
Expanding benzoxazole based inosine 5’-monophosphate 
dehydrogenase (IMPDH) inhibitor structure-activity as potential 
anti-tuberculosis agents

Shibin Chacko§, Helena I. M. Boshoff#, Vinayak Singh†, Davide M. Ferraris∬, Deviprasad R. 
Gollapalli§, Minjia Zhang§, Ann P. Lawson§, Michael J. Pepi¶, Andrzej Joachimiak∫, Menico 
Rizzi∬, Valerie Mizrahi†, Gregory D. Cuny*,‡, and Lizbeth Hedstrom*,§,¶

§Department of Biology Brandeis University, 415 South St. Waltham, Massachusetts 02454, 
United States

¶Department of Chemistry, Brandeis University, 415 South St. Waltham, Massachusetts 02454, 
United States

#Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, 
Maryland 20892, United States

†MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence 
for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & 
Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa

∫Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60557 
and Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S Cass Ave. 
Argonne, IL 60439, USA

∬Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 
Novara, Italy

‡Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University 
of Houston, Health Building 2, 4849 Calhoun Rd., Houston, Texas 77204, United States

Abstract

New drugs and molecular targets are urgently needed to address the emergence and spread of 

drug-resistant tuberculosis. Mycobacterium tuberculosis (Mtb) inosine 5’-monophosphate 

dehydrogenase 2 (MtbIMPDH2) is a promising yet controversial potential target. Inhibition of 

MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine 

can potentially rescue the bacteria. Herein we describe an expansion of the structure-activity 

relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that 

minimum inhibitory concentrations (MIC) of ≤ 1 μM can be achieved. The antibacterial activity of 
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the most promising compound, 17b (Q151), derives from inhibition of MtbIMPDH2 as 

demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not 

change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. 

These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis.

Table of Content graphic

INTRODUCTION

The worldwide burden of tuberculosis is staggering: more than 1 million deaths and 10 

million new cases occur each year (https://www.cdc.gov/tb/statistics/default.htm, accessed 

5/21/2017). Approximately one third of the world’s population is infected with the causative 

agent Mycobacterium tuberculosis (Mtb), many with latent infections that can recrudesce if 

the patient becomes immunosuppressed. Treatment requires administration with isoniazid, 

rifampicin pyrazinamide and ethambutol for two months followed by an additional four 

months with isoniazid and rifampicin. However, almost 0.5 million cases involve Mtb strains 

that are resistant to isoniazid and rifampicin, further complicating treatment. Extensively 

drug resistant strains have also emerged that are resistant to at least isoniazid and rifampicin, 

a fluoroquinolone, and any one of the second-line injectables, capreomycin, kanamycin and 

amikacin. Frustratingly, as illustrated by the newly approved tuberculosis drugs bedaquiline 

and delamanid 1, resistance can emerge just a few years after introduction of a new therapy, 

underscoring the critical need for new drugs, drug targets, and drug regimens to improve 

tuberculosis treatment and combat the relentless evolution of resistance.

Inosine 5’-monophosphate dehydrogenase (IMPDH) is the enzyme that catalyzes the NAD+-

dependent conversion of inosine 5′-monophosphate (IMP) to xanthosine 5′-monophosphate 

(XMP). This reaction is the first and the rate limiting step in the de novo biosynthesis of 

guanine nucleotides and therefore controls the size of the guanine nucleotide pool.2 IMPDH 

is an attractive target for the development of new antibiotics due to the essential role of 

guanine nucleotides in DNA and RNA synthesis, signal transduction, energy transfer, 

glycoprotein biosynthesis and many other processes involved in cell proliferation.3 Mtb has 

three genes, designated as guaB1, guaB2 and guaB3, which encode IMPDH homologs. Only 

guaB2 is essential, 4–6 and only guaB2 encodes an active IMPDH (MtbIMPDH2).7 The 

proteins encoded by guaB1 and guaB3 are each missing key catalytic residues and neither 

display IMPDH activity 7. The functions of these proteins are currently unknown.

MtbIMPDH2 is a controversial target for tuberculosis. Several small molecule inhibitors of 

MtbIMPDH2 have been identified that display antibacterial activity in vitro and in 

macrophages 7–13, but as yet no compounds have been reported with activity in animal 

models of tuberculosis. Recently, Park et al. suggested that high levels of guanine (200–2000 

μM10) in the lungs of infected rabbits and humans can protect bacteria from MtbIMPDH2 
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inhibitors,10 calling into question the vulnerability of this target. However, the availability of 

free guanine for salvage is by no means certain since these concentrations exceed the 

solubility limit. More promisingly, Singh et al. constructed a conditional knockout of guaB2 
in Mtb and found that depletion of MtbIMPDH2 is rapidly bactericidal in vitro.11 They also 

showed that silencing of MtbIMPDH2 expression prevented infection in mice 11, consistent 

with the lower levels of guanine found in mouse tissue (7–20 μM 10). On the basis of these 

findings, Singh et al. concluded that this enzyme is indeed vulnerable.11

IMPDH also appears to have moonlighting functions of unknown physiological 

consequence, which further complicates the question of whether it is a vulnerable target. The 

protein contains a regulatory CBS subdomain in addition to the catalytic (β/α)8 domain. 

CBS domains bind nucleotides and modulate the activity of other enzymes and channels 14. 

However, deletion of the CBS subdomain does not affect the activity of the catalytic domain 

in IMPDH 15–18. The CBS subdomain binds ATP and/or GTP depending on the particular 

IMPDH 19–22. These interactions modulate the oligomerization of tetramers to form 

octamers and higher order structures in vitro, with modest effects on enzymatic activity 
19–22. The physiological relevance of ATP/GTP binding and these higher order structures is 

uncertain. Most interestingly, deletion of CBS subdomain dysregulates the purine nucleotide 

pools in E. coli, leading to the toxic accumulation of ATP and other adenine nucleotides 
23, 24. IMPDH binds nucleic acid and can act as a transcription factor in eukaryotes, and this 

activity is mediated by the CBS subdomain 25–27. IMPDH also interacts with numerous 

other proteins in bacteria, including the ribosome, RNAP, amino acyl tRNA synthetases, 

penicillin binding proteins, uridylate kinase, PRPP synthetase, adenylosuccinate synthetase 

and DNA helicase 28, 29. Neither the sites nor the physiological consequences of these 

interactions have been elucidated. Therefore it is possible that the essentiality of guaB2 in 

Mtb derives from a moonlighting function rather than enzymatic activity. Moreover, the 

physiological consequences of enzyme inhibition may well be different from protein 

depletion, which downregulates both enzymatic and moonlighting activities 30. More potent 

MtbIMPDH2 inhibitors are required to resolve this conundrum and determine the 

vulnerability of Mtb infections to IMPDH inhibition 31.

We have developed triazole (A-series), benzimidazole (C-series), phthalazinone (D-series), 

4-oxo-[1]benzopyrano[4,3-c]pyrazole (N-series), urea (P-series) and benzoxazole (Q-series) 

inhibitors of prokaryotic IMPDHs, including MtbIMPDH2 9, 32–40. These inhibitors exploit 

the highly diverged cofactor binding site, which explains their selectivity for bacterial over 

eukaryotic orthologs of IMPDH 9, 17. Individual members of the A, D, P and Q-series 

display antibacterial activity against Mtb as well as other pathogens 9, 41, 42. The best Q 
compound, 3 (Figure 1A), was a potent inhibitor of MtbIMPDH2 (Ki,app = 14 nM) and 

displayed moderate antibacterial activity (MIC = 6.3 and 11 μM in minimal GAST/Fe and 

rich 7H9/ADC/Tween media, respectively). The values of MIC increased 3 to 7-fold in the 

presence of guanine, suggesting that antibacterial activity resulted from the on-target 

inhibition of MtbIMPDH2.

Herein we report an expansion of the structure-activity relationship (SAR) for the Q-series 

of MtbIMPDH2 inhibitors and improved antibacterial activity. Importantly, antibacterial 

activity is not reduced in the presence of guanine for the most potent compounds. 
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Nonetheless, antibacterial activity appears to derive from the inhibition of MtbIMPDH2 as 

demonstrated by conditional knockdown and resistant strains. These findings suggest that 

MtbIMPDH2 is indeed a vulnerable target.

RESULTS AND DISCUSSION

Design strategy.

IMPDHs are a square planar homotetramers, with each monomer composed of two domains, 

the catalytic domain and a smaller domain containing tandem cystathione β-synthetase 

(CBS) motifs.43 The physiological role of the CBS domain is unknown. Deletion of this 

domain does not impact enzymatic properties or tetramer formation, but does improve 

solubility and crystallization. The crystal structure of the CBS deletion variant of 

MtbIMPDH2 (MtbIMPDH2ΔCBS)9 in complex with IMP and inhibitor 3 reveals that the 

aromatic ring of the 2,3-dichloroaniline is involved in a π- π interaction with the purine base 

of IMP, whereas the amide participates in an ionic-dipole interaction of the NH with the 

carboxylate of Glu458 and a hydrogen bond of the amide carbonyl with a water molecule 

(Figure 1B). The nitrogen atom of the 1,3-benzoxazole interacts with a water molecule that 

also engages the main chain nitrogen and oxygen atoms of His286. Moreover, the 4-pyridyl–

1,3-benzoxazole moiety of 3 binds in a hydrophobic pocket formed by Val60, Pro61, and 

Tyr487 and the pyridyl nitrogen atom interacts with the backbone carbonyl of Ser57 via a 

water network.9 This pocket is not present in human IMPDHs, explaining the selectivity of 

the compounds for bacterial IMPDHs. Note that the two sulfonamide inhibitors in Figure 1C 

do not extend into this pocket, perhaps explaining the higher affinity and selectivity of the Q 
compounds. 10, 11

Using this information, we explored several strategies to expand the SAR of the Q-series 

(Figure 2): (1) modifications to the pyridine or replacement of the 4-pyridyl with a phenyl 

containing various substituents that can interact (e.g. via hydrogen bonds and ionic-dipole 

interactions) with the side chain of Arg290; (2) modification of the 2,3-dichloroaniline with 

2,3-difluorophenyl ethers to enhance cell permeability or phenyl ethers containing 

hydrophilic groups capable of forming interactions with IMP and Glu458; (3) modifications 

of the amide group via replacement with a thioamide or amine to further explore interactions 

with Glu458; (4) replacement of the benzoxazole with a imidazo[1,2-a]pyridine; (5) 

insertion of a methylene linker between the benzoxazole and phenyl that was used as a 

pyridine replacement. Chemistry. The synthesis used to generate ether linked Q-series 

derivatives is illustrated in Scheme 1. Arylbenzoxazoles 4 were directly synthesized by 

oxidative cyclization methods using 2-amino-4-nitrophenol and aldehydes in the presence of 

activated carbon (Darco KB) under an oxygen atmosphere. The nitro group was reduced 

using Pd/C under 1 atm hydrogen to give 5-amine-2-arylbenzoxazoles 5. Enantiomerically 

pure phenyl ethers 6 were synthesized from (+)-methyl D-lactate and the corresponding 

phenol using Mitsunobu reaction conditions. The esters 6 were hydrolyzed to the 

corresponding acids 7, and then coupled with various 5-amine-2-arylbenzoxazoles in the 

presence of EDC·HCl in DMF to yield 8.39 Furthermore, 8 (Ar = 4-OMePh, R = 2,3-diCl) 

was treated with Lawesson’s reagent under standard conditions to generate thioamide 9 
quantitatively. Ester 6a was also treated with 1M DIBAL-H in DCM at −78 ºC to generate 
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aldehyde 10, which was subjected to reductive amination using 5 (Ar = 4-OMePh) and 

sodium triacetoxyborohydride in DCM to provide amine 11.

The synthesis of an imidazo[1,2-a]pyridine analogue started by allowing 5-nitropyridin-2-

amine to react with an α-bromoketone in the presence of NaHCO3 in ethanol to give 12. 

Nitro group reduction using SnCl2 in ethanol followed by coupling with carboxylic acid 7 
(R = 2,3-diCl) generated imidazo[1,2-a]pyridine 13.

The synthesis of a derivative with a methylene linker between the benzoxazole and the 

benzene was undertaken. 2-Amino-4-nitrophenol was coupled with a 1,1-dibromoethylene 

derivative using DABCO in NMP at 100 ºC to generate 14. The nitro group was reduced 

using 10% Pd/C under a hydrogen atmosphere and the resulting amine was coupled with 7 
(R = 2,3-diCl) using EDC·HCl in DMF to yield 15.

Enantiopure N-arylated benzoxazole derivatives were synthesized using copper catalyzed 

Ullman type reactions. L-alanine was treated with aryl iodides in the presence of cesium 

carbonate and CuI in DMF for 24 h to provide the N-arylated amino acids 16a-b.39 Attempts 

to couple these materials with 5 (Ar = 4-CNPh) using EDC·HCl failed. However, using 

HATU as the coupling reagent in DMF resulted in formation of 17a-b.

Scheme 2 depicts the functional group transformations to various substituents attached to the 

benzoxazole aryl group. Compounds 8i and 8j were subjected to alkylation reactions with 

ethyl 2-bromoacetate in the presence of K2CO3 and DMF to give 18a and 18b, respectively. 

These compounds were hydrolyzed using LiOH in THF:MeOH (1:3) to yield 19a and 19b, 

respectively. Carboxylic acid 19a was also converted to ester 20 using propargyl bromide 

and K2CO3 in dry DMF. Ester 8h was also converted to an array of derivatives. For example, 

it was treated with hydroxylamine hydrochloride to provide the corresponding hydroxamic 

acid 21. Base catalyzed ester hydrolysis of 8h in MeOH:THF:H2O (3:1:1) yielded 

carboxylic acid 22. Finally, ester 8h was converted to hydrazide 23 using hydrazine hydrate 

in EtOH, followed by treatment with carbonyl diimidazole (CDI) in the presence of DIPEA 

in DMF yielding 1,3,4- oxadiazolone 24.

Scheme 3 illustrates the synthesis of an array of derivatives via functional group 

transformation of 8f. For example, 8f was treated with hydroxylamine hydrochloride in 

absolute ethanol in the presence of triethylamine to afford hydroxamidine 25, which upon 

treatment with CDI and DIPEA gave 1,2,4-oxadiazolone 26. The tetrazole derivative 27 was 

prepared by treatment of 8f with sodium azide in the presence of ammonium chloride in dry 

DMF. Primary amide 28 was generated by treating 8f with t-BuOK in t-BuOH.45 Finally, 8f 
was treated with NiCl2·6H2O and NaBH4 in the presence of Boc2O in MeOH:THF to give 

the Boc protected primary amine, which was deprotected using trifluoroacetic acid in DCM 

to provide 29.46

The synthesis of 2-pyridone derivative 30 was carried out by treating 8b with LiCl and p-

toluenesulfonic acid in anhydrous methanol (Scheme 4). The pyridyl of 8a was oxidized 

using m-CPBA in DCM to give the corresponding pyridine N-oxide 31. The nitrile in 8u 
was reduced using NiCl2·6H2O and NaBH4 then protected as the corresponding t-butyl 
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carbamate. Removal of the protecting group using trifluoroacetic acid in DCM provided 

amine 32. The benzyl ether of 8v was removed by hydrogenolysis in presence of Pd/C under 

a hydrogen atmosphere to yield 33.

