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ABSTRACT

This work examines and classifies the steady state 

behavioral features of lumped parameter systems in which 

either two consecutive first order chemical reactions 

A—>B~*C, or two independent first order chemical reactions 

A—B—^2 occur. Both reaction schemes behave in a similar 

fashion, and it is shown that the case of A—B—>P2 can 

be treated as a special case of A—*B—*C. When both reactions 

are endothermic, a unique steady state solution exists. 

When both reactions are exothermic, a maximum of five steady 

state solutions could occur. When one reaction is exothermic 

and the other is endothermic a maximum of three steady state 

solutions may exist. When one reaction is isothermal and the 

other is endothermic a unique solution exists, while when both 

reactions are isothermal y=l is the only steady state solution. 

When the first reaction is exothermic and the second is 

isothermal, the problem degenerates to that of a single 

chemical reaction occuring in a lumped parameter system. 

However, when the first reaction is isothermal and the 

second is exothermic, a maximum of five steady state solutions 

may occur.

Sufficient conditions for uniqueness and multiplicity 

have been derived for each subcase. The existence of steady 

state multiplicity over an unbounded range of Damkohler 

numbers has been confirmed. For certain sets of parametric 



values multiplicity could occur for ALL values of Da2, when 

both reactions are exothermic. For the first time, sufficient 

conditions for the existence of FIVE steady state solutions 

have been derived for the case of two exothermic reactions.

Various forms of the steady state equation have been analyzed 

yielding sufficient conditions for multiplicity, which are 

much simpler than those previously reported in the literature.
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CHAPTER I 

INTRODUCTION

The occurence of steady state multiplicity in lumped 

parameter systems is well documented [1] and plays an important 

role in the design, start-up and control of chemical reactors. 

Certain unexpected phenomena such as hysteresis of the steady 

state temperature of the reactor with changing feed temperatures 

[2], and situations in which a "runaway" occurs as the rate 

of some undesired reaction becomes important have been 

observed in industrial applications and they are due to the 

existence of multiple steady states.

Such pathological behavior in the operation of chemical 

reactors necessitates knowledge of the conditions under which 

steady state uniqueness and multiplicity occurs in lumped 

parameter systems. For the case of a single chemical reaction, 

necessary and sufficient conditions for the existence of a 

unique solution have already been derived [3-5], and it has 

been shown [6] that for reaction systems with kinetic 

expressions satisfying some liberal restrictions an odd 

number of multiple steady state solutions exists. These 

results apply to continuous stirred tank reactors, non-porous 

catalytic pellets and catalytic wires.

Due to the difficulty involved in deriving uniqueness and 

multiplicity criteria for lumped parameter systems in which 
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several chemical reactions occur simultaneously [7-11], 

few such studies have been reported in the chemical 

engineering literature [12-13], eventhough there is an 

extensive knowledge of other related topics in reaction 

engineering [14-16].

In a pioneering work [12] Chen and Luss developed 

sufficient conditions for uniqueness and multiplicity of 

the steady state solutions of lumped parameter systems 

in which two parallel first order chemical reactions 

occur. Several surprising and new features were found 

such as the occurence of multiple solutions for two 

parallel endothermic reactions and the existence of 

steady state multiplicity over an unbounded range of 

Damkohler numbers. Also, the numerical examples 

indicate that the interaction between the chemical and 

transport rate processes can turn an undesired reaction, 

whose rate is negligible at the ambient conditions, into 

the controlling one. These surprising results led to the 

conclusion that it is very dangerous to predict the 

qualitative behavior of a system in which a complex 

reaction network occurs from an analysis of a simplified 

reaction scheme. Since in industrial applications 

problems caused by steady state multiplicity are of 
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potential importance mainly for complex reaction networks, 

it is imperative that the special behavioral features of these 

networks be understood in order to avoid errors in design and 

operation. Michelsen [13] derived ( for a certain range of 

dimensionless heat of reactions) uniqueness and multiplicity 

criteria which are stronger and easier to apply than those 

derived by Chen and Luss [12].

Many behavioral features of lumped and distributed parameter 

models are often similar. Thus, the analysis of lumped models 

should be at least indicative of the trends which we expect to 

observe for distributed parameter models. It should be 

emphasized, that a distributed parameter model of a complex 

reaction network is more realistic and complicated than the 

corresponding lumped one, because it also accounts for 

intra-particle gradients, and that there are mathematical 

techniques for transforming a distributed parameter model of a 

porous catalytic pellet into a lumped resistances model [17-18] . 

Andersen and Michelsen [19] were able to develop multiplicity 

criteria for two parallel first order chemical reactions 

occuring in a catalytic pellet employing a mathematical model 

which accounted for diffusion. They found that the criteria 

developed for the lumped parameter model [13] could be applied 

to the distributed parameter model also [19].

A logical extension of [12] is to derive uniqueness and 

multiplicity criteria for other lumped systems with complex 

reaction schemes, such as A—»B—=>C or A—B—>P2. Numerical 
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studies of steady state multiplicity for the case of two 

first order consecutive exothermic reactions A—*B—>C occuring 

in a continuous stirred tank reactor have been presented in 

[20-22] . Unfortunately, no criteria are available for 

a priori prediction of steady state uniqueness and multiplicity 

either for A—*B—*C or A—»P^ , B—»P2 .

We aim to present in this work simple uniqueness and 

multiplicity criteria for lumped parameter systems in which 

two consecutive irreversible first order chemical reactions 

occur; as well as to show that the same criteria also apply 

for two completely independent irreversible first order 

chemical reactions. This last fact allows us to develop in a 

compact fashion a uniqueness and multiplicity analysis, which 

is applicable to homogeneous continuous stirred tank reactors, 

non-porous catalytic pellets and catalytic wires, wherein 

either one of the above-mentioned complex reaction networks 

occurs.

Numerous reactions of industrial importance can be 

represented by the two consecutive irreversible first order 

chemical reactions A—»B—>C. Examples are the partial and 

complete oxidation of napthalene 

napthalene---- ^phthalic anhydride--- , H2°' oxidation

of cyclohexane 

cyclohexane--- >cyclohexanol--- ^cyclohexanone, catalytic

purification reactions such as the removal of diolefins and 

acetylenes from olefin streams, the removal of sulfur compounds 
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from hydrocarbon streams, and various halogenation reactions. 

All these reactions can be assumed to be of pseudo-first order, 

if one reactant is used in large excess. In general, the two 

consecutive rections may not be first order; nevertheless, the 

behavior of a series of first order reactions should be 

indicative of the features encountered in higher order systems 

and many industrially important reactions are well represented 

by this reaction scheme.

Examples of two completely indepented irreversible first 

order chemical reactions include the hydrodesulfurization of 

organic sulfur compounds

R1SH---- >R1 H + H0S, R9SH---- »R9H + H9S, and various poisoning
-L. Ze

mechanisms A-- w^ere A an<^ B represent components
commonly found in petroleum industry feeds, with one reaction 

(main) occuring much faster than the other (poisoning reaction).

Our analysis is carried-out through the division of the 

problem into several subcases covering not only the case of two 

exothermic reactions [20-22], but also two endothermic as well 

as the case of one endothermic and one exothermic reaction.

The possibility of one of the two reactions being isothermal is 

also examined, in order to derive uniqueness and multiplicity 

criteria. In addition, for each possible subcase extensive 

numerical calculations were performed and relevant parametric 

values adjusted, in order to investigate the behavior of the 

steady state equation and find the maximum number of possible 

solutions.



Hopefully, the methodology and the criteria presented in 

this work, as well as in previous publications [12-13] , will be 

be useful in examining the behavioral features of more 

complicated chemical reaction networks such as 

A——>C [23-24] and of higher order systems [25].
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CHAPTER II

DEVELOPMENT OF THE MATHEMATICAL MODEL

Consider two first order irreversible consecutive reactions

occuring in a porous catalytic pellet and assume that the 

intra-particle temperature and concentration gradients are 

negligible [15,26]. Then, the following steady state species 

and energy conservation equations apply

^cB5,Cb$-b>vp(k1a$-kib$)
ISX (T-Tjzf-AH,) V K.A+ C-ah2)yicb
Such equations could be written for other lumped parameter 

systems also, in the case of two first order consecutive 

reactions (Appendix A).

Letting

and introducing the dimensionless variables
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(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

J - GaHi^Kco, A, K _ C~AHx) Keg A. £p (5,

allows us to rewrite equs. (1)—(2) as 

__________

UJ (it$sx) (6)

f Bs 1 1____ , v- ^,2
U7=(i+j5..xO1 (7)
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where

Using (4)-(5g) and substituting equs. (6)-(7) into (3) yields

? « Kr r v&.x"

For two first order irreversible completely independent 

chemical reactions

A—>l? ,
occuring in a porous catalytic pellet, where intra-particle 

temperature and concentration gradients are assumed to be 

negligible, one can easily show ( Appendix B) that the steady 

state equation results from (9) by deleting the term involving
(/sQ) and requiring that O<^0 . Consequently, (9) 

embodies the following two subproblems:

Subproblem I o

(i) o( ^0

K KA——^->C, where Bq^O .

(9)
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(ii) O< =0 :
Ki KxA-------- >C, where Bq=0.

Subproblem II : Vh 0 • 5^0

1
K2

2

The above formulation allows for compactness in the 

analytical development and the use of a single steady state 

equation, i.e. equ. (9), for both complex reaction networks. 

Note that the notation V*=0 does not mean that k =0: We ca 
simply delete the term containing V* in equ. (9).



11

CHAPTER III

DERIVATION OF UNIQUENESS

AND MULTIPLICITY CRITERIA.

Lemma 3A1: Equation (9) has a unique steady state solution for

both subproblems I and II.

<i>6<o4<0
Proof

Two endothermic reactions).

(10)

where

CLl

Equation (9) can be rewritten as

(11)

Suppose that y^, y£ are two distinct solutions of (10) .

Then, _

(k-lWM)

(13a)

(13b)
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Subtracting (13b) from (13a) yields

Using the mean-value theorem allows to rewrite (14) as [5]

where yA£ (y1/ y2) .

From (11) it follows that for both subproblems I and II

(i6>

because k

Consequently, (15) is contradicted since 0 . Therefore, 

uniqueness is assured for all h. Z Q of (10) when
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Wfi=O. ^.<0
reaction).

One isothermal and one endothermic

Equation (9) can be rewritten as

i  to)
" c>-D

where

(17)

(17a)

procedure as in (i) we conclude that for both
of (17) whenuniqueness is assured for all

Again, we can prove that AW, and repeating the same 

subproblems

reaction).

One endothermic and one isothermal

Equation (9) becomes

Equ. (18) is the steady state equation for a single chemical 

reaction occuring in a lumped parameter system, and since

0 uniqueness is assured for all Da^ [12].

(iv) ^=^ = 0 Two isothermal reactions).

From (9) it follows that y=l is the only steady state 

solution for both subproblems I and II.
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equ. (9) yields (18). Uniqueness and

multiplicity criteria have already been derived [3] for (18)

when and we know that a maximum of three steady 

state solutions could occur.

Lemma 3B1: Suppose that fl // v . . Let Da^
be such that is the only

root of the equation 

and 

denote the largest root of the equation 

(i+o!^-p+o5<YZl[i+^+(v<20)

Then, a necessary and sufficient condition for 

uniqueness for all Da2 of the steady state equation

1 p/^X (21.

is [3] that

^Wd^.<0 (22)where
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D§£±yBtion_of_unigueness_criteria_using_Lernina_3Bl_.

