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Abstract

An operator algebra is a closed subalgebra of B(H), for a complex Hilbert space

H. By a Jordan operator algebra, we mean a norm-closed Jordan subalgebra of B(H),

namely a norm-closed subspace closed under Jordan product a ◦ b = 1
2
(ab + ba). By

an operator ∗-algebra we mean an operator algebra with an involution † making it a

∗-algebra with ‖[a†ji]‖ = ‖[aji]‖ for [aij] ∈Mn(A) and n ∈ N. In this dissertation, we

investigate the general theory of Jordan operator algebras and operator ∗-algebras.

In Chapter 3, we present Jordan variants of ‘classical’ facts from the theory of

operator algebras. For example we begin Chapter 3 with general facts about Jordan

operator algebras. We then give an abstract characterizations of Jordan operator

algebras. We also discuss unitization and real positivity in Jordan operator algebras.

In Chapter 4, we study the hereditary subalgebras, open projections, ideals and

M-ideals. We then develop the theory of real positive elements and real positive

maps in the setting of Jordan operator algebras.

Chapter 5 is largely concerned with general theory of operator ∗-spaces.

In Chapter 6, we give several general results about operator ∗-algebras. For

example we prove some facts about involutions on nonselfadjoint operator algebras

and their relationship to the C∗-algebra they generate. We also discuss contractive

approximate identities, Cohen factorizations for operator ∗-algebras etc.

In Chapter 7, we investigate hereditary subalgebras and ideals, noncommutative

topology and peak projections in an involutive setting.
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CHAPTER 1

Introduction

An (associative) operator algebra is a closed associative subalgebra of B(H), for a

complex Hilbert space H. By a Jordan operator algebra we mean a norm-closed Jor-

dan subalgebra A of B(H), namely a norm-closed subspace closed under the ‘Jordan

product’ a ◦ b = 1
2
(ab+ ba). Or equivalently, with a2 ∈ A for all a ∈ A (that is, A is

closed under squares; the equivalence uses the identity a ◦ b = 1
2
((a+ b)2− a2− b2)).

Selfadjoint Jordan operator algebras arose in the work of Jordan, von Neumann,

and Wigner on the axiomatic foundations of quantum mechanics. One expects the

‘observables’ in a quantum system to constitute a (real) Jordan algebra, and if one

also wants a good functional calculus and spectral theory one is led to such selfadjoint
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Jordan algebras (known as JC*-algebras). Nowadays however the interest in Jordan

algebras and related objects is almost exclusively from pure mathematicians (see e.g.

[44]). Despite this interest, there seems to be only one paper in the literature that

discusses Jordan operator algebras in our sense above, namely the excellent work of

Arazy and Solel [2].

The first part of this thesis is a step in the direction of extending the selfadjoint

Jordan theory to nonselfadjoint Jordan operator algebras. Our main discovery is that

the theory of Jordan operator algebras is astonishingly similar to associative operator

algebras. We were able to generalize many results, relevant to associative operator

algebras, to the Jordan case with very minor exceptions. Since much of this parallels

the huge existing theory of associative operator algebras there is quite a lot to do,

and we map out here some foundational and main parts of this endeavor. Several

of the more interesting questions and challenging aspects of the theory remain to be

explored.

By an operator ∗-algebra we mean an operator algebra with an involution †making

it a ∗-algebra with ‖[a†ji]‖ = ‖[aij]‖ for [aij] ∈ Mn(A) and n ∈ N. Here we are using

the matrix norms of operator space theory (see e.g. [55]). This notion was first

introduced by Mesland in the setting of noncommutative differential geometry [45],

who was soon joined by Kaad and Lesch [42]. In several recent papers by these

authors and coauthors they exploit operator ∗-algebras and involutive modules in

geometric situations. Subsequently we noticed very many other examples of operator

∗-algebras, and other involutive operator algebras, occurring naturally in general

operator algebra theory which seem to have not been studied hitherto. It is thus

2



natural to investigate the general theory of involutive operator algebras, and this

is the focus of the second part of this thesis. In a joint work with D. P. Blecher

[25], we were able to include a rather large number of results since many proofs are

similar to their operator algebra counterparts in the literature (see e.g. [14]). On the

other hand, some of the main theorems about operator algebras do not have operator

∗-algebra variants, so some work is needed to disentangle the items that do work.

Many of the results are focused around ‘real positivity’ in the sense of several recent

papers of David. P. Blecher and his collaborators referenced in our bibliography.

My advisor gave me the projects of initiating and building the theories of Jordan

operator algebras (extending the selfadjoint Jordan theory to not necessarily selfad-

joint Jordan operator algebras) and involutive operator algebras. There are several

papers (see e.g. [25, 26, 27]), which arose from these projects. In some of these papers

the author did the ground work for the theory, building up a database of results.

3



CHAPTER 2

Overview and preliminaries

In this chapter, we fix our notation and provide some basic results about operator

spaces and operator algebras that will be constantly used in this paper. We suggest

the reader refer to [14, 30, 51, 55] for more details.

2.1 Operator spaces

Definition 2.1. A concrete operator space is a closed linear subspace X of B(H,K),

for Hilbert spaces H,K. An abstract operator space is a pair (X, {‖·‖n}n≥1) consisting

of a vector space X, and a norm on Mn(X) for all n ∈ N such that there exists a

4



2.1. OPERATOR SPACES

linear complete isometry u : X → B(K,H). We call the sequence {‖·‖n}n an operator

space structure on the vector space X.

Clearly subspaces of operator spaces are again operator spaces. We often identify

two operator spaces X and Y if they are completely isometrically isomorphic. In

this case we often write ‘X ∼= Y completely isometrically’ or say ‘X ∼= Y as operator

spaces.’

Proposition 2.2. Let X be an operator space. Then

(R1) ‖αxβ‖ ≤ ‖α‖‖x‖n‖β‖, for all n ∈ N and α, β ∈Mn, and x ∈Mn(X).

(R2) For all x ∈Mm(X) and y ∈Mn(X), we have

∥∥∥∥∥∥∥
x 0

0 y


∥∥∥∥∥∥∥ = max{‖x‖m, ‖y‖n}.

Condition (R1) and (R2) above often called Ruan’s axioms. The following result

asserts that (R1) and (R2) characterize operator space structures on a vector space.

Theorem 2.3 (Ruan). Suppose that X is a vector space, and that for each n ∈ N

we are given a norm ‖ · ‖n on Mn(X). Then X is linearly completely isometrically

isomorphic to a linear subspace of B(H), for some Hilbert space H, if and only if

conditions (R1) and (R2) hold.

Definition 2.4. An operator space Z is said to be injective if for any completely

bounded linear map u : X → Z for any operator space Y containing X as a closed

5



2.1. OPERATOR SPACES

subspace, there exists a completely bounded extension û : Y → Z such that û|X = u

and ‖û‖cb = ‖u‖cb.

Definition 2.5. If X is an operator space in B(K,H), then we define the adjoint

operator space to be the space X? = {x∗ : x ∈ X} ⊆ B(H,K). As an abstract

operator space X? is independent of the particular representation of X on H and K.

Definition 2.6. Let X be an operator space. Then we define the opposite operator

space X◦ to be the Banach space X with the ‘transposed matrix norms’ |||[xij]||| =

‖[xji]‖.

Note that if A is a C*-algebra, then these matrix norms on A◦ coincide with the

canonical matrix norms on the C*-algebra with its reverse multiplication. If X is a

subspace of a C*-algebra A, then X◦ may be identified with completely isometrically

with the associated subspace of the C*-algebra A◦.

Definition 2.7. An extension of an operator spaceX is an operator space Y, together

with a linear completely isometric map i : X → Y. Y is called a rigid extension of

X if IY is the only linear completely contractive map Y → Y which restricts to the

identify map on i(X). We say Y is an essential extension if whenever u : Y → Z

is a completely contractive map into another operator space Z such that u ◦ i is a

completely isometry, then u is a complete isometry. We say that (Y, i) is an injective

envelope of X if Y is injective, and if there is no injective subspace of Y containing

i(X).

Lemma 2.8. Let (Y, i) be an extension of an operator space X such that Y is injec-

tive. The following are equivalent:

6



2.2. OPERATOR ALGEBRAS

(1) Y is an injective envelope of X,

(2) Y is a rigid extension of X,

(3) Y is an essential extension of X.

Proof. See [14, Lemma 4.2.4].

Theorem 2.9. (a) If X is a unital operator space (resp. unital operator algebra,

approximately operator algebra), then there is an injective envelope (I(X), j)

for X such that I(X) is a unital C∗-algebra and j is a unital map (resp. j is a

unital homomorphism, j is a homomorphism).

(b) If A is an approximately unital operator algebra, and if (Y, j) is an injective

envelope for A1, then (Y, j|A) is an injective envelope for A.

(c) If A is an approximately unital operator algebra which is injective, then A is a

unital C∗-algebra.

Proof. See [14, Corollary 4.2.8] .

2.2 Operator algebras

Definition 2.10. A concrete operator algebra is a closed subalgebra of B(H), for

some Hilbert space H. If A is an operator space and a Banach algebra, then we call

A an abstract operator algebra if there exist a Hilbert space H and a completely

isometric homomorphism π : A→ B(H).

7



2.2. OPERATOR ALGEBRAS

We often identify two operator algebras A and B which are completely isomet-

rically isomorphic, that is, there eixsts a completely isometrically algebraic homo-

morphism from A onto B. In this case write ‘A ∼= B completely isometrically

isomorphically’ or ‘A ∼= B as operator algebras’.

Definition 2.11. If A is an operator algebra, then we say that a net (et) in Ball(A)

is a contractive approximate identity (cai for short) for A if eta→ a and aet → a for

all a ∈ A.

Definition 2.12. An operator algebra A is unital if it has an identity of norm 1. We

call A approximately unital if A possess a cai.

Every C∗-algebra is an approximately unital operator algebra.

Definition 2.13. If S is a subset of a C∗-algebra B, then C∗B(S) denotes the smallest

C∗-subalgebra of B containing S. A C∗-cover of an operator algebra A is a pair (B, j)

consisting of a C∗-algebra B, and a completely isometric homomorphism j : A→ B,

such that j(A) generates B as a C∗-algebra i.e. C∗B(j(A)) = B.

Lemma 2.14. Let A be an operator algebra and suppose that B is a C∗-cover of A.

If A is approximately unital, then every cai for A is a cai for B. If A is unital, then

1A serves as an identity for B.

Proof. See [14, Lemma 2.1.7].

Remark 2.15. A C∗-cover (B, j) of an approximately unital operator algebra A is

a unital C∗-algebra if and only if A is unital. Indeed, if A is unital with unit 1A,

then j(1A) is a unit for B by Lemma 2.14. Conversely, if B is unital with unit 1B,

8



2.2. OPERATOR ALGEBRAS

then by Lemma 2.14 we see that any cai (et) for A satisfies j(et) = j(et)1B → 1B.

Since j(A) is closed, we have 1B ∈ j(A).

Often problems concerning an operator algebra A are solved by first tackling the

case where A is unital; and then in general case considering the unitization A1 of

A. If A is nonunital operator algebra, then a unitization of A is also an operator

algebra. The following result shows that up to completely isometric isomorphism,

this unitization does not depend on the embedding A ⊂ B(H).

Theorem 2.16. [14, Theorem 2.1.13]. Let A ⊂ B(H) be a nonunital operator

algebra, and let π : A → B(K) be an isometric (resp. completely isometric) homo-

morphism. Then the unital homomorphism from Span{A, IH} into B(K) extending

π is an isometry (resp. complete isometry).

Although the unitization A1 is now defined unambiguously, it is in general very

difficult to describe its norm explicitly. However if A is an approximately unital

operator algebra, and if A ⊂ B(H) nondegenerately, then for any integer n ≥ 1 and

for any matrices [aij] ∈Mn(A) and [λij] ∈Mn, we have

‖[aij + λijIH ]‖ = sup{‖[aijc+ λijc]‖ : c ∈ A, ‖c‖ ≤ 1}.

The following result usually referred to the BRS theorem gives a criterion for a unital

(or more generally an approximately unital) Banach algebra with an operator space

structure to be an operator algebra.

Theorem 2.17 (BRS Theorem). Let A be an operator space which is also an ap-

proximately unital Banach algebra. Let m : A×A→ A denote the multiplication on

9



2.3. UNIVERSAL ALGEBRAS OF AN OPERATOR ALGEBRA

A. The following are equivalent:

(i) The mapping m : A⊗h A→ A is completely contractive.

(ii) For any n ≥ 1, Mn(A) is a Banach algebra. That is,

∥∥∥∥∥
[

n∑
k=1

aikbkj

]∥∥∥∥∥
Mn(A)

≤ ‖[aij]‖Mn(A)‖[bij]‖Mn(A)

for all [aij] and [bij] in Mn(A).

(iii) A is an operator algebra, that is, there exist a Hilbert space H and a completely

isometric homomorphism π : A→ B(H).

Proof. See [14, Theorem 2.3.2].

Definition 2.18. Let A be an operator algebra. We say J is an ideal of A if it is a

closed two-sided ideal of A.

Corollary 2.19. [14, Theorem 2.3.4] Let J be an ideal in an operator algebra A.

Then A/J is an operator algebra.

2.3 Universal algebras of an operator algebra

There are minimal and maximal C∗-algebras generated by an operator algebra. Let

us first look at C∗-envelope or minimal C∗-cover. References in this section may be

found in [14].

10



2.3. UNIVERSAL ALGEBRAS OF AN OPERATOR ALGEBRA

Definition 2.20. Let X be a unital operator space. We define a C∗-envelope of X

to be any C∗-extension (B, i) with the universal property of the next theorem.

Theorem 2.21 (Arverson-Hamana). If X is a unital operator space, then there ex-

ists a C∗-extension (B, i) of X with the following universal property: Given any C∗-

extension (A, j) of X, there exists a (necessarily unique and surjective) ∗-homomorphism

π : A→ B, such that π ◦ j = i.

Remark 2.22. The C∗-envelope of X may be taken to be any C∗-extension (A, j)

of X for which there exists no nontrivial closed two-sided ideal I of A such that q ◦ j

is completely isometric on X, where q is the quotient map from A to A/I.

Definition 2.23. Let A be a nonunital operator algebra. Then C∗-envelope of A is

a pair (B, i), where B is the C∗-subalgebra generated by the copy i(A) of A inside a

C∗-envelope (C∗e (A1), i) of the unitization A1 of A.

Proposition 2.24. Let A be an operator algebra, and let (C∗e (A), i) be a C∗-envelope

of A. Then C∗(A) has the following universal property: Given any C∗-cover (B, j) of

A, there exists a necessary unique and surjective ∗-homomorphism π : B → C∗e (A)

such that π ◦ j = i.

Now we turn to the maximal C∗-algebra case.

Definition 2.25. Let A be an operator algebra. We define the maximal or universal

C∗-algebra to be the C∗-cover (C∗max(A), i) with the universal property of the next

proposition.

Proposition 2.26. [14, Proposition 2.4.2] Let A be an operator algebra. Then there

exists a C∗-cover (C∗max(A), j) of A with the following universal property: if π : A→

11



2.3. UNIVERSAL ALGEBRAS OF AN OPERATOR ALGEBRA

D is any completely contractive homomorphism into a C∗-algebra D, then there exists

a (necessarily unique) ∗-homomorphism π̃ : C∗max(A)→ D such that π̃ ◦ j = i.

12



CHAPTER 3

General theory of Jordan operator algebras

3.1 JC*-algebras

The selfadjoint variant of a Jordan operator algebra (that is, a closed selfadjoint

subspace of a C∗-algebra which is closed under squares) is exactly what is known

in the literature as a JC*-algebra. We describe some basic background and results

about JC*-algebras (see also e.g. the texts [44, 31, 56, 61, 62, 57] for more details

and background to some of the objects mentioned here in passing).

Definition 3.1 (Kaplansky). Let A be a complex Banach space and a complex

13



3.1. JC*-ALGEBRAS

Jordan algebra equipped with an involution ∗. Then A is a Jordan C∗-algebra if the

following four conditions are satisfied.

(i) ‖x ◦ y‖ ≤ ‖x‖‖y‖ for all x and y in A.

(ii) ‖x‖ = ‖x∗‖ for all x in A.

(iii) ‖{xx∗x}‖ = ‖x‖3 for all x in A, where {xx∗x} is the Jordan triple product

defined by {abc} = (a ◦ b) ◦ c+ a ◦ (b ◦ c)− c ◦ (a ◦ b).

A Jordan C∗-algebra is said to be a JC*-algebra if it is isometrically ∗-isomorphic

to a norm-closed, Jordan ∗-subalgebra of B(H) for some Hilbert space H. A JC*-

algebra is a complexifications of its selfadjoint part, which is a JC-algebra in the sense

of Topping [60]. Conversely, Wright has shown (see [43]) that the complexification

of any JB-algebra is a JB*-algebra, in the sense that there is a JB*-algebra norm on

the complexification. JC*-algebras are very close to C∗-algebras, for example they

have a positive and increasing (in the usual senses) Jordan contractive approximate

identity; see [31, Proposition 3.5.23].

Any selfadjoint element x in a JC*-algebra A generates a C∗-algebra and hence is

a difference of two positive elements. Thus A = Span(A+) in this case. J*-algebras

containing the identity operator are just the unital JC*-algebras, as may be seen

using the fact that J*-algebras are closed under the operation xy∗x (see [37]). There

is a similar statement for J*-algebras containing a unitary in the sense of [38] (see

e.g. [38, Proposition 7.1]).

A contractive Jordan morphism T from a JC*-algebra A into B(H) preserves

14



3.1. JC*-ALGEBRAS

the adjoint ∗. Indeed for any selfadjoint element x in a JC*-algebra, T|C∗(x) is a ∗-

homomorphism so T (x) is selfadjoint. Thus T is easily seen to be a J*-homomorphism

on A in the sense of [38] (i.e. T (aa∗a) = T (a)T (a)∗T (a), for any a ∈ A ). A Jordan

∗-homomorphism T between JC∗-algebras is contractive, and if it is one-to-one then

it is isometric. A linear surjection between JC∗-algebras is an isometry if and only if

it is preserves the triple product xy∗x, and if and only if it is preserves ‘cubes’ xx∗x.

These results are due to Harris [37, 38] in the more general case of J∗-algebras. Such

a surjection is a Jordan ∗-isomorphism if and only if it is approximately unital, and

if and only if it is positive.

A Jordan ideal of a Jordan algebra A is a subspace E with η◦ξ ∈ E for η ∈ E, ξ ∈

A. The Jordan ideals of a JC*-algebra A coincide with the JB*-ideals of A when A

is regarded as a JC*-triple [38]. That is, if J is a closed subspace of a JC*-algebra

A such that a ◦ J ⊂ J , then ab∗c + cb∗a ∈ J whenever a, b, c ∈ A and at least one

of these are in J . This implies that J = J∗ (take a = c in a Jordan approximate

identity for A, recalling that every JC*-algebra has a positive Jordan approximate

identity [31, Proposition 3.5.23]).

An interesting class of JC*-algebras are the Cartan factors of type IV (spin

factors, see e.g. [37]): these are selfadjoint operator spaces A in B(H) such that

x2 ∈ CIH for all x ∈ A. They are isomorphic to a Hilbert space, and contain no pro-

jections except I. They may be constructed by finding a set of selfadjoint unitaries

{ui : i ∈ S} with ui ◦ uj = 0 if i 6= j and setting A = Span{I, ui : i ∈ S}.
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3.2. GENERAL FACTS ABOUT JORDAN OPERATOR ALGEBRAS

3.2 General facts about Jordan operator algebras

Jordan subalgebras of commutative (associative) operator algebras are ordinary (com-

mutative associative) operator algebras on a Hilbert space, and the Jordan product

is the ordinary product. In particular if a is an element in a Jordan operator algebra

A inside a C∗-algebra B, then the closed Jordan algebra generated by a in A equals

the closed operator algebra generated by a in B. We write this as oa(a).

Associative operator algebras and JC*-algebras are of course Jordan operator

algebras. So is {a ∈ A : a = aT}, for any subalgebra A of Mn. More generally, given

a homomorphism π and an antihomomorphism θ on an associative operator algebra

A, {a ∈ A : π(a) = θ(a)} is a Jordan operator algebra. As another example we

mention the Jordan subalgebra {(x, q(x)) : x ∈ B(H)} of B(H) ⊕∞ Q(H)op. Here

q : B(H)→ Q(H) is the canonical quotient map onto the Calkin algebra. This space

is clearly closed under squares. This example has appeared in operator space theory,

for example it is an operator space with a predual but no operator space predual, and

hence is not representable completely isometrically and weak* homeomorphically as

a weak* closed space of Hilbert space operators.

If A is a Jordan operator subalgebra of B(H), then the diagonal ∆(A) = A ∩A∗

is a JC*-algebra. If A is unital then as a a JC*-algebra ∆(A) is independent of the

Hilbert space H. That is, if T : A → B(K) is an isometric Jordan homomorphism

for a Hilbert space K, then T restricts to an isometric Jordan ∗-homomorphism

from A ∩ A∗ onto T (A) ∩ T (A)∗. This follows from a fact in the last section about

contractive Jordan morphisms between JC*-algebras preserving the adjoint. An
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element q in a Jordan operator algebra A is called a projection if q2 = q and ‖q‖ = 1

(so these are just the orthogonal projections on the Hilbert space A acts on, which

are in A). Clearly q ∈ ∆(A). A projection q in a Jordan operator algebra A will be

called central if qxq = q ◦ x for all x ∈ A. For x ∈ A, using the 2× 2 ‘matrix picture’

of x with respect to q one sees that

qxq = q ◦ x if and only if qx = xq = qxq (3.2.1)

with the products qx and xq taken in any C∗-algebra containing A as a Jordan

subalgebra). Note that this implies and is equivalent to that q is central in any

generated (associative) operator algebra, or in a generated C∗-algebra. This notion

is independent of the particular generated (associative) operator algebra since it is

captured by the intrinsic formula qxq = q ◦ x for x ∈ A.

In a Jordan operator algebra we have the Jordan identity

(x2 ◦ y) ◦ x = x2 ◦ (y ◦ x).

For a, b, c in a Jordan operator algebra we have

abc+ cba = 2[(a ◦ b) ◦ c+ a ◦ (b ◦ c)]− 2(a ◦ c) ◦ b. (3.2.2)

Hence if we define a Jordan ideal to be a subspace J of a Jordan algebra A such that

A ◦ J ⊂ J , then abc + cba ∈ J whenever a, b, c ∈ A and at least one of these are in

J . Thus A/J is a Jordan algebra, but we do not believe it is in general a Jordan
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operator algebra without extra conditions on J . Putting a = c in the identity (3.2.2)

above gives 2aba = (ab+ ba)a+ a(ab+ ba)− [a2b+ ba2] ∈ A, or

aba = 2(a ◦ b) ◦ a− a2 ◦ b. (3.2.3)

By a C∗-cover of a Jordan operator algebra we mean a pair (B, j) consisting of a

C∗-algebra B generated by j(A), for a completely isometric Jordan homomorphism

j : A→ B.

Let A be a Jordan subalgebra of a C∗-algebra B. Then we may equip the second

dual A∗∗ with a Jordan Arens product as follows. Consider a ∈ A,ϕ ∈ A∗ and

η, ν ∈ A∗∗ . Let a ◦ ϕ (= ϕ ◦ a) be the element of A∗ defined by

〈a ◦ ϕ, b〉 = 〈ϕ, ab+ ba

2
〉

for any b ∈ A. Then let η ◦ ϕ(= ϕ ◦ η) be the element of A∗ defined by

〈η ◦ ϕ, a〉 = 〈η, a ◦ ϕ〉.

By definition, the Arens Jordan product on A∗∗ is given by

〈η ◦ ν, ϕ〉 = 〈η, ν ◦ ϕ〉.

This is equal to the Jordan product in A∗∗ coming from the associative Arens product

in B∗∗, and we have η◦ν = ν◦η. Indeed suppose that as ∈ A, bt ∈ A such that as → η
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and bt → ν in the weak* topology. For any ϕ ∈ A∗ let ϕ̂ ∈ B∗ be a Hahn-Banach

extension. Note that

2〈η ◦ ν, ϕ〉 = 2〈η, ν ◦ ϕ〉 = lim
s
〈 ν ◦ ϕ, as〉

= 2 lim
s

lim
t
〈bt ◦ ϕ, as〉 = lim

s
lim
t
〈ϕ, asbt + btas〉.

Note that

2〈η ◦B ν, ϕ̂〉 = 〈(ην + νη), ϕ̂〉

= 〈ην, ϕ̂〉+ 〈νη, ϕ̂〉

= 〈η, νϕ̂〉+ 〈ν, ηϕ̂〉

= lim
s
〈νϕ̂, as〉+ lim

s
〈ηϕ̂, bt〉

= lim
s

lim
t
〈ϕ̂as, bt〉+ lim

s
lim
t
〈ϕ̂bt, as〉

= lim
s

lim
t
〈ϕ̂, asbt + btas〉

= lim
s

lim
t
〈ϕ, asbt + btas〉.

Thus the Jordan product in A∗∗ agrees on A∗∗ with the Jordan product coming

from the associative Arens product in B∗∗. We also see from this that η ◦ ν = ν ◦ η.

In any case, the bidual of a Jordan operator algebra is a Jordan operator algebra,

and may be viewed as a Jordan subalgebra of the von Neumann algebra B∗∗.

JW*-algebras (that is, weak* closed JC*-algebras) are closed under meets and

joins of projections (see [60, Theorem 6.4] or [36, Lemma 4.2.8]; one may also see
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this since meets and joins may be defined in terms of limits formed from

q1 · · · qn−1qnqn−1 · · · q1 and (q1 + · · · qn)
1
n ,

both of which make sense in any Jordan Banach algebra). Since for any Jordan

operator algebra A we have that A∗∗ is a Jordan operator algebra with diagonal

∆(A∗∗) a JW*-algebra, it follows that A∗∗ is also closed under meets and joins of

projections. In particular p ∨ q is the weak* limit of the sequence (p + q)
1
n , for

projections p, q ∈ A∗∗.

By the analogous proof for the operator algebra case (see 2.5.5 in [14]), any con-

tractive (resp. completely contractive) Jordan homomorphism from a Jordan opera-

tor algebra A into a weak* closed Jordan operator algebra M extends uniquely to a

weak* continuous contractive (resp. completely contractive) Jordan homomorphism

π̃ : A∗∗ →M.

3.3 A characterization of unital Jordan operator

algebras

The following is an operator space characterization of unital (or approximately uni-

tal) Jordan operator algebras (resp. JC*-algebras). It references however a containing

operator space B, which may be taken to be a C∗-algebra if one wishes.
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Theorem 3.2. Let A be a unital operator space (resp. operator system) with a bilin-

ear map m : A×A→ B which is completely contractive in the sense of Christensen

and Sinclair (see e.g. the first paragraph of 1.5.4 in [14]). Here B is a unital operator

space containing A as a unital-subspace (so 1B ∈ A) completely isometrically. Define

a ◦ b = 1
2
(m(a, b) + m(b, a)), and suppose that A is closed under this operation. As-

sume also that m(1, a) = m(a, 1) = a for a ∈ A. Then A is a unital Jordan operator

algebra (resp. JC*-algebra) with Jordan product a ◦ b.

Proof. We will use the injective envelope I(A) and its properties (see e.g. Lemma

2.8 and Theorem 2.9). By injectivity, the canonical morphism A → I(A) extends

to a unital completely contractive u : B → I(A). By injectivity again, i.e. the well

known extension theorem for completely contractive bilinear maps/the injectivity of

the Haagerup tensor product, and the universal property of that tensor product, we

can use u◦m to induce a linear complete contraction m̃ : I(A)⊗h I(A)→ I(A). It is

known that I(A) is a unital C∗-algebra by Theorem 2.9. By rigidity of the injective

envelope, m̃(1, x) = x = m̃(x, 1) for all x ∈ I(A). By the nonassociative case of

the BRS theorem (see e.g. 4.6.3 in [14]), together with the Banach-Stone theorem

for operator algebras (see e.g. 8.3.13 in [14]), m̃ must be the canonical product map.

Hence for a, b ∈ A, u(m(a, b)) is the product taken in I(A). Since

u(m(a, b)) + u(m(b, a)) = u(m(a, b) +m(b, a)) = m(a, b) +m(b, a) = 2a ◦ b ∈ A,

A is a unital Jordan subalgebra of I(A). If in addition A is an operator system then

the embedding of A in I(A) is a complete order embedding by e.g. 1.3.3 in [14], so
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that A is a JC*-subalgebra of I(A).

Remark 3.3. The unwary reader might have expected a characterization in terms of

a bilinear map m : A×A→ A on a unital operator space A such that m is completely

contractive in the sense of Christensen and Sinclair, and makes A a Jordan algebra

in the algebraic sense. However it is easy to prove that under those hypotheses A

is completely isometrically isomorphic to a commutative operator algebra. To see

this notice that the nonassociative case of the BRS theorem mentioned in the proof

shows that A is an associative operator algebra. Since m(a, b) = m(b, a) for a, b ∈ A

we see that A is commutative.

There is an ‘approximately unital’ analogue of Theorem 3.2.

Definition 3.4. An approximately unital operator space A is a subspace of an ap-

proximately unital operator algebra B, such that A contains a cai (et) for B. The

hypothesis that m(et, a) → a and m(a, et) → a for a ∈ A is shown in the later

result Lemma 3.13 to be a reasonable one: in a Jordan operator algebra with a cai

satisfying et ◦ a → a, one can find another cai satisfying eta → a and aet → a with

products here in any C∗-algebra or approximately unital operator algebra containing

A as a closed Jordan subalgebra.

Theorem 3.5. Let A be an approximately unital operator space (resp. operator sys-

tem) containing a cai (et) for an operator algebra B as above. Let m : A×A→ B be

a completely contractive bilinear map in the sense of Christensen and Sinclair. De-

fine a ◦ b = 1
2
(m(a, b) + m(b, a)), and suppose that A is closed under this operation.

Assume also that m(et, a) → a and m(a, et) → a for a ∈ A. Then A is a Jordan
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operator algebra (resp. JC*-algebra) with Jordan product a ◦ b, and et ◦ a → a for

a ∈ A.

Proof. Let e = 1B∗∗ ∈ A∗∗. We consider the canonical weak* continuous extension

m̃ : A∗∗ × A∗∗ → B∗∗. By standard approximation arguments m̃(e, a) = m̃(a, e) = a

for all a ∈ A∗∗, and m̃(a, b) + m̃(b, a) ∈ A∗∗ for all a, b ∈ A∗∗. By Theorem 3.2 we

have that A∗∗ is a unital Jordan operator algebra (resp. JC*-algebra) with Jordan

product 1
2
(m̃(a, b) + m̃(b, a)). Hence A is a Jordan operator algebra with Jordan

product a ◦ b. Clearly et ◦ a→ a.

3.4 Meyer’s theorem, unitization and real positive

elements

The following follows from Meyer’s theorem on the unitization of operator algebras

(see e.g. 2.1.13 and 2.1.15 in [14]).

Proposition 3.6. If A and B are Jordan subalgebras of B(H) and B(K) respec-

tively, with IH /∈ A, and if T : A → B is a contractive (resp. isometric) Jordan

homomorphism, then there is a unital contractive (resp. isometric) Jordan homo-

morphism extending T from A + C IH to B + C IK (for the isometric case we also

need IK /∈ B).

Proof. It is only necessary to show that if a ∈ A is fixed, then Claim: ‖T (a) +

λ1K‖ ≤ ‖a + λ1H‖ for λ ∈ C. However the restriction of T to oa(a) is an algebra
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homomorphism into oa(T (a)), and so the Claim follows from Meyers result.

Corollary 3.7 (Uniqueness of unitization for Jordan operator algebras). The uniti-

zation A1 of a Jordan operator algebra is unique up to isometric Jordan isomorphism.

Proof. If A is nonunital then this follows from Proposition 3.6. If A is unital, and A1

is a unitization on which A has codimension 1, then since the identity e of A is easily

seen to be a central projection in A1 we have ‖a+ λ1‖ = max{‖a+ λe‖, |λ|}.

