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ABSTRACT

In a heterogenous network system consisting of 
computers of different makes, there is a need for remote 
terminal access and internet file transfer. The topic of 
the thesis concentrates on the design and implementation of 
remote terminal access from any computer to a VAX/VMS 
system. The only prerequisite condition is that the 
computer - the remote node - which accesses the VAX/VMS node 
- the host node - be on the same heterogenous network system 
based on the ETHERNET standard.

The strength of this design is a fully VMS compatible 
terminal driver that provides all the screen-oriented 
capabilities of a DEC VAX/VMS Terminal Driver. Also, its 
design involves terminal server functions to manage the 
total number of remote logons, and provides clean recovery 
from different cases of remote access failure.

The design concentrates the bulk of the code on the 
VAX/VMS system, thereby allowing relatively easy 
implementation of remote terminal access on any remote node. 
The remote node need only to implement a terminal emulator 
and necessary modules to facilitate the same internet 

communication protocol as this implementation.
v
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CHAPTER 1

INTRODUCTION

Declining computer hardware costs, coupled with the 
increasing power of the computer, have led to the increase 
in the number of systems that are used at a single site. 
But while every system on site has its designated task, the 
need to exchange data, share resources, share CPU loads, 
amongst other distributed applications has led to the 
interconnection of these systems. Such an interconnection 
of systems, called a local computer network, has become 
almost a prerequisite at many sites.

1.1 Motivation and Objectives

In a heterogenous network system consisting of 
computers of different makes, there is the need for remote 
terminal access - a form of resource sharing. To put it 
simply, remote terminal access is the feature by which a 
user at the remote node can access the host node via the 
network as if his terminal were directly connected to the 
host system. The subject of this thesis concentrates on the

1
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design and implementation of remote terminal access from any 
computer to a VAX/VMS system. The only prerequisite 
condition is that the computer - the remote node - which 
accesses the VAX/VMS node - the host node - be on the same 
heterogenous network system based on the ETHERNET standard.

In achieving Remote Terminal Access between a pair of 
heterogenous nodes, we are really covering different aspects 
by:

(1) demonstrating the Layered Approach in Network
Architecture. At the Presentation Layer, the
various Terminal Servers, Terminal Emulator and other 
routines achieve end-to-end communication by utilizing 
the underlying common internet Inter-Process 
Communication (IPC) interface. The IPC, which 
represents the the Transport Layer, in turn, utilizes 
the Ethernet layer interface for network communication. 
The Ethernet layer, encompassing the Datalink and 

Physical layer, provides the primitives that perform 
the ultimate physical communication via the ETHERNET 
coaxial cable that interconnects the various computer 
systems together.

(2) explaining the need for a virtual terminal driver, and 
explaining the operating principles involved in 
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implementing the driver. Such principles cover the 
interrupt-dispatching mechanisms, the I/O operations on 
a device, and the synchronization aspects of using both 
the interrupt-priority levels and the monitor construct 
of the terminal driver.

(3) demonstrating the generic approach in the design of 
remote terminal access. This approach concentrates on 
using basic programming constructs while avoiding 
system-dependent features. Such a method extends the 
range of computers that can successfully re-implement 
the server and emulator routines. Ultimately, the 
objective is to provide a clear and easily 
implementable terminal emulator and terminal server at 
remote node.

1.2 Environment

The heterogenous local network system on Ethernet at 
the Department of Computer Science, University of Houston, 
presently consists of VAX/VMS (1 VAX11/780, 4 VAXll/730s), 
3B/UNIX version 5 (24 3B2s, 2 3B20s), and Intel/PLM (1 
Intel) nodes. At the present, the Inter-Process 
Communication software (IPC), an in-house project, is being 
developed on all heterogenous nodes. The IPC encompasses a
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network transport layer and utilizes the ETHERNET layer
common to all nodes.

1.3 Overview of the Thesis

This thesis discusses the design and implementation of 
a virtual terminal service from any system to a VAX/VMS 
system on the same heterogenous local area network. Chapter 
2 introduces key concepts in the design of any virtual 
terminal service: terminal compatability, terminal drivers 
and terminal modules to serve the user requests. In 
particular, the design of the VAX/VMS Terminal Driver is 
discussed in some detail since our virtual terminal driver 
(or remote terminal driver) is based heavily on it.

Chapter 3 discusses the design and implementation of 
the virtual terminal service - called the Remote Terminal 
Access (RTA). The underlying network communication software 
(IPC) is introduced from the viewpoint of the IPC primitives 
that it offers to RTA. Then, the discussion goes into the 
design and implementation of the virtual terminal driver and 
the design of other terminal modules to support a dynamic 
client-server virtual terminal service. In an effort to 

formalize the protocols which RTA peer processes (at 
different nodes) must observe in order to communicate with 
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each other, tables and descriptions of message sequences are 
provided, covering all the different message types and 
message sequences during the course of virtual network 
communication. The chapter ends with a discussion of 
flow-control strategies employed in this design.

Finally, chapter 4 summarizes the design and 
implementation by discussing the merits and shortcomings of 
this design. The chapter ends with suggestions for 
extensions that could be made to this implementation.



