
Remote Terminal Access
to a VAX/VMS System

in a Heterogenous Network System

A Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston - University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Shoou Jiah, Yiu
August, 1987

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my
sincere gratitude to my advisor, Dr. Bahaa El-Din for his
invaluable assistance, guidance as well as patience for this
endeavor. I am also grateful to my thesis committee
members: Dr. Ramez Elmasri and Dr. Markenscoff for their
invaluable remarks and suggestions.

Also, I wish to thank my fellow graduate students,
Janece Partridge and Shia-Chung Teng, for assisting me in
many tedious programming sessions.

Last but not least, I would like to dedicate this
thesis to my parents, Yiu Hong and Kam May Wah, who have
provided me with encouragement and support throughout these
years. Also, I would like to thank my sister and my brother
and his wife for their invaluable support.

i i i

Remote Terminal Access
to a VAX/VMS System

in a Heterogenous Network System.

An Abstract of a Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston - University Park.

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Shoou Jiah, Yiu
August, 1987

i v

ABSTRACT

In a heterogenous network system consisting of
computers of different makes, there is a need for remote
terminal access and internet file transfer. The topic of
the thesis concentrates on the design and implementation of
remote terminal access from any computer to a VAX/VMS
system. The only prerequisite condition is that the
computer - the remote node - which accesses the VAX/VMS node
- the host node - be on the same heterogenous network system
based on the ETHERNET standard.

The strength of this design is a fully VMS compatible
terminal driver that provides all the screen-oriented
capabilities of a DEC VAX/VMS Terminal Driver. Also, its
design involves terminal server functions to manage the
total number of remote logons, and provides clean recovery
from different cases of remote access failure.

The design concentrates the bulk of the code on the
VAX/VMS system, thereby allowing relatively easy
implementation of remote terminal access on any remote node.
The remote node need only to implement a terminal emulator
and necessary modules to facilitate the same internet

communication protocol as this implementation.
v

TABLE OF CONTENTS

List of Figures... viii
List of Tables... x
I. INTRODUCTION 1

1.1 Motivation and Objectives...................... 1
1.2 Environment 3
1.3 Overview of the Thesis........................ 4

II. OVERVIEW OF TERMINAL FUNCTIONALITY 6
2.1 Terminal Compatibility 6
2.2 Terminal Drivers 10

2.2.1 Discussion on the VAX/VMS Local
Terminal Driver 14
2.2.1.1 Features of the VAX/VMS Local

Terminal Driver 16
2.2.1.2 Main Components of the Driver Code 19
2.2.1.3 Driver Data Structures......... 23
2.2.1.4 Synchronization of I/O Processing 26
2.2.1.5 The Sequence of Events during

Internal and External I/O . . . 31
2.2.1.6 The Logging Process........... 37

2.3 Remote Terminal Modules 37
III. Designing and Implementing the Remote Terminal

Access (RTA) 44
3.1 The Inter-Process Communication (IPC) 46

3.1.1 Naming and Addressing Primitives 47
3.1.2 Datagram Services 48
3.1.3 Virtual Circuit Services 48
3.1.4 Example of Virtual Communication

on a Virtual Circuit................ 50
3.2 Design of Remote Terminal Driver 50

3.2.1 Output-Ready Interrupts 55
3.2.2 Input Interrupts 63
3.2.3 Special Driver UCB Fields............ 70

3.3 Design of the Terminal Emulator............. 73
3.4 Design of the Terminal Server................ 74

3.4.1 Setting Up a Virtual Terminal Line . . . 78
3.4.2 Releasing a Virtual Terminal Line . . . 80

3.5 Virtual Terminal Protocol 83
3.6 Flow Control.................................. 85

vi

IV. CONCLUSIONS....................................... 94
4.1 Summary....................................... 97
4.2 Future Extensions 97

REFERENCES... 99

vii

List of Figures

2.1 ASCII codes 7
2.2 ANSI/VT52 Key Codes............................ 9
2.3 Layered Design of the VAX/VMS Operating System . 11
2.4 External and Internal I/O Interfaces to a

Terminal Driver 15
2.5 Main Parts of Device Driver Code.................. 21
2.6 I/O Data Structure traversals by VMS.............. 27
2.7A Monitor Construct at IPL 8......................... 32
2.7B Bypassing the Monitor Construct 32
2.8 $QIO Write Events................................. 34
2.9 Interrupt Initiated Events 38
2.10A Schematic Diagram of User Logging into a VMS

System via the VMS Terminal Driver...............39
2.10B Schematic Diagram of User Logging into a VMS

System via the VMS Terminal Driver...............40
2.10C Schematic Diagram of User Logging into a VMS

System via the VMS Terminal Driver...............41
3.1 RTA Layers with respect to the OSI Reference

Model..45
3.2 Example of how two RTA peer processes A and

B establishes a Virtual Circuit to send
data from A to B................................... 51

vi i i

3.3 Internal IRPs as the External Interface to the
VMS Remote Terminal Driver 54

3.4A Output-Ready Interrupts in a VMS Terminal Driver 58
3.4B Simulating Output-Interrupts in a Remote Terminal

Driver..59
3.4C IPL transitions for events described in

Fig 3.4B..60
3.4D Scheme of Processes to simulate Output-Ready

Interrupts... 64
3.5A Input Interrupts in a VMS Terminal Driver . . . 66
3.5B Simulating Input Interrupts in a Remote

Terminal Driver 67
3.5C IPL transitions for events described in

Fig. 3.5B... 68

3.5D Scheme of Processes to simulate Input Interrupts 69
3.6 Scheme of Processes for a Virtual Terminal Line. 75
3.7 Actual Code of Processes in Fig. 3.6.............. 76
3.8A Setting up a Virtual Terminal Line................ 81
3.8B Setting up a Virtual Terminal Line................ 82

3.9 Releasing a Virtual Terminal Line................ 84
3.10A A successful binding sequence 87
3.10B An Unsuccessful binding sequence 88
3.11 Interprocess Communication on a Virtual Line . . 89
3.12 Using $QIO for flow control...................... 92

ix

List of Tables

1 $QIO Function Codes and Modifiers for the VMS
Terminal Driver 18

2 $QIO Function Codes and Modifiers for the Remote
Terminal Driver 56

3 Terminal Server Protocol 86
4 Virtual Line Protocol 88

x

CHAPTER 1

INTRODUCTION

Declining computer hardware costs, coupled with the
increasing power of the computer, have led to the increase
in the number of systems that are used at a single site.
But while every system on site has its designated task, the
need to exchange data, share resources, share CPU loads,
amongst other distributed applications has led to the
interconnection of these systems. Such an interconnection
of systems, called a local computer network, has become
almost a prerequisite at many sites.

1.1 Motivation and Objectives

In a heterogenous network system consisting of
computers of different makes, there is the need for remote
terminal access - a form of resource sharing. To put it
simply, remote terminal access is the feature by which a
user at the remote node can access the host node via the
network as if his terminal were directly connected to the
host system. The subject of this thesis concentrates on the

1

2

design and implementation of remote terminal access from any
computer to a VAX/VMS system. The only prerequisite
condition is that the computer - the remote node - which
accesses the VAX/VMS node - the host node - be on the same
heterogenous network system based on the ETHERNET standard.

In achieving Remote Terminal Access between a pair of
heterogenous nodes, we are really covering different aspects
by:

(1) demonstrating the Layered Approach in Network
Architecture. At the Presentation Layer, the
various Terminal Servers, Terminal Emulator and other
routines achieve end-to-end communication by utilizing
the underlying common internet Inter-Process
Communication (IPC) interface. The IPC, which
represents the the Transport Layer, in turn, utilizes
the Ethernet layer interface for network communication.
The Ethernet layer, encompassing the Datalink and

Physical layer, provides the primitives that perform
the ultimate physical communication via the ETHERNET
coaxial cable that interconnects the various computer
systems together.

(2) explaining the need for a virtual terminal driver, and
explaining the operating principles involved in

3

implementing the driver. Such principles cover the
interrupt-dispatching mechanisms, the I/O operations on
a device, and the synchronization aspects of using both
the interrupt-priority levels and the monitor construct
of the terminal driver.

(3) demonstrating the generic approach in the design of
remote terminal access. This approach concentrates on
using basic programming constructs while avoiding
system-dependent features. Such a method extends the
range of computers that can successfully re-implement
the server and emulator routines. Ultimately, the
objective is to provide a clear and easily
implementable terminal emulator and terminal server at
remote node.

1.2 Environment

The heterogenous local network system on Ethernet at
the Department of Computer Science, University of Houston,
presently consists of VAX/VMS (1 VAX11/780, 4 VAXll/730s),
3B/UNIX version 5 (24 3B2s, 2 3B20s), and Intel/PLM (1
Intel) nodes. At the present, the Inter-Process
Communication software (IPC), an in-house project, is being
developed on all heterogenous nodes. The IPC encompasses a

4

network transport layer and utilizes the ETHERNET layer
common to all nodes.

1.3 Overview of the Thesis

This thesis discusses the design and implementation of
a virtual terminal service from any system to a VAX/VMS
system on the same heterogenous local area network. Chapter
2 introduces key concepts in the design of any virtual
terminal service: terminal compatability, terminal drivers
and terminal modules to serve the user requests. In
particular, the design of the VAX/VMS Terminal Driver is
discussed in some detail since our virtual terminal driver
(or remote terminal driver) is based heavily on it.

Chapter 3 discusses the design and implementation of
the virtual terminal service - called the Remote Terminal
Access (RTA). The underlying network communication software
(IPC) is introduced from the viewpoint of the IPC primitives
that it offers to RTA. Then, the discussion goes into the
design and implementation of the virtual terminal driver and
the design of other terminal modules to support a dynamic
client-server virtual terminal service. In an effort to

formalize the protocols which RTA peer processes (at
different nodes) must observe in order to communicate with

5

each other, tables and descriptions of message sequences are
provided, covering all the different message types and
message sequences during the course of virtual network
communication. The chapter ends with a discussion of
flow-control strategies employed in this design.

Finally, chapter 4 summarizes the design and
implementation by discussing the merits and shortcomings of
this design. The chapter ends with suggestions for
extensions that could be made to this implementation.

CHAPTER 2

OVERVIEW OF TERMINAL FUNCTIONALITY

Any effort in the design and implementation of remote
terminal access requires an understanding of terminal
compatability, terminal driver and terminal emulator
functionality. These various topics are discussed in this
chapter. In particular, the VMS terminal driver is
explained is some detail since the remote terminal access
implementation is modeled after the VMS driver.