Because of Corollary 3.7, for a Jordan operator algebra A we can define unam-

biguously FA = {a ∈ A : ‖1− a‖ ≤ 1}. The diagonal ∆(A) = A ∩ A∗ = ∆(A1) ∩ A

is a JC∗-algebra, as is easily seen, and now it is clear that as a JC∗-algebra ∆(A)

is independent of the particular Hilbert space A is represented on (since this is true

for ∆(A1) as we said in Subsection 3.2). That is, if T : A → B(K) is an isomet-

ric Jordan homomorphism for a Hilbert space K, then T restricts to an isometric

Jordan ∗-homomorphism from A ∩ A∗ onto T (A) ∩ T (A)∗. Every JC*-algebra is

approximately unital (see [31, Proposition 3.5.23]).

If A is a unital Jordan operator subalgebra of B(H), with IH ∈ A then Asa

makes sense, and is independent of H, these are the hermitian elements in A (that

is, ‖ exp(ith)‖ = 1 for real t; or equivalently ϕ(h) ∈ R for all states ϕ of A, where

by ‘state’ we mean a unital contractive functional). Similarly, rA, the real positive

or accretive elements in A, may be defined as the set of h ∈ A with Re ϕ(h) ≥ 0 for

all states ϕ of A. This is equivalent to all the other usual conditions characterizing

accretive elements (see e.g. [10, Lemma 2.4 and Proposition 6.6]; some of these use

the fact that the Jordan algebra generated by a single element and 1 is an algebra).
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If A is a possibly nonunital Jordan operator algebra we define rA to be the

elements with positive real part–we call these the real positive or accretive elements

of A. Since the unitization is well defined by Proposition 3.6, so is rA. Alternatively,

note that A1 + (A1)∗, and hence A + A∗, is well defined as a unital selfadjoint

subspace independently (up to unital (positive) isometry) of the particular Hilbert

space that A1 is represented isometrically and nondegenerately, by [4, Proposition

1.2.8]. That is, a unital Jordan isometry T : A1 → B(K) extends uniquely to a unital

positive Jordan isometry A1 + (A1)∗ → T (A1) + T (A1)∗. Thus a statement such as

a + b∗ ≥ 0 makes sense whenever a, b ∈ A, and is independent of the particular H

on which A is represented as above. This gives another way of seeing that the set

rA = {a ∈ A : a+ a∗ ≥ 0} is independent of the particular Jordan representation of

A too.

We have x ∈ cA = R+ FA if and only if there is a positive constant C with

x∗x ≤ C(x+x∗) (to see this note that ‖1−tx‖2 ≤ 1 if and only if (1−tx)∗(1−tx) ≤ 1).

Also, rA is a closed cone in A, hence is Archimidean (that is, x and x + ny ∈ rA

for all n ∈ N implies that y ∈ rA). On the other hand cA = R+ FA is not closed in

general, but it is a proper cone (that is, cA ∩ (−cA) = (0)). This follows from the

proof of the analogous operator algebra result in the introduction to [22], since 1 is

an extreme point of the ball of any unital Jordan algebra A since e.g. A is a unital

subalgebra of a unital C∗-algebra B and 1 is extreme in Ball(B).

If A is a nonunital Jordan subalgebra of a unital C∗-algebra B then we can

identify A1 with A+C 1B, and it follows that FA = FB ∩A and rA = rB ∩A. Hence

if A is a Jordan subalgebra of a Jordan operator algebra B then rA = rB ∩ A and
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rA = rB ∩ A.

3.5 Universal algebras of a Jordan operator alge-

bra

There are maximal and minimal associative algebras generated by a Jordan operator

algebra A. Let us first look at maximal C∗-algebra case.

Consider the direct sum ρ of ‘all’ contractive (resp. completely contractive) Jordan

representations π : A→ B(Hπ). There are standard ways to avoid the set theoretic

issues with the ‘all’ here–see e.g. the proof of [14, Proposition 2.4.2]. Let C∗max(A)

be the C∗-subalgebra of B(⊕πHπ) generated by ρ(A). For simplicity we describe

the ‘contractive’ case, that is the Banach space rather than operator space variant

of C∗max(A). The compression map B(⊕πHπ)→ B(Hπ) is a ∗-homomorphism when

restricted to C∗max(A). It follows that C∗max(A) is the ‘biggest’ C∗-cover of A.

Theorem 3.8. Let A be a Jordan operator algebra. Then C∗max(A) has the universal

property that for every contractive Jordan representation π : A→ B(Hπ), there exists

a unique ∗-homomorphism θ : C∗max(A)→ B(Hπ) with θ ◦ ρ = π.

We define oamax(A) to be the operator algebra generated by ρ(A) inside C∗max(A).

Again we focus on the Banach space rather than operator space variant, if one

needs the operator space version, simply replace word ‘contractive’ by ‘completely

contractive’ below. This has the universal property.
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Proposition 3.9. For every contractive Jordan representation π : A→ B(Hπ), there

exists a unique contractive homomorphism θ : oamax(A)→ B(Hπ) with θ ◦ ρ = π.

It follows that if A is a Jordan subalgebra of an approximately unital operator

algebra C (resp. of a C∗-algebra B), such that A generates C as an operator algebra

(resp. B as a C∗-algebra), then there exists a unique contractive homomorphism

θ from oamax(A) (resp. C∗max(A)) into C (resp. onto B) with θ(ρ(a)) = a for all

a ∈ A. Similarly, if j : A → C is a contractive Jordan homomorphism and C is a

closed Jordan subalgebra of a C∗-algebra B, then there exists a unique contractive

homomorphism θ from oamax(A) (resp. C∗max(A)) into C (resp. into B) with θ(ρ(a)) =

j(a) for all a ∈ A.

We now turn to the C∗-envelope, or ‘minimal’ C∗-cover of A.

Proposition 3.10. If A be a unital Jordan operator algebra, then the (C∗e (A), i)

has the following universal property: Let j : A → B be a completely isometric

Jordan homomorphism into a C∗-algebra B generated by j(A). Then there exists a

necessarily unique and surjective ∗-homomorphism π : B → C∗e (A) such that π◦j = i.

Proof. This follows directly from Proposition 2.21.

If A is an approximately unital Jordan operator algebra we define C∗e (A) to be the

C∗-algebra D generated by j(A) inside (C∗e (A1), j), where A1 is the unitization. We

will discuss this further after we have studied the unitization in the approximately

unital case in the next section. Define oae(A) to be the operator algebra generated

by j(A) in C∗e (A).
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Finally, there are universal JC*-algebra envelopes of a Jordan operator algebra

A. Namely, consider the JC*-subalgebra of C∗max(A) generated by A. This clearly

has the universal property that for every contractive (again there is a completely

contractive version that is almost identical) Jordan representation π : A → B(Hπ),

there exists a unique contractive Jordan ∗-homomorphism θ : C∗max(A) → B(Hπ)

with θ ◦ ρ = π. If A is also approximately unital we may also consider the JC*-

subalgebra of C∗e (A) generated by A. This will have a universal property similar to

that a few paragraphs up, or in Proposition 3.22 below, but addressing JC*-algebras

B generated by a completely isometric Jordan homomorphic copy of A.

3.6 Contractive approximate identities and conse-

quences

Definition 3.11. If A is a Jordan operator subalgebra of a C∗-algebra B then we

say that a net (et) in Ball(A) is a B-relative partial cai for A if eta→ a and aet → a

for all a ∈ A. Here we are using the usual product on B, which may not give an

element in A, and may depend on B. We say that a net (et) in Ball(A) is a partial

cai for A if for every C∗-algebra B containing A as a Jordan subalgebra, eta → a

and aet → a for all a ∈ A, using the product on B. We say that A is approximately

unital if it has a partial cai.

Nonetheless the existence of such a cai is independent of B, as we shall see.

Definition 3.12. If A is an operator algebra or Jordan operator algebra then we
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say that a net (et) in Ball(A) is a Jordan cai or J-cai for A if eta + aet → 2a for all

a ∈ A.

Lemma 3.13. If A is a Jordan operator subalgebra of a C∗-algebra B, then the

following are equivalent:

(i) A has a partial cai.

(ii) A has a B-relative partial cai.

(iii) A has a J-cai.

(iv) A∗∗ has an identity p of norm 1 with respect to the Jordan Arens product on

A∗∗, which coincides on A∗∗ with the restriction of the usual product in B∗∗.

Indeed p is the identity of the von Neumann algebra C∗B(A)∗∗.

If these hold then p is an open projection in B∗∗ in the sense of Akemann [1], and

any partial cai (et) for A is a cai for C∗B(A) (and for oaB(A)), and every J-cai for

A converges weak* to p.

Proof. That (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious.

(iii) ⇒ (iv) If p is a weak* limit point of (et), then in the weak* limit we have

pa+ap = 2a for all a ∈ A, hence for all a ∈ A∗∗. Thus p is an identity for the Jordan

product of A∗∗. In particular, p2 = p, and so p is an orthogonal projection in B∗∗.

It then follows from (3.2.1) that ηp = pη = η for all η ∈ A∗∗ in the B∗∗ product. So

p is an identity in the B∗∗ product on A∗∗ (which may not map into A∗∗ if A is not
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an operator algebra). By topology it now follows that every J-cai for A converges

weak* to p.

(iv) ⇒ (i) Suppose that p is an orthogonal projection in A∗∗. Then by (3.2.1),

ηp = pη = η for all η ∈ A∗∗ iff p is an identity in the Jordan product on A∗∗. We

may replace B with D = C∗max(A), letting ρ be the usual inclusion of A in D. We

may then follow a standard route to obtain a cai, see e.g. the last part of the proof

of [14, Proposition 2.5.8]. That is we begin by choosing a net (xt) in Ball(A) with

et → p weak*. In D we have aet → a and eta → a weakly. Thus for any finite set

F = {a1, · · · , an} ⊂ A the zero vector is in the weak and norm closure in D(2n) of

{(a1u− a1, · · · , anu− an, ua1 − a1, · · · , uan − an) : u ∈ Λ}.

From this one produces, by the standard method in e.g. the last part of the proof

of [14, Proposition 2.5.8], a D-relative partial cai (et) for A formed from convex

combinations. Suppose that B is any C∗-algebra containing A as a Jordan subalgebra

via a completely isometric inclusion i : A → B, such that B = C∗B(i(A)). Then the

existence of a canonical ∗-homomorphism θ : C∗max(A) → B with θ ◦ ρ = i, gives

i(et)i(a) = θ(ρ(et)ρ(a)) → θ(ρ(a)) = i(a) for a ∈ A, and similarly i(a)i(et) → i(a).

So (et) is a partial cai for A.

If these hold, and if A is a Jordan subalgebra of a C∗-algebra B, then since

et = etp → p weak*, we have as in the operator algebra case that p is open in

B∗∗. Note that C∗B(A) is a C∗-algebra with cai (et) by [14, Lemma 2.1.6], and so

p = 1C∗B(A)∗∗ .
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Remark 3.14. It follows from the last result that any C∗-cover (B, j) of an approx-

imately unital Jordan operator algebra A is a unital C∗-algebra if and only if A is

unital. Indeed if B is unital then 1B = limt et ∈ A. Similarly oaB(A) is unital if and

only if A is unital.

If A is a Jordan operator algebra in a C∗-algebra (resp. operator algebra) B and

(et) is a partial cai for A, then it follows from the above that {T ∈ B : Tet →

T, etT → T} is a C∗-algebra with cai (et) containing A.

Theorem 3.15. If A is an approximately unital Jordan operator algebra then A is

an M-ideal in A1. Also FA is weak* dense in FA∗∗ and rA is weak* dense in rA∗∗.

Finally, A has a partial cai in 1
2
FA.

Proof. As in the operator algebra case, if e is the identity of A∗∗ viewed as a (central)

projection in (A1)∗∗, then multiplication by e is an M -projection from (A1)∗∗ onto

A∗∗. This gives the first assertion and the assertions about weak* density are identical

to the proof in [19, Theorem 5.2]. One does need to know that for x ∈ rA we have

x(1 + x)−1 ∈ 1
2
FA, but this is easy as we can work in the operator algebra oa(x).

Note that the identity of A∗∗ is in 1
2
FA∗∗ . Hence by the just established weak*

density, it may be approximated by a net in 1
2
FA. From this as in Lemma 3.13 (but

taking Λ = 1
2
FA) one may construct a cai in 1

2
FA in a standard way from convex

combinations. Alternatively, one may copy the proof of Read’s theorem in [9] to get

this.

Remark 3.16. Indeed as in [20, Theorem 2.4] by taking nth roots one may find

in any approximately unital Jordan operator algebra, a partial cai which is nearly
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positive in the sense described in the introduction of [22].

The following is a ‘Kaplansky density’ result for rA∗∗ :

Proposition 3.17. Let A be an approximately unital Jordan operator algebra. Then

the set of contractions in rA is weak* dense in the set of contractions in rA∗∗.

Proof. We showed in Theorem 3.15 that rA is weak* dense in rA∗∗ . The bipolar

argument in [19, Proposition 6.4] (but replacing appeals to results in that paper by

appeals to the matching results in the present paper) shows that Ball(A) ∩ rA is

weak* dense in Ball(A∗∗) ∩ rA∗∗ .

Corollary 3.18. If A is a Jordan operator algebra with a countable Jordan cai (fn),

then A has a countable partial cai in 1
2
FA.

Proof. By Theorem 3.15, A has a partial cai (et) in 1
2
FA. Choose tn with ‖fnetn −

fn‖ ∨ ‖etnfn − fn‖ < 2−n. It is easy to see that (etn) is a countable partial cai in

1
2
FA.

Proposition 3.19. If A is a nonunital approximately unital Jordan operator algebra

then the unitization A1 is well defined up to completely isometric Jordan isomor-

phism; the matrix norms are

‖[aij + λij1]‖ = sup{‖[aij ◦ c+ λijc‖Mn(A) : c ∈ Ball(A)}, aij ∈ A, λij ∈ C .

Proof. Suppose that π : A→ B(H) is a completely isometric Jordan homomorphism.

Let B be the C∗-subalgebra of B(H) generated by π(A), let K = BH, and let
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e = PK be the projection onto K. It will be clear to C∗-algebraists, and follows

easily from e.g. [14, Lemma 2.1.9], that ‖π(b)+λIH‖ = max{|λ|, ‖π(b)|K +λIK‖} for

b ∈ B, λ ∈ C, and similarly at the matrix level. Thus we may suppose that H = K.

Note that IK /∈ B, since if it were then the identity e of π(A)∗∗ is the identity of B∗∗

by Lemma 3.13, which is IK ∈ B, so that e ∈ B ∩π(A)∗∗ = π(A), contradicting that

A is nonunital. By Lemma 3.13, for any partial cai (et) for A, (π(et)) is a partial cai

for π(A) and hence it (and also (π(et)
∗)) is a cai for B by Lemma 3.13. Since B acts

nondegenerately on H it is clear that π(et)→ IH and π(et)
∗ → IH strongly on H. It

is easy to see that ‖[π(aij) + λijIH ]‖ equals

sup{|
∑
i,j

〈(π(aij) + λijIH)ζj, ηi〉| = sup{lim
t
〈(π(aij) ◦ π(et) + λijπ(et))ζj, ηi〉|},

supremum over ζ, η ∈ Ball(H(n)). This is dominated by

sup
t
{‖[π(aij ◦ et + λijet)]‖ ≤ sup ‖[aij ◦ c+ λijc]‖ : c ∈ Ball(A)}.

In turn the latter equals

sup ‖[π(aij) ◦ π(c) + λijπ(c)]‖ : c ∈ Ball(A)} ≤ ‖[π(aij) + λijIH ]‖.

This proves the assertion.

Remark 3.20. (1) By the proof one may replace ◦c in the last statement with ◦et,

and take the supremum over all t.

(2) A similar argument, but replacing a term above by sup{limt〈(π(aij)π(et) +
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λijπ(et))ζj, ηi〉|, shows that

‖[aij + λij1]‖ = sup{‖[aijc+ λijc]‖Mn(A) : c ∈ Ball(A)}

where the product aijc is with respect to (any fixed) containing C∗-algebra. One also

has similar formulae with ac replaced by ca.

One question raised here is that is the unitization of a general Jordan opera-

tor algebra unique up to completely isometric isomorphism? The answer is in the

negative, as one sees in the following result.

Consider the set E2 of 4× 4 matrices



0 α β 0

0 0 0 −β

0 0 0 α

0 0 0 0


, α, β ∈ C .

This is not an associative algebra but is a Jordan operator algebra with zero Jordan

product. That is, xy+yx = 0 for any two such matrices, which is an anticommutation

relation. Let G be the space of the same matrices but with first column and last

row removed, so that G ⊂ M3. Let F2 be the set of matrices in M2(G) ⊂ M6 which

are zero in all of the first three columns and all of the last three rows. This is an

operator algebra with zero product, which is linearly completely isometric to G. So

E2
∼= F2 completely isometrically isomorphically as Jordan operator algebras, but

not of course as associative operator algebras.
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Proposition 3.21. The two unitizations C I4 + E2 and C I6 + F2 of the Jordan

operator algebra E2 above, are not completely isometrically isomorphic as Jordan

operator algebras, nor even as unital operator spaces.

Proof. The C∗-envelope of C I4 +E2 is at most 16 dimensional since C I4 +E2 ⊂M4

(we shall not need this but it is easy to see that C∗e (C I4 + E2) is M4). We shall

show that the dimension of the C∗-envelope of C I6 + F2 is 18. Indeed C I6 + F2 is

(via a switch of columns and rows) completely isometrically isomorphic to the unital

subalgebra A of M3 ⊕M3 consisting of matrices


λ α β

0 λ 0

0 0 λ

 ⊕

λ 0 −β

0 λ α

0 0 λ

 ∈ M3 ⊕M3, λ, α, β ∈ C .

We claim that C∗e (A) = M3 ⊕M3. Indeed the ∗-algebra generated by A contains

E12 +E56, E13−E46, (E12 +E56)(E31−E64) = −E54, hence also E45, E45(E12 +E56) =

E46, and thus E56. Indeed it contains Eij for 4 ≤ i, j ≤ 6. Hence also E12, E1,3,

indeed Eij for 1 ≤ i, j ≤ 3. So A generates M3 ⊕M3. Let J be a nontrivial ideal in

M3 ⊕M3, such that the canonical map A → (M3 ⊕M3)/J is a complete isometry.

We may assume J = 0⊕M3, the contrary case being similar. That is the canonical

compression of A to its first 3 × 3 block (that is, multiplication on A by I3 ⊕ 0) is

completely isometric. Note that this implies that R2 ∩C2 is completely isometric to

R2, which is known to be false (e.g. [55, Theorem 10.5]). Thus J = (0), so that by

e.g. the last lines of 4.3.2 in [14], C∗e (A) = M3 ⊕M3 as desired.
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If A is an approximately unital Jordan operator algebra we define the C∗-envelope

C∗e (A) to be the C∗-algebra D generated by j(A) inside (C∗e (A1), j), where A1 is the

unitization.

Proposition 3.22. Let A be an approximately unital Jordan operator algebra, and let

C∗e (A) and j be as defined above. Then j|A is a Jordan homomorphism onto a Jordan

subalgebra of C∗e (A), and C∗e (A) has the following universal property: Given any C∗-

cover (B, i) of A, there exists a (necessarily unique and surjective) ∗-homomorphism

θ : B → C∗e (A) such that θ ◦ i = j|A.

Proof. Any completely isometric Jordan homomorphism i : A→ B into a C∗-algebra

B generated by i(A), extends by the uniqueness of the unitization (see Proposition

3.19) to a unital completely isometric Jordan homomorphism i1 : A1 → B1. If θ :

B1 → C∗e (A1) is the ∗-homomorphism coming from the universal property of C∗e (A1)

(see e.g. [14, Theorem 4.3.1]), then θ|B : B → D is a surjective ∗-homomorphism

with j|A = θ ◦ i. It also follows that j(A) is a Jordan subalgebra of C∗e (A1), and j|A

is an approximately unital Jordan isomorphism onto j(A).

3.7 Cohen factorization for Jordan modules

The Cohen factorization theorem is a crucial tool for Banach and operator algebras,

and their modules. In this section we prove a variant that works for Jordan operator

algebras and their ‘modules’.
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Definition 3.23. Let A be a Jordan operator algebra. A Banach space (resp. op-

erator space) X together with a contractive (resp. completely contractive) bilinear

map A×X → X is called a left Jordan Banach (resp. operator) A-premodule. If A

is approximately unital then we say that X is nondegenerate if etx → x for x ∈ X,

where (et) is a cai for A (in this section when we say ‘cai’ we mean ‘partial cai’. It

will follow from the next theorem that if one cai for A works here then so will any

other cai). Similar definitions hold in the ‘right premodule’ case, and a Jordan Ba-

nach (resp. operator) A-prebimodule is both a left and a right Jordan Banach (resp.

operator) A-premodule such that a(xb) = (ax)b for all a, b ∈ A, x ∈ X.

We remark that this definition is not related to the classical notion of a Jordan

module due to Eilenberg (cf. [40, p. 512]) . A good example to bear in mind is the

case where X = C∗e (A) or X = C∗max(A).

If X is a nondegenerate Jordan Banach A-premodule (resp. A-prebimodule) then

X is a Jordan Banach A1-premodule (resp. A1-prebimodule) for the natural unital

‘action’. For example, if b = a + λ1 ∈ A1, and x ∈ X, then ‖(et ◦ a)x − ax‖ ≤

‖x‖‖et ◦ a− a‖ → 0, and so

‖(et ◦ b)x− bx‖ ≤ ‖(et ◦ a)x− ax‖+ ‖λ(etx− x)‖ → 0.

Hence ‖bx‖ = limt ‖(et ◦ b)x‖ ≤ ‖x‖‖et ◦ b‖ ≤ ‖x‖‖b‖. Similarly ‖xb‖ ≤ ‖x‖‖b‖ in

the prebimodule case.
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We say that such X is a (left) Jordan Banach A-module if

(a1a2 · · · am)x = a1(a2(· · · (amx)) · · · )

for all m ∈ N and a1, · · · , am ∈ A1 such that a1a2 · · · am ∈ A1. The latter product

is the one on some fixed containing C∗-algebra, for example C∗max(A1). In fact we

shall only need the cases m = 2, 3 in the results below. Similar notation holds in the

bimodule case, or for Jordan operator A-modules and bimodules.

The condition a(xb) = (ax)b often holds automatically:

Proposition 3.24. Suppose that X is an operator space, A is an approximately

unital Jordan operator algebra, and that there are completely contractive bilinear

maps A × X → X and X × A → X which are nondegenerate in the sense that

etx → x and xet → x for x ∈ X, where (et) is a cai for A. Then a(xb) = (ax)b for

all a, b ∈ A, x ∈ X.

Proof. The ‘actions’ are oplications in the sense of [14, Theorem 4.6.2], and by that

theorem there are linear complete contractions θ : A→Ml(X) and π : A→Mr(X)

such that ax = θ(a)(x) and xb = π(b)x for all a, b ∈ A, x ∈ X. Since left and right

multipliers commute (see 4.5.6 in [14]), (ax)b = a(xb) for such a, b, x.

The following is a Jordan algebra version of the Cohen factorization theorem:

Theorem 3.25. If A is an approximately unital Jordan operator algebra, and if X

is a nondegenerate Jordan Banach A-module (resp. A-bimodule), and if b ∈ X then

there exists an element b0 ∈ X and an element a ∈ FA with b = ab0 (resp. b = ab0a).
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Moreover if ‖b‖ < 1 then b0 and a may be chosen of norm < 1. Also, b0 may be

chosen to be in the closure of {ab : a ∈ A} (resp. {aba : a ∈ A}).

Proof. We follow the usual Cohen method as in the proof of e.g. 4.4 and 4.8 of [19].

Suppose that b ∈ X with ‖b‖ < 1. Given any ε > 0, let a0 = 1. Choose f1 ∈ 1
2
FA

from the cai such that

‖(ba−1
0 )(1− f1)‖+ ‖(1− f1)(a−1

0 b)‖ < 2−2ε.

Let a1 = 2−1f1 + 2−1, then a1 ∈ FA1 . By the Neumann lemma a1 is invertible in

oa(1, a1), and has inverse in A1 with ‖a−1
1 ‖ ≤ 2. Similarly, choose f2 ∈ 1

2
FA such that

‖(ba−1
1 )(1− f2)‖+ ‖(1− f2)(a−1

1 b)‖ < 2−4ε.

By induction, let an =
∑n

k=1 2−kfk + 2−n. We have

‖1− an‖ = ‖
n∑
k=1

2−k(1− fk)‖ ≤
n∑
k=1

2−k = 1− 2−n.

By the Neumann lemma an is invertible in oa(1, an), and has inverse in A1 with

‖a−1
n ‖ ≤ 2n. Choose fn+1 ∈ 1

2
FA such that

‖(ba−1
n )(1− fn+1)‖+ ‖(1− fn+1)(a−1

n b)‖ < 2−2(n+1)ε.

Note that a−1
n+1− a−1

n = a−1
n (an− an+1)a−1

n+1 = 2−n−1a−1
n (1− fn+1)a−1

n+1, and similarly

a−1
n+1 − a−1

n = 2−n−1a−1
n+1(1 − fn+1)a−1

n . Set xn = a−1
n b (resp. xn = a−1

n ba−1
n ). We
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continue in the bimodule case, the left module case is similar but easier. We have

xn+1 − xn = a−1
n+1ba

−1
n+1 − a−1

n ba−1
n = a−1

n+1b(a
−1
n+1 − a−1

n ) + (a−1
n+1 − a−1

n )ba−1
n

= 2−n−1(a−1
n+1b(a

−1
n (1− fn+1)a−1

n+1) + (a−1
n+1(1− fn+1)a−1

n )ba−1
n ).

Because of the relations x(abc) = ((xa)b)c and (abc)x = a(b(cx)), ‖xn+1 − xn‖ is

dominated by

2−n−1(‖a−1
n+1‖‖(ba−1

n )(1− fn+1)‖‖a−1
n+1‖+ ‖a−1

n+1‖‖(1− fn+1)(a−1
n b)‖‖a−1

n ‖)

≤ 2−n−1(‖a−1
n+1‖2 + ‖a−1

n+1‖‖a−1
n ‖)2−2(n+1)ε

≤ 2−3(n+1)(22(n+1) + 22n+1)ε < 2−nε.

Therefore, {xn} is a Cauchy sequence in X. Let b0 = limn xn and a =
∑+∞

k=1 2−kfk,

then a ∈ 1
2
FA. Hence, b = ab0a since b = anxnan and an → a and xn → b0. Also,

‖xn − b‖ ≤
n∑
k=1

‖xk − xk−1‖ ≤ 2ε,

so that ‖b− b0‖ ≤ 2ε. Thus ‖b0‖ ≤ ‖b‖+ 2ε, and this is < 1 if 2ε < 1−‖b‖. Choose

some t > 1 such that ‖tb‖ < 1. By the argument above, there exists a ∈ 1
2
FA and

b0 ∈ B of norm < 1 such that tb = ab0a. Let a′ = a√
t
, then b = a′b0a

′. Then ‖a′‖ < 1

and ‖b0‖ < 1.

Corollary 3.26. If A is an approximately unital Jordan operator subalgebra of a

C∗-algebra B, and if B is generated as a C∗-algebra by A, then if b ∈ B there exists

an element b0 ∈ B and an element a ∈ FA with b = ab0a. Moreover if ‖b‖ < 1 then
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b0 and a may be chosen of norm < 1. Also, b0 may be chosen to be in the closure of

{aba : a ∈ A}.

Proof. This follows immediately from the Cohen type Theorem 3.25 above.

There is a similar one-sided result using the one-sided version of our Cohen fac-

torization result.

If A is a Jordan operator subalgebra of a C∗-algebra B then we say that a net

(et) in Ball(A) is a left B-partial cai for A if eta→ a for all a ∈ A. Here we are using

the usual product on B, which may not give an element in A, and may depend on

B. We then can factor any b ∈ C∗B(A) as ab0 for a, b0 as above, using the one-sided

Cohen factorization result above. We remark that by a modification of the proof of

Lemma 3.13 and Theorem 3.15 one can show that the following are equivalent:

(i) A has a left B-partial cai.

(ii) A∗∗ has a left identity p of norm 1 with respect to the usual product in B∗∗.

(iii) A has a left B-partial cai in 1
2
FA.

If these hold then p is an open projection in B∗∗ in the sense of Akemann [1] (that

is, is the weak* limit of an increasing net in B).

3.8 Jordan representations

Following the (associative) operator algebra case we have:
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Lemma 3.27. Let A be an approximately unital Jordan operator algebra and let

π : A→ B(H) be a contractive Hilbert space Jordan representation. We let P be the

projection onto K = [π(A)H]. Then π(et) → P in the weak* (and WOT) topology

of B(H) for any J-cai (et) for A. Moreover, for a ∈ A we have π(a) = Pπ(a)P ,

and the compression of π to K is a contractive Hilbert space Jordan representation.

Also, if (et) is a partial cai for A, then π(et)π(a)→ π(a) and π(a)π(et)→ π(a). In

particular, π(et)|K → IK SOT in B(K).

Proof. Let A be an approximately unital Jordan operator algebra and let π : A →

B(H) be a contractive Hilbert space Jordan representation. If (et) is a J-cai for A

then by the proof of Lemma 3.13 we have that et → p weak*, where p is an identity

for A∗∗. The canonical weak* continuous extension π̃ : A∗∗ → B(H) takes p to a

projection P on H, and π(et)→ P WOT. Note that

π̃(p)π(a) + π(a)π̃(p) = Pπ(a) + π(a)P = 2π(a), a ∈ A,

so that as in the proof of Lemma 3.13 we have Pπ(a) = π(a)P = π(a) for a ∈ A.

We have π(et)π(a) → π̃(p)π(a) = π(a) WOT. If Q is the projection onto [π(A)H]

it follows that PQ = Q, so Q ≤ P . If η ⊥ π(A)H then 0 = 〈π(et)ζ, η〉 → 〈Pζ, η〉,

so that η ⊥ P (H). Hence P (H) ⊂ [π(A)H] and so P ≤ Q and P = Q. It is now

evident that the compression of π to [π(A)H] is a contractive Hilbert space Jordan

representation.

Suppose that ρ : A → C∗max(A) is the canonical map. If (et) is a partial cai for

A, then ρ(et)ρ(a)→ ρ(a) and ρ(a)ρ(et)→ ρ(a). If θ : D = C∗max(A)→ B(Hπ) is the
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∗-homomorphism with θ ◦ ρ = π then

π(et)π(a) = θ(ρ(et)ρ(a))→ θ(ρ(a)) = π(a).

Similarly π(a)π(et)→ π(a).

Definition 3.28. A nondegenerate Jordan representation of an approximately unital

Jordan operator algebra on H is a contractive Hilbert space Jordan representation

π : A→ B(H) such that π(A)H is dense in H.

Proposition 3.29. Let π : A→ B(H) be a Jordan representation. Then the canon-

ical weak* continuous extension π̃ : A∗∗ → B(H) is unital iff π is nondegenerate.

Proof. By the last result, we know that π̃(1) = IH iff π(et)→ IH weak* in B(H) for

any partial cai (et) of A, that is iff π(et)→ IH WOT.

Let H,K, π be as in Lemma 3.27. If we regard B(K) as a subalgebra of B(H)

in the natural way (by identifying any T in B(K) with the map T ⊕ 0 in B(K ⊕

K⊥) = B(H)), then the Jordan homomorphism π is valued in B(K). Note that π

is nondegenerate when regarded as valued in B(K), since π(et)π(a) → π(a) WOT.

As in the (associative) operator algebra case [14], this yields a principle whereby to

reduce a possibly degenerate Jordan homomorphism to a nondegenerate one.

Corollary 3.30. For any approximately unital Jordan operator algebra A, there exist

a Hilbert space H and a nondegenerate completely isometric Jordan homomorphism

π : A→ B(H).
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Corollary 3.31. Let B be a C∗-cover of an approximately unital Jordan operator

algebra A. If π : B → B(H) is a ∗-representation, then π is nondegenerate if and

only if its restriction π|A is nondegenerate.

Proof. Indeed, π is nondegenerate iff π(et)→ IH WOT where (et) is a partial cai for

A, since then (et) is a cai for B.