Finally, the synthesis of a benzoxaborole analogue is depicted in Scheme 5. A Mitsunobu 

reaction between 2-bromo-3-hydroxybenzaldehyde and (+)-methyl D-lactate was carried out 

in the presence of PPh3 and DEAD in THF to give 34. This aldehyde was treated with 

NaBH4 in ethanol to generate the primary alcohol, which was protected as the corresponding 

methoxymethyl ether 35 using methoxymethyl chloride (MOMCl) and DIPEA in DCM. 

Boronylation of the aryl bromide was carried out using bis(pinacolato)diboron in the 

presence of KOAc and a catalytic amount of Pd(Ph3P)2Cl2 in 1,4-dioxane to give 36.47 Ester 

hydrolysis followed by amine coupling with 5 (Ar = 4-CNPh) in the presence of EDC·HCl 

in DMF and then treatment with 6N HCl in THF gave benzoxaborole 37.

Evaluation of MtbIMPDH2 inhibition.

We previously described the MtbIMPDH2ΔCBS inhibition and antibacterial activity of 

benzoxazole (Q) based inhibitors.39 The most promising compounds, 2 and 3 (Figure 1A), 

had Ki,app values of 76 nM and 14 nM, and MIC values of 16 μM and 12 μM, respectively. 

MtbIMPDH2ΔCBS was expressed and purified as previously described and the enzymatic 

activity was assayed by monitoring the production of NADH at sub-saturating NAD+ (3 × 

Km) and saturating IMP concentrations and 20–50 nM enzyme.9 The Ki,appvalues reported 

herein were determined from the average of two independent experiments, unless otherwise 

noted. We also evaluated inhibition of the host enzymes hIMPDH2 and hGMPR2.

Initially, modifications of the pyridyl of 2 were evaluated (Table 1). Pyridine N-oxide 31 
demonstrated comparable activity to the parent compound 2. Addition of a methoxy to the 

pyridyl 8b and 8c resulted in 5-fold more inhibition than 2. However, changing pyridyl to 2-

pyridone (30) reduced inhibitory activity by 3-fold. Replacing pyridyl with phenyl having 

both electron donating groups (EDG) and electron withdrawing groups (EWG) was 

evaluated. Compounds 8d (4-OMe), 8e (4-OCF3) and 8f (4-CN) resulted in 7-fold increase 

in inhibitory activity compared to 2. Fluorine (8g) and ester (8h) substituents were also 

tolerated. Replacing the pyridyl with a 4-hydroxy phenyl (8i) resulted in a 2-fold increase in 

inhibitory activity, whereas the 3-hydroxy (8j) and 2-hydroxy (8k) derivatives showed 

slightly decreased potency. Given the improved activityof 8d, the effect of other ethers was 

examined. For example, 18a and propargyl ester 20 shows a ~12-fold increase in activity 

compared to 2, while the corresponding carboxylic acid (19a) and tetrazole (27) were 

moderately less potent. Translocating the alkoxy from the para to meta position resulted in a 

4-fold loss in activity (18b and 19b). Compounds containing hydrophilic substituents at the 

4-position, such as hydroxamic acid 21, carboxylic acid 22 and aminomethyl 29, were found 

to be much less active. Replacing the carboxylate with hydrazide 23, 1,3,4-oxadiazolone 24, 

hydroxamidine 25, 1,2,3-oxadiazolone 26 and primary amide 28 showed 2 to 7-fold increase 

in activity.

Previous work on the benzoxazole series had established that substitution at the 2- and 3-

positions of aryl ether were important for inhibition of both Cryptosporidium parvum 
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IMPDH and MtbIMPDH2ΔCBS.39,9 Several 2,3-dichlorophenyl compounds (2, 8c, 8d, 8f, 
8g and 8i) were compared to the corresponding 2,3-difluorophenyl analogues (8l, 8o, 8m, 

8p, 8p and 8n). Three of these compounds (8l, 8p and 8q) displayed similar activity whereas 

the others were 2 to 4-fold less active. Adding another substitution on the 4-position (8r) 

resulted in slightly reduced activity. Replacement of the 2-chlorophenyl with a 2-

cyanophenyl (8s and 8t) was well tolerated. In addition, compounds with 2-cyano (8u), 2-

aminomethyl (32), and 2-hydroxy (33), and 2- benzyloxy (8v) substituents on the phenyl 

ether demonstrated MtbIMPDH2ΔCBS Ki,app values < 45 nM. However, the benzoxaborole 

(37) was not as well tolerated.

Several other areas of the Q-series were examined (Table 3). For example, the amide was 

replaced with a thioamide (9), which demonstrated a modest loss of activity. This decrease 

in potency is likely due a loss of a hydrogen bond to water, while retaining the ionic-dipole 

interaction between the thioamide NH and the carboxylate of Glu458. Furthermore, 

replacement of the amide with an amine (11) was not tolerated. In addition, activity was 

significantly decreased when the benzoxazole was replaced with an imidazo[1,2-a]pyridine 

(13). Adding a methylene between the phenyl and benzoxazole (15) also reduced activity by 

a factor of 6 compared to 8d. However, replacing the aryl ether with aniline (17a and 17b) 

resulted in increased inhibitory activity.

Selectivity of inhibition.

The cofactor binding sites are widely diverged in bacterial and eukaryotic IMPDHs, and the 

MtbIMPDH2 inhibitors exploit this divergence 9, 17. Only four compounds, 8f, 8p, 17a and 

24, modestly inhibited human IMPDH2, and in these cases selectivity ranged from a factor 

of 200 to 1000. No inhibition of human IMPDH2 was observed for the other compounds 

(maximum concentration tested was 5 μM). GMP reductase (GMPR) is closely related to 

IMPDH, and catalyzes a similar reaction, the reduction of GMP by NADPH to produce IMP, 

NADP+ and ammonia 48. The adenosine site of human GMPR2 contains the Ala-Tyr motif 

that characterizes the inhibitor binding site of MtbIMPDH2. However, none of the 

compounds inhibited human GMPR2 (maximum concentration tested was 5 μM). These 

experiments demonstrate that compounds selectively inhibit bacterial IMPDHs and do not 

affect related host enzymes.

Evaluation of antibacterial activity.

Antibacterial activity was determined for MtbIMPDH2ΔCBS inhibitors with Ki,app ≤ 40 nM 

and selected additional compounds by monitoring the growth of Mtb H37Rv (ATCC 27294) 

after one week (Table 4). Since in vitro antibiotic efficacy can vary unpredictably with 

growth conditions,49 antibacterial activity was assessed in both GAST/Fe and 7H9/ADC/

Tween media, both of which lack purines (e.g. –Gua). Two compounds, 18a and 20, 

displayed MICs less than 1 μM in both media. An additional 8 compounds, 8f, 8l, 8m, 8p, 

8u, 17a, 17b and 18b, displayed MIC ≤ 5 μM in both media. Six of these compounds 

retained antibacterial activity over two weeks: 8l, 8u, 17a, 17b, 18a and 20. Two compounds 

(21 and 22) were active in GAST/Fe medium (MIC ≤ 5 μM) but considerably less effective 

in 7H9/ADC/Tween medium. These compounds also retained activity over two weeks.
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Figure 3 shows the dependence of antibacterial activity on inhibition of MtbIMPDH2ΔCBS 

for the Q compounds described above as well as those reported previously 9. Uptake and 

metabolism also play important roles in antibacterial efficacy, so it is not surprising that 

some potent MtbIMPDH2ΔCBS inhibitors fail to display antibacterial activity. Nonetheless, 

more potent enzyme inhibition is generally associated with greater antibacterial activity, as 

expected if antibacterial activity derived from inhibition of MtbIMPDH2.

Many bacteria have the ability to salvage guanine or guanosine, and thus overcome 

inhibition of IMPDH. Mtb can salvage guanine, but not guanosine, and previously reported 

IMPDH inhibitors were much less effective in the presence of high guanine concentrations 
9–11. For example, the MIC values of indazole sulfonamide inhibitors of MtbIMPDH2 

increased more than 25-fold in 100–125 μM guanine 10, 11. Smaller increases were observed 

for previously reported Q compounds 9. However, the MIC of only one of the new Q 
compounds, 8n, increased substantially in the presence of guanine in both media. 

Intriguingly, this compound was one of the weaker inhibitors of MtbIMPDH2 (Kiapp = 121 

nM). The MIC of one additional compound, 8c (Ki,app = 20 nM), increased in the presence 

of guanine in 7H9/ADC/Tween medium but not in GAST/Fe. The failure of guanine to 

decrease the antibacterial activity of most Q compounds would usually suggest that 

antibacterial activity derives from the engagement of another target. Alternatively, guanine 

salvage may not be sufficient to support growth in the presence of potent MtbIMPDH2 

inhibition. It is also possible that the Q inhibitors stabilize/disrupt a protein complex, 

thereby perturbing a moonlighting activity of MtbIMPDH2 in addition to enzyme activity.

We performed two experiments to further address the question of whether antibacterial 

activity derived from on-target inhibition of MtbIMPDH2. First, we evaluated the effect of 

MtbIMPDH2 depletion on the antibacterial activity of four MtbIMPDH2 inhibitors, 

including one compound with guanine-dependent antibacterial activity (1)9, and three 

compounds with guanine-independent antibacterial activity (17b, 18a and 22; note that 22 is 

only active in GAST/Fe). The downregulation of MtbIMPDH2 was achieved using strain 

guaB2 cKD, in which guaB2 expression is suppressed by anhydrotetracycline (ATc).11 The 

antibacterial activities of 1, 17b, 18a, and 22 against the wild-type strain were not affected 

by the addition of ATc (Table 5). In contrast, treatment with ATc hypersensitized the guaB2 
cKD strain to all four compounds (Figure 4), suggesting that antibacterial activity derives 

primarily from the inhibition of MtbIMPDH2.

The antibacterial activity of 1, 17b, 18a, and 22 was also assessed against Mtb strain 

SRMV2.6. This strain expresses the mutant MtbIMPDH2/Y487C, which is resistant to an 

isoquinoline sulfonamide inhibitor 11. As noted above, Tyr487 interacts with the 

benzoxazole group, so the substitution of Cys is expected to disrupt the binding of all the Q 
inhibitors. SRMV2.6 was resistant to 1 and 17b (Table 5), further confirming that the 

antibacterial activity of these compounds resulted from on-target inhibition of MtbIMPDH2. 

Interestingly, however, SRMV2.6 remained sensitive to 18a and 22.

We measured the inhibition of recombinant MtbIMPDH2/Y487C to determine if the Y487C 

mutation decreased the affinity of all the Q compounds as expected (Table 5). The values of 

Ki,app for 1 and 17b were increased by more than 300-fold and 60-fold, respectively, which 
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can account for the resistance of strain SRMV2.6. These observations further confirm that 

the antibacterial activity of 1 and 17b derive from inhibition of MtbIMPDH2. The values of 

Ki,app for 18a and 22 were similarly increased in MtbIMPDH2/Y487C, by at least 2000-fold 

and approximately 40-fold, respectively. These observations suggest that strain SRMV2.6 

should also be resistant to 1 and 18a, yet it remained sensitive to these compounds. Perhaps 

1 and 18a are concentrated or metabolized in the bacteria, or perhaps these compounds 

interfere with a moonlighting function. Alternatively, these compounds may engage an 

additional target(s). Irrespective of the ambiguous mechanism of action of 1 and 18a, 17b 
demonstrates that on-target inhibition of MtbIMPDH2 can be impervious to guanine rescue, 

suggesting that it is a vulnerable target.

Evaluation of Human Cytotoxicity Activity.

Compounds displaying potent antibacterial activity (8l, 8p, 8u, 17b, 18a and 20) were 

evaluated for cytotoxicity against HepG2 cells using a LDH release assay. Only compounds 

8p, 8u and 17b displayed measurable cytotoxicity (9–13% lactate dehydrogenase release) at 

25 μM (LD50 > 25 μM, Figure 5). Since 18a and 20 are esters of 19a, we also examined the 

cytotoxicity of this compound, and again no cytotoxicity was observed. The cytotoxicity of 

17b (25 μM) was also less than 10% in Hela, HEK293T and MCF7 cells. These experiments 

demonstrate that all of the compounds display a greater than 10-fold selectivity for 

antibacterial activity versus cytotoxicity (the recommended criteria for Mtb 50), with the 

selectivity of some exceeding 100-fold.

Preliminary pharmacokinetic evaluation of 17b.

The above observations prompted us to consider evaluating the pharmacokinetics of 17b and 

18a as a prelude to possible testing in a mouse model of tuberculosis. We first evaluated the 

stability of 17b and 18a in mouse liver microsomes. 18a was rapidly metabolized (t1/2 = 1.3 

min) in an NADPH-independent process. Compound 19a, the ester of 18a was also 

metabolized in an NADPH-independent process, although with a much longer half-life (t1/2 

= 23 min). These observations suggest that both the ester and amide bonds of 18a may be 

liabilities. Compound 17b was metabolized in an NADPH-dependent process with t1/2 = 26 

min. No decomposition of 17b was observed when it was incubated in mouse plasma at 

37 °C for 2 h. Based on these results 17b was selected for further analysis. This compound 

displayed promising pharmacokinetics in mice, with a single 20 mg/kg oral dose [formulated 

using Tween 80 (1%) and 0.5% (w/v) methylcellulose in water (99%)] producing a 

maximum plasma concentration level comparable to MIC (Cmax = 3 μM) in 0.5 h (Tmax) 

with a plasma elimination half-life of 5 h. However, 17b also displays high serum protein 

binding (>99%), which suggests that the free drug concentration is insufficient to achieve in 

vivo efficacy. Further optimization of 17b to increase antibacterial activity and decrease 

plasma protein binding is ongoing.

