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---iiriiby—■ A ■ «eume.ae

Setallid derivatives ©f anthranilie were synthesized.
These derivatives are classified: as chelate rings. X-ray 
diffraction patterns of these metallic derivatives were 
obtained* Investigation of these patterns revealed that 
each diffraction pattern was tmlQuef but that the patterns 
were related, by the atoaie number (X) of the incoming 
metal. These diffraction patterns provide a quick and 
positive means of idantifieation* A plot of atomic num­
ber against intense characteristic lines enables the 
approximate prediction of strong characteristic lines of 
other ■ metallic derivatives of anthranilic acid*



Sdctlon X
X&tro&xetion

$h@ tew .chelate ring denotes a oyeXlo structure 
that arises frcm the Intramolecular coordination in a 
system formed as a result of the presence of a donor 
and acceptor atom within the .same molecule*

Chelation had been detected as a result of store* 
isomerism^ionization^and absorption data* She last 
criterion came Into preminsnee in the year 193? with 
the study of the infra-red absorption of certalyi molecules 
containin|^^droxyl groups* HilbertWulfj Hendricks, 
and liddel wre prminent in these absorption studies* 
They noted that an 'organic empoundf ali^iatie or aromatic, 
■containing a free hydroxyl group showed a symmetrical 
absorptim'Mnd at or near a*7A* lb was observed that 
■this; characteristic, band was absent in those .molecules 
whieh| frw other .widence, were presumed- to undergo 
hydrogen bond formation* 'later It was- established that 
.'the characteristic." hydroxyl, band ws replaced by'a broad 
band'.■extending, frm '2*9A. to 3.«3M.5 which was.■character*■ 
'istic of theo-H-o linkage* 1 "'-r

Absorption- band -ft’W* '' Maximum absorption i**1* '

*1*



Mcorting 16 Sidgwidc, " eheKte .rings say be eXasslfled 
intb three distinct classes*

Class A chelate rings result frcsa a embination cf ions 
with a. central atm and arise frm. the Inability t>f that atm 
N fora additional cowlent linhs eoaseyt by coordination* 
these emponnds are highly ionised in aqueous 'solutions and 
.are generally wry stable* M example of this, structure is a 
boro»salicylat6«

0 0
Class B chelate rings are- systems in which the- central 

ate® -forms me norsal eowlent llnh .and. one coordinate co* 
valent liAt '®iesw systems are mn*ioniwd in aqueous so* 
XuUon* „» eenerally lesS ataU. toan U th, ola.^ 
structure* Depending upon the central atom-* these ring 
systens decompose at.'temperatures ranging frm 15»0°C* to 

230^« M example of.this'structure is.Hie oxtoe of phenyl* 

gly^aUe acid. e_6=o
<-^u \

Class C chelate rings are systems in which the central 
at an forms two- coordinate covalent links ♦ lhese systems .are 
unstable.* Ihelr Instability arises, fro® the fact' that stable 
Ions or mulequl.es are formed when the ring is broken* M 
■example of 'this Structure Is

*2*



Syntheses

Manganeses nickels &ln<®i Bereurjri and. lead
derivatives of/anttonilie acid were, synthesised, these
synth.... TOra pe^ .. neported by th. roH-Mng mthf

Si, CM derivatives*-* E» Mt and M» MU
Ph, Hg: derivatives-** E. te&. and F* Emer
Mhf 2n derivatives***^ S« itok and F* Borner

(?)
(6)

s

A typical synthesis consisted of adding a 3^ (by weight) 
anthranilic solution (3 grass of anthranilic'acid dissolved 
in 123 c.c. of ethyl alcohol ) to a hot, dilute water solu­
tion of the metallic salt* The resulting mixture was removed 
.frcmi the burner and allowed to stand one hour*. The mixture 
was filtered through a .Buchner funnel (with suction) and 
washed three times, with the reagent and twice with ethyl 
alcohol* The precipitate was dried at a temperature of 100°C. 

for one hour*
The reaction proceeded as is indicated by the following 

"equation* o

M ■*■ kx-*u x/v J*

The reaction proceeds readily and is. used for the guan* 
titative determinations' of many metallic ions *

*>



Section II
Introduction

The history of x*rays dates ha^: to the year 189?* In 
this year# Hlhe'ha Sonrad Boentgen was contooting experiments 
to determine the properties of cathode rays* ’In the course 
of his study# he noted a hitherto unknow. type of radiation 
associated with cathode rays when the cathode rays were 
rapidly decelerated* Be called these urtaown radiations। 
x*rays<