3.9 Approximate identities and functionals

Following [14, Proposition 2.1.18] we have:

Lemma 3.32. Let A be an approximately unital Jordan operator algebra with a

partial cai (et). Denote the identity of A1 by 1

(1) If ψ : A1 → C is a functional on A1, then limt ψ(et) = ψ(1) if and only if

‖ψ‖ = ‖ψ|A‖.

(2) Let ϕ : A→ C be any functional on A. Then ϕ uniquely extends to a functional

on A1 of the same norm.

Proof. (1) Suppose that ψ : A1 → C satisfies limt ψ(et) = ψ(1). For any a ∈ A and

λ ∈ C, we have limt ψ(a ◦ et + λet) = ψ(a+ λ1), and so

|ψ(a+ λ1)| ≤ ‖ψ|A‖ lim
t
‖a ◦ et + λet‖ ≤ ‖ψ|A‖ sup

t
‖a ◦ et + λet‖ = ‖ψ|A‖‖a+ λ1‖.

(We have used Proposition 3.19.) Hence ‖ψ‖ = ‖ψ|A‖.
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Conversely, suppose that ‖ψ‖ = ‖ψ|A‖, which we may assume to be 1. We may

extend ψ to C∗(A1), and then there exists a unital ∗-representation π : C∗(A1) →

B(H) and vectors ξ, η ∈ Ball(H) with ψ(x) = 〈π(x)ξ, η〉 for any x ∈ A1. Let K =

[π(A)ξ], and let p be the projection onto K. For any a ∈ A, we have 〈π(a)ξ, η〉 =

〈pπ(a)ξ, η〉, and so

|〈π(a)ξ, η〉| = |〈π(a)ξ, pη〉| ≤ ‖π(a)ξ‖‖pη‖ ≤ ‖a‖‖pη‖.

This implies that 1 = ‖ψ|A‖ ≤ ‖pη‖, so that η ∈ K. By Lemma 3.27 we have that

(π(et)) converges WOT to the projection onto [π(A)H], and so

ψ(et) = 〈π(et)ξ, η〉 → 〈ξ, pη〉 = 〈ξ, η〉 = ψ(1).

(2) If ϕ ∈ A∗ then similarly to the above there exists a nondegenerate ∗-

representation π : C∗(A)→ B(H) and vectors ξ, η ∈ Ball(H) with ψ(x) = 〈π(x)ξ, η〉

for any x ∈ A. We have ψ(et) = 〈π(et)ξ, η〉 → 〈ξ, η〉. We may now finish as in the

proof of [14, Proposition 2.1.18 (2)].

Define a state on an approximately unital Jordan operator algebra to be a func-

tional satisfying the conditions in the next result.

Lemma 3.33. For a norm 1 functional ϕ on an approximately unital Jordan operator

algebra A, the following are equivalent:

(1) ϕ extends to a state on A1.
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(2) ϕ(et)→ 1 for every partial cai for A.

(3) ϕ(et)→ 1 for some partial cai for A.

(4) ϕ(e) = 1 where e is the identity of A∗∗.

(5) ϕ(et)→ 1 for every Jordan cai for A.

(6) ϕ(et)→ 1 for some Jordan cai for A.

Proof. That (1) ⇒ (2) follows from Lemma 3.32. That (3) implies (4), (6) ⇒ (1),

and (4) ⇔ (5) follows from the last assertion of Lemma 3.13, that any Jordan cai

for A converges to 1A∗∗ . Clearly, (2) implies (3), and (5) implies (6).

Corollary 3.34. Let A be an approximately unital Jordan operator algebra. Then

any injective envelope of A1 is an injective envelope of A. Moreover this may be

taken to be a unital C∗-algebra I(A) containing C∗e (A) as a C∗-subalgebra, and hence

containing A as a Jordan subalgebra.

Proof. This follows just as in [14, Corollary 4.2.8 (1) and (2)], but appealing to

Lemma 3.32 above in place of the reference to 2.1.18 there. Note that I(A1) may

be taken to be a unital C∗-algebra containing C∗e (A1) as a unital C∗-subalgebra.

The proof of Proposition 3.22 shows that the inclusion A1 → C∗e (A1) is a Jordan

morphism, so I(A1) contains C∗e (A) as a C∗-subalgebra, and A as a Jordan subalge-

bra.

It follows as in the introduction to [22] that states on A are also the norm 1

functionals that extend to a state on any containing C∗-algebra generated by A.
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It follows from facts in Section 3.4 that for any Jordan operator algebra A, x ∈ rA

iff Re(ϕ(x)) ≥ 0 for all states ϕ of A1. Indeed, such ϕ extend to states on C∗(A1).

3.10 Multiplier algebras

Let A be an approximately unital Jordan operator algebra and let (C∗e (A), j) be

its C∗-envelope. Let i : A → B be a completely isometric Jordan morphism into

a C∗-algebra. Suppose that a, b ∈ A and that i(a)i(b) ∈ i(A). If θ : C∗B(i(A)) →

C∗e (A) is the ∗-homomorphism coming from the universal property then j(a)j(b) =

θ(i(a)i(b)) ∈ θ(i(A)) = j(A), and

j−1(j(a)j(b)) = j−1(θ(i(a)i(b))) = i−1(i(a)i(b)).

This shows that the ‘product’ in B of elements in A, if it falls in A, matches the

product in C∗e (A). With this in mind we define the left multiplier algebra LM(A)

to be the set {η ∈ A∗∗ : ηA ⊂ A}, where the product here is the one in C∗e (A)∗∗.

We will soon see that this is in fact an (associative) algebra. We define the right

multiplier algebra RM(A) and multiplier algebra M(A) analogously. If A is unital

then these algebras are contained in A.

Lemma 3.35. Let A be an approximately unital Jordan operator algebra. If p is a

projection in LM(A) then p ∈ M(A). More generally, the diagonal ∆(LM(A)) ⊂

M(A).

Proof. See [11, Lemma 5.1] for the operator algebra case. Let (et) be a partial cai
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for A. In C∗e (A)∗∗ we have by [14, Lemma 2.1.6] that

ap = lim
t
ae∗tp = lim

t
a(p∗et)

∗ ∈ C∗e (A), a ∈ A.

Also a ◦ p ∈ A⊥⊥ so ap = 2a ◦ p− pa ∈ A⊥⊥. So ap ∈ A⊥⊥ ∩ C∗e (A) = A, and hence

p ∈M(A). The same proof works if p ∈ ∆(LM(A)).

Theorem 3.36. Let A be an approximately unital Jordan operator algebra and let

B = C∗e (A), with A considered as a Jordan subalgebra. Then LM(A) = {η ∈ B∗∗ :

ηA ⊂ A}. This is completely isometrically isomorphic to the (associative) operator

algebra M`(A) of operator space left multipliers of A in the sense of e.g. [14, Section

4.5], and is completely isometrically isomorphic to a unital subalgebra of CB(A).

Also, ‖T‖cb = ‖T‖ for T ∈ LM(A) thought of as an operator on A. Finally, for any

nondegenerate completely isometric Jordan representation π of A on a Hilbert space

H, the algebra {T ∈ B(H) : Tπ(A) ⊂ π(A)} is completely isometrically isomorphic

to a unital subalgebra of LM(A), and this isomorphism maps onto LM(A) if π

is a faithful nondegenerate ∗-representation of B (or a nondegenerate completely

isometric representation of oae(A)).

Proof. Obviously LM(A) ⊂ {η ∈ B∗∗ : ηA ⊂ A}. Conversely, if η is in the latter set

then ηet ∈ A, where (et) is partial cai for A. Hence η ∈ A∗∗, since by Lemma 3.13

(et) is a cai for B. So LM(A) = {η ∈ B∗∗ : ηA ⊂ A}.

Recall from Corollary 3.34 that I(A) is a unital C∗-algebra. It follows from

4.4.13 and the proof of Theorem 4.5.5 in [14] thatM`(A) is completely isometrically
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isomorphic to {T ∈ I(A) : Tj(A) ⊂ j(A)}. Note that

Tj(a)∗ = lim
t
Tj(et)j(a)∗ ∈ j(A)j(A)∗ ⊂ C∗e (A).

Hence T ∈ LM(C∗e (A)), and we may view M`(A) as {T ∈ LM(C∗e (A)) : Tj(A) ⊂

j(A)}. If η ∈ C∗e (A)∗∗ and ηj(A) ⊂ j(A) then as in the last centered formula and the

line after it, we have η ∈ LM(C∗e (A)). So M`(A) ∼= {η ∈ C∗e (A)∗∗ : Tj(A) ⊂ j(A)}.

Thus from the last paragraph LM(A) ∼= M`(A). We remark that this may also be

deduced from e.g. 8.4.1 in [14]. It also follows that for any u ∈ M`(A), w∗limt u(et)

exists in A∗∗, and equals σ(u) where σ :M`(A)→ LM(A) is the isomorphism above.

The canonical map L : LM(A)→ CB(A) is a completely contractive homomor-

phism. On the other hand for [ηij] ∈Mn(LM(A)) we have

‖L(ηij)]‖Mn(CB(A)) ≥ ‖[ηijet]‖.

It follows by Alaoglu’s theorem that in the weak* limit with t, ‖[ηij]‖ ≤ ‖L(ηij)]‖Mn(CB(A)).

Thus LM(A) is completely isometrically isomorphic to a unital subalgebra of CB(A).

Note that

‖[ηijakl]‖ = lim
t
‖[ηijetakl]‖ ≤ sup

t
‖[ηijet]‖, [akl] ∈ Ball(Mm(A)),

so the last supremum equals the cb norm of [ηij] thought of as an element of

Mn(CB(A)).

Let LM(π) = {T ∈ B(H) : Tπ(A) ⊂ π(A)}. There is a canonical complete
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contraction LM(π)→M`(A). Composing this with the map σ :M`(A)→ LM(A)

above gives a homomorphism ν : LM(π) → LM(A). The canonical weak* continu-

ous extension π̃ : A∗∗ → B(H) is a completely contractive Jordan homomorphism,

and

π̃(ν(T )) = w∗limtπ(π−1(Tπ(et))) = T, T ∈ LM(π),

by the nondegeneracy of π. It follows that ν is completely isometric.

If π is a faithful nondegenerate ∗-representation of B or a nondegenerate com-

pletely isometric representation of oae(A), and T ∈ B(H) with Tπ(A) ⊂ π(A)

then as in the second paragraph of the proof above we have Tπ(B) ⊂ π(B) or

Tπ(oae(A)) ⊂ π(oae(A)). Thus in the first case we may identify LM(π) with

{η ∈ B∗∗ : ηA ⊂ A}, which we saw above was LM(A). A similar argument works in

the second case.

Definition 3.37. If A is a Jordan operator algebra, the Jordan multiplier algebra of

A is

JM(A) = {η ∈ A∗∗ : ηa+ aη ∈ A,∀a ∈ A}.

This is a unital Jordan operator algebra in which A is an approximately unital Jordan

ideal, follows by using the identity (3.2.2) in the obvious computation).

Remark 3.38. Presumably there is also a variant of this definition in terms of

operators in B(H), if A ⊂ B(H) nondegenerately.

Note that A = JM(A) if A is unital. If a projection p ∈ A∗∗ is in JM(A) then

pAp ⊂ A. This follows from the identity (3.2.3). Of course M(A) ⊂ JM(A).
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CHAPTER 4

Hereditary subalgebras, ideals, and open projections

4.1 Hereditary subalgebras and open projections

Through this section A is a Jordan operator algebra (possibly not approximately

unital). Then A∗∗ is a Jordan operator algebra.

Definition 4.1. A projection in A∗∗ is open in A∗∗, or A-open for short, if p ∈

(pA∗∗p ∩ A)⊥⊥. That is, if and only if there is a net (xt) in A with

xt = pxtp→ p weak∗.
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This is a derivative of Akemann’s notion of open projections for C∗-algebras, a

key part of his powerful variant of noncommutative topology (see e.g. [1, 52]). If p

is open in A∗∗ then clearly

D = pA∗∗p ∩ A = {a ∈ A : a = pap}

is a closed Jordan subalgebra of A, and the Jordan subalgebra D⊥⊥ of A∗∗ has

identity p (note xt ∈ D). By Lemma 3.13 D has a partial cai (even one in 1
2
FA

by Theorem 3.15). If A is also approximately unital then a projection p in A∗∗ is

A-closed if p⊥ is A-open.

We call such a Jordan subalgebra D a hereditary subalgebra (or HSA for short) of

A, and we say that p is the support projection of D. It follows from the above that

the support projection of a HSA is the weak* limit of any partial cai from the HSA.

One consequence of this is that a projection in A∗∗ is open in A∗∗ if and only if it is

open in (A1)∗∗.

We remark that if A is a JC*-algebra then the net (xt) above may be taken to

be positive in the definition of hereditary subalgebra, or of open projections, and in

many of the results below one may provide ‘positivity proofs’ as opposed to working

with real positive elements.

Corollary 4.2. For any Jordan operator algebra A, a projection p ∈ A∗∗ is A-open

if and only if p is the support projection of a HSA in A.

Proposition 4.3. For any approximately unital Jordan operator algebra A, every

projection p in the Jordan multiplier algebra JM(A) (see 3.37) is A-open and also
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A-closed.

Proof. Indeed, if A is approximately unital and (et) is a partial cai of A, then pA∗∗p∩

A = pAp by Remark 3.38, and (petp) ⊂ A has weak* limit p. So p is A-open.

Similarly, p⊥ is A-open since p⊥ ∈ JM(A).

If B is a C∗-algebra containing a Jordan operator algebra A and p in A∗∗ is A-

open then p is open as a projection in B∗∗ (since it is the weak* limit of a net (xt)

with xt = pxtp, see [11]).

Definition 4.4. A Jordan subalgebra J of a Jordan operator algebra A is an inner

ideal in the Jordan sense if for any b, c ∈ J and a ∈ A, then bac + cab ∈ J (or

equivalently, bAb ⊂ J for all b ∈ J).

Proposition 4.5. A subspace D of a Jordan operator algebra A is a HSA if and

only if it is an approximately unital inner ideal in the Jordan sense. In this case

D⊥⊥ = pA∗∗p, where p is the support projection of the HSA. Conversely if p is a

projection in A∗∗ and E is a subspace of A∗∗ such that E⊥⊥ = pA∗∗p, then E is a

HSA and p is its A-open support projection.

Proof. If D is a HSA, with D = {b ∈ A : pbp = b}, for some A-open projection

p ∈ A∗∗, then for any b, c ∈ D and a ∈ A, we have

bac+ cab = pbacp+ pcabp = p(bac+ cab)p.

Hence bac+ cab ∈ D. Thus D is an approximately unital inner ideal.
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Conversely, if J is an approximately unital inner ideal, then J⊥⊥ is a Jordan

operator algebra with identity p say which is a weak* limit of a net in J . Clearly

J⊥⊥ ⊆ pA∗∗p. By routine weak* density arguments J⊥⊥ is an inner ideal, and so

J⊥⊥ = pA∗∗p, and J = pA∗∗p ∩ A. Hence p is open and J is an HSA. The last

statement is obvious since by functional analysis E = pA∗∗p ∩ A.

Proposition 4.6. If D1, D2 are HSA’s in a Jordan operator algebra A, and if p1, p2

are their support projections, then D1 ⊂ D2 if and only if p1 ≤ p2.

Proof. (⇒) Note that p1 ∈ (D1)⊥⊥ ⊂ (D2)⊥⊥ = p2A
∗∗p2 and p2 is an identity for D2,

so that p1 ≤ p2.

(⇐) If p1 ≤ p2, then D1 = p1A
∗∗p1 ∩ A ⊂ D2 = p2A

∗∗p2 ∩ A.

Proposition 4.7. If J is an approximately unital closed Jordan ideal in a Jordan

operator algebra A, then J is a HSA.

Proof. Since J satisfies axb+ bxa ∈ J for a, b ∈ J, x ∈ A, then J is an inner ideal by

Proposition 4.5. So J is a HSA.

Corollary 4.8. Let A be a Jordan operator algebra and (et) is a net in Ball(A) such

that etes → et and eset → et with t (product in some C∗-algebra containing A). Then

{x ∈ A : xet → x, etx→ x}

is a HSA of A. Conversely, every HSA of A arises in this way.

Proof. Denote J = {x ∈ A : xet → x, etx → x}, product in some C∗-algebra D
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containing A. It is easy to see that J is a Jordan subalgebra of A and (et) is a D-

relative partial cai of J . So J is approximately unital. For any x, y ∈ J and a ∈ A,

then

‖(xay + yax)et − (xay + yax)‖ = ‖xa(yet − y) + ya(xet − x)‖ → 0.

Similarly, et(xay + yax)→ (xay + yax). Hence, xay + yax ∈ J . By Proposition 4.5,

J is a HSA.

Conversely, suppose that D = pA∗∗p∩A, where p is an A-open projection. There

exists a partial cai (et) of D with weak* limit p. Denote

J = {x ∈ A : xet → x, etx→ x},

with product in some C∗-algebra containing A. Then J ⊂ D = {x ∈ A : pxp = x}.

However clearly D ⊂ J .

As in [11, Theorem 2.10] we have:

Theorem 4.9. Suppose that D is a hereditary subalgebra of an approximately unital

Jordan operator algebra A. Then every f ∈ D∗ has a unique Hahn-Banach extension

to a functional in A∗ (of the same norm).

Proof. Follow the proof of [11, Theorem 2.10], viewing A as a Jordan subalgebra of

a C∗-algebra B, and working in B∗∗. If p is the support projection of D then since

A∗∗ is a unital Jordan algebra we have pη(1− p) + (1− p)ηp ∈ A∗∗ for η ∈ A∗∗. The
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argument for [11, Theorem 2.10] then shows that g(pη(1 − p) + (1 − p)ηp) = 0 for

any Hahn-Banach extension g of f . The rest of the proof is identical.

The analogue of [11, Proposition 2.11] holds too. For example, we have:

Corollary 4.10. Let D be a HSA in an approximately unital Jordan operator algebra

A. Then any completely contractive map T from D into a unital weak* closed Jordan

operator algebra N such that T (et)→ 1N weak* for some partial cai (et) for D, has

a unique completely contractive extension T̃ : A → N with T̃ (fs) → 1N weak* for

some (or all) partial cai (fs) for A.

Proof. The canonical weak* continuous extension T̂ : D∗∗ → N is unital and com-

pletely contractive, and can be extended to a weak* continuous unital complete

contraction Φ(η) = T̂ (pηp) on A∗∗, where p is the support projection of D. This

in turn restricts to a completely contractive T̃ : A → N with T̃ (fs) → 1N weak*

for all partial cai (fs) for A. For uniqueness, any other such extension T ′ : A → N

extends to a weak* continuous unital complete contraction Ψ : A∗∗ → N , and

Ψ(p) = limt Φ(et) = 1N . Then Ψ extends further to a unital completely positive

Ψ̂ : R → B(H) where R is a C∗-algebra containing A∗∗ as a unital subspace, and

where N ⊂ B(H) unitally. Then for η ∈ A∗∗ we have, using Choi’s multiplicative

domain trick, that

Ψ(η) = Ψ̂(p)Ψ̂(η)Ψ̂(p) = Ψ̂(pηp) = T̂ (pηp).

Thus T ′(a) = Φ(a) = T̃ (a) for a ∈ A.
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4.2 Support projections and HSA’s

If p is a Hilbert space projection on a Hilbert space H, and x is any operator on H

with px+xp = 2x, then px = xp = x by (3.2.1). It follows that the ‘Jordan support’

(the smallest projection with px + xp = 2x) of a real positive operators x on H is

the usual support projection of x in B(H) if that exists (which means that the right

and left support projections in B(H) agree). This support projection does exist for

real positive operators x, as is shown in [5, Section 3]. Indeed for a Jordan operator

algebra A on H, if x ∈ rA and px = x or x = px for a projection p on H then it is

easy to see that pxp = x (= px = xp). Thus the left and right support projections

on H agree, and this will also be the smallest projection with pxp = x.

If x is an element of a Jordan subalgebra A we may also consider the Jordan

support projection in A∗∗, if it exists, namely the smallest projection p ∈ A∗∗ such

that px + xp = 2x. Recall that if the left and right support projections of x in A∗∗

(that is the smallest projection in A∗∗ such that px = x or xp = x respectively)

coincide, then we call this the support projection of x, and write it as s(x). If this

holds, then s(x) clearly also equals the Jordan support projection in A∗∗.

The following result is a Jordan operator algebra version of results in [20, Section

2].

Lemma 4.11. For any Jordan operator algebra A, if x ∈ rA, with x 6= 0, then the left

support projection of x in A∗∗ equals the right support projection equals the Jordan

support projection, and also equals s(F(x)) where F(x) = x(1 + x)−1 ∈ 1
2
FA. This

also is the weak* limit of the net (x
1
n ), and is an A-open projection in A∗∗, and is
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open in B∗∗ in the sense of Akemann [1] if A is a Jordan subalgebra of a C∗-algebra

B. If A is a Jordan subalgebra of B(H) then the left and right support projection of

x in H are also equal, and equal the Jordan support projection there.

Proof. Viewing oa(x) ⊂ A, as in the operator algebra case the identity e of oa(x)∗∗

is a projection, and e = w∗limx
1
n ∈ xAx

w∗ ⊂ A∗∗ with ex = xe = x. Also, any

projection in B∗∗ with px = x or xp = x satisfies pe = e. So e is the support

projection s(x) in A∗∗ or in B∗∗, and by the discussion above the lemma also equals

the Jordan support projection. It is A-open and open in the sense of Akemann since

x
1
n = ex

1
n e → e weak*. To see the support projection equals s(x(1 + x)−1), simply

note that px = x if and only if px(1+x)−1 = x(1+x)−1. That F(x) = x(1+x)−1 ∈ 1
2
FA

is as in the argument above [22, Lemma 2.5].

Suppose that π : A∗∗ → B(H) is the natural weak*-continuous Jordan homomor-

phism extending the inclusion map on A. Then π(e) is an orthogonal projection in

B(H) with

π(e)x+ xπ(e) = π(ex+ xe) = π(2x) = 2x.

Then π(e)x = xπ(e) = x by (3.2.1), so that P ≤ π(e) where P is the Jordan support

projection of x in B(H). If xt → p weak* with xt ∈ xAx, then

Pπ(e) = lim
t
Pxt = lim

t
xt = π(lim

t
xt) = π(e),

so π(e) ≤ P. Hence π(e) = P . That the left and right support projection of x in H

are also equal to P for real positive x is discussed above the lemma.
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Corollary 4.12. If A is a closed Jordan subalgebra of a C*-algebra B, and x ∈ rA,

then the support projection of x computed in A∗∗ is the same, via the canonical

embedding A∗∗ ∼= A⊥⊥ ⊂ B∗∗, as the support projection of x computed in B∗∗.

If x ∈ FA for any Jordan operator algebra A then x ∈ oa(x), the closed (associa-

tive) algebra generated by x in A, and x = limn x
1
nx, so that xAx = xA1x.

Lemma 4.13. For any Jordan operator algebra A, if x ∈ rA, with x 6= 0, then xAx

is a HSA, xAx = s(x)A∗∗s(x) ∩ A and s(x) is the support projection of xAx. If

a = F(x) = x(1 + x)−1 ∈ 1
2
FA then xAx = aAa. This HSA has (x

1
n ) as a partial cai,

and this cai is in rA (resp. in FA, in 1
2
FA) if x is real positive (resp. in FA, in 1

2
FA).

If also y ∈ rA then xAx ⊂ yAy if and only if s(x) ≤ s(y).

Proof. Any cai (et) for oa(x) serves as a cai for the closure of xAx and the weak*

limit of this cai is s(x), then clearly xAx ⊂ s(x)A∗∗s(x) ∩ A. Since (et) converges

weak* to s(x), if b ∈ s(x)A∗∗s(x)∩A we have etbet → b weakly. By Mazur’s theorem,

a convex combination converges in norm, so b ∈ xAx. As in operator algebra case,

we know that s(x) = s(a), which means that xAx = aAa.

The last assertion follows from the above and the remark after Proposition 4.5.

Lemma 4.14. Let A be an approximately unital Jordan operator algebra. If x ∈ FA,

then for any state ϕ of A, ϕ(x) = 0 if and only if ϕ(s(x)) = 0.

Proof. Let B = C∗(A), then states ϕ on A are precisely the restrictions of states

on B. Continuing to write ϕ for canonical extension to A∗∗, if ϕ(s(x)) = 0, then by
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Cauchy-Schwarz,

|ϕ(x)| = |ϕ(s(x)x)| ≤ ϕ(s(x))
1
2ϕ(x∗x)

1
2 = 0.

Conversely, if ϕ(x) = 0 then ϕ(x∗x) ≤ ϕ(x + x∗) = 0, since x ∈ FA. By Cauchy-

Schwarz, ϕ(ax) = 0 for all a ∈ A. Since any cai for oa(x) converges to s(x) weak*

we have ϕ(s(x)) = 0.

Lemma 4.15. Let A be an approximately unital Jordan operator algebra. For x ∈ rA,

consider the conditions

(i) xAx = A.

(ii) s(x) = 1A∗∗ .

(iii) ϕ(x) 6= 0 for every state of A.

(iv) ϕ(Re(x)) > 0 for every state ϕ of C∗(A).

Then (iv) ⇒ (iii) ⇒ (ii) ⇔ (i). If x ∈ FA all these conditions are equivalent.

Proof. This as in [20, Lemma 2.10] and the discussion of the rA variant of that result

above [22, Theorem 3.2]; part of it following from Lemma 4.14.

An element in rA with Re(x) strictly positive in the C∗-algebraic sense as in (iv)

of the previous result will be called strictly real positive. Many of the results on

strictly real positive elements from [20, 22] will be true in the Jordan case, with the
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same proof. For example we will have the Jordan operator algebra version of [22,

Corollary 3.5] that if x is strictly real positive then so is x
1
k for k ∈ N.

Lemma 4.16. Let A be a Jordan operator algebra, a subalgebra of a C∗-algebra B.

(1) The support projection of a HSA D in A equals ∨a∈FD
s(a) (which equals

∨a∈rD s(a)).

(2) The supremum in B∗∗ (or equivalently, in the diagonal ∆(A∗∗)) of any collec-

tion {pi} of A-open projections is A-open, and is the support projection of the

smallest HSA containing all the HSA’s corresponding to the pi.

Proof. Let {Di : i ∈ I} be a collection of HSA’s in a Jordan operator algebra A. Let

C be the convex hull of ∪i∈I FDi
, which is a subset of FA. Let D be the closure of

{aAa : a ∈ C}. Since any a ∈ FDi
has a cube root in FDi

, FDi
and C are subsets

of {aAa : a ∈ C} ⊂ D. We show that D is a subspace. If a1, a2 ∈ C then a =

1
2
(a1 +a2) ∈ C. We have s(a1)∨s(a2) = s(a), since this is true with respect to oa(A)

(this follows for example from [20, Proposition 2.14] and Corollary 2.6), and A∗∗ is

closed under meets and joins. Hence a1Aa1 +a2Aa2 ⊆ s(a)A∗∗s(a)∩A = aAa. So D

is a subspace. Moreover D is an inner ideal since abaAaba ⊂ aAa for a ∈ C, b ∈ A.

For any finite set F = {a1, · · · , an} ⊂ {aAa : a ∈ C}, a similar argument shows

that there exists a ∈ C with F ⊂ aAa. Hence a
1
nak → ak and aka

1
n → ak for all k.

It follows that D is approximately unital, and is a HSA.

Clearly D is the smallest HSA containing all the Di, since any HSA containing

all the Di would contain C and {aAa : a ∈ C}. If p is the support projection of
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D then f = ∨a∈C s(a) ≤ p. Conversely, if a ∈ C then aAa ⊂ fA∗∗f . Hence D

and D⊥⊥ = pA∗∗p are contained in fA∗∗f , so that p ≤ f and p = f . Of course

D = pA∗∗p ∩ A.

In particular, when I is singleton we see that the support projection of a HSA

D equals ∨a∈FD
s(a). This proves (1) (using also the fact from Lemma 4.11 that

s(a) = s(F(a)) for a ∈ rD).

For (2), if pi is the support projection of Di above then r = ∨i∈Ipi ≤ p clearly. On

the other hand, if a ∈ C is a convex combination of elements of FDij
for j = 1, · · · ,m,

then rar = a, so that s(a) ≤ r. This implies by the above that p ≤ r and p = r. So

suprema in B∗∗ of collections of A-open projections are A-open. The last assertion

is clear from the above.

Remark 4.17. The intersection of two Jordan inner ideals in a Jordan operator

algebra A is a Jordan inner ideal, and is the largest Jordan inner ideal contained

in the two (this is not true with ‘inner ideals’ replaced by HSA’s, not even in the

associative operator algebra case where this would correspond to a false statement

about right ideals with left approximate identities–see [28, Section 5.4]).

As in the operator algebra case, we may use rA and FA somewhat interchangably

in most of the next several results. This is because of facts like: if a ∈ rA then a

Jordan subalgebra of A contains a if and only if it contains x = a(1 + a)−1 ∈ 1
2
FA.

Indeed x ∈ oa(a) and since x + xa = a we have a = x(1 − x)−1 ∈ oa(x) as in the

proof of [22, Lemma 2.5] (the power series for (1− x)−1 converges by the Neumann

lemma since ‖x‖ < 1, as follows from [22, Lemma 2.5] with A replaced by oa(a)).

62



4.2. SUPPORT PROJECTIONS AND HSA’S

Also, xAx = aAa by Lemma 4.13.

Lemma 4.18. For any Jordan operator algebra A, if E ⊂ rA then the smallest

hereditary subalgebra of A containing E is pA∗∗p ∩ A where p = ∨x∈E s(x).

Proof. By Lemma 4.16, pA∗∗p∩A is a hereditary subalgebra of A, and it contains (ai).

Conversely if D is a hereditary subalgebra of A containing (ai) then D⊥⊥ contains p

by the usual argument, so pA∗∗p ⊂ D⊥⊥ and pA∗∗p ∩ A ⊂ D⊥⊥ ∩ A = D.

As in [20] (above Proposition 2.14 there), the correspondence between a HSA D

and its support projection is a bijective order embedding from the lattice of HSA’s

of a Jordan operator algebra A and the lattice of A-open projections in A∗∗ (see e.g.

[47] for a JB-algebra variant of this). Write Q(A) for the quasistate space of A, that

is the set of states multiplied by numbers in [0, 1]. In the next several results we

will be using facts from Section 3.9, namely that states on an approximately unital

Jordan subalgebra A are restrictions of states on a containing C∗-algebra B.

Theorem 4.19. Suppose that A is an approximately unital Jordan subalgebra of a

C∗-algebra B. If p is a nontrivial projection in A⊥⊥ ∼= A∗∗, then the following are

equivalent:

(i) p is open in B∗∗.

(ii) The set Fp = {ϕ ∈ Q(A) : ϕ(p) = 0} is a weak* closed face in Q(A) containing

0.

(iii) p is lower semicontinous on Q(A).
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These all hold for A-open projections in A∗∗, and for such projections Fp = Q(A)∩D⊥

where D is the HSA in A supported by p.

Proof. The first assertions are just as in [11, Theorem 4.1] (and the remark above that

result), using the remark above the present theorem and fact that A-open projections

are open with respect to a containing C∗-algebra. For the last assertion, if p is A-

open then Q(A) ∩ D⊥ ⊂ Fp since a cai for D converges weak* to p. Conversely if

ϕ ∈ Fp then by the fact above the theorem ϕ extends to a positive functional on a

C∗-cover of A. One may assume that this is a state, and use the Cauchy-Schwarz

inequality to see that |ϕ(x)| = |ϕ(px)| ≤ ϕ(p)
1
2ϕ(x∗x)

1
2 = 0 for x ∈ D.

If A is unital then there is a similar result and proof using the state space S(A)

in place of Q(A).

Proposition 4.20. Let A be an approximately unital Jordan operator algebra The

correspondence p 7→ Fp is a one-to-one order reversing embedding from the A-open

projections into the lattice of weak* closed faces of Q(A) containing 0, thus p1 ≤ p2

if and only if Fp2 ⊂ Fp1 for A-open projections p1, p2 in A∗∗. Similarly there is a

one-to-one order reversing embedding D 7→ Fp from the HSA’s in A into the lattice

of faces of Q(A) above, where p is the support projection of the HSA D.