2.1 Terminal Compatability

Video Terminals, or more commonly known as CRTs, come
in a wide array of shapes, sizes and extended features.
However, the common redeeming feature of most CRTs is that
the code generated by depressing a particular key labelled,
say "A", despite its various locations on different types of
keyboards, is unique and follows the ASCII or EBCDIC code
standard. See Fig. 2.1 [VT100]. Note that a 8-bit byte is
enough to contain a unique representation of any particular
ASCII code - character or otherwise. However, the range of

6

7

Octal
Code Char

Octal
Code Char

Octal
Code Char

Octol
Code ChJii

oco NUL 040 SP 100 (B) 140 •

001 SOH 041 1 101 A 141 0

002 STX 042 *• 102 B 142 b

003 ETX 043 i 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENO 045 % 105 E 145 e
006 ACK 046 6 106 F 146 f

007 BEL 047 • 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 1 151 i
012 LF 052 • 112 J 152 i
013 VT 053 + 113 K 153 k
014 FF 054 114 L 154 1

015 CR 055 115 M 155 rn
016 SO 056 116 N 156 n
017 SI 057 ! 117 0 157 o

020 OLE 060 0 120 P 160 P
021 DC1 061 1 121 a 161 q
022 DC2 062 2 122 R 162 r

023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t

025 NAK 065 5 125 U 165 u

026 SYN 066 6 126 V 166 V

027 ETB 067 7 127 w 167 w
030 CAN 070 8 130 X 170 X

031 EM 071 9 131 Y 171 Y
032 SUB 072 132 2 172 z
033 ESC 073 I 133 1 173 1
034 ' FS 074 < 134 \ 174 1 1
035 GS 075 135 1 175 1
036 RS 076 > 136 A 176
037 US 077 7 137 — 177 DEL

Fig. 2.1 ASCII Code

8

byte values defined by the ASCII standard by itself was not
enough for more sophisticated terminal applications -
terminal screen operations, terminal graphics etc. To meet
this need, terminals were made to support either DIGITAL'S
VT52 standard or the American National Standards Institute
(ANSI) standard or both.

Essentially, the ANSI or VT52 standard is nothing new;
both these standards were drawn from the ASCII standard.
For example, a Cursor Up command in VT52 is represented by
the ASCII codes ESC A. The ANSI standard, currently the
newest version being ANSI X3.64, chooses to represent the
same cursor command by ESC [A. Fig. 2.2 shows the
ANSI/VT52 Cursor Control, Auxiliary Keypad Numeric Key and
Auxiliary Keypad PF Key codes [GIGI]. In addition to these
representations, ANSI provides flexible Mode Control
Sequences which always starts off with the ASCII sequence
ESC [and followed by a sequence of any one or more ASCII
characters. These Mode Control Sequences provide the
manufacturer with the flexibility in implementing a wide
variety of terminal characteristics and options.

The bottom line, then, is that terminals connected
directly to VAX/VMS systems must have ANSI/VT52
compatability since the VMS terminal input/output interface
honors only ANSI/VT52 codes. Subsequently, terminals

9

Key
Keypad Numeric
Mode

Keypad Application Mode
ANSI VT52

0 0 ESCOp ESC ?p
1 1 ESCOq ESC7q
2 2 ESC Or ESC7r
3 3 ESC Os ESC 7 s
4 4 ESC Ot ESC ?t
5 5 ESC Ou ESC 7 u
6 6 ESCO v ESC?v
7 7 ESC 0 w ESC 7 w
8 8 ESC O x ESC 7 x
9 9 ESC O y ESC 7 y
— — ESCOm ESC 7 m
• e ESC O 1 ESC 7 1

ESC O n ESC 7 n
ENTER Same as RETURN ESC O M ESC 7 M

Auxiliary Keypad PF Key Codes

ANSI Mode/Cursor
Cursor Key VT52 ANSI Mode/Cursor Key Mode Set
(Arrow) Mode Key Mode Reset (Application)

Up ESC A ESC [A ESCO A
Down ESCB ESB(B ESC OB
Right ESCC ESC[C ESCOC
Left ESCD ESC[D ESCOD

Cursor Control Key Codes

Keypad Numeric Mode/
Keypad Application Mode

Key ANSI VT52

PF 1/HARDCOPY ESCOP ESC7P
PF2/LOCTR ESCOQ ESC7Q
PF3/TEXT ESC OR ESC7R
PF4/RESET ESC OS ESC7S

Auxiliary Keypad Numeric Key Codes

Fig. 2.2 ANSI/VT52 Key Codes

10

connected to a remote system wishing to access the host VMS
system must also be inherently ANSI/VT52 compatible or made
so by software methods.

2.2 Terminal Drivers

The complexity of I/O devices and the need to share
them in a multiprogramming environment precludes us from
executing code that can directly manipulate I/O devices. In
such a multiprogramming environment, the user interface to a
peripheral device is provided by a defined set of system
services. These system services, in turn, call up a set of
kernel modules that access and control the device on behalf
of the user. The complexities involved in synchronization
with the rest of the system, such as buffered or direct I/O,
recovery from device errors and timeouts, and other
device-dependent operations, are taken care of by these
kernel modules. These modules, collectively, are called the
device driver for the particular physical device.

Viewed vertically, the implementation of the driver
code as kernel modules subscribes to the layer strategy of
multiprogramming systems. See Fig. 2.3 [VAX 84A]. The
process, executing the driver code in kernel mode, has
access to the complete set of instructions, registers and

11

{ASSIGN

{CANCEL

I/O Subiyetem

Formatting

tWAKE ICREPRC

{SETIMR

{GETTIM SNUMTIM

Run-Time
Library
(Specific)
• FORTRAN
• PASCAL
• PL/I

Assorted Utilities
• SORT
• File Manipulation
• HELP
• DIRECTORY

Layered Products
• Language Compilers
• DATATRIEVE
• Forms Utilities

Run-Time
Library
(General)
• Math Library
• Slrmg

MAnlpu'atton

Privileged Images
Images Installed with Privilege
Other Privileged Images
Images Linked with the
System Symbol Table
• File System
• Intormetlonal

Utilities

Command Language Inlerpreter
end System Services

Program Development Tools
• Text Editors

• MACRO Assembler
• System Message
• Compiler

Swapper

System-Wide
Protected
Data Structures

Pane Tables
I/O Database
Scheduler Dal

Device
Drivers
I/O Support
Routines

Record Management System
end System Sarvicei

Process end Time Managamenl

Scheduler
Process Control

{CRMPSC
Memory
Management

{PUT

{CLOSE
{OIO

System Services
{CRETVA

IADJWSL

Fig. 2.3 Layered Design of the VAX/VMS Operating System

12

memory allowed in the kernel mode. Such access, although
done in process context, is not directly accessible by the
user layer. That is, the mode of the process determines its
privilege for accessing memory and the types of instructions
it can execute. Such a layered protection for different
levels allows distinct functional areas to be constructed,
one upon another, with each lower layer providing primitives
for the next higher layer.

Viewed horizontally, a device driver is a set of
routines and tables which are used by the system to process
an I/O request for a particular device. In general, the
operating system is primarily a collection of routines that
the users call to perform various functions. Sharing of the
processor by various processes is brought about by the
process quantum expiration, or if a detected event causes a
process of higher priority than the current process to
become computable (via interrupts). In other words, the
system is interrupt-driven.

Terminal Drivers, in particular, are kernel modules
that make possible the interactive use of a particular
system. It is useful to view the driver as having two
interfaces: the external I/O interface between the outside
world and the driver, and the internal I/O interface between

the driver and the user process. To accommodate interactive

13

use of the system, terminal drivers contain line discipline
modules, which interpret input and output. In canonical
mode, the line discipline converts raw data sequences typed
at the keyboard (external interface) to a canonical form
(what the user really meant) before sending the data to a
receiving process (internal interface). The line discipline
also converts raw output sequences written by a process to a
format that the terminal screen expects. In raw mode, the
line discipline passes data between processes and the
terminal without such conversions [UNIX].

Typically, the external I/O interface of the terminal
driver is provided by the terminal device, the terminal
controller and a vector table containing the address of the
interrupt-handler for that device. The function of the
terminal controller is to arbitrate between the many
terminal lines connected to it. By its hardware mechanism,
each interrupting terminal device (unit) gets its chance to
communicate with the system. The controller generates the
interrupt to the system along with the identifying vector
address of the interrupting unit. Using this address as the
offset to the vector table, the system then accesses the
interrupt servicing routine for the driver. For instance,
the input interrupt-handler is activated when the user hits

a key on the keyboard. The output interrupt-handler is
activated when the screen is ready to accept the next byte

14

and there is a byte to be sent.

On the other hand, the internal I/O interface of the
driver is via system calls. These system calls are tailored
to meet the needs of the specific terminal driver. Fig.
2.4 illustrates the internal and external I/O interface of
the driver.

It is interesting to note that the first input
character (usually a carriage return) from the external
interface results in the driver spawning the login process.
In turn, the login process performs internal I/O by
prompting for the login name and reading the login name
variable that is entered by the user. If the login sequence
is correct, the login process spawns the shell process.
From here on, there will always be a process (depending on
what utility the user is summoning) which performs internal
I/O to the driver. In short, the interactive nature of a
terminal session is brought about, on one hand, by the user
sitting in front of the terminal and, on the other hand, by
a cooperating process performing internal I/O to the
terminal driver.

2.2.1 Discussion the VAX/VMS Local Terminal Driver

15

Fig. 2.4 External and Internal I/O Interfaces to a Terminal Driver

16

The features of the VMS Terminal Driver are discussed;
most of these features should also be available in our
Remote Terminal Driver. The main parts of the Terminal
Driver code are then discussed, followed by an explanation
of the pertinent I/O data structures that are managed by VMS
during driver operation. After that, the synchronization
techniques that are used during an I/O request are
discussed, followed by a description of the sequence of
events that are initiated by an external I/O (via
interrupts) and internal I/O (via the $QIO system call).
Finally, a login sequence is traced from the time when the
user depresses the carriage return key on the terminal's
keyboard to the initial entry into VMS by way of the command
language DCL.

2.2.1.1 Features of the VAX/VMS Local Terminal Driver

The VAX/VMS Terminal Driver provides the following
features and capabilities [VAXMAN A]:

* Input processing
- Command line editing and recall
- Control characters and special keys
- Input character validation (read verify)
- ANSI escape sequence detection

17

- Type ahead capability
- Specifiable or default input terminators
- Special operating modes, such as NOECHO and PASTHRU

* Output processing
- Efficiency
- Limited full-duplex operation
- Formatted or unformatted output

* Dial-up support
- Modem control
- Hangup on logging out
- Preservation of process across hangups

* Miscellaneous
- Terminal/mailbox interaction
- Autobaud detection
- Out-of-band control character handling

All these features and capabilities are accessible to
the user via a defined set of arguments to the $QIO system
service. Table 1 [VAXMAN B] displays the set of arguments,
called function codes and function modifiers, that are valid
and meaningful only to the VMS Terminal Driver.

