave as a color superconductor [16, 17].

There are two main variables that affect how the QGP behaves: temperature and baryon number

1For a brief review of the history and more technical aspects involved with asymptotic freedom, see [13].
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density. The standard parameter used to characterize the baryon number density is called the

baryon chemical potential (µB). The baryon chemical potential is the energy supplied or removed

from the system when there is an increase or decrease in the number of baryons and/or antibaryons

in the system. One of the current goals of high energy physics is to probe the phase changes of the

QGP through variations in both temperature and baryon chemical potential. Variations in other

chemical potentials such as electric charge and strangeness can be explored as well but these are

not as important to the study of the QCD phase diagram as baryon chemical potential, thus baryon

chemical potential is often just referred to as chemical potential.

Gaining a more complete understanding of how the QGP transitions from such high energies

to its ordinary hadronic state is essential to learning how our universe evolved in its early stages.

Knowledge of this evolution is of great importance to cosmology and also has relevance in the study

of Grand Unification Theories (GUTs), which seek to unify the three fundamental forces of nature

excluding gravity. Studying the QGP can also teach us much about the physics of regions with high

hadronic density such as the cores of neutron stars. There also exists the possibility of exploring

technologies using color superconductors in the not too distant future. Much more research still

needs to be done on each of these fronts. In the next few sections, various endeavors to further

investigate the QGP both theoretically and experimentally will be discussed.

1.2 Lattice QCD

The phase diagram of the QGP has been explored in a few different ways – through experiment,

with theoretical models, and through numerical calculations using Lattice Quantum Chromody-

namics (Lattice QCD/LQCD). Lattice QCD involves solving the theory of strong interactions,

Quantum Chromodynamics (QCD), nonperturbatively on a discrete lattice. The continuum QCD

theory can be realized after taking the zero lattice spacing and infinitely large lattice limit. This

procedure is extremely computationally intensive and thus requires the use of the largest available

supercomputers.

One of the setbacks in studying the QGP phase diagram using numerical methods is that LQCD
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is only able to solve the theory of strong interactions at finite temperature and zero baryon chemical

potential. Thus, it is only able to investigate the QGP along the y-axis shown in the illustration

of the QCD phase diagram in Fig. 1. The reason why Lattice QCD is unable to study the QGP at

finite baryon chemical potential is due to the numerical sign problem. This problem refers to the

difficulty in solving highly oscillatory integrals in systems with large numbers of fermions, which is

the case with the QGP. Now, at zero baryon chemical potential, there is technically a net total of

zero fermions as there are equal numbers of baryons and antibaryons in the system, thus LQCD is

able to calculate properties of the QGP in this region of the phase diagram.

Despite the numerical sign problem, there are several methods to extend the calculation of

observables of the QGP using LQCD to small finite values of baryon chemical potential. One of

these methods is to expand thermodynamic quantities into a Taylor series in the baryon chemical

potential. The advantage of this method is that one can use calculations of the derivatives of a

thermodynamic observable such as pressure at zero chemical potential to obtain the observable’s

dependence on chemical potential. This allows one to venture out into the T-µB plane on the QCD

phase diagram without having to suffer from the sign problem. The disadvantage of this technique

is that it is not clear a priori how large the values of µB
T in the Taylor expansion can take on for

this method to work. In addition, for each thermodynamic observable expanded in this way, the

derivatives with respect to the chemical potential must still be calculated, which is most certainly

not a trivial task [18]. Another source of uncertainty in this method is that it is unknown how

significant the truncation errors are when using just the first few terms in the Taylor series for a

specific observable [19].

A second method is to solve the QCD Lagrangian using imaginary values of chemical potential

rather than using real values. This approach allows for Monte Carlo techniques to be used in

simulations of Lattice QCD. After this is done, one can analytically continue these results to real

values of µB. However, there are difficulties and unsolved problems with this method. A more in

depth discussion of these issues as well as an explanation of several other methods used to calculate

observables with LQCD can be found in [20].

4



Figure 1: Illustration of the QCD phase diagram.

1.3 Experiment

The existence of the QGP was first proposed in the mid-1970s by two independent research groups

[21, 22]. These proposals were made just ten years after the conception of the Quark Model [8, 9]

and just two years after the prediction of the existence of asymptotic freedom in QCD [11, 12].

Shortly after the idea of the QGP was proposed, the particle physics community began adapting

existing high energy proton accelerators into incorporating heavy ion nuclear beams. Heavy ions

were needed as in order to study the thermodynamic behavior of the QGP, the system must

behave like ’matter’, as opposed to individual elementary particles, and also be in equilibrium so

that thermodynamic quantities such as pressure and energy density can be defined along with an

equation of state that relates these quantities. Collisions of protons produced too few resultant

particles to meet these requirements whereas collisions between heavy nuclei allow for enough

particles to be created for a long enough lifetime so that the system can reach equilibrium and thus

allow for its thermodynamics to be studied.

By the 1980s, these ultra-relativistic heavy ion nuclear beams were ready to begin investigations
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into the proposed QGP phase of matter in the laboratory. The first active experiments searching for

the QGP began running simultaneously in 1986 at the Super Proton Synchrotron (SPS) at CERN

and at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory. At AGS,

silicon and gold nuclei were collided at energies of 10 GeV/nucleon [23]. The first nuclear collisions

at CERN actually started in the early 1980s when helium nuclei, called alpha particles, were

accelerated to center-of-mass energy per nucleon-nucleon pair
√
sNN = 64 GeV at the Intersecting

Storage Rings (ISR) accelerator. In 1986, CERN began injecting oxygen nuclei into the SPS at

an energy of 200 GeV/nucleon (
√
sNN = 19.6 GeV) [23, 24, 25]. Experiments at CERN began

ramping up in the ’90s as upgrades were made at several of CERN’s accelerators to accomodate a

new lead ion source. All of this work culminated in 2000 when CERN announced that circumstantial

evidence had been found for the creation of a new state of matter in their Pb+Pb collisions at the

SPS accelerator [26].