Proof. Indeed an argument similar to the last part of the last proof shows that

Fp1 ⊂ Fp2 if p2 ≤ p1. Conversely, if Fp1 ⊂ Fp2 , then by the argument above [20,

Proposition 2.14] this implies a similar inclusion but in Q(B), which by the C∗-

theory gives p2 ≤ p1. The last assertion follows from the first and the bijection

between HSA’s and their support projections.
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Corollary 4.21. Let A be any Jordan operator algebra (not necessarily with an

identity or approximate identity.) Suppose that (xk) is a sequence in FA, and that

αk ∈ (0, 1] and
∑∞

k=1 αk = 1. Then the HSA generated by all the xkAxk equals zAz

where z =
∑∞

k=1 αkxk ∈ FA. Equivalently (by Lemma 4.16), ∨k s(xk) = s(z).

Proof. This follows similarly to the operator algebra case in [20, Proposition 2,14].

If x ∈ FA then xAx = xA1x as we said above Lemma 4.13. So we may assume that

A is unital. As in the operator algebra case Fs(z) = ∩∞k=1 Fs(xk), which implies by the

lattice isomorphisms above the corollary that ∨ks(xk) ≤ s(z), and that the smallest

HSA D containing all the xkAxk contains zAz. Conversely, z ∈
∑

k xkAxk ⊂ D, so

that s(z) ≤ ∨ks(xk), and so we have equality.

Theorem 4.22. (1) If A is an associative operator algebra then the HSA’s (resp.

right ideals with left contractive approximate identities) in A are precisely the

sets of form EAE (resp. EA) for some E ⊂ rA. The latter set is the smallest

HSA (resp. right ideal with left approximate identity) of A containing E.

(2) If A is a Jordan operator algebra then the HSA’s in A are precisely the sets of

form {xAx : x ∈ conv(E)} for some E ⊂ rA. The latter set equals

{xay + yax : x, y ∈ conv(E), a ∈ A},

and is the smallest HSA of A containing E (c.f. Lemma 4.18).

Proof. (1) One direction is obvious by taking E to be a real positive cai for the

HSA or right ideal. For the other direction, we may assume that E ⊂ 1
2
FA by the
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argument in the first lines of the just mentioned proof. Note that D = EAE (resp.

EA) satisfies DAD ⊂ D (resp. is a right ideal). For any finite subset F ⊂ E if

aF is the average of the elements in F then F ⊂ aFAaF (resp. F ⊂ aFA) since

s(aF ) = ∨x∈E s(x) by the operator algebra variant of Corollary 4.21. By a standard

argument (e.g. seen in Lemma 4.16), it is easy to see that (a
1
n
F ) will serve as the

approximate identity we seek. Or we can find the latter by the method in the next

paragraph. The last assertion is fairly obvious.

(2) If x, y ∈ conv(E) and a, b ∈ A then xax+ yay ∈ zAz where z = 1
2
(x+ y) by

Corollary 4.21. So D = {xAx : x ∈ conv(E)} is a closed inner ideal of A. It follows by

the remark before Proposition 4.5 that if x, y ∈ conv(E) then xaxbycy+ycybxax ∈ D.

Since x ∈ xAx and y ∈ yAy we have D = {xay + yax : x, y ∈ conv(E), a ∈ A}.

If F, aF are as in the proof of (1) then aF ∈ conv(E), and F ⊂ aFAaF ⊂ D.

The HSA aFAaF has a J-cai in D, so that there exists dε,F ∈ Ball(D) such that

‖dε,Fx+xdε,F − 2x‖ < ε for all x ∈ F . Hence D has (dε,F ) as a J-cai. Again the final

assertion is obvious.

Theorem 4.23. Let A be a Jordan operator algebra (not necessarily with an identity

or approximate identity.) The HSA’s in A are precisely the closures of unions of an

increasing net of HSA’s of the form xAx for x ∈ rA (or equivalently, by an assertion

in Lemma 4.13 for x ∈ FA).

Proof. Suppose that D is a HSA. The set of HSA’s aFAaF as in the last proof,

indexed by the finite subsets F of FD, is an increasing net. Lemma 4.16 shows that

the closure of the union of these HSA’s is D.
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A HSA D is called F-principal if D = xAx for some x ∈ FA. By an assertion

in Lemma 4.13 we can also allow x ∈ rA here. Corollary 4.21 says that the HSA

generated by a countable number of F-principal HSA’s is F-principal.

Theorem 4.24. Let A be any Jordan operator algebra (not necessarily with an iden-

tity or approximate identity.) Every separable HSA or HSA with a countable cai is

F-principal.

Proof. If D is a HSA with a countable cai, then D has a countable partial cai

(en) ⊂ 1
2
FD. Also D is generated by the HSA’s enAen, and so D is F-principal by

the last result. For the separable case, note that any separable approximately unital

Jordan operator algebra has a countable cai.

Corollary 4.25. If A is a separable Jordan operator algebra, then the A-open pro-

jections in A∗∗ are precisely the s(x) for x ∈ rA.

Proof. If A is separable then so is any HSA. So the result follows from Theorem 4.24,

Lemma 4.13, and Corollary 4.12.

Theorem 4.26. Let A be any approximately unital Jordan operator algebra. The

following are equivalent

(i) A has a countable Jordan cai.

(ii) There exists x ∈ rA such that A = xAx.

(iii) There is an element x in rA with s(x) = 1A∗∗ .

(iv) A has a strictly real positive element in rA.
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If A is separable then these all hold.

Proof. The equivalence of (ii), (iii), and (iv) comes from Lemma 4.15 and the rea-

soning for [22, Theorem 3.2]. These imply (i) since (a scaling of) (x
1
k ) is a countable

partial cai. The rest follows from Theorem 4.24 applied to A = D.

Remark 4.27. We remark again that one may replace rA by FA in the last several

results.

Theorem 4.28. An approximately unital Jordan operator algebra with no countable

Jordan cai, has nontrivial HSA’s.

Proof. If A has no countable cai then by Theorem 4.26 for any nonzero x ∈ FA, we

have A 6= xAx. The latter is a nontrivial HSA in A.

We recall that an element x in a unital Jordan algebra A is invertible if there

exists y ∈ A with x ◦ y = 1 and x2 ◦ y = x. If A is an associative algebra and

x ◦ y = 1
2
(xy+ yx) then it is known that this coincides with the usual definition. For

a Jordan operator algebra the spectrum SpA(x) is defined to be the scalars λ such

that λ1 − x is invertible in A1, and as in the Banach algebra case can be shown to

be a compact nonempty set, on whose complement (λ1 − x)−1 is analytic as usual,

and the spectral radius is the usual limn ‖xn‖
1
n . These facts are all well known in

the theory of Jordan Banach algebras. For a general (possibly nonunital) Jordan

operator algebra we say that x is quasi-invertible if 1− x is invertible in A1.

Theorem 4.29. For a Jordan operator algebra A, if x ∈ rA, the following are equiv-

alent:
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(i) x joa(x)x is closed.

(ii) joa(x) is unital.

(iii) There exists y ∈ joa(x) with xyx = x.

(iv) xAx is closed.

(v) There exists y ∈ A such that xyx = x. Also, the latter conditions imply

(vi) 0 is isolated in or absent from SpA(x).

Finally, if further joa(x) is semisimple, then condition (i)-(vi) are all equivalent.

Proof. If A is unital, x ∈ rA, and x is invertible in A, then s(x) = 1 ∈ joa(x). Thus

(ii) is true, and in this case (i)-(vi) are all obvious. So we may assume that x is not

invertible in A. The equivalence of (i)–(iii) is the same as the operator algebra case

(since joa(x) = oa(x)); and these imply (v).

(iv) ⇒ (v) Suppose that xAx is closed. Now x = (x
1
3 )3, and since x =

limn x
1
n xx

1
n and x

1
n ∈ oa(x) we see that

x
1
3 ∈ oa(x) = xoa(x)x ⊂ xAx = xAx,

and so xyx = x for some y ∈ A.

(v) ⇒ (iv) Similarly to the original proof of [20, Theorem 3.2],

xAx = (xyx)A(xyx) ⊆ xyAyx ⊆ xAx,
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so that xAx = xyAyx. Since xy is an idempotent (in any containg C∗-algebra), xAx

is closed.

Clearly (v) implies the same assertion but with A replaced by C∗(A). This, by

the theorem we are generalizing, implies (i)–(iii).

That (v) implies (vi) is as in [20, Theorem 3.2]: If 0 is not isolated in SpA(x), then

there is a sequence of boundary points in SpA(x) converging to 0. Since ∂SpA(x) ⊂

SpB(H)(x) as in the Banach algebra case, we obtain a contradiction. Similarly (vi)

implies (ii) if oa(x) is semisimple: if the latter is not unital, then 0 is an isolated

point in SpA(x) if and only if 0 is isolated in Spoa(x)(x), and so we can use the original

proof.

Theorem 4.30. For a unital Jordan operator algebra A, the following are equivalent:

(i) A has no nontrivial HSA’s (equivalently, A∗∗ has no nontrivial open projec-

tions).

(ii) an → 0 for all a ∈ Ball(A) \ C 1.

(iii) The spectral radius r(a) < ‖a‖ for all a ∈ Ball(A) \ C 1.

(iv) The numerical radius v(a) < ‖a‖ for all a ∈ Ball(A) \ C 1.

(v) ‖1 + a‖ < 2 for all a ∈ Ball(A) \ C 1.

(vi) Ball(A) \ C 1 consists entirely of elements x which are quasi-invertible in A.

If A has a partial cai then the following are equivalent:
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(a) A has no nontrivial HSA’s.

(b) A1 has one nontrivial HSA.

(c) Re(x) is strictly positive for every x ∈ FA \ {0}.

Proof. Clearly (ii)–(v) are equivalent by the theorem we are generalizing applied to

oa(a).

(i) ⇒ (vi) The HSA’s are in bijective correspondence with the open projections

in A∗∗, and these are the same thing as suprema of support projections of elements

in FA (or equivalently of real positive elements in A by Lemma 4.16 (1). Thus, A has

no nontrivial HSA’s if and only if s(x) is an identity for A∗∗ for all x ∈ FA \ {0}. Let

B = oa(1, a) for a ∈ Ball(A) \ {1}. Then B ⊂ (1− a)A(1− a) = A, so that (1− a)
1
n

is an approximate identity for B, which must therefore converge to 1. It follows that

B = oa(1 − a), and so by the Neumann lemma (approximating 1) we have 1 − a is

invertible in B, hence in A, so that (vi) holds.

(vi) ⇒ (i) Conversely a ∈ Ball(A) \ {1} quasi-invertible, with quasi-inverse a′,

implies that

(1− a)(1− a′)A(1− a′)(1− a) = A ⊂ (1− a)A(1− a) ⊂ A,

so that s(1−a) = 1. Hence (vi) implies that every nonzero element in FA has support

projection 1.

(iii)⇒ (vi) If r(a) < ‖a‖ for all a ∈ Ball(A) \C 1, then a is quasi-invertible, and

its quasi-inverse is in oa(1, a).
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(i) ⇒ (v) If there exists a ∈ Ball(A) \ C 1 such that ‖1 + a‖ = 2, then ‖a‖ = 1.

By the Hahn-Banach Theorem, ∃ ϕ ∈ Ball(A∗) such that ϕ(1 + a) = 2, which means

that ϕ(1) = ϕ(a) = 1. Hence ϕ is a state and ϕ(1−a) = 0. This implies s(1−a) 6= 1

by Lemma 4.14, which contradicts (i) by the relationship between HSA’s and s(x)

mentioned at the start of the proof.

That (b) implies (a) is obvious. For the converse note that if e = 1A∗∗ is the

(central) support projection of A then for an open projection p in (A1)∗∗, ep is open

by [18, Proposition 6.4]. (We may write the ‘non-Jordan expression’ ep since e is

central; thus if one likes such expessions below may be evaluated in any containing

generated C∗-algebra.) Note that 1 − e is a minimal projection in (A1)∗∗ since

(1 − e)(a + λ1) = λ(1 − e) for all a ∈ A, λ ∈ C. So if (a) holds then ep = e or

ep = 0, whence p = e or p = 1, or p = 0 or p = 1− e. The last of these is impossible,

since if xt = (1 − e)xt → 1 − e with xt ∈ A1, then ext = 0, which implies that

xt is in the kernel of the character on A1 that annihilates A. So xt ∈ C 1, giving

the contradiction 1 − e ∈ C 1. That (a) is equivalent to (c) directly follows from

[26, Lemma 3.11] (which gives Re(x) is strictly positive if and only if s(x) = 1) and

the relationship between HSA’s and s(x) mentioned at the start of the proof. This

equivalence holds for unital A too.

Remark 4.31. The last result has similar corollaries as in the associative algebra

case. For example one may deduce that an approximately unital Jordan operator

algebra with no countable Jordan cai, has nontrivial HSA’s. To see this note that

if A has no countable partial cai then by Theorem 4.15 there is no element x ∈ rA

with s(x) = 1A∗∗ . Thus by the previous proof there are nontrivial HSA’s in A.
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The following are Jordan variants of Theorem 7.1 and Corollary 7.2 in [20].

Theorem 4.32. If A is an approximately unital Jordan operator algebra which is a

closed two-sided Jordan ideal in an operator algebra B, then xAx is a HSA in A for

all x ∈ rB.

Proof. For any x ∈ rB, then by the operator algebra case we know that oa(x) has a

countable cai (en) say. Let J = xAx, then yAy ⊂ J for all y ∈ J . Suppose that (ft)

is a cai for A, then (enften) ∈ J is a Jordan cai for J by routine techniques. So xAx

is a HSA in A by [26, Proposition 3.3].

Corollary 4.33. If A is an approximately unital Jordan operator algebra, and if η

is a real positive element in the Jordan multiplier algebra of A, then ηAη is a HSA

in A.

The following is the Jordan version of [20, Corollary 2.25]:

Corollary 4.34. Let A be a unital Jordan subalgebra of C∗-algebra B and let q ∈ A∗∗

be a closed projection associated with an HSA D in A (that is, D = {a ∈ A : q⊥aq⊥ =

a}). Then an explicit Jordan cai for D is given by x(u,ε) = 1−a, where a is an element

which satisfies the conclusions of the noncommutative Urysohn theorem 9.5 in [18],

for an open projection u ≥ q, and a scalar ε > 0. This Jordan cai is indexed by such

pairs (u, ε), that is, by the product of the directed set of open projections u ≥ q, and

the set of ε > 0. This Jordan cai is also in 1
2
FA.

Proof. Certainly x(u,ε)q = (1 − a)q = q − q = 0, and similarly qx(u,ε) = 0, so that

x(u,ε) ∈ D.Also, ‖x(u,ε)‖ ≤ 1, indeed ‖1−2x(u,ε)‖ ≤ 1. The proof in [20, Corollary 2.25]
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shows that x(u,ε)b→ b in B for b ∈ Ball(D). Similarly bx(u,ε) → b. So x(u,ε)b+bx(u,ε) →

2b in A. Therefore, (x(u,ε)) is a Jordan cai for D.

4.3 M-ideals

Theorem 4.35. Let A be an approximately unital Jordan operator algebra.

(1) The M-ideals in A are the complete M-ideals. These are exactly the closed

Jordan ideals in A which are approximately unital.

(2) The M-summands in A are the complete M-summands. These are exactly the

sets Ae for a projection e in JM(A) (or equivalently in M(A)) such that e

commutes with all elements in A). If A is unital then these are the closed

Jordan ideals in A which possess a Jordan identity of norm 1.

(3) The right M-ideals in A are of the form J = pA∗∗ ∩A, where p is a projection

in M(A∗∗) with J⊥⊥ = pA∗∗. Each right M-ideal in A is a Jordan subalgebra

with a left C∗e (A)-partial cai.

(4) The right M-summands in A are exactly the sets pA for an idempotent con-

traction p ∈M(A).

Proof. (4) By 4.5.15 in [14], the left M -projections are the projections in the left

multiplier algebraM`(A) of [14]. Hence, the right M -summands in A are exactly the

sets pA for an idempotent contraction p ∈ Ml(A) = LM(A). So p may be regarded
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as a projection in LM(A). However by Lemma 3.35 any projection in LM(A) is in

M(A).

(3) If J is a right M -ideal then J∗∗ = J⊥⊥ = J
w∗

is a right M -summand. Hence

by (4), J⊥⊥ = pA∗∗, where p is a projection in M(A∗∗). Thus J = J⊥⊥∩A = pA∗∗∩A.

It follows that J is a Jordan subalgebra. Note that if (et) ⊂ J with et → p weak*,

then etx → px = x (products in C∗e (A)∗∗) for all x ∈ J . Thus as in Lemma 3.13 a

convex combination of the et are a left partial cai for J .

(2) If e is a projection in M(A) commuting with A, then since ea = eae ∈ A

we see that left multiplication by e is in the algebra Ml(A) mentioned above, and

eA is a right M -summand by (4). Similarly eA = Ae is a left M -summand by the

left-handed version of (4). So eA is a complete M -summand by [14, Proposition 4.8.4

(2)].

Conversely, suppose that P is an M -projection on A. First suppose that A is

unital. Set z = P (1) and follow the proof of [14, Theorem 4.8.5 (2)], to see that

z is Hermitian in A and z2 = z, so that z is a projection in A. That argument

goes on to show that if ϕ is any state with P ∗(ϕ) 6= 0, and if ψ = P ∗(ϕ)
‖P ∗(ϕ)‖ , then

ψ is a state on A. As we said earlier, we can extend ψ to a state ψ̃ on some C∗-

algebra generated by A. As in the argument we are following we obtain, for any

a ∈ A, that |ψ̃(a(1− z))|2 ≤ ψ̃(aa∗)ψ(1− z) = 0, so that ψ̃(a(1− z)) = 0. Similarly,

ψ̃((1 − z)a) = 0. Hence, ϕ(P (a(1 − z) + (1 − z)a)) = 0. Since this holds for any

state, we have P (a(1− z) + (1− z)a) = 0. Therefore, (1− z) ◦ A ⊂ (I − P )(A). By
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symmetry we have z ◦ A ⊂ P (A). If a ∈ A, then

a =
az + za

2
+
a(1− z) + (1− z)a

2
,

so that P (a) = az+za
2

= z ◦ a. That P is idempotent yields the formula zaz = z ◦ a.

So z is central in A, and az = za = zaz, and P (A) = zA.

Next, if A is not unital consider the M -projection P ∗∗ on A∗∗. By the unital case

P ∗∗(η) = zη = ηz = zηz for all η ∈ A∗∗, for a central projection z ∈ A∗∗. We have

za+ az = 2P (a) ∈ A for a ∈ A, so that z ∈M(A), and P (A) = zA.

Finally suppose that J is a closed Jordan ideal in A which possesses a Jordan

identity e of norm 1. Then ex = x = xe for all x ∈ J , as in the proof of Lemma 3.13.

Also eAe ⊂ J = eJe ⊂ eAe. So J = eAe. Also J = e ◦ A, so ea + ae = eae + ae,

and so ea = eae. Similarly ae = eae = ea, so e is central in A. The rest is clear.

(1) If J is an approximately unital closed Jordan ideal in A, then J⊥⊥ is by the

usual approximation argument a unital weak* closed Jordan ideal in A∗∗. So by (2)

we have J⊥⊥ is the M -summand pA∗∗ for a central projection p ∈ A∗∗. So J is an

M -ideal. Conversely, if J is an M -ideal, then J⊥⊥ is an M -summand in A∗∗. By (2),

there exist a central projection e ∈ A∗∗ such that J⊥⊥ = eA∗∗ and e ∈M(A∗∗). Note

that e ∈ J⊥⊥. By a routine argument similar to the associative case, J is a Jordan

ideal with partial cai.

Corollary 4.36. A subspace D in a Jordan operator algebra A is an approximately

unital closed Jordan ideal in A if and only if there exists some open central projection

p in A∗∗, such that D = pA∗∗p ∩ A.
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Proof. If D is an approximately unital closed Jordan ideal in A then it is an approx-

imately unital closed Jordan ideal in A1. The proof of Theorem 4.35 (1) shows that

D⊥⊥ = pA∗∗p, for a projection p in D⊥⊥ ⊂ A∗∗ (the weak* limit of a cai for D). Also

p is central in (A1)∗∗, hence in A∗∗. Clearly D = pA∗∗p∩A, so p is open, and D is a

HSA.

Conversely, if p is an open central projection in A∗∗, then p is an open central

projection in (A1)∗∗. Since p ◦ η = pηp ∈ A∗∗ for η ∈ A∗∗, we have D = pA∗∗p ∩A is

a HSA and in particular is approximately unital. It is easy to see that D is a closed

Jordan ideal since p is central.

Proposition 4.37. If J is an approximately unital closed two-sided Jordan ideal in

a Jordan operator algebra A, then A/J is (completely isometrically isomorphic to) a

Jordan operator algebra.

Proof. Since A/J ⊂ A1/J we may assume that A is unital. By graduate functional

analysis

A/J ⊂ A∗∗/J⊥⊥ = A∗∗/eA∗∗ = e⊥A∗∗,

where e is the central support projection of J . The ensuing embedding A/J ⊂ e⊥A∗∗

is the map θ(a + J) = e⊥ a. Note that 1
2
(ab + ba) + A maps to 1

2
e⊥(ab + ba) =

θ(a) ◦ θ(b). So θ is a completely isometric Jordan homomorphism into the Jordan

operator algebra A∗∗, so A/J is completely isometrically isomorphic to a Jordan

operator algebra.

Clearly any approximately unital Jordan operator algebra A is an M -ideal in its
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unitization, or in JM(A). As in [20, Proposition 6.1] we have:

Proposition 4.38. If J is a closed Jordan ideal in a Jordan operator algebra A, and

if J is approximately unital, then q(FA) = FA/J , where q : A → A/J is the quotient

map.

Proof. By Propositions 4.37 and 3.6 we can extend q to a contractive unital Jordan

homomorphism from A1 to a unitization of A/J , and then it is easy to see that

q(FA) ⊂ FA/J .

For the reverse inclusion note that J is an M -ideal in A1 by Theorem 4.35 (1).

We may then proceed as in the proof of [20, Proposition 6.1]. Indeed suppose that

x ∈ A/J with ‖1 − x‖ ≤ 1 in A1/J . Since J is an M-ideal in A1, it proximinal.

Hence, there is an element z = λ1 + a in Ball (A)1, with λ ∈ C, a ∈ A such

that λ1 + a + J = 1 − x. It is easy to see that λ = 1, and a + J = −x. Then

‖1− (−a)‖ = ‖z‖ ≤ 1, so y ∈ FA, and q(−a) = x.

The following is the approximately unital Jordan version of [19, Corollary 8.9].

Below WA(x) = {ϕ(x) : ϕ ∈ S(A)} is the numerical range of x in A.

Proposition 4.39. Suppose that J is an approximately unital Jordan ideal in a

unital Jordan operator algebra A. Let x ∈ A/J with K = WA/J(x). Then

(i) If K is not a nontrivial line segment in the plane, then there exists a ∈ A with

a+ J = x, ‖a‖ = ‖x‖, and WA(a) = WA/J(x).

(ii) If K = WA/J(x) is a nontrivial line segment, let K̂ be any thin triangle with
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K as one of the sides. Then there exists a ∈ A with a+ J = x, ‖a‖ = ‖x‖, and

K ⊂ WA(a) ⊂ K̂.

Proof. For (i) note that if the numerical range of x is not a singleton nor a line

segment then this follows from [19, Theorem 8.8] since J is an M -ideal. If the

numerical range of an element w in a unital Jordan algebra is a singleton then the

same is true with respect to the generated C∗-algebra, so that w ∈ C 1.

If WA/J(x) is a nontrivial line segment K, this works just as in the proof of [19,

Corollary 8.9]. Replace A by the unital Jordan algebra B = A ⊕∞ C, replace J

by the approximately unital Jordan ideal I = J ⊕ (0). Then I is an M -ideal in B

by Theorem 4.35 (1). For a scalar λ chosen as in the proof of [19, Corollary 8.9],

W ((x, λ)) is the convex hull of K and λ, hence has nonempty interior. Since I is an

M -ideal in B, we may appeal to [19, Theorem 8.8] in the same way as in the proof

to obtain our result.

Corollary 4.40. If J is an approximately unital Jordan ideal in any (not necessarily

approximately unital) Jordan operator algebra A, then q(rA) = rA/J where q : A →

A/J is the quotient map.

Proof. From Proposition 4.38, we know that q(FA) = FA/J , and rA = R+ FA by

the proof of [21, Theorem 3.3]. So q(R+ FA) = R+ FA/J . Taking closures we have

q(rA) ⊂ rA/J .

The other direction uses Proposition 4.39. If A is unital the result immediately

follows from Proposition 4.39 as in [19, Corollary 8.10]. If A is nonunital and A/J
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is nonunital, then by Proposition 3.6 and Proposition 4.37 , we can extend q to a

contractive unital Jordan homomorphism from A1 to a unitization of A/J. Then J

is still an M-ideal in A1 by Theorem 4.35 (1). Therefore, again the result follows

as in [19, Corollary 8.10] by applying the unital case to the canonical map from A1

onto (A/J)1 = A1/J. (The latter formula following from Proposition 3.6.) If A/J is

unital, then one may reduce to the previous case where it is not unital, by the trick

for that in the proof of [19, Corollary 8.10].

Theorem 4.41. Suppose that A is a Jordan operator algebra, b ∈ A, and p is an

open projection in A∗∗ commuting with b (see the introduction for the definition of

this), such that ‖p⊥bp⊥‖ ≤ 1 (here p⊥ = 1−p where 1 is the identity of the unitization

of A if A is nonunital). Suppose also that ‖p⊥(1 − 2b)p⊥‖ ≤ 1. Then there exists

g ∈ 1
2
FA ⊂ Ball(A) commuting with p such that p⊥gp⊥ = p⊥bp⊥. Indeed such g may

be chosen ‘nearly positive’ in the sense of the introduction to [22].

Proof. In the present setting the algebra D in the proof of [22, Theorem 4.10] is

written as {x ∈ A∩C : q ◦ x = 0} where q = 1− p. So D equals, by facts mentioned

in [18, Theorem 8.7],

{x ∈ A ∩ C : x = pxp} = A ∩ C ∩ D̃ = A ∩ D̃ = {x ∈ A : x = pxp},

the HSA in A with support p. So D is approximately unital. Now it is easy to chech

the Jordan variant of the last few lines of the proof of [22, Theorem 4.10], using

Proposition 4.37 in place of the analogous result used there.

Lemma 4.42. Suppose that A and B are closed Jordan subalgebras of unital Jordan
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operator algebras C and D respectively, with 1C /∈ A and 1D /∈ B, and q : A →

B is a 1-quotient map (that is, induces an isometry A/ ker(q) → B) and Jordan

homomorphism such that ker(q) is approximately unital. Then the unique unital

extension of q to a unital map from A+ C 1C to B + C 1D is a 1-quotient map.

Proof. Let J = ker(q), let q̃ : A/J → B be the induced isometry, and let θ :

A + C 1C → B + C 1D be the unique unital extension of q. This gives a one-to-one

Jordan homomorphism θ̃ : (A + C 1C)/J → B + C 1D which equals q̃ on A/J. If B,

and hence A/J , is not unital, then θ̃ is an isometric Jordan isomorphism. Similarly,

if B is unital, then θ̃ is an isometric Jordan isomorphism by the uniqueness of the

unitization of an already unital Jordan operator algebra. So in either case we may

deduce that θ̃ is an isometric Jordan isomorphism and θ is a 1-quotient map.

The following generalizes part of Corollary 4.40.

Theorem 4.43. (A noncommutative Tietze theorem) Suppose that A is a Jordan

operator algebra (not necessarily approximately unital), and that p is an open pro-

jection in A∗∗. Set q = 1 − p ∈ (A1)∗∗. Suppose that b ∈ A commutes with p, and

‖qbq‖ ≤ 1, and that the numerical range of qbq (in q(A1)∗∗q or (A1)∗∗) is contained

in a compact convex set E in the plane. We also suppose, by fattening it slightly if

necessary, that E is not a line segment. Then there exists g ∈ Ball(A) commuting

with p, with qgq = qbq, such that the numerical range of g with respect to A1 is

contained in E.

Proof. Similar remarks as in the proof of Theorem 4.41 apply here; except in addition
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one must use Proposition 4.39 and Lemma 4.42 in place of the analogous result used

in the proof of [22, Theorem 4.12].

4.4 More on real positivity in Jordan operator al-

gebras

The r-ordering is simply the order 4 induced by the above closed cone; that is b 4 a

if and only if a − b ∈ rA. If A is a Jordan subalgebra of a Jordan operator algebra

B, we mentioned earlier that rA ⊂ rB. If A,B are approximately unital Jordan

subalgebras of B(H) then it follows from the fact that A = rA − rA (see Theorem

4.44) and similarly for B that A ⊂ B if and only if rA ⊂ rB. As in [20, Section 8],

rA contains no idempotents which are not orthogonal projections, and no nonunitary

isometries. In [21] it is shown that cA = rA. Also rA contains no nonzero elements

with square zero. Indeed if (a + ib)2 = a2 − b2 + i(ab + ba) = 0 with a ≥ 0 and

b = b∗ then a2 = b2 so that a and b commute. Hence ab = 0 and a4 = a2b2 = 0. So

a = b = 0.

Theorem 4.44. Let A be a Jordan operator algebra which generates a C∗-algebra B,

and let UA denote the open unit ball {a ∈ A : ‖a‖ < 1}. The following are equivalent:

(1) A is approximately unital.

(2) For any positive b ∈ UB there exists a ∈ rA with b 4 a.

(2’) Same as (2), but also a ∈ 1
2
FA and nearly positive.
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(3) For any pair x, y ∈ UA there exist nearly positive a ∈ 1
2
FA with x 4 a and

y 4 a.

(4) For any b ∈ UA there exist nearly positive a ∈ 1
2
FA with −a 4 b 4 a.

(5) For any b ∈ UA there exist x, y ∈ 1
2
FA with b = x− y.

(6) rA is a generating cone (that is, A = rA − rA).

(7) A = cA − cA.

Proof. This is very similar to the proof of [22, Theorem 2.1] .

(1)⇒ (2’) Let (et) be a partial cai for A in 1
2
FA. By [14, Theorem 2.1.6], (et) is a

cai for B, and hence so is (e∗t ), and ft = Re(et). By Corollary 3.25, theorem, we may

write b2 = zwz, where 0 ≤ w ≤ 1 and

z =
∞∑
k=1

2−kftk = Re(
∞∑
k=1

2−ketk),

where ftk are some of the ft. If a =
∑∞

k=1 2−ketk ∈ 1
2
FA, then z = Re(a). Then

b2 ≤ z2, so that b ≤ z and b � a. We also have b � a1/n for each n ∈ N by[5,

Proposition 4.7], which gives the nearly positive assertion.

(2’)⇒ (3). By C∗-algebra theory there exists a positive b ∈ UB with x and y

dominated by b. Then apply (2’).

(3)⇒ (4). Apply (3) to b and −b.

(4)⇒ (6). b = a+b
2
− a−b

2
∈ rA − rA.
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(6)⇒ (1). Suppose that A is a Jordan subalgebra of B(H). Each x ∈ rA has a

support projection px ∈ B(H), which is just the weak* limit of (x1/n), and hence

is in A. Then p = ∨x∈rApx is in A∗∗ since A∗∗ is closed under meets and joins of

projections. For any x ∈ rA we have

pxp = xp = px = ps(x)x = s(x)x = x.

Since rA is generating, we have px = x for all x ∈ A. It implies that A is unital, and

hence A is approximately unital by Lemma 3.13.

