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ABSTRACT 
 

The electrical submersible pump (ESP) is currently the fastest growing artificial-

lift pumping technology.  Deployed across 15 to 20 percent of oil-wells worldwide, ESPs 

are an efficient and reliable option at high production volumes and greater depths. 

However, ESP performance is often observed to decline gradually and reach the point of 

service interruption due to factors like high gas volumes, high temperature, and 

corrosion.  The financial impact of ESP failure is substantial, from both lost production 

and replacement costs.  Therefore, ESP performance in extensively monitored, and 

numerous workflows exist to suggest actions in case of breakdowns.  However, such 

workflows are reactive in nature, i.e., action is taken after tripping or failure.   

Furthermore, given the emerging trend in the E&P industry of using downhole 

sensors for real-time surveillance of parameters impacting ESP performance there is an 

opportunity for predicting and preventing ESP shutdowns using data analytics. Therefore, 

a data-driven analytical framework is proposed to advance towards a proactive approach 

to ESP health monitoring based on predictive analytics to detect impending problems, 

diagnose their cause, and prescribe preventive action.   
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CHAPTER 1  

ELECTRICAL SUBMERSIBLE PUMPS 
 

1.1 Background  

Artificial lift techniques are employed when reservoirs do not have enough energy 

to naturally produce oil or gas to the surface or at desired economic rates. More than 90% 

of producing oil wells require some form of artificial lift [1]. The electrical submersible 

pump (ESP) is the fastest growing form of artificial-lift pumping technology [1]. About 

15 to 20 percent of almost one million wells worldwide are pumped with some form of 

artificial lift employing ESPs [2]. ESPs are often considered very efficient and reliable 

for pumping high volumes from deeper depths among all oil field lift systems. They are 

adaptable to highly deviated wells and deployed in varied operating environments all 

over the world.  These pumps have a very broad application range and enable recovery of 

hydrocarbon fluids from greater depths at higher temperatures while handling a range of 

viscosities, gas-liquid ratios, and solids production. 

Figure 1 illustrates a conventional ESP installation system. It primarily consists of 

an electric submersible motor, a multistage centrifugal pump, tubing string and protector 

section. The ESP runs in the tubing string. The motor is at the lower part of the 

installation unit and is a three phase induction motor providing energy to drive the pump. 

The protector or seal section connects motor to the pump, prevents well fluids from 

entering the motor and equalizes pressures between the motor and the wellbore 

A gas separator is situated above the protector and allows well fluids to enter the 

centrifugal pump. In addition, it removes free gas from the wellstream. The multistage 
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centrifugal pump, central to the ESP operation, lifts the liquid to the surface. It converts 

energy of the electric motor into velocity or kinetic energy and then into pressure energy 

of a fluid (head) that is being pumped. 

 

 

Figure 1: An electrical submersible pump system [3] 

 

1.2 Challenges with ESP Systems  

In 2009, Spears & Associates estimated that ESP accounted for 58% of the total 

artificial lift market of $5.8 billion [4]. In other words, the industry spends more money 

annually on ESPs than for all other forms of artificial lift combined, as illustrated in 
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Figure 2. Equipment technology advancements along with the enhanced application 

experience of both producers and ESP suppliers have improved ESP operating life. Over 

the years, the most common concern of ESP users has been that ESP workover costs are 

high while ESP system run life is inadequately low [5].  

 

Figure 2: Industry Spending on Artificial Lift Technology 

 

It is often observed that ESP performance declines gradually due to a number of 

factors such as high-gas volumes, produced abrasive solids, high-temperatures and 

corrosive environments. It has been estimated that ESP failures in ultra deepwater 

offshore fields could lead to $200 million in revenue loss and $20 million in replacement 

costs [6].  GE Oil and Gas has also conducted a study to estimate the cost of ESP failure 

in various operating environments. According to GE, the cost of loss production could be 

upto $3 million while the cost of intervention could be up to $1 million per well annually 

[7]. Table 1 below highlights the assumptions and results for GE study. 



  

 

4 

 

 Table 1: Assumptions and Results from GE Study of ESP failure costs 

Lost production Cost 

Price of oil barrel $100  

Typical production 500 b/d 

Water cut 70% 

Estimated downtime 2 days 

Estimated incidents/year 10 

Estimated savings 500 b/d x 20 x 0.3 x $60 = $1.8MM 

Intervention Cost 

Onshore conventional well $5K to $25K per intervention 

Onshore unconventional well $150K to $250K 

Offshore well Up to $1MM 
 

Given the high cost of an ESP failure, operators are increasingly using downhole 

and surface sensors to monitor ESP performance. Safe operating thresholds for key 

parameters are set in ESP so that it proactively stops working if those parameters are 

operating beyond its safety limit and a failure is imminent. This is known as a Trip. It is 

one step before a failure. 

Numerous workflows exist that provide suggestions for actions in case of an ESP 

failure. However, such workflows are reactive in nature, i.e., action is taken after a failure 

has occurred. Consequently, there is a need and an opportunity to advance from a reactive 

approach towards failure situations to a more proactive approach based on predictive 

analysis and preventive action by combining reservoir and production engineering 

principles with sophisticated mathematical models for predicting ESP trip and failure 

events. A proactive approach can be based on monitoring vital statistics related to ESP 

operation and performance, thus helping detect impending failures and thereby 

optimizing production, reducing intervention costs, and extending the life expectancy of 

the ESP.  
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CHAPTER 2 

STATE OF THE ART  
 

2.1  Monitoring ESP Performance 

As real-time technology gains momentum in the oil industry, more and more wells 

are equipped with permanent downhole sensors which offer a wealth of information [8]. 

Supervisory control and data acquisition (SCADA) systems and data historians offer a lot 

of value in terms of reduced operating cost and increased recovery factor [8].  E&P 

companies are deploying web-based monitoring platforms for real-time surveillance of 

producing assets.  Related workflows assist engineers with their daily surveillance 

activities for production systems, reservoirs, wells, and fields.  This technological 

framework is redefining production optimization and reservoir management [1] by 

providing numerous capabilities, such as real-time collaboration of asset teams spread 

across geographies and enabling faster decision making.   