Meanwhile at Brookhaven, proposals for a new heavy ion collider that would accelerate gold

nuclei up to
√
sNN = 200 GeV was submitted in 1984 and eventually led to the construction of the

Relativistic Heavy Ion Collider (RHIC) which would begin running experiments in 2000. Although

evidence had been found for the QGP at CERN in 2000, it was not until 2005 when the real

discovery of the QGP took place as four international collaborations who had been studying the

gold nuclei collisions at RHIC announced their results from the first five years of measurements

[27, 28, 29, 30]. Moreover, the results showed a number of unexpected properties of the QGP such

as jet quenching, heavy-quark suppression and an indication that the QGP behaves as a nearly

perfect fluid with very small shear viscosity [31].

One of the most active fields of research is exploring the phase diagram of the QGP, as mentioned

previously in Section 1.1. The investigation of the phase boundary of the QGP along with the

search for the critical point on the phase diagram began in 2010 with the Beam Energy Scan (BES)

program at RHIC. As its name suggests, the BES program was created to scan different beam

energies which in turn allows for the investigation of various parts of the phase diagram. In order

to scan regions of the diagrams with large chemical potential, a smaller collision energy must be
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used than the collision energies needed to probe smaller chemical potentials. This is because at

lower collision energies, the baryons in the beam spend a longer time in the “interaction zone”

and thus leave an excess of baryons in the ensuing fireball which results in a larger net baryon

density and chemical potential. Conversely, at higher collision energies, the baryons spend less

time interacting and thus the fireball has a lower baryon content resulting in a lower chemical

potential.

The BES program was split into two different phases, BES-I and BES-II. The BES-I program

ran from 2010 to 2014 and had three main goals: to investigate the turn-off signatures of the QGP,

to search for a possible first order phase transition between hadronic matter and the QGP, and to

search for a potential critical point. The final results for BES-I can be found in Refs. 21-25 of [32].

Several promising results were reported, however statistical uncertainties, especially at low energies,

limit the ability for any conclusive results to be ascertained. The goal of the BES-II program, which

is to run from 2019 to 2020, is to decrease these uncertainties by increasing detector performance

and extend the scanning to lower beam energies and thus higher chemical potentials. Brief reviews

of the entire BES program can be found in [32, 33].

1.4 Theoretical Models

The third and final method used to understand the QGP, which is also the most relevant to the

work being presented in this thesis, is through investigating theoretical models. Even before the

idea of the existence of quarks and gluons had been put forward in the mid-60s by Gell-Mann and

Zweig, particle physicists had already begun creating models to better understand what happens

when hadrons are subjected to extreme temperatures and densities such as those found in the QGP.

One of the first models was published in 1961 by future Nobel Prize winner, Dr. Yoichiro Nambu,

and Dr. Giovanni Jona-Lasinio, thus the model is called the Nambu Jona-Lasinio Model (NJL)

[34]. This model was important as it was able to successfully account for chiral symmetry breaking

[35], however, it is not able to model color confinement and is not renormalizable in four spacetime

dimensions. Thus, the NJL model is limited to being an effective field theory substitute for low
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energy QCD.

Another important theoretical model that became popular in the 70s and 80s was the MIT Bag

model. In 1974, a group of physicists working at Massachusetts Institute of Technology proposed

the idea for the Bag model, now known as the MIT Bag model [36]. This model was important as

it modelled color confinement by suggesting that, when quarks and gluons are placed in the QCD

vacuum, the vacuum will expel the color fields of the quarks and gluons and confine them to a

small finite region of space, called a “bag”. In this region of space, there would exist a constant,

positive potential energy that allows the quarks and gluons to move freely without being in a color

singlet state. Most of the research on the MIT Bag model ceased after the 1980s as more successful

approaches to studying hadrons through theoretical models were developed.

The most important model currently and the one most relevant to the work done in this thesis is

called the Hadron Resonance Gas (HRG) model. The idea behind the model was initially conceived

by Dr. Rolf Hagedorn in 1965 and it was in this paper that he proposed two fundamental ideas:

that hadrons had an exponentially increasing mass spectrum, and that modelling the hadrons and

their resonances as a non-interacting gas would be equivalent to modelling an interacting gas of only

ground-state hadrons. The first idea led Hagedorn to realize there could be a limiting temperature

for nuclear matter, which later came to be called the Hagedorn temperature. The second idea led

to the formulation of the Hadron Resonance Gas model: a thermal system of ideal, non-interacting

particles that includes all experimentally known hadrons and their resonances.

Over the past few decades, the ideal HRG model has shown remarkable agreement with both

Lattice QCD and experimental results, up until the transition temperature. At this point, devia-

tions in many thermodynamic quantities start to appear. This has led to the development of many

variations of the ideal HRG model which attempt to take into account various phenomena, not

covered in the ideal case, in an attempt to reduce the deviations from lattice and experimental

data.

One of the first and most important modifications to the ideal HRG model was the inclusion

of repulsive forces between hadrons due to their finite size. This take on the ideal model is called

8



the Excluded Volume HRG (EVHRG) model and has been explored extensively. Recently in 2017,

an extension of the EVHRG that includes an additional van der Waals type attractive interaction

between hadrons began to be explored more extensively. This model, which combines both finite

hadron volumes as a repulsive force in addition to an attractive force, is called the Van der Waals

HRG (VDW-HRG) model. In this thesis, the VDW-HRG model will be explored and compared to

the ideal HRG model and to Lattice QCD results.