(1) ⇒(5). Assume that ‖x‖ = 1. Since FA∗∗ = 1A∗∗ + Ball(A∗∗), x = η − ξ for

η, ξ ∈ 1
2
FA∗∗ . We may assume that A is nonunital. By Theorem 3.15, we deduce

that x is the weak closure of the convex set 1
2
FA − 1

2
FA. Therefore it is in the norm

closure, given ε > 0, there exists a0, b0
1
2
FA with ‖x − (a0 − b0)‖ < ε

2
. Similarly,

there exists a1, b1 ∈ 1
2
FA with ‖x − (a0 − b0) − ε

2
(a1 − b1)‖ < ε

22
. Continuing in

this manner, one produce sequences (ak), (bk) in 1
2
FA. Setting a′ =

∑∞
k=1(1/2k)ak

and b′ =
∑∞

k=1(1/2k)bk, which are in 1
2
FA. We have x = (a0 − b0) + ε(a′ − b′). Let

a = a0 + εa′ and b = b0 + εb′. By convexity, we have x = (a0 − b0) + ε(a′ − b′). Let

a = a0 + εa′ and b = b0 + εb′. By convexity, 1/(1 + ε)a ∈ 1
2
FA and 1/(1 + ε)b ∈ 1

2
FA.

If ‖x‖ < 1, choose ε > 0, with ‖x‖(1 + ε) < 1. Then x/‖x‖ = a− b as above, so

that x = ‖x‖a− ‖x‖b. We have

‖x‖a = (‖x‖(1 + ε)) · ( 1

1 + ε
a) ∈ [0, 1)

1

2
FA ⊂

1

2
FA.
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and similarly, ‖x‖b ∈ 1
2
FA.

It is obvious that (2’) implies (2), and that (5) implies (7), which implies (6).

(2)⇒(6). If a ∈ A then by C∗-algebra theory and (2) there exists b ∈ B+ and

x ∈ rA with −x � −b � a � b � x. Thus a = a+x
2
− x−a

2
∈ rA − rA.

For the next results let AH be the closure of the set {aAa : a ∈ FA}. We shall

show that AH is the largest approximately unital Jordan subalgebra of A.

Corollary 4.45. For any Jordan operator algebra A, the largest approximately unital

Jordan subalgebra of A is

rA − rA = cA − cA.

In particular these spaces are closed and form a HSA of A.

If A is a weak* closed Jordan operator algebra then this largest approximately

unital Jordan subalgebra is qAq where q is the largest projection in A. This is weak*

closed.

Proof. The proof of Lemma 4.16 (see also Theorem 4.22 (2) with E = FA) yields AH

is the HSA pA∗∗p ∩ A where p = ∨a∈FA
s(a) is A-open. Similarly, AH is the closure

of the set {aAa : a ∈ rA}. As in the proof of [21, Theorem 4.2 and Corollary 4.3]

we have that AH is the largest approximately unital Jordan subalgebra of A and

FA = FAH
and rA = rAH

. By Theorem 4.44 we have AH = rAH
− rAH

= rA− rA, and

similarly AH = cAH
− cAH

= cA − cA.

The final assertion follows just as in [22, Corollary 2.2].
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As in [22, Lemma 2.3], and with the same proof we have:

Lemma 4.46. Let A be any Jordan operator algebra. Then for every n ∈ N,

Mn(AH) = Mn(A)H , rMn(A) = rMn(AH) , FMn(A) = FMn(AH).

If S ⊂ rA, for a Jordan operator algebra A, write joa(S) for the smallest closed

Jordan subalgebra of A containing S.

Proposition 4.47. If S is any subset of rA for a Jordan operator algebra A, then

joa(S) is approximately unital.

Proof. Let C = joa(S). Then rC = C ∩ rA. If x ∈ S then x ∈ rC = rCH
⊂ CH . So

C ⊂ CH ⊂ C, since CH is a Jordan operator algebra containing S. Hence C = CH ,

which is approximately unital.

Lemma 4.48. For any Jordan operator algebra A, the F-transform F(x) = 1− (x+

1)−1 = x(x+ 1)−1 maps rA bijectively onto the set of elements of 1
2
FA of norm < 1.

Thus F(rA) = UA ∩ 1
2
FA.

Proof. This follows from part of the discussion above Lemma 4.18.

We recall that the positive part of the open unit ball of a C∗-algebra is a directed

set, and indeed is a net which is a positive cai for B (see e.g. [52]). As in [22,

Proposition 2.6 and Corollary 2.7], we have:
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Proposition 4.49. If A is an approximately unital Jordan operator algebra, then

UA ∩ 1
2
FA is a directed set in the 4 ordering, and with this ordering UA ∩ 1

2
FA is an

increasing partial cai for A.

Corollary 4.50. Let A be an approximately unital Jordan operator algebra, and B

a C∗-algebra generated by A. If b ∈ B+ with ‖b‖ < 1 then there is an increasing

partial cai for A in 1
2
FA, every term of which dominates b (where ‘increasing’ and

‘dominates’ are in the 4 ordering).

Remark 4.51. Any Jordan operator algebra A with a countable cai, and in particu-

lar any separable approximately unital Jordan operator algebra A, has a commuting

partial cai which is increasing (for the 4 ordering), and also in 1
2
FA and nearly pos-

itive. Namely, by Theorem 4.26 we have A = xAx for some x ∈ 1
2
FA, and (x

1
n ) is a

commuting partial cai which is increasing by [5, Proposition 4.7].

A (C-)linear map T : A → B between Jordan operator algebras is real positive

if T (rA) ⊂ rB. We say that T is real completely positive or RCP if the nth matrix

amplifications Tn are each real positive. It is clear from properties of rA mentioned

earlier, that restrictions of real positive (resp. RCP) maps to Jordan subalgebras (or

to unital operator subspaces) are again real positive (resp. RCP).

Corollary 4.52. Let T : A → B be a linear map between approximately unital

Jordan operator algebras, and suppose that T is real positive (resp. RCP). Then T

is bounded (resp. completely bounded). Moreover T extends to a well defined positive

map T̃ : A+ A∗ → B +B∗ : a+ b∗ 7→ T (a) + T (b)∗.

Proof. This is as in [22, Corollary 2.9]. Note that T ∗∗ is real positive (using Theorem
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3.15), and hence by the proof of [5, Theorem 2.5] it extends to a positive map on an

operator system. Indeed it is completely positive, hence completely bounded, in the

matrix normed case. Then restrict to A+ A∗.

Remark 4.53. Similar results hold on unital operator spaces. With the same proof

idea any real positive linear map on a unital operator space A extends to a well

defined positive map on A + A∗. It is easy to see that a unital contractive linear

map on a unital operator space is real positive (this follows e.g. from the fact that

rA = R+(1 + Ball(A)) in this case).

Theorem 4.54 (Extension and Stinespring Dilation for RCP Maps). If T : A →

B(H) is a linear map on an approximately unital Jordan operator algebra, and if

B is a C∗-algebra containing A, then T is RCP if and only if T has a completely

positive extension T̃ : B → B(H). This is equivalent to being able to write T as the

restriction to A of V ∗π(·)V for a ∗-representation π : B → B(K), and an operator

V : H → K. Moreover, this can be done with ‖T‖ = ‖T‖cb = ‖V ‖2, and this equals

‖T (1)‖ if A is unital.

Proof. The structure of this proof follows the analogous results in [5, 20]. Indeed, in

the proof of Corollary 4.52, T is completely bounded and T ∗∗ extends to a completely

positive map A∗∗ + (A∗∗)∗ → B(H). By Arveson’s extension theorem [3], we may

extend further to a completely positive map T̃ : B∗∗ → B(H) and T̃ = V ∗π(·)V for

a ∗-representation π : B∗∗ → B(K). Restricting T̃ and π to be we obtain the desired

extension T̃ = V ∗πB(·)V.

The last assertion, about the norm follows immediately in the unital case, since
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it is well known for completely positive maps on C∗-algebras, and all of our exten-

sions preserve norms. If A is an Jordan operator algebra with partial cai (et), and

B = C∗(A), then T (et) → T̃ (1) weak*. Thus, ‖T̃ (1)‖ ≤ supt ‖T (et)‖ by Alaoglu’s

theorem. Consequently, by the unital space, ‖T‖cb ≤ ‖T̃‖cb = ‖T̃ (1)‖ = ‖V ‖2 ≤ ‖T‖,

and so ‖T‖ = ‖T‖cb = supt ‖T (et)‖.

An R-linear ϕ : A→ R is said to be real positive if ϕ(rA) ⊂ [0,∞). By the usual

trick, for any R-linear ϕ : A → R, there is a unique C-linear ϕ̃ : A → C with Re

ϕ̃ = ϕ, and clearly ϕ is real positive (resp. bounded) if and only if ϕ̃ is real positive

(resp. bounded).

As in [22, Corollary 2.8], and with the same proof we have:

Corollary 4.55. Let A be an approximately unital Jordan operator algebra, and B

a C∗-algebra generated by A. Then every real positive ϕ : A → R extends to a real

positive real functional on B. Also, ϕ is bounded.

We will write cRA∗ for the real dual cone of rA, the set of continuous R-linear

ϕ : A→ R such that ϕ(rA) ⊂ [0,∞). Since cA = rA, we see that cRA∗ is also the real

dual cone of cA. It is a proper cone; for if ρ,−ρ ∈ cRA∗ then ρ(a) = 0 for all a ∈ rA.

Hence ρ = 0 by the fact above that the norm closure of rA − rA is A.

Lemma 4.56. Suppose that A is an approximately unital Jordan operator algebra.

The real dual cone cRA∗ equals {tRe(ψ) : ψ ∈ S(A), t ∈ [0,∞)}. It also equals the

set of restrictions to A of the real parts of positive functionals on any C∗-algebra

containing (a copy of) A as a closed Jordan subalgebra. The prepolar of cRA∗, which

equals its real predual cone, is rA; and the polar of cRA∗, which equals its real dual
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cone, is rA∗∗. Thus the second dual cone of rA is rA∗∗, and hence rA is weak* dense

in rA∗∗.

The following results are the approximately unital Jordan versions of most of

2-6–2.8 in [19].

Proposition 4.57. Let A be an approximately unital nonunital Jordan operator

algebra. Then Q(A) is the weak* closure of S(A). Also, a functional f ∈ cA∗ if

and only if f is a nonnegative multiple of a state. That is, an approximately unital

nonunital Jordan operator algebra is scaled.

Proof. That Q(A) is the weak* closure of S(A) will follow because this is true for

C∗-algebras and because of the fact that states of A are precisely the restrictions to

A of states on C∗(A). The last assertion follows from the fact above that Q(A) is

weak* closed and the argument for [19, Lemma 2.7 (1)]. Alternatively, if f is real

positive, then Re f is real positive (i.e. Re f(rA) ⊂ [0,∞)), which implies by [26,

Lemma 4.13] that Re f = λReϕ for some λ ≥ 0 and ϕ ∈ S(A). Therefore, f = λϕ

by the uniqueness of the extension of Re f.

Corollary 4.58. If A is an approximately unital nonunital Jordan operator algebra,

then:

(i) S(A1) is the convex hull of trivial character χ0 on A1 (which annihilates A)

and the set of states on A1 extending states of A.

(ii) Q(A) = {ϕ|A : ϕ ∈ S(A1)}.
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Proof. These follow easily from the fact that they are true for C∗-algebras and states

of A are precisely the restrictions to A of states on C∗(A). Or one may deduce them

e.g. from the fact that A is scaled as in the proof of [19, Lemma 2.7].

Lemma 4.59. (Cf. [19, Lemma 6.6].) Suppose A is an approximately unital Jordan

operator algebra.

(1) The cones cA∗ and cRA∗ are additive (that is, the norm on A∗ is additive on these

cones).

(2) If (ϕt) is an increasing net in cRA∗ which is bounded in norm, then the set

converges in norm, and its limits is the least upper bound of the net.

Proof. This is as in [19, Lemma 6.6], however one needs to appeal to [26, Lemma

4.13] in place of the matching result used there.

Corollary 4.60. Let A be an approximately unital Jordan operator algebra. If f ≤

g ≤ h in B(A,R) in the natural ‘dual ordering’ induced by �, then ‖g‖ ≤ ‖f‖+‖h‖.

Proof. For any x ∈ A with ‖x‖ < 1, then by Theorem 4.33 (5) there exists a, b ∈
1
2
FA ⊂ Ball(A) such that x = a− b. If g(x) ≥ 0, then

g(x) = g(a)− g(b) ≤ h(a)− f(b) ≤ ‖h‖+ ‖f‖.

If g(x) ≤ 0, then

|g(x)| = g(b)− g(a) ≤ h(b)− f(a) ≤ ‖h‖+ ‖f‖.
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Therefore, ‖g‖ ≤ ‖f‖+ ‖h‖.

Following on Kadison’s Jordan algebraic Banach–Stone theorem for C∗-algebras

[41], many authors have proved variants for objects of ‘Jordan type’. The following

variant on the main result of Arazy and Solel [2] is a ‘Banach–Stone type theorem

for Jordan operator algebras’.

Proposition 4.61. Suppose that T : A → B is an isometric surjection between

approximately unital Jordan operator algebras. Then T is real positive if and only if

T is a Jordan algebra homomorphism. If these hold and in addition T is completely

isometric then T is real completely positive.

Proof. If T : A → B is an isometric surjective Jordan algebra homomorphism be-

tween unital Jordan operator algebras, then T is unital hence real positive by a fact

in Remark 4.53. If A and B are nonunital (possibly non-approximately unital) then

T extends to a unital isometric surjective Jordan algebra homomorphism between

the unitizations, hence is real positive again by the unital case.

Conversely, suppose that T is real positive. Again we may assume that A and B

are unital, since by the usual arguments T ∗∗ is a real positive isometric surjection be-

tween unital Jordan operator algebras. Then the result follows from [16, Proposition

6.6]. If T is a completely isometric surjective Jordan algebra homomorphism then

by Proposition 3.19, T extends to a unital completely isometric surjection between

the unitizations, which then extends by Arveson’s lemma e.g. [14, Lemma 1.3.6] to

a unital completely contractive, hence completely positive, map on A+ A∗. So T is

real completely positive.
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4.4. MORE ON REAL POSITIVITY

We close with a final Banach–Stone type theorem.

Proposition 4.62. Suppose that T : A → B is a completely isometric surjection

between approximately unital operator algebras. Then there exists a completely iso-

metric surjective homomorphism π : A → B, and a unitary u with u, u∗ ∈ M(B)

with T = uπ(·).

Proof. See [14, Theorem 4.5.13].

Remark 4.63. The Jordan version of Banach-Stone type theorem in [26] was stated

incorrectly and it will be fixed in [17].
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CHAPTER 5

Operator ∗-spaces

5.1 Characterization of operator ∗-spaces

Definition 5.1. A Banach space X is a Banach ∗-space when it comes equipped

with a conjugate linear involution † : X → X such that

(a) (x†)† = x, ∀x ∈ X,

(b) ‖x†‖ = ‖x‖, ∀x ∈ X.

Example 5.2. Let H2 be the Hardy space H2(D), where D is the unit disc. The
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5.1. CHARACTERIZATION OF OPERATOR ∗-SPACES

involution on H2 is defined by

f †(z) = f(z), for any f ∈ H2.

Note that (f †)† = f and ‖f †‖ = limr↗1 ‖f †r‖2 = limr↗1 ‖fr‖2 = ‖f‖, so that H2

becomes a Banach ∗-space.

Definition 5.3. An operator space X is an operator ∗-space when it comes equipped

with an involution (which is conjugate linear) † : X → X such that

(i) (x†)† = x;

(ii) The involution is completely isometric, i.e.,

‖[xij]†‖ = ‖[xij]‖ for all n ∈ N and [xij] ∈Mn(X),

where [xij]
† = [x†ji] for all i, j ∈ {1, · · · , n}.

Example 5.4. Suppose X is a ∗-selfadjoint subspace of B(H), where H is a Hilbert

space. Denote

U(X) =


λ x

0 µ

 : x ∈ X,λ, µ ∈ C

 ,

then U(X) is a subspace of B(H(2)). The involution on U(X) is defined by

λ x

0 µ


†

=

0 1

1 0


λ x

0 µ


∗ 0 1

1 0

 =

λ̄ x∗

0 µ̄

 ∈ U(X).
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5.1. CHARACTERIZATION OF OPERATOR ∗-SPACES

It is easy to see that U(X) with the involution defined above is an operator ∗-space.

Moreover, variants such as


0 x

0 0

 : x ∈ X

 and


λ x

0 λ

 : x ∈ X,λ ∈ C

 are

also operator ∗-spaces.

Definition 5.5. If X is an operator ∗-space, then we say that X is an injective

operator ∗-space if X is injective in the sense of Definition 2.4.

Proposition 5.6. Suppose that X, Y and Z are operator ∗-spaces and X ⊂ Y is

a †-selfadjoint subspace. If Z is injective, then for any completely bounded †-linear

map u : X → Z, there exists a completely bounded †-linear extension û : Y → Z such

that ‖u‖cb = ‖û‖cb.

Proof. Suppose u : X → Z is a completely bounded †-linear map. By injectivity of

Z, there exists a completely bounded extension v : Y → Z such that v|X = u and

‖v‖cb = ‖u‖cb. Let v† : Y → Z be the map defined by v†(y) = v(y†)†. Then v†|X = u

and ‖v†‖cb = ‖u‖cb. Let û denote be the map v+v†

2
. Thus û is †-linear, û|X = u and

‖û‖cb = ‖u‖cb.

Proposition 5.7. Suppose that X is a vector space with an involution on X such

that (x†)† = x. Suppose also that for each n ∈ N we are given a norm ‖ · ‖n on

Mn(X) satisfying the following conditions:

(1) ‖α[xij]
†β‖n ≤ ‖α‖‖[xij]‖n‖β‖, where [xij]

† = [x†ji] for all n ∈ N and α, β ∈Mn;
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5.1. CHARACTERIZATION OF OPERATOR ∗-SPACES

(2) For all [xij] ∈Mm(X) and [ykl] ∈Mn(X), we have

∥∥∥∥∥∥∥
[xij] 0

0 [ykl]


∥∥∥∥∥∥∥ = max{‖[xij]‖m, ‖[ykl]‖n};

then X is an operator ∗-space.

Proof. Let α and β be In, then ‖[xij]†‖n ≤ ‖[xij]‖n. By (i) of Definition 5.3, we

get equality here. We also have ‖α[xij]β‖n ≤ ‖α‖‖[xij]‖n‖β‖. By applying Ruan’s

Theorem (see e.g. theorem 2.3), we know that X is an operator space. Thus, X is

an operator ∗-space.

Theorem 5.8. Suppose that X is a vector space with an involution on X satisfying

that (x†)† = x and that for each n ∈ N we are given a norm ‖ · ‖n on Mn(X). Then

X is linearly completely isometrically ∗-isomorphic to a ∗-selfadjoint linear subspace

of B(H) for some Hilbert space H, if and only if X is an operator ∗-space.

Proof. (⇐) Let X be an operator ∗-space. By Ruan’s theorem, there exists a com-

plete isometry π : X → B(K) such that X is completely isometrically isomorphic to

π(X) ⊆ B(K). Let ρ : X → B(K ⊕K) be the map defined by

ρ(x) =

 0 π(x)

π(x†)∗ 0

 ,
then ρ(x†) = ρ(x)∗, for all x ∈ X. Then the result follows immediately from the fact

that ρ is completely isometric.
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(⇒) Suppose that ρ : X → B(H) is a completely isometric and ∗-linear map.

Then X is an operator space and ‖[xij]†‖ = ‖[xij]‖, for any [xij] ∈Mn(X).

Corollary 5.9. If Y ⊂ X is a closed linear subspace of an operator ∗-space X such

that Y † ⊆ Y, then X/Y is an operator ∗-space with the matrix norm Mn(X/Y ) given

by the formula

‖[xij+̇Y ]‖n = inf{‖[xij + yij]‖n : yij ∈ Y }.

Corollary 5.10. Suppose that X is a vector space with an involution on X such that

(x†)† = x. Furthermore, there exists a sequence ρ = {ρn}∞n=1, where ρn is a seminorm

on Mn(X), satisfying (1) and (2) in Proposition 5.7. In this case, and if N is defined

to be {x ∈ X : ρ1(x) = 0}, then X/N is an operator ∗-space.

Proof. By (1), we have that x ∈ N if and only if x† ∈ N . Thus, the kernel of ρn is

Mn(N). By Proposition 5.7, X/N is an operator ∗-space.

Example 5.11 (Interpolation of operator ∗-spaces). Suppose that (X0, X1) is a

compatible couple of two operator ∗-spaces. Just like in the general operator space

case let S be the strip of all complex numbers z with 0 ≤ re(z) ≤ 1 and let F =

F(X0, X1) be the space of all bounded and continuous functions f : S → X0 + X1

such that the restriction of f to the interior of S is analytic, and such that the maps

t → f(it) and t → f(1 + it) belong to C0(R;X0) and C0(R, X1) respectively. For

any f ∈ F , the function f † is defined by f †(z) = f(z̄) ∈ F . Then F(X0, X1) is an

operator ∗-space with the involution †.

For any 0 ≤ θ ≤ 1, let F θ(X0, X1) be the subspace of all f ∈ F for which

f(θ) = 0, which is †-selfadjoint. And, the interpolation space Xθ = [X0, X1]θ is the
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subspace of X0 +X1 formed by all x = f(θ) for some f ∈ F . As operator spaces, the

interpolation space Xθ
∼= F(X0, X1)/F θ(X0, X1) through the map π : f 7→ f(θ). It

is easy to see that π is †-linear. Hence, Xθ is an operator ∗-space.

5.2 Some common operator ∗-space structures

5.2.1 Mapping spaces and dual

Let X, Y be operator ∗-spaces. The space CB(X, Y ) of completely bounded linear

maps from X to Y is also an operator ∗-space. Indeed, if u ∈ CB(X, Y ), let u† :

X → Y be the map defined by u†(x) = u(x†)†, for any x ∈ X. Thus, it is easy

to see that u† is also a completely bounded map with ‖u†‖cb = ‖u‖cb. Similarly, if

[uij] ∈ Mn(CB(X, Y )), then ‖[uij]‖cb = ‖[uij]†‖cb. Thus, CB(X, Y ) is an operator

∗-space.

If Y = C, then X∗ = CB(X,C) for any operator ∗-space X. If ϕ ∈ X∗ and the

map ϕ† : X → C is defined by ϕ†(x) = ϕ(x†), then X∗ is an operator ∗-space (see

more details later).

5.2.2 Minimal operator ∗-space

Let E be a Banach ∗-space and consider the canonical isometric inclusion of E in

the commutative C∗-algebra C(Ball(E∗)). Here E∗ is equipped with the w∗-topology.
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Recall that the matrix norms on Min(E) are given by

‖[xij]‖n = sup{‖[ϕ(xij)]‖ : ϕ ∈ Ball(E∗)‖, for [xij] ∈Mn(E)}. (5.2.1)

From (5.2.1), we claim that

‖[xij]‖n = ‖[xij]†‖n, ∀ [xij] ∈Mn(E), n ∈ N .

Indeed, for any ε > 0 there exists ψ ∈ Ball(E∗) such that ‖[xij]‖n − ε < ‖[ψ(xij)]n‖.

Moreover,

‖[xij]†‖n = ‖[x†ji]‖n ≥ ‖[ψ†(x
†
ji)]‖n = ‖[ψ(xji)]‖n = ‖[ψ(xij)]‖n > ‖[xij]‖n − ε,

where ψ† is defined similarly as above. This implies that ‖[xij]†‖n ≥ ‖[xij]‖n. By

symmetry, we know that ‖[xij]†‖n = ‖[xij]‖n. Thus every Banach ∗-space may be

canonically considered to be an operator ∗-space. Also, for any bounded †-linear

map u from an operator ∗-space Y into E, we have

‖u : Y → Min(E)‖cb = ‖u : Y → E‖.

Suppose Ω is any compact space and τ is an order 2-homeomorphism on Ω. An

involution on C(Ω) could be defined by

f † = f̄ ◦ τ, ∀f ∈ C(Ω).

100



5.2. SOME COMMON OPERATOR ∗-SPACE STRUCTURES

Obviously, f † ∈ C(Ω) and

‖f †‖ = sup{|f̄(τ(ω))| : ω ∈ Ω} = sup{|f̄(ω)| : ω ∈ Ω} = ‖f‖.

By a routine argument, we know that C(Ω) is also an operator ∗-space with the

involution defined above. Moreover, for any involution on C(Ω), then there exists τ

is an order 2-homeomorphism on Ω such that f † = f̄ ◦ τ, ∀f ∈ C(Ω).

Furthermore, if i : E → C(Ω) is a †-isometry, then the matrix norms inherited

by E from the operator ∗-structure of C(Ω) coincide with those in (5.2.1). Since

Ball(E∗) has natural involution τ(ψ) = ψ†, this means that the ‘minimal operator

∗-spaces’ are exactly the operator ∗-spaces completely isometrically †-isomorphic to

a †-selfadjoint subspace of a C(K)-space where K is a compact space.

5.2.3 Maximal operator ∗-space

Let E be a Banach ∗-space. Then Max(E) is the largest operator space structure

equipped on E. Recall that the matrix norms on Max(E) are given by the following

formula:

‖[xij]‖n = sup{‖[u(xij)]‖ : u ∈ Ball(B(E, Y )), all operator spaces Y }. (5.2.2)

For any ε > 0, there exists some operator space Y and u ∈ Ball(B(E, Y )) such that

‖[xij]‖n < ‖u(xij)‖+ ε.
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Since Y is an operator space, then the adjoint Y ? is also an operator space. Let

u† : E → Y ? be the map defined by u†(x) = u(x†)∗ ∈ Y ?, for any x ∈ E. Note that

‖[xij]†‖n = ‖[x†ji]‖n > ‖[u†(x
†
ji)]‖n = ‖[u(xji)

∗]‖n = ‖[u(xij)]
∗‖ > ‖[xij]‖n − ε.

Thus, ‖[xij]†‖n ≥ ‖[xij]‖n, and by symmetry we know that ‖[xij]†‖n = ‖[xij]‖n.

Therefore, Max(E) is an operator ∗-space which is the largest operator ∗-space struc-

ture on E.

Proposition 5.12. For any Banach ∗-space E,

Min(E)∗ ∼= Max(E∗) and Max(E)∗ ∼= Min(E∗),

completely †-isometrically.

Proof. As operator spaces, Min(E)∗ ∼= Max(E∗) and Max(E)∗ ∼= Min(E∗). And, it

is easy to see that the corresponding maps are †-preserving.

5.2.4 The adjoint of an operator ∗-space

Let X be an operator ∗-space. The adjoint operator space X? (see e.g. [14, 1.2.25])

can be equipped with involution †. For any x, (x∗)† is defined by (x†)∗, where the

last † is the involution on X and the last ∗ is the one from the adjoint operator space.

Note that

‖(x∗)†‖ = ‖(x†)∗‖ = ‖x†‖ = ‖x‖ = ‖x∗‖.
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For the matrix norms,

‖[x∗ij]†‖ = ‖[(x∗ji)†]‖ = ‖[(x†ji)∗]‖ = ‖[x†ij]∗]‖

= ‖[x†ij]‖ = ‖[xji]‖ = ‖[x∗ij]‖.

Thus, X? becomes an operator ∗-space.

5.3 Duality of operator ∗-spaces

Lemma 5.13. Suppose that X is an operator ∗-space, then X∗ is also an operator

∗-space.

Proof. Suppose that ϕ ∈ X∗ and ϕ† is defined earlier, then

(ϕ†)†(x) = ϕ†(x†) = ϕ(x), (λϕ)†(x) = λϕ(x†) = λϕ†(x).

Besides, for any ε > 0 there exists x ∈ Ball(X) such that ‖ϕ‖ < |ϕ(x)|+ε. Moreover,

‖ϕ†‖ ≥ |ϕ†(x†)| = |ϕ(x)| > ‖ϕ‖ − ε, which implies ‖ϕ†‖ ≥ ‖ϕ‖. Analogously,

‖ϕ†‖ ≤ ‖ϕ‖.

For the matrix norms, suppose [ϕij] ∈ Mn(X∗), then we identify [ϕij]
† as [ϕ†ji] ∈

Mn(CB(X,C)) ∼= CB(X,Mn(C)). By direct calculation, we get that

([ϕij]
†)† = [ϕ†ji]

† = [ϕij], ‖[ϕij]†‖ = ‖[ϕij]‖, (5.3.3)

[ϕij]
†
n([xkl]

†
m) = ([ϕij]n([xkl]m))∗, (5.3.4)
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5.3. DUALITY OF OPERATOR ∗-SPACES

from this, it is fairly easy that X∗ is an operator ∗-space.

Corollary 5.14. Let X be an operator ∗-space, then X∗∗ is also an operator ∗-space.

Proposition 5.15. Let X be an operator ∗-space. Then (̂x†) = (x̂)†, for any x ∈ X.

Proof. For any ϕ ∈ X∗, then (̂x†)(ϕ) = ϕ(x†). Besides,

(x̂)†(ϕ) = x̂(ϕ†) = ϕ†(x) = ϕ(x†), x ∈ X.

Thus, (̂x†) = (x̂)†.

Corollary 5.16. Let X be an operator ∗-space. Then X ⊂ X∗∗ completely †-

isometrically via the canonical map iX .

Lemma 5.17. Suppose that X is an operator ∗-space and ηt → η in the weak*-

topology where ηt, η ∈ X∗∗. Then η†t → η† in weak*-topology.

Proof. Suppose that ηt → η in the weak*-topology. Then for any ϕ ∈ X∗, ηt(ϕ) →

η(ϕ) which implies that η†t (ϕ) = ηt(ϕ†) → η(ϕ†) = η†(ϕ). Thus, η†t → η† in the

weak*-topology.

Definition 5.18. An operator ∗-space Y is said to be a dual operator ∗-space if Y

is a dual operator space such that the involution on Y is weak* continuous.

Lemma 5.19. Any dual operator ∗-space is completely isometrically ∗-isomorphic

via a homeomorphism for the w∗-topologies, to a w∗-closed selfadjoint subspace of

B(H), for some Hilbert space H.
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Proof. Since X is a dual operator space then there exists a Hilbert space K and a

completely isometric map ρ : X → B(K) such that X is completely isometrically

isomorphic to ρ(X), which is w∗-closed. Let H = K(2) and

θ(x) =

 0 ρ(x)

ρ(x†)∗ 0

 ∈ B(H).

Then θ is completely isometric †-∗-linear. Moreover, θ(X) is a w∗-closed self-adjoint

subspace of B(H).

If X and Y are two operator ∗-spaces and if u : X → Y ∗ is completely bounded,

then its (unique) w∗-continuous linear extension ũ = i∗Y ◦u∗∗ : X∗∗ → Y ∗ is completely

bounded, with ‖ũ‖cb = ‖u‖cb. Note that ũ is †-linear if u is †-linear. Moreover,

as operator spaces, CB(X, Y ∗) ∼= w∗CB(X∗∗, Y ∗) completely isometrically via the

mapping u 7→ ũ.

Proposition 5.20. Suppose X, Y are two operator ∗-spaces. Then the map θ :

CB(X, Y ∗)→ CB(X∗∗, Y ∗) defined by θ(u) = ũ is †-linear. Moreover, CB(X, Y ∗) ∼=

w∗CB(X∗∗, Y ∗) completely †-isometrically.

Proof. We only need to show the map θ is †-preserving. Indeed, for any u ∈

CB(X, Y ∗), ũ† = i∗Y ◦ (u†)∗∗. For any η ∈ X∗∗,

iY ∗ ◦ (u†)∗∗(η) = i∗Y ◦ (u∗∗)†(η) = i∗Y (u∗∗(η†)†).
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Moreover,

ũ†(η) = (i∗Y ◦ u∗∗)†(η) = (i∗Y ◦ u∗∗(η†))† = i∗Y (u∗∗(η†))† = i∗Y (u∗∗(η†)†).

Hence, θ is †-linear.

Suppose that X is an operator space and ν ∈Mn(X). Recall that ‖·‖1 : Mn(X)→

[0,∞) is given by

‖v‖1 = inf{‖α‖2‖ν̃‖‖β‖2 : ν = αν̃β},

where α ∈Mn,r, β ∈Mr,n and ν̃ ∈Mr(X) with r arbitrary and ‖ · ‖2 is the Hilbert-

Schmidt norm. From [30, Lemma 4.1.1], we know that ‖ · ‖1 is a norm on Mn(X).

Let Tn(X) denote the corresponding normed space.

Lemma 5.21. Suppose that X is an operator ∗-space and n ∈ N . Then

Tn(X)∗ ∼= Mn(X∗), †-isometrically,

Mn(X)∗ ∼= Tn(X∗), †-isometrically,

through the scalar pairing in [30].