(23)

(24a)

(24b)

(24c)

where

e^=T^Efl>0
1

Equs. (21)-(22) yield

1- /-fl+0^X)

2 2

a X 2^ x (24d)
f(u&1X)i=<(l+3«1l)tv3<>1X]
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(25)

(26a)

For (23) to hold it suffices that

z- r. x*

where

e £max 0fy)= 9ty**)^ 0(i)=-

(l 4*^8a^ J

Ij. = max -Ri^)=-Ri^*)4i«b)

® k4!1/
(26c)

0

[l(i+o6a^)[o< +f>,'4=<) S5o^J
For the derivation of (26c)-(26d) see Appendix C.
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Condition (25) can be rewritten as

+PKl[0(i+°<Pa+il + ^)+fl^]>C> 1271

>e<r'5-*)

For (27) to hold it suffices that

^192(2+4+51+?2)< (^^1®)*

(28)

From (24a)-(24d) we see that when Da1=0, (28) reduces to

Substituting (26a)-(26d) into (28) yields

where
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V=-1M4o,+y'(1^)]

and M is given by (26d).
Condition (29) is a sufficient condition for uniqueness for

of the steady state equation (21) in theall values of Da2 
case of subproblem I(i) when

For subproblem I(ii), (29) yields

where

For subproblem II, (29) yields

^1-,z 3)+IW’i+-

r« (i+ask)1 J
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<32a)

For subproblem we could have used the steady state

equation g.
i h+MM-.-fli ‘Sy..-,

( with o(=0 ) instead of (21) in order to derive the 

following sufficient criterion for uniqueness for all Da^ of 

(33) : £

The derivation of (34) is shown in Appendix D. (34) may be 

preferable to (31), since it is independent of the Damkohler 

numbers. Condition (34) can be rewritten in the more compact 

form / 'V
\Tn«. / \U(i+^-) <1

where

A = [i+yB(n-^-)] ,34b>

Observe that for 0 • (34a) reduces to the necessary 

and sufficient condition for uniqueness for all values of Da^ 

in the case of a single chemical reaction occuring in a
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lumped parameter system .

For the parametric values
[*• =2.0

B=0.5
y*=i.o

Da2=0.10 and Da2=0.01
(X =0.0

. use of (33) allows us to 

versus n(i+pi h) uniqueness map, in

we find that ^^•S7 and numerical 

prepare a ( MJA 1
order to examine how conservative condition (34a) is for these

two particular values of Da2. Figures (la)-(lb) present the

various regions properly labeled. Clearly, (34a) is a rather 

conservative criterion for uniqueness.

For the special case where /?1 = 0 .^>0 , {23) yields 
the following sufficient condition for uniqueness for all Da2 

of (21) for subproblem I:

where

(35a)
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Lemma 3B2: Simple but more conservative uniqueness criteria 

for both subproblems I and II can also be derived 

by requiring that each of the three terms on the 

right-hand side of the steady state equation

(j-i) + (3-1) (^-i)
be a monotonically decreasing function of y in the
interval ( 1, Ufi+(>r+o()^ ). Such an analysis

yields the following sufficient condition for 

uniqueness:

See Appendix E for the proof of Lemma 3B2.

Lemma 3B3: For subproblem II, conservative criteria for 
uniqueness can be derived for all Q of

equ. (10), by requiring that both terms 

comprising f(y) (as defined by (11) ) be 
monotonically decreasing functions of y ( ^ 1). 

For p , the following uniqueness criteria

can be derived from such an analysis:

I£ ...................................I38)
then uniqueness is assured for subproblem II.

«ii>4 -
then the conditions
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2i^>ci-ye"2 (39b)

are sufficient for uniqueness

If Ki^4 and lxifi>4
for all Pj^O of (10) •
, then the condition

for Lemma 3B3 is shown in Appendix F.

of (10) .

(40)

The proof

Observe that Lemma 3B1 cannot be applied for the special 

case where Da^=Da2/ because Da-^ appears on both sides of (21). 

The steady state equation (9) yields an algebraic equation of 

the second degree with respect to Da^, from which it follows

where

<41a>

Since (41) is very complicated to differentiate, it would be 



24

preferable to use the simpler uniqueness criteria (37) or 

(38)-(40) when Da^=Da2

For the rather rare case where either x 0
one can see from (9) that a maximum of three steady state 

solutions could exist when

Equ. (9) can be expressed in the form ( Appendix G ):

(42)

where

(42a)

I and

II, a necessary and sufficient condition for 
uniqueness for all (-^, ) of equ. (42) is

___________________ 1^2
Derivation of uniqueness criteria using condition (43)

Condition (43) can be rewritten as

+^1^>KO > i<^ <«>
where
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A +V-3Sft|X (l+Sa1Xfl)
" re<+(r+e<)^a(x]G+s65X)Ci+a5aix,t)

L (45a)

fu-pi gjp- iz,cg.) (45b)

w ‘ o( oSctj I

p+fy+^dSa-lJCl+^I)
(45c)

R (>) 5_____M"!1______ (45d)

For (44) to hold it suffices that

K^.
where

< (1^) j

= J{ (47a)

and
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(47b)

Condition (46) can be rewritten as

For (48) to hold it suffices that

XiJt <4 (ji-fiRi) ,49)
where an<^ Rj are given by (47a) , (47b) respectively.

In the case of subproblem I(i), (49) is sufficient for 
uniqueness for all values of (—j^ ) of the steady state 

equation (42) when A>o -14® Q .
When Ai = O- ^a>0 , condition (49) simplifies to

Ki 5 < 4 (50)
OR
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For subproblem I(ii) (O( — 0 ) / (45a)-(45b) yield

<0

and for (44) to hold it suffices that

or

. . . 4-. 1—r -Jt" x0+a^) 6+55^)

(53)

(54a)
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For (53) to hold it suffices that

(55)

(55) is a sufficient condition for uniqueness for all values

(55) simplifies even further.

(45a)-(45b) yield

of ( — p2» ) of equ. (42) in the case of subproblem I(ii), when 

h.>o -^>o-
For subproblem II ()^*saO)

Ji6u)5 .. >0

..................

....>°

r to=_L5y5__ z a(i + Z.1X)fl+SaZ'1) <

For (44) to hold, it suffices that (46) holds where

(57a)
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(57b)

Consequently, (49) can be rewritten as

Condition (58) suffices for uniqueness for values of (— )

of equ. (42) in the case of subproblem II, when A>° • 
When p| — Q , simplifies even further.

This concludes our analysis on Lemma 3B4.

The results of extensive numerical calculations are 

presented in figures (2)-(7). Figure 2 describes five 

possible patterns of equ. (21) for both subproblems I and II, 

when F(y) has only one asymptote and both reactions are 

exothermic. For cases (d) and (e) a maximum of five steady 

state solutions could occur for some Da2 values, despite the 

fact that the CSTR is not cooled as was the case in previous 

publications [20,27]. For case (a), a unique steady state 

solution exists for all Da2z while for (b) and (c) a maximum of



I/D
a

y-DIMENSIONLESS TEMPERATURE

Figure 2: Various patterns of behavior for two exothermic reactions

in the case of subproblems I and II. 
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three solutions could occur for some range of 032* Observe 

that when (19) has a unique root, then F(y) has one asymptote 
only.

Figure 3 describes six possible patterns of (21) for both 

subprobles I and II, when F(y) has two asymptotes and both 

reactions are exothermic. For case (a), multiplicity as a 

function of Da2 is of type 3-1, and there is an upper bound 

on 1/Da2 below which uniqueness is assured. For case (b), 

however, (21) has three solutions for all values of 0a2. 

For case (c), multiplicity as a function of Da2 is of type 

3-5-3-1, and there is an upper bound on l/f^ below which 

uniqueness is assured. For case (d), however, multiplicity 

as a function of Da2 is of type 3-5-3 and occurs for all values 

of Da2. For case (e), multiplicity as a function of Da2 is of 

type 3-5-3-5-3-1, and there is an upper bound on l/D^ 

below which uniqueness is assured. For case (f), however, 

multiplicity as a function of Da2 is of type 3-5-3-5-3 and 

occurs for all values of 0a2*
Figure 4 describes eight possible patterns of (21) for both 

subproblems I and II, when F(y) has three asymptotes and the 

reactions are both exothermic. For figures (a)-(d), apply 

the same considerations as for cases (a)-(d) of figure 3. 

For cases (g)-(h), apply the same considerations as for cases 

(e)-(f) of figure 3. For case (e), multiplicity as a function 

of Da2 is of type 3-5-3-1, and there is an upper bound on



I/D
Q

o
 o l/Da

y-DIMENSIONLESS TEMPERATURE

Figure 3: Various patterns of behavior for two exothermic reactions 
in the case of subproblems I and II.

u>
N)
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y-DIMENSIONLESS TEMPERATURE

Figure 4: Various patterns of behavior for two exothermic 
reactions in the case of subproblems I and II. 
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1/D&2 below which uniqueness is assured. For case (f), 

however, multiplicity as a function of Da2 is of type 3-5-3 

and occurs for all values of Da2•

Figure 5 describes five possible patterns of (33)

( with =0 ), when both reactions are exothermic. Observe 

that cases (a)-(e) are identical to those of figure 2.

Figure 6 describes four possible patterns of (21), when 

pl = 0, ^>0 . For case (a), uniqueness is assured for 

all values of Da2* For cases (b) and (c), a maximum of three 

solutions could occur for some range of Da2• For case (d), 

we find the surprising result of the occurence of a maximum 

of five steady state solutions for some range of Da2 values

( when Fi>o-^=° no more than three solutions could

occur ).

Figures (7a)-(7k) describe eleven possible patterns of 
(42) for both subproblems I and II, when A>° . For cases 

(a), (b) and (f) uniqueness is assured for all values of

)<0 . For cases (c), (d), (e) , (g) and (h) a 

maximum of three solutions could occur for some range of

><0 • For cases (i), (j) and (k) a maximum of 

five steady state solutions could occur for some range of

Figures (71)-(7n) describe three possible patterns

) versus y ( equ. 42 ) when • For case

unique steady state solution exists for all values of 

of

(1), a

while for case (m) a maximum of three solutions could occur



I / 
D

a,

y-DIMENSIONLESS TEMPERATURE
Figure 5: Various patterns of behavior for two exothermic reactions 

in the case of subproblem I(ii).

u> 
m
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I/D
a,

 o l/Da
y - DIMENSIONLESS TEMPERATURE
Figure 6: Various patterns of behavior when the 

first reaction is isothermal and the 
second is exothermic in the case of 
subproblem I.



y-DIMENSIONLESS TEMPERATURE

Figure 7: Typical behavior of the steady state equation (42) when 
the first reaction is either exothermic or isothermal in 
the case of subproblems I and II.
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the steady state equation

(42) has multiple solutions for some values of

if equ. (19) has multiple roots. This

also applies for the special case where

cases where this Lemma certainly holds.

Figures (7c), (7d), (7g), (7i) and (7j) 
Da^=Da2.
illustrate

In figures (2)-(7), we denote

and Appendix H gives parametric values for each figure.

