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ABSTRACT

An analysis of wave propagation on an infinitely long
Yagi array of concentric circular loops is presented. A
dispersion relation is derived and numerically solved for
the phase velocity of the wave. For the first propagating
mode, the concentric array of loops is found to possess two
distinct passbands separated by a stop band. The first
passband corresponds to the near resonance of the outer
loop, while the second passband corresponds to the near
resonance of the inner loop. The width of each of the pass-
and stop- bands is a function of the ratio of radii b2/bl.
In the first passband, the outer loop carries a minimum of
five times the current on the inner loop; however, in the
second passband, the current on the inner loop is at least
1.5 times that of the outer loop.

The theoretically determined phase velocities are
verified by experimental measurement using the surface-wave
resonator method. Also, propagation characteristics are
examined in the light of measured near-field at represent-
ative frequencies throughout the pass- and stop- bands.

It is also shown that the character of wave propagation
on a concentric array remains intact under an arbitrary

axial displacement of inner loops relative to outer ones.
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The only change appears as a phase shift in the currents
of the displaced loops. This latter property may be used
to achieve desired pattern shaping and/or limited beam
steering of Yagi antennas.

When the outer loop is made extremely large, the con-
centric array reduces to an isolated array of single loops
with one passband per mode. The phase velocities of the
propagating waves in the latter case are used to obtain
optimum design parameters for the Yagi antenna of circular
loops. In the first mode of operation, the Yagi antenna
of circular loops radiates mainly in the endfire direction,
and in the second mode, the radiation is in a conical shell
pattern. This type of antenna is well suited for coarse/
fine tracking applications.

Finally, other important and varied applications of
the concentric array of circular loops and variations
thereof are discussed. Applications as Yagi antennas,
surface waveguides, TWT interaction circuits, microwave

filters, and open-structure resonators are included.
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INTRODUCTION

Like the dipole antenna, the circular loop antenna
is one of the most fundamental linear antennas in common
use. Historically, small loop antennas were first inves-
tigated and used as direction finders and magnetic field
detectors. It was later found that a circular loop
antenna whose circumference is about one wavelength
radiates strongly in the direction normal to the surface
of the loop and it was employed in a Yagi-Uda endfire
array.

In this study emphasis is placed on the circular
loop as a parasitic element in infinitely long Yagi arrays
of concentric, coaxially-displaced, and isolated arrays
of circular loops. Wave propagation on these structures
is investigated, and their suitability to the design of
useful devices is explored.

Chapter 1 investigates the radiation characteris-
tics of the parasitic circular loop antenna. Properties
such as radiation pattern, gain, and polarization are
discussed for both the m =1 and m = 2 modes of
operation.

Chapter 2 presents the necessary data for the
optimum design of the Yagi antenna of circular loops

subject to constraints on directivity, bandwidth, or
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array size. A physical Yagi antenna of circular loops
is found to have a linearly polarized end-fire beam in
one frequency band, and a linearly polarized conical-
shell beam in a second band.

Chapter 3 deals with the analysis of wave propa-
gation on the infinitely long Yagi array of concentric
loops. A dispersion relation is derived and numerically
solved for the phase velocity of the propagating wave.

In a given mode of operation, the Yagi array of concentric
loops is found to possess two distinct pass bands separated
by a stop band. A dual-wave propagation is also seen to
prevail in a small portion near the end of the second
passband.

The open resonator method is employed in Chapter 4
to experimentally verify the phase velocities of the pro-
pagating waves on the concentric array of circular loops.
Also, the standing waves set-up within the resonant cavity
are measured at various frequencies in the pass-and stop-
bands by means of near-field probing of the array.
Furthermore, in order to ascertain the existence or
absence of dual waves, a matching technique for the near-
field data at frequencies near the end of the second
passband is also described.

The effect of an arbitrary axial displacement of

inner loops relative to outer ones of a concentric array,
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is investigated in Chapter 5. It is shown that the phase
velocity of the propagating wave, and the amplitudes of
loop currents remain unchanged under this transformation.
In fact, the only resulting change appears as a phase
shift in the currents of the displaced loops.

Finally, Chapter 6 is devoted to the discussion
of potential applications of the Yagi array of concentric
circular loops, and variations thereof. Applications as
a Yagi antenna, surface waveguide, TWT interaction circuit,
microwave filter, and open-structure resonator are treated

in some detail.



CHAPTER I

THE CIRCULAR LOOP ANTENNA

1.1 HISTORICAL BACKGROUND

The circular loop antenna driven and loaded at one
or more points, has been analyzed through the years by
many investigators. The methods used in these investiga-
tions vary in complexity and degree of accuracy. Appro-
priate to the symmetrv of the circular loop, the "Fourier
series” method involves a series expansion of the current
in terms of the polar angle ¢. This technique, applied
to the loop driven by a §-function generator, was first
proposed by Hallen [l] and later improved by Storer [2]
and perfected by Wu [3]. The theories of Storer and Wu
were later extended by Iizuka to the loop with multiple
loadings [4], bv Fante et al. to the study of the loop
near fields [5], and by King to the shunt-driven loop [6].
The "successive approximation" method of Adachi and
Mushiake [7], [8] solves a modified integral equation for
the current on the loop using an iterative technique.
The third known method is the "numerical method" developed
by Baghdasarian and Angelakos [9], which determines a
solution for the integral equation given in [7] by direct

numerical integration. All the remaining methods which



were used at one time or another are for the most part
approximations to the Fourier series method and their
validity is limited to a given loop size. Notably, the
"variational" method employs a three~term cosine expansion
for the current on the loop [10], and the "EMF" method
uses only one term [11],

For the sake of completeness and harmony of
presentation, the Fourier series method will be outlined
in the next section. Interested readers are referred to
Storer's and Wu's papers [2], [3] for more details. A

more tutorial treatment of the subject is given by King [12].

1.2 THE DRIVEN CIRCULAR LOOP ANTENNA

The loop to be analyzed is illustrated in Fig. 1.1,
It consists of a circular ring of perfectlv conducting
wire with a §-function generator V06(¢) at ¢=0. The
radius of the ring is b, that of the wire a. It is assumed
that the latter is very small compared with both the radius

of the loop and the wavelength, so that

a<<b, and Ka<<l (1.1)

The integral equation for the current I($) can be

derived from the boundary condition E¢ = -VOG(¢)/b on the



cross section

2b

§-function
generator

Fig. 1.1 Circular loop antenna.

surface of the loop. This requires that E =0 except at

¢

¢=0, where it becomes infinite but in such a manner that

[ E,bd¢ = -V (1.2)

¢ o

It follows from the defining relation —E=V®+ij for the

scalar potential that on the surface of the loop

V. §(9)
O R0 .
— 22+ Jwhag (1.3)

¢

ol

The scalar and vector potentials at the element ds=bd¢

are given by the following integrals



o = g ST (e )W (=4")dg" (1.4)
A = Yo ' ! ' '
s = a0 /T T(6") W(s-¢')cos (4=4")ds (1.5)

-m

where the Kernel is given by

-3JKbR
W(p=9') = o= /7 &

5 S S v (1.6)

with

R2 = 4 sin?(4-¢') + 4 2o sin2¥
- % b2 2
and ¢ = o-9"

where Hor €4 and K are the permeability, permittivity,
and propagation constant in free space.

The total current and charge pver unit length are
I(¢) = 2rma J¢(¢) and 9(¢) = 2rmap (¢) where J¢(¢) amd p (¢)
are the surface densities of current and charge.,

The equation of continuity may be written as

1 9I(¢)
b Y

+ Jug(s) = 0 (1.7)

solving for g(¢) one obtains



ale) = & _a§d§¢) (1.8)

using (1.8) in the expression for ¢ vyields

o3 m AT (") o,
T Tnwe b r T agr WOTHT) e (1.9)

By differentiating with respect to ¢ and using the

condition %% = —igg—’ the following results
30 _ -3 m 3T(¢') 3

$ ~ Tme Wb -n 0¢' 29" W(g=~¢"') d¢' (1.10)

Integrating the right-~hand side of (1.10) by parts and

making use of the fact that I(n) = I(-7) vyields

39 _ J u 92 o
29 ~ dnewb J-p 17 ggz Wleme) e (1.11)

and upon substituting (1.11l) and (1.5) in (1.3) it follows

that
V_s(¢) = Junod JTI(4') cos (¢=¢') W(p—9¢') d¢'
o8 (0) = — ] ¢ o= ¢ 6= ¢
3 Ty 22 W(e=0') do’ (1.12)
4'rreowb -7 ¢ m *

This may be written as



V_§(¢) = 329 S™(p-0") T(¢') d¢' (1.13)
o8 (8) = 4 ] $=¢ ¢ ¢ .

where the new Kernel is

_ , 1 32
M(¢-¢') = [Kb cos(¢-¢') + Xb 392 I wie-¢') (1.14)
1
and n =(qu/K = (uo/eo)'2 is the intrinsic impedance of

free space.

A solution of the integral equation (1,13) is now
obtained in the form of a series expansion. This is
derived by expanding both the Kernel W(4-¢') and the

current I(¢') in Fourier series. Thus, let

+
W(-¢") =m£_me e~ Im(e-¢ ") (1.15)
4o e
T(4") =] 1_ e n? (1.16)
n=-—w

where the coefficients Km and In are given by

3 v
1= T 1ene™ ap (1.17)
=L - In(é=¢") 5. _
Kn = 5. f—'n' W(o ') e dd)-—K_n (1.18)



The substitution of (1,15) in (1,14) leads to the following

result

Kb n?
2[77 )

(K_,+K__;)- B

Mg=0") = n+1%n-1 k1 e In(701) (1 1)

n

which may be written in the compact form

+ o = e
M(¢=¢') =} a6 e in(e-¢") (1.20)
where
_ kb .. n? -
ah T 2 [Kn+l+Kn—l] "6 Xn T 23n (1.21)

On substituting (1.20) in (1.13), I(¢') by its series
representation, and evaluating the coefficients I, by

the usual methods, one obtains the result

I = o (1.22)
n

The series solution for the loop current is now given by

-jVv 1 © cosng
I($) = S (=+27 ) (1.23)
n.m a
o} o n=1 "n
The associated input admittance is
Y=I‘§0)= Lt +2] 2 (1.24)
o "o o n=1 “n



1.3 THE PARASITIC CIRCULAR LOOP ANTENNA

The research described throughout this dissertation
focuses on the circular loops as parasitic elements excited
by a traveling wave that propagates on the infinitely long
Yagi structure, and not as independently driven antennas.
By virtue of symmetry; the propagating modes on such a
structure will be independently excited. This fact was
predicted by Sensiper [13] as early as 1955 in his comments
on the tape ring structure; however, it was never theoretic-
ally investigated until recently [14], [15]. This behavior
results from the orthogonality property of the sinusoidal
functions hereby designated as the "orthogonality property"
of modes. It should be pointed out, however, that this
phenomenon occurs only in the case of the infinitely long
Yagi array of short-circuited loops, If, for instance,
the loops are loaded at one or more points or open-circuited
(ZL=w), the modal picture changes and the independent
excitation of modes no longer holds.

For the purposes of this chapter, later studies
will show that a mode m can be excited on the infinitely
long Yagi array of circular loops. Thus, the current on

any element of the array is assumed to be

I(¢) = cos m¢; m=1,2,3,... (1.25)



where the amplitude has been arbitrarily normalized to

unity.

1.4 FAR-FIELD PATTERNS OF THE PARASITIC LOOP
In this section, the calculation of the far-zone
fields of the parasitic circular loop antenna is considered.

Such an antenna is shown in Fig, 1.2,

A
P/r
AP
r
T
b 0
y
~ >y
d)' \\ Zq:
~—
\\ A~
A~ rC
4)'

X

Fig. 1.2, Geometry of the circular loop used

in the far-zone calculations.
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The vector potential at the point P due to the

current I(¢) is given by

-jKr; .
A = 19_ IZHI(‘P')bdd" e 1¢| (1.26)
4 ry '
where ¢' = cos (¢~-¢')d+ sin (¢—¢"') r, is a unit vector
in the direction of the current element bd¢'. And, r =

c
sin6ér + coss6e 1is a unit vector in the direction shown.

The distance »r; from the current element bd¢' to the

field point P is given by

r?2 = r?2 + b2 - 2rb cosy (1.27)

since b<<r then

ry = r-bcosy =r-b sindcos(¢=¢"') (1.28)

Using the expression for the unit vector &‘ and that of
the distance r; in (1.26), the vector potential separates
into its three spherical components given as

uob e-]KP

A = /2"3¢"' cos mé' cos(¢=¢"')

eij sinecos (¢=¢"')
) 47 r o

(1.29a)
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uob cos 6 e—jKr o

Ae = yp o ﬁ) dé¢' cos m¢é' sin(é-¢')e

jKb sinécos (¢-¢'")

(1.29Db)

uob sin 6 e~jKr o

A = fo dd)'COS mo " Sin(¢—¢')eij SinGCOS(¢—¢v)

r A r

(1.29¢)

where I(¢') was replaced by cos m¢'. (uo is the permeability
of free space and K =(»¢uoeo is the propagation constant
in free space.)

In the far zone, the electric field is given by
g = _ju)Kt (1.30)

where Kt denotes the transverse component of the vector

potential. Then,
E = —jw(Aeé + A¢$) (1.31)

Hence, once Ae and A¢ are explicitly determined, the
electric field follows from (1.31). In order to simplify
Ay in (1.29a), a change of variable is made first. Let
u= ¢'-¢ then du = d¢' and ¢'= ¢+u. Using this in (1.29a)

the expression for Ay becomes
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u b -jKr . .
A =2 & /2™ du cos m(¢+u)cos u eJKb sinécosu (1.32)
¢ 4 r 0
Using the trigonometric identity cos m(¢+u) = cos m¢cos mu

- sin m¢ sin mu, one obtains

-jKr

ube 2T ' .
_ O JKb sinfcosu
A¢ — I {cos m¢ﬁ) du cos mu cos u e
. 2m jKb sinBcosu
~ sin m¢ﬁ) du sin mu cos u e } (1.33)
Using now the identities c¢os mu cos u = [cos(m+1l)u+
cos(m-1)ul/2 and, sin mu cos u = [sin(m+l)utsin(m-1)ul/2,
the expression for A¢ may be put in the following form
uob e—jKr
By = —gmp— (cos melOp q+0, 11 - sin melR ¥Ry 413
(1.34)
where
27 jKb sinecosu
Oy = Q)cos mu e du (1.35a)
and,
2m, jKb sinfcosu
Rm = ﬂ)51n mu e du (1.35b)

Note that the integrand in the expression for Rm is an

odd function of the variable u which yields zero when
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integrated from 0 to 2w. Hence, Rm=0 and A¢ reduces to

-jKr
b e
Ay= —pgzz— COS m¢[Qm+l(6) +Q _1(8)] (1.36)

8Tr
On the other hand, the integrand in Qm is an even function

of the variable u. Then Qm may be written as

0 = 2/ cos mu eij sinecosu
(o]

P .
n du=27w]j Jm(Kbs1ne) (1.37)

where Jm(x) is the Bessel function of the first kind of

order m.

The substitution of (1,37) in (1.36) yields

4 b e—jKr
- . — jm+l cos m¢ [T (Kb sing)~J (Kb sine)]
) 4r m+1 m-1
(1.38)
If the recurrence relation J_,,(x) - J _,(x) = =277 (x)
is used in (1.38), the final expression for A¢ results
uob e_JKr .m-1 ' .
A¢ = ] cos mé Jm(Kb sinb) (1.39)

Let us now turn to the expression of A, and perform

)
the change of variable u = ¢'-¢ with the following result
-jKr

r.b e . .
Ae = .oj"_r___ cosefozﬂ du cos m(¢+U) sin (_u)eij sinbcosu

(1.40)
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Upon using the identities: cos m(¢+u) = cos m¢cos mu
~sin m¢sin mu, with cos mu sin u = [sin(m+l)u + sin(m-1)ul/2,
and sin mu sin u = [cos(m-1)u - cos(m+l)u]/2 coupled with

the vanishing of the integral Rm (see 1.35b), Ay reduces

to

4 b e-jKr
(@] .
Ae = ——m——- cosfsin m¢ [Qm_l—Qm+l] (1.41)

where Qm is as defined in (1,35a).

Replacing Qm by its value from (1.37) yields the

result
uob e_JKr . .m-1 .
A, = —g—)—— ©0s6 sin m¢(2r] ) [T, (Rb sine)+J_, 4
(Kb sing)] (1.42)

(x)

Making use of the recurrence relation Jm_l(x) +J

m+1
= 2m Jm(x)/x, gives the final expression for A,. Namely,
A = igf:iii 'm_lm sin m cosd J_(Kb sine) (1.43)
0 2Kr ] ¢ singd m :
The electric field components E¢ = -ij¢ and
Ee = -ije may now be determined at once.
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m"o e~ IKT
= =9 — = T :
E¢ I Kb = Jm(Kb sing) cos m¢ (1.443a)
n -jKr
_ _sM o e cosH . .
E, = -] 5 M = =106 Jm(Kb sinf) sin m¢ (1.44Db)
where n, = Vuo/eo is the intrinsic impedance of free

space. Similarly, the magnetic field components

H¢ = Ee/n0 and He = —E¢/no are given by
-jKr
- _smme coso . .
H¢ = =] 5 = =Tng Sin mé Jm(Kb sind) (1.45a)
-jKr
_ -m Xb e ' .
He =3 — —F cos m¢ Jm(Kb sing) (1.45Db)

The magnitude of the time-average Poynting vector

is given by

= l * - * = _l_ 2 2
Pov=3 Re[EeH¢ E¢He] = o [|Eg| +|E¢| ] (1.46)
Replacing IE9| and |E¢| by their values, squaring and

rearranging yields

2
sin mé¢ Jm(Kb sineq +

n
_ 0 cosb
Pav(e’¢) - 8rl[[m sind

2
(kb cos m¢ Jﬁ(Kb sine)]] (1.47)
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The total radiated power from the loop antenna is
obtained by integrating the time-average Poynting vector
(magnitude) over the surface of a large sphere of radius r.

'ﬂ'zﬂ

- 2 a3
Prad = Q)Q) Pav(e,¢)r sing de d¢ (1.48)

The integration with respect to ¢ 1is straightforward

2™ 2
since sin?m¢ d¢ = I cos?m¢ d¢ =r, and only the

integration with respect to 6 remains.

™ , cos?9 J% (Kb sine)
Prad = 8 {m ﬁ) sing de +
(Kb)24j sine J'2 (Kb sine)de} (1.49)

The directive gain of the loop antenna is defined
as the ratio between the time-average Poynting vector
(magnitude) and the average radiated power density

Pav(e.¢)

(Praa
l4nr2

Gd(e,¢) = (1.50)

Substituting Pav(e,¢) and Prad by their values, it follows

that
cosb _ ., . 2 ' . 2
[2Zm=——sin m¢JT_(Kb sinB)]4+[2Kb cos m¢J' (Kb sind)]
G, (6,6)= sind m ] m
arvr T cosZeJé(Kb sing) T
m2 [ . de + (Kb)25"J' (Kb sine)sineds
) sin® o m

(1.51)
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where the integrations in the denominator of (1.59) must
be evaluated numerically.