18

Terminal Driver

Functions Arguments Modifiers
IO$_READVBLK
IO$_READLBLK
IO$_READPROMPT

IO$_READVBLK

10$. WRITE VBLK
IO$_WRITELBLK
IO$_WRITEPBLK

lOS.SETMODE
IO$_SETCHAR

IO$_SETMODE
10$..SETCHAR

IO$_SETMODE

IO$_SETMODE
IO$_SETCHAR

10$ SETMODE
IO$_SETCHAR

IO$_SETMODE
IO$_SETCHAR

IO$_SETMODE
IO$_SETCHAR

IO$_SENSEMODE
IO$_SENSECHAR

IO$_SENSEMODE
IO$_SENSECHAR

IO$_SENSEMODE

PI - buffer address
P2 - buffer size
P3 - timeout
P4 - read terminator

block address
P5 - prompt string

buffer address
P6 - prompt string

buffer size’

PI - buffer address
P2 - buffer size
P3 - access mode to

probe Itemlist
P4 - (zero)
P5 - itemlist buffer

address
P6 - Itemlist buffer

size

PI - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier3

PI - characteristics
buffer address

P2 - characteristics
buffer size

P3 - speed specifier
P4 - fill specifier
P5 - parity flags

(none)

PI - buffer address
P2 - buffer size

PI - AST service
routine address

P2 - AST parameter
P3 - access mode to

deliver AST

PI - AST service
routine arldmss

P2 - character mask
address

P3 - access mode to
deliver AST

PI - address of
control signals

(none)

PI - characteristics
buffer address

P2 - characteristics
buffer size

PI - address of input
modem signal
block

PI - buffer address
P2 - buffer size

IO$M ..NOECHO
IO$M_CVTLOW
IO$M_NOFILTR
IO$M_TIMED
IO$M_PURGE
IO$M_DSABLMBX
IO$M_TRMNOECHO
IO$M_ESCAPE

IO$M_EXTEND2

IO$M CANCTHLO
IO$M ENABLMBX
IO$M. NOFORMAT
IO$M. REFRESH
IO$M .BREAK THRU

IO$M_HANGUP

IO$M BRDCST

IO$M. CTRLCAST
IO$M..CTRLYAST

l()$M OUIBAND
lt)$M II AUOHI4
IO$M. INCLUDE4

IO$M SET_ MODEM5
IO$M-MAINT
IO$M LOOP5
IO$M UNI.OOP5
IO$M MAINT

IO$M_TYPEAHDCNT

IO$M_RD_MODEM

IO$M_BRDCST

Table 1 $QIO Function Codes and Modifiers for the VMS Terminal
Driver

19

Furthermore, total VMS compatability extends to the:
* VMS Accounting - keeps tab on the resources, cpu time,
etc.

* VMS Operator Communication Process (OPCOM) - allows any
terminal defined by the user (usually a systems personnel)
to be an operator's terminal. Also, any broadcast
messages are sent via OPCOM to all terminal devices.
Terminal sessions are recorded in the Operator
Communications log file.

* VMS Error Logger subsystem - any errors in the driver are
recorded in the error log file which can be read by the
SYE Utility.

At this juncture, it will suffice to say that the
device driver must be written under VMS conventions and must
be loaded by the VMS Utility in a specified way so that the
device becomes integrated into the VMS operating system.
Details on how to install a VMS driver are described in
[VAXMAN H].

2.2.1.2 Main Components of the Driver Code

20

Under the VAX/VMS operating system, the Terminal Driver
is, as are all VMS device drivers, a set of routines and
tables that the system uses to process an I/O request for a
particular device type. Before the $QIO routine actually
accesses the specific driver, it performs a standard set of
functions and checks common to all devices; for example,
validating those arguments of the I/O request that are not
device specific, allocating system buffers for the I/O
request etc. Such preprocessing is called VMS I/O
preprocessing [VAXMAN C]. After the preprocessing, $QIO
calls the specific driver; the driver gains control and
device-specific processing commences. When the driver has
completed all the device-specific tasks (according to the
specified $QIO arguments), control is returned to the $QIO.
Subsequently, $QIO does some common postprocessing
functions, called VMS I/O postprocessing, such as returning
allocated buffers to system memory, and other housekeeping
operations. Finally, $QIO returns control to the user
process that originated the system call [VAXMAN CJ. The
following is a description of the main parts of the terminal
device driver code that play a key role in carrying out the
device-specific processing [VAXMAN D]. See Fig. 2.5.

* Function Decision Routines (FDT Routines)
The VMS Terminal Driver has many FDT routines to

21

FDT Routine

Device

Driver

Code

Interrupt Servicing Routine

Interrupt Servicing Routine

Main Driver Body

STARTIO: (entry point)

ALSTARTIO: (alternate entry point)

Fig. 2.5 Main Parts of Device Driver Code

22

preprocess $QIO requests. Table 1 gives an idea of the
number of FDT routines that are in the Terminal Driver.
For example, the $QIO Read request with a prompt parameter
allows the user to request a read operation from the
terminal, while at the same time outputting a string to
the terminal. The FDT Read routine will pack the output
string with the read buffer in a specified way and call
the main driver routine. In short, FDT routines accept a
specific $QIO request and interpret the variable
parameters for that request and pack the interpreted
information at a specified block to be passed to the main
driver routine.

* Main Driver Routine (STARTIO)
This routine analyzes the I/O function and branches to the
driver code that prepares specific device for that I/O
operation. There are many more functions that the main
driver routine performs on behalf of the $QIO request. In
short, the FDT interprets the $QIO device-specific
request, and the main routine performs according to the
specifications of the request.

* Alternate Driver Routine (ALSTARTIO)
This routine is entered from some FDT routines. The main

difference between this entry point and STARTIO is one of

23

synchronization concern. It will be discussed later.

* Interrupt Servicing Routines
A hardware originated device interrupt will ultimately
trigger the correct interrupt servicing routine if the
device driver follows the VMS driver conventions. In the
terminal driver, there are two interrupt servicing
routines, one for reading input from the keyboard and one
for outputting a character to the CRT.

2.2.1.3 Driver Data structures

The VMS I/O database is a collection of data structures
that provide various information to the VAX/VMS operating
system and drivers to help monitor the status of, and
control the functions of, the I/O subsystem. The following
is a description of the major data structures that pertain
to the terminal driver operation [VAXMAN E].

* Unit Control Block (UCB)
Each device unit on the system has its own UCB. The UCB
describes the device type, its current status, current I/O
activity. It also provides pointers to other data
structures. The UCB, within this discourse, can be viewed
as the central data structure from which other data

24

structures and crucial device status information can be
obtained. All UCBs belonging to the same controller type
are linked together. A UCB field indicates whether the
device is busy (i.e., a fork process is currently using
the device).

* Device-Data Block (DDB)
Represents the generic device name and driver name for a
set of devices attached to the same type of controller.
For example, the DZDRIVER controller for all TT terminal
devices share one DDB. That DDB points to the first UCB
(i.e., TTAO:) Also, DDEs are connected by a linked-list.

* Driver-Dispatch Table (DDT)
This data structure points to the entry points of the
driver code e.g. FDT routines, STARTIO and ALSTARTIO
entry points. Each DDB points to a common DDT for the
same controller.

* Channel-Request Block (CRB)
The activity of each controller is described in the CRB.
It also contains pointers to the driver's
Interrupt-servicing routines and to the corresponding IDB

(see below).

25

Interrupt-Dispatch Block (IDB)
The IDB records is corresponding controller
characteristics. It also contains the memory-mapped
address of the Central Status Register (CSR). The CSR,
one for every terminal controller, is the only register
the interrupt-handlers of the driver need to access and
control the specific terminal unit. The terminal
controller takes care of the arbitration and multiplexing
responsibilities for its designated terminal units.

I/O-Request Packet (IRP)
When a user queues a valid I/O request by issuing a $QIO
or $QIOW system service, the service creates an IRP. The
IRP contains a description of the request and receives the
status of the I/O processing as it proceeds. The IRP is
queued to the UCB when the UCB indicates that a fork
process is currently executing the device unit. See
Section 2.3 for its relevance to the monitor concept in
the main driver code.

System Control Block (SCB)
The SCB is a table containing the vectors used to dispatch

(software and hardware) interrupts and exceptions. An
external interrupt will result in the hardware switching
the system to an interrupt context, followed by the

26

accessing of one of these vectors to transfer control to.

Fig. 2.6 describes the data structures which are
traversed by VMS when the external I/O occurs via interrupts
and when internal I/O occurs via the $QIO system call. It
is important to note here that despite the different set of
data structures that are traversed , the objective of VMS is
always to track down the correct UCB of the interrupting
terminal device, the correct CSR address of the interrupting
device's controller, and the correct driver code for the
device - in this case the VMS Terminal Driver.

2.2.1.4 Synchronization of I/O processing

Synchronization of I/O processing involves three main
synchronization techniques [VAX 84B]:

(1) Interrupt Priority Levels (IPL)
In an interrupt-driven system like VMS follows a
convention of Interrupt Priority Levels (IPL). There
are 32 levels of IPLs :
* IPL 0 - User-mode software
* IPL 1 - 15 - Software interrupts

Initiated by the MACRO SOFTINT.

27

■> Pointer

$QIO

Fig. 2.6 I/O Data Structure traversals by VMS

28

* IPL 16 - 31 - Hardware interrupts
Initiated by external interrupts.

Because higher IPLs take precedence over lower
IPLs, a routine executing at one IPL can block
interrupts at the selected level and all lower IPLs.
The VMS operating system assigns progressively higher
IPLs to progressively important events. For example,
the following is a descending order in priorities:
machine check (IPL 31), device interrupts (IPL
20-23), device driver processes (called fork
processes IPL 8), AST delivery (IPL 2) and the
user-mode process (IPL 0).

(2) Fork Processing
Fork Processing is the technique that allows device
drivers to lower IPL in a manner consistent with the
interrupt nesting scheme defined by the VAX
architecture. When a device driver receives control
in response to a device interrupt, it performs
whatever steps are necessary to service the interrupt
at device IPL. For example, any device registers
whose contents would be destroyed by another
interrupt must be read before the driver dismisses

29

the device interrupt. Usually, however, there is
some processing that can be deferred; to execute at
device IPL for extended periods of time would slow
down the system. The driver signals that it wishes
to delay further processing until the IPL in the
system drops below a predetermined value, the fork
IPL associated with the driver. This signaling is
accomplished by calling system routine GAEXE$FORK
that saves the address of the next instruction in the
driver in a data structure called a fork block. The
fork block is then inserted at the end of the fork
queue for that IPL value (8 through 11) and a
software interrupt at the appropriate IPL is
requested.