Proof. Suppose that ϕ ∈ Ball(Mn(X))∗, then by [30, Lemma 2.3.3] there exist a

mapping ψ ∈Mn(X∗) with ‖ψ‖cb < 1 and vectors in ξ, η ∈ Cn2

such that

ϕ([xij]) = 〈ψn([xij])η, ξ〉
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=
∑

ψkl(xij)ηjlξ̄ik

=
∑
i,j

[
∑
k,l

ξ̄ikψklηjl](xij)

= 〈αψβ, [xij]〉,

where αik = ξ̄ik and βlj = ηjl.

Moreover,

ϕ†([xij]) = ϕ([x†ji]) = 〈ψn([x†ji])η, ξ〉 = 〈ψn([x†ji])ξ, η〉 = 〈β∗ψ†α∗, [xij]〉.

Thus, the map is †-linear. Others follow from Lemma 4.1.1 in [30].

Corollary 5.22. If X is an operator ∗-space, then Mn(X)∗∗ ∼= Mn(X∗∗) completely

†-isometrically for all n ∈ N .

Proof. By Lemma 5.21, we know that for any n ∈ N, Mn(X∗∗) ∼= Tn(X∗)∗ ∼=

(Mn(X)∗)∗, †-isometrically. Similarly, we have that

Mm(Mn(X∗∗)) ∼= Mmn(X∗∗) ∼= (Tnm(X∗))∗ ∼= (Mmn(X)∗)∗ ∼= (Mm(Mn(X))∗∗),

†-isometrically.
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5.4 Operator ∗-space tensor products

Let X and Y be operator ∗-spaces, and let X ⊗ Y denote their algebraic tensor

product. Recall that any u =
∑n

k=1 xk ⊗ yk ∈ X ⊗ Y can be associated with a map

ũ : Y ∗ → X defined by ũ(ψ) =
∑n

k=1 xkψ(yk), for any ψ ∈ Y ∗. If u =
∑n

k=1 xk⊗ψk ∈

X⊗Y ∗ then u can be associated with a map û : Y → X defined by û(y) =
∑

k ψ(y)xk,

for y ∈ Y. Both ũ and û are completely bounded. Moreover, the map u → ũ is †-

linear. Indeed, if u =
∑n

k=1 xk ⊗ yk, then u† =
∑n

k=1 x
†
k ⊗ y

†
k. For any ψ ∈ Y ∗, we

have

(ũ)†(ψ) = (ũ(ψ†))† = (
∑
k

ψ†(yk)xk)
† =

∑
k

ψ(y†k)x
†
k = ũ†(ψ).

Similarly, we know that the map u → û is †-linear. The minimal tensor product

X ⊗min Y may be defined to be (the completion of) X ⊗ Y in the matrix norms

inherited from the operator ∗-space structure on CB(Y ∗, X). That is,

X ⊗min Y ↪→ CB(Y ∗, X) completely †-isometrically.

Explicitly, if [wrs] ∈Mn(X ⊗min Y ), then norm of [wrs] equals

sup {‖[(ϕkl ⊗ ψij)(wrs)]‖ : [ϕkl] ∈ Ball(Mm(X∗)), [ψij] ∈ Ball(Ms(Y
∗)),m, s ∈ N} .

For any ε > 0, there exists some m, s ∈ N such that

‖[wrs]‖Mn(X⊗minY ) < ‖[(ϕkl ⊗ ψij)(wrs)]‖+ ε = ‖[(ϕ†lk ⊗ ψ
†
ji)(w

†
sr)]‖+ ε.
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This implies ‖[wrs]‖Mn(X⊗minY ) ≤ ‖[wrs]†‖Mn(X⊗minY ). Analogously, we know that

‖[wrs]‖Mn(X⊗minY ) ≥ ‖[wrs]†‖Mn(X⊗minY ). Therefore, X ⊗min Y is an operator ∗-space.

Proposition 5.23. For any operator ∗-spaces X, Y, we have

X ⊗min Y
∗ ↪→ CB(Y,X) completely †-isometrically,

via the map ∧ : u→ û.

Proof. Note that the map ∧ : u → û is †-linear. Then the result follows from the

fact that as operator spaces, X ⊗min Y
∗ ↪→ CB(Y,X) completely isometrically.

Proposition 5.24. For any operator ∗-space X,

Mn ⊗min X ∼= Mn(X) completely †-isometrically.

Proof. This is apparent from the following:

Mn ⊗min X ↪→ w∗CB(X∗,Mn) ∼= Mn(X),

where w∗CB(X∗,Mn) ∼= Mn(X) means that w∗CB(X∗,Mn) is completely †-isometrically

isomorphic to Mn(X).

Corollary 5.25. Let X be an operator ∗-space. For any set I

KI ⊗minX ∼= KI(X) completely †-isometrically.
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Proof. As operator spaces,

KI ⊗minX = Mfin
I ⊗minX ∼= Mfin

I (X) = KI(X),

via †-preserving maps.

Proposition 5.26. Let E and F be Banach ∗-spaces, and let X be an operator

∗-space.

(1) Min(E)⊗min X = E⊗̌X as Banach ∗-spaces.

(2) Min(E)⊗min Min(F ) = Min(E⊗̌F ) as operator ∗-spaces.

(3) For any compact space Ω we have

C(Ω)⊗min X ∼= C(Ω, X) completely † -isometrically.

Proof. Note that the map u : Min(E) ⊗min X → E⊗̌X is †-linear. Also, as Banach

spaces, Min(E)⊗min X = E⊗̌X.

As operator spaces, Min(E)⊗min Min(F ) ∼= Min(E⊗̌F ) completely isometrically.

And, both Min(E) ⊗min Min(F ) and Min(E⊗̌F ) are operator ∗-spaces, then (2)

follows from (1).

As operator spaces, C(Ω)⊗min X ∼= C(Ω, X) completely isometrically. Since the

canonical map preserves the involution, then (3) follows directly.
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CHAPTER 6

Involutive operator algebras

6.1 Involutions on operator algerbras

By an involution we mean at least a bijection τ : A → A which is of period 2:

τ 2(a) = a for a ∈ A. A C∗-algebra B may have two kinds of extra involution: a period

2 conjugate linear ∗-antiautomorphism or a period 2 linear ∗-antiautomorphism. The

former is just the usual involution ∗ composed with a period 2 ∗-automorphism

of B. The latter is essentially the same as a ‘real structure’, that is if θ is the

antiautomorphism then B is just the complexification of a real C∗-algebra D = {x ∈

B : x = x̄}, where x̄ = θ(x)∗. We may characterize x 7→ x̄ on B very simply as the
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6.1. INVOLUTIONS ON OPERATOR ALGERBRAS

map a+ ib 7→ a− ib for a, b ∈ D.

By way of contrast, there are four distinct natural kinds of ‘completely isometric

involution’ on a general operator algebra A. Namely, period 2 bijections which are

(1) conjugate linear antiautomorphisms † : A→ A satisfying ‖[a†ji]‖ = ‖[aij]‖,

(2) linear antiautomorphisms θ : A→ A satisfying ‖[aθji]‖ = ‖[aij]‖,

(3) conjugate linear automorphisms – : A→ A satisfying ‖[aij]‖ = ‖[aij]‖,

(4) linear automorphisms π : A→ A satisfying ‖[aπij]‖ = ‖[aij]‖.

Here [aij] is a generic element in Mn(A), the n×n matrices with entries in A, for all

n ∈ N. Class (1) is just the operator ∗-algebras mentioned earlier. Here we will call

the algebras in class (2) operator algebras with linear involution θ, and write θ(a) as

aθ. We will not discuss (4) here, these are well studied and are only mentioned here

because most of the results apply to all four classes. We will just say that this class

is in bijective correspondence with the unital completely symmetric projections on A

in the sense of [16], this correspondence is essentially Corollary 4.2 there. Similarly,

for the same reasons we will not discuss class (3) here. By [58, Theorem 3.3], class

(3) is essentially the same as ‘real operator algebra structure’, that is A is just the

complexification of a real operator algebra D = {x ∈ B : x = x̄}, and we may

rewrite x̄ = a − ib if x = a + ib for a, b ∈ D. We also remark that if A is unital

or approximately unital then one can easily show using the Banach-Stone theorem

for operator algebras (see e.g. [14, Theorem 4.5.13]) that the matrix norm equality
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in (3) and (4) (resp. (1) and (2)) force the ‘involution’ to be multiplicative (resp.

anti-multiplicative).

If A is a C∗-algebra then classes (1) and (4) are essentially the same after applying

the C∗-algebra involution ∗. (Note that in this case the matrix norm equality in (1)

or (4) follows from the same equality for 1×1 matrices, that is that the involution is

isometric. Indeed it is well known that ∗-isomorphisms of C∗-algebras are completely

isometric.) Similarly classes (2) and (3) essentially coincide if A is a C∗-algebra.

We will mostly focus on class (1) for specificity. In fact most of the results in the

following apply to all four classes, however it would be too tedious to state several

cases of each result. For example to get from case (1) to case (2) of results below

one replaces a† by aθ, and †-selfadjoint elements, that is elements satisfying a† = a,

by elements with aθ = a. We remark that if A is an operator algebra with linear

involution θ, then {a ∈ A : a = aθ} is a Jordan operator algebra in the sense of

[26]. (We remark that these ‘θ-selfadjoint elements’ need not generate A, unlike for

involutions of type (1).) Most of our discussion of class (2) involves finding interesting

examples of such involutions. Indeed although classes (1)–(4) have similar theory,

the examples of algebras in these classes are quite different in general.

Because of the ubiquity of the asterisk symbol in our area of study, we usually

write the involution on an operator ∗-algebra as †, and refer to, for example, †-

selfadjoint elements or subalgebras, and †-homomorphisms (the natural morphisms

for ∗-algebras). By a symmetry we mean either a selfadjoint unitary operator, or a

period 2 ∗-automorphism of a C∗-algebra, depending on the context.
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6.2 Meyer’s theorem and unitization

Definition 6.1. An operator algebra A is an operator ∗-algebra when it comes

equipped with a conjugate linear involution † : A→ A such that

(i) (a†)† = a;

(ii) (ab)† = b†a†;

(iii) The involution is completely isometric, thus

‖[aij]†‖ = ‖[aij]‖ for all n ∈ N and [aij] ∈Mn(A),

where [aij]
† = [a†ji] for all i, j ∈ {1, · · · , n}.

Example 6.2. U(X) defined in Example 5.4 is an operator ∗-algebra.

Example 6.3. Let A(D) be the risk algebra on the unit disk. The involution on the

disk algebra A(D) is defined by f †(z) = f(z), for any f ∈ A(D). Then A(D) becomes

an operator ∗-algebra.

Example 6.4 (Reduced C*-algebras[12, Examples 1.9]). Let d ∈ N and G = Zd .

Let the operator algebra Chol
r (Zd) be the smallest closed subalgebra of the reduced

group C∗-algebra, C∗r (Zd) such that

λg ∈ Chol
r (Zd), for all g ∈ (N∪{0})d.
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Define the selfadjoint unitary operator

W : `2(Zd)→ `2(Zd), W (δ(n1,··· ,nd)) = δ(−n1,··· ,−nd).

Then it is easy to see that

Wλ∗gW = λg, for all g ∈ (N∪{0})d,

where the ∗-refer to the involution in C∗r (Zd).

We thus have a well-defined completely isometric involution

† : Chol
r (Zd)→ Chol

r (Zd), x† = Wx∗W,

and it follows that Chol
r (Zd) is an operator ∗-algebra.

Since C∗r (Zd) is isomorphic as a C∗-algebra to the continuous functions on the

d-torus, via the isomorphism λ(n1, · · · , nd)→ zn1
1 · · · · · znd

n . Under this isomorphism,

Chol
r (Zd) corresponds to the continuous functions f : Dd → C on the closed poly-disc

that are holomorphic on the open poly-disk (Do)d. Just as mentioned above, the

involution is given by f †(z) = f(z̄).

The following result, the involutive variant of Meyer’s theorem [14, Corollary

2.1.15], is useful in treating involutions on operator algebras with no identity or

approximate identity.

Lemma 6.5. Let A ⊂ B(H) be a nonunital operator algebra. Suppose that there is
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an involution † on A making A an operator ∗-algebra. Then A+C IH is an operator

∗-algebra with involution defined by (a+ λIH)† = a† + λIH .

Proof. Define π : A→ A∗ ⊂ B(H) by π(a) = (a†)∗ where A∗ is the adjoint of A, an

operator algebra. It’s easy to see that π is a completely isometric isomorphism. By

Meyer’s Theorem, there is a unital completely isometric isomorphism π0 extending

π from A+ C IH to A∗ + C IH by letting π0(a+ λIH) = π(a) + λIH . Notice that

π0([aij + λijIH ]) = π([aij]) + [λijIH ] = ([aij]
†)∗ + [λij]IH = ([aij + λijIH ]†)∗

Since π0 is completely isometric, then

‖[aij + λijIH ]‖ = ‖([aij + λijIH ]†)∗‖ = ‖[aij + λijIH ]†‖.

So that A+ C IH is an operator ∗-algebra.

Proposition 6.6. Let A and B be operator subalgebras of B(H) and B(K) respec-

tively, with IH /∈ A. Also suppose that there exists involutions on A and B making

them operator ∗-algebras correspondingly. Let π : A→ B be a completely contractive

(resp. completely isometric) †-homomorphism, then there is a unital completely con-

tractive (resp. completely isometric) †-homomorphism extending π : from A + C IH

to B + C IK (for the completely isometric case we also need Ik /∈ B).

Proof. By Lemma 6.5, we know that both A + C IH and B + C IK are operator ∗-

algebras. Let π0(a + λIH) = π(a) + λIk, a ∈ A, λ ∈ C . We only need to show that

π0 is †-preserving. Indeed if a and λ are fixed, then
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π0((a+ λIH)†) = π0(a† + λIH) = π(a†) + λ̄IK = (π(a) + λIK)† = π0(a+ λIH)†.

Remark 6.7. One may replace completely contractive (resp. completely isometric)

by contractive (resp. isometric), then similar results could be obtained.

Corollary 6.8. The unitization A1 of an operator ∗-algebra is unique up to com-

pletely isometric †-isomorphism.

6.3 Universal algebras of an operator ∗-algebra

There are minimal and maximal C∗-algebras generated by an operator ∗-algebra.

Let us first look at C∗-envelope or minimal C∗-cover.

Proposition 6.9. [12, Proposition 1.16] Suppose that A is an operator ∗-algebra

with completely isometric involution † : A → A. Then there exists an order two

automorphism σ : C∗e (A)→ C∗e (A) such that σ(i(a†)) = i(a)∗.

Proof. Define the completely isometric algebra homomorphism j : A → C∗e (A) by

j(a) = i(a†)∗. Since j(A) ⊆ C∗e (A) generates C∗e (A) as a C∗-algebra, there exists a

∗-homomorphism σ : C∗e (A)→ C∗e (A) such that (σ ◦ j)(a) = i(a). But then we have

that

σ(i(a†)) = σ(j(a))∗ = i(a)∗ = i(a∗),

proving σ(i(a†)) = i(a)∗. Moreover, σ has order 2 since

σ2(j(a)) = (σ ◦ i)(a) = i(a†)∗ = j(a),
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and since j(A) ⊆ C∗e (A) generates C∗e (A) as a C∗-algebra.

Now we turn to the maximal C∗-algebra case.

Consider ρ, the direct sum of ‘all’ completely contractive representations π : A→

B(Hπ). There are standard ways to avoid the set theoretic issues with ’all’ here-see

[14, Proposition 2.4.2]. Let C∗max(A) be the C∗-subalgebra of B(⊕πHπ) generated by

ρ(A), then we have the following theorem:

Theorem 6.10. Let A be an operator ∗-algebra. Then there exists an order two

∗-automorphism σ : C∗max(A)→ C∗max(A) such that

σ(ρ(A)) = ρ(A)∗ and ρ(a)∗ = σ(ρ(a†)).

Proof. Let π be the completely isometrically isomorphism π : A→ C∗max(A) defined

by π(a) = ρ(a†)∗. By the universal property of C∗max(A), there exists a unique ∗-

homomorphism σ : C∗max(A) → C∗max(A) such that σ(ρ(a)) = π(a) = ρ(a†)∗ for any

a ∈ A. Hence, we have the following commutative diagram:

A

C∗max(A) C∗max(A)

π
ρ

σ

Moreover, σ has order 2 since

σ2(ρ(A)) = σ(ρ(a†)∗) = σ(ρ(a†))∗ = ρ(a),

and since ρ(A) ⊆ C∗max(A) generates C∗max(A) as a C∗-algebra.
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Theorem 6.11. If A is an operator ∗-algebra, then A∗∗ is also an operator ∗-algebra.

Indeed, if (ξs) ∈ A∗∗ converges to ξ ∈ A∗∗ in weak∗-topology, then ξ†s
w∗−→ ξ†.

Proof. There are two proofs given here.

(1) Suppose σ is the unique ∗-automorphism with order 2 in Theorem 6.10. Let

θ : A → A∗ be the canonical map with θ(a) = (a†)∗. Hence, the following

diagram commutes:

A A∗

C∗max(A) C∗max(A)

θ

ρ ρ∗

σ

here ρ is as above. Denote C = C∗max(A) and let σ̃ be the w∗-continuous

extension of σ on C∗∗, then σ̃ is a completely isometric isomorphism. Let

η† = σ̃(η)∗ for any η ∈ A∗∗, then ‖η†‖ = ‖η‖. Suppose that (xt) ∈ A and

xt → η in w∗-topology, then η† = w∗ − lim σ̃(xt)
∗ ∈ Aw

∗ ∼= A∗∗. Therefore, A∗∗

is an operator ∗-algebra.

If (ξs) ∈ A∗∗ converges to ξ ∈ A∗∗ in weak∗-topology, then σ̃(ξs)
∗ w∗−→ σ̃(ξ)∗

which means that a†s → ξ† in weak*-topology.

(2) From [14, Corollary 2.5.6], we know that A∗∗ is an operator algebra. Moreover,

A∗∗ is an operator ∗-space from Corollary 5.14. We only need to show that A∗∗

is a ∗-algebra. For any ν, η ∈ A∗∗ and ϕ ∈ A∗, we let (aα) and (bβ) be two nets

in A converges to η and ν in w∗-topology of A∗∗. Then

〈(ην)†, ϕ〉 = 〈ην, ϕ†〉 = lim
α

lim
β
〈ϕ†, aαbβ〉
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= lim
α

lim
β
〈ϕ, (aαbβ)†〉 = lim

α
lim
β
〈ϕ, b†βa

†
α〉

= 〈ν†η†, ϕ〉.

Thus, (ην)† = ν†η†.

Corollary 6.12. For any operator ∗-algebra A, then for any n ≥ 1

Mn(A)∗∗ ∼= Mn(A∗∗),

as operator ∗-algebras.

Definition 6.13. If the C∗-cover (B, j) generated by an operator ∗-algebra A is

involutive and j(a)† = j(a†), for any a ∈ A, we say that the involution on B is

compatible with A.

Remark 6.14. The unwary reader might have expected every C∗-cover (C∗(A), j)

generated by an operator ∗-algebra A has an involution compatible with the one on

A. However, that is false.

Example 6.15. The Toeplitz C∗-algebra is a well known C∗-cover of the disk algebra

A(D). We show that it is not compatible with the involution f(z̄) on A(D). Let S be

the unilateral shift on `2(N0) and oa(S) be the operator algebra generated by S. Then

oa(S) is an operator ∗-algebra with trivial involution induced by S† = S. Suppose

that the Toeplitz C∗-algebra C∗(S) has an involution compatible with oa(S). Then

there exists an order-2 ∗-isomorphism C∗(S) such that σ(S†) = S∗. Moreover, we

have

I = σ(I) = σ(S∗S) = σ(S)∗σ(S) = SS∗ 6= I,
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which is a contradiction.

Theorem 6.16. Suppose that A is an operator ∗-algebra (possibly not approximately

unital) and B is a C∗-cover generated by (A, j) where j is a completely isometric

homomorphism. Then B has an involution compatible with A if and only if there

exists an order 2 ∗-automorphism σ : B → B such that for any a ∈ A, σ(j(a†)) =

j(a)∗.

Proof. (⇒) If B has an involution compatible with A, then j(a)† = j(a†), for all

a ∈ A. Define σ : B → B by σ(b) = (b∗)† for any b ∈ B. Then it is easy to see that

σ is an order 2 ∗-automorphism.

(⇐) The involution on B is defined by b† = σ(b)∗ for any b ∈ B. Then B is a

C∗-algebra with involution which is compatible with A.

Example 6.17. Let A be a uniform algebra, then A ⊂ C∗e (A) = C(∂A), where

∂A is Shilov boundary. Moreover, if A has involution, then there exists order-2

homeomorphism σ : ∂A → ∂A such that f †(ω) = f(τ(ω)) and f ◦ τ ∈ A for any

f = a ∈ A.

6.4 Real positivity and the F-transform

Because of the uniqueness of unitization, for an operator algebra A we can define

unambiguously FA = {a ∈ A : ‖1 − a‖ ≤ 1}. Then 1
2
FA = {a ∈ A : ‖1 − 2a‖ ≤

1} ⊂ Ball(A). Similarly, rA, the real positive or accretive elements in A, is {a ∈ A :

a+ a∗ ≥ 0}, where the adjoint a∗ is taken in any C∗-cover of A. We write oa(x) for
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the operator algebra generated by an operator x. We write x 4 y if y− x ∈ rA. The

ensuing ‘order theory’ in the involutive case is largely similar to the operator algebra

case.

Theorem 6.18. Let A be an operator ∗-algebra which generates a C∗-algebra B

with compatible involution †, and let UA = {a ∈ A : ‖a‖ < 1}. The following are

equivalent:

(1) A is approximately unital.

(2) For any †-selfadjoint positive b ∈ UB there exists †-selfadjoint a ∈ cA with

b 4 a.

(2’) Same as (2), but also a ∈ 1
2
FA and ‘nearly positive’ in the sense of the intro-

duction to [22]: we can make it as close in norm as we like to an actual positive

element.

(3) For any pair of †-selfadjoint elements x, y ∈ UA there exist nearly positive

†-selfadjoint a ∈ 1
2
FA with x 4 a and y 4 a.

(4) For any †-selfadjoint b ∈ UA there exist nearly positive †-selfadjoint a ∈ 1
2
FA

with −a 4 b 4 a.

(5) For any †-selfadjoint b ∈ UA there exist †-selfadjoint x, y ∈ 1
2
FA with b = x−y.

(6) rA is a generating cone, indeed any †-selfadjoint element in A is a difference

of two †-selfadjoint elements in rA.

(7) Same as (6) but with rA replaced by FA.
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Proof. (1) ⇒ (2’) By the proof in [22, Theorem 2.1] for any †-selfadjoint positive

b ∈ UB there exists c ∈ 1
2
FA and nearly positive with b ≤ Re c. Hence it is easy to

see that b ≤ Re (c†) and b ≤ Re a where a = (c+ c†)/2.

(2’) ⇒ (3) By C∗-algebra theory there exists positive b ∈ UB with Rex and

Re y both ≤ b. It is easy to see that b† = σ(b) ≥ 0. Then Rex ≤ b†, so that

Rex ≤ (b+ b†)/2. Similarly for y. Then apply (2’) to obtain a from (b+ b†)/2.

The remaining implications follow the proof in [22, Theorem 2.1] or Theorem 4.44

but using tricks similar to the ones we have used so far in this proof.

Definition 6.19. If T ∈ B(H) for some Hilbert space H and −1 6∈ Sp(T ), then

the Cayley transform is defined by κ(T ) = (T − I)(T + I)−1. The F-transform is

F(T ) = 1
2
(1 + κ(T )) = T (1 + T )−1.

Proposition 6.20. Let A be an operator ∗-algebra and σ be the associated ∗-automorphism

on a (compatible) C∗-cover. If x ∈ rA, then x† is also real positive and κ(x†) = κ(x)∗.

Proof. If x is real positive, then x + x∗ ≥ 0 which is equivalent to say that σ(x) +

σ(x)∗ ≥ 0. This implies that x† + (x†)∗ = σ(x)∗ + σ(x) ≥ 0.

Also, σ(κ(x†)) = σ((x† − 1)(x† + 1)−1) = (x∗ − 1)(x∗ + 1)−1 = κ(x)∗. So κ(x†) =

κ(x)†.

Lemma 6.21. [22, Lemma 2.5] For any operator algebra A, the F-transform maps

rA bijectively onto the set of elements of 1
2
FA of norm < 1. Thus F(rA) = UA ∩1

2
FA.

Proof. First assume that A is unital. By Definition 6.19, F(rA) is contained in the
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set of elements of 1
2
FA whose spectrum does not contain 1. The inverse of the F-

transform on this domain is T (I − T )−1. To see for example that T (I − T )−1 ∈ rA

if T ∈ 1
2
FA note that 2 Re(T (I − T )−1) equals

(I − T ∗)−1(T ∗(I − T ) + (I − T ∗)T )(I − T )−1 = (I − T ∗)(T + T ∗ − 2T ∗T )(I − T )−1,

which is positive since T ∗T dominated by Re(T ) if T ∈ 1
2
FA. Hence for any (possible

nonunital) operator algebra A the F-transform maps r1
A bijective onto the set of 1

2
FA1

whose spectrum does not contain 1. However, this equals the set of elements of 1
2
FA1

of norm < 1. Indeed, if ‖F(x)‖ = 1 then ‖1
2
(1 + κ(x))‖ = 1, and so 1 − κ(x) is not

invertible. Hence 1 ∈ SpA1(κ(x)) and 1 ∈ SpA1(F(x)). Since F(x) ∈ A iff x ∈ A, we

are done.

Let A be an operator ∗-algebra and S a subset of A, we denote H(S) = {s ∈ S :

s = s†}.

Corollary 6.22. For any operator algebra A, the F-transform maps H(rA) bijectively

onto the set of elements of 1
2
H(FA) of norm < 1.

Thus in some sense we can identify rA with the strict contraction in 1
2
FA, this for

example induces an order on this set of strict contractions.

We recall that the positive part of the open unit ball of a C∗-algebra is a directed

set, and indeed is a net which is a positive approximate identity for C∗-algebra. The

following generalized this to operator ∗-algebras.

Proposition 6.23. If A is an approximately unital operator ∗-algebra, then the
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seldadjoint part of UA ∩1
2
FA is a directed set in the � ordering and with this ordering

the seldadjoint part of UA ∩1
2
FA is an increasing cai for A.

Proof. By Corollary 6.22, we know F(H(rA)) = H(UA ∩1
2
FA). . By Theorem 6.18,

H(UA ∩1
2
FA) is directed by � . So we may view H(UA ∩1

2
FA) as a net (et). Given

x ∈ 1
2
H(FA), choose n such that ‖Re(x1/n)x−x‖ < ε (note that Re(x1/n) is a cai for

C∗(oa(x))). If z ∈ H(UA ∩1
2
FA) with x1/n � z then

x∗|1− z|2x ≤ x∗(1− Re(z))x ≤ x∗(1− Re(x1/n))x ≤ ε.

Thus etx→ x for all x ∈ H(1
2
FA). Also, since H(1

2
FA) generates the open unit ball,

then we are done.

Corollary 6.24. Let A be an approximately unital operator ∗-algebra, and B a

compatible C∗-algebra generated by A. If b ∈ B+ with ‖b‖ < 1 then there is an

increasing cai for A in H(1
2
FA), every term of which dominates b (where ’incrasing’

and ’dominates’ are in the � ordering).

Proof. Since H(UA ∩1
2
FA) is a directed set, {a ∈ H(UA ∩1

2
FA) : b � a} is a subnet

of this increasing cai in the last result.

6.5 Involutive ideals

An involutive ideal or †-ideal in an operator algebra with involution † is an ideal J

with J† ⊂ J .
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Proposition 6.25. Let A be an operator ∗-algebra. Suppose J is a closed †-ideal,

then J and A/J are operator ∗-algebras.

Proof. This follows from the matching fact for operator algebras [14, Proposition

2.3.4], and the computation

‖[a†ji + J ]‖ ≤ ‖[a†ji + x†ji]‖ ≤ ‖[aij + xij]‖, xij ∈ J,

so that ‖[a†ji + J ]‖ ≤ ‖[aij + J ]‖ for aij ∈ A. Similarly, we have ‖[aij + J ]‖ ≤

‖[a†ji + J ]‖.

Corollary 6.26 (Interpolation between operator ∗-algebras). Let (A0, A1) be a com-

patible couple of operator ∗-algebra, then Aθ = [A0, A1] is an operator ∗-algebra for

any θ ∈ [0, 1].

Proof. By Example 5.11, we know that F(A0, A1) is an operator ∗-space. Indeed, it

is an operator ∗-algebra with the involution †.

For any 0 ≤ θ ≤ 1, let F θ(A0, A1) be the two-sided closed ideal of all f ∈ F

for which f(θ) = 0. This is †-selfadjoint. The interpolation space Aθ = [A0, A1]θ

is the subspace of A0 + A1 formed by all x = f(θ) for some f ∈ F . As operator

spaces, the interpolation space Aθ ∼= F(A0, A1)/F θ(A0, A1) through the map π :

f 7→ f(θ). It is easy to see that π is †-linear. By Proposition 6.25, the quotient

Aθ ∼= F(A0, A1)/F θ(A0, A1) is an operator ∗-algebra.
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6.6 Contractive approximate identities

Lemma 6.27. Let A be an operator ∗-algebra. Then the following are equivalent:

(i) A has a cai.

(ii) A has a †-selfadjoint cai.

(iii) A has a left cai.

(iv) A has a right cai.

(v) A∗∗ has an identity of norm 1.

Proof. (i)⇒ (ii) If (et) is a cai for A, then (e†t) is also a cai for A. Let ft = (et+e
†
t)/2,

then (ft) is a †-selfadjoint cai for A.

(iii) ⇒ (iv) If (et) is a left cai for A, then (e†t) is a right cai. Analogously, it is

easy to see that (iv) ⇒ (iii.)

(iv) ⇒ (v) Suppose that e is the limit of left cai (resp. right cai), then e (resp.

right identity) of A∗∗. So e = ef = f. which implies that e is an identity for A with

norm 1.

That (ii) ⇒ (i), and (i) ⇒ (iii), are obvious. That (v) ⇒ (i) follows from Propo-

sition 2.5.8 in [14].

Corollary 6.28. If A is an operator ∗-algebra with a countable cai (fn), then A has

a countable †-selfadjoint cai in 1
2
FA.
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Proof. By [20, Theorem 1.1], A has a cai (et) in 1
2
FA. Denote e′t =

et+e
†
t

2
, then (e′t) is

also a cai in 1
2
FA. Choosing tn with ‖fne′tn − fn‖+ ‖e′tnfn − fn‖ < 2−n, it is easy to

see that (e′tn) is a countable †-selfadjoint cai in 1
2
FA.

Corollary 6.29. If J is a closed two-sided †-ideal in an operator ∗-algebra A and if

J has a cai, then J has a †-selfadjoint cai (et) with ‖1− 2et‖ ≤ 1 for all t, which is

also quasicentral in A.

Proof. By the proof of Corollary 6.28, we know that J has a †-selfadjoint cai, denoted

(et), in 1
2
FA. The weak* limit q of (et) is a central projection in A∗∗, and so eta−aet →

0 weakly for all a ∈ A. A routine argument using Mazur’s theorem shows that convex

combination of the et comprise the desired cai, and they will still have the property

of being †-selfadjoint and in the convex set 1
2
FA.

6.7 Cohen factorization for operator ∗-algebras

The Cohen factorization theorem is a crucial tool for Banach algebras, operator

algebras and their modules. In this section we will give a variant that works for

operator ∗-algebras and their modules.

Recall that if X is a Banach space and A is a Banach algebra then X is called

a Banach A-module if there is a module action A × X → X which is a contractive

linear map. If A has a bounded approximate identity (et) then we say that X is

nondegenerate if etx→ x for x ∈ X. A Banach A-bimodule is both a left and a right

Banach A-module such that a(xb) = (ax)b.
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The following is an operator ∗-algebra version of the Cohen factorization theorem:

Theorem 6.30. If A is an approximately unital operator ∗-algebra, and if X is a

nondegenerate Banach A-module(resp. A-bimodule), if b ∈ X then there exists an

element b0 ∈ X and a †-selfadjoint a ∈ FA with b = ab0 (resp. b = ab0a). Moreover

if ‖b‖ < 1 then b0 and a may be chosen of norm < 1.