At this point, one is ready to investigate the
radiation properties of the parasitic circular loop
antenna. With this objective in mind, only the first two
resonant modes (m=1,2) will be considered.

(1) Case: m=1

The radiation intensity defined as (rZPav)was
plotted as a function of 6 and ¢ by a Lehner's digital
plotter with the help of a 3-D program [16]. The far-
field pattern of a loop in the first resonant mode (Kb=1)
is shown in Fig. 1.3, Note the (6,¢) plane forms the
plane of the page while the radiation intensity is the
elevation above that plane. The plot view angle (y=30°)
designates the angle between the observer's line of sight
and the (8,¢) plane. Also, before plotting, all the
radiation intensity values were translated upwards by an
amount equal to the absolute value of the minimum. Hence,
a plot minimum, or valley, represents zero elevation.

Inspection of Fig. 1.3 reveals the existence of
a peak in the radiation pattern at 6 equal to 0° and 180°,
and a null at 6 equal to 920° for ¢ equal to 90° and 270°.
Hence, unlike the in-plane omnidirectional pattern of the

small loop with uniform current, the pattern of the one-wave-
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length loop is bidirectional and coincident with its axis. By
evaluating the electric field in rectangular coordinates,

it is easily shown that Ex vanishes at 6=0° and 180°.
Therefore, the polarization of the antenna is linear and

in the y-direction. This is illustrated schematically

in Fig. 1.4. The E-field vector is parallel to an imaginary

line connecting the two current nodes [17].

Fig, 1.4. Beam and polarization of the 1) loop.

It is interesting to note that the directivity of
this one-wavelength antenna is approximately 4dB above

isotropic or, 1.86 dB above a one-half wavelength dipole [8].
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Also, since the distribution of current on the loop is in
the dipole mode, the field pattern resembles that of a two-
element broadside dipole array [18], however, its direc-
tivity is lower by about 1.14 dB.
(2) Case: m=2

The far-field pattern of a loop in the second
resonant mode (Kb=2) is shown in Fig. 1.5. The plot view
angle in this case is 45 degrees,

Inspection of Fig. 1.5 reveals the existence of
a peak at 8 equal to 45° and 135° for some values of ¢,
and a null at 6 equal to 0° and 180° for all values of ¢.
Closer examination of pattern behavior at 6=45°
and 135° when ¢ is varied, shows a variation in the
radiation intensity of no more than 3dB. Thus, the 22
loop has a conical-shell beam with a slightly nonuniform

rose-like aperture as illustrated in Fig. 1l.6.

(b) polarization

X
(a) beam

Fig, 1.6. Beam and polarization of the 2) loop.
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The polarization in the beam is linear; however, the orien-
tation of the E-field vector changes with 6 and ¢ as one

traces the circular aperture of the beam.
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CHAPTER 2

OPTIMUM DESIGN OF THE YAGI ANTENNA
OF CIRCULAR LOOPS*

2.1 SURVEY OF RECENT PROGRESS

Dipoles [19-39], slots [46], helices [47], and
loops [14, 15, 17, 40-42, 43-44] have all been used as
elements in a Yagi array. Although dipole arrays were
investigated considerably in the literature, work on the
loop arrays is relatively scarce by comparison. It is
worthwhile to note that using loops in place of dipoles
could eliminate problems of corona at high altitudes [17],
and result in reduced ground reaction near the earth [45].

Ever since the discovery of the directive property
of the large one-wavelength circular loop by Adachi and
Mushiake (1957) [8], many investigations, mainly by
Japanese researchers, were made on the use of the 1) loop
as an element in a Yagi antenna. However, due to the
analytical complexity of the loop, all of these investiga-

tions were limited to the study of two-element arrays.

* Material contained in this chapter has been published

in a paper by Shen & Raffoul [43].
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An early study of the relatively long Yagi array of loops
was an experimental one by Lindsay in 1967 [17]. Lindsay
examined the pattern, gain and polarization of an array

of 1)x loops. One result, which later research did not
confirm, was that the gain differential of 1.8 dB between
the loop and the dipole also exists between a loop array
and a dipole array of the same length. In a 1971 paper
[40], Yamazawa et al. studied the propagating waves on

the infinite array of tape loops. However, their analysis
was lacking in several respects: (1) A uniform current
was assumed to exist over the width of the tape loops;
whereas, the current should actually possess a square-
root singularity at the edges. (2) Cutoff was defined

to occur when the interelement phase shift reaches a value
equal to @I radians. This assumption is not valid in
general as we shall show in section 3.5. (3) Only the
first mode passband was discovered. (4) The orthogonality
property of modes was not observed. At about the same
time, Ito et al. performed a theoretical study of the
finite array of loops [41l]. Their study involved the

use of the fourier series method with appropriate modifi-
catlions to account for finite excitation gaps and unequal
size loops. However, only results for 2-element Yagi

arrays were obtained, This was probably due to the
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numerical complexity of the matrix equations involved.
Later, Appel-Hansen in an experimental paper (1972) [42],
showed that the gain of a Yagi antenna depends on the
velocity of the propagating wave, and not to any consider-
able extent on the particular forms of the director
elements. After referencing Shen's work on the dipole
array [30-31], Yamazawa et al. (1973) cleared up some of
the shortcomings in their original paper [15]. This time
they succeeded in showing the existence of various pass-
bands and in recognizing the orthogonality property of
modes. However, the remaining two defects continued to
limit the accuracy and applicability of their results.
About the same time, Kodis et al. in a private memorandum
[14] analyzed rigorously the propagating waves on the
infinite array of circular loops. Data on the phase
velocity of the waves in several passbands were also
given. Near cutoff and in a narrow frequency band, two
propagating waves of different phase velocities were
found to exist. Although the regular passbands were
verified by experiment, the anomalous bands passed
undetected. More will be said on this in Chapter 3.
Using the phase velocity data obtained in [14], optimum
design parameters for the finite array of circular loops

subject to constraints on directivity, bandwidth, or array
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size have been obtained. Details of this optimization
strategy with numerical results are given below, Finally,
the latest known publication on the subject is the one by
Shoomanesh and Shafai (1975), and deals with the finite
array of circular loops [44]. Calculations for a uniform
array of equal size loops (Kb=1l.0) were made. In this
case the m =1 mode is obviously dominant. The total
current, and input admittance of the driven element, and
the radiation field of the entire array, with ten Fourier
coefficients taken into account, were compared to those
corresponding to the dominant first mode only. The
difference in both radiation field and admittance was
negligible. While the first mode current is a perfect
standing wave, the total current has an extra travelling
wave component associated with it. This confirms the
assumption made in the next section that a single dominant
mode also exists on a finite Yagi array.

A short survey of recent work dealing with the
large array of circular loops has been presented. The
references consulted are representative of the work done
and are not to be construed as exhaustive. Attention
will now be focused on the main topic of this chapter:
namely, a detailed discussion of the optimization proce-

dure used in determining the physical parameters of a
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finite Yagi array of circular loops constrained in band-

width, directivity or array length.

2,2 THE YAGI ANTENNA OF CIRCULAR LOOPS: A SURFACE-WAVE
MODEL

A Yagi array of loops is shown in Fig. 2.1, where
the parameters a, b, d, N and the coordinates r, 8, ¢ are
defined. When the number of elements is infinite, it has
been shown that this structure can support propagating
modes in several distinct frequency bands [14]. 1In a
given passband, a surface-wave is excited and travels
unattenuated along the array. The current it induces on
the elements is constant in amplitude with a progressive
phase shift ¢ from one element to the next. Thus, the

current distribution on the typical nth loop is given by

I, = cos(mcb)e_jmI> (2.1)
where m is the mode number and the amplitude has been
arbitrarily normalized to unity.

A Yagi antenna may be modeled as a finite section
of the infinitely long structure where one end is driven
by a source and the other end is terminated in free space.
Also, in order to keep the model simple, certain assump-

tions are made. First, the current on the loops is assumed
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to have the same distribution as the current that exists
on the loops of the infinitely long array (Egq. 2.1). 1In
other words, the effect of reflection at the array ends
is neglected. Second, it is assumed that the reflector
loop contributes negligible radiation; therefore, its
presence is ignored in the computations. The first assump-
tion follows the same approximation procedure used in an
earlier work which yielded quite satisfactory results [32].
And, the validity of the second assumption is discussed
in [19].

Using the model thus formed, the far-field and
directivity of the Yagi antenna may now be calculated.
The phase delay ¢ in equation (2.1) is first obtained,
for various loop radii and spacings, from the phase
velocity data given in [14] where ¢ = (Kb) (d/b)/(v/c).
Also, before any pattern or gain calculations are made,

the passband is limited on the low end by the requirement

, -2/8Z-K2p
that the transverse power density (ae ) should
decay as fast as e_r/Zb. This condition is necessary in

order to limit the extent of the field in the direction
normal to the array. (Note ¢ = Bd where B8 1is the
axial propagation constant of the wave). The phase delays
corresponding to frequencies in the permissible range of
the first and second passbands are given in Tables I and

ITI respectively.



TABLE I

Phase delay ¢ in radians of m=1 mode (a/b=0,01)

Kb d/b=1.0 d/b=0.5 d/b=0.25
.76 .202
.77 . 207
.78 .411 . 211
.79 .419 .215
.80 427 .220
.81 .436 .224
.82 .445 .229
.83 .871 .455 .234
.84 .888 .465 . 240
.85 .904 .475 . 245
.86 .924 .486 .251
.87 .944 .498 .260
.88 .965 .510 .264
.89 .987 .524 .272
.90 1.011 .539 .280
.91 1.038 .556 .291
.92 1.069 .573 .298
.93 1.103 .592 .309
.94 1.142 .615 .320
.95 1.189 .642 .334
.96 1.245 .671 .352
.97 1.313 .709 .365
.98 1.404 . 756 .393
.99 1.540 .822 422
.995 1.639 .868 .443

1.000 1,783 .933 .469



TABLE II

Phase delay ¢ in radians of m=2 mode (a/b=0.01)

Kb d/b=1.0 d/b=0.5 d/b=0.25
1.81 .458
1.82 . 463
1.83 .468
1.84 . 475
1.85 .933 .483
1.86 .945 .491
1.87 .958 .499
1.88 .973 .508
1.89 .990 .518
1.90 1.007 .529
1.91 1.927 1.029 .542
1.92 1.959 1.053 .556
1.93 1.998 1.078 .572
1.94 2.044 1.112 .589
1.95 2.104 1.148 .611
1.96 2.178 1.197 .636
1.97 2.280 1.256 .668
1.98 2.429 1.340 .711

1.99 2.689 1.465 .773
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2.3 DIRECTIVITY AND PATTERN

The far zone electric field of the linear array
shown in Fig. 2.1 may be obtained by applying the principle
of pattern multiplication. This simply states that for an
array consisting of identical radiators of like orientations,
the radiated electric field is equal to the product of the
normalized "element pattern" and the "array factor" [48].
The normalized "element pattern" is the electric field due
to only one element of the array with a unity excitation
current, The "array factor"™ of a linear array is the elec-
tric field intensity arising from a similar array of iso-
tropic radiators having the same spatial positions and
excitation currents as the elements comprising the original
array.

The array factor for the N equally spaced elements

of Fig. 2.1 is given by

N-1

AF = oJn(Kd cos 6 - 9) (2.2)

n=0

where K = 20/) is the free space wavenumber, d 1is the in-
terelement spacing, and 6 1is the angle from forward endfire.
The array factor may also be written as

N-1

AF(y) = [ eIPV (2.3)
n=0
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where ¢ = Kd cos 6 - ¢. The intensity of the electric
field radiated by the array is equal to the product of

the array factor, AF(y), and the normalized element pattern,

F.

E = ¥ (aF) (2.4)

where F was calculated in Chapter I and given by

n -JjKr A
F = —jm 2 & cos 8 5 (Kb sin 6) sin m¢6 + Kb J'
2 sin 6 “m m

(Kb sin 8) cos m¢$ ] (2.5)

where g is the intrinsic impedance of free space, Jm
is the Bessel function of order m, and‘%ﬁis its derivative
with respect to the argument. The components of the elec-

tric field intensity may be written as

n. —JjKr

- _-m oe cos 6 . .
Ee = -3 5 = nST% Jm(Kb sin 68) sin m¢ [AF] (2.6a)
m "o e—jKr
E¢ = - - Kb J&(Kb sin 6) cos m¢ [AF] (2.6Db)

The series in (2.3) is the geometric series which

may be written in closed form as
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-1 NV
= Jny _ -1 _ J%(N-1) sin(Ny/2)
AR (V) nzoe NI Sin(e/2) (2.7)

The time-average Poynting vector (magnitude) is given by

P = 1 [

—_— 2 2
av. 2no Ee' + IE¢| ] (2.8)

Using (2.6) and (2.7) in (2.8) yields the result

"o sin? (Ny/2) { [m cosf

= i i 2
P V(e,¢) §72 sinZ(v/2) sing Jm(Kb sin 6) sin m ¢1]

+ [Kb J! (Kb sin 6) cos m¢ 12} (2.9)

The total radiated power is obtained by integrating
P V(e,¢) over the surface of a large sphere of radius r.
The integration with respect to ¢ is straightforward,

while the integration with respect to 6 remains.

™ .
_ o) T cosb . sin(Ny/2) 2
P = —3 (ﬂ)[m =155 Jm(Kb sin9) Sin (b/2) 14 sineds

™ ' . sin(N /2) 2 .
+ ﬂ)[Kb Jm(Kb sing) _55375%57— 14 sineds } (2.10)

Performing the change of variable y=cosf, dy=-sinedse

yields the result
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™n
Prog = 8° [Fl(m) + Fz(m) + Fs(m) + Fu(m)] (2.11)
where
_ 1 ¥y T2y Sin N/2(yKd-¢) 42
F (m) =/ Im o I (KbY1-y%) —— LyRa-e) 1 4y (2.12a)
_ Y 7, Sin N/2(yKd+d) ,,
_ . - sin N/2(yKd-¢)
Fy(m) = .I'ol[Kb Iy (Kbv/1-y2) sin L (yKa=9) 12 dy (2.12c)
F,(m) = f1[Kb J' (Kb/I=y?Z) Sin N/2(yKRd+s) ;2 4 (2.124)
4 0 m Y sTn L (yKd+3) y :

The directive gain may now be evaluated from the

relation Ggq(6,¢) = (41rr=2)(PaV(e,¢)/Pr It follows that

ad*

[m cote Jm(Kb sin 6) sin m¢l?2 + [Kb Jé(Kb sin6)cos m¢]?
F,(m) + F,(m) + Fz(m) + Fy(m)

Gd(e,q>) =

2
2 sin N/2(Kd cos 6 -%)
°[: sin %(Kd cos 6 — ¢ ) J (2.13)

Finally, the directivity of the antenna is defined as the
directive gain evaluated in the direction of maximum

radiation. As in Chapter I, only two cases are considered.

(1) case: m=1
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In this case the beam is in endfire direction

(emax = ¢max = 0). Using this in the numerator of (2.13)

yields the directivity of the Yagi array in the first mode.

p. = (Kb)2[sin N/2(Kd-¢)/sin ¥ (Kd-s)]?
1 Fl(l) + Fz(l) + Fs(l) + Fq_(l)

(2.14)

(2) case: m=2

In this case the beam is shaped like conical shell

with emax and ¢max determined by a study of the radiation

intensity »2 P (Eg. 2,9) when ¢ and ¢ are varied in their

av
respective ranges. It follows that ¢ =0 while ¢

max max
is variable and function of the parameters of the array.
Then, the expression for the directivity of the Yagi array
in the second mode may be written as

' : 2
[2 Kb J) (Kb sin 6 __ )]

D2 = F(2V+F, (2)#F, (2)¥F, (2)

— -
sin %(Kd cos 6 __ -9)

sin N/2(Kd cos 6___-d) |2
[ nax :l (2.15)

2.4 A NEED FOR OPTIMIZATION

The ideas described below apply to the Yagi array
antenna when operated in either the first or the second
mode. For the sake of clarity, A Yagi array operated in

the first mode (m=1) is considered, The array parameters
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N, a/b and d/b have certain fixed and known values. By
substituting the phase delay data of Table I in Eq. (2.14),
the directivity of such an antenna may be calculated at
discrete frequencies throughout the passband. The resultant
gain versus frequency curve shows an almost linear increase
with frequency up to a maximum value after which the gain
sharply deteriorates. This is illustrated typically in
Fig. 2.2 for a/b = 0.01, 4/b = 0.25, and three different
values of N (N=24, 48, and 72).

The bandwidth of the array is hereby defined as
the frequency range in which the gain is equal to or greater
than that at the lower cutoff frequency of the passband.
Inspection of Fig. 2.2 shows as much as 4 dB variation in
gain from the maximum value when the frequency varies
within the range covered by the bandwidth. So, in order
to limit the gain variation to a minimum without a sacri-
fice in bandwidth, it is necessary to choose the center
frequency as the nominal design frequency instead of the
one corresponding to maximum gain. It is seen that this
selection of operating frequency results in a slight
reduction in gain from the maximum value; however, the
increase in operating bandwidth more than compensates for
the reduced gain.

Using these guidelines, the necessary data needed
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in the design of Yagi antenna arrays constrained in either
gain, bandwidth, or array size may now be obtained. It is
shown that the physical structure of the Yagl antenna is
completely determined whenever any two of these constraints

are specified.

2,5 FIRST MODE: YAGI ARRAY WITH END-FIRE BEAM

Starting with a given set of array parameters
(N, a/b, and 4/b), the phase delay data of Table I are
used in Eq. (2.14) to calculate values for the directivity
corresponding to frequencies in the first passband. Then,
the bandwidth of the array is determined in the manner
explained in the previous section. The center frequency
(Kb)o and its corresponding directivity Do are determined
next, After that, the percent bandwidth and the array length
are evluated in terms of center frequency. This completes
one round of calculation. Next, a new value of N is chosen
and the procedure is repeated.