(3) Synchronization within the Driver
Synchronization within a device driver, in
particular, requires the implementation of the
"monitor" concept. For example, when the FDT routine
has completed all the device-dependent preprocessing
at IPL 2, it calls the system routine via JSB
GaEXE$QIODRVPKT (a MACRO instruction) to execute the
main driver code at STARTIO at IPL 8. That is, it is
an event waiting to enter the monitor. Now, if there

30

was a previous incomplete write operation executing
the driver code (i.e., in the monitor) that was
prempted by some higher IPL, entering the driver code
just because the processor grants the process access
at IPL 8 would erroneously overwrite the write
buffer. Thus, to avoid this, the system routine will
check to see if the code is being executed by a
process (a fork process). If not, the system creates
a fork process to execute the code starting at
STARTIO. Otherwise, the system routine queues the
request (represented by the I/O Request Packet) in a
queue and removes the next IRP in the queue to
execute in fork process context. Thus, the entry at
STARTIO is the entry to a monitor. Only one fork
process can execute at a time in the same device
unit. The queue waiting on entry is priority based
(according to the caller's base priority) and FIFO.
Fig.2.7A describes the implementation of the monitor
concept.

There are some instances when it is necessary to
bypass the monitor implementation in the main driver
code. That is, a process, on gaining the CPU, may
want to enter the main driver code as long as it is
at IPL 8. It does not care whether there is actually
another process waiting to enter nor whether the same

31

device unit is actually being executed by another
fork process. Bypassing the monitor constraint is
done by calling G"EXE$ALTQUEPKT in the FDT routine.
Fig. 2.7B describes the execution of ALSTARTIO - the
alternate startio entry point to the main driver
code.

This feature is used in the VMS local terminal
driver when a user process does a $QIO Write system
call to the terminal driver and the terminal line
characteristic ALTYPEAHEAD is set. The driver will
process the Write IRP even though there may be a Read
IRP waiting to enter the driver.

This feature will also be used in the
implementation of the remote terminal driver, albeit
for a different purpose.

2.2.1.5 The Sequence of Events during Internal and
External I/O.

This section describes the sequence of events which
are initiated by a $QIO Write request and another sequence
of events which are initiated by an input interrupt. It

is important to emphasize that movement from one event to
another is by either creating fork processes or by

32

IRPs

Fig. 2.7A Monitor Construct at IPL 8

IRPs

Fig. 2.7B Bypassing the Monitor Construct

33

directly raising the IPL level.

Fig. 2.8 describes the sequence of events which
occur during a $QIO Write.
(1) The user issues a $QIO to a terminal device to write

a string of characters. The user process executes in
process context in user mode.

(2) The $QIO system service gains control in process
context but in kernel mode. It performs
device-independent processing of the I/O request e.g.
validating channel number, checking that the process
does not exceed process' quotas, etc.

(3) The $QIO system service uses the driver's function
decision table to decide which function decision
routine within the driver code it will execute.

--------------- driver code ----------------

(4) The appropriate function decision routine
TTY$FDTWRITE in the driver code is executed in
process context in kernel mode. In this routine, the

34

IPL 0

Fig. 2.8 $QIO Write Events

35

user buffer that contains the string is checked to
see if it can be accessed. Also $QIO buffered I/O
operations with the specific parameters to a terminal
driver device are interpreted. Thus, this routine
(and all FDT routines) performs device-specific tasks
for the $QIO. Finally, a system buffer is
constructed containing the character string and a
wealth of information concerning specific $QIO write
buffered operations. This system buffer, along with
other information, is passed to the main driver code
called STARTIO. All FDT preprocessing routines
execute in full process context but in kernel mode.

(5) STARTIO - this is the main driver code and executes
in fork process context (explained later). Its first
statement is a CASE statement to decide which FDT
routine it originated from. In this case, it
branches to the location DO_WRITE. At DO_WRITE, the
current cursor position, and other perfunctory duties
of the terminal driver are performed and any
additional control characters are inserted into the
output buffer. This output buffer thus consists of:

36

* the original character string
* control characters prefixing and suffixing the

character string as requested by $QIO arguments.
* control characters that are inserted for cursor

control and other perfunctory duties of the
terminal driver.

The system buffer resides in the terminal driver
waiting to be output. On a output-ready device
interrupt from an UART, the driver's interrupt
servicing routine, executing in interrupt stack,
temporarily "freezes" all other activity and outputs
contents of the buffer byte by byte to the CRT. The
driver returns to $QIO for device independent
post-processing

----------- exiting driver code----------------

* $QIO post processing cleans up the $QIO request e.g.
copying the status of the iosb block, etc. It queues
a special Kernel Ast back to the original user
process. It has to do this because the user process
may not be active any more.

* VMS returns control to the user process

37

* User process executes the next instruction

Fig. 2.9 describes the events that occur when initiated by
an input interrupt. From this figure, it is clear that
external interrupts have much higher priority over the rest
of the system.

Terminal I/O (input via the keyboard, an output on the
CRT) are two separate interrupt-driven events. For the
sake of simplicity, we will concentrate on movement of a
byte of data to and from the Central Status Register (CSR).
VAX microcode and controller hardware take care of the
movement of the data to and from to the correct terminal
device via the UNIBUS.

2.2.1.6 The Logging Process

The following is an attempt to explain the sequence of
events that the user goes through to log into the VMS
system. The sequences are explained graphically in Fig
2.10A, Fig. 2.10B, and Fig. 2.IOC.

2.3 Remote Terminal Modules

38

IPL 21

Device generates
Interrupts

Driver analyzes
Interrupt; services
the interrupt and
returns

IPL 8

IPL 4

IPL 2

IPLO

Fig. 2.9 Interrupt initiated Events

Notify
OPCOM

OPCOM

W
VO

Fig. 2.1 OA Schematic Diagram of User Logging into a VMS System via the
VMS Terminal Driver

LOGINOUT

VMS returns contrtfh
to LOGINOUT when
<CR> seen

g J $010 Reed Prompt
T-' "Usememe"

Fig. 2.10B Schematic Diagram of User Logging into a VMS System via the
VMS Terminal Driver

LOGINOUT

UART

SILO

Fig. 2.10C Schematic Diagram of User Logging into a VMS System via the

VMS Terminal Driver

42

There are many instances when one autonomous computer
system (the remote node) needs to remotely access another
autonomous computer system (the host node). Despite the
different physical mediums used to connect these systems,
be it high-speed coaxial cables or low speed asynchronous
lines, there are two remote host software modules that are
common in all implementations seeking to remotely access
the host node from a remote node. These modules are:

* Terminal Emulator

Terminal emulators are software modules that are located
at the remote node and provide virtual terminal service
to the host node. That is, a user at the remote node
can remotely access the host node, as if his remote
terminal were directly connected to the host node.

The functions of the terminal emulator are:

(1) to pass input from the remote terminal's keyboard
to the host node in its raw mode.

(2) to pass output from the host node to remote
terminal's screen in its raw mode.

43

(3) to perform key code mapping if the remote terminal
is not ANSI/VT52 compatible.

(4) to perform key relocation if the remote terminal
does not have the same key locations as the
standard host terminal. For example, DIGITAL'S
VT100 compatible terminals have a special keypad
for editing functions. A terminal emulator on a
remote node wishing to remotely access a DIGITAL
host node, where the remote terminal does not have
this keypad, will map the keypad locations on other
available keys on the keyboard.

* Terminal Servers

Terminal servers are background processes running at
both the remote and host nodes that set up the virtual
terminal connection between the remote terminal and the
host. In addition, housekeeping functions like keeping
a maximum on the lines that can remotely access the host
system, and recovery from line errors are the
responsibilities of the servers.

CHAPTER 3

DESIGNING AND IMPLEMENTING THE REMOTE TERMINAL ACCESS

The design of Remote Terminal Access (RTA) adheres to
the layered concept of the Open Services Interconnection

model. We call this the RTA Layer.

(OSI) Reference Model of the International Standard
Organization (ISO). As seen in Fig. 3.1, the RTA
encompasses the Session and Application layer of the OSI

The peer processes, which constitute the RTA layer,
utilize the primitives provided by the underlying
Inter-Process Communication (IPC) layer for virtual
communication with other peer processes on other nodes.
Such virtual communication between peer processes follow
rules and conventions specific to that layer- known
collectively as the Virtual Terminal Protocol.

The discussion on the design of RTA will begin with a
brief description of the IPC primitives that are used by the
RTA layer for virtual communication. The discussion then

moves on to the design of RTA; it is is conveniently divided
into three sections: the design of the Remote Terminal
Driver, the Terminal Emulator and the Terminal Servers. The

44

45

IMP 7-layer OSI
Reference Model

Fig. 3.1 RTA layers with respect to the OSI Reference Model

46

next section encapsulates the design of RTA by formalizing
the Virtual Terminal Protocol. The approach taken here is
based on DECNET's formalization of its Network Terminal
Protocol [VAXMAN G]. Finally, the last section discusses
the end-to-end flow control strategies that are used in the
RTA.

3.1 The Inter-Process Communication

The interprocess communication protocols are in the
heart of any distributed/networking system [HIL 86]. They
are responsible for exchanging data reliably between
processes within the same machine and, more importantly,
between different machines. The IPC interface to the RTA
layer consists of primitives in three categories: naming
and addressing, datagram and virtual circuit services [HIL
86]. The following is a brief description of these three
categories of the IPC. For a detailed description of the
IPC, the reader should refer to [IPC].

3.1.1 Naming and Addressing Primitives

47

In order for a process to communicate with a remote
process, the process must acquire a socket which identifies
the process address at the particular node. Since there are
only a fixed number of sockets available, the sockets are to
be returned to the IPC after usage. IPC provides primitives
to get local and remote sockets, and to return them.

The primitives are:

(1) Getsocket:
This primitive requests a socket for a process from a
local IPC. To get a socket, the process must supply the
PUN. When the request is honored, a socket number is
returned to the requesting process.

(2) Returnsocket:
This primitive will release a socket back to the local
IPC when it is no longer needed. Processes that die
will have their sockets automatically returned to the
local IPC.

(3) FindRemoteSocket:
This primitive will search for a remote socket, given
the PUN as the input parameter.

48

3.1.2 Datagram Services

IPC provides a reliable datagram service to the RTA.
That is, when a process (a peer process in RTA) at one node
uses this service, IPC will make sure that the datagram will
arrive at the destination node.

The primitives are:
(1) SendDG:

This primitive will reliably send a variable-length
datagram to the remote process. The send parameters
include a remote and local socket, and a buffer which
contains the message to be sent. A maximum length is
imposed on the message.

(2) RcvDG:
This primitive will reliably receive variable-length
datagrams. The parameters include a local socket, a
buffer pointer, and a buffer length.

3.1.3 Virtual-Circuit Services

The IPC provides the RTA with the perfect channel where
there are no errors and all packets are delivered in order.
In other words, a virtual circuit simulates a physical
connection between two communicating peer processes.

49

The primitives are:

(1) OpenVC:
This primitive establishes a VC between two processes.
The input parameters include the local socket, the
remote socket, and an optional window size n (in order
for the RTA process to exchange VC initiation packets).
The "open" returns a VC number if the two processes
agree to open a circuit and returns an error if the
process on the other end has rejected the proposal.