^^0 • For case (n) , we have a maximum 

of five steady state solutions for some range of f-L Vo
for some range of

Lemma 3B5: For

Lemma 3B6: A necessary and sufficient condition for

uniqueness for all values of Da^ of equ. (20) is

Sufficient conditions for multiplicity for some 

values of Da^ of equ. (20) are

Xi () >4 fit (*+«<') fl] '60a)

where y* is the largest root of equ. (20) , and 

is the smallest root of the equation
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1 *pf^(w)f1]=o.
The proof for Lemma 3B6 is shown in Appendix I. Lemma 3B6 can 

be used in Lemma 3B7.

Lemma 3B7: If (19) has one root only, then (21) has one 

asymptote, and a sufficient condition for 

multiplicity for some Da2 values of (21) is that 

(20) has multiple roots ( as in figures (2b) and 

(2e) ). If, however, (20) has one root only 

( as in figures (2a), (2c) and (2d) ), then it is 

still possible to derive sufficient conditions 

for multiplicity for some Da2 values of (21) 

( Appendix J ), except that they are rather 

impractical as they involve y*, which must be 

determined numerically.

Lemma 3B8: Suppose that (19) has multiple roots. Then, (21) 

will have either two ( as in figure 3 ) or three 

asymptotes (as in figure 4), and multiplicity will 

occur for some Da2 values of (21), if (20) has one 

root only (as in figures (3a), (3c), (3e) , (4a), 

(4c), (4e) and (4g)). Our numerical calculations 

suggest that multiplicity will occur for ALL 

values of Da2/ if (20) has multiple roots (as in 

figures (3b), (3d), (3f), (4b), (4d), (4f) and
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(4h)).

Our numerical calculations led us to the following important
observation:

Consider (21) supposing that

If

(a) equ. (19) has multiple roots.

(b)

(c)

equ. (20) has three roots not all of which

occur in (y**, 1+ ) [28], and

F(y) has one hump in

i<r< r<4)
where

is the largest root of (19)

THEN, (21) WILL DEFINATELY HAVE A MAXIMUM OF FIVE

STEADY STATE SOLUTIONS FOR SOME RANGE OF Da2

VALUES (as in figures (3d), (3f) , (4d) and (4h)) .

This Lemma allows us for the first time to derive sufficient 

conditions for the existence of FIVE steady state solutions 

for some values of Da2, for both subproblems I and II when 

both reactions are exothermic.

Comment: we know that

dSo-l Z . 0 o6ai Z" ( 
rl(l+3'a.,X)

representing the steady state equation for a single 

first order chemical reaction occuring in a lumped 

parameter system has a maximum of three solutions. 

Surprisingly enough, the equation
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7—\ "I* \ (62)(i+dSa^X) I (1-f-oXaX)

has a maximum of five solutions for some Da2 values of (21), 

when the following set of parametric values is used (see 

figure (4c)):

=28.0

Dan=0.0001

y*= 0.0
d =i.o

One may say

the condition

is necessary for the existence of a maximum of five solutions 

for some Da2 values of (21). For subproblem I(i), however, 

we have found sets of parameter values for which a maximum of 

five solutions of (21) could occur for some Da2 values even 

when (63) is violated.
For example (see figure (4f) ) , 

Jl =25.0
I*1 =5.0

^-0.8

Da^O.0015

that for this particular set of parametric values

Ki ("To) / K’ca,
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V=0.00001

O< =0.10

It should be noted that we have not been able to derive 

multiplicity criteria of any kind for the very special case 

where Da^=Da2 and

This concludes our analysis for subcase 3B.

ADDENDUM

On page 19 we derived sufficient conditions for uniqueness 

for all values of Da^ in the case of subproblem I(ii). For 

subproblems I(i), II, sufficient conditions for uniqueness for 

all values of Da-^ have also been derived, and they are 

presented in Appendix R when
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Introduction

This case is by far the most difficult to analyze. To the 

best of our knowledge, there are no results published in 

connection with uniqueness and multiplicity in the case of 

subproblems of I and II when one reaction is endothermic and 

the other is exothermic. Bilous and Amundson only made the 

remark [27] that for two first order chemical reactions

A——>C occuring in a continuous stirred tank reactor 

a maximum of three steady state solutions could occur, and 

they presented two figures ( but no parametric values ) for 

illustration purposes for the case where one reaction is 

endothermic and the other is exothermic. However, uniqueness • 

and multiplicity criteria were not derived in [27] either for 

subproblem I or subproblem II.

In order to acquire a feeling about the possible behavior 

of the system under investigation, extensive numerical 

calculations were performed using equ. (42). These numerical 

results have already been presented in figure 7 for

Vie certainly agree with [27] that no more than three steady 

state solutions could occur for fl>0. fz<o Our 
findings suggest that this is also true for subproblem II. 

From figure 7 we read that for cases (7a), (7d), (7e) and

(7k) a unique steady state solution exists for all values of
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) when

Lemma 3Cl

is

( 1

Similarly, when (7q)

demonstrate that a maximum of three steady state solutions

could occur for some values of ( of equ. (42).

Observe that since , equ. (19) has one root only.

and derive uniqueness and multiplicity criteria for

because of certain difficulties encountered in working with the

steady state equation (21) as shown below:

that equ. (19) has three roots in the interval

each subcase. However, this procedure cannot be used here

Consider equ. (21). The

(— ^*2, ) when
(7g), (7h), (7i) and (7j) a maximum of three steady state

For cases (7b), (7c), (7f),

Consider the steady state equation (42) supposing that

. A sufficient condition for 

multiplicity for some values of (

solutions could occur for some values of

^<0 . Actually, cases (7c), (7g), (7i) and (7j) led us 

to formulate the following Lemma for multiplicity:

Next, we need to derive sufficient conditions for uniqueness 

when . The standard procedure has been to

distinguish between the subcases

Suppose that



y-DIMENSIONLESS TEMPERATURE

Figures (7p)-(7q): Typical behavior of the steady state equation 
(42) when the first reaction is endothermic in 
the case of subproblems I and II.

Ln
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roots of the equation
[^-i)-&lZC<+P,-8-)]=o

are in the interval ( 1, 1+p, ) t which means that the asymptotes

of F(y) are in this interval. Consider equ. (20). Since

and

. There are two possibilities:

Either
11+?|+(^)^1< Cl+fi

or

[l+fl+(w)£l]<i < (II pl)
In the latter case we have that either

d+fi)
or

When 1 (l+fl +6r’+^)f2,l^+fi) , we are facing
the problem that even for the simple case where (19) and (20) 

have each a single root ( say y**, y* respectively ), we cannot 
predict whether y**^ y* or y**^y*. In other words, it 

would be necessary to determine y** and y* numerically first 

to know whether F(y) has a positive or a negative slope as 
Y >Y** f°r F(y)^Q , and THEN be able to write down 

sufficient conditions for uniqueness for all Da2 of (21). 

Clearly, under these circumstances it would be preferable 

to plot F(y) rather than attempt to derive sufficient 

conditions for uniqueness. One may observe that the case
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where

could be handled much easier using the steady state equation

( equ. (33) ) are smaller than those

us to the conclusion

that to solve this difficult problem in a compact fashion

it would be necessary to use the steady state equations

(21) and (33) interchangeably in deriving uniqueness and

multiplicity criteria for

The same conclusion was reached when it became apparent

that for similar difficulties occur

the intervals ( 1andConsequently, when

and (

we cannot guess thefacing serious difficulties, because

(33) rather than (21), because we know that the roots of the

OVERLAP, then we are

of its numerator. This observation led

sign of the slope of F(y)^Q at y—^y** (asymptote) .

After many attempts at presenting the results in a compact

denominator of

when the steady state equation (21) is used, especially for

fashion, it became clear to us that it would be preferable

to classify the problem in a different way depending on the 

sign of

fi + Cv+^B]
rather than the signs of and as was previously

attempted. This type of classification makes the presentation
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of the results both elegant and compact. The following two

subcases will be distinguished:

Subcase I, [i+(r+o()B]^ o Uniqueness and

multiplicity criteria for this subcase will be derived using

the steady state equation

because (64) allows for compactness in the presentation of the

results.

Subcase II, [i + (W)B]>0 = Uniqueness and multiplicity

criteria for this subcase will be derived using the steady

state equation

3. " [(}-l)-2aX',ri+^-^)]

rather than equ. (64) , because (65) allows for compactness in 

the presentation of the results also.

We are certainly aware that the criteria derived for 

subcase II are different from those of subcase I: In 

subcase I, uniqueness criteria are derived for all values of 

Da2# while in subcase II they derived for all values of Da^.
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SUBCASE_I2

Uniqueness and multiplicity criteria will be derived using

the steady state equation (64) when b.*a/A<° for both

subproblems I and II (see CHAPTER II). Figures will be

presented first to acquire a feeling about the possible

behavior of the system when [n-(v+oDB]^0
The results of extensive numerical calculations are

presented in figure 8, which describes nine possible patterns 

of (64) when B = and 0 for
each of subproblems I and II.

Figures (8a)-(8c) describe the possible behavior of (64) 

"hen ^,<0 . ^X>0 - end [i+0 ’ 
For case (8a), a unique steady state solution exists for all

Da2 of (64) . For cases (8b) and (8c), a maximum of three 

solutions could occur for some range of values. Since

'las one asymptote only in the case of figures 
(8a)-(8c) .

Figures (8d)-(8i) describe the possible behavior of (64) 
when ’ and [l+(y'+0<)B1^0 . For

cases (8d)-(8g), F(y) has one asymptote only, while for cases 

(8h)-(8i) F(y) has three asymptotes. A unique steady state 

solution exists for all Da2 of (64) in cases (8d)-(8e), while 

for cases (8f)-(8g) a maximum of three solutions could occur 

for some range of 0^2* For cases (8h)-(8i), multiplicity as 

a function of Da2 is of type 3-1, and there is an upper bound



d
q/

i 
° 

'd
q/

i

Figure 8: Various patterns of behavior when one reaction 
is endothermic and the other is exothermic in 
the case of subproblems I and II.

U1 o
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on 1/Oa2 below which uniqueness is assured.

Our numerical calculations suggest that no more than three 

steady state solutions could occur when B<o and

, eventhough this result has not

been proved analytically. Parametric values for figures 

(8a)—(8i) are presented in Appendix K.

1. _Multiplicity_criteria_for_subcase_I

From figure 8, we are able to formulate the following 

Lemmas concerning steady state multiplicity:

Lemma 3C2: Consider (64) supposing that - A>° •
A sufficient condition for multiplicity for some 

Da2 values of (64) is that the equation (20)

[i+f.+tv+oOfr^Jxo <=°)
has multiple roots (as in figure (8c)).

If, however, (20) does not have multiple roots 

(see Appendix L, figure (8b)), then it is still 

possible to derive sufficient conditions for 

multiplicity for some Da2 of (64) , except that they 

rather impractical because they involve y^ (the 

largest root of (20)), which must be determined 

numerically.
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Lemma 3C3: Consider (64) supposing that pi>0 .^<0.
If equ. (19)

ns)

has only one root, then F(y) (as defined by (64)) 

will have only one asymptote (as in figures (8d)- 

(8g)), and a sufficient condition for multiplicity 

for some Da2 values is that equ. (20) has multiple 

roots (as in figure (8f)).