Tables III-V list the results of the calculations
for the m=1 mode. These results are also plotted in
Fig. 2.3. NOte that the directivity is insensitive to the
spacing of the loops while the bandwidth is very much
dependent on it. The calculated directivity is compared

with the experimental data obtained in [42]. It should



TABLE III

Yagi Array of Loops - Design Parameters

(m=1, d/b=1)

N kb D (dB) BW (%) L/A

0.92 8.6 18.6 0.73

0.91 9.7 17.6 1.01
10 0.91 10.6 16.6 1.30
12 0.90 11.3 15.5 1,58
14 0.90 12.1 15.5 1.86
16 0.90 12.6 14.5 2,13
18 0.90 13.2 14,5 2,42
20 0.89 13.7 13.5 2.69
22 0.89 14.1 12.4 2,96
24 0.89 14.5 12.4 3,23
26 0.88 14.9 11.4 3.50
28 0.88 15.3 11.4 3.78

30 0.88 15.5 10.3 4,03

40



TABLE IV
Yagi Array of Loops - Design Parameters

(m=1, 4/b=0.5)

N kb D (dB) BW (%) L/
12 0.89 8.7 24.7 0.78
14 0.89 9.3 24.2 0.92
16 0.88 9.7 22.7 1.05
18 0.88 10.2 22.7 1.19
20 0.88 10.6 21.7 1.32
24 0.87 11.4 20.7 1.59
28 0.87 12.0 19.7 1.86
32 0.86 12.6 18.6 2.12
36 0.86 13.1 17.5 2.38
40 0.85 13.6 16.5 2.64
44 0.85 14.0 15.4 2.89
48 0.85 14.5 15.4 3.16
52 0.84 14.8 14.3 3.41
56 0.84 15.0 13.2 3.65
60 0.84 15.4 13.2 3.92

41



TABLE V
Yagi Array of Loops - Design Parameters

(m=1, d/b=0.25)

N kb D (dB) BW (%) L/
24 0.88 8.7 27.3 0.81
28 0.88 9.3 26.3 0.94
32 0.87 9.9 25.3 1.07
36 0.87 10.2 24.3 1.20
40 0.87 10.8 24.3 1.34
44 0.86 11.1 23.2 1.47
48 0.86 11.5 22,2 1.60
52 0.86 11.9 22.2 1.74
56 0.85 12.2 21.2 1.86
60 0.85 12.4 20.1 1.98
64 0.85 12.7 20.1 2,12
68 0.84 13.0 19.0 2.24
72 0.84 13.3 19.0 2.37
76 0.84 13.5 18.0 2.49
80 0.83 13.6 16.9 2.61
84 0.83 13.9 16.9 2.74
88 0.83 14.2 16.9 2.87
92 0.83 14.3 15.8 2,99
96 0.83 14.5 15.8 3.12
100 0.82 14.7 14.6 3.23
104 0.82 14.9 14.6 3.36
108 0.82 15.1 14.6 3.49
112 0.82 15.1 13.5 3.60
116 0.81 15.2 12.3 3.71

120 0.81 15.4 12.3 3.84
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be remembered that in the present analysis the directivity
corresponds to the midrange frequency, while the measured
one corresponds to the largest obtainable directivity as
shown in Fig, 2.2, From Fig. 2,3, it is seen that the
difference between the two may be as much as 2.5 dB when
the array is 0.8) long. For longer arrays, the bandwidth
is narrower and the discrepancy gradually disappears, In
view of this fact, the agreement between theory and experi-
ment is considered to be quite satisfactory.

Finally, like a dipole array, a loop array in the
first mode of operation radiates mainly in the end-fire

direction.

2,6 SECOND MODE: YAGI ARRAY WITH CONICAL-SHELL BEAM
Starting with a given set of array parameters

(N, a/b, and d/b), the beam position 0 ax is first determined.

This is done by inspection of the radiation intensity

(Eg. 2.9) as 6 varies throughout its range., The knowledge

of the array parameters, the beam position emax' and the

phase delays given in Table II enables one to obtain the

directivity versus frequency curve by successive applica-

tion of equation (2.15). The remainder of the numerical

procedure is identical to that used previously for the

first mode.
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Tables VI-VIII list the results of the calculations
for the m=2 mode. These results are also plotted in
Fig. 2.4. It is interesting to note that there is no
radiation in the end-fire direction. In fact, the beam
is shaped like a conical shell. The angle, emax’ at which

maximum radiation occurs, is plotted in Fig. 2.5. The

angle 00 and the directivity D are both functions of

ax
array size but very insensitive to the spacing between

the loops. The bandwidth, on the other hand, varies
between one and two percent when the spacing changes by

a factor of two. On the conical surface 6 = emax’ the
radiation intensity is almost independent of ¢. The
variation with ¢ 1is greater for shorter arrays; for example,

it is approximately 1.1 dB for L=0.9)2 but reduces to less

than 0.1 dB for L=8).

2,7 DESIGN EXAMPLES

Example 1l: Consider the following problem. It is required
to design a Yagi array of loops with length limited to 3m
and an operating frequency range of 200+10 MHz. An optimum
set of parameters is to be found to yield a maximum direc-
tivity in the end-fire direction with a minimum number of
elements,

Solution: Since the array size is 2)X and the bandwidth



Yagi Array of Loops - Design Parameters

(m=2, d/b=1.0)

TABLE VI

46

N kb max D (dB) BW (%) L/A

1.95 35° 7.3 . .91

1.95 30° 8.9 1.55

1.94 26° 9.8 2.16
10 1.94 23° 10.6 2.78
12 1.94 22° 11.1 . 3.40
14 1.94 20° 11.4 . 4,01
16 1.93 19° 11.9 4.61
18 1.93 17° 12.2 5.22
20 1.93 17° 12.5 . 5.84
22 1.93 16° 12.6 6.45
24 1.93 15° 12.8 . 7.07
26 1.93 15° 12.8 7.68
28 1.93 14° 12.9 8.29
30 1.92 14° 13.7 8.86
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TABLE VII
Yagi Array of Loops - Design Parameters

kb 0 hax D (dB) BW (%) L/

1.93 39° 7.0 6.8 .77

1.92 35° 7.9 6.3 1.07
10 1.92 32° 8.6 6.3 1.38
12 1.92 29° 9,2 5.7 1.68
14 1.91 28° 9.6 5.2 1.98
16 1.91 26° 10.1 4,7 2.28
18 1.91 25° 10.4 4.7 2.58
20 1.90 24° 10.7 4,2 2.87
22 1.90 23° 10.9 4.2 3.18
24 1.90 22° 11.1 3.7 3.48
26 1.90 21° 11.3 3.7 3.78
28 1.90 20° 11.5 3.7 4.08
30 1.89 20° 11.8 3.2 4.36
34 1.89 18° 12.0 3.2 4,96
38 1.89 17° 12.2 2.7 5.57
42 1.88 17° 12.6 2.1 6.13
46 1.88 16° 12.8 2.1 6.73
50 1.88 15° 12.9 2.1 7.33
54 1.88 15° 12.9 1.6 7.93
58 1.88 14¢° 12.9 1.6 8.53
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TABLE VIIT
Yagi Array of Loops - Design Parameters

(m=2, d4/b=0.25)

N kb 8 nax D (dB) BW (%) L/X

12 1.90 39° 7.0 9.5 .83
14 1.90 36° 7.5 9.0 .98
16 1.90 35° 7.9 9,0 1,13
18 1.89 33° 8.2 8.5 1.28
20 1.89 32° 8.6 8.5 1.43
22 1.89 31° 8.9 8.0 1,58
24 1.89 30° 9.2 8.0 1.73
26 1.88 28° 9.4 7.4 1.87
28 1.88 27° 9.6 7.4 2,02
30 1.88 27° 9.8 6.9 2,17
32 1.88 26° 10.0 6.9 2.32
34 1,87 25° 10.2 6.4 2.46
36 1.87 24° 10,4 6.4 2.60
38 1.87 24° 10.5 6.9 2.75
40 1.87 24° 10.7 . 2,90
44 1.87 22° 10.9 . 3.2

48 1.86 21° 11.2 5.4 3.48
52 1.86 21° 11.4 4,9 3.77
56 1.86 20° 11.5 . 4,07
60 1.86 19° 11.7 4,9 4.37
64 1.85 19° 11.9 . 4,64
68 1.85 18° 12.1 4.3 4.93
72 1.85 18° 12.2 3.8 5,23
76 1.85 18° 12,2 3.8 5.52
80 1.85 17° 12.4 . 5.82
84 1.85 16° 12.4 3.8 6.11
88 1.84 16° 12,7 3.3 6.37
92 1.84 16° 12.8 . 6.66
96 1.84 16° 12.9 3.3 6.76

100 1.84 16° 12.9 2.7 7.25
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is 10%, from Fig. 2,3, it is seen that the parameter d/b
may be chosen equal to 1.0, The directivity is about 12.5
dB, A more accurate result is obtained from Table III.

By interpolation, it is found that N=15, Kb=0.90,

D=12.35 dB, BW=15% and I1=1.995\A. 1In terms of physical
parameters, a=0.00215m, b=0,215m, d4=0,215m, and L=2.993m.
The array has one reflector, one feeder, and 14 directors,
The array radiates in the end-fire direction. A three-
dimensional plot of the field pattern of this array is
shown in Fig. 2.6.

Example 2: Consider the following design problem. Suppose
that it is required to design a Yagi array of loops subject
to the conditions set in Example 1, Furthermore, it is to
be operated at another frequency that is roughly twice
that of the fundamental frequency of Example 1, Find the
second frequency range that the array may be operated in,
the directivity, and the shape of the radiated beam.
Solution: According to the result obtained in the first
example, N=15 and d/b=1.0. Using Table VI, it is found
that the corresponding Xb is 1,935, emax=l9.5°, D=11.65 dB,
and BW=2.35%. In other words, the array is operable at a
new center frequency of 430 MHz with a range of +5.05 MHz
having a conical shell beam with emax=l9.5°. A three-
dimensional plot of the field pattern of this array is

shown in Fig. 2.7.
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The two examples described above clearly illustrate
the feasibility of constructing a dual-~frequency directional
Yagi array of circular loops. One potential application
of this array is as a coarse/fine tracking antenna. The
directional end-fire beam of the low frequency band may
first be used to obtain "coarse" tracking of the target.

A tracking receiver will indicate "acquisition" when an
adequate signal has been picked up by the antenna. After
this, a switch to a frequency in the higher band may be
used to obtain "FINE" tracking of the target. The sharp
null along the axis of the array in this case will result
in a "loss of acquisition" at the receiver when the antenna
directly points toward the target. This will then be

interpreted as "home".
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CHAPTER 3

THE INFINITELY LONG YAGI ARRAY

OF CONCENTRIC LOOPS--THEORY

3.1 WAVE PROPAGATION ON PERIODIC STRUCTURES

The form of guided waves traveling along an axially
periodic structure is mathematically described with the
help of a representation commonly referred to as Floquet's
theorem [12]. With the axial direction denoted by 2z and
the period by d, Floquet's theorem may be stated as
follows: "A time-harmonic electromagnetic field VY (x,vy,2z)
of a normal mode guided along an axially periodic struc-
ture is itself periodic in z with periodicity d and has
the property

V(x,y,2) = e?P%p(x,y,2) (3.1)
where P(x,y,2) is also a periodic function of z with the
period d." The generally complex Flogquet wave number 8
is referred to as the fundamental propagation constant.

The periodic function P(x,vy,z) may be expanded in

a Fourier series

foo j2'rrn z

P(x,y,2) =) an(x,y)e d

n=-—cw

(3.2)
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+oo jan

then V(x,vy,2) =) a,(x,y)e (3.3)
n=—m

where  B_ = B+ 2 ; n=0, #1, +2,... (3.4)

The Fourier series expansion indicates that the field of

a normal mode of an axially periodic structure is ex-

pressible in terms of an infinite number of traveling
iB_z

N | called space harmonics.

waves of the form an(x,y)e
The wave numbers Bn represent the various space harmonic
axial propagation constants, while an(x,y) denote the
corresponding space harmonic amplitudes.

The periodic structures described by Floquet's
theorem may be divided into two broad categories. They
may be closed structures like in an iris-loaded waveguide,
or open in one or more transverse dimensions, like in
corrugated surfaces, helical lines, and arrays of various
elements, While the closed structures support predomi-
nantly fast waves that are guided by the conducting
enclosures, the open structures support generally slow
surface-waves that cling closely to the structure.
Attention here is directed towards the latter type, of
which the concentric array of loops is one example.

The various methods used in the analysis of the
propagating waves on open periodic structures may be

grouped into four general methods, The first method is
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the classical "field theory" approach in which the problem
is formulated as a multi-region boundary value problem.
The fields in the different regions are written in the form
of doubly infinite fourier series with expansions over all
possible modes and space harmonics. The unknown fourier
coefficients and the dispersion equations for all possible
propagation constants are then obtained by applying the
necessary boundary conditions. Aside from mathematical
complexity, the "field theory" method is suited only to
structures offering regional symetry. Examples of struc-
tures treated by this method are the helical line [13],
the array of disks [49], and the array of tape loops [15].
The "equivalent circuit" method regards the periodic
structure as a periodically loaded transmission line.

A dispersion relation is obtained by combining the circuit
equations of a two-port network representation of one
section of the loaded line [50]. The ease with which a
dispersion relation is obtained renders this method
attractive in cases where only an intuitive feel for the
nature of wave propagation is desired. However, only
gross estimations of phase velocity are possible due to
lack of knowledge of exact loading under all possible
conditions. This method was used to obtain crude

approximations of phase velocity in the case of the array
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of rods [20], [23], and the array of short helices [47].
The 'tircuit theory" method is another approach that has
been applied to the analysis of the single array [22],

and the coupled coplanar arrays of rods [34]. It involves
the derivation of a dispersion equation in terms of mutual
impedances between the zeroth element and all the other
elements in the array. The solution of such an equation
for the propagation constant is then obtained by substi-
tuting approximate values for the mutual impedances Zon
from published Tables in the case of small index n.
HOwever, for large values of n, Zon is replaced by an
asymptotic expression, A final method, designated here

as the "antenna theory" method, is well suited to the
analysis of propagating waves on arrays of linear elements
such as rods, loops, and slots. It consists basically of
calculating the electric field due to all the elements
when a surface wave is propagating along the array
structure. The tangential component of the electric field
is subsequently made to vanish on the surfaces of the
elements which leads to a dispersion relation for the
propagation constant of the wave. This method was used
extensively in the study of the infinite array of rods,
There, it met with varying degreees of success depending
on the approximations used in the derivation, and on the

assumptions made as to the form of the current distribution
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on the elements [20], [23], [24], [27]. A recent study
avoided the usual a priori assumption of some form of
current distribution by combining the "antenna theory"
approach with the so-called "point-matching" technique
commonly used in the study of wire antennas [30].

In this chapter, the "antenna theory" approach will
be used to analyze the propagating waves on the infinitely
long Yagi array of concentric loops. A dispersion relation
is derived and numerically solved for the phase velocity
of the wave. The concentric array of loops is found to
possess two distinct propagation bands, and a dual velo-
city band that is about twice as wide as that found in the

case of the single array of loops.

3.2 DERIVATION OF THE DISPERSION RELATION
The infinitely long Yagi array of concentric loops

is shown in Fig. 3.1, where the parameters (al,az,b b

1'-27

‘and d) are defined. The direction of propagation is
denoted by z with the transverse coordinates labeled x
and y respectively.

The mth mode is assumed to be propagating along
the array. Moreover, currents on the concentric loops
of the same cell differ only by a real multiplying factor,
while currents on equal size loops of adjacent cells
jgd

differ only by a phase factor e , where B is the
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propagation constant. Also, the current on each loop is
assumed to flow in the ¢-direction only. This implies
that the wire loops are electrically thin (Kal and Ka2<<1).
%
e d—s
2a )
2
o6 0 m
-1 0
Y
Fig. 3.1. The Yagi array of concentric loops
Therefore, the currents on the two concentric loops of
the typical nth cell may be written as
= ~jngd
I, A1 cos m¢p e (3.1a)
= ~-jngd
I2n A2 cos m¢ e (3.1b)
where I and I are the currents on the inner and .outer

in 2n
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loop respectively. (Note ejwt variation is implied and
suppressed throughout).

A dispersion relation is obtained when the tangential
component of the total electric field due to the currents
on all the elements is made to vanish on each element of
the array. From symmetry considerations, the vanishing
of the tangential electric field on the elements of one
cell implies its vanishing on the elements of all other
cells, Hence, without loss of generality, it suffices to
set the tangential electric field equal to zero on the
surfaces of the elements contained in the zeroth cell.
Thus, in the present analysis the latter condition is
adopted.

Let Pl(61,¢) and P2(62,¢) be two field points located
arbitrarily at some angle ¢ on the surfaces of the inner
and outer loops respectively of the zeroth cell. Also,
let Pi(ei,¢') and Pé(eé,¢‘) be two source points located
arbitrarily at some angle ¢' on the surfaces of the inner
and outer loops respectively of the typical nth cell.

This is illustrated in Fig. 3.2,
The ¢-components of the electric field at the points

P1 and P, respectively are given by

E = E + E (3.2a)
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E = E + E (3.2b)

where

E¢11 is the field at P1 due to currents on the inner loop

array.

E is the field at Pl due to currents on the outer loop
array.

E is the field at P2 due to currents on the outer loop
array.

E is the field at P, due to currents on the inner loop
array.

In order to determine each of these field components,
it is necessary to derive expressions for the distances
depicted in Fig. 3.2. This task is undertaken first.
Then, an evaluation of each of the field components is
made. Finally, setting E¢1 and E¢2 equal to zero yields
the required dispersionrelation.

3.2.1 Evaluation of R
nll

Rnll is defined by

2 = s - 1 |2
Riip = [To1 = pyl (3.3)
where T = X ; + v § + z ; and ', = x'§ + y'§ + z';
ol 1 1 1 nl 1 1 1

with the components given as

X, = (b, - a

1 1 cos 61) cos¢ (3.4a)

1



and,

Using (3.4) and (3.5) in (3.3), the expression for R
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Yy = (bl - a; cos el) sing¢ (3.4b)
1 =21 sin 6y (3.4¢)
i = (bl - a; cos ei) cos ¢' (3.5a)
| - ] 2 |}

vy = (bl a, cos 61) sin ¢ (3.5b)
) —_ 3 )

zy = nd + a, sin el (3.5¢)

nll

becomes

2 — - _ -
Rnll = [(bl a; cos 61) coso (bl ay

+[ (b cosel)sin¢-(bl lcose ) sing']?

1721

. _ - . 112
+ [alsln el nd a; s1n61] (3.6)

Squarring and combining terms yields

2 _ 2 -
Rnll = (bl 1cose ) +(b a

1 171

cos8! )2— 2(b,-a,cosd )

cos6]) cos¢']?

- - - ]
(b lcosei)cos¢cos¢>' 2(bl alcosel)(bl alcosel)

sin¢sing' + n2d?+ alz_(sinel -sind! )2-2nda (sin®

Squarring terms and using cos¢gcos¢' = [cos(¢+¢') +

: 1
1 51nel)

(3.7)

cos (¢~¢')1/2 with singsing' = [cos(¢=¢') - cos($+¢')]1/2

and rearranging, yields
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2

R =2bi[1—cos(¢—¢')]—2albl(cose

n1l +cosei)[l—cos(¢—¢')]

1

+2a2—2ai[coselcose'+sine

: ] 2 v
1 1 ls:.nel] + 2a1coselcosel

[l-cos (¢=-¢")]1 + n2d3%- 2ndal(sin61—sinei) (3.8)

Using the trigonometric identities cos(el-ei) = coselcosei

+sinelsin6i; 2 sin?[(¢-9¢"')/2] = l-cos($-¢'), and 2 sin?