CONCLUSIONS

The SAR of the benzoxazole-based IMPDH inhibitors (Q-series) has been expanded by 

replacing the 4-pyridyl with phenyl or benzyl groups containing a variety of hydrogen 

bonding and ionic-dipole interacting substituents. Modifications to the central amide and 
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benoxazole also reinforced the importance of interactions between the inhibitors and 

Glu458, and the spatial orientation provided by the central heterocycle, respectively. Two 

MtbIMPDH2 inhibitors displayed antibacterial activity with MIC values ≤ 1 μM, and 

another eight compounds displayed MICs ≤ 5 μM. The antibacterial activity of the best 

candidate, 17b, derives from inhibition of MtbIMPDH2, yet is not affected by the presence 

of guanine. This observation alleviates the concern that guanine salvage can rescue bacteria 

from MtbIMPDH2 inhibition. We note that previously reported MtbIMPDH2 inhibitors were 

not as potent as the current compounds, and suggest that the ability of guanine to protect 

bacteria derived from incomplete inhibition of MtbIMDPH2. The values of Ki,app for the 

best inhibitors are 25-fold more potent than the indazole sulfonamide inhibitor that called 

into question the vulnerability of MtbIMPDH2,10 suggesting that guanine salvage cannot 

overcome potent inhibition. 17b was also non-toxic at 25 μM in four human cell lines. 

Overall, this study provides further evidence for the vulnerability of MtbIMPDH2.

Experimental Section

Synthetic Chemistry.—Unless otherwise noted, all reagents and solvents were purchased 

from commercial sources and used without further purification. All reactions were 

performed under a nitrogen atmosphere in dried glassware unless otherwise noted. All NMR 

spectra were obtained using a 400 MHz spectrometer. For 1H NMR, all chemical shifts are 

reported in δ units ppm and are referenced to tetramethylsilane (TMS). All chemical shift 

values are also reported with multiplicity, coupling constants, and proton count. Coupling 

constants (J) are reported in hertz. Column chromatography was carried out on SILICYCLE 

SiliaFlash silica gel F60 (40−63 μm, mesh 230−400). High-resolution mass spectra were 

obtained using a Q-tof UE521 mass spectrometer (University of Illinois, SCS, and Mass 

Spectrometry Laboratory). HPLC conditions: All final compounds have a chemical purity of 

>98% as determined by analysis using a Varian Prostar (380-LC) HPLC instrument 

equipped with a quaternary pump and a Varian Microsorb MV-100–5 C-8 column (250 mm 

× 4.6 mm). UV absorption was monitored at 332 nm. All samples were dissolved in THF 

(1–2 mg/mL) and the injection volume was 20 μL. HPLC gradient was 30% acetonitrile and 

70% water (both solvents contain 0.05% formic acid) with a total run time of 20 min and a 

flow rate of 1.0 mL/min.

General Procedure for the Synthesis of 5-nitro-2-phenylbenzo[d]oxazoles 
(4): To a stirred solution of 2-amino-4-nitrophenol (1 mmol) and aromatic aldehydes (1 

mmol) in anhydrous xylene DarcoKB (300 mg) was added. The solution was stirred under 

O2 atmosphere at 140 ºC for 6–8 h. After completion of the reaction as observed from TLC, 

reaction mixture was filtered with the aid of Celite, which was washed with hot ethyl acetate 

(3×20 mL). The filtrate was concentrated, and the products were either used directly or 

recrystallized using ethyl acetate and hexane.

General Procedure for the Synthesis of 5: 5-Nitro-2-arylbenzo[d]oxazole 4 (1 mmol) 

was dissolved in 10 mL EtOAc:MeOH (1:1) and 10% Pd/C (catalytic) was added and stirred 

well under a H2 atmosphere for 3 h. After the successful completion, the reaction mixture 

was filtered through celite and the filtrate was concentrated under reduced pressure. The 

crude amines were used directly or recrystallized using ethyl acetate and hexane.
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General Procedure for the Synthesis of Phenyl Ethers 6: Substituted phenol (1 

mmol) was added to the solution of methyl (+)-methyl D-lactate (1.38 mmol) in anhydrous 

THF (6 mL) under a nitrogen atmosphere. The solution was cooled to 0 °C, followed by 

PPh3 (1.20 mmol) was added portion wise to the stirred solution. DEAD (1.50 mmol) was 

added dropwise to the above solution and stirred well at room temperature for 4 h. After 

completion, solvent was removed under reduced pressure and the crude residue was purified 

by column chromatography on silica gel using ethyl acetate/n-hexane (10:90) to yield 

corresponding phenyl ether as a colorless liquid (85–90% Yield).

General Procedure for Ester Hydrolysis for Preparation of 7: LiOH (1.5 mmol) 

was added portion wise to the stirred solution of ester 6 (1 mmol) in 5 mL THF:MeOH (2:3) 

at 0 ºC. The reaction was brought to room temperature and stirred well for 4 h. The solvents 

were removed under reduced pressure, 1N HCl was added to a pH of 4 and then the mixture 

was extracted with ethyl acetate. The organic layer was washed with brine, dried using 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude acids were 

used in the next step without purification.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(pyridin-4-yl)benzo[d]oxazol-5-
yl)propanamide (8a): Prepared and characterized previously.39

General Procedure for Synthesis of 8b-8v: EDC·HCl (1.5 mmol) was added to the 

stirred solution of acid 7 (1 mmol) and amine 5 (1 mmol) in dry DMF at 0 ºC under nitrogen 

atmosphere. The reaction mixture was stirred overnight at room temperature. After 

completion of the reaction, excess water was added and extracted with ethyl acetate. The 

organic layer was washed with brine and dried using anhydrous MgSO4. The solvent was 

removed under reduced pressure and the crude residue was purified through column 

chromatography using ethyl acetate/n-hexane.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(2-methoxypyridin-4-yl)benzo[d]oxazol-5-
yl)propanamide (8b): White solid (306 mg, 66%), 1H NMR (DMSO-d6) 10.34 (s, 1H, 

NH), 8.93 (d, J = 2.00 Hz, 1H, CH), 8.39–8.36 (m, 1H, CH), 8.06 (d, J = 2.00 Hz, 1H, CH), 

7.69 (d, J = 8.80 Hz, 1H, CH), 7.52 (dd, J = 8.90 Hz, J = 2.00 Hz, 1H, CH), 7.30–7.26 (m, 

1H, CH), 7.22 (t, J = 1.20 Hz, 1H, CH), 7.02–7.00 (m, 2H, 2×CH), 4.98 (q, J = 6.80 Hz, 1H, 

CH), 3.92 (s, 3H, -OCH3), 1.59 (d, J = 6.80 Hz, 3H, CH3). Purity 98% (tR = 15.13). m.p. 

165–166 C.

(S)-2-(2,3-dichlorophenoxy)-N-(2-(6-methoxypyridin-3-yl)benzo[d]oxazol-5-
yl)propanamide (8c): White solid (315 mg, 69%), 1H NMR (DMSO-d6) 10.34 (s, 1H, 

NH), 8.92 (m, 1H, CH), 8.39–8.37 (m, 1H, CH), 8.06–8.05 (m, 1H, CH), 7.69–7.67 (m, 1H, 

CH), 7.53– 7.51 (m, 1H, CH), 7.27–7.20 (m, 2H, 2×CH), 7.01–6.98 (m, 2H, 2×CH), 5.01 (q, 

J = 6.80 Hz, 1H, CH), 3.91 (s, 3H, -OCH3), 1.58 (d, J = 6.80 Hz, 3H, CH3). Purity 97% (tR 

= 14.85). m.p. 156–157 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-methoxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8d): White solid (351 mg, 77%), 1H NMR (DMSO-d6) 10.32 (s, 1H, 

NH), 8.08 (d, J = 8.80 Hz, 2H, 2×CH), 8.03 (d, J = 2.00 Hz, 1H, CH), 7.65 (d, J = 8.80 Hz, 
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1H, CH), 7.50–7.48 (m, 1H, CH), 7.27 (t, J = 8.20 Hz, 1H, CH), 7.21–7.19 (m, 1H, CH), 

7.10 (d, J = 8.80 Hz, 2H, 2×CH), 7.01–6.99 (m, 1H, CH), 4.98 (q, J = 6.80 Hz, 1H, CH), 

3.82 (s, 3H, -OCH3), 1.59 (d, J = 6.80 Hz, 3H, CH3). Purity 99% (tR = 15.30). m.p. 230 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-
(trifluoromethoxy)phenyl)benzo[d]oxazol-5-yl)propanamide (8e): White solid 

(357 mg, 70%), 1H NMR (DMSO-d6) 10.41 (s, 1H, NH), 8.31 (d, J = 8.80 Hz, 2H, 2×CH), 

8.16 (m, 1H, CH), 7.77 (d, J = 9.00 Hz, 1H, CH), 7.61 (d, J = 8.00 Hz, 2H, 2×CH), 7.59 (m, 

1H), 7.32 (t, J = 8.20 Hz, 1H, CH), 7.26–7.24 (m, 1H, CH), 7.05 (d, J = 6.40 Hz, 1H, CH), 

5.03 (q, J = 6.20 Hz, 1H, CH), 1.64 (d, J = 6.40 Hz, 3H, CH3). Purity 99% (tR = 17.15). m.p. 

140–141 C.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-
dichlorophenoxy)propanamide (8f): Yellow solid (311 mg, 69%), 1H NMR (DMSO-

d6) 10.38 (s, 1H, NH), 8.28 (dd, J = 8.20 Hz, J = 1.20, 2H, 2×CH), 8.14 (m, 1H, CH), 8.02 

(dd, J = 8.20 Hz, J = 1.20 Hz, 2H, 2×CH), 7.75–7.73 (m, 1H, CH), 7.58–7.56 (m, 1H, CH), 

7.26 (t, J = 1.60 Hz, 1H, CH), 7.20 (m, 1H, CH), 7.00 (d, J = 8.40 Hz m, 1H, CH), 5.01 (q, 

1H, J = 6.80 Hz, CH), 1.58 (d, 3H, J = 6.80 Hz, CH3). Purity 99% (tR = 14.85). m.p. 183–

184 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-fluorophenyl)benzo[d]oxazol-5-
yl)propanamide (8g): White solid (351 mg, 79%), 1H NMR (DMSO-d6) 10.42 (s, 1H, 

NH), 8.26–8.23 (m, 2H, 2×CH), 8.13 (m, 1H, CH), 7.76–7.74 (m, 1H, CH), 7.59–7.44 (m, 

3H, 3×CH), 7.32–7.26 (m, 2H, 2×CH), 7.06–7.04 (m, 1H, CH), 5.04 (q, J = 6.00 Hz, 1H, 

CH), 1.64 (d, J = 6.00 Hz, 3H, CH3). Purity 98% (tR = 15.73). m.p. 213–214 C.

Methyl (S)-4-(5-(2-(2,3-dichlorophenoxy)propanamido)benzo[d]oxazol-2-
yl)benzoate (8h): White solid (329 mg, 68%), 1H NMR (DMSO-d6) 10.37 (s, 1H, NH), 

8.29–8.26 (m, 1H, CH), 8.11 (d, J = 8.80 Hz, 2H, 2×CH), 7.86 (m, 1H, CH), 7.73 (dd, J = 

8.80 Hz, J = 3.20 Hz, 1H, CH), 7.56 (d, J = 8.20 Hz, 1H, CH), 7.40 (m, 1H, CH), 7.27–7.20 

(m, 2H, 2×CH), 7.00 (dd, J = 8.80 Hz, J = 2.00 Hz, 1H, CH), 5.02 ( q, 1H, J = 6.80 Hz,, 1H, 

CH), 3.85 (s, 3H, -COOCH3), 1.59 (d, 3H, J = 6.00 Hz, CH3). Purity 99% (tR = 15.60). m.p. 

197–198 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-hydroxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8i): White solid (313 mg, 71%), 1H NMR (DMSO-d6) 10.30 (s, 1H, 

NH), 8.00–7.99 (m, 1H, CH), 7.97 (d, J = 8.40 Hz, 2H, 2×CH), 7.62 (d, J = 8.80 Hz, 1H, 

CH), 7.48–7.46 (m, 1H, CH), 7.27 (t, J = 8.00 Hz, 1H, CH), 7.00 (d, J = 8.40 Hz, 1H, CH), 

6.91 (d, J = 8.80 Hz, 2H, 2×CH), 4.47 (q, J = 6.40 Hz, 1H, CH), 1.58 (d, J = 6.80 Hz, 3H, 

CH3). Purity 99% (tR = 13.11). m.p. 213.5–214.5 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(3-hydroxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8j): White solid (300 mg, 68%), 1H NMR (DMSO-d6) 10.38 (s, 1H, 

NH), 9.75 (s, 1H, OH), 8.12 (s, 1H, CH), 7.74 (d, J = 9.20Hz, 1H, CH), 7.61–7.55 (m, 3H, 

3×CH), 7.40 (t, J = 8.00 Hz, 1H, CH), 7.32 (t, J = 8.20 Hz, 1H, CH), 7.26 (m, 1H), 7.06–

Chacko et al. Page 12

J Med Chem. Author manuscript; available in PMC 2019 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.01 (m, 2H, 2×CH), 5.03 (q, J = 6.80 Hz, 1H, CH), 1.64 (d, J = 6.40 Hz, 3H, CH3). Purity 

98% (tR = 13.36). m.p. 259 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(2-hydroxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8k): White solid (287 mg, 65%), 1H NMR (DMSO-d6) 11.10 (s, 1H, 

OH), 10.41 (s, 1H, NH), 8.13 (d, J = 2.00 Hz, 1H, CH), 7.97 (dd, J = 7.60 Hz, J = 1.20 Hz, 

1H, CH), 7.76 (d, J = 8.40 Hz, 1H, CH), 7.55 (dd, J = 8.40 Hz, J = 2.00 Hz, 1H, CH), 7.54–

7.48 (m, 1H, CH), 7.26 (t, J = 8.00 Hz, 1H, CH), 7.19 (m, 1H, CH), 7.09–7.00 (m, 3H, 

3×CH), 5.00 (q, J = 6.80 Hz, 1H, CH), 1.59 (d, J = 6.60 Hz, 3H, CH3). Purity 99% (tR = 

16.99). m.p. 209–210 C.

(S)-2-(2,3-Difluorophenoxy)-N-(2-(pyridin-4-yl)benzo[d]oxazol-5-
yl)propanamide (8l): White solid (268 mg, 68%), 1H NMR (DMSO-d6) 10.40 (s, 1H, 

NH), 8.79 (dd, J = 4.20 Hz, J = 1.20 Hz, 2H, CH), 8.16 (m, 1H, CH), 8.04 (t, J = 2.00 Hz, 

2H, 2×CH), 7.77 (d, J = 8.80 Hz, 1H, CH), 7.62 (m, 1H, CH), 7.62–7.60 (m, 1H, CH), 4.96 

(q, J = 6.80 Hz, 1H, CH), 1.58 (d, J = 6.80 Hz, 3H, CH3). Purity 99% (tR = 14.45). m.p. 

189–190 C.