If, however, (20) does not have multiple roots,

then it is still possible to derive multiplicity 

criteria for some Da2 values, except that they are 

rather impractical since they involve y* (the 

largest root of (20)) , which must be determined 

numerically (see figure (8g)).

If equ. (19) has multiple roots, then F(y) will 

have more than one asymptote (as in figures (8h)- 

(8i)), and multiplicity will occur for some Da2 

values if equ. (20) has only one root.

2• _ynigueness_criteria_for_subcase_I________________________

From figures (8a) and (8d)-(8e) we are able to formulate 

the following Lemma concerning uniqueness:

Lemma 3C4: Let's rewrite the steady state equation (64) in

the form

F(y)=FN/FD

and suppose that Da^ is such that the equation
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(66>

has only one root, y**, so that F(y) has one 

asymptote, and let y^ denote the largest root 

of the equation

+9$»1x[i+K+o

Then, a necessary and sufficient condition for 

uniqueness for all 033 of (64) is

r<o , fi<o,fz>O(68a)

-f- ** Ax
>oji>o,^<o ,68b>

where y’is defined in Appendix M.

Conditions (68a)-(68b) yield the following sufficient 

conditions for uniqueness for all 033 of equ. (64):
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require that either

(api+V’/szJ>0 ................................................. (681>

^1

(a) Subproblem I(i): ( y/o , o(/o ।
When fi>o.p4<o , require that either

f2fi •#-) > o .................................. ,68c)
( 4a-+ < 0 ................................... (68d)

(68e) 
or

(i^i+r^o ........................................<68f)
(4i+^i)<0 ......................................... (689)

+°<$M j (68h)

where M is given by (79e) in the next section containing the 

proofs.

or



55

 (68k)

4-p! m*] <^> 
where M* is given by (82c) and by (84c) in the next section 

containing the proofs.

(b) Subproblem I(ii): ( .KsO)
Wlisn and [ i.41 CV""l"e<) ,
sufficient conditions for uniqueness for all Da2 of 

(64) have been derived, but they are impractical 

because knowledge of y**, y is required which must be 

determined numerically. Derivation of these conditions 

is shown in the next section containing the proofs.

(c) Subproblem II: ( r=o . o(/o)
When B = ^/^|<0 and '
sufficient conditions for uniqueness for all Da2 of 

(64) are given by (91a)-(93) in the next section 

containing the proofs.

(a) Subproblem I(i): ( r#o ,o<#O)
When ^i<0, ^>0 , it suffices for uniqueness for 
all Da2 of (64) that
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m*] «■-> 

where M* is given by (82c) with [fi+(r+oQfJ=o in the 
next section containing the proofs.

(b) Subproblem I(ii): ( ■rfo
When ft>0 .k<0 .

,«< = 0 )
it suffices for uniqueness for

(68n)

(680)

When A<o - ^>0. it suffices for uniqueness for

The proofs for these criteria are shown in the next section .
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(c) Subproblem II: ( ^so .<*40 >
When Pi<0 . ^>0 , it suffices for uniqueness
for all Da2 of (64) that

(68q)

where M* is given by (82c) with [fi-Ktr+«)PJrO.
Derivation of this criterion follows directly from

the one for subproblem I(i) shown above.

This concludes Lemma 3C4 on uniqueness.

The next section contains proofs for all the conditions 

shown above which follow from Lemma 3C4.
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PROOFS OF THE UNIQUENESS

CRITERIA

FOR
SUBCASE I: [1+(r+o<) BJ^O
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PROOF

FOR SUBPROBLEM I(i)

WHEN [1+(V4-o()B]^O AND B<o

Conditions (68a)-(68b) can be rewritten as

4 M B MM-P ’

r ip ~|>o, fi<o, <69b)

where

6V=r----------- 1 <K v-i>°[ o( 4. 1

1 (1^1)1

<!(})* (70b)

i ,„■)» ^3.,z _r<o • ।
1 "■" i- (i 4-&lx)1’L>° > f'<6'

(70c)
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Mty)= ff 5?ctXj
(70d)

Since the sign of (y-1) is not known, we prefer to rewrite

(69a)-(69b) as

^+Nrf e y
(71a)

(71b)

For (71a) to hold it suffices that —

-rtfM*W0SWiM<o

rt^y4<0,6T^rr

where y £ (y, y**)

while for (71b) to hold it suffices that



-rtft Wi4+1i)9+^,5 M’>o (73)
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(73a)

where y £ (y**, y^) and

Conditions (72)-(73) can be rewritten respectively as

e)W (z+<?ali)e+

L (74)

where y t (y, y**) and

e)-W +106+
+/W efi+ftWM+Ia)-fM4i +|j)+h M*] >o

(75)

where y £ (y**, y^)

For (74) to hold, it suffices that either



(76a)
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(M^e)<o

e2(2+^+Ii )44(^4-^i e) *
* p+(1+|i )(«$+Il) - fi )j(76b)

or

(^Me)>o .............................. (77a)

*|e[i+m

(77b)

................... m=’

where fl ' ft are roots of the equation (74)=0.
Conditions (77a)-(77c) are rather impractical since they 

involve y, y** which must be determined numerically. 

For (75) to hold it suffices that

(78)
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Consequently, (69a) will hold if either (76a)-(76b) or 

(77a)-(77c) hold, while (69b) will hold if (78) holds.
When Pi>0.^<0 , the following substitutions are 

made:

6 = i/o< . <79a>

1^0 , = 
_ r (xf, 4-ypt) "I
L -J h , T (79c)
1- 0 H
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Thus, (76a)-(76b) will hold if either

(4+^)>o ......................
..................

(80a)

(80b)

[l+ot^+f^+y.^ M] (80=,

ir

(iBl +y*Pt)^ 0 ..................................... (81a)

.................................. <81b)

When

made:

fl<o ,^>0. the following substitutions are
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6 = 6(Sup[l + ^,1-f-?]), e=il0< <82a)

if^l)

I 1 I
» 1 \ (82c)

^<1

(see Appendix N)

h-^ and are given by (79c) - (79d) respectively.

Thus, (78) will hold if either

(lfl+V'f2)>0 <”*> __
«(v 4(

(83b)

or
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(2pi+yPz)<o......................... (84a)

(84b)

where

(84c)

and M* is given by (82c).

Therefore, either (80a)-(80c) or (81a)-(81c) are sufficient

conditions

conditions

R>0
I(i) when

for uniqueness for all Da2 of (64) when 

while (83a)-(83b) or (84a)-(84b) are sufficient 

for uniqueness for all Da2 of (64) when Pl^ 0

h>o

These uniqueness criteria apply for subproblem

and £i+(y+t>o B3
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PROOF

FOR SUBPROBLEM I(ii)

WHEN Ei+Cy*-!-^and B^o

For subproblem I(ii) ( 0( =0 ), we have that

(85a)
Qfu)A (l+35eiX)>Q 

eid'y" r^r?

h^ (y) and (y) are given by

When

(70b)-(70c) respectively.

it suffices for uniqueness for all

Da2 values of (64) that either

(86a)

(pi+H.eXo ............... (s6b)
e2t(i+f«)+vfft+hTi *

* ,86c)

or
(2pl+V^)^0
(fl+rirle)<o

(87a)

(87b)
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(87c)

When h<0.f2>0 , it suffices for uniqueness for all
Da2 of (64) that either

(88al

•[i+(ltM(2^y^(i+r.))+p, (?i+v?J] *•"

or

(tfi+V'^)<0 ................................  <89a>

Mi5 +(uPl^H']

In (86a)-(89b), the following substitutions can be made:
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Since yz y** must be determined numerically

M=M(y ) when

(90a)

(90b)

(90c)

it is clear that

the uniqueness criteria (86a)-(89b) are impractical.



70

PROOF FOR

SUBPROBLEM II

WHEN [i*i-6n*cOB2^o and 0
For subproblem II ( y =0), the following sufficient

conditions for uniqueness for all values of 033 of (64) can be

derived:
When A>o, A<o , require that

(Hi+o(M<0 ............................ (91a)

f<r, [2(1+f,) t (Hi+*
*(l+o<pai2^ oib)

where M is given by (79e).

When A<o- k>o , require that

(92)

where M* is given by (82c).
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PROOF FOR

SUBPROBLEM I(i)
WHEN [l+br-h<)B]=o AND 8<o

The steady state equation (64) becomes

1 -J 1 r/y) (94)

Then, Lemma 3C1 can be applied and (68a)-(68b) yield

(
r<0, ||<O,^>O,(|^,)<^<U (95a)

>0, f,>0,1/0 (1+f,) '™

(96a)

(96b)

Conditions (95a)-(95b) can be rewritten as

($-o

r r * bo,w.>i>> r<^
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______ f/1-/ ) o< ^2 (Zltt/ ______________

^(l+a$alX)[o<(l+3a,X)+V*^aiX]
(97b)

(98a)

9^) an<^ ^2^^ are 9-*-ven by (70a), (70c) respectively.
When A>»- A<o , it suffices for uniqueness for all

Da2 of (94) that

(^l+'<M<0 ...................................

[i - (v+«<)pj<4(f*ir,+ot^) *

*mJ osb)

where M is given by (79e). Observe that (98b) will never be
satisfied.

When ^I<O . ^>o
all Da^ of (94) that

it suffices for uniqueness for
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where M* is given by (82c) with [f.+(V4-o<)^]=O

PROOF FOR

SUBPROBLEM I(ii)

WHEN [l+(V'+e<)B]=O AND B<0
For subproblem I(ii) ( =0)/ we have that

(14-2)a,X) xn ...............  ..... (100a)

yT= /Sa.f ?

(100b)

M(J)= 0 (100c)

t^fy) is given by (70c).

From (94) it follows that F(l)=0. (96a)-(96b) yield the

following
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9-'> ey/g-i -[jj}) *»)])=

f
'<o , fl>o, ^1<O >1<£<£* (101a)

>0 >tl<0>^>0 ,^<1 (101b)

(101a)-(101b) can be rewritten as

r<o, ^>o,^<o > (102a)

[>o ,f#<O,^>O,^*<^<i (102b)

For (102a) to hold it suffices that

ikle ->-K ()-o(k*ti<o
f < g.-

(103) can be rewritten as

+ Ca +- 0+li +li)^o ,i041

^<r
For (104) to hold it suffices that
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(W>+Me)<° ......................'105"‘
C2+^^)<4('pyl+-fc-)(i+^+^) ,,•5‘, 

9

The following substitutions can be made:

4=^(0= 11/(1+A-) 
oOa/

e=e(i)=(i+9S»i)/**^a-f

(106a)

(106b)

Then (105a)-(105b) become

(106c)

y/a <$af 

(14-^a,) .
0 (107a)
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(108) can be rewritten as

<-to>o
^<i.