In the year 1912# M» Xaue# I« .^•ledrich# and P# Snipping, 
noted that x-rays can he diffracted hy crystals* Siis work 
wns carried on hy Bragg# *.c later propounded the relation 
between the ’wavelength of the incident radiation (^0, the 
angle between the crystal face and the incident radiation (®)# 
the order of reflection, (n), and the distance between two 
successive planes' in the crystal (til)* Hits relation is known 

as Bragg’s law and is given by the equation 
(1) "Vt X = 'li 6 ♦

With the application of this law# Interatomic distances 
can. be acmiratly calculated* (X) varies directly as thej»h 0$ 

in order to obtain values of (d) that are large enough for 
accurate measurement# (X) should be relatively large* For this 
reason# in diffraction work, soft’ x-rays are employed* Soft 
x-rays denote x*rays "Whose, wavelengths, are situated between 
10 angstrom units and 1. angstrm^tmit* The .toportance of 
Intense। monochromatic (ma&iy).•.radiation)-is at once evident* 



These intense t nearly Eonochromtie x*rays are obtained by 
appropriately filtering th© general radlatim so as to leave 
the eharaaterlstlo x*ray beam* Si© 'radiation used in obtain* 
ing the diffraetion patterns' of these .metallic derivatives 

e 
of anthranilie acid was the characteristic doublet* (a-ltd) 

. Bragg obtained diffraction patterns fro® a single large 
(7^

crystal^ BwnMt later^ Debye and Scherrer developed the 
powder Mtihod. of crystal analysis (the method used in this 
laboratory)^ whereby a finely divided sample of myriads of • 
randomly oriented crystals was substituted for a single large 
crystal* In this mUxodf a small। nearly- parallel beam of 
monochromatic x*rays is .allowed to pass through the sample* 
The x*rays wiH be reflected only fr« planes# of the minute 
.crystals# Idiat are - properly oriented W crystal that is 
not properly oriented# will give rise to interference of x-rays 
reflected from the different layers* Thus# the reflected 
x-rays will constitute a family of right circular cones with 
■their axes coincident with th©1 primary x*ray bem and their 
apices at the sample*

(B)
A Debye-Scherrer type camera was used to record ths 

diffraction patterns* thia camera consists-of-a right air* 
eular cylindrical shell with an enclosed base and a demount* 
able#, light proof top* Ihe narrow x-ray beam entered. parallel 
to the base and w incident ■upon'.the sample which was placed 
Coaxial witii the cylindrical camera* fhotograxhic film was 
mounted around the inner periphery of the camera * The Inter- 



jseeUon of thd reneeW radiations (family of right circular 
cones) and the right eircnlar cylinder described, a family of 
cnrres which were spaaetrical ahmt tha intersection of the 
primary x*ray beam and. the cylindrical camera ♦ '

&e camera was Wit with an inner diMeter of 114«6 m* • 
■One mm#.- measnred along the axis: of the film corresponded to a 
1 degree angular displacement# Fraa geMetrlc considerations $ 
it is evident that the Bragg angle (0) is one half the angular 
displacement obtained frea the film#

Production of x*rays

So propound, ■adequately the tMory of the production of 
x*rays is beyond, the scope of this papery She following 
■paragraphs are offered only as a survey of some of the more 
pertinent facts#

Wen 'high speed olectrms are rapidly decelerated v x-rays 
are produced# We frequency of these electro-magnetic 
radiations- is determined by the structure, of the atom (target) 
-causing, the deceleration aM the potenttal difference through 
Wich the electrons, are accelerated#

;in diffraction work| -characteristic x*rays' are of major 
..'importance* . ■^ontimous x*raysf which are produced in, con* 
..junction- with- characteristic c*rays> interfere wiW the 
diffraction process -and. must W sliminatedt: as’/far as possible, 
by filters.