(2) Listen:
This primitive is a kind of passive open because it does
not result in any packets being sent or any connections
being established. A local process uses this primitive
to inform the local IPC of its willingness to open a VC
if a remote process attempts to activate a connection.
This mechanism speeds up establishing a VC by recording
an entry for it in the VC table with incomplete
information. The "Listen" parameters include a local
socket and a remote host. The "Listen" returns a VC
number of a one-side passive VC.

(3) SendVC:
This primitive sends a variable-length packet on a

50

specific VC to the remote process. The parameters of
this primitive include a VC number and a message
(message pointer and length). A maximum length is
imposed on messages.

(4) RcvVC:
This primitive receives a variable-length packet on a
specific VC from a remote process. Packets are only
accepted in sequence. The parameters include a VC
number, a buffer pointer, and a buffer length.

3.1.4 Examples of Virtual Communication on a Virtual Circuit

The order in which the different IPC primitives are
actually used depends on the objectives of the RTA peer
processes using them. Fig. 3.2 provides an example of how
two RTA peer processes, A and B, at separate nodes set a
virtual circuit over time t. Process A will then send a
packet through its Virtual Circuit to B.

3.2 Design of a Remote Terminal Driver

51
Ti

m
e t

Legend: X > Y implies event X must precede event Y

Fig. 3.2 Example of how two RTA peer processes A and B
establishes a Virtual Circuit to send data from A
to B

52

The internal interface (via $QIO system calls) to the
Remote Terminal Driver must be identical to that of a VMS
Terminal Driver. Only then would all VMS utility programs
and all user programs which use the system call interface to
the VMS Terminal Driver also work for the Remote Driver.

As for the external interface to the driver, the
problem was twofold. First, a method had to be established
by which an ordinary user process could communicate with the
driver. This was because the user process, acting as an
intermediary, also communicated with the rest of the network
system. Secondly, this method had to simulate external
interrupts from the terminal device.

A tempting solution may be to somehow use the existing
VMS Local Terminal Driver to provide remote terminal access.
The internal interface via the $QIO system call is readily
available. As for the external interface, we would have to
somehow simulate hardware interrupts from the terminal
keyboard and screen so that the external I/O interface to
the driver originates not from the directly connected
asynchronous terminal device but from the remote terminal.
Since VMS allows privileged user programs to initiate
software interrupts via the MACRO instruction SETIPL, there
may be a way to initiate software interrupts from the
intermediary process which would, in turn, activate the

53

interrupt-handlers of the VMS Driver. Unfortunately, the
IPL range for software interrupts is only from IPL 1 through
15. Consequently, the possible range of interrupt-handlers
that are addressed as offsets to the SCB vector table does
not include the interrupt-handler of the terminal driver at
IPL 21 - only accessible by a hardware interrupt.

Another alternative may be to somehow use DECNET's
remote terminal driver. Again, the internal interface via
$QIO is readily available. However, as Fig. 3.3 [VAX 84C]
illustrates, we have to know the format of the internal IRP
and the proper address from which to insert and remove
"internal IRPs" (they form the external interface to the
driver). Such knowledge requires an intricate knowledge of
DECNET's Remote Terminal Driver design - which we have not.

Given that we cannot use any of the available VMS
terminal drivers, we are left with the task of developing
one. The $QIO system service, being the standard internal
interface to all VMS drivers, was chosen as the internal
interface to the driver. Since the internal interface must
meet all VMS Terminal Specifications, the required
programming (in VMS MACRO with calls to system routines) was
substantial. This task, while being a tedious one, was not
insurmountable.

54

HETACP

Fig. 3.3 Internal IRPs as the External Interface to the VMS
Terminal Driver

55

To provide the external interface to the driver, the
$QIO system service was also chosen as the way to
communicate with the driver. Since this mode of entry is
normally the internal interface's way of communicating with
the driver, special function modifiers are selected to
distinguish these simulated interrupt requests from regular
$QIO request. Henceforth, simulated $QIOs will be referred
to as Network $QIO as opposed to regular $QIOs. Table 2
shows the valid function codes and function modifiers that
are understood by the Remote Terminal Driver (recall Table 1
for valid codes of the VMS Terminal Driver).

Given that $QIO system service as the means of
communicating with the driver, the design of simulating
interrupts was approached by looking at the Input and Output
Interrupts separately.

3.2.1 Output-Ready Interrupts (UART)

To recap on the events that occur when a process
request a regular $QIO Write to a VAX/VMS Driver, we will
begin by emphasizing that, in the VMS driver, the regular
$QIO Write Requests operate asynchronously with Output-Ready

Interrupts. A process issuing a $QIO Write request would
write a string into a specified system buffer, the

56

Remote Terminal Driver

Functions Arguments Modifiers

{ same as Table 1 - for the VMS Terminal Driver }

IO$_READVBLK P1 - BUFFER IO$M_NETWORK
ADDRESS
P2 - SIZE

IO$M_EXTEND

IO$_WRITEVBLK P1 - BUFFER
ADDRESS
P2 - SIZE

IO$M_NETWORK
IO$M_EXTEND

Table 2 $QIO Function Codes and modifiers for the Remote Terminal Driver

57

Output-Interrupt line is enabled and control would be
returned to the user. When the screen of the CRT is ready
to accept another byte, the interrupt-servicing routine for
the output to the CRT is activated, and byte transfer to the
CRT occurs transparently to the calling process. Fig. 3.4A
illustrates this sequence of events.

Simulating the Output-Ready Interrupt means that
whenever a user process performs a regular $QIO Write
request entering the driver code via STARTIO, the buffer
contents of the accompanying regular IRP must be "written"
to the remote CRT before the control passes back to the user
process requesting the $QIO Write. In this implementation,
the contents of the $QIO Write IRP's buffer are copied to
the buffer of a pending $QIO Network Read IRP - see Fig.
3.4B. The process that performed the pending read IRP,
called here the UART process, must have previously issued a
Network $QIO request.

Fig. 3.4C traces the IPL transition due to events
described in Fig. 3.4B. The crucial features used in
synchronization of different events are the usage of IPLs
and fork-processing. The VMS post-processing of the Network
IRP is queued at IPL 4, and followed by the queuing of
regular Write IRP. When this happens, VMS actually
post-processes the Network IRP first, followed then by the

AS
YN
CH
RO
NO
US
 E
VE
NT
S

58

Fig. 3.4 A Output-Ready Interrupts in a VMS
Terminal Driver.

Sequence:

1 User Program calls $QIO Write.
2 FDT Write does preprocessing, and enters Driver via

STARTIO.
3 The driver puts string into a system buffer (pointed to by

the IRP of the $QIO Write request).
4 The driver enables the Output-Interrupt for the line.
5 The driver returns control to User process.

1 Output-Ready interrupt activates the UART (when
the line is free and Output-Interrupt for the line is
enabled. The contents of the system buffer are discharged a
byte at a time.

59

Network $QIO Read

Fig. 3.4B Simulating Output-Ready Interrupts in a
Remote Terminal Driver

1 "UART" process does a Network $QIO Read.
2 FDT Read processes the special $QIO Read request by queing the IRP of the Network Read

Request into a network IRP queue.
3 FDT Read routine calls a.special VMS routine to set the IPL back to 0, and make the UART

process wait.
4 User process does a regular $QIO Write.
5 FDT Write enters the main driver code via STARTIO.
6 The driver puts string into a system buffer (pointed to by the IRP of the $QIO Write request).
7 "Enables Output Interrupt" for the line by removing the Network Read IRP from the network IRP

queue and transferring the contents of its system buffer into the Network IRP's system buffer
space. The Network IRP is then queued for postprocessing at IPL 4.

8 VMS removes the Network Read IRP from its FIFO queue at IPL 4 and queues again at IPL 2 for
special kernel AST processing. The AST is required to return control back to the UART process.
Next IRP in the FIFO queue at IPL 4 is the regular write IRP. Again, postprocessing is done at
IPL 4 and it is queued at IPL 2 for special kernel ast to return control to the User process.
Notice that the UART process is always one step ahead of the User process in IPL queuing.
Hence, the special kernel AST will return control first to the UART process, which in turn,
queues a Network $QIO Read request again after it has discharged the read string of bytes
through the network virtual line (via IPC). After all this only will VMS return control to the
User Process.

9 The Driver initiates the return of control to the user by queuing the regular IRP for postprocessing
at IPL 4.

60

IP
L L

ev
el

s

Fig. 3.4C IPL transitions for events described in Fig. 3.4B

61

regular IRP. After post-processing, VMS queues a special
kernel AST at IPL 2, again, for the Network IRP first,
followed by the regular IRP.

The UART process gains the processor first at IPL 0.
This process now has the output string intended for the CRT.
In our implementation, the process uses a network primitive
to transfer the string to the remote process. The network
primitives performs many system calls to finally transport
the string to the remote process. After that, the UART
process issues another Network $QIO Read. When the UART
process returns from the driver FDT, pending its $QIO Read
completion, the VMS Scheduler finally returns control to the
user process.

From preceeding discussion, it may seem that the VMS
Scheduler always returns control to the UART process before
returning control to the user process. However, this is not
the case because the VMS Scheduler may reschedule processes
due to resource wait or process quantum expiration.
Therefore, depending on the system activity, the user
process may "overtake" the UART process. In that case, the
driver does not attempt to copy the contents of the $QIO
Write IRP's buffer into the buffer of the pending Network
$QIO Read - simply because there is no pending Network $QIO
Read IRP yet. Instead, the driver will append the contents

62

of the $QIO Write buffer to the last non-empty space of a
storage buffer. This buffer, part of the UCB buffer space,
starts at UCB$L_NETREAD_STORE. The size of the buffer, at
UCB$W_NETREAD_CT, is incremented accordingly and control is
returned to the user process. Then, when the UART process
is able to perform another Network $QIO Read, all the
contents in the UCB buffer space are transferred to the
buffer of the Network Read IRP and the UCB$W_NETREAD_CT is
equated to zero. Control is then returned to the UART
Process.

It should be noted that there may be many occurrences
of the "overtake" condition resulting in an accumulation of
bytes in the storage buffer. The question, then, is how
large should the storage buffer be? In an empirical

fashion, we arrived at the size of 800 bytes, citing that
there was not a single instance of the accumulation of bytes
exceeding the buffer's size at 500 bytes in our many
testings under different loads. In any case, code has been
included in the driver that would merely return control to
the user process when this happens. Essentially, the output
that was intended to appear on the screen would then be
lost, as remote as the case may be when such a situation
would arise.