There is a growing trend towards ESPs being fitted with gauges and sensors over the last 

decade [8]. These downhole monitoring tools protect the ESP by providing valuable 

operational and production data such as pump intake pressure, pump discharge pressure, 

bottomhole pressure, motor temperature, current leakage and vibration. A few essential 

parameters are continuously monitored and analyzed to assess the health of the ESP 

equipment and anticipate impending failure and trip events. This is done to ensure 

profitable and safe operations. Furthermore, such data enables production engineers to 

perform pressure transient analysis to analyze reservoir performance by monitoring the 

key variables during pump shutdowns and startups. 
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2.2  Troubleshooting ESP Installations 

ESP system monitoring has evolved over the years and ammeter charts came to be 

offered as the earliest and simplest diagnostic solution to minimize downtimes for many 

decades. They measure and record the electric current drawn by the ESP motor. The 

current is recorded continuously in the function of time on a continuous chart with the 

proper scale. Figure 3 is a typical example of Ammeter chart in the scenario of gas 

locking. Such behavior is observed when the capacity of the ESP unit is greater than the 

inflow to the well and the well produces substantial free gas volumes.   

 

Figure 3: Ammeter Chart Example: Pump off with Gas Interference [9] 

The proper interpretation of ammeter charts can provide useful information to 

detect and correct minor operational issues [9].  It provides a very one-sided picture of 
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ESP unit’s operations since it relies on only electrical measurements. Electrical failures 

are often caused by mechanical or other problems which, over time, develop into a failure 

of an electrical nature. The detection of the initial or root failure, therefore, is not an easy 

task and requires additional information [9].  

The ESP installation works as a system consisting of (1) mechanical, (2) 

hydraulic and (3) electrical components [9] and, in order to diagnose and prevent trips or 

failure, a dynamic system which can capture multiple parameters affecting an ESP 

operation in real-time and provide an end to end solution is necessary. 

Nowadays a lot of ESP controllers use microprocessors to provide greatly 

improved control and protection of the ESP system’s electric components [10]. They use 

several other electrical variables than just the current drawn by the motor  which can then 

be stored for immediate or future analysis [10]. Many onshore installations use only 

ammeter because of the moderate workover costs whereas offshore wells rely on 

sophisticated downhole measurements (DHMs) to a great extent [9]. DHMs provide 

continuous measurement of crucial downhole parameters such as pump intake pressure 

and pump discharge pressure pressure for troubleshooting the system. 

2.3  Need and Opportunities 

Relevant production data has been growing from kilobytes to terabytes in recent 

years, thus becoming “Big Data” [11]. The entire process of gathering, processing, and 

analyzing such data is often referred to as analytics [11].  Analytics helps to get 

maximum value from production data, identifying patterns that allow for real-time event 

detection, failure prevention, production optimization and forecasting, and helping to 

reduce the uncertainty in asset management.   
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In case of ESPs, downhole and surface gauges measure various parameters in real-

time as shown in Figure 4. This helps in acquiring essential data and also create a need to 

process large amount of available raw ESP downhole sensor data into useful information.  

                

Figure 4: Parameters measured by downhole and surface gauges 

 

In a quest to reduce costs and optimize maintenance of ESPs, this need for 

obtaining useful ESP operational information creates opportunities to develop data-driven 

methods that can detect and potentially diagnose impending problems with ESP.   

We are therefore pursuing this opportunity to advance from a reactive approach 

where trips or failures are analyzed after they have already occurred to a proactive 

approach which would enable timely prediction of ESP behavior and detection of ESP 

impending failures through intelligent analysis [12]. Such analysis can improve the way 

operators address and preferably prevent ESP shutdowns and potentially damaging 

situations that are commonplace in remote well operations. 
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CHAPTER 3 
 

DATA-DRIVEN ANALYTICS IN OIL AND GAS 
 

 

3.1 Relevance in Oil and Gas Exploration and Production 

Historically, E&P Oil and gas industry has used vast quantities of data to 

understand subsurface reservoirs and define optimum hydrocarbon evacuation strategies. 

Data in the form of seismic surveys, open hole and cased hole logging data, PVT and 

core sample analysis, reservoir production and pressure information etc. has been 

traditionally used to describe the reservoir and make technical decisions. In the recent 

past, improvement in sensors and computation toolkit has shifted the industry’s focus 

towards intelligent oilfield technologies that can enable increased real-time surveillance 

and analytics to improve oilfield performance. For example, real-time down-hole drilling 

data can be paired with production data from nearby wells to help adapt their drilling 

strategy, especially in unconventional fields [13]. Such intelligent oilfield capabilities are 

provided by a set of tools and techniques known within the industry as analytics [13].  

In addition to using analytics techniques developed for oilfield applications, 

several analytics commonly used in other industries are also being adapted for application 

to oilfield workflows, leading to an increasingly expanding toolkit of robust and effective 

solutions for oilfield automation. 
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3.2 Definition of Analytics 
 

Various researchers have provided definitions of analytics as outlined below: 

 Bravo et al. (2013) have defined analytics as ” a set of techniques and tools 

intended for data access, integration, analysis, and visualization, which makes it 

possible to identify valuable patterns to improve the decision-making process in a 

work environment [11].”  

 Derrick et al. (2013) define it as “application of ideas from a loose coalition of 

technical disciplines, including statistics, artificial intelligence, and information 

technology to the discovery and communication of meaningful patterns in data 

[14].”  

 Stone (2007) describes analytics as “investigating pattern-recognition techniques 

that find correlations and relationships in large data sets [15].”  