For (102b) to hold it suffices that

For (109) to hold it suffices that

^(l+il+tik+^i+^fl+ll+A)
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The following substitutions can be made:

aOa,
^2 = 0 <lllb)

e=eci)=

/•oOa,
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SUBCASE II:

Uniqueness and multiplicity 

the steady state equation (65) 

both subproblems I and II (see

criteria will be derived using

when B = 0 for

CHAPTER II). Figures will be

presented first to acquire a feeling about the possible

behavior of the system when [i+(y-+o<)B]>o •
The results of extensive numerical calculations are

presented in figures 9 and 10, 

possible patterns of (65) when

[1 +Wo<)B]>0
where =0.

each of which describes six

B=< o and
Figure 9 is for the case

Figures (9a)-(9b) and (10a)-(10b) describe the possible

behavior of (65) when // >0 - ^‘2.<O and

[i+(r+o<) b3 > o For cases (9a) and (10a) a

unique steady state solution exists for all Da^ of (65). For 

cases (9b) and (10b) a maximum of three solutions could occur 

asymptote only.

for some range of Da^. Since has one

Figures (9c)—(9f) and 

behavior of (65) when 

[l+(y-+o<)B]>0

(10c)- (10f)

A<o ,
describe the possible
^2. 'V 0 and

For cases (9c)-(9d) and (10c)-(10d)

a unique steady state solution exists for all Da^ of (65).

For cases (9e)-(9f) and (lOe) a maximum of three solutions

could occur for some range of Da^ values. For case (lOf), 

0^-) haS ^ree asymptotes, multiplicity as a function
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Figure 9: Various patterns of behavior when one reaction is endothermic 
and the other is exothermic in the case of subproblem I(ii).
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Figure 10: Various patterns of behavior when one reaction is 
endothermic and the other is exothermic in the case 
of subproblems I(i), II.

co o
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of Da-^ is of type 3-1, and there is an upper bound on 1/Da-^ 

below which uniqueness is assured.

Our numerical calculations suggest that no more

steady state solutions could occur when B<o
than three

and

[l+(y+°<) B J > o , eventhough this result has not been

proved analytically. Parametric values for figures 9 and 10 

are presented in Appendix 0.

1. Multiplicity criteria for subcase II

From figures 9 and 10, we are able to formulate the foillowing

Lemmas concerning steady state multiplicity:
Lemma 3C5: Suppose that A > o , ^z<o . If equ. (114)

(+ 56aIh[l+Fl+(v"+c<)0 (114)

does not have multiple roots (see Appendix P), then 

it is possible to derive sufficient conditions for 

multiplicity for some Da^ of (65) , except that they 

are rather impractical, because they involve y^ 

(the largest root of 114) which must be determined 

numerically (see figures (9b) and (10b)).
Lemma 3C6: Suppose that A<o, A>o . If the equation 

(115)
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has only one root, then X(^./ will have one 

asymptote, and a sufficient condition for 

multiplicity for some Da^ of (65) is that (114) 

has multiple roots (as in figures (9f) and (lOe)). 

If, however, (114) does not have multiple roots, 

then it is still possible to derive multiplicity 

criteria for some Da^ of (65) , except that they 

are rather impractical since they involve y* 

(the smallest root of (114)) which must be 

determined numerically.(see figure (9e)).

If (115) has multiple roots, then will

have more than one asymptote and multiplicity will 

occur for some values of Da-^ (see figure (10f)). 

In this figure, the multiplicity as a function 

of Da^ is of type 3-1, and there is an upper 

bound on 1/Da^ below which uniqueness is assured.

2. Uniqueness criteria for subcase II

From figures (9a), (10a), and (9c)-(9d), (10c)-(10d), we are 

able to formulate the following Lemma concerning uniqueness: 

Lemma 3C7: Let Da2 be such that the equation

[(^l)-S)CLair(l+41)l=0 
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has one root only, y**, and suppose that y^ 

denotes the largest root'of the equation

+(v+c<)^]=0 '“s’

Then, a necessary and sufficient condition for

uniqueness for all Da^ of (65) is

Z<0 , pi>0, ^a40 , <119a)

+ **l>0,^<0>^0,^<j.<(l+o(p

where y is defined in Appendix Q.

Conditions (119a)-(119b) yield the following sufficient

conditions for uniqueness for all 033 of (65):
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(a) Subproblem I(i): ( y-jt o , o< # o >

When ^/ > 0 , ^2. < 0 , require that

9[a0+i + *
>{i+ f, -] -™

where 0 is given by (128a) and M* by (128f).
When Pl <0 , p2->0 , require that

(^i + ^iQ) <s 0 .......................................................

(119d)

The proofs for these uniqueness criteria are shown in the 

next section.

(b) Subproblem I(ii): ( V*0 i 0^ — O )
When A/>o , P 2*^.0 f require that

y( § (2-+^ )<^(^, 9)(up.) (ii9e>

where 0 is given by (139).

When ^,<0 . pi>0 , require that
C^+ari6)<0

e [i+p,+Al^5]<4 f^+y( 0)[1+ f, + y£w>j (119,) 
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where Q is given by (141) .

The proofs for (138), (140a)-(140b) are shown in 

the next section.
(c) Subproblem II: ( /-= 0 , o</o )

See page 96.

This concludes Lemma 3C7 on uniqueness.

The next section contains proofs for all the uniqueness 

conditions shown above which follow from Lemma 3C7.
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PROOFS OF THE UNIQUENESS

CRITERIA

FOR

SUBCASE II: [i-Kr+odB]>0
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PROOF

FOR SUBPROBLEM I(i)

WHEN [l+(y+o()B]>o AND B<0
(119a)-(119b) can be rewritten as

r f>0>P°^2<0^*<^<^ ,12°a>

/<o,Fi<o,^>o,^<y (120b>

where

a/”|A (l + 5^a2X^D
6(1})=;—-^--------- ?---- / . . XO (121a)

3 [B(uv-B)a8a^]

JI (n^ 1
L>0’?,<0’^0J (121b>

tu^Yry
1 1 V121c)



88

(122b)

Since the sign of (y-1) is not known, we prefer to rewrite 

(120a)-(120b) as

fg-o'ey-Jr,

- yir
C>0 > ?l>0,p2<0)^<^<^z '-2a> 

IVu)4—  (121d)
® (14-a»aXlx)b +

V| [M ^•'•°()________

C>o , ^>o,52<o ?
-I > (121e)
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For (122a) to hold it suffices that

•X-X* . » (123)

For (122b) to hold it suffices that

+ , z **•

In (123)-(124) we denote

M*y= iw+tw
(125)

For (123) to hold it suffices that
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^6(2+^ 4-k)< A o)*

*|i.+ii26)

For (124) to hold it suffices that

(fi+if>e)<o (127a)

jf, 9 (2i^ +ii4-K)<4-(^0) *

(127b>

The following substitutions can be made:

(128a)

(128b)

0
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-M1A. , fi<0,f4>0 , y.^1
1 11

0 , ?• <0, ^>0, p.<l
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Using (128a)-(128f), condition (126) becomes

f, 0(7, #■)-, 5)»

and conditions (127a)-(127b) become

(^ + iTi9?<0

(130b)

(130a)
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PROOF

FOR SUBPROBLEM I(ii)

WHEN [i+Cv+=<)B]>0 MID B<o
Consider subproblem I(ii) ( =0 ). Then, the steady 

state equation (65) becomes

(g-OtuSiT1*) ”

and (119a)-(119b) yield

<o , fl>0, ^<0 > (132a)

>0 , pi<0, p2>0 (132b)

Conditions (120a)-(120b) become

f>0 > Fi>0, ^<o, 1<^<U, ,133a) 
’[<o , fj<o, p2>o , (133b>
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(134)I8' £8 (i-'f-ti

where an^ ^2^^ are 9-’LVen (121a) , (121c) respectively.

For (133a) to hold it suffices that

(134) can be rewritten as

For (135) to hold it suffices that

iSt e

Similarly, we find that for (133b) to hold it suffices

that



(137b)

95

(pi+5ie)^o (137a)

Ki9
Using (128e), condition (136) becomes

K>e(i+f,)e<t(?1+Sle)(n-Pi)

where
(139)

Using (128e), conditions (137a)-(137b) become

(Fi+^eXo (i40a>

Ki ©[2+pi(140b)

where

0=0(1)=
(l+9$cia)

[11-
(141)
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PROOF

FOR SUBPROBLEM II

WHEN (1+(*-+=<) Bl >0 AND B<0

For subprob lent II ( ^=0 ) , condition (129) becomes

*[l+(l+pl)(^-l-^pa)-pf24-o<^M*] (142>
while conditions (130a)-(130b) become

(Fi+fri)<o <143^

+ (143b,

where M* is given by (128f).
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CHAPTER IV

CONCLUSIONS

The purpose of this work was to examine the possible 

behavior of lumped parameter systems in which either two 

consecutive first order chemical reactions A—>B—>C or 

two independent first order chemical reactions A— 

B—^2 occur.
We found that there is a great similarity in the way the 

system behaves for these two chemical reaction schemes. From 

the mathematical point of view, A—B—*P2 can *De 
represented as a special case of A—»B—XL

We proved that when both reactions are endothermic, a 

unique steady state solution exists for either of the two 

reaction schemes. Uniqueness is also assured when one reaction 

is endothermic and the other is isothermal. When both 

reactions are isothermal, then y=l is the only solution of 

the steady state equation.

When the first reaction is exothermic and the second is 

isothermal, the system degenerates to the case of a single 

chemical reaction. Uniqueness and multiplicity criteria have 

already been derived for the case of a single chemical 

reaction [3-5], and we know that a maximum of three steady 

state solutions may occur for a bounded range of the Damkohler 

number.

When both reactions are exothermic, a maximum of FIVE steady 
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state solutions may occur, and we derived sufficient conditions 

for the existence of these five solutions. Multiplicity may 

exist over an unbounded range of Damkohler numbers. Very simple, 

sufficient conditions for multiplicity have been derived. 

Sufficient conditions for uniqueness were developed using 

various forms of the steady state equation. We found the 

surprising result that five steady state solutions may exist 

when the first reaction is isothermal and the second is 

exothermic.

When one reaction is exothermic and the other is endothermic, 

a maximum of three steady state solutions may occur, and the 

existence of steady state multiplicity over an unbounded range 

of Damkohler numbers has been demonstrated numerically. 

Conservative, sufficient conditions for uniqueness have been 

derived using two different forms of the steady state equation 

interchangeably. Very simple, sufficient conditions for 

multiplicity have been derived.

Extensive numerical calculations were carried-out for 

different sets of parametric values in order to examine the 

possible behavior of the system for the two reaction schemes. 

These calculations were performed using various forms of the 

steady state equation, and the results have been presented 

in the figures.

As in the work of Chen and Luss [12], we also conclude that 

it is very dangerous to predict the qualitative behavior of a 

system in which a complex reaction network occurs from an 
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analysis of a simpler reaction scheme. In our problem, 

however, when both reactions are endothermic, a unique steady 

state solution exists and this is in agreement with the case 

of a single chemical reaction occuring in a lumped parameter 

system. Another result of our work is the derivation of 

sufficient conditions for the existence of steady state 

multiplicity for ALL values of Da2 when both reactions are 

exothermic. This is a powerful result which has not been 

previously reported.

When these reactions occur inside a porous catalytic 

pellet, a distributed parameter model which accounts for 

intra-particle gradients must be used. Based on information 

for the case of a single, exothermic chemical reaction, it 

should be mentioned that the structure of the solutions for 

distributed parameter systems may be more intricate. It is 

expected, however, that certain similarities will exist for 

both the lumped and the distributed parameter model in which 

the same chemical reactions occur.

Experiments should be performed for both reaction schemes, 

in order to verify our theoretical results. Especially since 

there are very few studies reported on the two independent 

first order chemical reactions A—B—*P2* A l°gical 
extension of our work would be to examine the behavior of 

more complicated reaction schemes such as the one 

by McGreavy and Thornton [23-24].
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NOMENCLATURE 

English Characters

A: Species A, or concentration of species A.