- 1 = - — [ ] 3
[(el el)/z] 1 cos(e1 61) one obtains

R§11=4bisin2[(¢—¢')/2]+4a2sin2[(el—ei)/2]+ n2d2- 2nda

1 1

. - N ' 2 1]
(s:Lnel 51n61) + 4a1coselcosel

+ cos6y) sin? [ (¢-¢"') /2] (3.9)

sin?[(¢-¢')/2]1- 4a,b, (cosb,

Equation (3.9) may be simplified further by making the
following approximations

n2d?- 2ndal(sine —sinei)znzd2 (3.10a)

1

(4bi+4a2cose

2 cose}) sinz[(¢-¢')/2]:4bisin2[¢_¢'] (3.10b)

1 2

The first approximation is valid if 4a,<<d, and the second

1

one is wvalid if al<<bl. Under these conditions, the

expression for Rn reduces to

11

Riip = 4pisin®l(6-¢')/2] + 4ajsin®[(6)-67)/2] + n®a® (3.11)
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subject to the following

da.<<d (3.12)

<<b;: 4a,

a

3.2.2 Evaluation of R
n22

The expression for Rn22 may be deduced from that

of Rnll by a simple change of subscripts. Hence,

RZ,,=4blsin?[(¢-¢')/2] + 4alsin®[(6,-61)/2]+n%a%  (3.13)

with the conditions

4a_<<d (3.14)

a2<<b2; 5

3.2.3 Evaluation of R
n2l

Rn21 is defined by

2 = |z _ 2
Rn21 = |r02 rﬁll (3.15)

~

-> = A A ~ +' - '/\ ' 'A
where Lyo x2x+y2y+zzz and 1 xlx+yly+zlz. The components

of the vector ;02 are

= (b2—a2cosez)cos¢ (3.16a)

Yy = (b2—a2cosez)sin¢ (3.16Db)
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= a,sin® (3.16c)

Z2 2 2
while the components of rﬁl have already been defined

in (3.5). Then, Rn21 may be written as

R;21=[(b2—a2cosez)cos¢—(bl-alcosei)cos¢']2+ [(b2—a2cosez)

sin¢-(bl—alcosei)sin¢']2+ [azsinez—nd-—alsinei]2 (3.17)
Squaring and combining terms yields

2 = —
R (b2 a

2
21" cosez) + (b

- 2 _ - - ]
2 1 alcosei) 2(b2 azcosez)(bl alcosel)

cos¢cosd' - 2(b2—a2cosez)(bl—alcosei) sin¢sing’
+ n%d%+ (a,sin6,-a

" 2 . N
51n6i)—2nd(a2s1n62-a131n9i) (3.18)

271

Squaring terms and then using the identities

cospcos¢d'=[cos (¢+¢') + cos(d-¢')1/2; sind¢sing' = [cos(d=¢')
- cos(9+9')1/2 and rearranging, yields
2

- W21 2_ ATy ' 2
R 51 = bytb,-2b,b,cos (¢-¢ ) 2(a2b20056 +a,b cosel) + a

172 2 7171 1

2 ' ')~ !

+ta, + 2(alb2cosel + azblcosez)cos(¢ ') 2ala2(cosezcosel
+sinb cos6 cosei[l—cos(¢—¢')]+n2d2— 2nd

2sinei) + 2a1a2 2

(azsinez—alsinei) (3.19)
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Using the trigonometric identities cos(ez—ei)=cosezcosei

+sinf,sing{; 2 sin2[(¢-¢')/21=1-cos(¢~-¢"'), and 2 sin?

-0 =T - -t 3
[(62 61)/2] 1 cos(e2 61) one obtains

a.sin?

R?, =(b,=b;) *+4b b, sin* [(¢~¢') /2]+(a,~a;) *+4a,a,

172

—-— T 2 2_ : - : ] ]
[(62 el)/2] + n?2d 2nd(a251ne a s1nel) + 4da azcosezcosel

2 71 1

) 2 - - - - -
sin“[(¢-9"')/2] 2a2(b2 bl)cos62+2al(b2 bl)cosei
1] : 2 T |
4(albzcosel+a2blcos62)s1n [(p=0")/2] (3.20)
Equation (3.20) may be simplified considerably by making

the following approximations

2492 _ : - : 1Yondd?2
n“d 2nd(a251ne2 a1s1nel) n“d (3.21a)
— ' o~
blb2+a1azcosezcosei (alb2c0s61+a2blcosez)—blb2 (3.21b)
- 2 - - ~ - 2
(b2 bl) +2(b2 bl)(alcosei azcosez) (b2 bl) (3.21c)

The approximation of (3.2la) is valid when 2(al+a2)<<d,
that of (3.21b) is satisfied when (al/bl)+(a2/b2)<<1,
and (3.21lc) holds when 2(al+a2)<<b2—b1. Under these

conditions, the expression for Rn reduces to

21

R’57 = (by=b;) ®+4b. b sin’[(¢-¢"')/2]+n%a* (3.22)

subject to the following
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2(al+a2)<<d; 2(al+a2)<<b2-bl; (al/bl)+(a2/b2)<<l (3.23)

3.2.4 Evaluation of R
n2l

From symmetry considerations Rn is equal to R

12 n2l°
This may also be seen by interchanging subscripts in the

expression for Rn21'

3.2.5 Evaluation of E¢ll

The scalar and vector potentials at the point Pl
(see Fig. 3.2) due to contributions from all elements of

the inner loop array, are given by the following integrals

u
A¢ll— 71% f_"Tr I,(¢")W,; (6=¢")cos (¢=¢")b d¢' (3.24)
0, = oo ST g, (6" )Wy ($=6') b’ (3.25)
11 41e - 1 11 1 *

where Il(¢') and ql(¢') are the total current and charge
per unit length of inner loop. The Kernel W11(¢—¢') is

given by

—jKRn

+-c0 = 11
Wiy (6-9t) = ] e Ifnd [% Lot — dei] (3.26)
n=-—oo nll

where Rnll is defined in (3.11). Mg €q and K are the
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permeability, permittivity, and propagation constant in
free space. The equation of continuity for the currents

and charges in the inner loop yields

1 4TI

b, do’

+ Jugy (') = 0 (3.27)
1

Sovling for q1(¢') one obtains

' - j 4 '
a, (¢") = @by I7(¢") (3.28)

Using (3.28) in the expression for 2y, gives

= J m ! ' -4 !
®11 = Tmae, Lo T1067)Wpy (0me") a0 (3.29)

By differentiating with respect to ¢ and using the con-

dition 3W11/3¢ = -8W11/3¢', the following results

~
30"

0d .
. A LNCED

39 dnwe ‘-m Wyq(9=0")de! (3.30)

Integrating the right-hand side of (3.30) by parts and

making use of the fact that Ii(ﬂ)=Ii(-ﬂ)=0 yields

30 :
ll = J m -k ! " ) '
56 Tnwe, I Wy (e-¢')I7(6")d¢ (3.31)




71

where Ii(¢') is the second derivative of Il(¢') with

respect to ¢'.
- -
From the defining relation E=-jWA-V® for the electric

field it follows that on the surface of the inner loop

(3.32)

Upon substituting (3.24) and (3.31) in (3.32) it follows

that

-] m tTn ] At
z;mg;g;[{qT dé'Iy (¢')W,, (6-¢") +

K?b} /7 d¢'cos (6=¢')I; (¢")W 1 (4=9")1 (3.33)

Let us now decompose the expression for Rnll into

two parts as follows

R;ll = A%+ n2%3? (3.34)

where AZ%=4p?

1sin2[(¢-¢-)/2]+4a§sin2[(el-ei)/zl

Then the Kernel Wll(¢—¢') may be written as

400 ~-3§Kv/AZ+n%d?

' 1 m -j Bnd e
W -¢')= = [ _d6: (3.35)
11(070)= 75 Lp a0y L e AT AT
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An equivalent representation to (3.35) may be obtained

by invoking the Poisson's summation formula [51]

+-c0 1 + o0 27Tm
) f(nd) =3 ] F [[d_ (3.36)
m

n:—oo — -0
where F denotes the exponential Fourier transform of the

function f; i.e.,

t

T er)e IXT gt (3.37)

F(x) = J

Using (3.36) and (3.37) in (3.35) the Kernel Wll(¢—¢')

may be written as

1 too —jt(8+ zgm)
' _ 1 +1 ' +o0
Wy (6et) = o7 L 48y { 3l Tee
~-JK/AT+t?
g — at (3.38)
/A‘+t

By Floquet's theorem Bm = B+ 2mT/d and the indefinite

integral in (3.38) is readily evaluated as [52]

4o - -jRVA“+t
f...we JBmt eﬁ_z—.r?—_— dt = ZKO(AV BI?I_KZ ) (3.39)

where Ko is the modified Bessel function of zero order.



73

Let Y; = B;—Kz, then the Kernel in (3.38) is given
by

+oo
-0 - __l_ w '

Wiy (0-01) = = [ a8; g=_OOKO(AYn) (3.40)
Returning to equation (3.33) and substituting Il(¢') by
A,cos mé' and Ii(¢') by —mzAlcos m¢', the expression
for E becomes

¢11

1 2
E E —— - f_
¢11 4nweob T

N d¢' cos m¢'Wll(¢—¢‘)

+ bii {1Td¢' cos (¢-9"') cos m¢'Wll(¢—¢')} (3.41)

Performing a change of variable a= ¢'-¢; da=dé¢', yields

E = 4—-:J—AT];— —mzf_’rT da cos m(a+¢)wll (o) +
¢ll TWe by ™
2y.2 T
K*b; [ do cosa cos m(a+¢)wll(a)} (3.42)
Using the trigonometric identity cos m(oa+¢) = cos macos m¢

- sin mo sin m¢, and noting that only the cos ma term

contributes to the integral leads to the following result

—jAlcos mo

E = {—mzﬁirda cos mo W, . (o)

¢11 4Trweobl 11
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2.2 m
+K bl {qrdacosacos manl(a)} (3.43)

If use of the identity cosacos mo=[cos (m+l)oa+cos (m-1)al/2

is made in (3.43) one obtains

-jA]_COS mo \ K2b]2-
E¢11 = mae by {-m?Q + ——= (Q_,,+Q 1)} (3.44)
I
where O = /[ docos maW,, (a) (3.45)

Since the integral in the expression for W.., (a) (Eg. 3.40)

11
remains invariant when a change of variable 6=(91-6i)

is made, Qm may be expressed as

+c0
T
d6 J__dacos ma)  K_(Ay ) (3.46)

N==—00

_ 1 T
Qn = wd I

where A=[2bi(l-cosa) + aiz]%. Note: use was made of

the identity 2sin?a/2 = l-cosa, and ai is equal to 2alsine/2.
An addition theorem given on page 102 of [53], expresses

the zero order modified Bessel function as a series of
products of Bessel functions; i.e.,

“+oo
Ko(w) =) KQ(Z)Iz(z)e

==

Jta (3.47)

where w = (z2%+ 22- 22Zcosa)%.
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Setting w = AYn and solving for z and Z with the

condition |Z|>|z]|, vields the result

Y ———ee

7z = (/4b%+al? +|a]|) (3.48a)
Yy —

zn =-—2—' (1/4bi + aiz - la]'_l) (3.48b)

Inserting (3.47) in (3.46), the expression for Qm becomes

too +o0
I m ]
O = 7q /80 [ [lgacos ma ] X,(Z)T)(7)
[cos La+j sin %ql (3.49)

Only the real part of the integrand in (3.49) contributes
to the integral, and onlv when &= + m. Hence,

+o0
0 = 5T d0 ] K (Z)I (z) (3.50)

“m m n' "m n
where Im and Km are the modified Bessel functions of the
first and second kind of order m. Substituting Qm by its

value in (3.44) gives

4__f—jAIeos m¢fTT o | Zbi 3
E = ——— ae —_
$11 2ﬂ€éﬂbld -T n 2

2
- I
(Km+lIm+l+Km—lIm—f m Ky m{ (3.51)
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where the arguments of the Bessel functions z, and Zn
have been suppressed for simplicity. In Appendix A, it

is shown that

2 2
( m

z Z
nn

Km+1Im+l + Km—lIm—l = -

[}
Ime + 2KI;IIm) (3.52)

Using (3.52) in (3.51) and combining terms, it follows

that
w 2
jAWu b.cos m ¢ m
Ey = — 2odl ] rfaed| o= I K+ I'K'L (3.53)
11 m n -m 1¥n

: = h2+2 2,2 _ p2

where the relations znZn blYn and K +yn Bn have been
used. In order to extract the 6-dependency from the
arguments of the Bessel functions, the following approxi-

—

mations are made.

-v,la'l/2
T, (z )=I_(y_b))e (3.54a)

~Y la'l/2
K (2.)=K_(y b,)e (3.54b)

Since a1<<bl’ these approximations are quite close to the

exact values. Then, the expression for E¢ becomes
11
jA. Wy b.cos m¢ mp z
1l "071 n
= {|2—| I_(y.b,)K (y_b.)
E¢ll d n KbIYn m 'n"1" m" 'n’1
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-2y_a,sin|6/2]|
Lom g ol do  (3.55)

+I$(anl)K$(anl)} 27 ‘o

The integral in (3.55) may be expressed in terms of a
tabulated function by performing a change of variable
a=8/2, da= d6/2. It follows that

-2Ynalsina

1 ,2m -2ypapsinfe/2fge 1 g1
-Z_Tl'oe m O

do= S(2y_a;) (3.56)

where S(x) is the struve function [54]

l .m -x sina
F f e

S(x) = 5

da (3.57)

Substituting (3.56) in (3.55), the final expression for

E results
911
j b 6 g |
jA.n_K cos m m
_ 1l o071 n
E¢ll - d g t Kbyy T (VP ) Ry (v Py)
1]
+ I (y by )R (y bi)} S(2y a;) (3.58)

where o is the intrinsic impedance of free space.

3.2.6 Evaluation of E

922
The expression for E¢ may be obtained from that
22
of E¢ll by replacing aq» bl’ and Al by ayr b2, and A2
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respectively. Hence,

2

n
] Im(anZ)Km(anZ)

szyn

_ jA,n Kb,cos m¢ {{ mp
d

922

+I$(an2)Kﬁ(an2)} s(2yna2) (3.59)

3.2.7 Evaluation of E¢
21

The scalar and vector potentials at the point P2
(Fig. 3.2) due to contributions from all elements of the

inner loop array, are given by the integrals

o

A¢21 = Z% {1TIl(¢')W21(¢-¢')cos(¢-¢')bld¢' (3.60)
- 1 ™ . , .
®21 T Tme Sy (9')Wyq (9-¢' )b de (3.61)

where the Kernel W21(¢—¢') is given by

-3gnd | 1w &7 I%Fmyy o,
2T =T R 1
f21

+ o0
Wy (9=9') =] e ] (3.62)

n=-o

with the distance Rn defined in (3.22).
21

Replacing q1(¢') in (3.61) by its value from (3,28),

yvields
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= j m 1 L] _ ] 1
®2l B 4ﬁmeo £4T11(¢ ) W21(¢ ¢')de (3.63)

Differentiating ¢.,, with respect to ¢, and using the

21
condition 3W21/8¢=—8W21/3¢' followed by integration of

the right-hand side by parts, leads to the result

3%
21 = j m ' " 1
56~ Tmwe_ LWy (6=0")IY (6") ¢! (3.64)

On the surface of the outer loop, the electric field

may be expressed as

8@21

= -3 - L 21
E = -juA 5 59

(3.65)
%51 Py

Upon substituting (3.60) and (3.64) in (3.65) it follows

that

— _j m TN ' N |
E¢21— W [f_,n. d¢ Il(¢ )Wzl(d) d) ) +

Kb b,/ db'cos (9-9")TI; (¢")W,, (9=6") (3.66)

By decomposing the expression for Rn into two parts,
21
the Kernel W21(¢—¢') may be written as

+00 ~jKy/BZ+n?4d2

1 .7 -jBnd e
W -0') = — [ de! A — .
21(¢ ¢") 2T 1 §=_m e /BZ+n2d2 (3.67)
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where B2=(b2—b1)2+ 4blb25in2[(¢-¢')/2]. Applying Poisson's
summation formula to the series in (3.67), the Kernel may

be put in the following form

+0o0
vy - L T '
Wy (0-0") = == [ 48] IZF_OOKO(BYH) (3.68)

The substitution of Il(¢') = A.cos m¢' and I£(¢') =

1
—mzAlcos m¢' into equation (3.66) yields

.—jA
E¢21= ZFEE_EE { -m f'nd¢' cos mo' W21(¢ ')

2 ™ ' Y ' At
+K b]_bzf__,'T d¢' cos(¢-¢')cos mo W21(¢ ')} (3.69)
Performing a change of variable a=¢'-¢, and using the

identitites cos m(a+¢$)=cos macos mp—-sin mosin m¢; cosa

cos ma=[cos (m+1l)a+cos (m~1)al/2, the expression for E

%21
becomes
E, = e Al { -m?0  + m (Q )} (3.70)
¢21 4ﬂW€ob2 m 2 m+1 -1
+o0
where Q = ;% /Ta '[:T dacos mo g=_mKo(BYn) (3.71)

- 2 2 _ ;5
and B = [bl+b2 2blb2cosa] .
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Using the addition theorem (Eq. 3.47), the expression

for Qm may be put in alternative form

_ 2 . , 3
0= 3 S99 21:_00 K (Y b)I (Y b)) (3.72)

The integration with respect to ei in (3.72) is trivial.

Then,
4 Too
% = T £=_§m(an2)Im(anl) (3.73)

Replacing O by its value in (3.70) yields the following

result

= 2
jA;cos mo K blb2

E = 172
977 Wegb,d n 2

(Km+lIm+l+Km-lIm-l

2
) -m KmIm

(3.74)

Finally, making use of equation (3.52) with znZn=y;bi,

and combining terms gives

. mp

JA,n _Kb_cos mo n .
E _ 1o 1 ) %Dy I K tI K} (3.75)

2—
where bo_blbz'
3.2.8 Evaluation of E¢

12
E has the same source distribution as E on one

%12 $22
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hand, and the same distance Rn as E¢ on the other hand,
21
Hence its expression will contain the same "multiplying"

factor as E¢ , and the same "series" factor as E¢p .
2 2

2 1
Thus,
iA.N Kb ¢ :
JA cos m [ mg
2 o2 . n
¢12 d % Kb,y m 'n"1" "m Yn2
1 L]
+Im(ynbl)Km(an2) (3.61)

3.2.9 Dispersion relation

The total field E at point P, is equal to (E +E ).
! 1 %11 %12
Also, the total field E¢ at point P, is equal to
2
(Eg + E4 ). Setting E4 =Ey =0 for all values of ¢
22 21 1l 2

yields the following two simultaneous equations for the

unknown current amplitudes.

b,A,cos m¢(Tll) + byA,cos m¢(T12)=O (3.62a)
b,A,cos m¢(T12) + byA,cos m¢(T22)=0 (3.62b)
where

mB 2
Ti1 = E [ RB%?;] T (VP ) Ky (VP )+ I (Y Py YK (Vby)

S(2Yna1) (3.63a)
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mg 2
= n ! ]
T2 = g[{ fg‘y;—] Im(anz)Km(an2)+Im(an2)Km(an2{}

2
s (2y,a,) (3.63b)
2
mBn
_ 1 1
T12 - g Kban Im(anl)Km(anZ)+Im(anl)Km(an2)
(3.63¢)

For a nontrivial solution, the determinant of the coeffi-

cients in (3.62) must be zero; namely

- T2, =0 (3.64)

T11%22
Equation (3.64) is the required dispersion relation whose
solution yields the propagation constant of the wave.