1.5 Outline

The main goal of this thesis was to successfully incorporate van der Waals interactions into the ideal

Hadron Resonance Gas model and then compare the results for several thermodynamic observables

to Lattice QCD and ideal HRG model data. In Chapter 2, the methodology of implementating

both the ideal HRG model and the VDW-HRG model will be presented. In Sec. 2.1, the ideal HRG

model will be described and in Sec. 2.2, the process on how to include van der Waals interactions

between pairs of baryons and antibaryons will be described. Section 2.3 will describe specifically

how the models were implemented and how the results were calculated and found.

In Chapter 3, results will be presented for several thermodynamic observables using both the

ideal HRG and VDW-HRG models. In Sec 3.1, results at zero chemical potential for select observ-

ables calculated using the ideal and VDW-HRG models will be shown and compared with results for

the same observables from [1]. This comparison will allow us to determine if our implementations

of the models were successful. In Sec. 3.2, results for some of the observables presented in Sec.

3.1 will be given except this time, the results will only be from the VDW-HRG model and will use

finite chemical potential. Finally, in Chapter 4, conclusions on the results and analysis of the work

presented in this thesis will be given.
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2 Methodology

2.1 Hadron Resonance Gas Model

In the ideal Hadron Resonance Gas (HRG) model, the system consists of non-interacting, point-like

hadrons and their resonances. The logarithm of the partition function of a hadron resonance gas

in the grand canonical ensemble can be written as

lnZid =
∑
i

lnZidi (1)

where the sum is over each hadronic state and the id refers to the non-interacting, ideal HRG

model. For each hadron and its associated resonances, the individual particle partition function is

given by

lnZidi = ±V gi
2π2

∞∫
0

p2dp ln[1± exp(−(Ei − µi))/T )] (2)

where V is the total volume of the system, gi are the individual degeneracies of each particle, p

is momentum, Ei =
√
p2 +m2 is the energy of each particle where m is the particle’s mass, and

finally µi = BiµB + SiµS + QiµQ is the total chemical potential where Bi, Si, and Qi are the

baryon number, strangeness, and charge associated with each particle and the µB, µS , and µQ are

the associated chemical potentials. The pressure pid, energy density εid, and the number density

nid of the system in the ideal HRG model are given by the following equations,

pid =
∑
i

(±)
giT

2π2

∞∫
0

p2dp ln[1± exp(−(Ei − µi))/T )], (3)

εid =
∑
i

gi
2π2

∞∫
0

p2dp

exp[(Ei − µi)/T ]± 1
Ei, (4)

nid =
∑
i

gi
2π2

∞∫
0

p2dp

exp[(Ei − µi)/T ]± 1
. (5)
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The upper and lower signs in Eqs. (2)-(5) correspond to fermions and bosons, respectively. After

we find either the partition function or the pressure of the system, other thermodynamic quantities

can be calculated.

2.2 Including van der Waals interactions

The van der Waals (VDW) equation of state is a thermodynamic model that allows one to calculate

the pressure for systems of particles in equilibrium that have both attractive and repulsive inter-

actions. The VDW model is applicable to the QGP as it is able to describe a first order liquid-gas

phase transition that ends at a second order phase transition point, called the critical point. This

behavior is exactly what is expected to occur in the QCD phase diagram.

In the canonical ensemble, where the independent variables of the system are the temperature

T , volume V and the number of particles N , the VDW equation of state takes the form,

p(T, n) =
NT

V − bN
− aN

2

V 2
≡ nT

1− bn
− an2 (6)

where p(T, n) is the pressure of the system, n ≡ N/V is the number density of the particles

within the system, and a and b are the VDW parameters that describe the attractive and repulsive

interactions respectively. The first term on the right hand side of Eq. (6) corresponds to the

excluded volume (EV) correction which replaces the total volume of the system with the available

volume, i.e. it subtracts out the volume being taken up by the particles. The available volume of

the system is then given by Vav = Vtot − bN where b = 16
3 πr

3 and r is the radius of each particle.

The second term on the right hand side describes the attractive interaction between particles and

comes from the mean field of the system.

The main issue with formulating the VDW model using the canonical ensemble is that in the

canonical ensemble, the number of particles, N, is fixed. If we want to investigate the thermody-

namics of a system where the number of particles fluctuates, like the QGP, we need to formulate

the VDW model in terms of the grand canonical ensemble. In the grand canonical ensemble, the
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pressure is defined in terms of the temperature and chemical potential and thus can account for

particle fluctuations. The van der Waals equation of state in the grand canonical ensemble can be

written as [37, 5],

p(T, µ) = pid(T, µ∗)− an2 (7)

µ∗ = µ− bp(T, µ)− abn2 + 2an (8)

where n is the particle number density and can be defined in the grand canonical ensemble as

n(T, µ) ≡
(
∂p

∂µ

)
T

=
nid(T, µ∗)

1 + bnid(T, µ∗)
. (9)

The terms pid(T, µ∗) and nid(T, µ∗) in Eq. (7) and (9) are the pressure and number density

calculated using Eqs. (3) and (5) with the ideal HRG model but now using the modified chemical

potential, µ∗, defined in Eq. (8). In order to solve for the pressure and number density in the HRG

model that now includes van der Waals interaction, which from now on will be called the VDW-

HRG model for short, Eqs. (7)-(9) must be solved numerically as they are each transcendental

equations.