CHAPTER 2

OVERVIEW OF TERMINAL FUNCTIONALITY

Any effort in the design and implementation of remote 
terminal access requires an understanding of terminal 
compatability, terminal driver and terminal emulator 
functionality. These various topics are discussed in this 
chapter. In particular, the VMS terminal driver is 
explained is some detail since the remote terminal access 
implementation is modeled after the VMS driver.

2.1 Terminal Compatability

Video Terminals, or more commonly known as CRTs, come 
in a wide array of shapes, sizes and extended features. 
However, the common redeeming feature of most CRTs is that 
the code generated by depressing a particular key labelled, 
say "A", despite its various locations on different types of 
keyboards, is unique and follows the ASCII or EBCDIC code 
standard. See Fig. 2.1 [VT100]. Note that a 8-bit byte is 
enough to contain a unique representation of any particular 
ASCII code - character or otherwise. However, the range of

6
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Octal 
Code Char

Octal
Code Char

Octal 
Code Char

Octol 
Code ChJii

oco NUL 040 SP 100 (B) 140 •

001 SOH 041 1 101 A 141 0

002 STX 042 *• 102 B 142 b

003 ETX 043 i 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENO 045 % 105 E 145 e
006 ACK 046 6 106 F 146 f

007 BEL 047 • 107 G 147 g
010 BS 050 ( 110 H 150 h
011 HT 051 ) 111 1 151 i
012 LF 052 • 112 J 152 i
013 VT 053 + 113 K 153 k
014 FF 054 114 L 154 1

015 CR 055 115 M 155 rn
016 SO 056 116 N 156 n
017 SI 057 ! 117 0 157 o

020 OLE 060 0 120 P 160 P
021 DC1 061 1 121 a 161 q
022 DC2 062 2 122 R 162 r

023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t

025 NAK 065 5 125 U 165 u

026 SYN 066 6 126 V 166 V

027 ETB 067 7 127 w 167 w
030 CAN 070 8 130 X 170 X

031 EM 071 9 131 Y 171 Y
032 SUB 072 132 2 172 z
033 ESC 073 I 133 1 173 1
034 ' FS 074 < 134 \ 174 1 1
035 GS 075 135 1 175 1
036 RS 076 > 136 A 176
037 US 077 7 137 — 177 DEL

Fig. 2.1 ASCII Code
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byte values defined by the ASCII standard by itself was not 
enough for more sophisticated terminal applications - 
terminal screen operations, terminal graphics etc. To meet 
this need, terminals were made to support either DIGITAL'S 
VT52 standard or the American National Standards Institute 
(ANSI) standard or both.

Essentially, the ANSI or VT52 standard is nothing new; 
both these standards were drawn from the ASCII standard. 
For example, a Cursor Up command in VT52 is represented by 
the ASCII codes ESC A. The ANSI standard, currently the 
newest version being ANSI X3.64, chooses to represent the 
same cursor command by ESC [ A. Fig. 2.2 shows the 
ANSI/VT52 Cursor Control, Auxiliary Keypad Numeric Key and 
Auxiliary Keypad PF Key codes [GIGI]. In addition to these 
representations, ANSI provides flexible Mode Control 
Sequences which always starts off with the ASCII sequence 
ESC [ and followed by a sequence of any one or more ASCII 
characters. These Mode Control Sequences provide the 
manufacturer with the flexibility in implementing a wide 
variety of terminal characteristics and options.

The bottom line, then, is that terminals connected 
directly to VAX/VMS systems must have ANSI/VT52 
compatability since the VMS terminal input/output interface 
honors only ANSI/VT52 codes. Subsequently, terminals
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Key
Keypad Numeric 
Mode

Keypad Application Mode
ANSI VT52

0 0 ESCOp ESC ?p
1 1 ESCOq ESC7q
2 2 ESC Or ESC7r
3 3 ESC Os ESC 7 s
4 4 ESC Ot ESC ?t
5 5 ESC Ou ESC 7 u
6 6 ESCO v ESC?v
7 7 ESC 0 w ESC 7 w
8 8 ESC O x ESC 7 x
9 9 ESC O y ESC 7 y
— — ESCOm ESC 7 m
• e ESC O 1 ESC 7 1

ESC O n ESC 7 n
ENTER Same as RETURN ESC O M ESC 7 M

Auxiliary Keypad PF Key Codes

ANSI Mode/Cursor
Cursor Key VT52 ANSI Mode/Cursor Key Mode Set
(Arrow) Mode Key Mode Reset (Application)

Up ESC A ESC [A ESCO A
Down ESCB ESB(B ESC OB
Right ESCC ESC[C ESCOC
Left ESCD ESC[D ESCOD

Cursor Control Key Codes

Keypad Numeric Mode/ 
Keypad Application Mode

Key ANSI VT52

PF 1/HARDCOPY ESCOP ESC7P
PF2/LOCTR ESCOQ ESC7Q
PF3/TEXT ESC OR ESC7R
PF4/RESET ESC OS ESC7S

Auxiliary Keypad Numeric Key Codes

Fig. 2.2 ANSI/VT52 Key Codes 
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connected to a remote system wishing to access the host VMS 
system must also be inherently ANSI/VT52 compatible or made 
so by software methods.