Proof. We adopt the idea in the proof of Cohen factorization Theorem(see, e.g.[53,

Theorem 4.1]). Suppose that b ∈ X with ‖b‖ < 1. Given any ε > 0, let a0 = 1.

Choose †-selfadjoint f1 ∈ 1
2
FA from the cai such that

‖ba−1
0 (1− f1)‖+ ‖(1− f1)a−1

0 b‖ < 2−2ε.

Let a1 = 2−1f1+2−1, then a1 ∈ FA1 . By Neumann lemma, a1 is invertible in oa∗(1, a1),

and has inverse in A1 with ‖a−1
1 ‖ ≤ 2. Similarly, choose †-selfadjoint f2 ∈ 1

2
FA such

that ‖ba−1
1 (1−f2)‖+‖(1−f2)a−1

1 b‖ < 2−4ε. By induction, let an =
∑n

k=1 2−kfk+2−n,

then We have

‖1− an‖ = ‖
n∑
k=1

2−k(1− fk)‖ ≤
n∑
k=1

2−k = 1− 2−n.

By the Neumann lemma an is invertible in oa∗(1, an), and has inverse in A1 with

‖a−1
n ‖ ≤ 2n. Choose †-selfadjoint fn+1 ∈ 1

2
FA such that

‖ba−1
n (1− fn+1)‖+ ‖(1− fn+1)a−1

n b‖ < 2−2(n+1)ε.

Note that a−1
n+1 − a−1

n = a−1
n (an − an+1)a−1

n+1 = 2−n−1a−1
n (1 − fn+1)a−1

n+1 whereas
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2−n−1a−1
n+1(1 − fn+1)a−1

n = a−1
n+1(an − an+1)a−1

n = a−1
n+1 − a−1

n . Set xn = a−1
n b (resp.

xn = a−1
n ba−1

n ). Now we just focus on the bimodule case, the left module case is

similar but easier.

xn+1 − xn = a−1
n+1ba

−1
n+1 − a−1

n ba−1
n = a−1

n+1b(a
−1
n+1 − a−1

n ) + (a−1
n+1 − a−1

n )ba−1
n

= 2−n−1a−1
n+1ba

−1
n (1− fn+1)a−1

n+1 + 2−n−1a−1
n+1(1− fn+1)a−1

n ba−1
n .

‖xn+1 − xn‖ is dominated by

2−n−1(‖a−1
n+1‖2‖ba−1

n (1− fn+1)a−1
n+1]‖+ ‖a−1

n+1‖‖a−1
n ‖‖(1− fn+1)a−1

n b‖‖

≤ 2−n−1(‖a−1
n+1‖2 + ‖a−1

n+1‖‖a−1
n ‖)2−2(n+1)ε

≤ 2−3(n+1)(22(n+1) + 22n+1)ε < 2−nε.

Therefore, {xn} is a Cauchy sequence in X. Let b0 = limn xn and a =
∑+∞

k=1 2−kfk,

which is †-selfadjoint. Then a ∈ 1
2
FA. Hence, b = ab0a since b = anxnan and an → a

and xn → b0. Also,

‖xn − b‖ ≤
n∑
k=1

‖xk − xk−1‖ ≤ 2ε,

so that ‖b− b0‖ ≤ 2ε. Thus ‖b0‖ ≤ ‖b‖+ 2ε, and this is < 1 if 2ε < 1−‖b‖. Choose

some t > 1 such that ‖tb‖ < 1. By the argument above, there exists a ∈ 1
2
FA and

b0 ∈ B of norm < 1 such that tb = ab0a. Let a′ = a√
t
, then b = a′b0a

′. Then ‖a′‖ < 1

and ‖b0‖ < 1.
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6.8 Multiplier algebras

Theorem 6.31. Let A be an approximately unital operator ∗-algebra. Then the

following algebras are completely isometrically isomorphic:

(i) LM(A) = {η ∈ A∗∗ : ηA ⊂ A},

(ii) LM(π) = {T ∈ B(H) : Tπ(A) ⊂ π(A)}. where π is a nondegenerate completely

isometric representation of A on a Hilbert space H such that there exists an

order 2 ∗-automorphism σ : B(H) → B(H) satisfying σ(π(a))∗ = π(a†) for

any a ∈ A

(iii) the set of completely bounded right A-module maps CBA(A).

Proof. See [14, Theorem 2.6.3].

Definition 6.32. Let A be an approximately unital operator ∗-algebra. Then we

define

(i) RM(A) = {ξ ∈ A∗∗ : Aξ ⊂ A};

(ii) RM(π) = {S ∈ B(H) : π(A)S ⊂ π(A)}, for any nondegenerate completely

isometric representation π of A on a Hilbert space H and there exists order-2

∗-automorphism σ : B(H)→ B(H) satisfies σ(π(a))∗ = π(a†) for any a ∈ A;

(iii) the set of completely bounded leftA-module maps, which we denote as ACB(A).

Corollary 6.33. Let A be an approximately unital operator ∗-algebra. Then
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(a) η ∈ LM(A) if and only if η† ∈ RM(A), where η, η† ∈ A∗∗ and † is the involution

in A∗∗;

(b) T ∈ LM(π) if and only if T † ∈ RM(π), where T † = σ(T )∗;

(c) L ∈ CBA(A) if and only if L† ∈ ACB(A), where the map L† is defined by

L†(a) = L(a†)†.

Proof. We just give the proof of (b). Suppose that T ∈ LM(π), then

π(a)T † = σ(π(a†))∗σ(T )∗ = (σ(Tπ(a†)))∗ ∈ σ(π(A))∗ ⊂ π(A).

Thus, T † ∈ RM(π). Similarly, if T † ∈ RM(π) then T ∈ LM(π).

We consider pairs (D,µ) consisting of a unital operator ∗-algebra D and a com-

pletely isometric †-homomorphism µ : A→ D, such that Dµ(A) ⊂ µ(A), µ(A)D ⊂

µ(A). We use the phrase multiplier operator ∗-algebra of A, and write M(A), for any

pair (D,µ) which is completely †-isometrically A-isomorphic to M(A) = {x ∈ A∗∗ :

xA ⊂ A and Ax ⊂ A}. Note that by Corollary 5.16, the inclusion of A in A∗∗ is a

†-homomorphism, hence the canonical map i : A → M(A), is a †-homomorphism.

From this it follows that there is a unique involution on M(A) for which i is a

†-homomorphism.

Proposition 6.34. Suppose that A is an approximately unital operator ∗-algebra. If

(D,µ) is a left multiplier operator algebra of A, then the closed subalgebra

{d ∈ D : µ(A)d ⊂ µ(A)}
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of D, together with the map µ, is a multiplier operator ∗-algebra of A.

Proof. Let E denote the set {d ∈ D : µ(A)d ⊂ µ(A)}. By [14, Proposition 2.6.8], we

know that E is a multiplier operator algebra of A. Thus, there exists a completely

isometric surjective homomorphism θ : M(A) → E such that θ ◦ iA = µ. Now we

may define an involution on E by d† = θ(η†) if d = θ(η). Then it is easy to check

that E is an operator ∗-algebra which is completely †-isometrically A-isomorphic to

M(A).

Example 6.35. Let A = A1(D), the functions in the disk algebra vanishing at 1,

which is the norm closure of (z − 1)A(D), and let B = {f ∈ C(T) : f(1) = 0}.

By the nonunital variant of the Stone-Weierstrass theorem, B is generated as a

C∗-algebra by A. Indeed B = C∗e (A), since any closed ideal of B is the set of

functions that vanish on a closed set in the circle containing 1. Also for any z0 ∈ T,

z0 6= 1, there is a function in A that peaks at z0, if necessary by the noncommutative

Urysohn lemma for approximately unital operator algebras [15]. So the involution

on A descends from the natural involution on B. It is easy to see, for example by

examining the bidual of B∗∗ and noticing that A and B have a common cai, that

M(A) = {T ∈ M(B) : TA ⊂ A} = {g ∈ Cb(T \{1}) : g(z − 1) ∈ A(D)}. For such g,

since the negative Fourier coefficients of k = g(1− z) are zero, the negative Fourier

coefficients of g are constant, hence zero by the Riemann-Lebesgue lemma. Thus g

is in H∞, and has an analytic extension to the open disk. Viewing g as a function

h on D̄ \ {1} we have h = k/(z − 1) for some k ∈ A(D). So M(A) consists of the

bounded continuous functions on D̄ \ {1} that are analytic in the open disk, with

involution f(z̄).
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Let A,B be approximately unital operator ∗-algebras. A completely contrac-

tive †-homomorphism π : A → M(B) will be called a multiplier-nondegenerate †-

morphism, if B is a nondegenerate bimodule with respect to the natural module

action of A on B via π. This is equivalent to saying that for any cai (et) of A, we

have π(et)b→ b and bπ(et)→ b for b ∈ B.

Proposition 6.36. If A,B are approximately operator ∗-algebras, and if π : A →

M(B) is a multiplier-nondegenerate †-morphism then π extends uniquely to a unital

completely contractive †-homomorphism π̂ : M(A) → M(B). Moreover π̂ is com-

pletely isometric if and only if π is completely isometric.

Proof. Regard M(A) and M(B) as †-subalgebras of A∗∗ and B∗∗ respectively. Let

π̃ : A∗∗ → B∗∗ be the unique w∗-continuous †-homomorphism extending π. From

[14, Proposition 2.6.12], we know that π̂ = π̃(·)|M(A)
is the unique bounded homo-

morphism on M(A) extending π, and π̂(M(A)) ⊂M(B).

Let (et) be a †-selfadjoint cai for A. Then for any η ∈ M(A), ηet ∈ A and

ηet
w∗−→ η. Hence

π̂(η) = w∗ − lim
t
π(ηet).

On the other hand, (ηet)
† → η†, which implies

π̂(η†) = w∗ − lim
t
π((ηet)

†) = w∗ − lim
t
π((ηet))

†.

Since the involution on A∗∗ is w∗-continuous, we get that

π̂(η†) = π̂(η)†.
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The rest follows from [14, Proposition 2.6.12].

6.9 Dual operator ∗-algebras

Definition 6.37. Let M be a dual operator algebra and operator ∗-algebra such

that the involution on M is weak* continuous. Then M is called a dual operator

∗-algebra.

We will identify any two dual operator ∗-algebras M and N which are w∗-

homeomorphically and completely †-isometrically isometric.

Proposition 6.38. Let M be a dual (possibly nonunital) operator ∗-algebra.

(1) The w∗-closure of a ∗-subalgebra of M is a dual operator ∗-algebra.

(2) The unitization of M is also a dual operator ∗-algebra.

Proof. For (1), the weak* -closure of ∗-subalgebra of M is a dual operator algebra

by [14, Proposition 2.7.4 (4)].

For (2), suppose that M is a nonunital operator ∗-algebra and write I for the

identity in M1. Suppose that (xt)t and (λt)t are nets in M and C respectively, with

(xt + λtI) converging in w∗-topology. By Hahn-Banach theorem, it is easy to see

that (λt)t converges in C . It follows that (xt)t converges in M in the w∗-topology.

Thus, (xt +λtI)† converges in M1, in the w∗-topology. The rest follows immediately

from [14, Proposition 2.7.4 (5)].
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Proposition 6.39. Let A be an operator ∗-algebra, and I any cardinal. Then

KI(A)∗∗ ∼= MI(A
∗∗) as dual operator ∗-algebras.

Proof. The canonical embeddingA ⊂ A∗∗ induces a completely isometric †-homomorphism

θ : KI(A) → KI(A
∗∗) ⊂ MI(A

∗∗). Notice that the involutions on KI(A)∗∗, MI(A
∗∗)

are w∗-continuous and KI(A)∗∗ ∼= MI(A
∗∗) as operator algebras. Thus, KI(A)∗∗ ∼=

MI(A
∗∗) as dual operator ∗-algebras.

Lemma 6.40. If X is a weak* closed selfadjoint subspace of B(H) for a Hilbert

space H, then U(X) as defined as in Example 6.2 is a dual operator ∗-algebra.

Proof. By [14, Lemma 2.7.7(2)], we know that U(X) is a dual operator algebra. And,

it is easy to see that the involution defined in Example 6.2 is weak*-continuous. So

U(X) is an operator ∗-algebra.

The last result can be used to produce counterexamples concerning dual operator

∗-algebras, such as algebras with two distinct preduals, etc. Similarly one may use

the U(X) construction to easily obtain an example of a dual operator algebra which

is an operator ∗-algebra, but the involution is not weak*-continuous.

Recall that in [24] the maximal W ∗-algebra W ∗
max(M) was defined for unital dual

operator algebras M . If M is a dual operator algebra but is not unital we define

W ∗
max(M) to be the von Neumann subalgebra of W ∗

max(M1) generated by the copy

of M . Note that it has the desired universal property: if π : M → N is a weak*

continuous completely contractive homomorphism into a von Neumann algebra N ,

then by the normal version of Meyer’s theorem we may extend to a weak* continuous

136



6.9. DUAL OPERATOR ∗-ALGEBRAS

completely contractive unital homomorphism π1 : M1 → N . Hence by the universal

property of W ∗
max(M1), we may extend further to a normal unital ∗-homomorphism

from W ∗
max(M1) into N . Restricting to W ∗

max(M) we have shown that there exists a

normal ∗-homomorphism π̃ : W ∗
max(M)→ N extending π.

Proposition 6.41. Let B = W ∗
max(M). Then M is a dual operator ∗-algebra if and

only if there exists an order two ∗-automorphism σ : B → B such that σ(M) = M∗.

In this case the involution on M is a† = σ(a)∗.

Proof. This follows from a simple variant of the part of the proof of Theorem 6.10 that

we did prove above, where one ensures that all maps there are weak* continuous.

Proposition 6.42. For any dual operator ∗-algebra M, there is a Hilbert space H

(which may be taken to be K⊕K if M ⊂ B(K) as a dual operator algebra completely

isometrically), and a symmetry (that is, a selfadjoint unitary) u on H, and a weak*

continuous completely isometric homomorphism π : M → B(H) such that π(a)∗ =

uπ(a†)u for a ∈M .

Proof. This is a tiny modification of the proof in [12, Proposition 1.12], beginning

with a weak* continuous completely isometric homomorphism ρ : M → B(K). Define

π : M → B(K ⊕K) by π(a) =

ρ(a) 0

0 ρ(a†)∗

 and let u =

0 1

1 0

 . It is easy to

check that the π : M → B(H) is weak* continuous.

Proposition 6.43. Let M be a dual operator ∗-algebra, and let I be a w∗-closed

†-ideal. Then M/I is a dual operator ∗-algebra.

137



6.9. DUAL OPERATOR ∗-ALGEBRAS

Proof. From [14, Proposition 2.7.11], we know that M/I is a dual operator algebra.

As dual operator spaces, M/I ∼= (I⊥)∗, from which it is easy to see that the involution

on M/I is w∗-continuous.

Lemma 6.44. If A is an operator ∗-algebra then ∆(A) = A ∩ A∗ (adjoint taken in

any containing C∗-algebra; see 2.1.2 in [14]), is a C∗-algebra and ∆(A)† = ∆(A).

Proof. That ∆(A) does not depend on the particular containing C∗-algebra may be

found in e.g. 2.1.2 in [14]. as is the fact that it is spanned by its selfadjoint (with

respect to the usual involution) elements. If A is also an operator ∗-algebra then

∆(A) is invariant under †. Indeed suppose that B is a C∗-cover of A with compatible

involution coming from a ∗-automorphism σ as usual. If x = x∗ ∈ ∆(A) then σ(x)

is also selfadjoint, so is in ∆(A). This holds by linearity for any x ∈ ∆(A). So

∆(A)† = ∆(A).

If M is a dual operator algebra then ∆(M) = M ∩ M∗, is a W ∗-algebra (see

e.g. 2.1.2 in [14]). If M is a dual operator ∗-algebra then ∆(M) is a dual operator

∗-algebra, indeed it is a W ∗-algebra with an extra involution † inherited from M .

Proposition 6.45. Suppose that M is a dual operator ∗-algebra. Suppose that (pi)i∈I

is a collection of projections in M . Then (∧i∈I pi)† = ∧i∈I p†i and (∨i∈I pi)† = ∨i∈I p†i .

Proof. By the analysis above the proposition we may assume that M is a W ∗-algebra

with an extra involution †, which is weak* continuous and is of the form x† = σ(x)∗

for a weak* continuous period 2 ∗-automorphism σ of M . If pi and pj are two

projections in M , then pi ∧ pj = limn(pipj)
n = limn(pjpi)

n. By the weak∗-continuity
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of involution on M we have

(pi ∧ pj)† = lim
n

[(pjpi)
n]† = lim

n
(p†ip

†
j)
n = p†i ∧ p

†
j.

Thus for any finite subset F of I, we have (∧i∈F pi)† = ∧i∈F p†i . Note that the net

(∧i∈F pi)F indexed by the directed set of finite subsets F of I, is a decreasing net

with limit ∧i∈I pi. We have

(∧i∈I pi)† = lim
F

(∧i∈F pi)† = lim
F

(∧i∈F p†i ) = ∧i∈I p†i .

by weak* continuity of involution. The statement about suprema of projections

follows by taking orthocomplements.

6.10 Involutive M-ideals

Definition 6.46. Let X be a Banach space.

(a) A linear projection P is called an M-projection if

‖x‖ = max{‖Px‖, ‖x− px‖} for all x ∈ X.

(b) A closed subspace J ⊂ X is called an M-summand if it is the range of an

M -prorjection.

Definition 6.47. If X is an operator space, then a linear idempotent P : X → X
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is said to be a left M-projection if the map

σP (x) =

 P (x)

x− P (x)


is a complete isometry from X → C2(X). A right M-summand of X is the range

of a left M-projection on X. We say that Y is a right M-ideal if Y ⊥⊥ is a right

M-summand in X∗∗. Similarly, a linear idempotent Q : X → X is said to be right

M-projection if the map

σQ(x) =

[
P (x) x− P (x)

]

is a complete isometry from X → R2(X). Similar definitions pertain to left M-ideals

and so on.

An M -projection P on a Banach ∗-space is called a †-M-projection if P is †-

preserving. A subspace Y of a Banach ∗-space is called a †-M-summand if Y is the

range of a †-M -projection. Such range is †-closed. Indeed, if y ∈ Y, then y = P (x)

for some x ∈ X. Thus, y† = P (x)† = P (x†) ∈ Y. A subspace Y of E is called an

involutive M-ideal or a †-M-ideal in E if Y ⊥⊥ is a †-M -summand in E∗∗. If X is

an operator ∗-space, then an M -projection is called a complete †-M-projection if

the amplification Pn is a †-M -projection on Mn(X) for every n ∈ N . Similarly, we

could define complete †-M-summand, complete †-M-ideal, left †-M-projection, right

†-M-summand and right †-M-ideal.

Proposition 6.48. Let X be an operator ∗-space.
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(1) A linear idempotent †-linear map P : X → X. P is a left †-M-projection

if and only if it is a right †-M-projection, and these imply P is a complete

†-M-projection.

(2) A subspace Y of X is a complete †-M-summand if and only if it is a left

†-M-summand if and only if it is a right †-M-summand.

(3) A subspace Y of X is a complete †-M-ideal if and only if it is a left M-†-ideal

if and only if it is a right †-M-ideal.

Proof. (1) If P is a left †-M -projection, then the map

σp(x) =

 P (x)

x− P (x)


is a completely isometry from X to C2(X). Also,

‖x†‖ = ‖σP (x†)‖ =

∥∥∥∥
 P (x†)

x† − P (x†)

∥∥∥∥ =

∥∥∥∥
 P (x†) 0

x† − P (x†) 0

∥∥∥∥
=

∥∥∥∥
 P (x)†) 0

x† − P (x)† 0

∥∥∥∥ =

∥∥∥∥
P (x) x− P (x)

0 0


†∥∥∥∥

=

∥∥∥∥
P (x) x− P (x)

0 0

∥∥∥∥ =

∥∥∥∥(P (x), x− P (x)

)∥∥∥∥ = ‖x‖.

One can easily generalize this to matrices, so that P is a right †-M -projection.

Similarly, if P is is a right †-M -projection then P is a left †-M -projection. By
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Proposition 4.8.4 (1) in [14], we know that P is a complete †-M -projection.

(2) It follows from (1) and [14, Proposition 4.8.4 (2)]. Now (3) is also clear.

Theorem 6.49. Let A be an approximately unital operator ∗-algebra.

(i) The right †-M-ideals are the †-M-ideals in A, which are also the complete

†-M-ideals. These are exactly the approximately unital †-ideals in A.

(ii) The right †-M-summands are the †-M-summands in A, which are also the

complete †-M-summands. These are exactly the principal ideals Ae for a †-

selfadjoint central projection e ∈M(A).

Proof. (ii) By Proposition 6.48 (2), the right †-M -summands are exactly the com-

plete †-M -summands. Moreover, by [14, Theorem 4.8.5 (3)], the M -summands in

A are exactly the complete M -summands. If D is a †-M -summand, then D is a

complete †-M -summand and there exists a central projection e ∈ M(A) such that

D = eA. Then D⊥⊥ = eA∗∗ and e is an identity for D⊥⊥. Also, e† serves as an

identity in D⊥⊥, so that e = e†.

(i) By a routine argument, the results follow as in [14, Theorem 4.8.5 (1)] and

Proposition 6.48 (3).
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CHAPTER 7

Involutive hereditary subalgebras, ideals, and †-projections

7.1 Involutive hereditary subalgebras

Throughout this section A is an operator ∗-algebra (possibly not approximately

unital). Then A∗∗ is an operator ∗-algebra.

Definition 7.1. A projection in A∗∗ is open in A∗∗, or A-open for short, if p ∈

(pA∗∗p ∩ A)⊥⊥. That is, if and only if there is a net (xt) in A with

xt = pxt = xtp = pxtp→ p, weak∗.
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This is a derivative of Akemann’s notion of open projections for C∗-algebras. If

p is open in A∗∗ then clearly

D = pA∗∗p ∩ A = {a ∈ A : a = ap = pa = pap}

is a closed subalgebra of A, and the subalgebra D⊥⊥ of A∗∗ has identity p. By [14,

Proposition 2.5.8] D has a cai. If A is also approximately unital then a projection p

in A∗∗ is closed if p⊥ is open.

We call such a subalgebra D is a hereditary subalgebra of A (or HSA) and we say

that p is the support projection of the HSA pA∗∗p∩A. It follows from the above that

the support projection of a HSA is the weak* limit of any cai from the HSA. If p is

A-open, then p† is also A-open. Indeed, if xt = pxt = xtp = pxtp → p weak∗, then

x†t = p†x†t = x†tp
† = p†x†tp

† → p† weak∗, which means p† is also open.

If p is †-selfadjoint and open, then we say p is †-open in A∗∗. That is, if and only

if there exists a †-selfadjoint net (xt) in A with

xt = pxt = xtp = pxtp→ p weak∗.

If also A is approximately unital then we say that p⊥ = 1 − p is †-closed. If p is

†-open in A∗∗ then clearly

D = pA∗∗p ∩ A = {a ∈ A : a = ap = pa = pap}

is a closed †-subalgebra of A. We call such a †-subalgebra D is an involutive hereditary
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subalgebra or a †-hereditary subalgebra of A (or, †-HSA).

Definition 7.2. If J is a subspace of A, then we say J is an inner ideal in A if

acb ∈ J for any a, b ∈ J and c ∈ A.

Proposition 7.3. [11, Proposition 2.2] A subspace of an operator algebra is a HSA

if and only if it is an approximately unital inner ideal.

In the following statements, we often omit the proof details where are similar to

the usual operator algebras (see e.g. [14], [20], [21]).

Proposition 7.4. A subalgebra D of an operator ∗-algebra A is a HSA and D† ⊂ D

if and only if D is a †-HSA.

Proof. One direction is trivial.

Conversely, if D is a HSA, D = pA∗∗p ∩ A, for some open projection p ∈ A∗∗.

Here, p ∈ D⊥⊥ and p is an identity for D⊥⊥. If also, D is †-selfadjoint, then p† ∈ D⊥⊥

also serves as identity. By uniqueness of identity for D⊥⊥, then p = p†.

Proposition 7.5. A subspace of an operator ∗-algebra A is a †-HSA if and only if

it is an approximately unital †-selfadjoint inner ideal.

Proof. If J is a †-HSA, then J is an approximately unital †-selfadjoint inner ideal.

If J is an approximately unital †-selfadjoint inner ideal, then by Proposition 7.4

J is a HSA and †-selfadjoint which means that J is a †-HSA.

Remark. If J is an approximately unital ideal or inner ideal of operator ∗-

algebra, we cannot necessarily expect J to be †-selfadjoint. For example, let A(D)
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be the disk algebra and

Ai(D) = {f : f ∈ A(D), f(i) = 0}.

Then Ai(D) is an approximately unital ideal but obviously it is not †-selfadjoint.

The following is another characterization of †-HSA’s.

Corollary 7.6. Let A be an operator ∗-algebra and suppose that (et) is a †-selfadjoint

net in Ball(A) such that etes → es with t. Then

{x ∈ A : xet → x, etx→ x}

is a †-HSA of A. Conversely, every †-HSA of A arises in this way.

Proof. Let J = {x ∈ A : xet → x, etx→ x}. Then it is easy to see that J is an inner

ideal and J† ⊂ J. By Proposition 7.5, J is a †-HSA. Conversely, if D is a †-HSA and

(et) is a †-selfadjoint cai for D, then

D = pA∗∗p ∩ A = {x ∈ A : xet → x, etx→ x},

where p is the weak* limit of (et).

Definition 7.7. Closed right ideals J of an operator ∗-algebra A possessing a †-

selfadjoint left cai will be called r-†-ideals. Similarly, closed left ideals J of an operator

∗-algebra A possessing a †-selfadjoint right cai will be called l-†-ideals.

Note that there is a bijective correspondence between r-†-ideals and l-†-ideals,
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namely J → J†. For C∗-algebras r-ideals are precisely the closed right ideals, and

there is an obvious bijective correspondence between r-ideals and l-ideals, namely

J → J∗.

Theorem 7.8. Suppose that A is an operator ∗-algebra (possibly not approximately

unital), and p is a †-projection in A∗∗. Then the following are equivalent:

(i) p is †-open in A∗∗.

(ii) p is the left support projection of an r-†-ideal of A.

(iii) p is the right support projection of an l-†-ideal of A.

(iv) p is the support projection of a †-hereditary algebra of A.

Proof. The equivalence of (i) and (iv) is just the definition of being †-open in A∗∗.

Suppose (i), if p is †-open then p is the support projection for some †-HSA D.

Let (et) be a †-selfadjoint cai for D, then p = w∗-limt et. Let

J = {x ∈ A : etx→ x},

then J is a right ideal of A with †-selfadjoint left cai (et) and p is the left support

projection of J.

Suppose (ii), if p is the left support projection of an r-†-ideal J of A with †-

selfadjoint left cai (et), then J = pA∗∗ ∩ A. Therefore J† = A∗∗p ∩ A, which is an

l-†-ideal and p is the right support projection of J†.
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Suppose (iii), if p is the right support projection of an l-†-ideal of A with †-

selfadjoint right cai (et), then p =weak*-limt et = p†, which means that p is †-open.

Similarly we can get the equivalence between (i) and (iii).

If J is an operator ∗-algebra with an †-selfadjoint left cai (et), then we set

L(J) = {a ∈ J : aet → a}.

Corollary 7.9. A subalgebra of an operator ∗-algebra A is †-hereditary if and only

if it equals L(J) for an r-†-ideal J . Moreover the correspondence J 7→ L(J) is a

bijection from the set of r-†-ideals of A onto the set of †-HSA’s of A. The inverse of

this bijection is the map D → DA. Similar results hold for the l-†-ideals of A.

Proof. If D is a †-HSA, then by Corollary 7.6, we have

D = {x ∈ A : xet → x, etx→ x},

where (et) is a †-selfadjoint cai for D. Set J = {x ∈ A : etx → x}, then J is an

r-†-ideal with D = L(J).

Conversely, if J is an r-†-ideal and (et) is a †-selfadjoint left cai for J, then

D = {x ∈ A : xet → x, etx→ x}

is a †-HSA by Corollary 7.6, and D = L(J). The remainder is as in [11, Corollary

2.7].

148



7.1. INVOLUTIVE HEREDITARY SUBALGEBRAS

As in the operator algebra case [11, Corollary 2.8], if D is a †-hereditary subalge-

bra of an operator ∗-algebra A, and if J = DA and K = AD, then JK = J∩K = D.

Also as in the operator algebra case [11, Theorem 2.10], any †-linear functional on

a HSA D of an approximately unital operator ∗-algebra A has a unique †-linear

Hahn-Banach extension to A. This is because if ϕ is any Hahn-Banach extension to

A, then ϕ(x†) is another, so these must be equal by [11, Theorem 2.10].

Proposition 7.10. Let D be an approximately unital †-subalgebra of an approxi-

mately unital operator ∗-algebra A. The following are equivalent:

(i) D is a †-hereditary subalgebra of A.

(ii) Every completely contractive unital †-linear map from D∗∗ into a unital operator

∗-algebra B, has a unique completely contractive unital †-extension from A∗∗

into B.

(iii) Every completely contractive †-linear map T from D into a unital weak* closed

operator ∗-algebra B such that T (et) → 1B weak* for some cai (et) for D

has a unique completely contractive weakly †-extension T̃ from A into B with

T̃ (fs)→ 1B weak* for some(or all) cai (fs) for A.

Proof. We are identifying D∗∗ with D⊥⊥ ⊂ A∗∗. Let e be the identity of D∗∗. Obvi-

ously, e is †-selfadjoint.

(i)⇒(iii) The canonical weak* continuous extension T̂ : D∗∗ → B is unital †-

preserving and completely contractive, and can be extended to a weak* continuous

unital completely contractive †-map Φ(η) = T̂ (eηe) on A∗∗. This in turn restricts to
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a completely contractive T̃ : A → B with T̃ (fs) → 1B weak* for all cai (fs) for A.

For the uniqueness, suppose that Ψ is such a †-extension of T, and Ψ̃ is the unique

weak*-continuous extension of Ψ from A∗∗ to B. It follows from the last remark in

2.6.16 of [14] that

Φ(a) = Φ(eae) = T̂ (eae) = Ψ̃(eae) = Ψ̃(e)Ψ(a)Ψ̃(e) = Ψ(a), a ∈ A.

(iii)⇒(i) If (iii) holds, then the inclusion from D to D⊥⊥ extends to a unital

complete †-contraction T : A → D∗∗ ⊂ eA∗∗e. The map x → exe on A∗∗ is also

a completely contractive unital †-extension of the inclusion map D∗∗ → eD∗∗e. It

follows from the hypothesis that these maps coincide, and so eA∗∗e = D∗∗, which

implies that D is a †-HSA.

The equivalence of (i) and (ii) could be obtained similarly.

7.2 Support projections and †-HSA’s

Definition 7.11. Let A be an operator algebra (possibly not unital). Then the

left (resp. right) support projection of an element x in A is the smallest projection

p ∈ A∗∗ such that px = x (resp.xp = x), if such a projection exists (it always exists

if A has a cai, see e.g. [20]). If the left and right support projection exist, and are

equal, then we call it the support projection, written s(x).

Definition 7.12. A closed right ideal J of an operator algebra A possessing a left cai

is called r-ideal. Similarly, a closed left ideal J of an operator algebra A possessing
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a right cai will be called a l-ideal.

Lemma 7.13. [20, Lemma 2.5] For any operator algebra A, if x ∈ FA, with x 6= 0,

then the left support projection of x equals the right support projection. If A ⊂ B(H)

via a representation π, for a Hilbert space H, such that the unique weak* continuous

extension π̃ : A∗∗ → B(H) is (completely) isometric, then s(x) also may be identified

with the smallest projection p on H such that px = x (and xp = x). That is,

s(x)H = Ran(x) = ker(x)⊥. Also, s(x) is an open projection in A∗∗. If A is a

subalgebra of C∗-algebra B then s(x) is open in B∗∗ in the sense of Akemann [4].

Corollary 7.14. [20, Corollary 2.6] For any operator algebra A, if x ∈ FA with

x 6= 0, then the closure of xA is an r-ideal in A and s(x) is the support projection of

this r-ideal. We have xA = s(x)A∗∗ ∩ A. Also, xAx is the HSA matching xA, and

x ∈ xAx.