From Equation (3.62a), the ratio of the current

amplitudes may be determined as

A b.| |r
= - _— (3.65)
A, byJ Ty

3.3 NUMERICAL EVALUATION OF PHASE VELOCITY

A computer program that determines a numerical
solution of equation (3.64) for the phase velocity, has
been developed. At the start of the program, the para-

meters m, al/bl' a2/al, d/bl, and b2/b1 are given specific
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values. A calculation cycle is activated by selecting
a frequency Kbl' The phase delay $=8d is varied in

increments of 0.1 throughout the visible range [24].
Ka<o<m (3.66)

L] - 2
The determinant (Tll T22 le

increment in &. If at some increment the determinant

) is evaluated at each

undergoes a change in sign, a solution region is thus
identified. The interval-halving technique is then applied
to this region, and a phase delay 3 is resolved at the
solution point. The normalized phase velocity [v/c=
(Kbl)(d/bl)/Q] and current ratio Al/A2 corresponding to

@s are determined, and the result recorded.

If, on the other hand, the determinant does not
experience a change in sign at any point in the visible
range of ¢, the frequency Kbl is said to be in a cutoff
or stopband region of the structure. In any case, another
frequency is selected and the calculation cycle is re-
peated until all the passbands are identified.

In order to speed-up convergence in evaluating the

series T11 and Toor the following relations are used.

20 20 o
Ti1=ag+ L (a =b )+ ] (a_ -b)+2 ] b, (3.67a)
n=1 n=1 n=1
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T,,=Co* 2:1 (c —d) + Zzl (c_,-d )+2 X=1 d (3.67b)

where a, and c, are given by

mB 2
= n
&~ ——_Kblyn] I, (v P K (v by)+I! (y by)K! (y by)| S(2v,a;) (3.682)
\
m@n 2
- ' '
“n Kb,y ] Im(an2)Kh(an2)+Im(an2)Kﬁ‘an2) S(2v a,) (3.68b)
\

while bn and dn are the asymptotic values of a, and c,

respectively when n is very large, in the sense that
[+ 0]

a /b +c_/d_+1 as n+~, Also, the infinite series | b
n""n_"n""n =1
and 2 dn may be determined exactly. The expressions

n=1
for bn and dn along with the evaluation of their infinite
[oe] o0}
series ) b and ) d_  are given in Appendix B.
n=1 n=1
Since the terms in the series T

n

-pn
12 decay as e P /n
for large n, the evaluation technique of (3.67) is not

necessary in this case. The exponential decay in le is
demonstrated in Appendix C.

The phase velocity and the ratio of current amplitudes
in the m=1 case are given in Tables IX-X for two ratios
of loop radii, and for three spacings of array elements.
The dual-velocity band has been left out from Tables IX

and X; however, it is shown expanded when the phase velo-

city data is plotted in Figs. 3.3 and 3.4.
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Normalized phase velocity of m=1 mode (a/bl=0.01, b2/bl=1.25

d/b1=0.25 d/b1=0.50 d/b1=l.00
Kbl v/c Al/A2 v/c Al/A2 v/c Al/A2
0.50 0.987 0.034 0.992 0.203 0.997 0.286
0.52 0.981 0.036 0.988 0.182 0.99%6 0.276
0.54 0.974 0.017 0.983 0.170 0.993 0.275
0.56 0.965 0.016 0.976 0.142 0.989 0.250
0.58 0.954 -0.004 0.967 0.124 0.984 0.236
0.60 0.940 -0.026 0.957 0.109 0.978 0.220
0.62 0.925 -=0.045 0.944 0.089 0.970 0.197
0.64 0.906 -0.065 0.928 0.063 0.958 0.169
0.66 0.884 -0.091 0.909 0.036 0.944 0.143
0.68 0.857 -0.120 0.886 0.008 0.927 0.111
0.70 0.826 -0.150 0.858 -0.026 0.904 0.076
0.71 0.807 -0.168 0.842 -0.044 0.890 0.057
0.72 0.787 -0.185 0.824 -0.063 0.875 0.036
0.73 0.764 -0.203 0.803 -0.084 0.857 0.014
0.74 0.738 -0.221 0.780 -0.105 0.835 -0.009
0.75 0.707 -0.240 0.752 -0.128 0.810 -0.035
0.76 0.670 -0.260 0.719 -0.151 0.779 -0.061
0.77 0.625 -0.278 0.679 -0.175 0.741 -0.089
0.78 0.565 -0.292 0.626 -0.198 0.689 -0.118
0.79 0.478 -0.295 0.551 -0.216 0.613 -0,147
0.80 0.278 -0.211 0.394 -0.201 0,448 -0.161
0.95 0.975 -1.407 0.942 -1.599 0.949 -1.793
0.96 0.925 -1.550 0.890 -1.823 0.904 -2.106
0.97 0.871 -1.723 0.837 -2.098 0.853 -2.508
0.98 0.818 -1.924 0.781 -2.448 0.796 -3.042
0.99 0.762 -2.175 0.719 -2.922 0.729 -3.808
1.00 0.701 -2.501 0.646 -3.635 0.640 -5.063
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TABLE X
Normalized phase velocity of m=1 mode (a/b1=0.01, b2/bl=l.50)

d/bl=0.25 d/bl=0'50 d/b1=l.00
Kbl v/c Al/A2 v/c Al/A2 v/c Al/A2
0.42 0.986 -0.000 0.991 0.080 0.997 0.173
0.44 0.978 -0.016 0.985 0.066 0.994 0.151
0.46 0.968 -0.030 0.977 0.046 0.990 0.135
0.48 0.954 -0.048 0.967 0.036 0.984 0.122
0.50 0.939 -0.057 0.954 0.021 0.975 0.104
0.52 0.918 -0.078 0.937 0.001 0.963 0.085
0.54 0.894 -0.093 0.916 -0.017 0.948 0.065
0.56 0.864 -0.114 0.890 ~-0.039 0.927 0.042
0.57 0.847 -0.124 0.874 -0.051 0.915 0.030
0.58 0.828 -0.136 0.857 ~-0.063 0.900 0.017
0.59 0.806 -0.147 0.837 ~0.076 0.883 0.003
0.60 0.782 -0.159 0.815 ~-0.088 0.863 -0.011
0.61 0.754 -0.171 0.789 -0.102 0.840 -0.026
0.62 0.722 -0.183 0.759 -0.115 0.812 -0.042
0.63 0.684 ~-0.194 0.723 -0.129 0.778 -0.058
0.64 0.638 -0.203 0.679 -0.142 0.735 -0.074
0.65 0.578 -0.210 0.621 -0.153 0.678 -0.090
0.66 0.492 -0.206 0.538 -0.158 0.592 -0.102
0.91 0.992 -1.684 0.988 -1.791 0.993 ~1.906
0.92 0.967 -1.836 0.963 -1.987 0.976 =-2.153
0.93 0.934 -2.011 0.933 -2.206 0.952 ~2.442
0.94 0.901 -2.199 0.899 -2.463 0.923 =2.,790
0.95 0.865 -2.416 0.863 -2.764 0.890 -3.212
0.96 0.827 ~-2.678 0.825 -3.130 0.853 ~3,745
0.97 0.788 -2.981 0.783 -3.587 0.810 -4.435
0.98 0.745 -3.355 0.736 -4.192 0.759 -=5.,398
0.99 0.696 -3.852 0.680 -5.039 0.696 -6.867

1.00 0.639 -4,540 0.608 ~-6.442 0.607 -9.566



v/C

0.4

Fig.

3.3

a/bl=0.0l
C bz/b1=l’25
Kbl
[ R RO R RO D S I L]
.58 0.62 0,66 0.70 0.74 0.78 0.92 0.96

Phase velocity of propagating waves on the concentric array.
(Curves for the isolated array are shown dashed)

88



v/C

0.7

- b2/bl=l.50

d/bl=l.00

a/bl=0.01

S A R NN I AN SO U M S N I

0.44 0.48 0.52 0.56 0.60 0.64 0.92 0.96

Fig. 3.4 Phase velocity of propagating waves on the concentric array.

68



90

As seen from these figures, the concentric array of
loops exhibits two disjoint passbands separated by a stop-
band region. The first passband corresponds to the near
resonance of the outer loop (szil.O), while the second
passband corresponds to the near resonance of the inner
loop (Kblil.O).‘ The bandwidth of the first passband is
approximately equal to that of an isolated array having
the outer loops only as elements, divided by b2/bl. More-
over, the phase velocity curve presents the same type of
decrease with spacing as seen in the case of the isolated
array, except that it becomes slightly more dispersise
as it approaches cutoff.

The stopband region, located between the two pass- -
bands, and the second passband have bandwidths that are

nonlinear functions of the ratio b2/b For instance, a

1
decrease in the ratio b2/bl is accompanied by a corres-
ponding decrease in the widths of these two bands. Also,
in the second passband, the phase velocity curve exhibits
a low dispersion characteristic and an obvious insensiti-
vity to the spacing between the loops.

In the first passband, the outer loop carries a
minimum of five times the current on the inner loop; however,
in the second passband, the current on the inner loop is

at least 1.5 times that of the outer loop. Also, the

currents on the two concentric loops are 180° out of phase
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over the two bands, except for a small range at the low
end of the first band. This range becomes even smaller
if the axial spacing Kd decreases with fixed transverse
spacing K(bz—bl); or, if the transverse spacing increases
for fixed axial spacing.

Finally, a discussion of the dual-velocity band is
deferred until section 3.5 where a detailed analysis will

be given.

3.4 LOWER CUTOFF FREQUENCIES
The phase velocity curves of Figs. 3.3 and 3.4 show
an asymptotic approach towards unity on the low end of
the first passband, and an abrupt intersection with unity
on the low end of the second passband., 1In fact, the
low cutoff frequency of the first passband is theoretically
zero. However, in practice it is limited by the difficul-
ty to excite a slow-wave that has a phase velocity very
close to the speed of light. On the other hand, the low
cutoff frequency of the second passband is very sharp,
indicating a fast transition from a radiating structure
to a surface-wave structure at some well defined frequency.
In this section, a semi-analytic procedure is devised
for the purpose of determining the exact value of the

lower cutoff frequency of the second passband. Also, the
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asymptotic behavior at the low end of the first passband

is verified with some accuracy. This objective is achieved
by evaluating the dispersion relation in the limit as

B+K or equivalently, as v/c>l. Since the zero-order term
in the series Tll’ T22, and le is the dominant term, it
follows that all other terms are negligible in the limit

as B”K. Hence, defining x=Ybl and a=b2/bl, the expressions

for Tll' T22 and le for the m=1 mode are simplified as
follows
I, (x) K, (x) a
_r¢ B 21 1 ' ' 1
Tll—[( E ) =7 + Il(x)Kl(x) ]S(ZSI X) (3.69a)
8 2Il(ax)Kl(ax) ' a,
Tyo=l( %) ox)? + I (0x)K] (0x) 15 (2 q X) (3.69Db)
8 Il( X)Kl(ax) '
Ty5= () (ox) 2 + I} (x)K] (0x) (3.69¢c)
where
X = vyby = bl/Bz—Kz (3.70)

From (3.70), it is seen that as B approaches K, x approaches
zZero. Therefore, a small argument approximation may be
applied to the functions of equations (3.69) to yield

11" T22, and le. From these a sim-

plified dispersion relation may be obtained.

limiting forms for T
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The limiting form of the Struve function is given

by [54]

lim S(x) 1.0 (3.71)

x-+0

The ratio B/K may be evaluated in terms of x by making

use of equation (3.70). This yields

2 x2

B -
( E ) =1+ TKEITT (3.72)

Using (3.71) and (3.72) in (3.69), it follows that

<2 Il(X) Kl(X) ' '
Tll = [l + (Kbl)z][ X2 ] + Il(x)Kl(X) (3.73a)
_ (ax)? Il(ux) Kl(ax) ' '
%2 Il(x)Kl(ax) ' '
Ty, = [1+ (Kbl)fl[ %2 I+ I (x)K] (ax) (3.73c)

From page 375 of reference [54], the following series
representations of Il(x) and Kl(x) for small argument x,

are given.

T, (x) = Z‘.of (x2/4)" (3.74)
1 T2 £y KIT (K+2) :
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Ky () =3+ I,(x) ¢n (5) - % ] (vael)+y e2))
(x2/4)%
K!(K+1)! (3.75)
n_l _l
where ¥ (n)=-y+ )} K and y=0.5772... is the Euler's
K=1

constant. Taking only the leading terms of the series

in (3.74) and (3.75), and then differentiating the results,

yields
I.(x)> = 4 x? (3.76a)
1% 77 1% - /6a
N X x x3 X ' 3
Kl(x)— = + 5 2n( 5 ) + 1t 2n( 5 )} + 0.0386x-0.042x%x°(3.76Db)
' ~ 1 3 .2
Il(x)— 5 + Te X (3.76¢c)
1 1 X 3x2 X
' ~ - = a 24 2y - 2
Kl(x)— %z + 0.5386 + 5 Rn(z) + 16 Qn(z) 0.06365x

(3.764)

By substituting (3.76) back into (3.73), combining terms,

and neglecting those terms of order higher than x, one

obtains

T. . = 0.1636 + = 2n (X ) + —= (3.77a)
11 : 2 2 2(K5I52 .

T . = 0.1636 + % en( %X ) + 1 (3.77Db)
22 y 2 2 ZaT(Kbi52 :
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_ 1 1 ox 1
le = 0,2886 - oz v 3 n ( =5 ) + TR (3.77¢)

Define F = (1/2)2n(x/2). Evluating the determinant
- 2 :
TllT22 (le) , setting the result equal to zero, and

solving for F, yields

(q?-s?-t2-u?)+ (gs+qu+qgr+rs+ru) -2 (tut+st+su)

F= (s+ut+2t-2g-r) (3.78)
where
g = 0.1636
r = 1
- 23Kb152
S = 1
ZaZZKb1V
_ 1
t = 0.2886 - 857
u = -]2'- n (a)
Solving for x in terms of F gives the result
x = 2 e*F (3.79)

Low-frequency cutoff may now be determined with the
help of (3.78) and (3.79). At cutoff, B is equal to K;
or, equivalently x is equal to zero. From (3.79), this

requires that F be a negative infinite number (F=-«),
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This also means that the denominator in (3.78) must be

zero. That is,
s+u+2t-2g-r=0 (3.80)

Equation (3.80) involves only o and Kb1 as variables.
Hence, for a given o, the lower cutoff frequency is

obtained from the solution of (3.80) for Kb This yields

l.

Kbl = l_(zaz {3.81)

For instance, when o equals 1.25, Kb1 is found to be equal
to 0.945; and when o is 1.50, Kb1 is 0.90. These values
fall within 0.5% of the cutoff frequencies indicated by
Figs. 3.3 and 3.4.

A plot of the function F versus frequency for a=1.25
is shown in Fig. 3.5. The gradual decrease at low fre-
quency indicates a phase velocity asymptotically approach-
ing speed of light. On the other hand, the singularity
at Kb1= 0.945 indicates a phase velocity that is exactly

equal to the speed light,
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3.5 ANALYSIS OF THE ANOMALOUS BAND

The most general definition of cutoff that is applicable
to all periodic structures regardless of the physical
apparatus of such structures may be based on a theorem
derived by Bell [50]. The theorem states that the time-
average power flow in the pass bands of the periodic
structure is equal to the group velocity times the time-
average electrical, and magnetic stored energy per period
divided by the period. Mathematically speaking, this may

be translated as

1 > > >y Vg 1 = = 1 > >
5 Re {/_  EX H*.dsl= —d—fv (7 eE-E* + 7 uH-H*)av (3.82)
where

s is an infinite surface normal to the axis of the
structure;

V is the volume enclosed by two such surfaces forming
the boundaries of one period;

Vg = dw/dB is the group velocity; and,

d = the period of the structure.

In general, cutoff may be defined as the frequency at which
forward power flow vanishes. Equivalently, this may also

be termed as the point at which the group velocity goes
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to zero. From the definition of group velocity vg=dW/dB
=cdK/dBR, an expression for the slope of the phase velocity
curve (Figs. 3.3 and 3.4) in terms of phase velocity and

group velocity may be derived as

(v/c)
Kb

[1 - 2]

Slope =
1l Vg

(3.83)
Using (3.83), it is possible to carry the definition of
cutoff one step further and describe it as the point at
which the slope of the phase velocity curve becomes
equal to -«,

The actual realization of cutoff (ceasing of forward
power flow) may be achieved by one of two physical pheno-
mena. First, cutoff occurs if the interelement distance
d becomes one half of the guided wavelength. In this case,
the field reverses from one section to the next and
meaningful propagation comes to a halt. This pehnomenon
will be referred to as "axial resonance" due to its
dependence on the axial distance d. The phenomenon of
"axial resonance" is widely accepted and assumed to be
the sole contributor to propagation cutoff in periodic
structures. However, if cutoff is to occur because of
"axial resonance", the structure must possess a moderately

high degree of dispersion in order to satisfy the require-
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ment of zero group velocity at cutoff. The high dispersion
property, in turn, puts a limitation on the type of
elements and their spacing,

The case of the periodic array of single loops will
be examined first. As the spacing d is decreased, the
periodic structure becomes steadily less dispersive. 1In
other words, the group velocity begins to change less
rapidly as a function of frequency. As a result, the
usual cutoff due to "axial resonance" cannot take place.

A new type of cutoff occurs when the equivalent loading
vanishes (X=0). This phenomenon may be termed "transverse
resonance"” due to the transverse loading presented by the
elements on a periodically loaded transmission line model
of the array.

It should be noted here that cutoff brought about
by "axial resonance" occurs when the array elements reach
resonant lengths, or soon thereafter, and involves the
propagation cutoff of a single wave by decreasing its
group velocity to zero. On the other hand, cutoff dictated
by "transverse resoannce" occurs at a frequency higher
than that at which the array elements attain resonant
lengths. Also, the latter cutoff forms the end of pro-
pagation for two waves of unequal phase velocities. The

"primary" wave (larger phase velocity) has its phase and
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group velocities in the same direction, The "secondary"

wave (lower phase velocity) has its phase and group
velocities oppositely directed. Thus, the "secondary"

wave acts to diminish the forward power flow of the "primary"
wave and reduce it eventually to zero.

Next, the behavior of the concentric array of loops
is explained in the light of the theory developed thusfar.
Consider first the case where the ratio b2/bl is small
(Fig. 3.3). 1In the first passband, the structure is seen
to be highly dispersive even at small spacings. As a
result, the dual-wave behavior in this passband is prac-
tically nonexistent, and cutoff occurs almost exactly at
Kb2=l.0. In the second passband, the structure is seen
to possess low dispersion even at large spacings. There-
fore, the dual-wave band is increased by a factor of two
over that of the isolated array.

When the ratio b2/bl is increased, the coupling
between the inner and outer loops is reduced. Thus, the
first passband will increase its dual-wave region, while
the second passband will reduce it. Finally, when the
inner and outer loops become completely uncoupled, each
passband reduces to that of an isolated array.

In order to dramatize the effect of reduced spacing
on the creation of the dual-wave phenomenon, contour

diagrams of phase velocity versus spacing with the frequency
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as a parameter are shown in Figs. 3.6 and 3.7. Note the
near absence of dual waves in the first passband depicted
in Fig. 3.6. In contrast, note the excitation of dual
waves over a relatively large band in the second passband
depicted in Fig. 3.7. Finally, contour diagrams for the
isolated array are given in Fig. 3.8 for the purpose of

comparison with those of the concentric array.
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CHAPTER 4

THE INFINITELY LONG YAGI ARRAY

OF CONCENTRIC LOOPS--EXPERIMENT

4,1 EXPERIMENTAL OBJECTIVES

The experiment described in this chapter has a three-
fold purpose. First, propagating waves are excited in two
distinct passbands on the periodic structure of concentric
circular loops. Using the surface-wave resonator method,
the phase velocities are measured and compared with
theoretically determined values. Second, propagation
characteristics are examined in the light of measured
amplitude and phase patterns at representative frequencies
in the pass- and stop-bands. Third, a data fitting pro-
gram is developed and used to ascertain the presence or
absence of dual waves. Near-field data corresponding to
resonant frequencies near the end of the second passband

are matched and results given.