. To> initiate, th® MsetisslM ot the proawtien of charae- 
teristic x-reyw» It is helpfol to exmine the ww aspect 
of matter*

<$)
As eayly as 1828t Sir lilliaa Hamilton associated 

characteristic ww soticn. with awry material particle* 
We assume a particle of mass (w) moving with velocity (V) 
free point A to point B* Associated with the particle Is 
a characteristis wave with velocity <«•>» (u) Is the phase 
velocity of the wavef i,» ©•« the velocity with which a single 
wave io. propagated* Xf the two paths from A to B are to be 
identical# (v) .must be proportional to (i)»

(2) M 1
•wV

(C) must be independent of distance# i*a*# independent of 
coordinates*

If the particle is to correspond to a group of waves# 
it is not the velocity of propagation of the Individual 
waves# but that of the Wmteies or'.the ..waive'groups which 
should be equal to the velocity of the particle* Treatises 
6n)wave motion show that the group velocity (w> is expressed 
by the equation ( j / a

(3) •*v* " An)

where (3^) is the frequency of the wave*
To differentiate'(3)* (m.) must be expressed as a function 

of <1/)* DeBroglie accomplished this by placing the arbitrary 
constant to equal to the total energy of the moving 
particle and assuming that
(4) o vu » hl?



in aee6j?0an©« with the quantum Upm performing
the <ifferentieti«^ W Broglie that the speed of 
the waw group (N is Identieat with the speed, of the 
corresponding partidie*

The wave length of the wave associated with the partiele 
is Solving (3) and <1) for W we obtain8>u= Ju/ * 

Therefore t x
(5) A w

■Equation (5) describes the wavelength of a de Broglie wave* 
The wave train corresponding to the Moving particle has a

. wve length inversely* proportional to the awenttm of the 
particle*

Qis wave nechaniea of de Broglie showed that large1 scale 
Mechanics sdght be ■considered either the propagation of wave 
groups1 or the motion of particles* Schrodinger extended wave 
mechanics to cover problems 'without restriction as to dimen­
sions*

■ The following differential equation can be used to 
represent a wave corresponding to the motion of a particle 
in a Held of force, 

ihero (^p) is any well behaved, function* Assume1 the wave 
associated, with the particle to have a velocity (V). The 
wave length will be given by equation. (5)*



Th© frewsey M' the wve is 3) ■= ^4? V A .
v

xr(^) is a waw af frswncy (i^)| ixsi*> - auh Qxvr-Jt ♦

Aenee t x , x
ASX -qTI -wi V .

•** ^t1-” .^— Y
De proglie las shorn thatv^^(w-v) # where M is ths total 

energy ot the partiele ani M is the 'potential energy of the 
partiele* Jhnsi

(9) w> s vswat *11 4* vws. w»i, *. 3 • •

Equation (9) represents the possible energy levels (shells) 
in an atm*

obtain - , ■>
(8)
SchroMnger has sheen solutions -exist for thia differential

Equation (6) beowa
(7) 4- (w-v) =o

whieh is the foundation of Sehrodingerfs wave mechanics*
Sohrodinger^e wave melianlcs nay be applied to the stationary 

states of a sisals aW«' Cmsider a sinple atom of massive 
positive moleus ehargeYZC about ^Meh, exists an eleetron 
of eharge-C* Clearlyi the potential energy of the electron 
is'iS ♦ Inserting this wine of (v^ in equation (7)» we

Wn n 1 shell' is notM as the X shell
h k 2 M w 0 ’• rt L tt
» .1 J tt « tt «■ M H tt
tt „ 4 « « n tt -it k »

etc*



ComsFoMtog to any partlcnla, value of (to, the 

solntion ef (8) t>se*es xUaQi) t +
(10) vCK
Aere (Q .tod are arbitrary aanattots tod (tQ i» defined 
by the relation Ki)k»U)ke The ^nantity (4) oscillates with a

fyequMoy
'ihe 'Bost general solution of (8) for a ays tea is the sun

We assume that the density of electric charge > at any 
pointy is proportional to the value at. this point of >
Nhere (V) is the complex omingate of w aastme

(12) C 4 f
e Z- Tw Tkt

K. K.
where (8) is the electronic unit charge. It is clear that 

-t

depends upon the time only tooa^j the exponential factor of 
wfaieh the real part isS>*a.T^-2jJt *ti*-t3w«5* Equation (12) represents 

a fluctuation of charge densities at any point with frequencies $

From the preceding- j discussion it is noted that permissible 
changes frcm me energy state to another energy state occur 
with the emission or absorption of' radiation of a definite 
frequency* These frequencies are characteristics of' each 
■element*

She psreceding . discussion has evolved about a hydrogen 
like atm* Moseley* s law is the experimental evidence of 
the quantum theory* Moseley was able to use an x*ray spec*

*10*.