After the pressure and number density in Eqs. (7) and (9) are solved for numerically as functions

of the temperature T and chemical potential µ, other important thermodynamic quantities can be

calculated. One of these quantities, the entropy density, can be found for a van der Waals gas and

can be calculated using,

s(T, µ) ≡
(
∂p

∂T

)
µ

=
sid(T, µ∗)

1 + bnid(T, µ∗)
, (10)

where sid(T, µ∗) is calculated by taking the partial derivative of pid(T, µ∗) with respect to the

temperature at constant chemical potential. Thus, the expression for sid(T, µ∗) is

sid(T, µ∗) ≡
(
∂pid

∂T

)
µ

=
∑
i

[
(±)

gi
2π2

∞∫
0

p2dp ln[1± exp(−(Ei − µi))/T )] +

gi
2π2T

∞∫
0

p2dp
(Ei − µi) exp(−(Ei − µi))/T )

1± exp(−(Ei − µi))/T )
ln[1± exp(−(Ei − µi))/T )]

]
.

(11)
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The energy density for a van der Waals gas is given by

ε(T, µ) =
εid(T, µ∗)

1 + bnid(T, µ∗)
− an2 (12)

where εid(T, µ∗) is found using Eq. (4) with the modified chemical potential from Eq. (8). An al-

ternate way to find the energy density in the VDW-HRG model using the grand canonical ensemble

is given by

ε(T, µ) = Ts+ µn− p (13)

where s, n and p are the observables from the VDW-HRG model defined in Eqs. (7), (9) and (10).

Other important quantities include the specific heat at constant volume which is defined as

CV =

(
∂ε

∂T

)
V

(14)

and the susceptibilities of conserved charges which are defined as

χxyzBSQ =
∂x+y+z(p/T 4)

∂(µB/T )x∂(µS/T )y∂(µQ/T )z
. (15)

2.3 Implementation

As mentioned in Sec. 1.5, the goal of this thesis was to successfully implement the VDW-HRG

model, which consists of incorporating van der Waals interactions into the ideal HRG model. This

idea has been proposed and implemented before in several works [1, 38, 39, 40, 41]. In this thesis,

the success or failure of our implementation will be determined by comparing this work to the work

that was done using the VDW-HRG model in [1].

In order to make a valid comparison, we must follow the same procedure adhered to by [1].

Firstly, the same van der Waals parameters, a and b must be used in each case. In [1], the van

der Waals parameters used were found by using LQCD data [42, 43] for the pressure, energy

density, entropy density, specific heat at constant volume, and the second order baryon number
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susceptibility, and fitting this data at µB = 0 within the temperature range 130-180 MeV with the

VDW-HRG model. To extract the values of a and b, a χ2 minimization technique was used. With

this procedure, the best fit values for the two van der Waals parameters were found to be a=1250 ±

150 MeV fm3 and r=0.7 ± 0.05 fm where the van der Waals parameter b=16
3 πr

3. These values are

significantly higher than those found in [5] where the values for a and r were estimated to be 329

MeV fm3 and 0.59 fm respectively. This discrepancy can be attributed to the fact that in [5], the

VDW parameters were extrapolated by reproducing the properties of nuclear matter in its ground

state, (see Ref [44]), as opposed to fitting the VDW-HRG model with LQCD data. In Sec. 3.1,

results for different observables will be shown using both the VDW parameters found by [1] and

those found by [5].

It is important to note that it was assumed in both [5] and [1] that the van der Waals parameters

are not dependent on temperature and chemical potential. It is also implied that hadron masses are

independent of temperature and that the magnitude of the attractive and repulsive interactions are

the same for all pairs of baryons and antibaryons which would not be the case in reality. These may

very well be significant assumptions that must be relaxed in order to compensate for deviations

that still exist between VDW-HRG and LQCD/experimental results. 2,3

The first step taken in implementing the VDW-HRG was importing data for all known hadrons

and their resonances into Mathematica. Following in the footsteps of Samanta and Mohanty [1], the

2016 Particle Data Group listing of all known hadrons and their resonances up to a mass of 3 GeV

is used in this analysis [46]. The data was imported and separated according to baryon number,

thus giving separate data matrices for baryons, antibaryons, and mesons. Next, the formulas for

pressure, number density, energy density and entropy density were written out using Eqs. (3)-(5)

and (7)-(12). For each of these observables, we need to extract the mass, degeneracy, and baryon

number for each particle from the data matrices for baryons, antibaryons and mesons as these three

2Recently, work has been done on relaxing some of these assumptions such as making a, the attractive VDW
parameter, temperature dependent[39], incorporating temperature dependent hadron masses [45], and having unique
VDW parameters specified for each pair of particle species [41].

3It has also recently been shown that both VDW parameters, a and b, are in fact dependent on the beam energy
and hence are dependent on temperature [38].
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properties are needed in the formulas for each observable. In addition, we need to sum over all

hadrons used. To do this, a module inside of Mathematica was made for each observable such that

these conditions were met.

The next difficult part was figuring out how to numerically find the non-ideal, VDW pressure

and number density using the modified chemical potential. Essentially, the issue is that the modified

chemical potential, see Eq. (8), is a function of the non-ideal VDW pressure and number density,

Eqs. (7) and (9), respectively and both the VDW pressure and the number density are also functions

of the modified chemical potential. Thus, numerical root finding has to be used in order to solve

for solutions of these three equations simultaneously. For each observable, this root finding needed

to be done separately for baryons and antibaryons as the modified chemical potential is dependent

on the baryon number. However, because we assume mesons are non-interacting in this analysis,

the mesons are only treated using the ideal Hadron Resonance Gas model and thus do not need

any root finding when solving for their ideal thermodynamic observables.