In addition to understanding the term analytics, it is especially important to understand 

the term “big data”. According to Brule (2013), “big data” has three main features: 

volume, velocity, and variety [16]. Therefore, the term “big data” often refers to large, 

unstructured datasets with non-standard formats or frequency of data capture. Such 

datasets often combine what is called “data in motion” (e.g., real-time data), with “data-

at-rest,” such as configuration and historic data [11].  

Analytics can be used to analyze the past, evaluate current performance, and predict 

future behavior of a system or process. Bravo et al (2013) have classified analytics into 

three categories [11]:  

 Descriptive analytics: This type of analytics is relies on analysis and visualization 

of historic data to obtain insights into a system or process. Typical outcomes from 
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descriptive analytics include dashboards, score cards, business intelligence tools 

etc. 

 Predictive analytics: This type of analytics involves prediction of the future 

behavior of a process or system based on analysis of historic data.  

 Prescriptive analytics: This type of analytics is used to define decisions that 

optimize the performance of a system or process based on the models built using 

the predictive analytics techniques. Bertolucci (2013) has defined prescriptive 

analytics as “technology that goes beyond descriptive and predictive analytics; 

prescriptive tools recommend specific courses of action and show the likely 

outcome of each decision [17].” 
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CHAPTER 4 

ESP ANALYTICS 
 

4.1 Study Objective 

The overall objective of this research study is real-time detection and diagnosis of 

impending ESP trips or failures. We have adopted the following methodology to achieve 

this objective: 

 Use of historical data to determine and evaluate key operational variables 

(decision variables) that affect ESP performance. 

 Use of a hybrid approach (combination of first principles and empirical statistics) 

to develop mathematical models that capture how key variables affect trends and 

patterns in the behavior of ESPs.  Such trends or patterns can then be associated 

with satisfactory operation, impending problems, or existing problems. 

 Evaluation of effectiveness of the mathematical models in detecting trends and 

patterns in available ESP operation data. 

 Examination of the possibility of using the above models to diagnose potential 

causes of detected problems. 

 Development of an approach to prescribe remedial actions to address the 

problems and prevent downtime due to trip or failure. 

4.2 Study Workflow 

ESP workflow has been designed which integrates different analytical techniques 

i.e., predictive analytics, diagnostic analytics and prescriptive analytics in a step by step 

manner to provide a complete end to end solution for ESP health monitoring and 
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prevention of trips or failures. In the first step of the workflow, decision variables 

significant to ESP operation are used to detect patterns indicating impending events (trips 

or failures). In the second step, these parameters are ranked based on their contribution to 

the impending event to detect the cause. In the third step, a stable operating range is 

determined and a remedial action is suggested to mitigate or prevent the impending event. 

Figure 5 illustrates the ESP Analytics workflow designed. The various steps of the 

workflow will be described in the following chapters.  

 

 

Figure 5: ESP Analytics workflow designed for the study 
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CHAPTER 5 

ESP ANALYTICS WORKFLOW METHODOLOGY 
 

5.1 Prediction of Impending Events 

The first step in the workflow involves prediction of an impending abnormal 

event such as a Trip or a Failure which can lead to pump downtime. The intent was to use 

real-time data obtained from surface and downhole sensors to build data analytical 

models and use the results in a meaningful manner to proactively predict impending 

events.  

5.1.1 Determination of Decision Variables 
 

It is very important to identify and determine key parameters significant to ESP 

performance which can serve as decision variables for input to the analytical model. An 

oilfield in the Middle East having well with ESP pumps was chosen for the study.  Two 

different kinds of data records were obtained: 

 The first data record contained time series information of different parameters 

across surface, wellbore and downhole gauges. The data was being recorded in 

real-time at a one minute interval for one well. 

 The second record contained information on the time when a trip or failure 

occurred in that well. 

The information from these two records was assimilated to correlate the behavior of 

the parameters long before, immediately before and exactly during the trip or failure 

event. Five events were analyzed in this study.  
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Twenty-two real time parameters were chosen as decision variables for the model. 

These variables are defined below: 

1) Flowline Pressure – It is also called the back pressure and is pressure at the 

discharge of the tubing from the well. 

2) Wellhead Pressure – This is pressure at the wellhead of the producing well. 

3) Wellhead Temperature – This is the temperature at the wellhead of the 

producing well. 

4) Motor Current A, 5) Motor Current B and 6) Motor Current C –The ESP 

system contains a three phase induction motor. Downhole sensors measure the 

current drawn by the three phases of the motor. Any changes in the pump, the 

well, or the electrical system translate into changes in the current drawn by the 

ESP motor. Trends in the ESP system’s loading can be detected from these 

current changes. Motor damage caused by electrical or mechanical problems can 

also be detected from motor current. Changes in produced fluid properties can 

also be traced by monitoring motor current [9]. 

7) Pump Intake Pressure -This parameter indicates the flowing pressure in the well 

at the level of the ESP pump’s suction. The PIP helps to detect whether free gas 

enters the pump or not [9]. It is also strongly related to the well’s FBHP (flowing 

bottomhole pressure) and its inflow rate; greater PIPs meaning lower liquid rates 

[9]. Because of all these factors, PIP can provide a reliable way to control the 

operation of the ESP system. Changes in PIP indicate changes in pump 

performance, well inflow, or installation integrity [9]. 
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8) Pump Discharge Pressure - It is a measure of the discharge pressure of the 

pump.  This reading and the pump intake pressure provide a measurement of the 

total developed head (TDH) of the pump. Comparison of this value to the design 

TDH enables monitoring of hydraulic performance of the pump.  

9) Intake Temperature - This measurement provides the temperature of the intake 

fluid into the pump. It increases as warmer reservoir fluids flow into the wellbore. 

10) Leakage Current – This measurement is the current leakage from the ESP cable 

due to earth fault. 

11) Motor Temperature - Motor temperature is the measured temperature of the 

motor windings or that of the motor oil [9]. If used in system control, measured 

temperature must not be allowed to rise significantly above the motor’s rated 

temperature. 