(S)-2-(2,3-Difluorophenoxy)-N-(2-(4-methoxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8m): White solid (322 mg, 76%), 1H NMR (DMSO-d6) 10.32 (s, 1H, 

NH), 8.08 (d, J = 9.20 Hz, 2H, 2×CH), 8.02 (d, J = 1.60 Hz, 1H, CH), 7.64 (d, J = 8.40 Hz, 

1H, CH), 7.50 (d, J = 6.80 Hz, 1H, CH), 7.10 (d, J = 8.80 Hz, 3H, 3×CH), 6.99 (m, 1H, CH), 

6.89 (t, J = 2.00 Hz, 1H, CH), 4.95 (q, J = 6.80 Hz, 1H, CH), 1.57 (d, J = 6.40 Hz, 3H, CH3). 

Purity 97% (tR = 13.95). m.p. 179–180 C.

(S)-2-(2,3-Difluorophenoxy)-N-(2-(4-hydroxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8n): White solid (291 mg, 71%), 1H NMR (DMSO-d6) 10.36 (s, 1H, 

OH), 10.33 (s, 1H, NH), 8.04 (d, J = 2.00 Hz, 2H, 2×CH), 8.01 (m, 1H, CH), 7.67 (d, J = 

8.80 Hz, 1H, CH), 7.52 (d, J = 8.20 Hz,, 1H, CH), 7.15–6.97 (m, 3H, 3×CH), 6.96 (d, J = 

8.40 Hz, 2H, 2×CH), 4.99 (q, 1H, J = 6.80 Hz, CH), 1.62 (d, 3H, J = 6.40 Hz, CH3). Purity 

98% (tR = 11.36). m.p. 182–183 C.

(S)-2-(2,3-Difluorophenoxy)-N-(2-(6-methoxypyridin-3-yl)benzo[d]oxazol-5-
yl)propanamide (8o): White solid (311 mg, 69%), 1H NMR (DMSO-d6) 10.49 (s, 1H, 

NH), 8.97 (s,, 1H, CH), 8.40 (dd, J = 8.40 Hz, J = 2.00 Hz, 1H, CH), 8.11 (m, 1H, CH), 7.73 

(d, J = 8.00 Hz, 1H, CH), 7.59–7.56 (m, 1H, CH), 7.19–6.98 (m, 3H, 3×CH), 6.94 (t, J = 

2.40 Hz, 1H, CH), 5.00 (q, J = 6.40 Hz, 1H, CH), 3.17 (s, 3H, -OCH3), 1.63 (d, J = 6.40 Hz, 

3H, CH3). Purity 99% (tR = 13.25). m.p. 177–178 C.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-
difluorophenoxy)propanamide (8p): White solid (289 mg, 69%), 1H NMR (DMSO-

d6) 10.44 (s, 1H, NH), 8.34 (d, J = 8.40 Hz, 2H, 2×CH), 8.19 (d, J = 1.60 Hz, 1H, CH), 8.07 

(d, J = 8.8 Hz, 2H, 2×CH), 7.79 (d, J = 8.80 Hz, 1H, CH), 7.65–7.62 (m, 1H, CH), 7.17–7.12 

(m, 1H, CH), 7.06–7.02 (m, 1H, CH), 6.95 (t, J = 2.00 Hz, 1H, CH), 5.01 (q,, J = 6.40 Hz, 

1H, CH), 1.63 (d, J = 6.8 Hz, 3H, CH3). Purity 98% (tR = 13.24). m.p. 176–177 C.
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(S)-2-(2,3-Difluorophenoxy)-N-(2-(4-fluorophenyl)benzo[d]oxazol-5-
yl)propanamide (8q): White solid (317 mg, 77%), 1H NMR (DMSO-d6) 10.40 (s, 1H, 

NH), 8.24 (dd, J = 8.60 Hz, J = 5.40 Hz, 2H, 2×CH), 8.13 (d, J = 1.60 Hz,1H, CH), 7.74 (d, 

J = 9.20 Hz,, 1H, CH), 7.58 (dd, J = 8.80 Hz, J = 2.00 Hz, 1H, CH), 7.46 (td, J = 8.80, J = 

1.00 Hz, 2H, 2×CH), 7.17–7.12 (m, 1H, CH), 7.06–7.02 (m, 1H, CH), 6.96–6.92 (m, 1H, 

CH), 5.00 (q, J = 6.40 Hz, 1H, CH), 1.63 (d, J = 6.80 Hz, 3H, CH3). Purity 97% (tR = 

14.29). m.p. 194–195 C.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3,4-
trifluorophenoxy)propanamide (8r): White solid (270 mg, 62%), 1H NMR (DMSO-d6) 

10.42 (s, 1H, NH), 8.34 (d, J = 6.80 Hz, 2H, 2×CH), 8.19 (s, 1H, CH), 8.08 (d, J = 7.20 Hz, 

2H, 2×CH), 7.80 (d, J = 8.00 Hz, 1H, CH), 7.63 (d, J = 8.40 Hz, 1H, CH), 7.27 (d, J = 10.00 

Hz 1H, CH), 6.98 (m, 1H, CH), 4.98 (q, J = 6.40 Hz, 1H, CH), 1.61 (d, J = 6.80 Hz, 3H, 

CH3). Purity 99% (tR = 13.60). m.p. 184–185 C.

(S)-2-(2-Cyanophenoxy)-N-(2-(pyridin-4-yl)benzo[d]oxazol-5-yl)propanamide 
(8s): White solid (261 mg, 68%), 1H NMR (DMSO-d6) 10.49 (s, 1H, NH), 8.84 (dd, J = 

4.00 Hz, J = 1.60 Hz, 2H, 2×CH), 8.21 (d, J = 2.00 Hz, 1H, CH), 8.09 (dd, J = 4.40 Hz, J = 

1.60 Hz, 2H, 2×CH), 7.83–7.77 (m, 2H, 2×CH), 7.68–7.63 (m, 2H, 2×CH), 7.14–7.11 (m, 

2H, 2×CH), 5.11 (q, J = 6.80 Hz, 1H, CH), 1.66 ( d, J = 6.80 Hz, 3H, CH3). Purity 98% (tR = 

12.67). m.p. 229–230 C.

(S)-2-(2-Cyano-3-fluorophenoxy)-N-(2-(pyridin-4-yl)benzo[d]oxazol-5-
yl)propanamide (8t): White solid (285 mg, 71%), 1H NMR (DMSO-d6) 10.51 (s, 1H, 

NH), 8.84 (dd, J = 6.00 Hz, J = 1.00 Hz, 2H, 2×CH), 8.20 (s, 1H, CH), 8.09 (dd, J = 6.00 

Hz, J = 1.00 Hz, 2H, 2×CH), 7.84–7.81 (m, 1H, CH), 7.73–7.63 (m, 2H, 2×CH), 7.10 (t, J = 

8.80 Hz, 1H, CH), 6.99–6.97 (d, J = 8.80 Hz, 1H, CH), 5.16 (q, J = 6.40 Hz, 1H, CH), 1.67 

(d, J = 6.80 Hz, 3H, CH3). Purity 98% (tR = 13.44). m.p. 189-dec C.

(S)-2-(2-Cyanophenoxy)-N-(2-(4-methoxyphenyl)benzo[d]oxazol-5-
yl)propanamide (8u): White solid (318 mg, 77%), 1H NMR (DMSO-d6) 10.41 (s, 1H, 

NH), 8.13 (d, J = 8.80 Hz, 2H, 2×CH), 8.07 (m, 1H, CH), 7.78 (d, J = 8.80 Hz, 1H, CH), 

7.72 (m, 2H, 3×CH), 7.54 (d, J = 8.00 Hz, 1H, CH), 7.21–7.04 (m, 4H, 4×CH), 5.09 (q, J = 

6.00 Hz, 1H, CH), 3.82 (s, 3H, OCH3), 1.65 (d, J = 6.40 Hz, 3H, CH3). Purity 99% (tR = 

12.99). m.p. 162–163 C.

(S)-2-(2-(Benzyloxy)phenoxy)-N-(2-(4-cyanophenyl)benzo[d]oxazol-5-
yl)propanamide (8v): White solid (337 mg, 69%), 1H NMR (DMSO-d6) 10.23 (s, 1H, 

NH), 8.34 (d, J = 8.00 Hz, 2H, 2×CH), 8.21 (m, 1H, CH), 8.08 (d, J = 8.00 Hz, 2H, 2×CH), 

7.76 (d, J = 8.80 Hz, 1H, CH), 7.61–7.58 (m, 1H, CH), 7.50 (d, J = 7.60 Hz, 2H, 2×CH), 

7.38–7.29 (m, 3H, 3×CH), 7.08 (m, 2H, 2×CH), 6.93(m, 2H, 2×CH), 5.17 (s, 2H, -OCH2-), 

4.82 (q, J = 6.40 Hz, 1H, CH), 1.57 (d, J = 6.80 Hz, 3H, CH3). Purity 99% (tR = 15.31). m.p. 

144–145 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-methoxyphenyl)benzo[d]oxazol-5-
yl)propanethioamide (9): A mixture of amide 8 (Ar = 4-OMePh, R = 2,3-diCl, 1 mmol) 
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and Lawesson’s reagent (1 mmol) was dissolved in dry dioxane (5 mL) and refluxed well for 

2h. After cooling to room temperature, dioxane was removed under reduced pressure and the 

crude product was purified through column chromatography. White solid (335 mg, 71%), 1H 

NMR (DMSO-d6) 11.72 (s, 1H, NH), 8.10–8.08 (m, 3H, 3×CH), 7.76–7.70 (m, 1H, CH), 

7.51–7.50 (m, 1H, CH), 7.32–7.29 (m, 1H, CH), 7.22–7.20 (m, 1H, CH), 7.14–7.02 (m, 2H, 

2×CH), 7.02–7.00 (m, 1H, CH), 5.20 (q, J = 6.80 Hz, 1H, CH), 1.70 (d, J = 6.80 Hz, 3H, 

CH3). Purity 98% (tR = 17.09). m.p. 132–139 C.

(S)-2-(2,3-Dichlorophenoxy)propanal (10): DIBAL-H (1.0 M, in cyclohexane, 2 

mmol) was added dropwise to the stirred solution of ester 6a (1 mmol) in dry CH2Cl2 (4 

mL) under a nitrogen atmosphere at −78 ºC. After completion of the addition, stirring was 

continued at the same temperature for 1 h. Aq. HCl (1 N, 3 mL) was added carefully. The 

bath was removed and the mixture was extracted with Et2O (3 ×30 mL). The combined 

organic layers were washed with water (10 mL) and brine (10 mL) and dried over anhydrous 

MgSO4. The solvent was removed under reduced pressure and the crude reaction mixture 

was purified through column chromatography. Colorless oil (193 mg, 89%), 1H NMR 

(CDCl3) 9.72 (s, 1H, CH), 7.10 (m, 2H, 2×CH), 6.74–6.71 (m, 1H, CH), 4.62–4.60 (m, 1H, 

CH), 1.51 (d, J = 7.20 Hz, 3H, CH3).

(S)-N-(2-(2,3-Dichlorophenoxy)propyl)-2-(4-methoxyphenyl)benzo[d]oxazol-5-
amine (11): Aldehyde 10 (1 mmol) was dissolved in DCE (25 mL) at 0 °C. Benzoxazole 

amine 5 (Ar = 4-OMePh, 1 mmol) and sodium triacetoxyborohydride (2 mmol) were added 

to the above solution and stirred well. The reaction mixture was stirred for 1.5 h and 

quenched with satd. NaHCO3 solution (20 mL), and the product was extracted with CH2Cl2 

(2 × 20 mL). The organic layer was washed with brine and dried using anhydrous MgSO4. 

The solvent was removed under reduced pressure and crude mixture was purified through 

column chromatography. Colorless oil (351 mg, 81%), 1H NMR (CDCl3) 8.11 (dd, J = 9.20 

Hz, J = 2.00 Hz, 2H, 2×CH), 7.29 (dd, J = 8.80 Hz, J = 2.40 Hz, 1H, CH), 7.05–7.02 (m, 2H, 

2×CH), 6.96 (dd, J = 9.00 Hz, J = 2.60 Hz, 2H, 2×CH), 6.92–6.91 (m, 1H, CH), 6.81–6.78 

(m, 1H, CH), 6.59 (dd, J = 8.60 Hz, J = 2.20 Hz, 1H, CH), 4.64 (m, 1H, CH), 4.21 (bs, 1H, 

NH), 3.84 ( s, 3H, -OCH3), 3.47–3.39 (m, 2H, -CH2-), 1.39 (d, J = 6.20 Hz, 3H, CH3). 

Purity 98% (tR = 17.11).

2-(4-Methoxyphenyl)-6-nitroimidazo[1,2-a]pyridine (12): 5-Nitropyridin-2-amine (1 

mmol) and NaHCO3 (2 mmol) was added to a stirred solution of 2-bromo-4′-
methoxyacetophenone (1 mmol) in ethanol at room temperature and the reaction mixture 

was refluxed for overnight. After completion, the solvent was removed under reduced 

pressure and the crude material was dissolved in water and extracted with ethyl acetate. The 

organic layer was washed with brine and dried using anhydrous MgSO4, filtered and 

concentrated under reduced pressure. The product was recrystallized using ethyl acetate and 

hexane. Brown solid (237 mg, 88%), 1H NMR (DMSO-d6) 9.76 (m, 1H, CH), 8.47 (s, 1H, 

CH), 7.90–7.88 (m, 3H, 3×CH), 7.67–7.65 (m, 1H, CH), 7.61 (d, 2H, J = 8.80 Hz, 2×CH, 

3.78 (s, 3H, -OCH3).

Chacko et al. Page 15

J Med Chem. Author manuscript; available in PMC 2019 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-6-
yl)propanamide (13): To the stirred solution of 2-(4-methoxyphenyl)-6-nitroimidazo[1,2-

a]pyridine 12 (1 mmol) in ethanol and ethyl acetate, SnCl2 (2 mmol) was added and refluxed 

for 2h. Solvent was removed under reduced pressure and the reaction was quenched by 

adding a saturated solution of NaHCO3 solution and extracted with ethyl acetate. The 

organic phase was washed with brine, dried over anhydrous MgSO4, filtered and 

concentrated under reduced pressure. The crude amine was used in the next step without any 

purification. EDC·HCl (1.5 mmol) was added to the stirred solution of acid 7 (R = 2,3-diCl, 

1 mmol) and amine (1 mmol) in dry DMF at 0 ºC under a nitrogen atmosphere. The reaction 

mixture was stirred overnight at room temperature. After completion of the reaction, water 

was added and extracted with ethyl acetate. The organic layer was washed with brine and 

dried using anhydrous MgSO4. The solvent was removed under reduced pressure. The crude 

residue was purified through column chromatography to give the desired product. Brown 

solid (273 mg, 60%), 1H NMR (DMSO-d6) 10.35 (s, 1H, NH), 9.13 (s, 1H, CH), 8.33 (s, 

1H, CH), 7.84 (d, J = 8.40 Hz, 2H, 2×CH), 7.53 (d, J = 8.00 Hz, 1H, CH), 7.24–6.92 (m, 6H, 

6×CH), 5.02 (q, J = 6.40 Hz, 1H, CH), 3.79 (s, 3H, -OCH3), 1.62 (d, J = 6.40 Hz, 3H, CH3). 