63

A much greater inadequacy is the inability of the
TERM_CALLEE process to delete the UART process. In an ideal
situation, TERM_CALLEE should be able to delete UART and
SILO processes after the user has logged off the remote
terminal. While there are no complications involved in
deleting a SILO process, deleting an UART process leads it
to a miscellaneous RWAST state because VMS is unable to
properly release UART's channel to the remote terminal unit.
At the present time, the author does not possess the full
knowledge of those restricted VMS routines required to
complete the deletion of the UART process. Thus, for the
present, the problem of deletion of UART is circumvented by
moving the inter-process communication, originally in the
UART, to another process called UART_COMBINE. UART would

still retain the remote terminal drivers Network $QIO Read
interface and UART_COMBINE and UART would communicate with
each other through a common mailbox. Then, when the user
has logged off the remote terminal, TERM_CALLEE will delete
the SILO and UART_COMBINE processes. Fig. 3.4D illustrates
the scheme.

3.2.2 Input Interrupts (SILO)

Input Interrupts are simulated in another way. Unlike the

64

External Interface

J

Internal Interface

Fig. 3.4D Scheme of processes to simulate Output-Ready Interrupts

65

regular $QIO Write requests, the regular $QIO Read requests
are obviously dependent on the Input Interrupt to provide
the input. Fig. 3.5A illustrates the sequence in which the
VMS Terminal Driver's input interrupt-servicing routine
store the input byte in the type-ahead buffer. If there was
a pending regular $QIO Read request, the byte is transferred
to the regular IRP's buffer. If the terminal characteristic
in a UCB field for the unit had the echo characteristic set,
the byte is moved to an output buffer and the line is
Output-Enabled. The interrupt servicing routine duly
terminates and the pending regular $QIO read request is
satisfied. The Input-interrupt Servicing routine processes
one byte at a time because the echo byte is full-duplex
(with no local CRT echo) and because many VMS applications
have different kinds of responses depending on the type of
byte input.

Simulating the Input Interrupt means that whenever
there is an input from the remote keyboard, the byte must be
transferred eventually to the type-ahead buffer. In this
implementation, the process which receives the byte from the
remote keyboard and does the Network $QIO Write to the
driver is called the SILO process. When the SILO process
does the abovementioned, and if there is a pending regular
$QIO Read request, the driver moves the byte to the regular
$QIO Read's IRP and the pending User Process is completed.

66

Fig. 3.5A Input Interrupts In a VMS Terminal Driver

1 User Program calls $QIO Read

2 FDT Read does preprocessing, enters driver via STARTIO

3 The type-ahead buffer Is empty, so Driver calls special VMS Routine to set IPL back
to 0.

4 Input Interrupt activates the SILO when a key, say "A" is depressed at the keyboard. The character
"A"
is passed to the interrupt-servicing routine.

5 The driver puts the byte Into the type-ahead buffer (pointed to by UCB of the terminal unit).

6 If Read request Is pending (as is the case), SILO first moves the byte from the type-ahead buffer
Into the regular Read IRP's system buffer and then queues the regular, pending Read IRP for VMS
postprocessing at IPL 4. The driver then enables Output-Interrupt for full-duplex echo.

7 The driver returns from Interrupt by the REI instruction.

8 Output-Ready Interrupt activates the UART (when UART is free and line is enabled)

9 The driver outputs a byte to UART (If any). In most cases the byte is the echo character (full duplex
mode) and returns from Interrupt by the REI Instruction.

10 Eventually, VMS postprocessing at IPL 4 gets its turn at the processor, and queues a special
kernel AST at IPL 2 to return control to the user process. Later, at IPL 2, the special kernel AST
queues return control to the process.

67

"SILO"

2
(■

STARTIO.

(g) "REI" by queuing Network

Write IRP for VMS post­
processing

EOT

Reid

FDT

Write

ALSTARTIO:

Queues regular Reid IRP
for VMS postprocessing

Q "Enables Output Interrupt1

for byte echo. Queues
Network Reid IRP for
VMS Post Prooessing.

network
UCB irp qutut User Progrim

$010 Read

Fig. 3.5B Simulating Input interrupts in a Remote Terminal Driver
Precondition: steps 1,2 and 3 are already done. Refer to Fig. 3.5A.

1 User program calls $QIO Read.

2 FDT does preprocessing, and enters the main driver code via STARTIO.

3 The type-ahead buffer Is empty, so Driver calls a special VMS routine to set the IPL back to 0.

4 "SILO* process calls Network $QIO when it receives a character "A" via the virtual line.

5 FDT Write processes the Network SQIO request by moving the byte "A" into a system buffer pointed to
by its IRP. Then, the FDT routine enters the main driver code via ALSTARTIO.

6 The driver moves the byte 'A" Into the system buffer of the pending, regular write IRP’s system buffer
and queues the VMS postprocessing for the UART process at IPL 4.

7 ■Enables Output Interrupt" by moving byte "A" Into the pending Network Rnnd IflPs ny-.lnm hullnr mid
queues the VMS postprocessing lor the UART process at IPL 4. This, In elford, "echoes- the Input byte.

8 The driver returns control to the "SILO" process by the REI Instruction. This will result In the queuing of
the VMS postprocessing at IPL 4.

I P
L L

ev
el

s

68

© Fork Process Context

Fork Process Context
Fork Process Context

©

© © ®

FDTRead FDT Write

User UART SILO
Postprocessing

©

User User SILO
User UART SILO

Kernel ASTs

User UART SILO
Time t —>

Fig. 3.5C IPL transitions for events described in Fig. 3.5B

69

External interface Internal interface

Fig. 3.5D Scheme of Processes to Simulate Input Interrupts

70

Fig. 3.5B illustrates this. Since the echoing of input
bytes requires the feature of a pending Network $QIO Read
IRP (see Section 3.2.1), the problem of "overtaking" is
again empirically solved by appending the contents of the
$QIO Write IRP's buffer to the last non-empty space in the
storage buffer. Fig. 3.5C traces the IPL transitions due
to the events described in Fig. 3.5B. The crucial features
used to synchronize events here are:
(1) Usage of IPLs
(2) Fork Processing
(3) The entry point of the SILO process at ALSTARTIO.

This entry bypasses the monitor constraint at STARTIO
where many pending regular $QIO Read requests may be
waiting to enter the monitor (driver code)

Finally, Fig. 3.5D illustrates the design as a scheme of
processes (recall its counterpart in Fig. 3.4D).

3.2.3 Special Driver UCB fields

The implementation of SILO and UART processes require
the addition of new fields and the manipulation of an
existing field in the UCB data structure.They are:
(1) UCB$Q_SAVE_STATE (new field)

The existing UCB field - UCB$Q_TT_STATE - reflects the

71

current state of the Terminal Driver. For example, the
state may be a READ state, with sub-states EDITOR,
CONTROLO etc. All in all, there are more than 100
states that reflect exactly the current state of the
driver. Now, as shown in Fig. 3.5C, the user process

eventually returns to IPL 0. This allows the UART and
SILO processes to reissue the Network $QIO requests.
The problem here is that VMS I/O preprocessing (before
FDT device-dependent processing) erases the
UCB$Q_TT_STATE field. Since the SILO and UART
processes are supposed to simulate interrupts, all the
fields in the UCB should not change during "interrupt
servicing". To meet this requirement, all changes to
UCB$Q_TT_STATE made within the driver code (numerous
locations) were also made to UCB$Q_SAVE_STATE. Then,
when a SILO or UART process enters the FDT, the
UCB$Q_TT_STATE (which had been erroneously cleared) is
restored by the field UCB$Q_SAVE_STATE.

(2) UCB$W_WREFC (new field)
Every $ASSIGN system service call to a particular
device unit will increment the existing UCB$W_REFC
field corresponding to the device unit by one. Since
both SILO and UART processes are separate processes
requiring individual channels to the same device unit,

72

the UCB for the corresponding device unit will have its
UCB$W_REFC field incremented by two. Now, since both
these processes are supposed to simulate interrupts,
the count should not be incremented. To meet this
requirement, the FDT Write routine decrements the
UCB$W_REFC count by two at the initial entry of SILO
process's first Network $QIO Write request. The field
UCB$W_WREFC, acting as a flag, is then set to indicate
that the decrement should only be done once. All
following Network $QIO Write requests should not
decrement the UCB$W_REFC field; after all, only the
first Network $QIO Write request (by the SILO) should
decrement UCB$W_REFC by two to nullify the preceding
two $ASSIGNs by the SILO and UART processes - which
incremented UCB$W_REFC by one each.

(3) UCB$L_IT_RIRPFL and UCB$L_IT_IRPBL (new field)
These fields are used to queue the Network IRPs as
described in Section 3.2.1

(4) UCB$L_PID (old field)
This field must be cleared after the UART and SILO
process have assigned a channel to the terminal unit.
If this field is not cleared, no other user process
will be able to assign a channel to the same terminal

73

unit except those processes that have the same username
(or login name).

In summary, the SILO, UART and UART_COMBINE processes,
residing in the host node, provide the external interface to
the driver. It should be noted here that, so far, the
details of network inter-process communication aspects have
been avoided. For example, the preceding discussion only
mentions that the UART process receives a byte from the
driver and writes it to a "remote CRT". The discussion of
inter-process communication will be deferred to the later
section.

3.3 Design of the Terminal Emulator

From the discussion of the previous section, it is
apparent that the SILO and UART_COMBINE processes residing
in the host node are to have complementary or partner
processes at the remote node. The partner processes
residing at the remote node, in effect, function as the
Terminal Emulator.

74

The process, TERM_READ, at the remote node, is the
communicating partner of SILO process at the host node.
TERM_READ simply reads byte by byte from the remote
terminal's keyboard and passes the byte, via the IPC virtual
circuit service, to the SILO process. Similarly, TERM_WRITE
at the remote node, receives a string of bytes from
UART_COMBINE via the IPC virtual circuit service and writes
the string of bytes to the remote terminal. Fig. 3.6 is a
schematic representation of TERM_READ and TERM_WRITE
processes at the remote node and their complementary
processes at the host node. The actual code of these
processes is illustrated by Fig. 3.7. As can be seen, a
total of two virtual circuits are required for one virtual
terminal line.

The task of setting up virtual lines, amongst other
functions, is the responsibility of the Terminal Server
Process on both the remote and host node.

3.4 Design of the Terminal Server

In our implementation, the functions of the Terminal
server are:

(1) to set up virtual terminal lines by request of the user

75

Remote Node Network Interface Host Node

Fig. 3.6 Scheme of Processes for a Virtual Terminal Line.

program term_write(input, output);

begin
i~ Getsocket(TW CSVS'); (get a local socket number)
j ~ Listen(i,CSV3); { Listen at remote node for remote socket)

while forever do
begin

RevVC(j,Buff f size); (read data from the VC)

(write to the terminal)
state~$QIOV(func™io$_writevblk, chan:= device-channel 1, pl := Buff,

, p2.-size);
end.

end.

program term_read(input, output);

begin
i Getsocket(TR CSVS'); (get a local socket)
).■« FindremotesocketCSILO CSVS',i); { get a remote socket)
m^OpenVC(i,j, 15);

SendVCC m, buffer, 1):

while forever do
begin

state := $QIOV(func :=int(uor(io$_readvblk,io$m_noecho)),
chan := device—channe 12,
pl := buffer,
p2:=1);

(write the data to remote node via VC)
SendVC(m, buffer, 1);

end,
end.