12) System Vibration -System vibration indicate the onset of problems which may 

later lead to more severe mechanical or electrical problems. 

13) Water Cut – It is a measure of the ratio of water produced to the amount of total 

liquids produced in the well. 

14) Free Gas Intake - It is a measure of the gas produced in the wellbore that enters 

into the pump. Free gas in the ESP pump rapidly ruins the pump’s efficiency and 

increased gas volumes may cause fluctuations of pump output causing surges in 

well production. 

15) Total Liquid Flowrate – It is a measure of the total liquids being produced in the 

well. It allows the determination of the pump’s operating point on the 

performance curve. It is the first indicator of downhole problems such as 
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equipment wear, leaks, etc.  Changing well inflow can easily be detected from the 

trend of liquid rate [9]. 

16) System efficiency – This is the ratio of the power exerted by the pump to lift a 

given amount of liquid against the operating head (Phydr) and the mechanical 

power required to drive the pump (BHP) [9]. Phydr  is calculated using the 

equation 

𝑃ℎ𝑦𝑑𝑟 = 7.368 ∗ 10−6𝐻𝑞𝜌,                                    (1) 

where H is head generated by the pump in ft, q is the pumping rate in bpd and  𝜌 

specific gravity of the fluid. 

17) Pump Fluid Density – This is the density of the fluid entering the centrifugal 

pump. The centrifugal pump imparts a high rotational velocity on the fluid 

entering its impeller but the amount of kinetic energy passed on to the fluid 

greatly depends on the given fluid’s density. Liquid, being denser than gas, 

receives a great amount of kinetic energy that, after conversion in the pump stage, 

increases the pressure whereas gas cannot produce the same amount of pressure 

increase [9]. Due to this reason, centrifugal pumps should always be fed by gas-

free, single-phase liquid to ensure reliable operation [9].  

18) Pump Head- The pressure rise associated with the liquid passing through all the 

stages of the pump made up of rotating impeller and stationary diffuser in series 

[9]. Pump head is a function of the diving frequency, flow rate, number of pump 

stages, fluid gravity and pump efficiency [9]. 
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19) Total Pump Head- This corresponds to the total dynamic head. It is the total 

equivalent height to which the fluid is pumped and considering friction losses in 

the wellbore. 

20) P across Pump – This is the difference of the discharge pressure of the pump 

and the intake pressure of the pump. It represents the increase in the operating 

pressure of the ESP. 

21) P across Choke – This is the difference between wellhead pressure and the 

flowline pressure. It helps to estimate the value of the back pressure 

22) P ESP to Wellhead – This is the difference of the discharge pressure of the 

pump and the wellhead pressure. 

The data for these parameters was obtained at a frequency of one minute for a two 

year time period for one well. This time period saw several failure and trip events. The 

reason behind choosing a large number of variables (22) some of which are inter-

dependent was to be able to capture behavior of all kinds of different attributes which 

could essentially lead to different failures.  

 5.1.2 Application of Principal Component Analysis (PCA) Methodology 

After the decision variables were determined, data-driven techniques employing 

multi-variate statistics were applied to build models to detect and potentially diagnose 

impending problems with ESP operation.   

Since we are trying to analyze twenty two parameters in real time with a 

frequency of one minute, it is imperative to use a statistical technique which can reduce 

the dimensionality in space and provide vectors which are a combination of more than 
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one of the decision variables. This enables us to observe the behavior of the reduced 

variables and draw patterns to link to anomalies. In addition, absence of an output 

dependent variable which is a consequence of the input parameters eliminates the 

possibility of using any regression techniques.   

Principal Component Analysis (PCA) methodology is a dimensionality reduction 

data driven methodology explained in Appendix A.1. It was chosen for modeling real 

time decision variables to identify patterns in the data. It is a statistical technique that 

uses an orthogonal transformation to convert a set of observations of possibly correlated 

or dependent variables into a set of linearly uncorrelated variables which are called 

Principal Components [18]. The covariance among each pair of principal components is 

zero. In this manner, PCA removes all the dependencies within the variables. The number 

of principal components is less than or equal to the number of original variables [19]. 

Unfortunately in classical PCA, both the classical variance (which is being 

maximized) and the classical covariance matrix (which is being decomposed) are very 

sensitive to anomalous observations [19]. Therefore as a consequence, the first 

components are often attracted toward outlying points and may not capture the variation 

of the regular observations [19]. This can lead to the conclusion that data reduction based 

on classical PCA becomes unreliable if outliers are present in the data [19].  

In our analysis, since we are obtaining real time downhole data there is a very 

high probability of encountering outliers as at times the sensors do not function properly 

or are recording erroneous data. So, Robust PCA [19]  technique as explained in 

Appendix A.2 was adopted for modeling purposes to remove outliers and use the 



  

 

20 

 

meaningful data readings as an input feed to the model. The model was constructed using 

PLS Eigenvector Toolbox integrated within Matlab.  

The PCA model used in the study follows a three step process.  

 Feed Training Dataset 

From the real time data, a stable time period was identified when no trip or 

failure event was observed and all the 22 parameters were operating at a stable 

value Figure 6 is an example plot of four such variables operating at a stable value 

for the entire time range. This data set matrix of t time steps or batches and p 

parameters (22) was chosen as the X matrix and normalized and fed into the PCA 

model. 

 

Figure 6: Stable Operation Zone Parameter Behavior 
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 Run Robust PCA Model 

Using the dataset chosen in the earlier step, Robust PCA model was run to 

resist 25% of the outliers. Corresponding T, P and E matrices were obtained as a 

result of the model. T matrix is the scores matrix [tXR], which is a resultant 

matrix of the value of Principal components (R) at very time step(t). P matrix is 

the loadings matrix [pXR] which represents the correlations between variables 

and the principal components. Optimized number of principal components were 

selected so that the total number of principal components captured majority of the 

variance in data and any further increase in the number of principal components 

did not capture significantly increase the  variance captured. First principal 

component explains as much as possible variance in the data set and the second 

principal component explains the next possible variance and the last principal 

component explains the lowest variance. The T matrix obtained for the stable 

operating zone was obtained and used for comparison at later stages. The model is 

created with the loadings matrix P and the residual matrix E and can be used for 

any future analysis. 