Purity 97% (tR = 12.00). m.p. 146–147 C.

2-(4-Methoxybenzyl)-5-nitrobenzo[d]oxazole (14): DABCO (2 mmol) was added to 

the stirred solution of 1-(2,2-dibromovinyl)-4-methoxybenzene (1 mmol) and 2-amino-4-

nitrophenol (1 mmol) in NMP (5 mL) under nitrogen atmosphere. The solution was stirred 

well for 24 h at 100 ºC. After completion, reaction was quenched by the addition of water 

and extracted with ethyl acetate. The organic layer was washed with brine and dried using 

MgSO4, filtered and concentrated under reduced pressure. The crude product was purified 

using column chromatography. Yellow solid (171 mg, 60%), 1H NMR (CDCl3) 8.57–8.56 

(m, 1H, CH), 8.28–8.25 (m, 1H, CH), 7.57–7.55 (m, 1H, CH), 7.31–7.29 (m, 2H, 2×CH), 

6.91–6.89 (m, 2H, 2×CH), 4.66 (s, 2H, -CH2-), 3.80 (s, 3H, -OCH3).

(S)-2-(2,3-dichlorophenoxy)-N-(2-(4-methoxybenzyl)benzo[d]oxazol-5-yl)prop-
anamide (15): 5-Nitro-2-arylbenzo[d]oxazoles (1 mmol) was dissolved in 10 mL 

EtOAc:MeOH (1:1) and 10% Pd/C (catalytic) was added and stirred well under a H2 

atmosphere for 2–3 h. After the successful completion, reaction mixture was filtered through 

celite and the filtrate was concentrated under reduced pressure. The crude amine was 

recrystallized using ethyl acetate and hexane. The amine was proceeded to next step without 

any chromatographic purification. EDC·HCl (1.5 mmol) was added to the stirred solution of 

acid 7 (R = 2,3-diCl, 1 mmol), amine (1 mmol) in dry DMF at 0 ºC under nitrogen 

atmosphere. Reaction mixture was stirred well for overnight at room temperature. After 

completion of the reaction, excess water was added and extracted with ethyl acetate. The 

organic layer was washed with brine and dried using MgSO4. The solvent was removed 

under reduced pressure and crude residue was purified through column chromatography 

using ethyl acetate/n-hexane. White solid (315 mg, 67%), 1H NMR (CDCl3) 8.71 (s, 1H, 

NH), 7.97 (bs, 1H, CH), 7.46 (d, J = 8.00 Hz, 1H, CH), 7.39 (d, J = 8.20 Hz, 1H, CH), 7.28 

(d, J = 8.00 Hz, 2H, 2×CH), 7.18–7.16 (m, 2H, 2×CH), 6.91–6.86 (m, 3H, 3×CH), 4.86 (q, J 
= 6.80 Hz, 1H, CH), 4.19 (s, 2H, -CH2-), 3.78 (s, 3H, -OCH3), 1.73 (d, J = 7.20 Hz, 3H, 

CH3). Purity 97% (tR = 14.78). m.p. 143–147 C.
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Synthesis of 17: A mixture of L-alanine (163 mg, 1.82 mmol), Cs2CO3 (1.19 g, 3.65 

mmol), and CuI (69.7 mg, 0.36 mmol) was added to the stirred solution of 1,2-dichloro-3-

iodobenzene or 1,2-difluoro-3-iodobenzene (1.83 mmol) in dry DMF (3 mL) under a 

nitrogen atmosphere. The reaction mixture was heated at 90 °C for 24 h. After completion, 

the reaction mixture was allowed to cool and water was added. The pH was adjusted to 3−5 

by the addition of 2N HCl and extracted with ethyl acetate. The organic layer was washed 

with brine, dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. 

The crude acid 16 was used in the next step without further purification. Acid 16 (1 mmol) 

was added to the stirred solution of amine 5 (Ar = 4-CNPh, 1 mmol) in dry DMF at 0 ºC 

followed by HATU (1.2 mmol) and stirred well for overnight at room temperature. After 

completion, excess water was added to the reaction and extracted with ethyl acetate. The 

organic layer was washed with brine and dried over anhydrous MgSO4, filtered, and 

concentrated. The residue was purified by column chromatography using ethyl acetate/n-

hexane.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-((2,3-
dichlorophenyl)amino)propanamide (17a): Light brown powder (202 mg, 45%), 1H 

NMR (DMSO-d6) 10.39 (s, 1H, NH), 8.34 (d, J = 8.00 Hz, 2H, 2×CH), 8.20 (s, 1H, CH), 

8.07 (d, J = 8.40 Hz, 2H, 2×CH), 7.81 (d, J = 8.40 Hz, 1H, CH), 7.60–7.58 (m, 1H, CH), 

7.18 (t, J = 8.20 Hz, 1H, CH), 6.88 (d, J = 7.60 Hz, 1H, CH), 6.65 (d, J = 8.40 Hz, 1H, CH), 

5.61 (d,J = 8.00 Hz, 1H, NH), 4.26 (m, 1H, CH), 1.54 (d, J = 6.8Hz, 3H, CH3). Purity 99% 

(tR = 14.95). m.p. 201–202 C.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-((2,3-
difluorophenyl)amino)propanamide (17b): Yellow powder (225 mg, 54%) 1H NMR 

(DMSO-d6) 10.29 ( s, 1H, NH), 8.33 (d, J = 8.40 Hz, 2H, 2×CH), 8.20 (m, 1H, CH), 8.07 (d, 

J = 8.40 Hz, 1H, CH), 7.77 (d, J = 8.80 Hz, 1H, CH), 7.60 (d, J = 8.80 Hz, 1H, CH), 6.96 (q, 

J = 7.60 Hz, 1H, CH), 6.59 (m, 1H, CH), 6.51 (t, J = 7.60 Hz, 1H, CH), 5.92 (d,J = 7.60 Hz, 

1H, NH), 4.18 (q, J = 6.80 Hz, 1H, CH), 1.51 (d, J = 6.40 Hz, 3H, CH3). Purity 99% (tR = 

12.95). m.p. 197–198 C.

Synthesis of 18: Arylbenzoxazole 8i or 8j (1 mmol) was dissolved in dry DMF (5 mL) in 

an oven dried round bottom flask and cooled to 0 ºC. K2CO3 (2 mmol) was added to the 

cold solution and stirred well for ten minutes, then ethyl bromoacetate (1.5 mmol) was 

added and stirred well at room temperature for 6 h. After completion, the reaction was 

quenched with water and extracted with ethyl acetate (20 mL) and the organic layer was 

washed with brine. The organic layer was dried using anhydrous MgSO4, filtered and 

concentrated under reduced pressure. The crude residue was purified through column 

chromatography using hexane: ethyl acetate.

Ethyl (S)-2-(4-(5-(2-(2,3-dichlorophenoxy)propanamido)benzo[d]oxazol-2-
yl)phenoxy)acetate (18a): White powder (438 mg, 83%), 1H NMR (DMSO-d6) 10.31 (s, 

1H, NH), 8.08–8.03 (m, 3H, 3×CH), 7.66–7.64 (m, 1H, CH), 7.50–7.48 (m, 1H, CH), 7.29–

6.98 (m, 5H, 5×CH), 4.97 (q, J = 6.40 Hz, 1H, CH), 4.87 (s, 2H, -OCH2-), 4.13 (q, J = 7.20 
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Hz, 2H, -OCH2-), 1.58 (d, J = 6.80 Hz, 3H, CH3), 1.17 (t, J = 7.20 Hz, 3H, CH3). Purity 

99% (tR = 15.02). m.p. 144–145 C.

Ethyl(S)-2-(3-(5-(2-(2,3-dichlorophenoxy)propanamido)benzo[d]oxazol-2-
yl)phenoxy)acetate (18b): White powder (422 mg, 80%), 1H NMR (DMSO-d6) 10.35 (s, 

1H, NH), 8.09 (m, 1H, CH), 7.76 (d, J = 8.00 Hz, 1H, CH), 7.70 (d, J = 8.00 Hz, 1H, CH), 

7.62–7.61 (m, 1H, CH), 7.55–7.47 (m, 2H, 2×CH), 7.27 (t, J = 6.20 Hz, 1H, CH), 7.21–7.18 

(m, 2H, 2×CH), 7.02–7.00 (m, 1H, CH), 4.98 (q, J = 6.80 Hz, 1H, CH), 4.89 (s, 2H, -

OCH2-), 4.15 (q, J = 7.20 Hz, 2H, -OCH2-), 1.59 (d, J = 6.40 Hz, 3H, CH3), 1.18 (t, J = 6.80 

Hz, 3H, CH3). Purity 99% (tR = 13.28). m.p. 175–176 C.

Synthesis of 19: The ester 18 was subjected to ester hydrolysis using the general 

procedure described for 7.

(S)-2-(4-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-
yl)phenoxy)acetic acid (19a): White powder (440 mg, 88%), 1H NMR (DMSO-d6) 

10.36 (s, 1H, NH), 8.12 (d, J = 8.80 Hz, 2H, 2×CH), 8.08 (m, 1H, CH), 7.70 (d, J = 8.80 Hz, 

1H, CH), 7.50 (m, 1H, CH), 7.32 (t, J = 8.40 Hz, 1H, CH), 7.25 (m, 1H), 7.13 (d, J = 8.80 

Hz, 2H, 2×CH), 7.05 (d, J = 8.00 Hz, 1H, CH), 5.02 (q, J = 6.40 Hz, 1H, CH), 4.82 (s, 2H, -

OCH2-), 1.63 (d, J = 6.40 Hz, 3H, CH3). Purity 98% (tR = 12.64). m.p. 238–239 C.

(S)-2-(3-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-
yl)phenoxy)acetic acid (19b): White powder (430 mg, 86%), 1H NMR (DMSO-d6) 

13.07 (bs, 1H, COOH), 10.35 (s, 1H, NH), 8.09 (m, 1H, CH), 7.76–7.70 (m, 2H, 2×CH), 

7.59–7.46 (m, 3H, 3×CH), 7.26 (t, J = 8.00 Hz, 1H, CH), 7.21–7.14 (m, 2H, 2×CH), 7.01 (d, 

J = 8.00 Hz, 1H, CH), 4.98 (q, J = 6.40 Hz, 1H, CH), 4.79 (s, 2H, -OCH2-), 1.59 (d, J = 6.40 

Hz, 3H, CH3). Purity 97% (tR = 12.77). m.p. 191-dec C.

Prop-2-yn-1-yl (S)-2-(4-(5-(2-(2,3-dichlorophenoxy)propanamido)benzo[d]oxa-
zol-2-yl)phenoxy)acetate (20): Arylbenzoxazole 19a (1 mmol) was dissolved in dry 

DMF (5 mL) in an oven dried round bottom flask and cooled to 0 ºC. K2CO3 (2 mmol) was 

added to the cold solution and stirred well for ten minutes, followed by propargyl bromide 

80% solution in toluene (1.5 mmol) was added and stirred well at room temperature for 6 h. 

After completion, reaction was quenched with water and extracted with ethyl acetate (20 

mL) and organic layer was washed with brine. The organic layer was dried using MgSO4, 

filtered and concentrated under reduced pressure. The crude product was purified through 

column chromatography. White solid (435 mg, 81%), 1H NMR (DMSO-d6) 10.37 (s, 1H, 

NH), 8.12 (d, J = 8.80 Hz, CH, 2×CH), 8.08 (m, 1H, CH), 7.72–7.70 (d, J = 8.80 Hz, 1H, 

CH), 7.55 (d, J = 8.00 Hz, 1H, CH), 7.34–7.26 (m, 2H, 2×CH), 7.17 (d, J = 8.40 Hz, 2H, 

2×CH), 7.05 (d, J = 8.00 Hz, 1H, CH), 5.03–5.00 (m and s, 3H, CH, -OCH2-), 4.83 (s, 2H, -

OCH2-), 3.64 (bs, 1H, CH), 1.63 (d, J = 6.00 Hz, 3H, CH3). Purity 98% (tR = 14.69). m.p. 

132–133 C.

(S)-4-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-yl)-N-
hydroxybenzamide (21): The ester 8h (1 mmol) was dissolved in methanol and 

hydroxylamine hydrochloride (2 mmol) was added at 0 ºC and stirred well. KOH (3 mmol) 
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was added to the cold solution and stirred overnight at room temperature. After completion, 

the solvent was removed under reduced pressure and the residue was dissolved in water and 

extracted with ethyl acetate. The organic layer was washed with brine and dried using 

anhydrous MgSO4. Solvent was removed under reduced pressure and the product was 

purified using column chromatography. White powder (310 mg, 65%), 1H NMR (DMSO-d6) 

13.29 (bs, 1H, -OH), 10.37 (s, 1H, NH), 8.26 (d, J = 8.00 Hz, 2H, 2×CH), 8.11 (t, J = 8.40 

Hz, 3H, 3×CH), 7.74(d, J = 9.20 Hz, 1H, CH), 7.56 (d, J = 8.80 Hz, 1H, CH), 7.26 (t, J = 

8.00 Hz, 1H, CH), 7.20 (m, 1H, CH), 7.00 (d, J = 8.00 Hz, 1H, CH), 4.99 (q, J = 6.80 Hz, 

1H, CH), 1.59 (d, J = 6.80 Hz, 3H, CH3). Purity 98% (tR = 13.37). m.p. 253–254 C.

(S)-4-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-yl)benzoic 
acid (22): Ester 8h (1 mmol) was dissolved in THF:MeOH:H2O (3:1:1) at room 

temperature and NaOH (1 mmol) was added and stirred well for 2 h. After completion, the 

solvents were removed under reduced pressure. The crude residue was dissolved in water 

and pH was adjusted to 3−5 by the addition of 2N HCl and extracted with ethyl acetate. The 

organic layer was washed with brine and dried using anhydrous MgSO4. The crude acid was 

recrystallized using ethyl acetate and hexane. White powder (423 mg, 90%), 1H NMR 

(DMSO-d6) 10.43 (s, 1H, NH), 8.30 (d, J = 8.40 Hz, 2H, 2×CH), 8.15 (t, J = 9.00, 3H, 

3×CH), 7.79 (d, J = 8.80 Hz, 1H, CH), 7.61 (d, J = 8.80 Hz, 1H, CH), 7.32 (t, J = 8.20 Hz, 

1H, 1×CH), 7.26–7.24 (m, 1H, CH), 7.05 (d, J = 8.00 Hz, 1H, CH), 5.04 (q, J = 6.80 Hz, 1H, 

CH), 1.64 (d, J = 6.40 Hz, 3H, CH3). Purity 98% (tR = 13.33). m.p. 244 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-
(hydrazinecarbonyl)phenyl)benzo[d]oxazol-5-yl)propanamide (23): Hydrazine 

hydrate (3 mmol) was added to the stirred solution of 8h (1 mmol) in ethanol (10 mL) at 

room temperature and refluxed for 5 h. After completion, the solvent was removed under 

reduced pressure, water was added and extracted with ethyl acetate. The organic layer was 

washed with brine and dried using anhydrous MgSO4. The solvent was removed under 

reduced pressure and the crude mixture was purified through column chromatography. 