4,2 DESCRIPTION OF EXPERIMENTAL SET-UP
A block diagram of the experimental set-up is shown
in Fig., 4.1. Part of the CW signal from the generator

was used to drive the electronic frequency counter. The
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main signal from the directional coupler continued through
the circulator which was necessary to prevent reflected
waves from reaching the generator or the frequency counter,
Past the circulator, the signal was fed to the input of

a variable attenuator., The "unattenuated" output was
passed through a single-stub tuner to the exciter of the
open resonant cavity. The "attenuated" output provided
the "reference" signal fed to channel "A" of the sampling
head. The coaxial switch selected either the signal
picked up by the probe alongside the array, or that of

a receiving antenna mounted on the end reflector of the
cavity. The signal chosen by the switch served as the
"test" signal fed to channel "B" of the sampling head.
Finally, the vector voltmeter displayed the amplitude of
channel "A" or "B" and their phase difference (¢B-¢A).
Note that the isolation between the "attenuated" and
"unattenuated" parts of the variable attenuator was
maintained at better than 50 dB.

The component parts of the resonant cavity will now
be described with some emphasis as to their function and
type of construction. A pictorial view of the assembly
is shown in Fig. 4.2.

4,2.1 Ground Plane

By the theorem of images, a single conductor over
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an infinite, perfectly conducting ground plane produces
fields identical to those of a single conductor and its
image. If the conditions of a plane surface, perfect
conductivity, and infinite extent are satisfactorily
approximated for the ground plane, very good experimental
results can be obtained by the image-plane technique.

In addition to simplicity of construction, other advan-
tages of the system are 1) that it is inherently balanced
and thus a high degree of electrical symmetry results,
and 2) the presence of the ground plane serves as an
electrical shield to isolate operator and measuring equip-
ment from the antenna under test [55].

The ground plane used in this investigation was
made of 0.635 cm aluminum and measures 61 cm by 126.5 cm.
This was of sufficient size over the frequency range of
interest. It was made up of three plates, one center
plate and two side plates. At the middle of the center
plate and all along its length, concentric half-loops of
diameters 4.127 cm and 6.667 cm were mounted with the
aid of precisely-drilled close tolerance holes. The half-
loops were made of circular copper wire of 0.159 cm
diameter that was pulled through the holes and made to
conform to the shape of a semi-circular steel pipe.

On one side of the center plate, a 0.792 cm strip
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had been removed to accommodate a brass rod that carried
the E-field probe. The brass rod, of length roughly

twice that of the ground plane, was made to travel over

two steel bars held in place by phenolic standoffs mounted
on the back side of the ground plane. The small section

of the two-section center plate (the one not containing

the half-loops), adjacent to the brass rod, had been marked
in intervals of 0.5 cm to designate the position of the
E-field probe.

Finally, adjoining sidesof each plate were machined
down to half thickness and made to overlap. The overlapping
sections were subsequently fastened together by means of
4-40 screws. Also, in order to provide a perfectly plane
conducting surface, all seams, holes, and screw heads
were filled with conducting silver paint and then carefully
smoothed and polished,

4,2.2 Reflector Plates

To form an open surface-wave resonator, two parallel
and plane reflector plates were clamped, one on each end,
to the image plane. The two plates were made of 0,635 cm
aluminum and measured 30.5 cm in height and 61 cm in width.
Also, in order to maintain precise boundary conditions,
the reflectors were oriented normal to the image plane

and smoothly flattened. Finally, the corners between each
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reflector and the image plane were filled and sealed with
silver conducting paint to insure good electrical
conductivity.
4,2.3 Exciter

Excitation of the surface-wave on the periodic
structure was accomplished by means of a small square loop
antenna mounted on the plane of the front reflector, The
antenna was positioned in a vertical plane. Also, its
largest dimension extended vertically a distance equal
to the spacing between the concentric loops of the array.
This is illustrated in Fig. 4.3, Based on near-field
calculations of the array, the square loop so oriented

served as a reasonably efficient exciter.

Reflector
\7 0.794 cm
L/
4
;; ~¢////’ Exciter
coax

\ ¢/
% 1.587 cm
%
&

IS NNAA

—

ground plane

Fig. 4.3. Surface~wave exciter



113

It is noted that loose coupling to the cavity by
the exciter was maintained by restricting the loop length
to less than half-wavelength over the frequency range of
interest (1-2.4 GHz). This would lead to better resolution
in determining the resonant frequencies of the cavity [56].
A similar receiving antenna was attached to the back
reflector, and used to monitor cavity resonance.
4.2,4 E-field probe

The probe consisted of a simple extension of the
center conductor of a miniature coaxial cable (diameter =
0.2 mm) protruding through a hole in the metal surface of
the brass rod. It extended roughly 0.635 cm above the
surface of the ground plane. As such, it measured the
component of the electric field that was normal to the
ground plane. The small size of the probe (less than
0.1)\) was necessary to insure the measurement of the field

at a point [57].

4.3 PHASE VELOCITY MEASUREMENTS

The phase velocity of the guided wave was determined
in the following manner. The coaxial switch was thrown
in position 1 to connect the receiving antenna in the end-
reflector to the sampling head of the vector voltmeter.

Then, resonance of the cavity was obtained by varying the
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signal generator frequency until a transmission maximum
through the resonator was observed on channel B of the
vector voltmeter. The distance between the resonator end
plates was accurately measured, and was kept constant
throughout the measurements. For every resonance observed,
the free-space wavelength was obtained as the ratio of
the speed of light to the frequency indicated by the fre-
quency counter. The guided wavelength was determined by
dividing the length of the cavity by one half the number
of standing wave minima along the resonator axis, To
count the number of minima, a cylindrical perturbing
obstacle was moved along the array structure. When the
obstacle was placed at a position of maximum E-field, it
caused a shift in the resonant frequency of the cavity.
This was indicated by a dip in the reading of the vector
voltmeter. However, when the obstacle was moved to a
node in the E-field, the perturbation was minimum and the
vector voltmeter reading returned to within 1% of maximum
value. The phase velocity of the guided wave was then
calculated from the ratio of the wavelength in the cavity,
to that in free space.

Phase velocity data were obtained for both the
isolated and the concentric arrays. The results are

compared with the theoretical values in Figures 4.4 and
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4.5. Note that the data for the isolated array were
obtained by removing the outer loop and filling its
mounting holes with conducting silver paint.

The experimental results correspond quite closely
to the theoretical ones except for the second passband
of the concentric array. In this band, the discrepancy
between theory and experiment is about one percent in

terms of Kb;.

4,4 NEAR FIELD MEASUREMENTS

Amplitude and phase patterns corresponding to fre-
quencies in the pass- and stop-bands were obtained by
near field measurements of the array. The procedure used

was as follows.

(a) With the coaxial switch thrown in position 1, the
signal generator was tuned to a resonant frequency.

Resonance was indicated by a peak reading on channel B
of the vector voltmeter, and the resonant frequency was

read from the frequency counter.

(b) The coaxial switch was then turned to position 2 to

connect the E-field probe to the sampling head.

(c) The probe was moved to a reference location located

about 36 cm from the end reflector. (This is the 90 cm
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point as measured from the front reflector).

(d) The level of the "reference" signal on channel A was

set at a convenient level by the variable attenuator.

(e) The vector voltmeter "offset" was then used to set

the phase difference (¢B-¢A) to zero (+ 1 degree).

(f) The first data point at the location 2z=90 cm, was
read from the vector voltmeter where the amplitude was
that of channel B, and the phase was read from the phase
meter. (Note: the phase of the 90 cm reference point

was set to zero in the previous step.)

(g) .Thereafter, the slide bar was pulled in increments
of 0.5 cm until the final position of 50 cm was reached.
At each increment, the amplitude and phase (relative to
the 90 cm reference point) were read directly from the
vector voltmeter.

Note that the bulk of the data was taken in an area
around the center of the cavity and away from the region
illuminated by the exciter, This was done in order for
the probe to sample the E-field due to the surface wave
only, and not the one due to the exciter., In fact, the
closest position for which near-field data was taken, was
located 50 cm away from the exciting antenna.

Throughout all the near-field measurements, the

probe was moved in an axial direction at a constant distance
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from the concentric array. This distance was 1.427 cm
from the edge of the outer loop, and 2,697 cm from the
edge of the inner loop.

In order to estimate the perturbing effect of the
probe on the electric field being measured, a piece of
wire of roughly the same size as the probe was moved to
within 0.5 cm of the measuring probe, in close proximity
with the array structure. No change in the measured
field intensity was discernable (in other words, the
change was below the sensitivity level of the vector
voltmeter of -65 dBm) unless the interfering piece of wire
actually made contact with the outer loop of the array.

In the first passband, near-field data were taken
at three representative resonant frequencies (£f=1.154,
1.328, and 1.358 GHz). The results are plotted in
Figs., 4.6, 4.7, and 4.8 respectively. In these plots,
amplitude and phase data points are given along with a
smooth curve representation.

Examination of the amplitude patterns shows a
certaln degree of spatial modulation evident in the form
of unequal maxima and minima. This phenomenon may be due
to the local action of the loop elements on the array
near field (the condition of zero tangential E-field),

and to any change in the exact transverse distance from
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probe to array as the probe is moved. Due to exponential
decay, a slight change in the probe transverse distance
can result in considerable variation in detected levels.
Also, an oscillatory behavior is noted in the amplitude
patterns for the frequencies f=1.154 GHz, and f=1.328 GHz
in the region between 80 and 90 centimeters. This behavior
may be caused by a drift in the generator signal frequency,
or a slight change in the resonant frequency of the cavity.
In any case, this behavior takes the form of an end-effect,
that is, as the probe nears the far end of the cavity.
Also, the fact that there were gaps between the sliding
bar and the adjoining sections of the ground plane may
be another possible source of error. Nevertheless, in
general, the amplitude patterns of the first passband
represent surface waves that are well trapped by the
guiding structure.

On the other hand, the phase patterns of the first
passband are well behaved. The sharp transitions of
+ 180° at every half guide wavelength, indicate relatively
pure standing waveforms,

In the stopband region, located between the two
passbands, the wave is a leaky one that looses energy by
radiation as it travels along the structure. However, the

attenuation due to radiation decreases gradually as the
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frequency increases toward the second passband. In fact,
the wave becomes reasonably trapped in a narrow region
located right before the transition into the second pass-
band. In this region, the amplitude distribution is
neither a pure standing wave nor a pure traveling wave.
As a result, it is difficult to ascertain a value for the
propagation constant of the wave (B=271/\Ag where Ag is the
guided wavelength). Note that it is characteristic of
the concentric array of loops to exhibit this behavior

at the point where the phase velocity undergoes a change
from fast to slow. Typical patterns at a frequency in
this region are shown in Fig. 4.9 with £=2,029 GHz. The
unequal spacings between successive minima or maxima
coupled with the almost linear phase variations are
evidence of the existence of evanescent waves,

In the second passband, near-field data were taken
at one frequency near the lower end of the band (£f=2.07 GHz),
and at two frequencies close to the higher end (£f=2,206 GHz
and £=2,220 GHz), Results are plotted in Figures 4.10,
4,11, and 4.12, respectively. Inspection of the amplitude
patterns shows a severe spatial modulation that becomes
periodic in the case of Fig. 4.11. On the other hand,
the phase plots indicate quite well a surface-wave propa-

gation with the exception of Fig. 4.12. In this case,
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(Stopband, £=2.029 GHz, a/bl=0.038, d/b1=0.308, b2/b1=l.615).

(Sda3yodq) ISVYHJ

T



E~-FIELD AMPLITUDE (mV)

360
¥ PHASE

2.2— —330
2.0=""™ X o o XX —300
8 —270

1.8 _ ° 2

R
l.6— ° ® ¢ —1240
°
® .. .
1.4 ® —{210
°
1.2 ° *\%i80
Y [ ]
°

1.0}— ° ' —150

X K
0.8— ® ° ! ™ —120

* 4
0.6 — 4 -1 90
L
0.4 ° —1 60
0.2 -— 30
N N U NN FUNN SR A AR AU N N N (U N N . b
50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90
DISTANCE ALONG ARRAY (cm)
Fig. 4.10 Measured amplitude and phase of near-field of the concentric array

(second passband. £=2.07 GHz, a/bl=0.038, d/bl=0.308, b2/bl=l.615).
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Fig. 4.11 Measured amplitude and phase of near-field of the concentric array.
(Second passband, f=2.206 GHz, a/bl=0.038, d/bl=0.308, b2/bl=l.615).
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the phase pattern is more erratic due to low signal level
which resulted in marginal operation of the vector volt-
meter. (Signals on the order of 0.1 mv are slightly

higher than the 0.075 mv noise level of the voltmeter).

4.5 DUAL WAVE BAND

With a fixed exciter, and in the immediate vicinity
of cutoff of either passband, it becomes exceedingly
difficult to deliver enough power to the structure for
adequate signal detection [58]. This is particularly
true near the cutoff end of the second passband where
the dual-wave phenomenon was shown to occur, It was also
shown (sec. 3.5) that the two waves have unequal phase
velocities and opposite directions of propagation. As
a result, the oppositely directed power flows of the two
waves induce a sharp decrease in resultant forward power
flow, and in turn only negligible signal levels are
available for sampling by the probe. Moreover, strong
signal levels are extremely vital in this case, because
of the necessity to fit the experimental data with two
propagation constants.

To remedy this situation, a microwave power ampli-
fier was inserted between the generator and the directional

coupler (Fig. 4.1) in order to boost the generator power
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output to one watt. Then, near-field data at four resonant
frequencies toward the end of the second passband were
obtained.

The remainder of this section is devoted to the des-
cription of the matching program used to fit the data to
two propagation constants. Also, an analysis of the
ensuing results is given.

4,5.1 Data fitting program

It is desired to determine the parameters in the
equation f(z)=A,sin B;z+A,sin B,z such that the sum of
the squared differences between actual and predicted
values is minimized. The constants A; and A, are complex
quantities while B; and B, are real. The complex equation
may be written as two real equations by decomposing com-

plex quantities into real and imaginary parts.

fr = Alr sin Blz + A2r sin 822 (4.1a)
fi = Ali sin Blz + A2i sin Bzz (4.1b)
where f = fr + jfi’ A1=Alr + jAli, and A2=A2r + jAzi.

Let N designate the number of data points. The

squared difference is given by

N
D= 7] (f,,"AqSin Bz -A,

sin B,z ) +
n=1 2'n

r
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- 3 — : 2
(fin Ali51n Blzn A2i51n Bzzn) (4.2)

Squaring and combining terms yields the result

D=D +(A +A )S(B ) + (A +A )s(s ) - 2Aer(31)

—2A2rT(82) - 2AliQ(Bl) - 23, Q(B )y + 2(A By tA A 21)
U(Bl,BZ) (4.3)
where
(8) ? N 1 ?
5(B) = sin‘“fz. = = - & cos(2B8z.)
n=1 2 2 n=1 n
N
T(R) = nzl £, sin Bz
N
Q(B) = nzl fin sin Bz
N B,+B BB
. . 1 72 1l "2
U(ByrBy) = nzl sin B,z sin B,z = S| 1 - S——=1

Note the expression for D is nonlinear in Bl and 62 and
linear in the other four parameters. Therefore, it is
necessary to fix Bl and 82 and minimize D in terms of
A. , A, , A ., and A,,. This is done by taking partial

1r 2r 1i 2i
derivatives and setting them equal to zero. Namely,
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5D _ 3D _ 3D _ 3D
0By, Ay Ay, dAyy

=0 (4.4)

The solution of the resulting four equations for the four
unknowns yields

A.. = - (4.5a)
1r = STE)S(8,) = U7(8,,8,)

S(B,)T(B,) - T(B,)U(B,,B,)
AL L (810160 B (4.5b)

Mi T 5ES6,) - 07 (4.5¢)

221 T STEISTE,) = 07 (4.5d)

An attempt to minimize the squared difference D in
terms of Bl and 82 by two-dimensional Newton method was
not successful due to the large number of local minima.
A search technique was later used in which Bl and 62 are
varied in their respective ranges with the parameters
Alr’ A2r’ Ali’ A2i and D evaluated for each pair of
values. The calculated values of D are normalized with
respect to the minimum and scaled by a factor of 10
before being displayed in a square array pattern. The

variable Bl is incremented from one row to the next and

its value for each row is printed on the left hand side
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of the pattern. In a similar fashion, 82 is incremented
from one column to the next.
4,5.2 Analysis of results

In order to test the ability of the program to con-
verge to the correct solution, two sets of data have been
prepared and used to obtain typical test patterns. The
first data set is chosen to correspond to a single wave
(one propagation constant), and the second data set is
selected to conform to a dual-wave (two propagation
constants).

The pattern for the first set contains one row and
one column of the same order (16) which are made up of
relatively loﬁ values of D. This is illustrated in
Fig. 4.13. The minimum in the pattern ié at the location
(27, 16) which corresponds to Bl=52.52 and 62=66.73.

The weighting of Bl is determined by the magnitude of the

coefficient A, and the weighting of 32 is specified by

1

the magnitude of A2. Therefore, patterns for lAl

|2 and

|a (suitably scaled so that the maximum value is equal

21"
to 99) are given in Figs. 4.14 and 4.15 for comparison.
At the array location (27, 16), corresponding to the
minimum squared difference D, the values of |A1|2 and
|A2|2 are 17 and 0 respectively. Hence, B, corresponds

to the dominant wave and 82 may be neglected. It follows

that B=Bl=52.52.
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Fig. 4.14 Coefficient A, pattern corresponding to single-wave
data (Measured data, f=2.0352 GHz),
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Fig. 4.15 Coefficient A, pattern corresponding to single-wave
data Amemﬁﬂmm data, £=2.0352 GHz).
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The pattern for the second set of data is shown in
Fig, 4.16, It indicates a minimum at the array location
(14, 7) which corresponds to Bl=53.15 and 82=57.42. Since
|Al|2 and |A,|? are of the same order of magnitude
(|Al]2=98, |A2|2=64), the two waves are equally dominant.

In the light of the above test patterns, one can
now analyze those patterns corresponding to the four
resonant frequencies which are located at the end of the

second passband.
The data obtained at the frequency £=2,220 GHz is

plotted in Fig. 4,.,17. The resulting pattern of the squared
difference is shown in Fig, 4,18. The row and column of
order 8 are seen to contain relatively low values of D,
Note that the value of D at the array location (8,8) is
of the same order of magnitude as the minimum at (8,4).
Also, the coefficients Al and A2 at (8,4) are of the same
order of magnitude (]A1[2=28, |A,[?=89). Therefore, the
location (8,8) is selected as a solution where Bl=82=62.02.
This corresponds to a normalized phase velocity of 0.749
which is exactly equal to the one obtained by the resonator
method (Fig. 4.5).