 Feed Prediction Dataset 

From the real time data sets, we identified windows of time periods when 

deviations from stable behavior were observed. These transition zones where the 

abnormal behavior started until the time when a trip or failure was observed were 

captured. Behavior of only four parameters during the transition zones for three 

different trip prediction sets are shown in three red boxes in Figure 7. These 

matrices were fed as independent Prediction X matrices, each of t time steps by p 
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variables (22)  into the model created in the preceding step. For each of the 

prediction sets, the t time period starts at the point when a deviation from normal 

trend is seen to the time when the trip or failure eventually occurs. The length of 

the time period t may vary for each of the trip or failure events depending on how 

long the deviation from normal behavior was observed. The model with the P and 

E matrix is rerun for each of these new X matrices. A new T matrix for each 

prediction data set is obtained and compared against the stable T matrix recorded 

in the preceding step. This comparison is explained in the section 5.1.4. 

 

 

Figure 7: Deviation from normal behavior as observed in parameters 
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5.1.3 Model Results  

The Robust PCA model reduces twenty two variables into six principal 

components. This analytical model comprising of six principal components accounts for 

96.92% variation of the given dataset. Table 2 provides information about the cumulative 

variance captured against the corresponding number of principal components selected for 

the model. 

Table 2: PCA Model Results 

Number of Principal Components Cumulative Variance Captured (%) 

1 36.82 

2 59.91 

3 72.81 

4 83.05 

5 90.90 

6 96.92 

 

5.1.4 Pattern Recognition 
 

5.1.4.1  Pattern Recognition using Scores of Principal components 

In order to analyze the model results, the scores matrix was determined for the 

stable operating zone training data set and for each of the five prediction data sets for the 

trips. The length of the time period t may vary for each of the trip or failure events 

depending on how long the deviation from normal behavior was observed. As shown in 

Table 1, the first two principal components capture about 60% of the variance. The scores 
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of only these two principal components were plotted against each other for every batch or 

time step in the time period t for each of the trips and compared against stable operating 

zone as shown in Figure 8, 9, 10, 11 and 12. 

It was observed that the scores of the two principal components for the stable 

operation zone form a cluster around the origin (0,0) as shown in green color in the below 

figures. However, as the abnormal behavior becomes more apparent and time steps 

increase in the transition period further away from the stable zone, the scores plot 

deviates further away from the green cluster centered around the origin. The numbers 

against the points in each of the figures represent increasing time steps in the transition 

zone. The last point in the transition zone which is the point at which the trip event occurs 

lies farthest away from the stable green zone and has been marked in each figure.  

 

 

Figure 8: Comparison of Scores of Stable Operation Zone and Trip 1 
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It is observed that the transition zone spirals around the green zone in Figure 8. 

This pattern can be justified and correlated with the actual scenario leading to the trip. In 

the first half of the transition zone, there was an increase in motor temperature because of 

underutilization of the pump leading to abnormal functioning of ESP. During this time 

period, as time steps increase, the scores shown in red deviate further away from the 

stable values within the green zone. This behavior continued until 580th minute. 

However, to resolve the issue, the production engineer increased the choke flow rate to 

increase the drawdown. This behavior is captured by the pattern depicted between 581st 

and 682nd minute where the scores start moving towards the stable range due to the 

mitigation steps being taken on the field. However, during the drawdown the wellbore 

pressure while decreasing reached below the bubble point leading to production of gas in 

the ESP pump. This behavior is shown starting 842nd minute when the scores again start 

deviating from the green zone. The increased production of gas lead the ESP to trip at 

1518th minute. In this manner, the mathematical results are correlated to the actual 

physics of the ESP trip event. 

In another example, the transition from the normal behavior was observed for 850 

minutes until it tripped in the scenario depicted in Figure 9 and no steps were adopted to 

resolve the issue. Today there is no mechanism to record and visualize this abnormal 

behavior. Having a dashboard representation of ESP operation using PCA model can help 

the engineers visualize and analyze the health of ESP under observation.  
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Figure 9: Comparison of Scores of Stable Operation Zone and Trip 2 

 

 

Figure 10: Comparison of Scores of Stable Operation Zone and Trip 3 
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Figure 11: Comparison of Scores of Stable Operation Zone and Trip 4 

 

 

 

Figure 12: Comparison of Scores of Stable Operation Zone and Trip 5 
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These patterns help distinguish between stable operation conditions and 

impending abnormal events in ESPs. This pattern recognition approach can help us 

proactively monitor and predict trips and failures in advance. The trip happens at 1518 

time step in Figure 9. As the frequency of time steps is in minutes, therefore the trip 

happened at 1518th minute from start of the abnormal transition region. As this is a real 

scenario from an oilfield, it can be inferred that the ESP was behaving abnormally for 

more than 24 hours before it actually tripped. Had this mechanism of identifying patterns 

using PCA Modeling been in place, there would have been ample time for preventive 

action that could mitigate or altogether avoid each problem. 

  This methodology can be extended to a real-time monitoring platform to observe 

health of any ESP. The Robust PCA model can be initially trained using stable time 

period data for the different parameters. The first two principal components can be used 

to get the green stable zone in the plot of scores of principal component 1 and principal 

component 2. Once, the model is trained and we have obtained the P and E matrix, the 

data for the various parameters obtained from the sensors every minute can be 

assimilated and fed as prediction data into the model to obtain the new scores of the first 

two principal components at that time step. This can be continuously fed for every time 

step and the results can be obtained. As long as ESP is operating smoothly, the point will 

lie within the green zone. Otherwise, if with increasing time steps, it is observed that the 

points move farther away from the stable zone cluster, it indicates that the ESP is 

functioning abnormally and approaching towards a trip or a failure.  
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5.1.4.2  Pattern Recognition using Hotelling T-square Statistics 
 

In the general form the PCA Model,  𝑋 = 𝑇𝑃𝑇 + 𝐸, 𝑇𝑃𝑇  represents the 

systematic part of the process variation described by the model and the residual matrix 𝐸 

contains the non-systematic part not described by the model [20]. T is columnwise 

orthogonal and P is columnwise orthonormal, i.e., 𝑇𝑇𝑇 = 𝐷 and  𝑃𝑇𝑃 = 𝐼, where D is a 

diagonal matrix and I is the identity matrix [20].  