White powder (324 mg, 67%), 1H NMR (DMSO-d6) 10.41 (s, 1H, NH), 9.97 (s, 1H, NH), 

8.25 (d, J = 6.80 Hz, 2H, 2×CH ), 8.16 (m, 1H, CH), 8.03 (d, J = 6.80 Hz, 2H, 2×CH), 7.77 

(d, J = 9.2 Hz, 1H, CH), 7.60 (d, J = 8.40 Hz, 1H, CH), 7.32 (t, J = 7.60, 1H, CH), 7.25 (m, 

1H), 7.05 (d, J = 8.40 Hz, 1H, CH), 5.03 (q, J = 6.80 Hz, 1H, CH), 4.60 (bs, 2H, NH2), 1.58 

(d, J = 6.80 Hz, 3H, CH3). Purity 97% (tR = 10.37). m.p. 247–248 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-(5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-
yl)phenyl)benzo[d]oxazol-5-yl)propanamide (24): To the stirred solution of 23 (1 

mmol) in anhydrous DMF (2 mL), carbonyldiimidazole (1.2 mmol) and 

diisopropylethylamine (1.2 mmol) was added. The reaction mixture was stirred for 2 h at 

room temperature. The reaction mixture was diluted with water and extracted with ethyl 

acetate. The combined extract was washed with brine, dried using anhydrous MgSO4, 

filtered and concentrated. The residue was purified through colum chromatography (2−8% 

MeOH gradient in CH2Cl2) to give the title compound. White solid (336 mg, 66%), 1H 

NMR (DMSO-d6) 12.78 (s, 1H, NH), 10.44 (s, 1H, NH), 8.33 (d, J = 7.60 Hz, 2H, 2×CH), 

8.17(m, 1H, CH), 8.01 (d, J = 8.00 Hz, 2H, 2×CH), 7.78 (d, J = 5.20 Hz, 1H, CH), 7.61 (d, J 
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= 8.80 Hz, 1H, CH), 7.32 (t, J = 8.40 Hz, 1H, CH), 7.25 (m, 1H, CH), 7.06 (d, J = 8.00 Hz, 

1H, CH),, 5.04 (q, J = 6.80 Hz, 1H, CH), 1.64 (d, J = 6.00 Hz, 3H, CH3). Purity 99% (tR = 

13.05). m.p. 288-dec C.

(S,Z)-2-(2,3-Dichlorophenoxy)-N-(2-(4-(N’-
hydroxycarbamimidoyl)phenyl)benzo[d]oxazol-5-yl)propanamide (25): (S)-N-(2-

(4-cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-dichlorophenox-y)propanamide 8f (1 mmol) 

was dissolved in anhydrous ethanol (5 mL) followed by hydroxylamine hydrochloride (3 

mmol) and triethylamine (6 mmol) was added. The reaction mixture was refluxed for 4 h 

and the solvent was removed under reduced pressure. The residue was suspended in water 

and extracted with DCM (20 mL). Organic layer was washed with brine and dried using 

anhydrous MgSO4. The solvent was removed under reduced pressure and the crude product 

was purified through column chromatography (2−8% MeOH gradient in CH2Cl2) to give the 

title compound. White solid (396 mg, 82%), 1H NMR (DMSO-d6) 10.34 (s, 1H, NH), 9.85 

(s, 1H, OH), 8.13–8.08 (m, 2H, 2×CH), 7.86–7.84 (m, 2H, 2×CH), 7.71–7.68 (m, 1H, CH), 

7.53–7.51 (m, 1H, CH), 7.28–7.18 (m, 3H, 3×CH), 7.00–6.98 (m, 1H, CH), 5.90 (s, 2H, 

NH2), 4.97 (m, 1H, CH), 1.57 (m, 3H, CH3). Purity 97% (tR = 14.97). m.p. 196–197 C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(4-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-
yl)phenyl)benzo-[d]oxazol-5-yl)propanamide (26): To the stirred solution of 25 (1 

mmol) in anhydrous DMF (2 mL), carbonyldiimidazole (1.2 mmol) and 

diisopropylethylamine (1.2 mmol) was added. The reaction mixture was stirred for 2 h at 

room temperature. The reaction mixture was diluted with water and extracted with ethyl 

acetate. The combined extract was washed with brine, dried using anhydrous MgSO4, 

filtered and concentrated. The residue was purified through colum chromatography (2−8% 

MeOH gradient in CH2Cl2) to give the title compound. White solid (321 mg, 61%), 1H 

NMR (DMSO-d6) 10.49 (s, 1H, NH), 9.60 (bs, 1H, NH), 8.32 (d, J = 8.40 Hz, 2H, 2×CH), 

8.15 (m, 1H, CH), 7.99 (d, J = 8.40 Hz, 2H, 2×CH), 7.72 (m, 1H, CH), 7.58 (m, 1H, CH), 

7.27 (t, J = 7.60 Hz, 1H, CH), 7.21 (m, 1H, CH), 7.02 (d, J = 8.40 Hz, 1H, CH), 5.03 (q, J = 

6.80 Hz, 1H, CH), 1.59 (d, J = 6.80 Hz, 3H, CH3). Purity 98% (tR = 13.04). m.p. 260 C.

(S)-N-(2-(4-(1H-Tetrazol-5-yl)phenyl)benzo[d]oxazol-5-yl)-2-(2,3-
dichlorophenoxy)propanamide (27): A mixture of (S)-N-(2-(4-

cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-dichlorophenoxy)propanamide 8f (1 mmol), NaN3 

(2 mmol), and NH4Cl (2 mmol) in DMF (1.5 mL) was heated at 100 °C for 6 h. Solvent was 

removed under reduced pressure, water was added and extracted with ethyl acetate. The 

organic layer was washed with brine, dried using anhydrous MgSO4, filtered and 

concentrated under reduced pressure. The crude residue was purified through column 

chromatography. White solid (306 mg, 62%), 1H NMR (DMSO-d6) 11.11 (s, 1H, NH), 

10.38 (s, 1H, NH), 8.36–8.34 (m, 1H, CH), 8.22 (d, J = 5.80 Hz, 2H, 2×CH), 8.13 (m, 1H, 

CH), 7.90 (m, 1H, CH), 7.76–7.70 (m, 1H, CH), 7.59–7.50 (m, 1H, CH), 7.30–7.21 (m, 2H, 

2×CH), 7.00 (m, 1H, CH), 5.01 (m, 1H, CH), 1.59 (m, 3H, CH3). Purity 99% (tR = 12.25). 

m.p. 257 C.
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(S)-4-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-yl)benzamide 
(28): To the stirred solution of (S)-N-(2-(4-cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-

dichlorophenoxy)prop-anamide 8f (1 mmol) in dry tert-butyl alcohol (4 mL/mmol), KOtBu 

(3 mmol), was added. The reaction mixture was stirred at room temperature for 12 h under a 

nitrogen atmosphere, and progress of the reaction was monitored by TLC. Upon completion, 

the reaction mixture was quenched with water and extracted with ethyl acetate. The organic 

layer was washed with brine, dried using anhydrous MgSO4 and solvent was removed under 

reduced pressure. The crude mixture was purified through column chromatography. White 

solid (253 mg, 54%), 1H NMR (DMSO-d6) 10.36 (s, 1H, NH), 8.21 (d, J = 8.00 Hz, 2H, 

2×CH), 8.12 (s, 2H, NH2), 8.03 (d, J = 8.00 Hz, 2H, 2×CH), 7.73 (d, J = 8.40 Hz, 1H, CH), 

7.55 (d, J = 8.40 Hz, 1H, CH), 7.51 (m, 1H, CH), 7.26 (t, J = 8.00 Hz, 1H, CH), 7.20 (m, 

1H), 7.00 (d, J = 8.40 Hz, 1H, CH) 4.98 (q, J = 6.80 Hz, 1H, CH), 1.59 (d, J = 6.80 Hz, 3H, 

CH3). Purity 98% (tR = 11.56). m.p. 232 C.

(S)-N-(2-(4-(Aminomethyl)phenyl)benzo[d]oxazol-5-yl)-2-(2,3-
dichlorophenoxy)propanamide (29): To a stirred solution of (S)-N-(2-(4-

cyanophenyl)benzo[d]oxazol-5-yl)-2-(2,3-dichloroph-enoxy)propanamide 8f ( 2.0 mmol) in 

THF: MeOH (15 mL), Boc2O (873 mg, 4.0 mmol) and NiCl2·6H2O (48 mg, 0.2 mmol) were 

added at 0 ºC and stirred for five minutes. After five minutes, NaBH4 (530 mg, 14.0 mmol) 

was added in small portions over 30 min followed by stirring at room temperature for 2h. 

The reaction mixture was filtered through celite and the filtrate was concentrated under 

reduced pressure. The crude residue was poured into 1N HCl and extracted with ethyl 

acetate. The organic layer was washed with brine and dried using anhydrous MgSO4. 

Solvent was removed under reduced pressure and crude reaction mixture was purified 

through column chromatography. Trifluoroacetic acid (1 mL) was added to the stirred 

solution of Boc protected amine (1 mmol) in dry DCM (5 mL) at 0 ºC. After 4 h, the 

reaction was quenched with a saturated NaHCO3 solution and extracted with DCM. The 

organic layer was washed with brine and dried using anhydrous MgSO4. The solvent was 

removed under reduced pressure and the product was recrystallized using ethyl acetate and 

hexane. White solid (305 mg, 67%), 1H NMR (DMSO-d6) 10.40 (s, 1H, NH), 8.14–8.10 (m, 

3H, 3×CH), 7.73 (d, J = 9.20 Hz, 1H, CH), 7.58–7.56 (m, 3H, 3×CH), 7.32 (t, J = 8.20 Hz, 

1H, CH), 7.26–7.24 (m, 1H, CH), 7.05 (d, J = 8.00 Hz, 1H, CH), 5.03 (q, J = 6.80 Hz, 1H, 

CH), 3.82 (s, 3H, -OCH3), 1.64–1.63 (d, J = 6.00 Hz, 3H, CH3). Purity 97% (tR = 14.63). 

m.p. 189-dec C.

(S)-2-(2,3-Dichlorophenoxy)-N-(2-(2-oxo-1,2-dihydropyridin-4-
yl)benzo[d]oxazol-5-yl)propanamide (30): To the stirred solution of 8b (1 mmol) in 

DMF, LiCl (5 mmol) and p-TSA (5 mmol) was added and stirred well for 2 h at 120 ºC. 

After completion, reaction was quenched with saturated NaHCO3 solution and extracted 

with ethyl acetate. The organic layer was washed with brine and dried using MgSO4. 

Solvent was removed under reduced pressure and crude residue was purified through column 

chromatography. White solid (341 mg, 77%), 1H NMR (DMSO-d6) 12.20 (bs, 1H, NH), 

10.30 (s, 1H, NH), 8.19 (s, 1H, CH), 8.02 (dd, J = 9.80 Hz, J = 2.20 Hz, 1H, CH), 7.98 (m, 

1H, CH), 7.61 (d, J = 9.20 Hz, 1H, CH), 7.46 (m, 1H, CH), 7.27 (t, J = 8.00 Hz, 1H, CH), 
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7.19 (m, 1H), 6.99 (d, J = 8.80 Hz, 1H, CH), 6.47 (d, J = 9.60 Hz, 1H, CH), 4.97 (q, J = 6.40 

Hz, 1H, CH), 1.58 (d, J = 6.80 Hz, 3H, CH3). Purity 97% (tR = 10.25). m.p. 240–241 C.

(S)-4-(5-(2-(2,3-Dichlorophenoxy)propanamido)benzo[d]oxazol-2-yl)pyridine1-
oxide (31): m-Chloroperoxybenzoic acid (2 mmol) was added to the stirred solution of 8a 
(1 mmol) in dry DCM at rt and stirred well for overnight. After completion, reaction was 

quenched with saturated NaHCO3 solution and extracted with DCM. The organic layer was 

washed with brine, dried using MgSO4, filtered and concentrated under reduced pressure. 

The crude product was purified through column chromatography. White solid (327 mg, 

74%), 1H NMR (DMSO-d6) 10.43 (s, 1H, NH), 8.38 (d, J = 6.80 Hz, 2H, 2×CH), 8.17 (m, 

1H, CH), 8.09 (d, J = 6.80 Hz, 2H, 2×CH), 7.78–7.76 (m, 1H, CH), 7.63–7.60 (m, 1H, CH), 

7.16–7.12 (m, 1H, CH), 7.06–7.02 (m, 1H, CH), 6.95–6.92 (m, 1H, CH), 5.00 (q, J = 6.80 

Hz, 1H, CH), 1.62 (d, J = 6.80 Hz, 3H, CH3). Purity 99% (tR = 10.80). m.p. 125-dec C.

(S)-2-(2-(Aminomethyl)phenoxy)-N-(2-(4-methoxyphenyl)benzo[d]oxazol-5-
yl)propanamide (32): The reaction was proceeded with 8u using the procedure, which 

used for the synthesis of 29. White solid (283 mg, 68%), 1H NMR (DMSO-d6) 11.10 (bs, 

1H, NH), 8.13–8.11 (d, J = 9.2 Hz, 2H, 2×CH), 8.02–8.01 (m, 1H, CH), 7.67 (d, J = 8.2 Hz, 

1H, CH), 7.54–7.51 (m, 1H, CH), 7.29–7.14 (m, 3H, 3×CH), 7.04–7.02 (m, 1H, CH), 6.93–

6.91 (m, 1H, CH), 5.06 (q, J = 6.80 Hz, 1H, CH), 3.71 (s, 3H, -OCH3), 1.62 (d, J = 6.80 Hz, 

3H, CH3). Purity 97% (tR = 14.31). m.p. 160–161 C.