The data obtained at the frequency £=2.25 GHz 1is
plotted in Fig. 4.19. The corresponding squared difference
pattern is displayed in Fig. 4.20, The row and column of

order 13 contain only low values of D. Note that the
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Fig. 4.16 Squared difference pattern corresponding to dual-wave
(fictitious data).
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Fig., 4.17 Measured amplitude and phase of near-field of the concentric array.

(Second passband, £=2.22 GHz, a/bl=0.038, d/bl=0.308, b2/b1=l.615).
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Fig. 4.19 Measured amplitude and phase of near-field of the concentric array.

(Second passband, f=2.25 GHz, a/bl=0.038, d/b1=0.308, b2/bl=l.615).
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value of D at the array location (13, 13) is of the same
order of magnitude as the minimum located at (13,10).
and A

Moreover, the coefficients A at (13,10) are of

1 2
the same order of magnitude ([A1[2=27, |a,|2=36).
Therefore, the location (13,13) is selected as a solution
with Bl=62=68.60. In terms of the normalized phase
velocity, a B of 68.60 corresponds to v/c of 0.686 which
differs by .017 from that obtained by the resonator
method.

The data obtained at the frequency f£=2.263 GHz
is plotted in Fig. 4.21. The resulting pattern is given
in Fig. 4.22, 1In this case one can identify row 14 and
column 14 as having predominantly low values of D. Note
that the value of D at the array location (14,14) is of
the same order of magnitude as the minimum positioned at

(15,9). On the other hand, the coefficients A, and A

1 2
at (15,9) have roughly equal magnitudes (|A1|2=21, |A2|2=29).
Then, the location (14,14) is taken as the solution where
Bl=82=70.27. The corresponding phase velocity is equal
to 0.674 which differs by .008 from the one obtained by
resonant methods.

Finally, the data obtained at the frequency
f=2.276 GHz is plotted in Fig. 4.23. The pattern is

displayed in Fig. 4.24. A careful scanning of the square

array reveals that all the printed values of D have the
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Fig. 4.23 Measured amplitude and phase of near-field of the concentric array.
(Second passband, £=2.276 GHz, a/b1=0.038, d/bl=0.308, b2/b1=l.615).
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same order of magnitude, The reason for this behavior
may be attributed to the large noise content of the data
set at this frequency. Therefore, a reliable solution
cannot be obtained in this case,

In conclusion, the experiment was successful in
verifying the existence of pass- and stop-bands, and in
determining the phase velocities of the propagating waves
with good accuracy. However, it did not detect the dual-
wave phenomenon. The lack of detection may be attributed
to one of two reasons. 1) The theoretical bandwidth of
two percent of the dual-wave band may be too small to
accommodate a resonant frequency. 2) Even if a resonant
frequency does fall in this band, the two opposing waves
act to make detection difficult especially in a region

bordering on cutoff.
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CHAPTER 5

THE INFINITELY LONG YAGI ARRAY OF
COAXIALLY-DISPLACED LOOPS

5.1 MOTIVATION

It was shown in Chapter 3 that an infinitely long Yagi
array of concentric loops can support a propagating wave
in two distinct passbands. When the frequency of excita-
tion is within one of the passbands, the structure behaves
as a surface-waveguide that may be used to transfer energy
from one point to another.

Hence, from a waveguiding point of view, it seems
reasonable to expect the propagation characteristics to
be unaffected by an axial translation of the inner array,
relative to the outer one, or vice-versa. In other words,
an axial shift of the inner loop from the plane of the
outer loop should not result in any change in the range
of the passbands, or in the phase velocities of the pro-
pagating waves in these bands.

In this chapter, it is shown that this 1is actually
the case, except for some minor differences. The tech-
nique detailed in chapter 3 is employed to derive a dis-

persion relation for the new array of coaxially displaced
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loops. Then, the dispersion relation is solved numerically
for the phase velocity of the propagating wave for a
typical set of array parameters. Finally, the results
obtained are tabulated for comparison with those found

for the concentric array.

5.2 DERIVATION OF THE DISPERSION RELATION
The infinitely long Yagi array of coaxially displaced
loops is shown in Fig. 5.1, where the parameters (al, a0

b b S and d) are defined.

17 =2

2a ,

2a

—

Fig. 5.1 The Yagi array of coaxially displaced loops.
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The currents on the two loops of the typical nth
cell are assumed to have the following form

-3B (S+nd)

I = Al cos m¢ e (5.1a)

In

I,, = A, cos m} e Inkd (5.1b)
where Iln and IZn are the currents on the small and large
loop respectively.

A dispersion relation is obtained by setting the
tangential component of the electric field equal to zero
on the surfaces of the elements contained in the zeroth
cell. Thus, let Pl(el, $) and Pz(ez, $) be two field
points located arbitrarily at some angle ¢ on the surfaces
of the small and large loop of the zeroth cell. Also, let
Pi(el, $') and Pé(e;, ¢') be two source points located
arbitrarily at some angle ¢' on the surfaces of the small
and large loop of the typical nth cell. This is illus-
trated graphically in Fig. 5.2.

Mathematically speaking, the dispersion relation is
obtained by setting E =

= E + E
o %11 %12
equal to zero. The field components E

, and E = E + E
¢ 01 %33
r E 4 E 7 and
¢11° %127 %21
E¢ , are dependent on the distances Rn ’ Rn ’ Rn , and
22 11 12 21
Rn respectively as explained in Chapter 3. Hence, an
22
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0th cell nth cell

Fig. 5.2 Typical field and source points with
associated distances.
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evaluation of the Rés is necessary before any field com-

putations can be made.

5.2.1 Evaluation of the Rﬁs

The expressions for R and R are identical to
"1 122

those obtained in Chapter 3 for the concentric array.
Namely,

2 - 2 s 2 At 2 ion?2 At 242

Rnll 4bl sin® [(¢=¢")/2] + 4a131n [(e1 el)/z] + n“d (5.2)
R? = 4b2 sin? [(¢-¢')/2] + 4a2 sin?[(6,-6!)/2] + n2d2? (5.3)
Ny, 2 2 2 72

with the conditions

a.<<b 4a.<<d; a,<<b

1 l; 1 da.,.<<d (5.4)

25Pyi 28y

However, the expressions for R and R are not
"2 N21
as obvious. Thus, a detailed derivation of Rn will be
21
made. Then, Rn will be obtained by inspection of the
12

result for Rn .

21

Rn is defined by
21

2 _ -> _—)' 2
Rn21 = |rg, = £} (5.5)
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where r = X ; + v § + z ; and ¥!, = x'§ + y'§ + z';
02 2 2 2 nl 1 1 1
with components given as
X, = (b2 - a, cos 62) cos ¢ (5.6a)
Y, = (b2 - a, cos 62) sin ¢ (5.6b)
z, = a, sin 92 (5.6¢)
and,
' = - ] '
X (bl a, cos el) cos ¢ (5.7a)
yi = (bl - a, cos ei) sin ¢! (5.7b)
| I J 1
zy = nd + s + a; sin el (5.7c)

Using (5.6) and (5.7) in (5.5), the expression for R
21
becomes

2 = - - — ] 172
Rn21 [(b2 a, cos 62) cos ¢ (b1 a, cos 61) cos ¢']

+ [(b, - a, cos 8,) sin ¢ - (b; - a, cos 8;) sin $']2

i - - - : 2
+ [a2 sin 62 nd S a; sin ei] (5.8)

Following the same steps used to simplify the expression

for Rn in section 3.2.3, one may reduce (5.8) to obtain
21
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Rﬁzl = (b, - bl)2 + 4 bb, sin? [(¢ - ¢')/2] + (nd + S)*

— 2 - 3 [}
2S(a2 sin 62 a; sin el) (5.9)
subject to the conditionsg

2(al + a2)<<d; 2(al+a2)<<b -b

o~bys (al/bl) + (a2/b2)<<1 (5.10)

As shown in Appendix D, the last term in equation (5.9)

may be neglected provided the parameter S satisfies the

inequality
0<s<d/2 (5.11)
Then, the expression for Rn21 reduces to
R;Zl = (b, - bl)2 + 4 byb, sin? [(¢ - ¢')/2] + (nd+s)? (5.12)

Finally, the expression for Rn may be obtained from
12
(5.12) upon replacing S by -S. This yields

— - 2 on 2 - ] - 2
R;lz = (b, = by)? + 4 byb, sin® [(¢ - ¢')/2] + (nd-S)? (5.13)

which is valid subject to the conditions of (5.10) and

(5.11).
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5.2.2 Evaluation of the field components
E¢ for the array of coaxially displaced loops may
11
be obtained from that for the array of concentric loops

(Eg. 3.58) upon replacing A, cos m¢ by A1 cos mo¢ e—JB§that is

-3Bs

E¢ll _ jA;n Kby CZS m¢e g {L ii;Yng by (b
+ Iﬁ(anl)Kﬂ(anl)} S(2Ynal) (5.14)
However, E¢22 is exactly the same as the one for the
concentric array (Eg. 3.59). Namely,
E¢22 _ jAleoKb(21 cos mé g {[ iizyn ]z T (4 bK (v b,)
+ Iﬁ(anz)KA(anz)} s (2y a,) (5.15)

In order to determine E¢21, it is necessary to study

the expression for its Kernel W21(¢—¢') given by

40
oy o 1T ¥ —jp(nd+s) _-3KR
W21(¢ ¢ ) = '2? f_.ndel n:—ooe e__R__£2_l (5.16)
n2l

By decomposing Rn?l into two parts, the expression for the

Kernel becomes
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2 -jB(nd+S)e—jK/(nd+S)2+A2

1w )
Wy, (¢=0') = 5= J _der & e (5.17)

2_ - 2 s 2 ot

where A“= (b2 bl) + 4 b1b2 sin® [(¢-0¢"')/2].

An equivalent representation to (5.17) may be obtained
by invoking another form of the Poisson's summation

formula [51].

+o0 l+m . 27mS
] £(S+nd) =32e3 d F[

n=-—o n=-o

2mm
~a-} (5.18)

where F denotes the exponential Fourier transform of the
function f. Using (5.18) along with the definition of

Fourier transform in (5.17) the Kernel may be written as

+o0 . 2mmS : 2mm
1 1 +o - t—
Woq(6=¢") = 57 st dei {:3 Y el @ e Jt(B+=3
- == 00 - 00
e—jK/A§+ t*
at (5.19)
VA2+ t2

Substituting Bm = B+ 2mm/d, and integrating the indefinite

integral in (5.19), yields
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Wy (4-0') = == /o a8y ] e K_(Ay,) (5.20)

where Y; = B;—KZ, and K  is the modified Bessel function.

From section 3.2.7, E is given by

$21
E = ——:iil— -m? /" de! cosmo' W,, (¢—¢")
$51 - ATwe b, —q G0 21

2 m ' At ' _at
+K blb2 {_ﬂ d¢' cos(¢=9¢') cos mo W21(¢ ) )} (5.21)
By replacing the Kernel W21(¢—¢') with its value from
(5.20) into (5.21), and following the same steps as in

3.2.7, the final expression for E¢ results.

21
] . 2TnS
g o PaNoRhy cos md o d {msn ]21 (y_b,)
$21 d L Kb_Y, m''n-1
] ]
Km(ynbz) + Im(anl)Km(anz)} (5.22)

where bO = blbz'

Finally, the field component E¢12 has the following

Kernel

.~jnd e IKR 15
R

n=-co nl2

o1
Wi, (9-0') = 5= /0 de) (5.23)
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jBs

Using Rélz = A%+ (nd-S)?, and factoring e yields
-38s yo . _iK/{Rd-8) ZTA?
W, (9-0")= So— s aey 7 e I(nd=S) e (5.24)
12 27 -T 2 = /(nd_s) A Z

Applying Poisson's summation formula to (5.24), the Kernel

becomes
' i8S o e _jZEnS
Wip(9=0") = —=— [ 48, rz1=-°° e K, (Ay) (5.25)

From section 3.2.8, E is given by

912

-]

A
- 2 ’ 2 M ' ' -h?
o, ~ Trwe By {'m Lnae’ cos motuy, (6-6")

+K2blb2 {Ird¢' cos(¢-¢"') cos m¢'W12(¢-¢')}’ (5.26)

By replacing W12(¢-¢') with its value from (5.25), and
following the usual procedure, the final expression for

E¢ results.
12

. -jRS _:2TnSs
jAznosz cos mope J

E = ) e - ] I_(y_b.)
¢12 d n Kboyn m 'n 1

K (v by) + Iﬁ(anl)Kﬁ(anz)} (5.27)



5.2.3 Dispersion relation
Setting E = E =

SRS

two simultaneous equations

amplitudes.

blAl cos m¢(Tll)+b2A

blAl cos m¢(T21)+b2A

where
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0 for all values of ¢ vyields

for the unknown current

)

1
(]

5 COS m¢ (T (5.28a)

12

5 COS m¢(T22) 0 (5.28b)

(m
1117 E[LKE?VEj Im(anl)Km(anl)+I$(anl)K$(ynbl)]s(zynal)
(5.29a)
rmBn 2
Tyo= 121[ —Kb_éY_m I (v b )K (v b,)+I'(y b, )K'(y b,)1S(2y a,)
(5.29b)
me_ ]2 s
T127 E[ Kb_Y, I, b )R (v by )+T0 (v b )R (v by)le g
: JZ (5.29¢)
me .2Tns

_ n ] ' J—
1= Ll Kb Y Im(anl)Km(anZH-Im(anl)Km(anZ)]e d

For a nontrivial solution,

(5.294d)

the determinant of the coefficients

in (5.29) must be zero; namely,

T11To2 = T12To1

=0 (5.30)



161

Equation (5.30) is the required dispersion relation. Also,

the ratio of the current amplitudes is given by

b
2| |A2 (5.31)

11

»|w
N |
l—l

5.3 NUMERICAL RESULTS

Since the series T and T21 in (5.30) are complex

12
conjugates, their product is a real number, and hence

the determinant is a real-valued function of the phase
delay ®. Thus, the computer program described in section
3.3 may be used, with appropriate modifications, to obtain
solutions for equation (5.30).

It is noteworthy to indicate that the only difference
between the dispersion relation for the array of coaxially
displaced loops, and that of the concentric array of loops,
is the existence of phase factors in the series le and
T21. However, these factors do not contribute to the
n=0 terms of the two series. Since the fundamental term
(n=0) of each series is dominant over most of the pass-
bands, it is expected that no significant change in phase
velocity of the propagating wave would result when the
loops of a concentric array are axially displaced. This

fact has been verified with an array having the parameters
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(a/bl=0.01, d/bl=0.25, and b2/bl=l.25) whose loops have
been displaced an amount S=d/2. The results for both
the concentric and the displaced arrays are given in
Table XI for comparison.

Near the ends of the passbands, the fundamental term
can no longer be considered the dominant term, and a slight
difference between the phase velocities exists. For
example, in the first passband, a difference appears in
=0,78 and Kb,=0.80.

1 1
However, in the second passband, a difference exists in

the frequency range between Kb

the range between Kbl=0.98 and Kb1=l.02. In any case,

the change in phase velocity is small and may be neglected.
Finally, it should be noted that the analysis pre-

sented in this chapter is valid for any amount of dis-

plcaement. In fact, if in Fig. 5.1 the small loops were

displaced in the negative z-direction instead, the disper-

sion relation of equation (5.30) would still hold, Actually,

a displacement to the left results in an interchange of

the expressions for Rn and R 17 which indicates an

12 n2

interchange in the expressions for T and T Hence,

12 21°
the theory derived above is valid for any relative dis-
placement between the inner and outer loops., This is

obviously the case since the parameter S can vary over

one full period (-d/2 < S < d4/2).
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TABLE XT
Normalized phase velocity of m=1 mode

(a/bl=0.01, d/bl=0.25, b2/b1=l.25, S/d=0,5)

Kbl Displaced Concentric

first passband

0.50 0.9867 0.9867
0.52 0.9814 0.9814
0.54 0.9738 0.9738
0.56 0.9655 0.9655
0.58 0.9542 0.9542
0.60 0.9405 0.9405
0.62 0.9247 0.9247
0.64 0.9064 0.9064
0.66 0.8842 0.8842
0.68 0.8575 0.8575
0.70 0.8261 0.8261
0.71 0.8075 0.8075
0.72 0.7875 0.7875
0.73 0.7640 0.7640
0.74 0.7378 0.7378
0.75 0.7071 0.7071
0.76 0.6702 0.6702
0.77 0.6249 0.6249
0.78 0.5657 0.5653
0.79 0.4781 0.4777
0.80 0.2796 0.2777

second passband
0.95 0.9747 0.9747
0.96 0.9250 0.9250
0.97 0.8712 0.8712



0.98
0.99
1.00

1.002
1.002

1.004
1.004

1.006
1.006

1.008
1.008

1.010
1.010

1.012
1.012

1.014
1.014

1.016
1.016

1.018
1.018

1.020
1.020

TABLE XI (cont'd)

0.8172
0.7616
0.7011

0.6880
0.1210

0.6740
0.1594

0.6596
0.1883

0.6442
0.2139

0.6277
0.2380

0.6102
0.2618

0.5904
0.2865

0.5676
0.3133

0.5399
0.3445

0.4998
0.3875

0.8177
0.7621
0,7015

0.6884
0.1198

0.6743
0.1588

0.6599
0.1877

0.6488
0.2134

0.6284
0.2375

0.6104
0.2613

0.5909
0.2860

0.5684
0.3127

0.5408
0.3437

0.5011
0.3864

164
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CHAPTER 6

DISCUSSION OF POSSIBLE APPLICATIONS

6.1 AN OVERVIEW

The purpose of this chapter is to present an account
of possible applications of the periodic structure of cir-
cular loops and variations thereof. The presentation is
intended to illustrate the useful features and properties
of the structure, and their potential application in the
design of practical devices.

The usefulness of any open periodic structure
stems from its ability to propagate a low-loss slow surface-
wave in one, two, or more passbands. In the case of the
periodic structure of circular loops and its derivatives,
the property of slow wave propagation can take on added
dimensions resulting in new and varied applications. For
example, its applicability to the design of Yagi antennas,
surface waveguides, microwave filters, TWT interaction
circuits, and open resonators is discussed in the next
section. Whenever possible, a description of existing
hardware that offer a certain degree of resemblance to the

loop structure is also included.

6.2 AREAS OF POSSIBLE APPLICATION
6.2.1 Yagi Antenna
As shown in chapter 2, a section of an infinitely

long Yagi array of single loops may be transformed into a
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Yagi antenna by connecting one end to a signal source and
terminating the other end in free space. The antenna thus
formed has a linearly polarized endfire beam in the first
mode, and a linearly polarized conical-shell beam in the
second mode. Moreover, its directivity in the first mode
of operation is comparable to that of a dipole array of
the same length. Also, the radiation characteristics in
the two modes are particularly suited to coarse/fine
tracking applications., In addition, circular polarization
may be realized by proper reactive loading of the array [15].

In the case of the concentric array, a broadband
Yagi antenna with an operational bandwidth extending over
the pass- and stop- bands may be designed. Obviously, the
success of this antenna depends largely on the attenuation
experienced by the surface wave in the stop band. Note
also that the directivity of such an antenna is lower than
that of a single array due to the out-of-phase currents on
the inner and outer loops. In any case, a concentric array
of circular loops may be a desirable alternative when a
tradeoff between gain and bandwidth can be tolerated.