CSV2 - Remote Node

program uart(input,output);

begin

i-GetsocketCUART CSVS'); (get a local socket)
(get a remote socket number)

j:=Findremotesocket('TV CSV3',i);
m:=OpenVC(i,j,15);

while forever do
begin
status:= $QIOW(funcr* io$_readvblk, chan:= devchannell

iosb—iosbk,
pl t= buffer,p2:=512);

(write the data to the remote node via VC }
SendVC(m ,buffer, iosbk.count);

end.
end.

program S LOCinput,Output) ;

begin

i: » GetsocketCSLO CSVS');
j: =Listen(i,CVS3);

while forever do
begin

Rev VC(j .buffer ^ize) ;
(Do a Network Write to Remote Terminal Driver }
status := $qiow(func :=int(uor((uor(io$_writevblk,

io$m_network)) ,io$m_extend),

chan:- device-channel 1,
end; pl :=buffer,p2:=1);

end.

CSV3 ~ Host node

Fig. 3.7 Actual Code of Processes in Fig. 3.6

77

at the remote node.

(2) to release the terminal line by request of the user.

(3) to regulate the total number of virtual terminal lines
that a host node can allow.

The Terminal Server is implemented as two background
processes on both the remote and host node. These
processes, the TERM_CALLER at the remote node, and
TERM_CALLEE at the host node, use the IRC Datagram service
for Inter-process communication. There is no need to use
the Virtual Circuit service since inter-process
communication is required only intermittently - during line
setup and release. To use virtual circuits, say in an n
node network would require a node to maintain n-1 virtual
circuits to the other n-1 nodes. This would certainly be a
waste of resources.

To best explain the design of TERM_CALLEE and
TERM_CALLER, the following sections will first discuss how a
Virtual Terminal line is set up and how such a line is
released. The last section formalizes the design in terms
of the Virtual Terminal Protocol. The tables that are
provided in that section encapsulates the rules and
conventions used to communicate between the server processes

78

and the subprocesses that they spawn per virtual terminal
line.

3.4.1 Setting Up a Virtual Terminal Line

On the request of the user at the remote node, the
Terminal Server processes - TERM_CALLER and TERM_CALLEE -

cooperate in order to set up a Virtual Terminal line.
Setting up such a line requires the Terminal Server
processes to create the subprocesses: UART_COMBINE, UART
and SILO at the host node and the TERM_READ and TERM_WRITE
at the remote node. In turn, it is the subprocess pairs:
(TERM_WRITE,UART_COMBINE) and (TERM_WRITE,SILO) that set up
a Virtual Circuit between the host and remote node. The
pair of Virtual Circuits, together, constitutes a Virtual
Terminal line. The following are the various concerns of
Terminal Server processes when setting up a Virtual Terminal
line:

(1) Naming of Local and Remote Socket Names between
Terminal Server subprocesses:
In order for these subprocesses to set up the two
Virtual Circuits per Virtual Terminal line, they need
to establish a unique local socket name and find a
unique remote socket name per Virtual Circuit. Now

79

since the Remote Terminal Access design should allow
multiple Virtual Terminal lines to emanate from a
remote node, and conversely multiple Virtual Terminal
lines to converge at any host node, the naming of local
and remote sockets must reflect this capability. In
other words, the name of the remote and local socket is
dependent on both the name of host node and the
specific Virtual Terminal line that it is granted. In
this implementation, the local and remote socket names
are a concatenation of such a combination.

(2) The order which the sub-processes are created:
The order in which the subprocesses are created is a
function of the the IRC Virtual Circuit feature and the
role of each individual subprocess. For example,
looking at the partner processes TERM_READ (at the
remote node) and SILO (at the host node), it is the
TERM_READ process that receives a byte from the
keyboard and sends the byte using SendVC service to the
SILO process (recall Fig. 3.6). Therefore, the SILO
process is the one that performs the Listen service,
and since IRC requires a process that uses the Listen
service to be created first, SILO must be created
before TERM_READ. Similarly, it is the UART_COMBINE

process (at the host node) that receives a string of

80

bytes from a local mailbox and writes to its partner
TERM_WRITE via the IPC SendVC service. Therefore, the
creation of TERM_WRITE must precede UART_COMBINE. Now
the question still remains on which pair of
subprocesses should be created first - (TERM_READ,SILO)
or (TERM_WRITE,UART_COMBINE)? Since the remote user
must be guaranteed an output for every input from his
keyboard, the creation of TERM_WRITE should precede
TERM_READ, lest the user initially hits the carriage
return key when TERM_WRITE is not yet created. This
would result in lost output which should have appeared
at the remote screen. So the final conclusion is that
TERM_WRITE-UART_COMBINE should be set up first. Fig.
3.8A and Fig. 3.8B describes the sequence of events
that take place when a line is set up.

3.4.2 Releasing a Virtual Terminal Line

The escape sequence ESC] B is entered by the remote
user when he wishes to release the virtual terminal line.
To effect this, the Terminal Server processes must delete
the two sub-process pairs. Unlike the setting of a virtual
terminal line, the order of processes is unimportant. The
only concern here is that the line is released so that
TERM_CALLEE (at the host node) is able to reissue that line

81

1 The User requests remote login to a specified remote node. EMUL_GEN (emulator generator) is
activated on the user's behalf. EMUL_GEN then sends a message to the local terminal server TERM_CALLER to
Initiate the virtual line request.

2 TERM CALLER sends a message to the remote terminal server TERM_CALLEE at the specified remote
node.

3 TERM_CALLEE will search for a free virtual line. If there are none, it will send a "Bind Reject-
message back to the originating TERM_CALLER. If there is an available line, TERM_CALLEE sends
that line number to the originating TERM_CALLER.

4 TERM_CALLER relays the line number received to the originating EMUL_GEN (l.e. the originating user)
5 EMUL_GEN creates the subprocess TERM_WRITE on the user's behalf.
6 TERM_WRITE acknowledges its creation to EMUL_GEN.
7 EMUL_GEN, In turn, acknowledges TERM_WRITE's creation to TERM. CALLER.
8 TERM_CALLER, In turn, acknowledges Te"rM_WRITE's creation to TERM_CALLEE.
9 TERM_CALLEE proceeds to "create the UART and SILO processes. It will wait until all the created subprocesses

acknowledge their creation before continuing. See Fig. 3.8B.

82

Remote Node Host Node

Fig. 3.8B Setting up a virtual terminal line

•| Q TERM_CALLEE, continues execution by sending a second message to the
originating TERM_CALLER.

1 1 TERM_CALLEE proceeds to create the UART_COMBINE subprocess.

1 1 TERM_CALLER, on receiving the message from TERM_CALLEE, will notify the
originating EMUL_GEN process.

1 2 EMUL_GEN creates the subprocess TERM_READ on the user's behalf. It will send
a carriage return via IPO to Initiate the remote login.

Note: The events represented by 11 and 11 can occur concurrently.

83

at some later request. Fig.
events that take place when a
be noted that only
(TERM_WRITE,UART_COMBINE) and
deleted.

3.9 describes the sequence of
line is released. It should
the sub-process pairs -
(TERM_READ,SILO) are actually

3.5 Virtual Terminal Protocol

As we have seen, the Terminal Server Processes and its
spawned subprocesses communicate across the network using
certain rules and conventions; they constitute the Virtual
Terminal Protocol. It is noteworthy to point out that the
IPC primitives themselves do not form the Virtual Terminal
Protocol. The protocol is formed by the specific rules and
conventions in the naming and addressing of socket names, in
the content and size of message fields, and the fixed order
by which certain primitives are used.

In an effort to formalize the protocol, it is described
in tables in terms of the types of messages, their functions
and message formats. In addition, supplementary tables
describe the sequence of message exchange that occur over
time t. This approach is based on DECNET's formalization of

its Network Virtual Terminal Protocol [VAXMAN G].

84

Remote Node Network Interlace Remote Node

Fig. 3.9 Releasing a virtual terminal line

1. The user enters the escape sequence to Initiate the line release.
TERM_READ sends a message to EMUL_GEN and dies.

2. EMUL_GEN then notifies TERM_WRITE to 'commit suicide'.

3. EMULJSEN then notifies TERM_CALLER to Initiate line release at the
remote node and then 'commits suicide".

4. TERM_CALLER notifies TERM_CALLEE at the host node via IPC.

5. TERM_CALLEE notifies UART_COMBINE and SILO subprocesses to
'commit suicide'.

85

The Virtual Terminal Protocol can be subdivided into
two categories: the protocol which is observed by the
Terminal Server processes - called the Server Protocol - and
the protocol which is observed by the spawned subprocesses -
called the Virtual Line protocol.

Table 3 shows the Server Protocol message types, their
functions, the originating process initiating the request
and the message format. It should be noted that all message
types are implemented as IPC communication primitives. Fig.
3.10A then describes a successful binding sequence. An
unsuccessful binding sequence is describes in Fig, 3.10B.
Similarly, the Virtual Line Protocol is described by Table 4
and Fig. 3.11.

3.6 Flow Control

End-to-end flow control in the RTA is enforced by:
(1) The XON/XOFF signals from the Remote Terminal's screen

hardware to Driver:
The Terminal hardware stores incoming characters in a
64-character buffer and processes them in a FIFO basis.
When the buffer content reaches 32 characters, the

86

Table 3 Terminal Server Protocol

Message Function Source IRC Format

Bind
Request

Requests a binding;
identifies the
specific remote node
and specific process.

TERM_CALLER)Uffer

SendDG(i,j,b

own_mbx
3ource_node_name

uffer, 16)

Bind
Accept

Accepts a Bind
Request; identifies
the granted virtual
line and the remote
process that
originated the call.

TERM_CALLEE buffer

SendDG(i,j,bi

own_mbx
line_number

jffer, 16)

Bind
Ack

Acknowledges the
Bind Accept

TERM_CALLER 1 ’+'

SendDG(i,j,

] ack_message

buffer,8)

Bind
Reject

Rejects a virtual
line

TERM_CALLEE buffer

•O"
SendDG(i,j,

own_mbx
line_number

buffer, 16)

Unbind Releases a virtual
line

TERM_CALLER buffer

SendDG(i,j,

1ine_number
kill_meisage

buffer,16)

87

Fig. 3.10A A successful binding sequence

Host Node Message
Description

TERM_CALLER

Messages Remote Node Message
Description

TERM_CALLEE

Request to establish
a virtual terminal

Bind Request
—Accepts the Bind Request;
r searches for an available

line. line. There Is one available.

Notifies EMUL_GEN.