In [1], illustrations are only given for the behavior of the VDW-HRG model under the condition

that the chemical potential is set to zero. Thus in Sec. 3.1, plots of different observables are shown

which have the chemical potential set to zero and use the same van der Waals parameters that

were found by Samanta and Mohanty. These plots only show results for a few select values of

the temperature. This was done as it takes a long time for Mathematica to numerically root find

for a large number of temperatures with the equations mentioned in the previous paragraph. In

Sec. 3.3, we will show results for observables that were calculated not just using smaller intervals

and a larger range of temperatures, but also using finite values of chemical potential. Because

Mathematica is such a high level program, it is difficult to run intensive jobs quickly. Because

of this, the results given in Sec. 3.3 were calculated using the C programming language. Using

C instead of Mathematica, despite being much faster, turned out to be much more convoluted,

specifically when trying to numerically find the roots to Eqs. (7) and (9).

In order to find the roots to Eqs. (7) and (9) using C, the Newton-Raphson method was utilized.

This method is one of the simplest ways to find roots of multidimensional functions and can be very
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efficient provided that you give the method a sufficiently good initial guess for the roots. A typical

problem applicable for this method gives N functional relations to be zeroed, involving variables

xi, i = 1, 2, ..., N :

Fi(x1, x2, ..., xN ) = 0 i = 1, 2, ..., N. (16)

Now let x denote the vector of values xi and F denote the vector of functions Fi. In the neighborhood

of x, each function Fi can be expanded into a Taylor series

Fi(x + δx) = Fix +
N∑
j=1

∂Fi
∂xj

δxj +O(δx2). (17)

The matrix of partial derivatives that appears in Eq. (17) is called the Jacobian matrix J,

Jij ≡
∂Fi
∂xj

. (18)

Thus in matrix notation, Eqs. (17) and (18) become

F(x + δx) = F(x) + J · δx +O(δx2). (19)

If we then neglect terms of second order and higher and then set F(x+ δx) = 0, we obtain a set

of linear equations for the correction terms δx, which simultaneously move each function Fi closer

to zero. Setting F(x + δx) results in the matrix equation

J · δx = −F(x), (20)

which can then be solved using LU decomposition. The correction terms δx are then added to the

solution vector,

xnew = xold + δx, (21)

and the process is reiterated until the convergence criterion is satisfied.
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In our implementation of the Newton-Raphson method, both the functions Fi and the variables

xi are the VDW pressure and number density functions. This is due to the VDW pressure and

number density being dependent on one another, i.e. they are transcendental equations. The code

used for this method was provided by the Numerical Recipes in C library. For each value of the

chemical potential and temperature, the initial starting value for each iteration of the method was

set to zero as the correct initial root for the VDW pressure and number density should be the

closest one to zero. In some cases, specifically at high chemical potentials, the number density and

pressure of the antibaryons were so small that the method would take a very long time to converge.

To circumvent this, the pressure and number density of the antibaryons were set to zero after a

certain threshold ratio of the observable values of the baryons versus those of the antibaryons got

too large. Another problem came at small temperatures, in the 30-55 MeV range, where at small

chemical potentials the method failed to converge. This same problem also happened at very large

temperatures, T > 200MeV . To mediate this issue, the tolerances for the different convergence

criteria had to be dynamically altered depending on what temperature the iterations were working

at.

In order to calculate the integrals in Eqs. (3) and (5) numerically, the technique of Gaussian

quadrature was used. Gaussian quadrature is a type of quadrature rule that approximates a definite

integral by using a weighted sum of function values from specified points within the integration

domain. There are several different types of Gaussian quadrature rules depending on the limits of

integration and the form of the function being integrated. Because of the exponential suppression

in the integrals in both Eq. (3) and (5), we can get a good approximation by only integrating over

a definite region of the function space. In our case, we integrated over the range [-5000, 5000] as

opposed to integrating over [-∞, ∞]. After this change of limits is done, we can use the following

transformation to change the limits of integration to [-1,1] which is required to perform Gaussian

quadrature, ∫ b

a
f(x)dx =

b− a
2

∫ 1

−1
f
(b− a

2
ε+

a+ b

2

)
dε. (22)
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This can then be applied to N-point Gaussian quadrature using the following approximation,

∫ b

a
f(x)dx ≈ b− a

2

N∑
i=1

wif
(b− a

2
ε+

a+ b

2

)
(23)

The specific method of Gaussian quadrature that was used for this is called 10-point Gauss-Legendre

integration and involves approximating the functions inside the integrals with Legendre polyno-

mials. As with the Newton-Raphson method code, the code used for the Gaussian quadrature

technique was provided by the Numerical Recipes in C library.
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3 Results and Analysis

3.1 VDW-HRG at µ = 0

In this section, results will be presented for two different sets of the VDW parameters a and b. For

the first set, results using the VDW parameters found in [1] will be shown for the thermodynamic

observables mentioned in Sec. 2.2 at zero chemical potential. In the second set, the same observables

at zero chemical potential will be shown for the smaller VDW parameter values found in [5]. To

determine the success of our implementation of the VDW-HRG model, a comparison will be made

between our first set of results and the results from [1].

In Fig. 2 below, results are shown for the normalized pressure, p/T 4. Figure 2a shows our results

for the VDW-HRG pressure in blue and the ideal HRG pressure in red for 30 different values of

temperature in the range 100-180 MeV. At approximately 155 MeV, which is at the lower end of

the QCD crossover temperature range, the ideal pressure begins to deviate from the VDW pressure.

Although it is difficult to see, Samanta’s results in Fig. 2b for the VDW and ideal pressure show

the same deviation at around the same temperature.