A new and important feature that may be used to
advantage in Yagi antenna design, is discussed in Chapter 5.
It is shown there that the phase velocity of the propagating

wave and the amplitudes of the loop currents remain un-
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changed under an arbitrary relative displacement of inner
to outer loops. This means that the gain of the Yagi
antenna is not a function of the relative displacement.
However, the shift in phase between the currents of the
displaced loops, is directly proportional to the amount
of displacement, This fact may be used as an independent
control to achieve limited beam steering and/or desirable
pattern shaping. Hence, a Yagi antenna formed by coupled
arrays of coaxial loops, enjoys the advantages of large
bandwidth and pattern controllability at the expense of
some reduction in gain.
6.2.2 Surface Waveguide

In Japan, open-structure surface waveguides have
been the subject of numerous investigations directed toward
their application in railway traffic control. A typical
railway radar system consists of surface waveguides placed
along the track and a train-mounted radar transceiver.
The output from the radar transmitter is coupled to the
waveguide, and is propagated along the guide as a surface
wave, Some portion of the wave energy is reflected by the
discontinuities of the guide itself or of the surrounding
space of the guide, This system is regarded as a kind of
one-dimensional radar system. It has the function of locat-

ing the preceding trains on the track, and the obstacles
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near the guide. The radar system gathers such information
as the distance to the preceding trains, and their relative
speeds. This information, together with such data as the
speed and the position of the train itself, can be used

to achieve automatic train control [59].

The surface waveguides installed along the tracks
must have a strong and stable structure to withstand wind
pressure, vibration, temperature change, and all kinds of
weather. An array of half-loops arranged over an image
plane is a continuous self-supporting structure that is
well suited for this purpose, In fact, it is more than
a substitute for the corrugated metal surfaces now in use.
Also, if wideband operation is desired, the concentric array
of half-loops may be used instead.

Unlike the cylindrical or coaxial waveguide, the
field pattern of the propagating mode on the array structure
of circular loops may not be classified as a TE or TM mode.
For example, the loop array has the same transverse current
(cos ¢) as a TE11 mode of a cylindrical waveguide, but

lacks its axial current. On the other hand, the TE 1 mode

0
of a cylindrical waveguide has the same property of zero
axial current as the propagating mode on the loop array,

however it differs greatly in its transverse current. In

the former, the transverse current is uniform, while in
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the latter, it is cosinusoidal. Moreover, near-field
calculations made on the loop array suggest that a hybrid
designation (HE or EH) is more appropriate to describe
its propagating mode.

A structure that bears some resemblance to the loop
array was investigated recently at the University of
Limoges, France [60]. This is the open-ring line structure

shown in Fig. 6.1. The mode that propagates on such a

Fig. 6.1, The open~-ring line structure.

structure was found to be an HEll hybrid dipolar mode.

The line, made of aluminum alloy, had an attenuation of

less than 5dB per kilometer at frequencies below 1.8 GHz.
Also, the attenuation in the line was found to be relatively
insensitive to the thickness and width of the rod, or of

the rings.

Propagation of the hybrid dipolar mode HE has

11
some inherent advantages. First, it consists of single
mode transmission all the way down to zero frequency [59].

Second, the surface wave on the line may be readily
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launched by means of a tapered transition into a cylindrical

waveguide operating in the dominant TE mode. Since the

11
field of the exciter is identical to a part of the surface-
wave field, the surface wave may be launched with reasonable
efficiency. One disadvantage however, is the possible
rotation of polarization at points of surface line defects.

The potential use of periodic structures of circular
loops as transmission lines, depends to a large extent upon
their attenuation characteristics due to ohmic losses. The
attenuation per unit length is expected to be lower than
that obtained with the open-ring line. The absence of the
axial rod results in zero axial current and hence consider-
ably lower ohmic losses which translate into lower attenu-
ation per unit length. Aside from ohmic losses, there
will also be attenuation due to power scattered by deviations
from the ideal periodic geometry, and by reflection of the
surface wave from existing nearby objects. However, whereas
the latter losses can be reduced by greater care in
manufacture, and array isolation, the ohmic losses repre-
sent a more intrinsic limitation.
6.2.3 TWT Interaction Circuit

The function of a traveling-wave-tube interaction
circuit is to amplify the RF signal applied to its input

by means of interaction between its slow surface-wave, and
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the space charge wave of the electron beam. For strong
coupling, the phase velocity of the slow-wave circuit must
be nearly equal to that of the electron beam. The latter
is determined by the voltage V applied to the electron

gun (v=5.9 x 10°Y¥ m/s). For a typical voltage of 10 KV,
the normalized phase velocity of the wave should be about
0.2 (v/c = 0.2). This velocity is considerably lower than
that obtained with the periodic array of circular loops.
Hence, the structure of circular loops is unsuitable in

its present form as an interaction circuit due to the
prohibitively high voltages required. Therefore, ways of
making the wave slower are necessary before the loop circuit
can be used. This may be done by dielectric loading of the
array structure.

The interaction impedance of a periodic slow-wave
circuit is a measure of the strength of the axial electric
field of a given space harmonic referred to the total power
carried by the mode. For the Kth space harmonic, the inter-

action impedance is given by [50]

E2
- zK

It is important to have a high interaction impedance for

the fundamental mode (K=0), since this means that most of
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the power is carried by the fundamental wave and a negli-
gible amount in the space harmonics, This will result in
high gain per wavelength and high RF efficiency. Even more
important is the necessity to have a low interaction im-
pedance corresponding to the -1 space harmonic wave, since
it can result in backward-wave oscillations,

Ordinarily, the interaction circuit in traveling-
wave tubes is shielded by a metal conductor, When the
circuit is placed inside such a conducting cylinder, there
exist fast-wave modes in addition to the surface~wave mode
with its slow phase velocity. The slow-wave mode is the
operating mode and the fast-wave modes are spurious. For
these spurious modes there are well defined cutoff fre-
quencies, the mode with the longest cutoff wavelength

corresponding to the TE mode of the coaxial line, In

11
millimeter-wave tubes where such spurious modes can exist,
a part of the energy from the input circuit is converted
to the spurious modes as the surface wave mode is excited.
The surface~wave mode interacts with the beam to produce
amplification, while the spurious modes propagate through
the space surrounding the circuit, At the output terminal,
part of the spurious signal is reflected and returns to

the input end. A part of the amplified slow-wave mode also

is converted to the spurious mode at the output and returns
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to the input. At the input these reflected signals inter-
fere with the input signal to produce undesirable effects
on the gain-frequency characteristic of the tube [61].
Hence, an ideal interaction circuit is one that
has 1) a high interaction impedance for the fundamental
wave, 2) a low interaction impedance for the -1 space
harmonic wave and, 3) a minimizing effect on the excitation
of spurious modes.
Historically, the first structure to be used as
an interaction circuit was the helix depicted in Fig. 6.2.
The relatively high interaction impedance of the -1 space

harmonic makes the helix a useful structure in backward-

Fig. 6.2. The helical circuit.

wave oscillators. However, this characteristic is dis-
advantageous in helix-type traveling-wave tube amplifiers.
Therefore, the use of dleiberately introduced loss that
is reciprocal is essential in simple helix~type traveling-
wave tube structures. This loss is required in order to

avoid regeneration or oscillation resulting from reflections

at the helix terminals, as well as todamp oscillations caused
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by backward-wave interaction. Unfortunately such loss
reduces gain and efficiency, does not always eliminate
backward-wave oscillations, and can result in large fluc-
tuations in the gain-frequency characteristic [13]. Also,
since the helix is physically continuous in the axial
direction, a path for the axial current necessary for the
excitation of the higher-order coaxial spurious mode (TEll),
is provided. So, in order to minimize the excitation of
the spurious mode at the input and output ends, and to
provide sufficient attenuation for the spurious mode once
excited, short section of cutoff guide are usually placed
at each end of the tube along with lossy material positioned
parallel to the helix. Although this improves the frequency
response of the amplifier, it does however reduce the gain
appreciably.

As opposed to the helical structure, the ring-bar

circuit of Fig. 6.3 consists of equally spaced rings and

connecting bars. Compared to the helix, it has a larger

Fig. 6.3. The ring-bar circuit.
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phase velocity for a given Kb, and its dispersion is
greater; that is, its group velocity changes more rapidly.
In the useful range of Kb and v/c, the interaction impedance
of the fundamental component of the ring-bar circuit is
about twice that for the helix, and the interaction impe-
dance of the space harmonics is reduced by factors of the
order of five-to-ten [13]. This results in a marked ad-
vantage of the ring-bar circuit over the helix for high
power applications. Like the helix, the ring-bar circuit
is axially continuous and has no advantage as far as
suppression of spurious modes.

The ring-loop structure, first conceived as a low
cost replacement for the older ring-bar structure, is shown
in Fig, 6.4. The widely spaced thin rings combine with
the transmission line effect of the radially-extended loop
to maximize energy stored in the desired fundamental, and
minimize the energy stored in the -1 space harmonic which
causes backward-wave oscillation [62], This translates
into high fundamental interaction impedance, which results
in high gain per wavelength and high RF efficiency. On
the other hand, the radially extended loops located between
successive.rings tend to partially suppress the excitation
of spurious modes, The latter property results in good

gain-frequency characteristics and low harmonic output



Fig,

6.

4.

The ring-loop circuit before and after folding,
(Courtesy of Litton Electron Tube Division).

9LT
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typically 30 to 35 dB down. The operating voltage of the
ring-loop circuit is established by the ring-to-ring
spacing. The ring spacing is changed simply by changing
the spacers used in folding the circuit. By adjusting the
slow wave circuit pitch over wide ranges, it is possible
to provide any peak power from one to 10 KW anywhere in
x-band, with 8% bandwidth at 65 dB gain [62].

In conclusion, the periodic array of loops is
similar to the ring-bar circuit except for the connecting
bars, and to the ring-loop circuit except for the folding
loops. These extra conducting elements serve to slow the
wave down by making the phase delay ¢ between successive
rings larger. Thus, the periodic array of loops may be
adapted to perform as an interaction circuit with proper-
ties far superior to those of the conventional helix.
Moreover, in the form of a periodic array of concentric
loops, other functions such as power transfer and attenua-
tion may be accomplished. 1In this case the outer array,
located outside the tube, serves to couple energy to and
from the inner array located within the tube structure.
6.2.4 Microwave Filter

Microwave filter art is filled with examples of
closed periodic structures such as the periodically loaded

waveguide and the multicavity resonator. In these struc-
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tures, the input impedance becomes reactive in the stopband,
resulting in reflection of input power. These filters have
in general a mode-dependent filtering characteristic. 1In

an open periodic structure however, the "openness" property
permits the use of the forbidden region (stopband) to

achieve filtering. This allows the realization of frequency-
dependent, rather than mode-dependent, filters which are
well matched in both pass and stop bands [63].

The ability of the open periodic structure of con-
centric loops to sustain the same propagating mode in two
distinct passbands makes this structure unique, as far as
the author is aware, in its application to filtering. A
dual-band (or band-reject) filter may be designed using a
section of the periodic array of concentric loops. The
structure would be physically enclosed by a conducting
shield to prevent radio interference. 1Its "openness"
would be realized by the use of an absorptive liner within
the outer conducting shell of the assembly. Within the
passbands, the insertion loss may be kept at a minimum by
careful design of matched transitions from a coaxial line
to the loop array structure. Some of the insertion loss
will be due to the proximity of the absorber to the struc-
ture, and the rest due to reflections at the input and

output ends.
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Finally, this type of filter design has certain
inherent disadvantages. For example, the attenuation rate
in the stopband depends on the absorber shape, location,
and material, and on the overall length of the filter
structure. Also, the problem of direct radiation from
input to output in the stopband may not be completely
eliminated.

6.2.5 Open-structure Resonator

A high Q (>1000) open-structure resonator may be
formed by terminating a section of the periodic array of
copper loops by two large, parallel, and flat reflectors.
Efficient cavity coupling may be made by a probe in the
case of the isolated array, and by a loop (or two probes)
in the case of the concentric array. Open resonators of
this type have been used as diagnositc devices to study

the properties of plasma-like media.
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CHAPTER 7

CONCLUSION

Wave propagation on the infinitely long Yagi array
of concentric circular loops has been analyzed. For the
same propagating mode, the concentric array exhibits two
disjoint passbands separated by a stopband. The first
passband corresponds to the near resonance of the outer
loop, while the second passband corresponds to the near
resonance of the inner loop. The width of each of the
pass—and stop-bands is a function of the ratio of radii
b2/b1. Currents on the inner and outer loops are generally
180° out of phase with amplitudes in the ratio 2:1 or
larger depending on frequency.

The theoretically determined phase velocities
were verified quite well by experimental measurement.
However, the experiment failed to detect the dual-wave
behavior that takes place near the end of the second
passband.

It was also shown that the propagation charac-
teristics of the concentric array of loops are unaffected
by an arbitrary displacement between inner and outer loops.

The only change appears as a phase shift in the currents
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of the displaced loops. This phase shift is directly
proportional to the amount of displacement. The latter
property may be used to achieve desired pattern shaping
and/or beam steering of Yagi antennas.

When the outer loop is removed to infinity, the
concentric array reduces to an isolated array of single
loops with one passband per mode. The phase velocities
of the propagating waves on the isolated array were used
to obtain optimum design parameters for the Yagi antenna
of circular loops. 1In the first mode of operation, the
Yagi antenna of circular loops radiates mainly in the
endfire direction, and in the second mode, the radiation
is in a conical shell pattern. This type of antenna is
extremely well suited for coarse/fine tracking applications.

The Yagi array of concentric loops and its deri-
vatives may have other practical applications. They may
be transformed into broadband Yagi antennas, low-loss
surface waveguides, highly efficient TWT interaction
circuits, microwave filters with unique properties, and
high-Q open structure resonators.

As a way of motivation for future research in the
general area of the Yagi array of loops, it is reasonable
to point out few, still unresolved, research problems.

(1) Evaluation of the ohmic loss per unit length

on the periodic structure of circular loops. This para-
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meter is needed when the array is used as a surface wave-
guide.

(2) Analysis of the loaded array of circular
loops. Resistive loading may lead to band broadening
and pattern shaping, and reactive loading may result in
circular polarization.

(3) Experimental study of the far-field pattern
of the concentric array of circular loops throughout the
frequency range covering the pass-and stop-bands. The
objective here is to determine the feasibility of this
structure as a broadband antenna.

In summary, this study has revealed significant
facts concerning the analysis and applications of the
infinitely long Yagi array of concentric loops and its
variations. It is felt that this work will help to fill
the need for a systematic and elaborate investigation into
the usefulness of these and other related structures.
Furthermore, a short but direct path leading to more
innovative and exciting research into the area, has also

been proposed.
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APPENDIX A

Consider the following recurrence relations for

the modified Bessel functions [54]

Tn-1 = Tmi1 = X Im (A.1)

K1 ~ Kp-1 < K2 Ko (A.2)

— t
I g+ I, =2I' (A.3)
K,y * Kpyp = -2K! (A.4)

where x and y are the arguments of the Bessel functions
I and K respectively and their derivatives. Multiplying
(A.1) times (A.2) and (A.3) times (A.4) and adding the
results, yields

2m?2

= - — ' 1
Km+lIm+1 + Km—lIm—l Xy Ime + 2KmIm (A.5)
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APPENDIX B

Reference [54] gives a series representation on

page 498 for the Struve function S(x) with large argument,

as

S(x) = I (x) - L (x) =1 °Z° (-1) ¥r (x+k) (5.1)
(o] @] T K0 T(g"K) (X/2)2K+1

where

Io(x) is the modified Bessel function of zero order,

ﬂo(x) is the modified Struve function; and,

I' is the Gumma function.
Taking the leading term in the series of (B.l), an
asymptotic expression for S(x) for large x, may be
written as

S(x) = =

(B.2)
The same reference also lists on page 378 limiting
values for products of modified Bessel functions as the

argument becomes very large.

R

1
Im(x) Km(x) 7= (B.3a)

[

' ' 1
1! (x) K!(x) o= (B.3b)
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Applying Equations (B.2) and (B.3) to the expression
for a (Eg. 3.68a) and realizing that Y, = By ® 2nn/d for

large index n, the expression for bn results
_ m |2 a2 1
bn B |:[K 1] -l:[ 87I'3b1a1 nZ (B.4)

Similarly, from the expression for c, (Eq. 3.68b), the

expression for dn follows as

a = [[-m )%, d? 1 (B.5)
n {Kb, 8n3b2a2 nZ .

Finally, the series ) b and ) d ~are readily
n=1 n=

1
evaluated to yield

¥ - m |2 qz2
nzlbn - [(m] _1:[ 481rb1a1 (B. 6)
e

where ) [l/nz} = 72 /6 has been used.
n=1

2 42
] —1] T8bya, (B.7)

~18

o3
N

1

n
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APPENDIX C

In reference [54] page 377, the following asymptotic
expressions for the modified Bessel functions of large

arguments are found.

eX
Im(X) = /% (C.1la)
/T -ax
Km(ax) = ¥ 20ax e (C.1b)
X
] e '
Im(x) ® VZux (C.1lc)
/T
Kﬁ(ax) = -/ Zox e ¥ (c. 14)

Multiplying (C.la) times (C.1lb) and (C.lc) times (C.1d)

yields
ex(l—a)
Im(x) Km(ax) T (C.2a)
ex(l—oc)
Im(X) Km(CtX) = - -2?/-—;— (C.Zb)

Let hn be the nth term in the series le given in equation
3.63c. Using (C.2) and the fact that Y, * By 2ng/d for

large n, the asymptotic form of hn follows as
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2 d
noo= m } __] d e 3
n I:[Kbo Inb, Ve o] (c.3)

where oa=b,/b;>1. As seen from (C.3) hn decays as e—Pn/n

for large n where P 1is a positive constant.
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APPENDIX D

The maximum error introduced in the expression

for Rﬁ when the last term in (5.9) is neglected, is

21

given by

2 (a1+a2)S
(bZ—bl ) 2 + (nd+s) 2

(D.1)

Case 1: S < d-S or, S < d/2

In this case, the error e has its largest value when

n=0. That is,

2(aj+a,)s
®nax = (b,-b;) 2752 (D.2)
By differentiating e mnax with respect to S, and setting

the result equal to zero, the value of S tor which € ax

has its largest value is obtained. Namely,

S = (by-by) (D.3)

Using (D.3) in (D.2), the largest possible value for € ax

results

Max {em } = ——— <<1 (D.4)
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where one of the inecualities of ecuation (Z,17) Fras been
used.

Case 2: 8>d-S or, S>d/2

Now the error e has its largest value when n=-1, That is,

2(a1+a2)S
®max T~ (b,~b;12 + (8-d)2 (D.5)
Since the derivative of Cnax with respect to S is positive,
©nax is an increasing function of S. Hence, it attains its

largest value when S is equal to d. Then,

2 (a1+a2)d
Max {em } = —— (D.6)

ax (bz—bl)z
Since the maximum error in the first case (Eg. D.4)
is negligible, and the one in the second case (Eg. D.6) is
appreciable, it follows that the last term of equation (5.9)

is insignificant, provided the following inecualitv holds.

0 <SS <42 (D.7)