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-(2-
hydroxyphenoxy)propanamide (33): Compound 8v (1 mmol) was dissolved in 10 mL 

EtOAc: MeOH (1:1) and 10% Pd/C (catalytic) was added and stirred well under a H2 

atmosphere for 3 h. After the successful completion, reaction mixture was filtered through 

celite and the filtrate was concentrated under reduced pressure. The crude product was 

purified through column chromatography. White solid (359 mg, 90%), 1H NMR (DMSO-d6) 

10.26 (s, 1H, NH), 9.29 (s, 1H, OH), 8.34 (d, J = 8.4 Hz, 2H, 2×CH), 8.22–8.21 (m, 1H, 

CH), 8.08 (d, J = 8.80 Hz, 2H, 2×CH), 7.81 (d, J = 8.80 Hz, 1H, CH), 7.68–7.66 (m, 1H, 

CH), 7.05–7.03 (d, J = 7.6 Hz, 1H, CH), 6.88–6.83 (m, 2H, 2×CH), 6.71–6.73 (m, 1H, CH), 

4.87 (q, J = 6.80 Hz, 1H, CH), 1.57 (d, J = 6.80 Hz, 3H, CH3). Purity 99% (tR = 11.10). m.p. 

185–186 C.

Methyl (S)-2-(2-bromo-3-formylphenoxy)propanoate (34): 2-Bromo-3-

hydroxybenzaldehyde (1 mmol) was added to the solution of (+)-methyl-D-lactate (1.38 

mmol) in anhydrous THF (6 mL) under a nitrogen atmosphere and the solution was cooled 

to 0 °C. PPh3 (1.20 mmol) was added portion wise and stirred for 10 min followed by the 

dropwise addition of DEAD (1.50 mmol) over 20 min. The reaction mixture was stirred for 

2 h at room temperature. After completion, the solvent was removed under reduced pressure 

and the crude mixture was purified through column chromatography using ethyl acetate/n-

hexane (10:90) to yield methyl ((S)-2-(2-bromo-3-formylphenoxy)propanoate (236 mg, 

83%) as a white solid.

Methyl (S)-2-(2-bromo-3-((methoxymethoxy)methyl)phenoxy)propanoate 
(35): Under a nitrogen atmosphere, NaBH4 (1.5 mmol) was added to the stirred solution of 
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((S)-2-(2-bromo-3-formylphenoxy)propanoate 34 (1 mmol) in ethanol at 0 ºC. After 1 h at 

room temperature, the reaction was quenched with a saturated NaHCO3 solution and 

extracted with ethyl acetate. The organic layer was washed with brine and dried using 

anhydrous MgSO4, filtered and concentrated under reduced pressure. The crude product was 

dissolved in dry DCM and cooled to 0 ºC. DIPEA (5 mmol) was added, followed by 

dropwise addition of MOMCl (3 mmol) and stirred for overnight at room temperature. After 

completion, the reaction was quenched with saturated NH4Cl and extracted with DCM. The 

organic layer was dried using anhydrous MgSO4 and the solvent was removed under 

reduced pressure. The crude residue was purified through column chromatography. White 

solid (239 mg, 72%), 1H NMR (DMSO-d6) 7.32–7.28 (m, 1H, CH), 7.12–7.09 (m, 1H, CH), 

6.90–6.88 (m, 1H, CH), 5.06 (m, 1H, CH), 4.70 (bs, 3H, -OCH3), 4.61–4.51 (m, 4H, 2×-

OCH2-), 3.68 (s, 3H, -COOCH3), 1.55 (m, 3H, CH3).

Methyl (S)-2-(3-((methoxymethoxy)methyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxa-
borolan-2-yl)phenoxy)propanoate (36): To a solution of methyl (S)-2-(2-bromo-3-

((methoxymethoxy)methyl)phenoxy)propanoate 35 (400 mg, 1.145 mmol) in 1,4-dioxane (6 

mL) was added KOAc (483 mg, 4.923 mmol), Pin2B2 (349 mg, 1.37 mmol) and 

Pd(Ph3P)2Cl2 (80 mg, 0.114 mmol) under an argon atmosphere. The reaction flask was 

placed under vacuum and then backfilled with argon (two times). Then the reaction was 

stirred at 95 ºC for overnight. The solvent was removed under reduced pressure and the 

residue was suspended in water and extracted with ethyl acetate. The organic layer was 

washed with brine and dried over anhydrous MgSO4, filtered and concentrated. The crude 

product was purified through column chromatography using hexane/ethyl acetate. White 

solid (243 mg, 64%), 1H NMR (DMSO-d6) 7.28–7.24 (m, 1H, CH), 6.93–6.88 (m, 1H, CH), 

6.68–6.66 (m, 1H, CH), 4.90–4.86 (m, 1H, CH), 4.56 (bs, 4H, 2×-OCH2-), 4.47 (bs, 3H, -

OCH3), 3.67 (s, 3H, -COOCH3), 1.45 (m, 3H, CH3), 1.29 (bs, 12H, 4×CH3).

(S)-N-(2-(4-Cyanophenyl)benzo[d]oxazol-5-yl)-2-((1-hydroxy-1,3-dihydrobenzo-
[c][1,2]oxaborol-7-yl)oxy)propanamide (37): Ester 36 (1 mmol) was dissolved in 5 

mL THF: MeOH (2:3) and stirred at 0 ºC. LiOH (1.5 mmol) was added portion wise to the 

solution and stirred well at room temperature for 4 h. The solvents were removed under 

reduced pressure, crude residue was dissolved in ethyl acetate and 1N HCl was added until a 

pH of 4 was reached. The product was extracted with ethyl acetate and the organic extracts 

were combined, washed with brine, dried over anhydrous MgSO4. The solvent was removed 

under reduced pressure and crude acid was used in the next step without chromatographic 

purification. EDC·HCl (1.5 mmol) was added to the stirred solution of acid (1 mmol), amine 

5 (Ar = 4-CNPh, 1 mmol) in dry DMF at 0 ºC under nitrogen atmosphere. Reaction mixture 

was stirred well for overnight at room temperature. After completion of the reaction, excess 

water was added and extracted with ethyl acetate. The organic layer was washed with brine 

and dried using MgSO4. The solvent was removed under reduced pressure. The crude 

residue was purified through column chromatography give desired coupled product. To a 

solution of this MOM protected material (140 mg, 0.363 mmol) in THF (0.9 mL) 4 N HCl 

(0.43 mL, 18.1 mmol) was added. The reaction was stirred at room temperature for 4 h, 

upon completion ethyl acetate was added and extracted. The organic phase was washed with 

brine, dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The 
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crude product was purified through column chromatography using hexane/ethyl acetate. 

Brown solid (122 mg, 28%).1H NMR (DMSO-d6) 10.13 (s, 1H, NH), 9.20 (s, 1H, OH), 8.34 

(d, J = 8.4 Hz, 2H, 2×CH), 8.22 (m, 1H, CH), 8.08 (d, J = 8.40 Hz, 2H, 2×CH), 7.80 (d, J = 

9.2 Hz, 1H, CH), 7.70 (m, 1H, CH), 7.45 (m, 1H, CH), 7.04 (d, J = 7.60 Hz, 1H, CH), 6.93 

(d, J = 7.60 Hz, 1H, CH), 5.03 (q, J = 6.80 Hz, 1H, CH), 4.98 (s, 2H, -OCH2-), 1.62 (d, J = 

6.8 Hz, 3H, CH3). Purity 97% (tR = 11.27). m.p. hygroscopic.

Inhibition of MtbIMPDH.—The Ki,app values were determined by measuring the initial 

velocities at varying concentrations of the inhibitors (1–10,000 nM) with fixed 

concentrations of IMP (0.5 mM) and NAD+ (1.5 mM) and MtbIMPDH2 (20–50 nM). 

Inhibition of human IMPDH2 was assayed IMP using (0.25 mM) and NAD+ (0.060 mM) 

and hIMPDH2 (250 nM). Inhibition of human GMPR2 was assayed using GMP (0.050 

mM), NADPH (0.045 mM) and enzyme (100 nM). The assay buffer contained 50 mM 

TrisCl, pH 8.0, 100 mM KCl and 1 mM dithiothreitol.

The values of Ki,app were obtained using the equations (1) and (2)

vi = v0/  1 +   I / IC50 (1)

Ki,app =  IC50 –   E /2 (2)

where vi is the initial velocity in the presence of inhibitor and v0 is the initial velocity in the 

absence of the inhibitor. If the IC50 value is comparable to the enzyme concentration, the 

Morrison tight binding equation was used to determine Ki,app (3)

vi/v0 =  1 − E   +   I   + Ki,app   −   E   +   I   + Ki,app
2 −  4 E I

0.5
/ 2 E (3)

where [E] is the concentration of the enzyme. All the initial velocity measurements were 

performed in triplicates. The Ki,app values reported are the average of at least two 

independent experiments unless otherwise noted.

MIC determinations.—MICs were determined as previously described.9 MIC values were 

determined in at least triplicate according to the broth microdilution methods using 

compounds from DMSO stock solutions. Isoniazid was used as a positive control and 

DMSO was utilized as a negative control. Isolated Mtb cells (ATCC 27294) were cultured to 

an OD 0.2–0.3 in the required medium, then diluted to deliver approximately 1 × 104 

bacteria per well of a 96 well clear round-bottom plate. Plates were read after 1 week with 

an inverted enlarging mirror plate reader and graded as either growth or no growth. 

GAST/Fe medium (per liter) consisted of 0.3 g of Bacto Casitone (Difco), 4.0 g of dibasic 

potassium phosphate, 2.0 g of citric acid, 1.0 g of L-alanine, 1.2 g of magnesium chloride 

hexahydrate, 0.6 g of potassium sulfate, 2.0 g of ammonium chloride, 1.80 ml of 10 N 
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sodium hydroxide, and 10.0 ml of glycerol, 0.05% Tween 80 and 0.05 g of ferric ammonium 

citrate adjusted to pH 6.6. 7H9/glycerol/glucose/BSA/Tween medium consisted of 

Middlebrook 7H9 broth base supplemented per liter with 0.2% glucose, 0.2% glycerol, 0.5% 

BSA fraction V, 0.08% NaCl and 0.05% Tween 80. Cultures were supplemented with 200 

μM guanine as noted.

MtbIMPDH2 downregulation and susceptibility of SRMV2.6.—Mtb strains guaB2 
cKD (guaB2-B3 Tet-OFF attB::guaB3) and SRMV2.6, which carries guaB2Y487C, were 

cultured in Middlebrook 7H9 media (Difco) supplemented with 0.2% glycerol, Middlebrook 

oleic acid-albumin-dextrose-catalase (OADC) enrichment (Difco) and 0.05% Tween 80 

(7H9/Glycerol/OADC/Tween). Hygromycin (Hyg), kanamycin (Km) and gentamycin (Gm) 

were used in guaB2 cKD culture at final concentrations of 50, 25 and 2.5 μg/mL, 

respectively. ATc (Sigma) was used at concentrations up to 100 ng/mL. For pairwise 

combination (checkerboard) assays, a two-dimensional array of serial dilutions of test 

compound and ATc was prepared in 96-well plates, as previously described.11 MIC testing 

was carried out by broth microdilution using the AlamarBlue (AB, Invitrogen) assay 51, 52.

Mammalian Cell Culture.—Hep G2 cells (ATCC, purchased February 2017) were 

cultivated in EMEM supplemented with 10% heat inactivated FBS and 1X penicillin/

streptomycin under standard conditions (37 °C in a 5% CO2 humidified atmosphere). 

HEK293T, MCF7 and HELA cells were cultured in DMEM with 10% heat inactivated FBS 

and 1X penicillin/streptomycin. Active cell cultures routinely tested for presence of 

Mycoplasma (MycoAlert™ detection kit, Lonza) and confirmed to be Mycoplasma free.

LDH Cytotoxicity Assay.—All compounds were dissolved in DMSO and further diluted 

with culture medium before use in tissue culture assays (final DMSO concentrations were ≤ 

0.1%). To determine cytotoxicity, LDH release was measured with the LDH Cytotoxicity 

Assay Kit (Pierce) according to manufacturer’s protocol. Briefly, 96 well plates were seeded 

with 13,000 Hep G2 cells (all other cell lines seeded at 6,000 to 8,000 cells per well) and the 

cells were cultured for 24 h prior to drug treatment. The cells were incubated in 110 μL of 

EMEM containing compound or DMSO (vehicle only, control) for 24 h at 37°C. At least 

four wells from each plate were used as either ‘spontaneous’ LDH controls or as ‘maximum’ 

LDH controls per manufacturer’s instructions. Cytotoxicity was determined by measuring 

absorbance on a microplate reader. Data represent two independent experiments each 

performed in quadruplicate (n =8).

ADMET studies were performed by GVK Biosciences, (Hyderbad India).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations Used:

BSA bovine serum albumin

CBS cystathione β-synthetase

CDI carbonyl diimidazole

DCM dichloromethane

DEAD diethylazodicarboxylate

DIPEA diisopropylethylamine

EDC•HCl 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

EDG electron donating group

EWG electron withdrawing group

Gua guanine

HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate)

IMP inosine 5’-monophosphate

IMPDH2 inosine 5’-monophosphate dehydrogenase 2

LDH lactate dehydrogenase

m-CPBA meta-chloroperoxybenzoic acid

MIC minimum inhibitory concentration

Mtb Mycobacterium tuberculosis

NAD nicotinamide adenine dinucleotide

NMP N-methyl-2-pyrrolidone

p-TSA para-toluene sulfonic acid

SAR structure-activity relationship

TEA triethylamine

TFA trifluoroacetic acid

XMP xanthosine 5’-monophosphate
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Figure 1. 
Inhibitors of MtbIMPDH2. A) Structures of 1, 2 and 3. B) Crystal structure of 

MtbIMPDH2ΔCBS •IMP•3 (PDB 4ZQO)9. 3 is pink, IMP is blue, hydrogen bonds are 

shown in cyan, residues from the adjacent subunit are marked with ‘. C) Crystal structures of 

M. thermoresistible IMPDH2 in complex with IMP and cyclohexyl[4-(5-

isoquinolinylsulfonyl)-1-piperazinyl]methanone (VCC234718, PDB 5J5R, protein and IMP 

are spring green, inhibitor is forest green) 11, and N-1H-indazol-6-yl-3,5-dimethyl-1H-

pyrazole-4-sulfonamide (6Q9, PDB 5K4X, protein and IMP are gray, inhibitor is blue) 10. 

The structure of MtbIMPDH2ΔCBS •IMP•3 (PDB 4ZQO, protein and IMP are tan, 3 is 

pink)9 is also included. This figure was produced with UCSF Chimera 44.

Chacko et al. Page 31

J Med Chem. Author manuscript; available in PMC 2019 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An overview of the SAR explored in this study.
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Figure 3. 
Correlation between antibacterial activity and enzyme inhibition for Q series compounds. 