taometex* to the relation between the frequency -/of 
. eharapteristie radiation (i^ and the atcMe 'tmnber of the

target (2).t Be faod that ■
(14) 3? ^ a l< C*2- "*

Aerekand^ara constants for a certain set of energy level 
4isplaoaBentt<

A certain mintow of energy .'necessary '.
■to knock an. electron froa a specific -energy level* If the 
'filament electron is to supply this energy* It meessarily 
must be accelerated through a definite potential difference* 
In order-to knock KX shell electron out of the atm* the 
ftlanent. electrm will have to- be accelerated through a 
certain potential difference f this potential difference Is 
called the ^citation potential for the K series* then the K 
shell electron is displaced* its Initial energy state nay 
be filled by a 1* * * * •shell electron# If the 1 shell
electron makes the transltlm* the radiated photon is noted 
as the X* characteristic radiation* If the M shell electron 
sakes the transition* the radiated photon is noted as the 
ch&racterlstle. radiation* 1 series eharacterlstie radiations 
are denoted in a slailar manner*

To obtain nearly monochromatic x*rays* critical 
absorption data were employed* In this diffraction problem* 
the characteristic doublet nffv chTomim'wis’ . employeUv^ 'The 
characteristic chrmlim line is of hl^x intensity and, 
has a wave length 0*80 angstrm units shorter, than the K* 
line* . ■) to reduce the line to a negligible

k^i.efa*
#*11m



value। a vanadium pentoride filter w used, The line is 
readily absorbed by to vamdto baeause its wave length falls 
just .inside to eritieal absorption limit of vanadium*

to filter praetidally eliminates to line and decreases
■to intensity of to Mghef townoy radiatims of to
continuous spectraa*.

- M »8a coerncl^^ Pt r.9er its
critical absorptim edge is 44^**'* to tMtoess of' 
vanadium required for the standard ^/10 absorption of to
line is given by the absorption equation* 

<1?)

to grams of' wmdium per unit area necessary to affect 9/10 
absorption my be obtained from to relation
(16) • 'WS, a.
where (A) is unit area*

Biuipmeht

. to high voltage supply was adapted frm a' Westinghouse 
#67438 transformer* It provided full wave rectification and 
a peak voltage of ?o K»T» A circuit diagram of the transformer 
is given on page #14,



She control xmit ws adapted frm a Westlnghcmse Dynex
B eontrol unit* She elrcul-fc dlagraa given on page trXSls self 
explanai63?9r< it should be .noted that every control the 
•operator tenches Is grcroSM# To laprove the .clarity of the 
circuit'diagrams the .grototi. leads are <Mtted*

The diffraction tube (x-*ray) was designed • in this 
laboratory* It is a hot cathode#. contlmxously pumped? 
demountable x-ray tube*

The original design of the diffraction tube- was altered 
many times before a functional tube was developed* The tube, 

*g.*it..*.tandtwtWye «H1 operate over long periods of time 
with a current of t at 30 KeV*

The metal part of the tube was constructed from a brass 
tube'2 indhes'in diameter and.4 ■inches long| It consists of 
a. water 'cooled target, and a berylllm Window mounted in the 
wan of the tube*. The target is essentially a thin brass plate> 
(1 m* in thickness) plated with 20/1000 in* of cl-irosium^and 
placed perpendicular to the axis of the tube* The beryllium 
window is a circular piece of that metal| 10 mm* In diameter 
and 1*4 «* thick# mounted In the wall of the tube adjacent 
to the. chromium target* On page #Uis a'drawing.of the tube*

The glass, part of the- diffraction tube is a tube 2^ cm* 
long in which two electrodes are meunted* To evacuate the 
tube there is. a ■male connection situated at the bottm#whlch 
leads to a two stage diffusion pimp and a fore pump*

At the outsets the filament (attungttm spiral 15 mm* long) 
was placed 1 ©a* tro the target* &e filament was enclosed



in a shield| an -apeytoet the dimensions
of the fllaaenti was wt mt of th® top portion, of the shield # 
XTpm running the tnhe for a short time# a deposition of metal 
was noted on the glass walls of the tube* A subsequent 
analysis of the deposited metal yielded aluminum .and 10^ 
twagsten* /fhe vapor pressure of aluaine^'at high, temperatures 
and low pressures# was too great to render aluminum a functional 
metal for use as a shield« 3Ms condition was remedied by 
replacing ’titie alumintsa shield with a nickel shield*

lhe problem of the deposition of tungsten remained* The
trouble was -in the prsdMty of the- filament to the target * 
The vapor pressure of tungsten at 2500°C, is approximately
10 mierons* Tungsten# at the same temperature# in a intense
electric field (as in an x*ray tube^h 
much greater than the expected value*

s a vapor pressure 
The nearness of the.