The Hotelling T-square statistic represent a measure of the variation in each 

sample in the model. It indicates how far each sample is from the center (scores = 0) of 

the model [21]. 

                                                 𝐻𝑜𝑡𝑒𝑙𝑙𝑖𝑛𝑔 𝑇2𝑖 = 𝑡𝑖
−1𝑡𝑖

𝑇,                                        (2) 

where ti refers to the ith row of TR, the t X R matrix of scores for each new batch or time 

step in the model;  is the covariance matrix of stable operation zone T [20] and is a 

diagonal matrix containing the eigenvalues 1 through 𝑅 corresponding to R principal 

components in the model represented as  

                                                                 −1
=

𝑇𝑇𝑇

(𝑁−1)−1
 ,                                                                  (3)  

where N represents the count of time steps or batches obtained for the stable operation 

zone  

Hotelling T-square distribution statistic was calculated at every time step in the 

stable operation zone and the various transition zones leading the trips. This statistic was 

plotted against time on a semi-log plot as shown in Figure 13. It was observed that this 

statistic monitored over time stays within the chi-square limit for stable operation and 
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exceeds the limit during unstable (transient) ESP operation, long before an ESP trips or 

fails.  The actual value of this statistic during the transition period leading to a trip or 

failure shows an increase of more than two orders of magnitude compared to its normal 

value.  The statistic successfully identified all impending trips or failures a few hours 

before they actually occurred as shown in Figure 13. 

 

Figure 13: Hotelling T-square Plot for Stable Operating Zone and various Trips 

 

By proactively monitoring the Scores Plot and the Hotelling T-square Plot in real-

time, an impending event can be predicted much in advance. However, predicting an 

impending event is not a complete solution. As part of this study, models to diagnose the 

cause and prevent an ESP from failing were also established. 
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5.2 Diagnosis of Potential Cause 
 

The second step in the ESP analytical workflow is to diagnose the cause of to a 

trip or failure using diagnostic analytics. The predictive model was enhanced to 

determine the contribution of each of the 22 parameters towards an abnormal impending 

event. Contribution plots are useful in revealing the parameters that make highest 

contribution towards the event. By determining the contributions of each of the 

parameters and assigning priority based on the contributions, potential cause can be 

diagnosed. 

5.2.1 Contribution Plots 

The parameter values at the new time step (𝑡𝑛𝑒𝑤) in the prediction data 

corresponding to an abnormal event dataset was projected onto the PCA model. This 

yields the following relationship: 

                                                        𝑥𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤𝑃𝑇 + 𝑒𝑛𝑒𝑤 .                                                       (4) 

Therefore,                                    𝑡𝑛𝑒𝑤 = 𝑥𝑛𝑒𝑤𝑃(𝑃𝑇𝑃)−1 ,                                                        (5) 

where 𝑥𝑛𝑒𝑤 represents a 1Xp matrix at a time step or batch in the prediction set and  

(𝑃𝑇𝑃)−1 mostly equals the identity matrix [20]. 

The Dnew statistic or T-square statistic was calculated for each new prediction set 

and further extended to calculate contributions of each parameter for every batch at 

individual time steps [22]. This is defined as 

                                                       𝐷𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤
−1𝑡𝑛𝑒𝑤 

𝑇 ,                                                   (6.1)        

                                          𝐷𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤
−1[𝑥𝑛𝑒𝑤 𝑃 (𝑃𝑇𝑃)−1]𝑇,                                       (6.2) 

                                      𝐷𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤
−1 ∑ [𝑥𝑛𝑒𝑤,𝑝 𝑃𝑝 (𝑃𝑇𝑃)−1]𝑇22

𝑝=1 , and                       (6.3) 
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                                     𝐷𝑛𝑒𝑤 = ∑ 𝑡𝑛𝑒𝑤
−1[𝑥𝑛𝑒𝑤,𝑝 𝑃𝑝 (𝑃𝑇𝑃)−1]𝑇22

𝑝=1 .                               (6.4) 

Therefore, the contribution of each parameter 𝑥𝑛𝑒𝑤,𝑗 of a new batch 𝑥𝑛𝑒𝑤 to the D 

statistic equals 𝑐𝑝= 𝑡𝑛𝑒𝑤
−1[𝑥𝑛𝑒𝑤,𝑗 𝑃𝑝 (𝑃𝑇𝑃)−1]𝑇 [20] where 𝑡𝑛𝑒𝑤 is a matrix of 1X R, 

−1
 is a matrix of RXR, 𝑥𝑛𝑒𝑤,𝑗 is a matrix of 1X1, 𝑃𝑝 is a matrix of 1XR and P is a matrix 

of PXR. 