The blue bands in Fig. 2b result from the errors found in [1] for the VDW parameters. These

errors were found to be ±150 MeV fm3 and ±0.05 fm for the attractive and radius parameters

respectively. From Fig. 2b, it is apparent that until about 155 MeV, both the ideal and VDW

models agree well with LQCD. However at higher temperatures, both the ideal and VDW pressure

begin to deviate and underestimate LQCD data, with the VDW pressure underestimating LQCD

data to a slightly greater degree than the ideal pressure. However, both curves are still consistent

with LQCD results within the error-bars. For all temperatures considered, our result for the VDW

pressure agrees closely with the values for the VDW pressure obtained from [1] which suggests our

implementation of the VDW-HRG model was successful.

The next thermodynamic observable considered is the normalized energy density, ε/T 4. In Fig.

3a, the normalized energy density is shown for our implementation of the VDW-HRG model in blue

and the ideal HRG model in red. In 3b, the result for normalized energy density from [1] is shown
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(a) Our result for the normalized pressure in the
VDW-HRG model (in blue) and the ideal HRG
model (in red).

(b) Samanta and Mohanty’s result for the normal-
ized pressure in the VDW-HRG model (solid line)
and the ideal HRG model (dashed line). [1]

Figure 2: In both plots, the normalized pressure, p
T 4 , is shown using a=162.75 GeV−2 and b=748

GeV−3 for the VDW-HRG model and a = b = 0 for the ideal HRG model. In Fig. 2b, LQCD results
are shown from the Wuppertal-Budapest (WB) Collaboration [2] and the HotQCD Collaboration
[3].

along with LQCD results from the WB and HotQCD collaborations. In Fig. 3a, the VDW energy

density begins to deviate from the ideal energy density around 155 MeV, much like the pressure.

Unlike the pressure, it is much easier to see deviations between the ideal HRG model and LQCD

data in Fig. 3b starting around 155 MeV which become larger at higher temperatures.

In Fig. 3b, the ideal energy density follows more closely to both sets of LQCD data than the

VDW energy density does at higher temperatures. Despite this, from about 150-173 MeV the ideal

energy density still underestimates the LQCD data until it reaches temperatures greater than 173

MeV where it begins to slightly overestimate LQCD data. It is expected that the ideal energy

density would continue exponentially increasing at higher and higher temperatures which is not

the trend of the LQCD data. The general behavior and trend of the VDW energy density closely

resembling the qualitative behavior of the LQCD data indicates that at very high temperatures,

the energy density is very much impacted by VDW interactions between pairs of baryons and

antibaryons. A possible reason behind the suppression of the VDW energy density compared with

LQCD data is the exclusion of meson interactions which were ignored in this thesis and in [1] but
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(a) Our result for the normalized energy density in
the VDW-HRG model (in blue) and the ideal HRG
model (in red).

(b) Samanta and Mohanty’s result for the normal-
ized pressure in the VDW-HRG model (solid line)
and the ideal HRG model (dashed line). [1]

Figure 3: Results for the normalized energy density, ε/T 4, at µ = 0 are shown using a=162.75
GeV−2 and b=748 GeV−3 for the VDW-HRG model shown in blue in 3a and as a solid line in 3b.

could be explored in future research. Again, as was the case with the pressure, our result for the

VDW energy density in Fig. 3a follows closely with the VDW energy density in Fig. 3b which

further verifies the success of our implementation of the VDW-HRG model.

Figure 4 shows results for the quantity (ε − 3p)/T 4. The reason behind the inclusion of this

figure is that this quantity more clearly illustrates how at high temperatures, the trend of the

ideal HRG model vastly differs from that of both the LQCD data and the VDW-HRG model. As

mentioned in the previous paragraph, the qualitative behavior of the VDW-HRG model closely

matches that of the LQCD data which highlights the importance of the VDW interactions at high

temperatures. Whether the deviation that still exists between the VDW-HRG model and LQCD

data can be remedied by inclusion of mesonic interactions remains to be seen in future research.

Figure 5 shows results for the normalized entropy density. Like the pressure and energy den-

sity, deviations begin to appear between the ideal HRG model and the VDW-HRG model at a

temperature around 155 MeV. The behavior of both the ideal and VDW model versus that of the

LQCD data shown in Fig. 5b mirror the behaviors observed in Figs. 3b and 4b. In Fig. 6 we

have shown the results for the speed of sound squared, c2s. This quantity is very important in the
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(a) Result for the VDW-HRG model is shown in
blue and the ideal HRG model in red.

(b) Result for the VDW-HRG model is shown with
the solid line and with a dashed line for the ideal
HRG model. [1]

Figure 4: The quantity shown in these two figures helps highlight the deviation of the ideal HRG
model from LQCD data and the VDW-HRG model at high temperatures which became apparent
in Fig. 3.

study of phase transitions and happens to be the most interesting observable calculated using the

VDW-HRG model.

Looking at Fig. 6b, one can see that, as the system moves to higher temperatures, the ideal c2s

decreases linearly which is nothing like what happens with LQCD data. However, using the VDW-

HRG model result for c2s almost exactly replicates LQCD data. Both LQCD and VDW-HRG show

a minimum around T=150-155 MeV. This minimum is known as the softest point in the expansion

and is a result of the expansion of the system slowing down. Because of this, the system spends a

longer time in this temperature range and could indicate the phase transition of hadronic matter

into the QGP [4].

The final observable that we have included in our analysis of the VDW-HRG model at µ=0

is shown below in Fig. 7. This quantity is the specific heat at constant volume and measures

the rate of change in energy density w.r.t. temperature, at constant volume. For this observable,

the VDW-HRG model is in very close agreement with LQCD data at high temperatures whereas

the ideal HRG model overestimates and exponentially increases. This same type of behavior has

been seen in nearly every other observable considered in this analysis. Again, as with the other

22



(a) Normalized entropy density results for VDW-
HRG model shown in blue and the ideal HRG
model shown in red.