Values from Table 4 and Makowska-Grzyska et al 9. Mtb H37Rv cultured in A) GAST 

medium and B) 7H9 medium.
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Figure 4. 
Knockdown of MtbIMPDH2 hypersensitizes Mtb to Q compounds. Regulated expression of 

guaB2 is achieved in a TET-OFF system, as previously described 11. Addition of 

anhydrotetracycline (ATc) represses expression of guaB2, decreasing the level of 

MtbIMPDH2 within the bacteria. ATc concentrations (ng/mL) are 0 (dark orange), 0.08 

(dark blue), 0.15 (green), 0.31 (sky blue), 0.62 (yellow), 1.25 (gray), 2.5 (orange) and 5 

(royal blue).
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Figure 5. 
Cytotoxicity of select Q compounds in HepG2 cells after 24 h.
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Scheme 1. 
Synthesis of various aryl benzoxazoles 8, thioamide 9, amine 11, imidazo[1,2-a]pyridine 13, 

methylene linked derivative 15 and N-arylated benzoxazoles 17a-b.a
aReagents and conditions: (a) ArCHO, DarcoKB, O2 (1 atm), xylene 140 ºC, 6–8 h, 70–

80%; (b) 10% Pd/C, H2 (1 atm), EtOAc:MeOH, 3 h, 85–94%; (c) PPh3, DEAD, (+)-methyl 

D-lactate, THF, 0 ºC to rt, 4 h, 85–90%, (d) LiOH, THF:MeOH, 4 h, 86–91%; (e) 5, 

EDC·HCl, DMF, 12 h, 62–79%. (f) Lawesson’s reagent, 1,4-dioxane, reflux, 2 h, 71%; (g) 1. 

DIBAL-H, DCM, −78 ºC, 1h, 89%, (h) 5 (Ar = 4-OMePh), NaBH(OAc)3, DCE, 1.5 h, 81%; 

(i) 4-OMePhC(O)CH2Br, NaHCO3, EtOH, reflux, 12 h, 88%; (j) SnCl2, EtOH:EtOAc, 
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reflux, 2 h; (k) 7 (R = 2,3-diCl), EDC·HCl, DMF, rt, 12 h, 60%; (l) 2-amino-4-nitrophenol, 

DABCO, NMP, 100 ºC, 24 h, 60%; (m) 10% Pd/C, H2, MeOH:EtOAc, 2–3 h; (n) 7 (R = 2,3-

diCl), EDC·HCl, DMF, rt, 12 h, 67%; (o) L-alanine, CuI, Cs2CO3, DMF, 90 ºC, 24 h; (p) 5 
(Ar = 4-CNPh), HATU, DMF, rt, 12 h, 45–54%.
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Scheme 2. 
Synthesis of derivatives 18a-b, 19a-b and 20-24.a

aReagents and conditions: (a) BrCH2COOEt, K2CO3, DMF, rt, 6 h, 80–83%; (b) LiOH, 

THF:MeOH, rt, 86–88%; (c) NH2OH·HCl, KOH, MeOH, rt, 12 h, 65%; (d) NaOH, 

THF:MeOH:H2O (3:1:1), 2 h, rt, 90%; (e) NH2NH2·H2O, EtOH, reflux, 5 h, 67%; (f) CDI, 

DIPEA, DMF, rt, 2 h, 66%; (g) CH≡CCH2Br, K2CO3, DMF, rt, 6 h, 81%.
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Scheme 3. 
Synthesis of derivatives 25-29 from 8f.a
aReagents and conditions: (a) NH2OH·HCl, Et3N, EtOH, reflux, 4 h, 82%; (b) CDI, DIPEA, 

DMF, rt, 2 h, 61%; (c) NaN3, NH4Cl, DMF, 100 ºC, 6 h, 62%; (d) t-BuOK, t-BuOH, 12 h, 

54%; (e) 1. NiCl2·6H2O, NaBH4, Boc2O, MeOH:THF, rt, 2 h, 2. TFA, DCM, rt, 4 h, 67%.
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Scheme 4. 
Synthesis of derivatives 30-33.a
aReagents and conditions: (a) LiCl, p-TSA, DMF, 120 ºC, 2 h, 77%; (b) m-CPBA, DCM, rt, 

12 h, 74%; (c) NiCl2·H2O, NaBH4, and then Boc2O, THF, MeOH, rt, 4 h; (d) TFA, DCM, 

68%; (e) 10% Pd/C, H2, MeOH:EtOAc, rt, 3 h, 90%.
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Scheme 5. 
Synthesis of benzoxaborole 37.a
aReagents and conditions: (a) (+)-Methyl D-lactate, DEAD, PPh3, THF, 0 ºC, 2 h, 83%; (b) 

NaBH4, EtOH, rt, 1 h; (c) MOMCl, DIPEA, DCM, rt, 12 h, 72%; (d) Pin2B2, Pd(Ph3P)2Cl2, 

KOAc, 1,4-dioxane, 95 ºC, 12 h, 64%; (e) LiOH, MeOH:THF, 4 h, 0 ºC; (f) 5 (Ar = 4-

CNPh), EDC·HCl, DMF, rt, 12 h; (g) 4N HCl, THF, 4 h, 28%.
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Table 1.

MtbIMPDH2ΔCBS Inhibition of Benzoxazole Derivatives Containing Various Aryl Substituents.

Cmpd Ar
Ki,app (nM)

a

MtbIMPDH2 hIMPDH2 hGMPR2

1 
b See Figure 1A 150 ± 50 >5000 >5000

2 (e.g. 8a) 
b See Figure 1A 76 ± 27 >5000 >5000

3 
b See Figure 1A 14 ± 3 >5000 >5000

30 4-pyridin-2-one 220 ± 6 >5000 >5000

31 4-Py-N-oxide 70 ± 19 >5000 >5000

8b 4-(2-OMe)-Py 12 ± 0.1 >5000 >5000

8c 3-(6-OMe)-Py 20 ± 4 >5000 >5000

8d 4-OMe-Ph 6.9 ± 3.9 >5000 >5000

8e 4-OCF3-Ph 4.3 ± 0.2 >5000 >5000

8f 4-CN-Ph 12 ± 3 2300 >5000

8g 4-F-Ph 35 ± 7 >5000 >5000

8h 4-PhCO2Me 96 ± 43 >5000 >5000

8i 4-OH-Ph 50 ± 17 >5000 >5000

8j 3-OH-Ph 85 ± 30 >5000 >5000

8k 2-OH-Ph 96 ± 21 >5000 >5000

18a 4-Ph-OCH2CO2Et 6.6 ± 0.4 >5000 >5000

20 4-Ph-OCH2CO2CH2CCH 12 ± 2 >5000 >5000

19a 4-Ph-OCH2CO2H 18 ± 3 >5000 >5000

18b 3-Ph-OCH2CO2Et 23 ± 1 >5000 >5000

19b 3-Ph-OCH2CO2H 55 ± 10 >5000 >5000

21 4-Ph-C(O)NHOH 630 ± 210 >5000 >5000

22 4-PhCO2H 360 ± 140 >5000 >5000

23 4-Ph-C(O)NHNH2 49 ± 6 >5000 >5000

24 2.3 ± 1.0 2900 >5000

25 39 ± 12 >5000 >5000
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Cmpd Ar
Ki,app (nM)

a

MtbIMPDH2 hIMPDH2 hGMPR2

26 46 ± 12 >5000 >5000

27 4-Ph-tetrazole 51 ± 2 >5000 >5000

28 4-Ph-C(O)NH2 64 ± 26 >5000 >5000

29 4-Ph-CH2NH2 240 ± 26 >5000 >5000

a.
Values are the average and range of at least two independent determinations.

*
Single determination.

b.
Values from Makowska-Grzyska et al9.
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Table 2.

MtbIMPDH2ΔCBS Inhibition of Benzoxazole Derivatives Containing Various Phenyl Ether Substituents.

Cmpd R1 R2 R3 Ar
Ki,app

a
(nM)

MtbIMPDH2 hIMPDH2 hGMPR2

8l F F H 4-Py 55 ± 9 >5000 >5000

8m F F H 4-OMe-Ph 19 ± 2 >5000 >5000

8n F F H 4-OH-Ph 121 ± 21 >5000 >5000

8o F F H 3-(6-OMe)-Py 42 ± 17 >5000 >5000

8p F F H 4-CN-Ph 7.2 ± 2.5 2000 >5000

8q F F H 4-F-Ph 40 ± 3 >5000 >5000

8r F F F 4-CN-Ph 22 ± 11 >5000 >5000

8s CN H H 4-Py 76 ± 35 >5000 >5000

8t CN F H 4-Py 40 ± 2 >5000 >5000

8u CN H H 4-OMePh 33 ± 5 >5000 >5000

8v OBn H H 4-CN-Ph 43 ± 12 >5000 >5000

32 CH2NH2 H H 4-OMe-Ph 23 ± 9 >5000 >5000

33 OH H H 4-CN-Ph 36 ± 12 >5000 >5000

37 B(OH)OCH2 H 4-CN-Ph 370 ± 70 * >5000 >5000

a.
Values are the average and range of at least two independent determinations.

*
Single determination, error of the fit is listed.
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Table 3.

MtbIMPDH2ΔCBS Inhibition of Other Benzoxazole Derivatives.

Cmpd Structure
Ki,app

a
(nM)

MtbIMPDH2 hIMPDH2 hGMPR2

9
27 ± 21 >5000 >5000

11
1290 ± 250* n.a. >5000

13
160 ± 4 >5000 >5000

15

100 ± 40 >5000 >5000

17a
9 ± 4 3300 >5000

17b
18 ± 3 >5000 >5000

a.
Values are the average and range of at least two independent determinations.

*
Single determination.
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Table 4.

Antitubercular activity of MtbIMPDH2 inhibitors against Mtb H37Rv. The number of independent 

determinations is shown in parentheses.

Compound

GAST/Fe

MIC (μM) 
a

7H9/ADC/Tween

MIC (μM) 
a

−Gua +Gua −Gua +Gua

1 
b 5.3 ± 0.9

(3)
24 ± 16
(3)

10 ± 2
(3)

21 ± 4
(3)

2 (e.g. 8a) 
b 9.4 ± 3.0

(2)
37
(1)

16 ± 6
(3)

28 ± 9
(2)

3 
b 6.7 ± 3

(2)
50
(1)

12 ± 6
(3)

35 ± 15
(2)

8b 6.3 ± 0.0
(2)

6.3 ± 0.0
(2)

3.5 ± 1.2
(2)

14 ± 5
(2)

8c 7 ± 2
(3)

9 ± 7
(3)

6 ± 3
(3)

> 25
(3)

8d >50
(2)

>50
(2)

>50
(2)

>50
(2)

8e >50
(1)

>50
(1)

>50
(2)

>50
(2)

8f 4 ± 1
(3)

5 ± 1
(3)

3 ± 1
(4)

6 ± 1
(4)

8g >50
(2)

>50
(2)

>50
(2)

>50
(2)

8l 4 ± 2
(2)

6.3 ± 0
(2)

1.9 ± 0.5
(2)

4 ± 3
(2)

8m 5 ± 2
(3)

8 ± 4
(3)

4 ± 4
(4)

14 ± 7
(4)

8n 6
(1)

19
(1)

7 ± 3
(2)

>30
(2)

8o 6 ± 5
(2)

8 ± 7
(2)

>50
(5)

>50
(5)

8p 3 ± 1
(3)

6.3 ± 0
(2)

1.5 ± 0.8
(6)

4 ± 3
(6)

8q >50
(1)

>50
(2)

>50
(2)

>50
(2)

8r >50
(2)

>50
(2)

>50
(5)

>50
(5)

8t 6 ± 4
(2)

11 ± 2
(2)

4 ± 1
(2)

8 ± 2
(2)

8u 3.1 ± 0.0
(2)

6.3 ± 0.0
(2)

1.2 ± 0.0
(2)

4.7 ± 0.0
(2)

9 37
(1)

>50
(1)

>50
(2)

>50
(2)

17a 4 ± 3
(2)

13 ± 9
(2)

3 ± 1
(2)

6 ± 1
(2)

17b 2 ± 1
(2)

6 ± 0
(2)

1.0 ± 0.3
(2)

1.4 ± 0.3
(2)

18a 0.4 ± 0.0
(2)

0.5 ± 0.1
(2)

0.2 ± 0.1
(2)

0.23 ± 0.16
(2)
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Compound

GAST/Fe

MIC (μM) 
a

7H9/ADC/Tween

MIC (μM) 
a

−Gua +Gua −Gua +Gua

18b 0.9 ± 0.2
(2)

1.4 ± 0.2
(2)

1.6 ± 0.0
(2)

1.6 ± 0.0
(2)

19a 2 ± 1
(4)

4 ± 2
(4)

9 ± 4
(5)

20 ± 10
(5)

20 0.4 ± 0.0
(2)

1.4 ± 0.2
(2)

0.2 ± 0
(2)

0.4 ± 0
(2)

21 3 ± 1
(4)

6 ± 1
(4)

30 ± 10
(5)

>50
(5)

22 4 ± 2
(2)

5 ± 0
(2)

>25
(2)

>50
(2)

24 >50
(2)

>50
(2)

>50
(2)

>50
(2)

25 25
(1)

25
(1)

>50
(2)

>50
(2)

29 11 ± 2
(2)

11 ± 2
(2)

25 ± 12
(2)

25 ± 12
(2)

32 9.4 ± 3.1
(2)

16 ± 3
(2)

5.5. ± 0.8
(2)

9.4 ± 0.0
(2)

33 22 ± 3
(2)

25 ± 0.0
(2)

9.4 ± 0.0
(2)

22 ± 3
(2)

a.
MICs determined after 1 week in culture.

b.
Values from Makowska-Grzyska et al9. +Gua, 200 μM guanine.

J Med Chem. Author manuscript; available in PMC 2019 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chacko et al. Page 48

Table 5.

Antibacterial activity against SRMV2.6. H37Rv is the wild-type strain. b. SRMV2.6 contains MtbIMPDH2/

Y487C, which confers resistance to the isoquinoline sulfonamide inhibitor VCC23471811.

Compound
WT

a

Ki,app
(nM)

Y487C
b

Ki,app
(µM)

Ratio
Ki,app

(Y487C)
/Ki,app (WT)

MIC (µM)
c

H37Rv H37Rv
(+ATc) SRMV2.6

1 150 ± 50 >50
d >300 12.5 12.5 >100

17b 18 ± 3 1.1 ± 0.1 60 3.1 3.1 >100

18a 6.6 ± 0.4 ~13
f ~2000 3.1 3.1 3.1

22 360 ± 140 >15
e >40 25 25 25

a.
Inhibition of purified wild-type MtbIMPDH2.

b.
Inhibition of purified MtbIMPDH2/Y487C

c.
Bacteria were cultured in 7H9/Glycerol/OADC/Tween and growth was measured with Alamar Blue as previously described 11, +ATc, 100 

ng/mL.

d.
20% inhibition at 50 µM.

e.
5-10% inhibition at 15 µM.

f.
80% inhibition at 50 µM.
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