B: Species Bz or concentration of species B.

C: Species C / C^: Heat capacity.

D: Species D / Da^: Damkohler number.

E^: Activation energy.

F(y): Defined by (21).

g(y): Defined by (42a).

h: Heat transfer coefficient.

kCa' ^cb: Mass transfer coefficients for species A,B.
: Reaction rate.

Pl, P2: Species P^,

q: Volumetric flow rate of feed.

R: Universal gas constant.

S^: External surface area of catalytic pellet.

T: Temperature.

V: Volume of the reactor

Vpi Volume of catalytic pellet.

X: Defined by (5d).

y: Dimensionless temperature.

y** : Values of y at which the steady state equation has an

asymptote.
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Greek Characters

: Defined by (8) .

: Dimensionless heat of reaction defined by (5g).

: Dimensionless activation energy defined by (5a)

: Quantity defined on page 38.

^ZlHO : Heat reaction.
Ep : Porosity of catalytic pellet.

Z^):
3 =

Function defined by

Defined by (34b).

(42) .

p* : Ratio of activation energies, defined by (5b). 
)/* : Ratio of mass transfer coefficients, defined by

CT : Ratio of Damkohler numbers, defined by (41a).

(5e) .

u Defined by (14).

Function defined by (33).

Symbols in Script

36^
Defined by (45a).

Subscripts

0: Conditions in the bulk, or inlet conditions.

s: Conditions at steady state.
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APPENDIX A

Consider two consecutive first order reactions A——>C 

occuring in a homogeneous ideal CSTR. Then, the following 

steady state species and energy conservation equations apply:

|(A6-AS) = VKtAs <al>

|(Bs-B0=V(K1/Is-K2B5)

VCp (T-T»)= (-AHi)VK1fis + (-AH3)V K, B5

Using equs. (4)-(5d) and letting

I

p _ (-AHi)/|e n (-AHi)Ao <v-fR /a'I (a5) Pi- jCpTo ’ F^- fCfT, ’ V’-’/Ay

allows us to rewrite (A1)-(A2) as
( As \ 1
\ A" /■ (l+ajaj)

f Bs _ 1_______ > । SiaiX
Ae/ (l + ^al/1) L (1+^,1).
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Using (4)-(5d), (A4)-(A5), and substituting (A6)-(A7) into

equ. (A3) finally yields

. a.,I - Ski11 L + aia,z 1

'' (1+SBolT) (14- Sa TO I (14-Sa I) J• eL *

Equ. (A8) results from (9) by letting =1.
K, K,Consider two consecutive first order reactions A—»B—»C 

occuring on a catalytic wire. Then, the following steady state 

species and energy conservation equations apply:

Kca.(Ao~As)= Kj As <M)

1 (T-To)=f- AHj 4 As + (- 2 Hi) K2 Bs (aid

Using equs. (4)-(5e) and letting
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00 1 Kca, a K-cb
(A12)

WKcaAo 
AT.

R _wua6 
’Z2' It, *=(BjAo) ,al3)

allows us to rewrite (A9)-(A10) as

( As A 1I -- -i-- ) ------------------- (A14)
V A» / (i+9$a,Z)

Bs) 1 L , “I
A./ (l+^al1*) I + (H-dS^T)]

Using equs. (4)-(5e) and substituting (A14)-(A15) into (All) 

yields equ. (9).



108

APPENDIX B

Suppose that two independent first order chemical reactions
K KA—b~^P2' occur in a porous catalytic pellet. Assuming 

that intra-particle temperature and concentration gradients 

are negligible, allows us to write the following species 

and energy conservation equations: 

£?Vx(lVI\s)=V?Ktl\s ,B1)
EpKcBSx(B0-B5) = VrK2Bs

k Sx (T-To)=(-AHi) Vr As+(-A H2) Vf K2 B5 <«>

Using equs. (4)-(5g), we can rewrite (B1)-(B2) as 

_____ -_________ < 
x Ao/"(l + gSa|l)

(A) x =<

(i+95al/t)

Substituting (B4)-(B5) and using equs. (4)-(5g) into (B3) 

yields
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3q,Z . „„
Cl+56a(l) '

Observe that (B6) results from equ. (9) if we set / = U

This is also true for other lumped parameter systems, such as 

catalytic wires and homogeneous ideal CSTR's.
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APPENDIX C

From (24d) we find that

= /'T^^iyfe<^o<>5<)I]Yy7^aya,I9
jf^lff (M)°< o((l +5Sai X)

^(i+&lx)l^+(^e<)&.x]2^7/t<r,®iz)
If

f ^»/ [fi+fv+^fal+CK )^2 >o
then

jMC})/d?.>0 M =M(p>M(l)
If

f ^al [+ (^d) ^2 J 4 (p" i) 0
then from (24d) it follows that

jJL c6(^X.(^)[fi+(^+o<)^i] 4 (j1-!)

Consequently, for both cases we find that

M(^)>MC1) .
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From (24c) we find that

when

(iSa,?)--!

Therefore h2(y) has its maximum

at points satisfying the equation
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APPENDIX D

Consider subproblem I(ii). For this subproblem, equ. (33) 
takes the form

I [(1^1) + ]

Lemma DI: A necessary and sufficient condition for uniqueness 

for all Da^ of equ. (DI) is

(M)

where 1 y ym (1+ +y>^2. and Ym is the

largest root of the equation

4-r^)=0 <D3)

Using the steady state equation (DI) , condition (D2)

UAlQ fl!. I 
[l + (l+^B)S6aX]/

(04)
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where 1 y v .

Or

_ pV'lk'&aVir v q (ds) 

(1 +&^)j ?

where 1 < y < y .

Or 

where 1 x ¥ V V andN X m

0fu) = +

[i+(i+y'B)SoLj,t]
(D7a)



(D7b)
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« (l+$az2:f) >0

lto‘
fi + ^xO

(D7c)

For (D6) to hold, it suffices that

M'+f,($-l)6[($-l)-(F,+I, +l)]>0 ™

where 1 x y

Condition (D8) can be rewritten as

Qi+^i +^6(n-pi+^+^2.))^O

(D9)

where 1 Z y < ym < (1+ P.X -dm I • +
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For (D9) to hold, it suffices that

) (24-^+fti+^2 fA + J/ 0+F1++^2) <D10)

Condition (DIO) is sufficient for uniqueness for all Da^ values

of equ. (DI).

degenerates to

Observe that when Da2=0, then (DIO)

From (D7b) we have that

(Dll)

Consequently,

From (D7c) we find that

(D12)

(D13)

Thus, we can use
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(D14)

From (D7a) we have that

(D15)

Therefore,

from which it follows that

0=e(i)= (14-&) 
[l + d + VB)^

(D17)
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A simpler uniqueness condition can be obtained if instead of

(D12) we use

ii = (018)

Substituting (D14), (D17) and (D18) into (DIO) yields

(1 + 9Sa2 ) 
f 1 +

_1l(2±&2_ lr r, 0 
ri+(i+yB)&JJ(1W+ + ; (D19)

(D19) can be rewritten as

iTS^rfp^^1+^2<

<(^i <d2o>
A uniqueness condition which is simpler than (D20) can be 

obtained if instead of (D17) we use

(d21)

Then, (34) follows directly from (D20) .
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APPENDIX E

Equ. (36) , which follows directly from the steady state 

equ. (9), can be rewritten as

where

(E2a)

(E2b)

(E2c)

Lemma El: A necessary and sufficient condition for the 

monotonicity of (y) for all values of (Da^*Da2) 

in the interval (1, 1+ ^1 is
aF3(y)/dy < 0, l^y< (1+(S| +(r+«<)^a. ) (B3)

Condition (E3) can be rewritten as
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(E5)

(E6)

where

Substituting (E5)-(E6) into (E4) and collecting terms finally

yields:
f*4 ^r','1)ifi[2+F'4(y'+o<)M+

u^i)^[i+h+(v+^W?o (E7)

For (E7) to hold it suffices that

(|,'+1)^|1 f2+pi +Cv-+6,^tl
< 4 (|*+1)^| [l-Fpi +(V'4-O<) pa"J +(V4«‘)^1

2

(h+i)^ f2+pi +^+of)^-l<
<4[<+Pi+t'A'+^)Fair(i*H>yi+F'+^+o<)^ ie8)
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or

(^i) n+|!i++(r1 +2 (r+1) j-i +(™)fci]<

A necessary and sufficient condition for the monotonicity of

Fj(y) in the interval (1, 1+) for all values of Da2 is

or 2,
(ii+i)iri [H-fi+(v-+oopt-i]<

< 4ff i +(^+’0^11 fl+ ■KW)  ̂J

or

((*+l)jflf p|4(V,+ o()^2] <C ^D + P?

or

(E9)

4 (H-^i) (E10)
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A necessary and sufficient condition for the monotonicity of 
F2 (y) in the interval (1,1+0(^2, ) f°r values of Da2 is

We will prove that condition (E9) is the most conservative

of (E9)-(E11):

Suppose that (E9) is true. Then,

Condition (E12) can be rewritten as

which is in fact (Ell). Therefore, (E9) implies (Ell).

Again, suppose that (E9) holds. Then,

(E13) can be rewritten as



122

M* )
which is in fact (E10). Therefore, (E9) implies (E10).

Consequently, (E9) is the most conservative of (E9)-(E11),

and suffices for 

equ. (36) in the

the monotonicity of the right-hand side of

interval (1
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APPENDIX F

equation (10)

becomes

(Fl)

where

(F2a)

(F2b)

Consider subproblem II. The steady state

Suppose that Q ,6^0. Then, equ. (Fl) will have

a unique solution for all values of if F^(y) and F2(y)

are monotonically decreasing functions of y( 1). In other 

words, the conditions

dF1(y)/dy 0, y > 1 ....................... (F3)
dF2(y)/dy 0, y > 1 ....................... (F4) 

are sufficient for uniqueness for all ( ^ 0) of equ. (Fl).

Using (F2b), condition (F4) can be rewritten as
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(F5)

or

a
Similarly, condition (F3) can be rewritten as

(i) For subproblem II, we can always define the variables 

so that P'^'jL • From (F6)-(F7) it is clear that if

Hi ~ <F8>
then (y) 0,92(7) 0, and, therefore, uniqueness is

assured for all pi ( 0) of equ. (Fl).

(ii) Suppose that
frl > ■f

Then, for condition (F6) to hold it suffices that

(F9)

Since
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(F10)

(Fll)

Ml
it follows that 92(y) has a maximum at

Thus, equ. (F9) becomes

(F12)

For condition (F7) to hold it suffices that

(F13)

Following the same

has a maximum at

Y=

condition (F13) becomesConsequently,

0.(11) l<u 01 0
procedure as above we can prove that g^(y)

and

(F14)
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Therefore, conditions (F12) and (F14) are sufficient for

uniqueness for

when

(iii) Suppose

all values of

that

l$i "f
pyi >4

0) of equ. (Fl)

Then, condition (F12) suffices for uniqueness for all 

values of 0) of equ. (Fl) , because (F7)

is satisfied.
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APPENDIX G

Equ. (9) yields

4 n Li
r* Ma^y^fu^aJ^L (l+a?a,X).