(b) Samanta and Mohanty’s result for the nor-
malized entropy density in the VDW-HRG model
(solid line) and the ideal HRG model (dashed line).

Figure 5: Results for the normalized entropy density at µ = 0 are shown using a=162.75 GeV−2

and b=748 GeV−3 for the VDW-HRG model shown in blue in 5a and as a solid line in 5b.

observables analyzed, our implementation of the VDW-HRG model closely aligns with the results

obtained for the model in [1] which suggests that our implementation was successful.

In Figs. 8 and 9, we have included results for each of the observables shown in Figs. 2-7

but now instead of using the VDW parameter values found in [1], we use the values found in [5].

These new values were found by fitting the VDW-HRG model with the ground state properties

of nuclear matter and came out to be a=329 MeV fm3 and b=3.42 fm3 (r=0.59 fm) which are

both considerably smaller than those found in [1]. Looking at Fig. 8a, it appears that the smaller

VDW parameters lead to the VDW-HRG model staying nearer in value to the ideal HRG model

even at high temperatures. Of course this is what is expected not just for the pressure but for

all observables as the ideal HRG model is just the limit of the VDW-HRG model as the VDW

parameters approach zero. In addition, Figs. 8a-8c and 9b all show a deviation between the two

models around a temperature of 155 MeV, which is what was also illustrated in Figs. 2-7. Two

differences that stick out are that the speed of sound squared, c2s, in Fig. 9a has a minimum around

160 MeV as opposed to 150-155 MeV in Fig. 6a and that there isn’t a noticeable hump in the

normalized specific heat at constant volume, CV /T
3, in Fig. 9c around T=160 MeV, which was
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(a) Result for the speed of sound squared, c2s, using
our implementation of the VDW-HRG model.

(b) Samanta and Mohanty’s results for c2s using the
VDWHRG model (solid line) and the ideal HRG
model (dashed line).

Figure 6: Results for the speed of sound squared, c2s, at µ = 0 are shown using a=162.75 GeV−2 and
b=748 GeV−3 for the VDW-HRG model shown in blue in 5a and as a solid line in 5b. This quantity
is very important to the study of the QCD phase diagram as it is sensitive to phase transitions [4].

the case in Fig. 7a.
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(a) Our result for the normalized specific heat at
constant volume, CV /T

3.
(b) Samanta and Mohanty’s results for CV /T

3.

Figure 7: Results for CV /T
3, at µ = 0 are shown using a=162.75 GeV−2 and b=748 GeV−3 for the

VDW-HRG model shown in blue in 6a and as a solid line in 6b. The ideal HRG result for CV /T
3

is shown as a dashed line in 6b.

(a) Result for the normalized pres-
sure in the VDW-HRG model (in
blue) and the ideal HRG model (in
red).

(b) Result for the normalized en-
ergy density in the VDW-HRG
model (in blue) and the ideal HRG
model (in red).

(c) Result for (ε− 3p)/T 4 with the
VDW-HRG model is shown in blue
and the ideal HRG model in red.

Figure 8: Results are shown for the normalized pressure, energy density and the quantity (ε−3p)/T 4

using both the ideal HRG and VDW-HRG models. The results for the VDW-HRG model are
calculated using a=42.8 GeV−2 and b=445.2 GeV−3 which are the VDW parameter values found
in [5].

3.2 VDW-HRG at finite µ

In this section, results will be presented for the VDW-HRG model while including finite values of

the chemical potential in the calculations. These results were all calculated using code written in C

and then plotted using Mathematica. This was done so that a much broader range of temperatures
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(a) Result for the speed of sound
squared, c2s, using the VDW-HRG
model.

(b) Results for the normalized en-
tropy density using the VDW-HRG
model (in blue) and the ideal HRG
model (in red).

(c) Result for the normalized spe-
cific heat at constant volume,
CV /T

3, using the VDW-HRG
model.

Figure 9: Results are shown for the speed of sound squared, normalized entropy density and the
normalized specific heat at constant volume. The results for the VDW-HRG model are calculated
using a=42.8 GeV−2 and b=445.2 GeV−3 which are the VDW parameter values found in [5].

could be probed, in addition to examining a very large range of chemical potential values.

In Fig. 10, two different images of the plot for the normalized total pressure are shown. The

left plot, Fig. 10a, shows the total normalized pressure over a temperature range of 30 to 250 MeV

amd a chemical potential range of 0 to 1300 MeV. In this image, we see that the total pressure

exponentially increases as a function of both temperature and chemical potential, which is expected.

The plot in Fig. 10b is a result of cutting the pressure off at a certain value and then looking at

(a) Result for the normalized total pressure using the
VDW-HRG model.

(b) Top down view of Fig. 10a.

Figure 10: Result for the normalized total pressure using the VDW parameters from [1] for a
temperature range of 30-250 MeV and chemical potential range of 0-1300 MeV.

a top down view of the T-µB plane. The cutoff value was chosen such that the top down view on
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the T-µB plane could give an example illustration of what the pressure may look like on the QCD

phase diagram (see Fig. 1), where at the phase transition, the pressure would exponentially jump

due to quark deconfinement.

In Fig. 11, similar results are shown for the normalized net baryon density, which takes on

positive values when there are more baryons than antibaryons in the system and vice versa for

negative values. Figure 11a shows a result very similar to the pressure in Fig. 10a, where there is

an exponential increase as the system moves towards higher temperatures and chemical potentials.