Average contribution of each parameter for the prediction set having t time steps is 

                                                               𝐶𝑝 = ∑
𝑐𝑝𝑛

𝑡

𝑡
𝑡=1 .                                                        (7) 

The contributions can help in deciding the ranking of parameters. Higher the 

value of the contribution, higher is the rank. The ranking chart can be used to determine 

the parameter causing the impending failure or trip. Diagnostic plots for two Trip 

scenarios are shown in Figure 14 and Figure 15. The parameters in these plots are 

arranged in decreasing order of their contribution from left to right. Motor Temperature 

mainly lead to the abnormal behavior in Trip 1. The ranking of the parameters using this 

methodology are in agreement with what was observe during this trip as explained in 

Section 5.1.4.1 with regard to Figure 7. Motor temperature can increase due to production 

of gas in the pump, presence of abrasive solids or underutilization of the pump. In this 

scenario, as the choke was increased, the scores started to adjust snd move towards the 

stable zone. However, if by increasing the choke, the scores would have not moved 

towards stable zone as was observed in Figure 7, it would indicate that the correct action 

is not being taken to solve the problem. It could also mean that there is skin and 

increasing the choke is not the solution. It would perhaps require a stimulation job to 
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resolve the problem. In this manner, combination of ESP health monitoring using pattern 

recognition and contribution charts can help troubleshoot and fix the problems.  

 

Figure 14: Diagnostic Plot for Trip 1 

System Vibration mainly influenced the abnormal behavior in Trip 2. Vibrations 

indicate onset of potential severe mechanical or electrical problems. 

 

Figure 15: Diagnostic Plot for Trip 2 
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These contribution charts can be extended to a real-time monitoring platform and 

can contribute towards diagnosing the cause behind an abnormal behavior in real-time. 

5.3 Prescription of Preventive Action 
 

The third step in the workflow is application of Prescriptive analytics to suggest 

remedial steps to correct the abnormal behavior and avoid trips or failures.  

5.3.1 Determination of stable operation range 

Dnew statistic definition can be further extended as [23] 

                                     𝐷𝑛𝑒𝑤 = 𝑡𝑛𝑒𝑤
−1𝑡𝑛𝑒𝑤   

𝑇 ~ 
𝑅(𝐼2−1)

𝐼(𝐼−𝑅)
𝐹(𝑅, 𝐼 − 𝑅, 𝛼).                              (8) 

The D-statistic divided by some constant, follows an F-distribution with R and I-

R degrees of freedom. 𝛼 represents the boundary and is equivalent to the value at which 

the cdf of the probability distribution is equal to 0.95.  

We used the above equation to calculate the stable operating range for each 

parameter by setting an inequality as 

                                               𝑡𝑛𝑒𝑤
−1𝑡𝑛𝑒𝑤   

𝑇 ≦  
𝑅(𝐼2−1)

𝐼(𝐼−𝑅)
𝐹(𝑅, 𝐼 − 𝑅, 𝛼).                              (9.1) 

On substituting the value of   𝑡𝑛𝑒𝑤 from equation (5),  

                                         𝑥𝑛𝑒𝑤𝑃−1𝑃𝑇𝑥𝑛𝑒𝑤 
𝑇 ≦  

𝑅(𝐼2−1)

𝐼(𝐼−𝑅)
𝐹(𝑅, 𝐼 − 𝑅, 𝛼),                            (9.2) 

 

where 𝑥𝑛𝑒𝑤 is a 1XP matrix. In order to determine the minimum and maximum stable 

operating values and set an operating range for each parameter, we solve the above 

quadratic inequality individually for each parameter 𝑥𝑛𝑒𝑤,𝑝  and setting the stable 
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operating values used in the training dataset for the other P-1 parameters within 𝑥𝑛𝑒𝑤 

matrix. 

 

 

Figure 16: Prescriptive plot for ESP Heath Performance 

The green bars in Figure 16 represent the stable operating range for each of the 22 

parameters. Since there is significant difference between magnitudes of various 

parameters, the operating value is expressed in percentage. The line graphs represent the 

reading of the various parameters at the time of two separate trip events, Trip 1 and Trip 

2. 
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This plot is useful to distinguish between parameters operating within the stable range 

and those operating outside their stable ranges and show how far are some of the 

parameters operating outside their stable ranges in real time for every time step. 

Controllable parameters such as choke and motor current can be reset such that all the 

parameters get adjusted to lie within the stable green bands. This plot is significant in 

enabling effective decision making and can also be extended to monitor the behavior of 

parameters in real-time operations. 

5.3.2 Remedial action to correct impending problem 

By resetting those parameters which are operating outside the stable green bands 

to a value inside the stable ranges, it is possible to correct the abnormal behavior and 

ensure that the ESP operates smoothly again. 

The F-distribution has relationship with chi-square distribution [24]. Therefore, 

the above relationship can be represented as 

                                                            
𝑅(𝐼2−1)

𝐼(𝐼−𝑅)
𝐹(𝑅, 𝐼 − 𝑅, 𝛼) ~𝜒2.                                        (10) 

Once the parameters are reset to ensure that all parameters are operating inside 

stable bands, this batch is fed as prediction dataset into the model again. The new 

Hotelling T-square value obtained for this batch was observed to be within the stable 

operating zone. On substituting Equation (9.1) in Equation (10), we get 

                                  𝑇𝑖,𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
2 = 𝑡𝑖,𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

−1𝑡𝑖,𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
𝑇 ≦ 𝜒2.                       (11) 

Hence, the recalculated value of Hotelling T-square statistic which was earlier 

more than two orders of magnitude is now less than 𝜒2. It was observed that this statistic 

now stayed within the 95% confidence limit for the prediction data batch and did not 
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exceed the stable limit anymore as seen earlier in Figure 17. Therefore, this methodology 

successfully provides a remedial action to avoid and control impending trips or failures 

proactively. 

 

Figure 17: New Hotelling T-square values for the trips after resetting the parameters 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 
 

6.1 Conclusion 
 

A methodology for data-driven detection and diagnosis of impending ESP 

problems in real time has been proposed using Principal Component Analysis (PCA) 

dimensionality reduction technique. It creates an opportunity to advance from a reactive 

approach towards a more proactive approach based on predictive analysis, detection of an 

impending problem, diagnosis of the cause of the impending problem, and prescription of 

preventive action that will avoid or at least mitigate the impending problem.   

In building the predictive model, historical data was used to determine and 

evaluate key operational variables (decision variables) that affect ESP performance. 