tungsten filament to the target is the controlling factor* ’ 
A tungsten filament placed within 1 cm* of the target has a 
vapor pressure 10 (approximately) times the expected value* 
Placing the filament at greater distances from the target 
decreases the vapor pressure of the tungsten* The reason for 
this unusual behavior of tungsten has not as yet been fully 
explained in the literature* The deposition of tungsten was# 
for all practical, purposes# eliminated by ...placing the filament 
2«S cm* from the target*

Since these .'innovat.ions were made# the x*ray tube operates 
satisfactorily*



®d«w+ 6p4hc.
:theAw<mta ©f th© tube eyetem we-obtained from

a calibrated thennoeouple gage that was mounted in the system*

the filter was made of fUsly divided vanadium pentoxide 
particles affixed to a thin pieoe of cellophane* She mass .of 
vanadium' per unit area was determined by equation (16)* To 
determins the mass of vanadium -pentoxide equivalent to the
determined mass of vanadium^ the value obtained from (16) was

- multiplied by -the ratio of the molecular weights -of and V,
1 »e» I * 1

The Pebye*Scherrer cmera used for recording, the diffraction 
patterns has been discussed in a previous section*

Photographs- -of the camera। -diffractim tubS| and control 
unit are oh., page #. 27^* / *

Procedure

The diffraction tube was degass-ed as much as possible and
*3 

evacuated to a pressure of the magnitude of 10 microns* -
The sample was mixed' ’with collodion and molded into the 

shape of a right circular cylinder with a diameter of 1 mm. The 
sample was placed coaxial with the $?ebye*Scherrer camera) i*e*| 
in the path, traversed by the xay beam* 3? mm* Kodak no-screen 

jK*ray.-'safety film was mounted on the inner periphery of the 
camera* The camera was;‘-mounted so that x*ray beams emitted 
at a 6 degree angle (with respect to the plane of the target) 
would be incident upon the sample* The target areat when 
viewed from 6 degrees$ presents a nearly square source* The 
vanadium pentoxide filter was then placed over the beryllium



Mgh voltage wag applied (30 K«V*) aM the filament 
current Increased 'tmtll an emission current of 9 m* was 
attainedThe average -exposure tlM was 6 .hours*.

&«■ exposed film.was dwelopel aecording to procedures 
outlined by to Kodak Co*, for toir developing solutions*

to Bragg angles of to various Itos of to diffraction 
patterns were determtod with an appropriately adapted 
traveling Mcroscope*

Bata

to Bragg angles of to various Itos of to diffraction
/ . .. jSLpatterns' are listed, with toir correspo^lng values of n ♦ to

intensities of- these linss were visually esttoted* A value 
of 10 ws arbitrarily assigned to most intense line in each 
pattern*

I

**1S*



Anthranilic Aeidi 6 hour exposure at 30 K,V« and 9 ma*

-17-

Bragg angle

degrees

Intensity

#

d/n
A®

7,95 7 10*4

■10»95 10 7*60
13.60 1 ' 6*10

■ 15*00 1 5,57
V16.13 9 5*20 '

y>7.27 3 4 *84 /
■ /18.68 2 4*51; ■,
19.67 110 4*28

■■W.B0 ' • 2 4*06
2 3*87

;'V.e3w.34 2 3*64 .
"':'25*00;- 2 ' 3*42; ■
; 89 *.23 ■ ■ 3 2*95

30*30 : ■ 2 ■ 2*86 .. .
■■31*26 x 2*78
32*00 2 2*72
34*07 1 2,67



Manganes® dsrivatiwt 6 h©w exposure at 30 and 9 m.