One interesting characteristic of Fig. 11b is that, as the system moves towards zero chemical

potential and very high temperatures, the 3D-curve for the net baryon density gets infinitesimally

close to touching the (n/T 3) − T plane. This occurs because as the system approaches higher

temperatures, more net baryons are produced at smaller and smaller chemical potentials. However,

as the system approaches zero chemical potential, the system must produce no net baryon (or

antibaryons), regardless of how high the temperature becomes.

(a) Result for the normalized net baryon density using
the VDW-HRG model.

(b) Top down view of Fig. 11a.

Figure 11: Result for the normalized net baryon density using the VDW parameters from [1] for a
temperature range of 30-250 MeV and chemical potential range of 0-1300 MeV.

In Figs. 12 and 13, results are shown for the normalized energy and entropy densities respec-

tively. For these sets of plots, the respective observables were only calculated for a temperature
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range of 30 to 210 MeV and a chemical potential range of 0 to 1300 MeV. We were unable to

reach the extreme temperatures above 210 MeV that were shown in Figs. 10 and 11 due to con-

vergence issues. Both results show very little dependence on the chemical potential and have a

slowly increasing trend as the system moves towards high temperatures. In Figs. 12b and 13b,

there is a small noticeable dependence on the chemical potential at temperatures above 170 MeV.

More specifically, both the energy and entropy density begin to increase faster at larger chemical

potentials when the temperatures are greater than ∼170 MeV.

(a) Result for the normalized energy density density
using the VDW-HRG model.

(b) Side view of Fig. 12a along the temperature axis.

Figure 12: Result for the normalized energy density using the VDW parameters from [1] for a
temperature range of 30-210 MeV and chemical potential range of 0-1300 MeV.

(a) Result for the normalized entropy density using the
VDW-HRG model.

(b) Side view of Fig. 13a along the temperature axis.

Figure 13: Result for the normalized entropy density using the VDW parameters from [1] for a
temperature range of 30-210 MeV and chemical potential range of 0-1300 MeV.

The final observable result for the VDW-HRG model at finite chemical potential is shown in

Fig. 14. The observable shown is the second order fluctuation of baryon number, χ2
B, and is the

second derivative of the total normalized pressure with respect to the normalized baryon chemical

potential, see Eq. (15). Because both pressure and chemical potential are normalized by the
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temperature, Fig. 14 shows a dependence on the temperature even though it is derivative with

respect to the chemical potential.

Disregarding the 1
T 3 suppression for χ2

B from Eq. (15), we can compare Fig. 14 to the behavior

of the pressure in Fig. 10a. From Fig. 10a, the second derivative of the pressure with respect

to µB should be small for all temperatures at low µB which Fig. 14 clearly shows. In addition,

the second derivative should be positive for all temperatures at high µB, with the most positive

being at very high temperatures. However, Fig. 14 shows that the most positive value of χ2
B is

at low temperatures and high µB. This disagreement is due to the 1
T 3 suppression in Eq. (15)

which results from using the normalized pressure and chemical potential. Thus, by comparison

with Fig. 10a, our result for χ2
B in Fig. 14 is consistent with the pressure results. The reason for

including χ2
B in these results is because in [1], one of the observables used to extract the van der

Waals parameters was χ2
B at zero chemical potential. A plot of χ2

B at µB = 0 using the VDW-HRG

model, which shows remarkable agreement with LQCD data, can be seen in Fig. 2 of [1].

Figure 14: Result for the second order fluctuation of baryon number, χ2
B, using the VDW pa-

rameters from [1] for a temperature range of 30-250 MeV and chemical potential range of 0-1300
MeV.
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4 Conclusions

The primary goal of this thesis was to implement van der Waals interactions into the ideal Hadron

Resonance Gas (HRG) model, creating the VDW-HRG model. This was done to improve the

ability for the HRG model to reproduce Lattice QCD results over a larger range of temperatures.

In Chapter 1, a general introduction to the field was given, along with brief descriptions of the

various methods in which the Quark-Gluon plasma has been studied. In Chapter 2, a description

of the HRG model and how to include van der Waals interactions into the model was presented.

In addition, a technical description of how the VDW-HRG model was implemented in this thesis

was given.

In Chapter 3, results were presented for several thermodynamic observables using both the ideal

HRG and the VDW-HRG model at both zero and finite chemical potential. In Sec. 3.1, the goal

was to calculate observables such as pressure and energy density at zero chemical potential using

our implementation of the VDW-HRG model and then compare our results to those of [1]. In order

to make the comparison, we used the same van der Waals parameters that were found in Samanta

and Mohanty’s paper by fitting the VDW-HRG model with Lattice QCD data.

Through this comparison, it became apparent that our implementation of the VDW-HRG model

was successful as the values and behaviors of our calculations for select thermodynamic observables

matched those from [1]. In addition, in Sec. 3.1, results were presented for the VDW-HRG model

using the van der Waals parameters found by fitting the VDW-HRG model with the ground state

properties of nuclear matter in [5] which allowed for a comparison between the behavior of ob-

servables for the two sets of van der Waals parameters. In Sec. 3.2, results for the VDW-HRG

model at finite chemical potential were given. These results are consistent with what is expected

for the behaviors of the various thermodynamic observables shown at finite chemical potential and

once again indicate that our implementation of the VDW-HRG model was successful. In future

research, the results presented in this thesis for the VDW-HRG model will be used to give a more

realistic description of the matter created in heavy ion collisions at finite temperature and chemical
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potential. Possible extensions to the version of the VDW-HRG model used in this thesis, which

could include accounting for mesonic interactions or incorporating temperature dependent van der

Waals parameters, may also be explored in future research, in the hope of producing a closer

representation to LQCD data.
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