Multiplying both sides of equ. (Gl) by (HdZ^X ) yields

(^'i)(u36a1X^)G'f‘95aiX^-fi95«iT0'#"^aiT ) 
(i+$<t,T)

Dividing numerator and denominator of the left-hand side by 

(l+Da2Xf ), the above equation becomes

(9-l)(1+&,X)-^^a,r

9^8-2 l + eSafZ "1 1 
i+a^xH i"'1

(Gl)

Dividing both numerator and denominator of the left-hand side
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by X yields

(3-i)(l V&i) -

and

c 11F1 ~ 

Multiplying numerator and denominator of the left-hand side by 

X/Da^ yields
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where

equation by

Assuming that /0, and dividing both sides of the above 

yields

(G2)

where

x"’+ &, 
I'p+

Equ. (G2) is a different form of the steady state equation (9). 

The only asymptote occurs at y=0.
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APPENDIX H

Fig.

2a
Yi
20.0

20.0

I1
1.2

1.2

h
0.6

0.6

&
0.2

0.2

'Sa,
0.04

0.04

r
0.0

1.0

o<
1.0

1.0
2b 20.0 1.2 0.4 0.2 .028 0.0 1.0

20.0 1.2 0.4 0.2 .028 .01 1.0
2c 27.0 1.1 0.5 .05 .001 0.0 1.0

20.0 1.2 0.4 0.2 .028 .00001 .10
10.7 5.0 6.5 .09 .000275 1.0 0.0

2d 20.0 1.2 0.4 0.2 .028 .00001 2.0
20.0 1.2 0.4 0.2 .028 0.0 10.

2e 10.7 5.0 6.5 .09 .000264 0.0 1.0
10.7 5.0 6.5 .09 .000264 1.0 1.0

3a 17.0 1.0 0.8 0.5 .00511083 1.0 0.5
17.0 1.2 0.8 0.3 II 0.0 1.0

3b 17.0 1.7 0.8 .02 II .01 1.0
17.0 2.0 0.8 1.0 II 0.0 .01

3c 17.0 2.0 0.8 1.0 II 10. .01
17.0 1.0 0.8 2.0 II 0.0 10.

3d 17.0 5.0 0.8 0.1 II 10. 0.2
3e 17.0 5.0 0.8 1.44 II .00001 .10
3f 17.0 5.0 0.8 0.8 II .00001 .10
4a 20.0 1.2 0.4 0.1 .04 0.0 1.0

15.0 1.7 1.5 0.1 .01 .00001 1.0
9.5 6.5 0.8 0.5 .06757 .10 0.0
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Fig.

4b
Oi
20.0

r
1.2

fl
0.4

nb
0.02

2)a|
0.04

y
0.0 1*0

10.7 3.8 6.5 0.09 .001 .0001 1.0

9.5 3.5 0.8 0.5 .06757 .01 0.0
4c 25.0 1.2 1.0 0.8 .01 0.0 1.0

25.0 5.0 .875 0.8 .001 .00001 1.0
9.5 3.5 0.8 0.5 .06757 1.0 0.0

4d 25.0 1.2 0.75 0.8 .001 1 .0 0.0
28.0 1.0 1.0 1.0 .0001 10.0 0.0

4e 17.45 4.1 6.5 .09 .001 0.0 1.0

10.7 4.1 6.5 .28 .001 .00001 1.0
4f 10.7 4.1 6.5 .277 .001 0.0 1.0

10.7 5.0 6.5 .09 .001 .0001 1.0

4g 17.0 5.0 0.8 1.44 .00515 .00001 .10
4h 17.0 5.0 0.8 0.8 .0055 .00001 .10

I1 ft ftl. oficLl t o<
5a 10.0 4.0 .10 .30 1.0 1.0 0.0

5.0 1.0 0.5 .40 100. 1.0 0.0

5b 10.0 4.0 0.2 .30 .0002 1.0 0.0

25.0 1.2 1.0 .10 .01 .001 0.0

5c 10.0 4.0 0.1 .50 .0002 1.0 0.0

8.0 4.0 0.1 .50 .0002 1.0 0.0
5d 9.5 3.5 0.8 .50 .0000002 1.0 0.0
5e 25.0 1.2 0.75 .80 .0000001 1.0 0.0

28.0 1.0 1.0 1.0 .00000005 1.0 0.0
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Fig.

6a
y.
20.0

10.7

r
1.2

5.0

h
0.0

0.0

fx
0.2

.09

dba,
0.04

.001

r
0.6

.0001

0.01

0.50

6b 20.0 1.2 0.0 .2 .04 .6 2.0

10.7 3.8 0.0 .09 .001 .0001 3.0

6c 25.0 1.2 0.0 .8 .01 1.0 .01

25.0 1.2 0.0 .8 .01 1.0 0.0

6d 28.0 1.0 0.0 1.0 .00000005 1.0 1.0

y. r ft Sai 56ax V*
7a 14.0 1.0 0.5 0.10 10.0 100. 1.0

8.0 1.0 0.7 0.50 .001 0.() 1.0

15.0 2.0 0.1 5.0 100. .1() 0.0

7b 20. 1.2 0.6 .04 .71 l.() 1.0

14.0 1.0 0.5 .10 10. 0.() 1.0

20. 1.2 0.6 .04 .71 .10 0.0

7c 20. 1.2 0.4 .04 .952 .o:L 1.0

20.0 1.2 0.4 .04 .952 O.() 1.0

20.0 1.2 0.4 .04 .952 0.10 0.0

7e 20.0 1.2 0.4 .028 .909 10, 1.0

20.0 1.2 0.4 .028 .909 O.() 1.0

10.0 4.0 0.10 .50 .0002 10 0.0

7d 17.0 1.7 .8 .00511083 .50 .01 1.0

17.0 1.7 .8 II 2.0 O.() 1.0

17.0 2.0 .8 II .005 10 0.0
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Fig.

7f
Xi
20.0

I4
1.2

Pl
0.60

Sba,
0.04 .71 500. 0.0

7g 20.0 1.2 0.40 0.04 .952 1.0 0.0
20.0 1.2 0.40 0.04 .952 .001 0.0

7h 20.0 1.0 0.10 0.05 100. .50 0.0
7i 20.0 1.2 0.40 .04 .00001 1.0 1.0

20.0 1.2 0.40 .04 .00001 0.0 1.0
9.50 3.5 0.80 .06757 .0000004 1.0 0.0

7j 17.45 4.1 6.5 .001 .0027 1.0 1.0
7k 28.0 1.0 0.10 .00000005 .00002 1.0 1.0
71 20.0 1.2 0.0 .04 .952 .10 1.0

14.0 1.0 0.0 .10 10.0 100. 0.0
7m 20.0 1.2 0.0 .04 .00001 100. 1.0

17.45 4.1 0.0 .001 .0027 .01 0.0
7n 28.0 1.0 0.0 .00000005 .00002 1.0 1.0
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APPENDIX I

Consider equ. (20)

(»«M.)+&, x M t o
which can be rewritten as

(h ('u) £ - _L (II)

A necessary and sufficient condition for uniqueness for all 

Da^ of equ. (Il) is

dG(y)/dy 0, (12)

Using (II), (12) can be rewritten as

(I3)

or

-^(Ho^fl+fi + fr+oO^0 (i4>
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For (14) to hold, it suffices that

Olfi Ci+c* PzXft+y/Ujr/)/^/  ̂(v-4ct)^]

or

y, (pl+y'pa)^4(t+c<^)[u^+(v-+=<)pa.j <«>

A sufficient condition for multiplicity for some Da^ values

of equ. (Il) is:
dG(y)/dy 0 for some y in (l+°(^2, ) Y^Y*^ (1+^ +6r¥'c<)^) (16)

where y* is the largest root of equ.(20).

Condition (16) can be rewritten as

(ft+yfx [p+l, + in oO^J + 0+) 1 -
-iri(i+4i)ri+f<+(v-+o<)f1]>o

for some values of y in (l+o(^ ) y^y*«

For (17) to hold, it suffices that
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y, > to+[*++O'"* d>^l
fi^*

(I8a)

(I8b)

where is the smallest root of the equation

■jfi (i+0<^2.)[H-^i+ t19’

Condition (I8a) assures that equ. (19) has two real and 

unequal roots, while (I8b) assures that (17) will hold for

values of y in the interval ( , y*).
Observe that (1+ 1 <?. <?!< (!+ 

concludes the proof for Lemma 3b6.

Clearly, uniqueness is also assured if

Ki (M^)>4G+o(p2)D+fi+^+o<)W <I10)
p. y 4i* du)

and either

or

6(^) 

i-/&i< 'mm Gto

(112)

(113)
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APPENDIX J

Lemma J: Suppose that ^^0» ^2^0- A sufficient condition 

for multiplicity for some Da2 values of equ. (21) is 

dF(y)/dy^ 0 for some y in the interval

Condition (Jl) can be rewritten as

p <3 -1)6 -[4*3^ kty]}f
+ MpiM(>p< 0 (J2)

for some y in y**^y \y* •

For (J2) to hold it suffices that

P Hity-1)i ,J3)
for some y in y**^y<y*.

(J3) can be rewritten as

for some y in y**^y/y*.
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(J5a)

and either

(J5b)or

(J6a)

(J6c)

(J6d)mA inax
if

For (J4) to hold it suffices that

*[ e G+ m ]
**

where are roots of (J4)=0.

In (J5a) we could substitute

e= on in 9(^)=0^)y0G/V
B D

4 J,
i

Js = ffl in JL (ti'y —
rw >v(2+?r-+s
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When however, then from (24d) it follows that

I*] (u ) Z Seif X Z

/ [^i+^+o<)plJ 4-

-------- LJ-------------------------------------------------------------------------- ---- M (je

ft4-o() x

Clearly, conditions (J5b) are impractical because y**, y* must 

be determined numerically.
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APPENDIX K

Fig.