Bragg angle 

degrees

Intensity

w

d/n

5*20 9 15*8

9*90 ■ 2 8*47

14*08 2 5*93

15,22 10 5*51

16*50 1 5*09

17.96 2 4*67

19*43 1 4*33

20*89 8 4*03

26*12 3- 3*27

28,30 1 3*04

28*78 1 2*99

32.40 2 ■ 2*96
33*70 2 2*60

35,00 1 2*51

36*02 1 2.45

38*32 1 2*33

43*28 1 2*00



'.'Hi- derivativet S hcmr escpeevre at? 30 K«V» and 0 ma#

Bragg angle 

degrees

Intensity

#

a/»
A0

StlO 9 <16*3

9.70 2 8,53

13,64 1 6*10

14.82 10 5*63

15*38 8 5*43

17.44 2 4*82

19*51 2 4*32

20.40 8 ■ 4*13

^©.42 1 ■ 3.24

29*08 2 ■■ 2*97

30*96 2 • 2.81

32*55 2 ■ 2*67

33*10 2 2*64

34*48 1 - 2.54

35*54 2 = 2*47

37*00 1 • 2*39

38*28 2 2*33

41*85 2 - 2.16

43*45 1 2*09

*19*



Copper derivative t 6 how exposwe at 30 K*V, and Si ma*

Bragg angle■

degrees

Intensity

#

d/n

A®

5.04 © 16*4

5.30 7 15.6

©♦10 ■2 9.12

0.80 2 8*46

14.64 10 5,71

15*26 7 5.47
16.21 2 5.17

18*11 < 4*64
19*06 3 4.42

19*71 2 '4*27'

20*15 8 4*18

21*15 2 4*00

24*35 1 3*50

26*06 3 3*28

26*81 2 3*20 ’
28*11 4 3*06
30*16 3 2*87
32,26 2 2*70
34,90 2 '2,52

38*34 4 2*33
41*56 2 2*15

♦2O.«*



Zlno derivativei 6 hour exposure at 30 K.V, and 9 ma.

Bragg angle 

degrees

Intensity

#

d/n

A®

5.00 9 16.5

5.40 6 15.3

8.95 2 9.27

9.85 2 8.43

14.32 2 5.82

14.50 10 ©♦76

15.10 6 5.52

16.38 1 5.12

1T.35 2 4.83

19.26 3 4.36
19.90 8 4.23

25.14 1 3.40

26.25 1 3*26

28.63 1 3.00

30.17 1 2.97

30.70 2 2*92

32.30 3 2.70

44.30 1 2.06

*21*



derivative i 4 hour exposure at SO K.V, and 9 me

Bragg angle 

degrees
Intensity

#

d/a
A®

4e28 9 19,7
lOe'TS 10 7,73
18,15 8 5,18
21,00 5 4,02
24,85 5 3,42
25,35 3 3*36
27e55 3 3.11
29,65 3 2,91
30,30 2 2,85
31.00 2 2,80
33,75 4 2,69
35,78 3 2.46
37,09 2 2,38
41,13 3 2,19
41,87 2 2,16
49,25 2 1.91

*22*



Lead derivative i 4 hour escposure at 50K*V. and 9 »a»

Bragg angle Intensity d/n

degrees ■ #

4*26 9 19*8

SeST 2 9,89

10t70 10 7*77

16*1© 8 8*19

18*88 4 ■ 4*35

21*41 4 3*95

. 23.00 4 3,69

27*0T 5 3*16

27*81 5 3,68

33*20 5 2*63

39*22 6 2*27

42*33 1 2*14

' 45*45 4 2*02

25-



CIRCUIT DIAGRAM OF HIGH TENSION TRANSFORMER

XFS XFCXFL
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CIRCUIT DIAGRAM OF CONTROL UNIT

Filament Switch

To 120 A. G

XFL



DIAGRAM OF X-RAY TUBE 
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Each pttesm. obtained wi tmi^u© although
the genesml distribution of. Itoee wt soaerdiat slailai*« On 

..WefWftthere'are dizainlshed^ $tiotog3?a$M<i reproduetlons 
of the diffMotlon .patterns of of the aetalMe deriv* 
atlves of anthranilio aeM*. fhe s.iM,larity M the distribution 

■ of the diffraction lines infers that the general structures 
of these derivatives are shnHar*

fhe unique, distribution of linos in each pattern affords 
a positive' means, - of Identifying', -eadh of these jaonipoiinds#

She plot 'the. &?agg angle of the prcMnent diffraction 
lines against the atoaie number shews a. smooth curve> which 
enables1 me to predict the Bragg angle of other substitutions, 
Shis plot is shorn on page# It *

Brrors

the relative intensities of the diffraction .lines are 
scmmMt In error. Following the standard practice। the line 
intensities.were estlmted'vdsuallye

■ She possible error In the Bragg angle (due to thickness 
of the sample) varies as the angle variese She error is 
Brndm at a Bragg angle of 4^ degrees and. minimum at Bragg 
angles of■ .^degrees.; tod^’90 degrees. With the equipment used 
in this project f the estimated possible error at a Bragg angle 
of' 2j''degrees Is O.O? degrees'and at a Bragg angle of 12 degrees 
Is O.Ot degrees*

In ■conelusimj X wish to '.thank Br» Se KLrath and Pr* long 

for'their interest and suggestions in this work.
•"SS* '**'*
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