Based on historical data, a hybrid approach (combination of first principles and empirical 

statistics) was used to develop Principal Component Analysis model to capture trends and 

patterns in the behavior of ESPs.  Trends or patterns during normal operation were 

identified and correlated to either satisfactory operation or impending problems. Six 

principal components obtained from the model output were sufficient to capture more 

than 96% of observed variance with 95% confidence limit. It can identify patterns in data 

based on scores and Hotelling T-square statistic and correlate them with normal operation 

or impending event. The model was further enhanced to identify key parameters 

contributing to impending failure. It eventually prescribes stable operating ranges for 

each parameter, thereby prescribing remedial action to mitigate and/ or prevent failure. 
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With this tool, there would be ample time to take preventive action that could mitigate or 

altogether avoid each problem. 

6.2 Significance and Recommendations 
 

This real-time analytical framework enables a shift towards proactive ESP 

monitoring to identify impending problems long before they occur thereby safeguarding 

ESP operation, reducing intervention costs and optimizing production. This approach 

creates opportunities to increase pump uptime, extend the life expectancy of ESPs and 

improve oilfield economics.  

There are opportunities to extend the mathematical model to attribute different 

categories of failure or abnormal behavior like high gas, corrosion, electrical problems to 

different forms of patterns or clusters. This methodology can also be tested against other 

mechanical systems or other forms of artificial lift technology. 
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APPENDIX 

A.1 Principal Component Analysis 

Principal component analysis (PCA) is a statistical method to explain covariance 

structure of data by means of a small number of components [19]. It converts a set of 

possibly correlated variables into a set of linearly uncorrelated variables called Principal 

components, enabling better understanding of the different sources of variation [18].  

The classical PCA model is represented as  

               𝑋 = 𝑇𝑃𝑇 + 𝐸,                                                           (A.1-1) 

where; 

X is the input matrix (t by p), 

T is the scores matrix (t by R); the scores matrix represents the relationship between 

observations [25], 

P is the loading matrix (p by R); it signifies the contribution and significance of the 

parameters [25],  

E is the residual matrix (t by p); it represents the variance not captured by the PCA 

model, 

where; 

t = number of time steps,  

p= number of parameters, and  

R=number of principal components. 

The first component corresponds to the direction in which variance in 

observations projected on it is the largest [19]. The second component is orthogonal to 
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the first component and maximizes the variance of the data points projected on it. 

Repeating this process of projecting observations onto orthogonal components yields all 

principal components, corresponding to eigenvectors of the empirical covariance matrix 

[19].  

The concept of principal components is shown in Figure 18, where the first 

principal component lies along the direction of maximum scatter. The second Principal 

component lies perpendicular to the first one in this two dimensional diagram. The point 

which originally had (x1,x2) as its co-ordinates will have (y1,y2) as its new coordinates 

according to the principal component framework. 

 

 

Figure 18: Diagram of Principal Components in 2-D space  
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Below are the steps which were performed while applying the PCA technique: 

1. Standardize the data using the formula 

 𝑥𝑠𝑡𝑑 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑 𝑑𝑒𝑣(𝑥)
.                                                             (A.1-2) 

2. Calculate the covariance matrix to find the degree to which variables are linearly 

correlated where   

 
 




n

i

ii

n

xxxx
xx

1

2211
21

1

))((
),cov( .                           (A.1-3) 

3. Calculate the eigenvalues   which represent variations of the coordinates on each 

Principal axis. The cross-product xx is first determined and eigenvalues are found 

by finding the solution of the equation  

0 IS  .      (A.1-4) 

4. Calculate the eigenvectors. Each eigenvector consists of p values which 

represents the contribution of each variable to the Principal Component axis 

Eigenvectors are found by solving the equation 

            Ax=  x,                                                         (A.1-5) 

            where x is the eigenvector and A is the transformed x data. The eigenvector    

            matrix is a pXR matrix and is represented by U.  

5. The scores matrix represents the coordinates of each time step n on the Rth 

principal component. The value of score for each principal component R at every 

time step n is calculated using  

npRiRnRRn xuxuxus 222211   .                            (A.1-6) 
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6. As a next step, the correlation between variables and PC’s are calculated and form 

the loading matrix.  

7. The % variance obtained by each eigenvector is calculated as the ratio of the 

eigenvalue over the sum of all eigenvalues. 

 A.2 Robust Principal Component Analysis  

The original input data in PCA is represented as t by p matrix X = Xt,p, where t = 

number of time steps, and p = original number of decision variables. The Robust PCA 

methodology has three steps as described by Hubert et al. (2005) [19]. 

 Firstly, the data is preprocessed to ensure that transformed data lies in a subspace 

whose dimension is less than p – 1. 

 Secondly, a preliminary covariance matrix 𝑜 is constructed and used for 

selecting the number of components R that will be retained in the sequel, yielding 

a R-dimensional subspace that fits the data well. 

 Finally, data points are projected on this subspace where their location and scatter 

matrix are estimated, from which its R nonzero eigenvalues l1,l2 . . . , lR are 

computed. The corresponding eigenvectors are the R robust principal 

components. 

In the original space of dimension p, these R components span an R-dimensional 

subspace. The (column) eigenvectors if written next to one another yield the p by R 

matrix Pp,R with orthogonal columns. The location estimate is represented by the p-

variate column vector µ̂, called the robust center. The scores are the t by R matrix 

                𝑇𝑡,𝑅 = (𝑋𝑡,𝑃 − 1𝑡µ̂′)𝑃𝑝,𝑅,                                                   (A.2-1) 
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where 1t is the column vector with all t components equal to 1. Moreover, the R robust 

principal components generate a p by p robust scatter matrix  of rank R given by 

                                            = 𝑃𝑝,𝑅𝐿𝑅,𝑅𝑃𝑝,𝑅
′ ,                                                             (A.2-2) 

where LR,R is the diagonal matrix with the eigenvalues l1,l2 . . . , lR. 
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