EMUL_GEN creates

- Bind Accept

Bind Ack — K Creates SILO and five
TERM WRITE and notifies * UART subprocesses and waits for
TERM_CALl.ER when acknowledgments
TERM-WRITE Is actually
created.

of their successful creations.

Notifies EMUL GEN.
Bind Accept

Sends the line number again andc creates SILO
subprocess.

Receives message from
EMUL GEN to

Unbind
\ Releases line by deleting
* UART COMBINE and SILO

release line. subprocesses.

Host Node Message
Description

TERM_CALLER

Messages Remote Node Message
Descriptions

TERM^CALLEE

Request to establish a virtual
terminal line

Bind Request

Bind Reject

for an available line. There is none
available.

Notifies EMUL_GEN of line
reject

Sends a message to reject request

Fig. 3.1 OB An unsuccessful binding sequence

88

Table 4 Virtual Line Protocol

Message Function Source Destination IRC Format

Send byte Sends a byte
of data

TERM_READ SILO
buffer

SendVC(m,buffer,1)

Receive
byte

Receives a
byte of data SILO TERM_READ buffer

RcvVC(m,buffer,1)

Send String Sends a string of
bytes of variable
length

UARTCOMBINE TERM_WRITE
buffer

SendVC(m, buffer,size)
Receive
String

Receives a
string of bytes
of variable
length

TERM_WRfTE UART_COMBINE
buffer

RcvVC(m,buffer, size)

89

Node Message Description Messages Node Message Description

SILO requests to receive Receive Byte _xbyte

. Send Bytec

AND

TERM WRITE romiocte fn
» Receive String

receive a string of bytes
k

String of bytes received
Send String

) UART_COMBINE sends a

string of bytes.

Fig. 3.11 Interprocess Communication on a Virtual Line

90

terminal will transmit XOFF (octal 023). On this
signal, the host stops transmission to the terminal.
Eventually, if the host stops transmitting, the
terminal will deplete the buffer. When 16 characters
remain in the buffer the terminal will transmit XON
(octal 028) to signal the host that it may resume
transmission. The Virtual Terminal unit's TTSYNC
characteristic must be set for the driver to respond to
the XON/XOFF signal.

(2) The XON/XOFF signals from the Driver to Remote
Keyboard:
When the typeahead buffer for the Virtual Terminal is
full, the driver sends a XOFF character to the Remote
Keyboard. The keyboard hardware will then "freeze" all
user input until the typeahead buffer clears. Then the
driver will send a XON to the remote keyboard to free
the keyboard. The Virtual Terminal unit's HOSTSYNC
characteristic must be set for the keyboard to respond
to the XON/XOFF signal.

(3) The inherent FIFO nature $QIO and the added
stop-and-wait of $QIOW system service:
The VMS $QIO system service allows a user to initiate
an I/O operation by queuing a request to the device's

91

associated driver. Once the I/O operation has been
initiated, control will be returned to the user. The
total size of the buffering, and the maximum size per
message are adjustable $QIO parameters. The user then
has the option of carrying on with the next instruction
or it can wait for the I/O operation to complete. The
$QIOW service caters to this feature. The FIFO nature
of $QIO and the additional stop-and-wait feature of
$QIOW are utilized by UART_COMBINE, the UART and SILO
processes at the Remote Node - see Fig. 3.12.

The UART_COMBINE does a $QIOW Read from a mailbox
and waits for input. When it finally reads a message
from the mailbox, it will write this message to the
remote TERM_WRITE via the SendVC primitive. Therefore,
UART_COMBINE never has to go into a busy loop to wait
for input from the mailbox.

Now the purpose of the UART process is to wait for
input from the terminal driver. On the arrival of
input, UART writes the string to mailbox and queues
another $QIOW Network Read as soon as possible.
Therefore, UART does a $QIO Write to the Mailbox and
does not bother to wait for I/O completion to the
mailbox.

92

Fig. 3.12 Using the $QIO for flow control

93

The purpose of SILO, on receiving a byte via the
RcvVC IPC primitive, is to write as quickly as possible
to the terminal driver ("Input Interrupt") and return
to wait for the next byte from the network. Therefore,
it makes sense to do a $QIO to the Terminal Driver and
go back to wait for the byte input from the network.

(4) The arrangement of IPLs within the Driver:
The arrangement of IPLs as described in Sections 3.2.1
and 3.2.2 allow the simulation of interrupts by using
the Network $QIO Reads and Writes. However, as was
pointed out, the flow control was not failsafe when
system activity was high. Whereupon, the driver
storage buffer (described in 3.2.1) was used to correct
the situation.

CHAPTER 4

CONCLUSIONS

Of the three most popular application-level software
services: Virtual Terminal, File Transfer and Electronic
Mail, providing the Virtual Terminal feature is perhaps the
most complicated of them all. While the implementation of
File Transfer and Electronic Mail can be readily achieved by
using programming techniques available to the general user,
we have seen that providing a Virtual Terminal service
requires programming a kernel-mode Virtual Terminal Driver
at the host node.

Although the design of Remote Terminal Access relied on
the IPC for network interprocess communication, the design
and implementation of the Remote Terminal Driver itself is
implementation independent. That is, the key feature of the
design is the method by which the I/O from the external
interface to the driver is no longer carried out by hardware
interrupts but by regular system calls. Thus, the Virtual
Terminal (or Remote Terminal Access) can be implemented on
any network communication software. Another advantage of
the design is that the implementation of a terminal server

94

95

and terminal emulator modules at the remote node is
relatively simple. The remote node need only to conform to
the Virtual Terminal Protocol to set up the virtual circuits
and remote terminal access would be a reality. Yet another
advantage, and this is the cornerstone of this
implementation, is the full DEC VAX/VMS terminal
compatability of remote terminal driver.

However, the design is not without its shortcomings.
The empirical solution of using a storage buffer to the
problem of "overtaking" (Section 3.2.1) does not guarantee,
under very heavy loads, that all output will appear at the
screen of the remote terminal. While we could increase the
storage buffer size, the tradeoff is the preservation of
system dynamic memory versus the importance of guaranteed
output. Given the infrequency of the "overtaking" condition
culminating in storage buffer overflow, the preservation of
system dynamic memory would seem to be the overriding
concern. This is especially true since the increase in
buffer space per unit is multiplied by the number of remote
terminal units that are made available for remote login.
Another shortcoming, perhaps a more serious one, is the
inability of TERM_CALLEE to kill the UART process once it
has started (Section 3.2.1), and as already mentioned, a

guaranteed, cleaner method requires further knowledge of
restricted VMS system routines.

96

Yet another shortcoming is that the speed of the
virtual terminal line is comparable to that of a 1200 baud
line. The main reason for this slowness in response is that
the virtual line is a full-duplex line. That means that any
character typed at the remote keyboard travels round-trip to
the host system and back to the remote CRT. An improvement
in responsiveness would entail the development of a
"front-end" line processor at the remote node that would be
constantly aware of the mode the remote user is in. For
example, if the user is in the command line mode (VMS DCL),
the "front-end" line processor would local-echo all
characters and send the string to the terminal driver at the
host node only when a carriage return key is entered.
However, the line-processor would revert back to a
full-duplex line when the user is in the VMS Editor and
other modes that have byte oriented inputs. The complexity
of "front-end" line processor is substantial, considering
the out-of-band Control-Y, command recall, line editing and
other features that are available in the VMS DCL
interpreter. In addition, there would be some overhead
involved in having the "front end" line processor having to
constantly keep tab of the current user mode.

97

Since the Remote Terminal Access, in its current form,
is usable and since all these shortcomings are rectifiable,
the design of the Remote terminal Access was a very-
worthwhile project.

4.1 Summary

The topic of thesis concentrates on the design and
implementation of remote terminal access from any computer
to a VAX/VMS system. The only prerequisite condition is
that the computer - the remote node - which accesses the
VAX/VMS node - the host node - be on the same heterogenous
network system based on the ETHERNET standard.

The strength of this design is a fully VMS compatible
terminal driver that provides all the screen-oriented
capabilities of a DEC VAX/VMS Terminal Driver. Also, its
design involves terminal server functions to manage the
total number of remote logons, and to set up and release

virtual terminal lines.

4.2 Future Extensions

98

We suggest the following future extensions:
(1) Crash recovery

In the current implementation, crash-recovery, in both
the IPC and the RTA, is not taken into consideration.
In the event of a crash, especially during the setting
of the virtual terminal line, the terminal server on
the working node will get "hung-up". If the node was
the remote node, this would prevent users at that node
from remotely accessing to other host nodes that may be
alive. Since crash recovery, in its strictest sense,
should be the responsibility of the underlying network
communication software, a future extension would be to
implement a foolproof crash recovery scheme on the IPC.
Then, the design of the RTA should be modified to take

advantage of IPC's recovery scheme.

(2) Virtual Terminal Service to other systems.
A future extension could be to develop Virtual Terminal
service to a UNIX system based on the RTA design on
IPC. The existing RTA design could be used to set up
and release virtual terminal lines. However, a
kernel-based Virtual Terminal Driver will have to be
implemented on UNIX system.

REFERENCES

[GIGI] GIGI Terminal Installation and Owner's
Manual, page 60.

[HIL86] Wael Hilal, "Interconnecting Two
Ethernets", to be published, 1987

- 14-18.

[IRC] Chao C.P. , "Design and Implementation of
Interprocess Communication Procedures on
Ethernets."

[UNIX] Maurice J. Bach, The Design of the UNIX
Operating System, page 329, Prentice-Hall,
1986.

[VAXMAN A] VAX/VMS I/O User's Reference Manual,
1, page 8-2.

Part

[VAXMAN B] VAX/VMS I/O User's Reference Manual,
1, Appendix A.

Part

[VAXMAN C] VAX/VMS Writing a Device Driver, pages
- 5-17.

5-1

[VAXMAN D] VAX/VMS Writing a Device Driver, pages
- 1-3.

1-2

[VAXMAN E] VAX/VMS Writing a Device Driver, pages
- 1-6, pages A-l - A-38.

1-5

[VAXMAN F] VAX/VMS Writing a Device Driver, pages
- 8-13.

8-3

[VAXMAN G] Digital network architecture (phase
General Description, page 6-7 - 6-12.

IV)

[VAXMAN H] VAX/VMS Writing a Device Driver, pages 14-1

[VAX 84A] Lawrence J. Kenah, Simon F. Bate, VAX/VMS
Internals and Data Structures, page 7,
Digital Press, 1984.

[VAX 84B] Lawrence J. Kenah, Simon F. Bate, VAX/VMS
Internals and Data Structures, pages 30 -
41, Digital Press, 1984.

[VAX 84C] Lawrence J. Kenah, Simon F. Bate, VAX/VMS

99

100

Internals and Data Structures, page 431
Digital Press, 1984.

[VT100] VT100 User Guide, page 87.