Theorem 7.15. [21, Corollary 3.4] For any operator algebra A, if x ∈ rA and x 6= 0,

then the left support projection of x equals the right support projection, and equals

the weak* limit of (a1/n). It also equals s(y), where y = x(1 + x)−1 ∈ 1
2
FA. Also,

s(x) is open in A∗∗.

Corollary 7.16. For any operator ∗-algebra A, if x ∈ rA is †-selfadjoint, then a =

F(x) = x(1 +x)−1 ∈ 1
2
FA is †-selfadjoint, and xA = aA = s(x)A∗∗∩A is an r-†-ideal

in A. Also, xAx = aAa is the †-HSA matching xA.

Proof. It is easy to see that a = x(1 + x)−1 is †-selfadjoint, and is in 1
2
FA by Lemma

6.21. Since (a1/n) is †-selfadjoint by a fact in the last proof, (a1/n) serves as a †-

selfadjoint left cai for aA, which is a right ideal. Besides, aAa is †-selfadjoint and
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the weak* limit of (a1/n) is s(a). The rest follows from [21, Corollary 3.5]. Clearly

xA ⊂ s(x)A∗∗ ∩A. On the other hand if a ∈ s(x)A∗∗ ∩A we have x1/na→ a weakly.

By Mazur’s Theorem, a convex combination converges in norm, so a ∈ xA. Moreover,

xAx is a †-HSA matching xA by correspondence.

Proposition 7.17. In an operator ∗-algebra A, F(A) and rA are †-closed, and if

x ∈ r(A) we have s(x)† = s(x†) and if x ∈ F(A) then s(x) ∨ s(x†) = s(x + x†). In

particular if x is †-selfadjoint then so is s(x).

Proof. Indeed applying † we see that ‖1 − x‖ ≤ 1 implies ‖1 − x†‖ ≤ 1. For the

†-invariance of rA note that this is easy to see for a C∗-cover B with compatible

involution (Definition 6.13), and then one may use the fact that rA = A ∩ rB. Since

x1/n may be written as a power series in 1 − x with real coefficients, it follows that

(x†)1/n = (x1/n)†. Then s(x)† = (w∗ limn x
1/n)† = s(x†). Let x1 = x, x2 = x†, (αk)

the sequence of positive scalars such that the sum of αk is 1 and α1 = α2. By the

proof of [20, Proposition 2.14], we know that s(x+ x†) = s(x) ∨ s(x†).

Lemma 7.18. If x ∈ FA, with x 6= 0, then the operator ∗-algebra generated by x,

denoted oa∗(x), has a cai. Indeed, the operator ∗-algebra oa∗(x) has a †-selfadjoint

sequential cai belonging to 1
2
FA.

Proof. If x ∈ FA, then x† ∈ FA as we proved above. Denote B = C∗e (A), then

p = s(x) ∨ s(x†) = s(x + x†) in B∗∗ is in oa∗(x)∗∗. Clearly px = xp = x and

px† = x†p = x†. Therefore, p is an identity in oa∗(x)∗∗. By [14, Theorem 2.5.8],

oa∗(x) has a cai.
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Moreover, since oa∗(x) is separable, by [20, Corollary 2.17], there exists a ∈ FA

such that s(a) = 1oa∗(x)∗∗ . Therefore oa∗(x) has a countable †-selfadjoint cai by

applying to [20, Theorem 2.19] and Corollary 6.28.

The following is a version of the Aarnes-Kadison Theorem for operator ∗-algebras.

Theorem 7.19 (Aarnes-Kadison type Theorem). If A is an operator ∗-algebra then

the following are equivalent:

(i) There exists a †-selfadjoint x ∈ rA with A = xAx.

(ii) There exists a †-selfadjoint x ∈ rA with A = xA = Ax.

(iii) There exists a †-selfadjoint x ∈ rA with s(x) = 1A∗∗ .

(iv) A has a countable †-selfadjoint cai.

(v) A has a †-selfadjoint and strictly real positive element.

Indeed these are all equivalent to the same conditions with ‘†-selfadjoint’ removed.

Proof. In (i)–(iii) we can assume that x ∈ FA by replacing it with the †-selfadjoint

element x(1 + x)−1 ∈ 1
2
FA (see [22, Section 2.2]). Then the equivalence of (i)–(iv)

follows as in [20, Lemma 2.10 and Theorem 2.19], for (iv) using that x
1
n is †-selfadjoint

as we said in the proof of Corollary 7.16. Similarly (v) follows from these by [20,

Lemma 2.10], and the converse follows since strictly real positive elements have

support projection 1 (see [22, Section 3]). The final assertion follows since if A has

a countable cai, then A has a †-selfadjoint countable cai (Lemma 6.27).
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Lemma 7.20. [20, Lemma 2.13] If (Ji) is a family of r-ideals in an operator algebra

A, with matching family of HSA’s (Di), and if J =
∑

i Ji then the HSA matching J

is the HSA D generated by the (Di) (that is, the smallest HSA in A containing all

the Di). Here ’matching’ means the respect to the correspondence between r-ideals

and HSA’s.

Proof. Let D′ be the HSA generated by the (Di) . Since Ji ⊂ J we have Di ⊂ D,

and so D′ ⊂ D. Conversely, since Di ⊂ D′ we have Ji ⊂ D′A so that J ⊂ D′A.

Hence, D ⊂ D′.

Lemma 7.21. If (Ji) is a family of r-†-ideals in an operator ∗-algebra A, with match-

ing family of †-HSA’s (Di), and if J =
∑

i Ji then the †-HSA matching J is the †-HSA

D generated by the (Di).

Proof. This follows directly from Lemma 7.20, since every r-†-ideal is an r-ideal and

any †-HSA is a HSA.

Proposition 7.22. Let A be an operator ∗-algebra (not necessarily with an identity

or approximate identity). Suppose that (xk) is a sequence of †-selfadjoint elements

in FA, and αk ∈ (0, 1] add to 1. Then the closure of the sum of the r-†-ideals xkA, is

the r-†-ideal zA, where z =
∑∞

k=1 αkxk ∈ FA. Similarly, the †-HSA generated by all

the xkAxk equals zAz.

Proof. As an r-ideal, zA is the closure of the sum of the r-ideals xkA. If z ∈ FA is

†-selfadjoint then zA is an r-†-ideal.

Lemma 7.23. Let A be an operator ∗-algebra, a subalgebra of a C∗-algebra B.
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(i) The support projection of a †-HSA D in A equals ∨a∈H(FD)s(a) (which equals

∨a∈H(rD)s(a)).

(ii) The support projection of an r-†-ideal J in A equals ∨a∈H(FJ )s(a) (which equals

∨a∈H(rJ )s(a)).

Proof. (i) Suppose p is the support projection of D, then p = ∨b∈FD
s(b) = ∨b∈rDs(b)

by the operator algebra variant of [26, Lemma 3.12]. Thus,

p ≥ ∨a∈H(rD)s(a) ≥ ∨a∈H(FD)s(a).

For any b ∈ FD, we have b† ∈ FD and notice that s(b) ∨ s(b†) = s( b+b
†

2
) (see e.g.

Proposition 2.14 in [20]) and (b+ b†)/2 ∈ (FD)†. Hence,

p = ∨b∈FD
s(b) ≤ ∨a∈H(FD)s(a).

Therefore, p ≤ ∨a∈H(FD)s(a) ≤ ∨a∈H(rD)s(a).

(ii) This is similar.

Lemma 7.24. For any operator ∗-algebra A, if E ⊂ (rA)†, then the smallest †-

hereditary subalgebra of A containing E is pA∗∗p ∩ A, where p = ∨x∈E s(x).

Proof. By Lemma 7.23, pA∗∗p∩A is a †-hereditary subalgebra of A, and it contains

E. Conversely, if D is a †-HSA of A containing E then D⊥⊥ contains p by a routine

argument, so pA⊥⊥p ⊂ D⊥⊥ and pA⊥⊥p ∩ A ⊂ D⊥⊥ ∩ A = D.

155



7.2. SUPPORT PROJECTIONS AND †-HSA’S

Corollary 7.25. For any operator ∗-algebra A, suppose that a convex set E ⊂ rA

and E† ⊂ E. Then the smallest hereditary subalgebra of A containing E is pA∗∗p∩A,

where p = ∨x∈H(E)s(x). Indeed, this is the smallest †-HSA of A containing E.

Proof. The smallest HSA containing E is pA∗∗p ∩ A, where p = ∨a∈E s(a). For any

a ∈ E, a+a†

2
∈ E by convexity of E. Notice that s(a+a†

2
) ≤ p and s(a+a†

2
) ≥ s(a),

then p = ∨x∈H(E)s(x) and pA∗∗p ∩ A is a †-HSA.

Theorem 7.26. If A is an operator ∗-algebra then †-HSA’s (resp. r-†-ideals) in A

are precisely the sets of form EAE (resp. EA) for some E ⊂ (rA)†. The latter set is

the smallest †-HSA (resp. r-†-ideal) of A containing E.

Proof. If D is a †-HSA (resp. r-†-ideal) and taking E to be a †-selfadjoint cai for

the †-HSA D (resp. a †-selfadjoint left cai for the r-†-ideal), then the results follows

immediately.

Conversely for any x ∈ (rA)†, we have x(1+x)−1 ∈ (1
2
FA)† as we said in Corollary

7.16. Then as in [26, Theorem 3.18] we may assume that E ⊂ (1
2
FA)†. Note that

D = EAE is the smallest HSA containing E by [26, Theorem 3.18] and D is †-

selfadjoint, so that D is the smallest †-HSA containing E. Similarly, EA is the

smallest right ideal with a †-selfadjoint left contractive identity of A containing E.

Moreover, for any finite subset F ⊂ E if aF is the average of the elements in F, then

(a
1/n
F ) will serve as a †-selfadjoint left cai for EA.

In particular, the largest †-HSA in an operator ∗-algebra A is the largest HSA in

A, and the largest approximately unital subalgebra in A (see [21, Section 4]), namely
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AH = rAArA = H(rA)AH(rA). The latter equality follows because AH has a cai in

rA, hence has a cai in H(rA).

Theorem 7.27. Let A be an operator ∗-algebra (not necessarily with an identity or

approximate identity.) The †-HSA’s (resp. r-†-ideals) in A are precisely the closures

of unions of an increasing net of †-HSA’s (resp. r-†-ideals) of the form xAx (resp.

xA) for x ∈ (rA)†.

Proof. Suppose that D is a †-HSA (resp. an r-†-ideal). The set of †-HSA’s (resp.

r-†-ideals) aFAaF (resp. aFA) as in the last proof, indexed by finite subsets F of

(FD)†, is an increasing net. Lemma 7.23 can be used to show, as in [26], that the

closure of the union of these †-HSA’s (resp. r-†-ideals) is D.

As in the theory we are following, it follows that †-open projections are just the

sup’s of a collection (an increasing net if desired) of †-selfadjoint support projections

s(x) for †-selfadjoint x ∈ rA.

Theorem 7.28. Let A be any operator ∗-algebra (not necessarily with an identity or

approximate identity). Every separable †-HSA or †-HSA with a countable cai (resp.

separable r-†-ideal or r-†-ideal with a countable cai) is equal to xAx (resp. xA) for

some x ∈ (FA)†.

Proof. If D is a †-HSA with a countable cai, then D has a countable †-selfadjoint

cai (en) in 1
2
FD. Also, D is generated by the †-HSA’s enAen so D = xAx, where

x =
∑∞

n=1
en
2n
. For the separable case, note that any separable approximately unital
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operator ∗-algebra has a countable cai. For r-†-ideals, the result follows from the

same argument.

Corollary 7.29. If A is a separable operator ∗-algebra, then the †-open projections

in A∗∗ are precisely the s(x) for x ∈ (rA)†.

Proof. If A is separable, then so is any †-HSA. So the result follows from Theorem

7.28.

Corollary 7.30. If A is a separable operator ∗-algebra with cai, then there exists an

x ∈ H(FA) with A = xA = Ax = xAx.

7.3 Involutive compact projections

Throughout this section, A is an operator ∗-algebra.

Definition 7.31. A projection q ∈ A∗∗ is compact relative to A if it is closed and

q = qx for some x ∈ Ball(A). Furthermore, if q is †-selfadjoint, we say that such q is

an involutive compact projection, or is †-compact in A∗∗.

Proposition 7.32. A †-projection q is compact if only if there exists a †-selfadjoint

element a ∈ Ball(A) such that q = qa.

Proof. One direction is trivial. Conversely if q is compact, then there exists a ∈

Ball(A) such that q = qa. It is easy to argue from elementary operator theory that

we have aq = q. Thus, q = q(a+a†

2
).
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Theorem 7.33. Let A be an approximately unital operator ∗-algebra. If q is a †-

projection in A∗∗ then the following are equivalent:

(i) q is a †-closed projection in (A1)∗∗.

(ii) q is †-compact in A∗∗.

(iii) q is †-closed such that there exists a †-selfadjoint element x ∈ 1
2
FA such that

q = qx.

Proof. We may assume that A is nonunital

(iii)⇒ (ii). Obvious.

(ii)⇒ (i). If q is †-compact projection in A∗∗, then there exists yt ∈ Ball(A) with

yt → q, and ytq = q. Then 1 − yt → 1 − q, and (1 − yt)(1 − q), and ytq = q. Then

1 − yt → 1 − q, and (1− yt)(1 − q) = 1− yt, so 1 − q is open in (A1)∗∗. Hence, q is

closed in (A1)∗∗.

(i)⇒ (iii). Consider a projection q ∈ A∗∗ such that q is †-closed in (A1)∗∗. Then

q⊥ is †-open in (A1)∗∗; let C = q⊥(A1)∗∗q⊥ ∩ A1. Then †-HSA in A1 with support

projection q⊥. Note that since eq = q we have (1 − e)q⊥ = 1 − e, and f = 1 − e is

a central minimal projection in C∗∗ = q⊥(A1)∗∗q⊥. Let D be the †-HSA in A1 with

support projection e−q = e(1−q). This is an approximately unital ideal in C, indeed

D⊥⊥ = eC∗∗. Note that

C∗∗/D⊥⊥ ∼= C∗∗(q⊥ − q⊥e) = C∗∗f = C f ∼= C.
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The map implementing this isomorphism C∗∗/D⊥⊥ ∼= C f is the map x+D⊥⊥ 7→ xf.

Moreover, the map restricts to an isometric isomorphism C/D ∼= C/D⊥⊥ ∼= C f. This

is because if the range of this restriction is not C f then it is (0), so that C = D, which

implies the contradiction e = 1. By , there is an element d ∈ FC such that df = 2f.

If b = d/2 ∈ 1
2
FC , then bf = f . We see that 1 − b ∈ 1

2
FA1 , and (1 − b)e = 1 − b, so

(1 − b) ∈ 1
2
FA. Moreover, (1 − b)1 = q, since b ∈ q⊥(A1)∗∗q⊥. Choose a = 1 − b+b†

2
,

then we are done.

Corollary 7.34. Let A be an approximately unital operator ∗-algebra. Then the

infimum of any family of †-compact projections in A∗∗ is a †-compact projection

in A∗∗. Also, the supremum of two commuting †-compact projections in A∗∗ is a

†-compact projection in A∗∗.

Proof. Note that the infimum and supremum of †-projections are still †-projections.

Then the results follow immediately from [15, Corollary 2.3].

Corollary 7.35. Let A be an approximately unital operator ∗-algebra, with an ap-

proximately unital closed †-subalgebra D. A projection q ∈ D⊥⊥ is †-compact in D∗∗

if and only if q is †-compact in A∗∗.

Corollary 7.36. Let A be an approximately unital operator ∗-algebra. If a †-

projection q in A∗∗ is dominated by an open projection p in A∗∗, then q is †-compact

in pA∗∗p.

In much of what follows we use the peak projections u(a) defined and studied in

e.g. [15, 21]. These may be defined to be projections in A∗∗ which are the weak*
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limits of an for some a ∈ Ball(A), in the case such weak* limit exists. We will not

take the time to review the properties of u(a) here. We will however several times

below use silently the following fact:

Lemma 7.37. If a ∈ Ball(A) for an operator ∗-algebra A, and if u(a) is a peak

projection, with an → u(a) weak*, then u((a+ a†)/2) = u(a) ∧ u(a)† in A∗∗ and this

is a peak projection. Indeed ((a+ a†)/2)n → u((a+ a†)/2) weak*.

Proof. Clearly (a†)n → u(a)† weak*, so that u(a†) = u(a)† is a peak projection. Then

u((a+a†)/2) = u(a)∧u(a)† by [15, Proposition 1.1], and since this is a projection it is

by [15, Section 3] a peak projection, is †-selfadjoint, and ((a+a†)/2)n → u((a+a†)/2)

weak*.

The following is the involutive variant of the version of the Urysohn lemma for

approximately unital operator ∗-algebras in [15, Theorem 2.6].

Theorem 7.38. Let A be an approximately unital operator ∗-algebra. If a †-compact

projection q in A∗∗ is dominated by a †-open projection p in A∗∗, then there exists

b ∈ 1
2
H(FA) with q = qb, b = pb. Moreover, q ≤ u(b) ≤ s(b) ≤ p, and b may also be

chosen to be ‘nearly positive’ in the sense of the introduction to [22]: we can make it

as close in norm as we like to an actual positive element.

Proof. If q ≤ p as stated, then by the last corollary we know q is †-compact in

D∗∗ = pA∗∗p, where D is a †-HSA supported by p. By Theorem 7.33, there exists

a †-selfadjoint b ∈ 1
2
FD such that q = qb and b = bp. The rest follows as in [15,

Theorem 2.6].
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Theorem 7.39. Suppose that A is an operator ∗-algebra (not necessarily approxi-

mately unital), and that q ∈ A∗∗ is a projection. The following are equivalent:

(1) q is †-compact with respect to A.

(2) q is †-closed with respect to A1 and there exists a ∈ Ball(A)† with aq = qa = q.

(3) q is a decreasing weak∗ limit of u(a) for †-selfadjoint element a ∈ Ball(A).

Proof. (2) ⇒ (3) Given (2) we certainly have q compact with respect to A by [21,

Theorem 6.2]. By [15, Theorem 3.4], q = limt u(zt), where zt ∈ Ball(A) and u(zt) is

decreasing. We have q = q† = limt u(z†t ). Moreover, u(zt) ∧ u(z†t ) = u(
zt+z

†
t

2
). Hence,

q is a decreasing weak* limit of u(
zt+z

†
t

2
) since the involution preserves order.

The rest follows from [21, Theorem 6.2].

Corollary 7.40. Let A be a (not necessarily approximately unital) operator ∗-algebra.

If q is †-compact then q is a weak* limit of a net of †-selfadjoint elements (at) in

Ball(A) with atq = q for all t.

7.4 Involutive peak projections

Definition 7.41. Let A be an operator ∗-algebra. A †-projection q ∈ A∗∗ is called

an involutive peak projection or a †-peak projection if it is a peak projection.

Proposition 7.42. Suppose A is a separable operator ∗-algebra (not necessarily ap-

proximately unital), then the †-compact projections in A∗∗ are precisely the peak pro-

jections u(a), for some †-selfadjoint a ∈ Ball(A).

162



7.4. INVOLUTIVE PEAK PROJECTIONS

Proof. If A is separable then a projection in A∗∗ is compact if and only if q = u(a),

for some a ∈ Ball(A) (see [21, Proposition 6.4]). If q is †-selfadjoint, then

q = u(a†) = u(a) ∧ u(a†) = u((a† + a)/2),

using e.g. Lemma 7.37.

Proposition 7.43. If a ∈ 1
2
FA with a† = a, then u(a) is a †-peak projection and it

is a peak for a.

Proof. Since u(a) = lim an weak* in this case, we see that u(a) is †-selfadjoint. From

[15, Lemma 3.1, Corollary 3.3], we know that u(a) is a peak projection and is a peak

for a.

Theorem 7.44. If A is an approximately unital operator ∗-algebra, then

(i) A projection q ∈ A∗∗ is †-compact if only if it is a decreasing limit of †-peak

projections.

(ii) If A is a separable approximately unital operator ∗-algebra, then the †-compact

projections in A∗∗ are precisely the †-peak projections.

(iii) A projection in A∗∗ is a †-peak projection in A∗∗ if and only if it is of form

u(a) for some a ∈ 1
2
H(FA).

Proof. (ii) Follows from Proposition 7.42 and Proposition 7.43.

(i) One direction is obvious. Conversely, let q ∈ A∗∗ be a †-compact projection

with q = qx for some †-selfadjoint element x ∈ Ball(A). Then q ≤ u(x). Now 1 − q

163



7.4. INVOLUTIVE PEAK PROJECTIONS

is an increasing limit of s(xt) for †-selfadjoint elements xt ∈ 1
2
FA1 , by Theorem 7.27

and the remark after it. Therefore, q is a decreasing weak* limit of the qt = s(xt)
⊥ =

u(1−xt). Let zt = 1−xt+x
2

, then u(zt) is a projection. Since q ≤ qt and q ≤ u(x), then

q ≤ u(zt). Note that zt is †-selfadjoint, so u(zt) = u(zt)
†. Let at = ztx ∈ Ball(A),

then u(at) = u(zt) by the argument in [15, Lemma 3.1]. Thus, u(at) = u(zt)↘ q as

in that proof. Moreover, u(a†t) = u(at)
† ↘ q, which implies by an argument above

that u(
at+a

†
t

2
)↘ q.

(iii) One direction is trivial. For the other, if q is a †-peak projection, then by

the operator algebra case there exists a ∈ 1
2
FA such that q = u(a). Let b = (a+a†)/2,

then q = u(b) by e.g. Lemma 7.37.

Corollary 7.45. Let A be an operator ∗-algebra. The supremum of two commuting

†-peak projections in A∗∗ is a †-peak projection in A∗∗.

Lemma 7.46. For any operator ∗-algebra A, the †-peak projections for A are exactly

the weak* limits of an for †-selfadjoint element a ∈ Ball(A) if such limit exists.

Proof. If q is a †-peak projection, then there exists a ∈ Ball(A) such that q = u(a)

which is also the weak* limit of an. Since q is †-selfadjoint, by Lemma 7.37 we have

q = u(a†) = u(a+a†

2
), which is the weak* limit of ((a+ a†)/2)n. The converse follows

from [21, Lemma 1.3].

Remark 7.47. Similarly the theory of peak projections for operator ∗-algebras A

which are not necessarily approximately unital follows the development in [21, Section

6], with appropriate tweaks in the proofs. Thus a projection is called a †-F-peak

projection for A if it is †-selfadjoint and F-peak. A projection in A∗∗ is †-F-compact
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if it is a decreasing limit of †-F-peak projections. We recall that AH was discussed

above Theorem 7.27. One may then prove:

(i) A projection q in A∗∗ is †-F-compact iff q is a †-compact projection for AH .

(ii) A projection in A∗∗ is a †-F-peak projection iff it is a †-peak projection for AH .

(iii) If A is separable then every †-F-compact projection in A∗∗ is a †-F-peak pro-

jection.

7.5 Some interpolation results

Item (ii) in the following should be compared with Theorem 7.38 which gets a slightly

better result in the case that A is approximately unital.

Theorem 7.48 (Noncommutative Urysohn lemma for operator ∗-algebras). Let A

be a (not necessarily approximately unital) operator †-subalgebra of C∗-algebra B with

a second involution †. Let q be a †-compact projection in A∗∗.

(i) For any †-open projection p ∈ B∗∗ with p ≥ q, and any ε > 0, there exists an

a ∈ Ball(A)† with aq = q and ‖a(1− p)‖ < ε.

(ii) For any †-open projection p ∈ A∗∗ with p ≥ q, there exists a †-selfadjoint

element a ∈ Ball(A) with q = qa and a = pa.

Proof. (i) By [21, Theorem 6.6] there exists b ∈ Ball(A) such that

bq = q, ‖b(1− p)‖ < ε and ‖(1− p)b‖ < ε.
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Then a = b+b†

2
∈ Ball(A)† does the trick, since

‖(b+ b†

2
)(1− p)‖ ≤ 1

2
‖b(1− p)‖+

1

2
‖((1− p)b)†‖ < ε.

(ii) Apply Theorem 7.38 in A1 to obtain a †-selfadjoint element a ∈ Ball(A1),

p ∈ A⊥⊥ and ap = q. Then a ∈ A⊥⊥ ∩ A1 = A.

The following is an involutive variant of the noncommutative peak interpolation

type result in [21, Theorem 5.1].

Theorem 7.49. Suppose that A is an operator ∗-algebra and that q is a †-closed

projection in (A1)∗∗. If b = b† ∈ A with bq = qb, then b achieves its distance to the

right ideal J = {a ∈ A : qa = 0} (this is a r-†-ideal if 1− q ∈ A∗∗), and also achieves

its distance to {x ∈ A : xq = qx = 0} (this is a †-HSA if 1 − q ∈ A∗∗). If further

‖bq‖ ≤ 1, then there exists a †-selfadjoint element g ∈ Ball(A) with gq = qg = bq.

Proof. Proceed as in the proof of [21, Theorem 5.1]. The algebra D̃ is a †-HSA in A1.

Thus if C is as in that proof, C is †-selfadjoint and D̃ is a †-ideal in C. Also I = C∩A

and D = I ∩ D̃ are †-selfadjoint in C. Note that if x ∈ A with xq = qx = 0 then

x ∈ D̃∩A ⊂ C ∩A = I, so x ∈ D̃∩A ⊂ D̃∩ I = D. So D = {x ∈ A : xq = qx = 0}.

By the proof we are following, there exists y ∈ D ⊂ J such that

‖b− y‖ = ‖b− y†‖ = d(b,D) = ‖bq‖ = d(b, J) ≥ ‖b− z‖,

where z = (y + y†)/2. Set g = b− z, then g is †-selfadjoint with gq = qg = bq (since

D is †-selfadjoint), and ‖g‖ = ‖bq‖.
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Theorem 4.10 in [22] is the (noninvolutive) operator algebra version of the last

result (and [21, Theorem 5.1]), but with the additional feature that the ‘interpolating

element’ g in the last result is also in 1
2
FA. Whence after replacing g by g

1
n , it is

‘nearly positive’ in the sense of the introduction to [22]: we can make it as close

in norm as we like to an actual positive element. There seems to be a mistake in

Theorem 4.10 in [22]. It is claimed there (and used at the end of the proof) that D

is approximately unital. However this error disappears in what is perhaps the most

important case, namely that q is the ‘perp’ of a (open) projection in A∗∗. Then D

is certainly a HSA in A, and is approximately unital. Hence we have, also in the

involutive case:

Theorem 7.50. Suppose that A is an operator ∗-algebra p is a †-open projection in

A∗∗, and b = b† ∈ A with bp = pb and ‖b(1− p)‖ ≤ 1 (where 1 is the identity of the

unitization of A if A is nonunital). Suppose also that ‖(1−2b)(1−p)‖ ≤ 1. Then there

exists a †-selfadjoint element g ∈ 1
2
FA ⊂ Ball(A) with g(1− p) = (1− p)g = b(1− p).

Indeed such g may be chosen ‘nearly positive’ in the sense of the introduction to [22],

indeed it may be chosen to be as close as we like to an actual positive element.

Theorem 7.51. (A noncommutative Tietze theorem) Suppose that A is an operator

∗-algebra (not necessarily approximately unital), and that p is a †-open projection in

A∗∗. Set q = 1 − p ∈ (A1)∗∗. Suppose that b = b† ∈ A with bp = pb and ‖bq‖ ≤ 1,

and that the numerical range of bq (in q(A1)∗∗q or (A1)∗∗) is contained in a compact

convex set E in the plane satisfying E = Ē. We also suppose, by fattening it slightly

if necessary, that E 6⊂ R. Then there exists a †-selfadjoint element g ∈ Ball(A) with

gq = qg = bq, such that the numerical range of g with respect to A1 is contained in
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E.

Proof. By [22, Theorem 4.12], there exists a ∈ Ball(A) with aq = qa = bq, such that

the numerical range of a with respect to A1 is contained in E. Then g = (a+ a†)/2

is †-selfadjoint. Let B be a unital C∗-cover of A1 with compatible involution σ(b)∗

as usual. If ϕ is a state of B then ϕ ◦ σ is a state too, and so

ϕ(a†) = ϕ(σ(a)) ∈ Ē = E.

From this it is clear that ϕ(g) ∈ E.

Corollary 7.52. Suppose that A is an operator ∗-algebra (not necessarily approxi-

mately unital), and that J is an approximately unital closed †-ideal in A. Suppose

that b = b† is an element in FA/J (resp. in rA/J). Then there exists a †-selfadjoint

element a in FA (resp. in rA) with a+ J = b.

Proof. Indeed the operator ∗-algebra variant of [20, Proposition 6.1] and [20, Corol-

lary 6.1] hold. The rA/J lifting follows from the last theorem with E = [0, K] ×

[−K,K] and K = ‖b‖ say. However both results also follow by the usual (a+ a†)/2

trick.

The following is the ‘nearly positive’ case of a simple noncommutative peak inter-

polation result which has implications for the unitization of an operator ∗-algebra.

Proposition 7.53. Suppose that A is an approximately unital operator ∗-algebra,

and B is a C∗-algebra generated by A with compatible involution †. If c = c† ∈ B+
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with ‖c‖ < 1 then there exists a †-selfadjoint a ∈ 1
2
FA with |1 − a|2 ≤ 1 − c. Indeed

such a can be chosen to also be nearly positive.

Proof. As in [22, Proposition 4.9], but using our Theorem 6.18 (2), there exists nearly

positive †-selfadjoint a ∈ 1
2
FA with

c ≤ Re(a) ≤ 2Re(a)− a∗a,

and |1− a|2 ≤ 1− c.

We end with an involutive case of the best noncommutative peak interpolation

result (from [9]), a noncommutative generalization of a famous interpolation result

of Bishop. See [9] for more context and an explanation of the classical variant,

and the significance of the noncommutative variant. Unfortunately we cannot prove

this result for operator ∗-algebras without imposing a further strong condition (d

commutes with b and q⊥(A1)∗∗q⊥ ∩ A1). This is a good example of a complicated

result which is not clear in advance whether it has ‘involutive variants’. In this case it

is valid, without the strong condition just mentioned, for involutions of types (3) and

(4) at the start of Section 6.1. We treat the type (3) case. For an operator algebra A,

let Ā be (A?)◦. In this case a conjugate linear completely isometric involution π on A

of type (3) at the start of Section 6.1, gives rise after composition with the canonical

map − : A → Ā, to a linear completely isometric isomorphism A → Ā. This

map extends to a ∗-isomorphism C∗max(A) → C∗max(Ā) = (C∗max(A)◦)?. Composing

this with the canonical map −, we obtain a conjugate linear ∗-automorphism on

B = C∗max(A) which we will also write as π. This is the compatible conjugate linear

169



7.5. SOME INTERPOLATION RESULTS

involution on B.

Theorem 7.54. Suppose that A is a operator algebra, with a conjugate linear com-

pletely isometric involution π of type (3) at the start of Section 6.1. Suppose that

A is a subalgebra of a unital C∗ -algebra B with compatible conjugate linear ∗-

automorphism π on B. Suppose that q is a closed projection in B∗∗ which lies in

(A1)⊥⊥ and satisfies π∗∗(q) = q. If b is an element in A with bq = qb and b = π(b),

and if qb∗bq ≤ qd for an invertible positive d ∈ B with d = π(d) which commutes

with q, then there exists a g ∈ Ball(A) with gq = qg = bq, g = π(g), and g∗g ≤ d.

Proof. By the proof of [9, Theorem 3.4], there exists h ∈ A with qh = hq = bq, and

h∗h ≤ d. (We remark that f = d−
1
2 in that proof.) Thus also π(h∗h) ≤ π(d) = d.

Let g = h+π(h)
2

. Then g = π(g) and qg = gq = bq. Also

g∗g ≤ (
h+ π(h)

2
)∗(
h+ π(h)

2
) + (

h− π(h)

2
)∗(
h− π(h)

2
).

Thus

g∗g ≤ h∗h

2
+
π(h)∗π(h)

2
=
h∗h

2
+ π(

h∗h

2
) ≤ d,

as desired.
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