8a
ifl
15.0

F
1.0

Pl
-5.0 6.0

o6a(
100.0 500.0 1.0

5.0 1.0 -0.5 1.0 .001 10.0 1.0
10. 1.0 -1.0 0.2 .01 10.0 1.0
4.0 0.8 -.01 5.0 15. .01 0.0
5.0 1.0 -.05 1.0 .001 0.0 1.0

8b 5.0 1.0 -0.5 1.0 .001 100. 1.0
14. 1.0 -0.2 10. .0001 .00001 1.0
10.0 0.7 -1.0 0.2 .10 50. 1.0

8c 20.0 1.0 -0.1 0.02 .001 100. 0.0
18.0 0.1 -0.8 1.0 .00001 100. 0.0

8d 5.0 1.0 0.5 -2. 1.0 0.0 1.0
15. 1.5 2.0 -1.0 •10 5.0 1.0
6.0 0.6 0.5 -1.0 .01 0.0 1.0

8e 5.0 1.0 0.5 -0.8 .001 0.0 1.0
5.0 1.0 0.5 -0.3 .0001 1.0 1.0
5.0 2.0 0.1 -5.0 85.0 0.10 0.0
8.0 0.6 0.1 -5.0 100. 0.10 0.0

8f 3.0 2.0 1.5 -2.0 200,000 0.10 1.0
3.0 0.9 1.5 -2.0 200,000 0.10 1.0

8g 20.0 1.0 0.4 -0.2 0.06 5.0 0.0
20.0 0.8 0.4 -0.2 0.06 5.0 0.0
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Fig- & r Pi Pi 56a, y o<
8h 15.0 1.5 1.5 -2.0 0.01 0.0 1.0

15.0 1.0 6.0 -2.0 .0001 0.0 3.5
15.0 0.8 1.5 -2.0 .01 0.0 1.0

81 15.0 1.0 1.0 -0.5 .01 10.0 1.0
10.0 1.5 2.0 -0.1 .01 50.0 1.0
16.0 2.0 0.8 -.008 .01 200. 0.0
15.0 0.3 1.0 -0.5 .01 100. 1.0
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APPENDIX L

Consider equ. (115)

(l^^-p + SOa.X [l+fi + ^+^l=O

Equ. (LI) can be rewritten as

GV • (L2)

Since , j^Z^O • and 4*fij 0 , it 
follows that

[^ + (V+=()fi]^O

If
(p,+y^)>o (“>

then 0<(1+^2)<n^l+(^)M (L4a)

If

(^i+y^)<0 (L5)
then O< [1+^1 +(V'+6<)^aJ<^ (L5a)

If (L4) holds, then a necessary and sufficient condition for 

uniqueness for all Da^ of equ. (L2) is
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dG(y)/dy 0, where (1+»^P2 )< y<(l+^/ ) (L6)

As shown in Appendix Iz (L6) yields

4 ,L7>

If (L5) holds, then a necessary and sufficient condition 

for uniqueness for all Da^ of equ. (L2) is

dGCyVdy^ 0, (1++ (V'+et)^ ) < y < (1+ d( ) (L8)
As shown in Appendix I, (L8) can be rewritten as

For (L9) to hold it suffices that

(?l4.yf«+yi)>o fLi°>

h ,L11)

j>| < (L12)

where j , are roots of (L9)=0.

Observe that (Lil) is automatically satisfied since
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APPENDIX M

Consider condition (68b). Suppose that Da^ is such that 

equ. (66) has only one root, y**, where l^y**^(l+^| ). 
Let y* denote the smallest root of equ. (67) where either 

(l+ct^ )<y*^(l+S’ ) or (1+8' )(l+<tf^) •
Since [1+(V4-=<)B]4 0 , it follows from (64)

that F(l) 0. Depending on the sign of the quantity

(M^and the position of zero on the 

dimensionless temperature axis, the following arrangements 

are possible:

(Uoi^Xo <^<[l+^i + (V-+o()f1]<i<^*<^fi) 

(1+o<^)< px] < 0 < 1 < £w< dtb)

o<[^,+(n^z]<^< </< W

0<£*=(l+o(fz)<l < +

<0 < 1 < J**< (4-t-^i)

(Ml)

(M2)

(M3)

(M4)

(M5)

(M6)

(M7)

(M8)
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From (M1)-(M8) we see that in (68b) we must substitute:

y* for arrangements (Ml), (M4)

y=' 0 for arrangements (M2) , (M3) ,

(l+o(P^ ) for arrangement (M7)
(M9)

Observe that when equ. (67) has two roots, then we must 
+ +

substitute y=0 instead of y=y* for the arrangements (Ml), (M4)

and (M5).
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(±14

M(11)< ir y ________=

From (73a), (70d) and (70a) it follows that

.A.x a , (H)
G+Jfejl)1

APPENDIX N

Consider the case where ^1^0) ^2.^0 • an<^ From

(70d) it follows that

______p- I8,_____  
[(^2=O+(^oOM + -^]

or

rf,fit,.

\ cOa,X / oOajL/
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Since [l + (V-+=<)Bj^ 0 ana fj<0, ^>0 , it 
follows that rfi+ir+ot)^]^© . Clearly,

M*>)^ [ ?i+^+o<)pJ + ------ -----------—

Suppose that Since Fl<0. ^2>0 , we have that

c/ z

Consequently,

When, however, 

follows that

1, then since fil<0, ^>0

(2+&J+ < )<0 
oOal

it
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' oSaXI

Consequently, when p-1 and ?/<o . fz^O , then

< ffi+(n=<)fx]A m«
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APPENDIX 0

Fig. Oi I4 Pl
9a 5.0 2.0 1.0 -0.5 .00001 2.0 0.0

6.0 3.0 3.0 -1.0 1.0 2.0 0.0

9b 14. 1.0 0.5 -0.3 .001 .0001 0.0

10. 3.0 1.0 -0.5 .0001 2.0 0.0

11. 1.0 4.0 -0.5 .0001 8.0 0.0
9c 5.0 2.0 -1.1 0.9 10. 0.10 0.0

15. 1.0 -3.5 0.4 0.10 0.70 0.0
9d 5.0 1.0 -0.5 0.9 100. 0.10 0.0

15. 1.0 -0.3 0.4 0.01 0.70 0.0
9e 8.0 2.0 -0.5 0.9 1000. 0.30 0.0
9f 5.0 3.0 -0.5 0.9 500. 0.5 0.0

10a 10. 2.0 2.0 -0.5 0.01 1.0 1.0

5.0 2.0 1.0 -.10 0.10 0.0 1.0
10b 10.0 2.0 2.0 -0.5 10.0 0.10 1.0

20.0 1.0 0.5 -.01 10.0 0.0 1.0

10c 10. 1.0 -2.0 0.2 .001 0.0 1.0

10. 2.0 -2.0 0.2 1.0 1.0 1.0
lOd 10. 2.0 -0.5 0.3 .001 .0001 1.0

10 e* 5.0 1.0 -1.0 0.5 8,000 .0001 1.0

lOf 17.0 1.0 -2.0 0.8 0.01 1.0 1.0
17.0 1.0 -2.0 0.8 0.01 0.0 1.0
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APPENDIX P

Consider equ. (114) which can be rewritten as

(Pl)

A necessary and sufficient condition for uniqueness for all

Da^ of equ. (Pl) is

dG(y)/dy^ 0, where (1+ fl )<¥<(!+/>/ ) (P2)
Condition (P2) yields

-^i > o <P3)

For (P3) to hold it suffices that

[ (Z'+oC) +^1 ] >0 (P4)

fl < [< + ?H(V-+o#)^]<(^Pi)<fz (p6)

where are roots of

automatically satisfied since

(P3)=0. Observe that (P5) is

0. Instead of

(P4)-(Pfi) we could require that
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(P7)

and either that
(P8a)

or

j>z < b+^+(v-+o()y (P8b>

APPENDIX Q

Consider condition (119b). Let Da2 be such that equ. (117) 
has only one root, y**, where 1^ Let y* be
the smallest root of equ. (118) where y* lies between (1+^/ )

and (1+

From (65) it follows that 0. Depending on the

position of zero on the dimensionless temperature axis, the 

following arrangements are possible:

0<(qi>
(i+b)<o< D+h(n<x)fi]<i < '=2>

G+fi)< n+ti+(v-+o()p1]<o <i<^<Mi) (=3>

From (Q1)-(Q3) it follows that in (119b) we must substitute: 
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y* for arrangement (Ql)

y=

0 for arrangements (Q2), (Q3)

Observe that if equ. (118) has two roots, then we must use
4* 1*y=0 instead of y=y* for arrangement (Ql).
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Lemma R1: Suppose that

APPENDIX R

that the equation

Let Da2 be such

Fp=[(^-O-^^(i + ^-^)]=O (Ma) 

has only one root, 1 < y** < (It^A ), and let

(l+j?t )<y*<(l+

denote the largest root of the equation

THEN, a necessary and sufficient condition for

is

of the steady state equation

(R2)

(R3)

Condition (R3) yields
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(R5a)

(R5b)

(R5c)

(R5d)

-y1«<M'W)+M/ip]<o ,f<^ <»
where

eroi-df.^xQ >0
‘ [i + (i+>'-B);6«LXT

e (•,, 1 ‘ 2.« k 0
n (1+&^) 7

1 r„ 'i» rkM^ti+Sa^nlx. Q 
(l+So.X'1)1 7

A -(/A-l)^^g2S____________
’"(■l+S«Xl‘)fi+(l+>rB)S*X'*] =
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OR

M fu)i ___ x0 (RS1
1 ? (1+&X)[1+(1+V-B)&X1

Condition (R4) can be rewritten as

^py,<5-y9y^-n-[MVM,^]+

+H^,W+rW]>o
X-X "X*

where

For (R7) to hold it suffices that
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Condition (R9) can be rewritten as

+jfl 9)"^16 [2+Fi +
+&e(i+ft+^!lV5i+?2)>0 (rio)

For (RIO) to hold it suffices that

81 ® (2+fi +^2.)^ 4 (fi Hi @) *

*(l+fl+^2.M*+4+?z) (RID

Next, we will consider:
(1) Subproblem I(i) ( V* ^0,0( j^O)

(2) Subproblem II ( V*H 0/ t^O)
1. Subproblem I(i) ( V*#o, 0O0)

In (Rll) the following substitutions can be made:
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e=e (i)= —

because 9 (^X0 •

(R12a)

(R12b)

L=v^(i+-I-)W>)

M = Sax Iil2d|
(l+SSa^)
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Making the above substitutions (Rll) yields:

v4.fR । (i-f-9^1) 
^V1 [14-(i+rB)^

* 14- fI + o< M * + 2 ypa, (1 + 4") (R12e)

If we use instead, then (R12e) further simplifies

to /I 2

*[l + ^|+^2.( M +2')+y'^.(14-^-)J (R12f)

Observe that for fz=O .
single chemical reaction

(R12e) degenerates to that of a
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2. Subproblem II ( V* = 0, j^O)

Since V*H 0, it follows from (R5a), (R5c) , that

k(>)=o

Consequently, condition (Rll) becomes

+^2M*+ii) (ri3)

Substituting (R12b) into (R13) yields

(Ki4>

OR

(Pi+^)[14?i4e<&(M*4-2)] <M5>

Substituting (R12d) (with 0) into (R15) yields
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When jA- =1, (R16) simplifies even further. Observe that for

=0, (R15) degenerates to that of a single chemical reaction 

occuring in a lumped parameter system:

Next, we will consider the case where for

where

(R18a)

(R18b)

subproblems I(i) and I(ii). Condition (R3) yields

H, (Ri7)

h1(y), h2(y) are given by (5b) and (5c) respectively.

For (R17) to hold it suffices that

>° ,R19>
6 I N* , *•
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Condition (R19) can be rewritten as

if-1 W til e)-» +iL]+ 
+8i6(i+«<p1M+A+^)>o4“y<y

For (R20) to hold it suffices that

In (21) the following substitutions can be made:

■81 = 2.e<^ 

$t=v'A(i+y")........................................

0= 6(w*)<9(i)=-^^ 
6 dDa^

because 0(^-)<0. 

because (M‘) >0
Making the above substitutions in (R21) yields

(R20)

(R21)

(R22a)

(R22b)

(R22c)

(R22d)
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+2c<^+)r^(i+-T-j]<

dbcL^, I T

2
(R23)

For subproblem I(ii) ( O( =0), (R23) simplifies to

*[l+^(l+4)3 (R24)

REMARK

If we give the parameters the values: 

Eguation_^21)

n -A
y, -b

<*^i = C

A - P 

^ = E

Eguation [33).
/* -f/A

= D
A =C

then the figures for (33) will be the same with those of (21) 

and there is no reason to carry any further calculations.