2.2 Terminal Drivers

The complexity of I/O devices and the need to share 
them in a multiprogramming environment precludes us from 
executing code that can directly manipulate I/O devices. In 
such a multiprogramming environment, the user interface to a 
peripheral device is provided by a defined set of system 
services. These system services, in turn, call up a set of 
kernel modules that access and control the device on behalf 
of the user. The complexities involved in synchronization 
with the rest of the system, such as buffered or direct I/O, 
recovery from device errors and timeouts, and other 
device-dependent operations, are taken care of by these 
kernel modules. These modules, collectively, are called the 
device driver for the particular physical device.

Viewed vertically, the implementation of the driver 
code as kernel modules subscribes to the layer strategy of 
multiprogramming systems. See Fig. 2.3 [VAX 84A]. The 
process, executing the driver code in kernel mode, has 
access to the complete set of instructions, registers and
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{ASSIGN

{CANCEL

I/O Subiyetem

Formatting

tWAKE ICREPRC

{SETIMR

{GETTIM SNUMTIM

Run-Time 
Library 
(Specific)
• FORTRAN
• PASCAL
• PL/I

Assorted Utilities
• SORT
• File Manipulation
• HELP
• DIRECTORY

Layered Products
• Language Compilers
• DATATRIEVE
• Forms Utilities

Run-Time 
Library 
(General)
• Math Library
• Slrmg

MAnlpu'atton

Privileged Images 
Images Installed with Privilege 
Other Privileged Images 
Images Linked with the 
System Symbol Table
• File System
• Intormetlonal

Utilities

Command Language Inlerpreter 
end System Services

Program Development Tools
• Text Editors

• MACRO Assembler
• System Message
• Compiler

Swapper

System-Wide
Protected
Data Structures

Pane Tables
I/O Database
Scheduler Dal

Device
Drivers
I/O Support
Routines

Record Management System
end System Sarvicei

Process end Time Managamenl

Scheduler
Process Control

{CRMPSC
Memory
Management

{PUT 

{CLOSE
{OIO

System Services
{CRETVA

IADJWSL

Fig. 2.3 Layered Design of the VAX/VMS Operating System



12

memory allowed in the kernel mode. Such access, although 
done in process context, is not directly accessible by the 
user layer. That is, the mode of the process determines its 
privilege for accessing memory and the types of instructions 
it can execute. Such a layered protection for different 
levels allows distinct functional areas to be constructed, 
one upon another, with each lower layer providing primitives 
for the next higher layer.

Viewed horizontally, a device driver is a set of 
routines and tables which are used by the system to process 
an I/O request for a particular device. In general, the 
operating system is primarily a collection of routines that 
the users call to perform various functions. Sharing of the 
processor by various processes is brought about by the 
process quantum expiration, or if a detected event causes a 
process of higher priority than the current process to 
become computable (via interrupts). In other words, the 
system is interrupt-driven.

Terminal Drivers, in particular, are kernel modules 
that make possible the interactive use of a particular 
system. It is useful to view the driver as having two 
interfaces: the external I/O interface between the outside 
world and the driver, and the internal I/O interface between 

the driver and the user process. To accommodate interactive 
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use of the system, terminal drivers contain line discipline 
modules, which interpret input and output. In canonical 
mode, the line discipline converts raw data sequences typed 
at the keyboard (external interface) to a canonical form 
(what the user really meant) before sending the data to a 
receiving process (internal interface). The line discipline 
also converts raw output sequences written by a process to a 
format that the terminal screen expects. In raw mode, the 
line discipline passes data between processes and the 
terminal without such conversions [UNIX].

Typically, the external I/O interface of the terminal 
driver is provided by the terminal device, the terminal 
controller and a vector table containing the address of the 
interrupt-handler for that device. The function of the 
terminal controller is to arbitrate between the many 
terminal lines connected to it. By its hardware mechanism, 
each interrupting terminal device (unit) gets its chance to 
communicate with the system. The controller generates the 
interrupt to the system along with the identifying vector 
address of the interrupting unit. Using this address as the 
offset to the vector table, the system then accesses the 
interrupt servicing routine for the driver. For instance, 
the input interrupt-handler is activated when the user hits 

a key on the keyboard. The output interrupt-handler is 
activated when the screen is ready to accept the next byte 
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and there is a byte to be sent.

On the other hand, the internal I/O interface of the 
driver is via system calls. These system calls are tailored 
to meet the needs of the specific terminal driver. Fig. 
2.4 illustrates the internal and external I/O interface of 
the driver.

It is interesting to note that the first input 
character (usually a carriage return) from the external 
interface results in the driver spawning the login process. 
In turn, the login process performs internal I/O by 
prompting for the login name and reading the login name 
variable that is entered by the user. If the login sequence 
is correct, the login process spawns the shell process. 
From here on, there will always be a process (depending on 
what utility the user is summoning) which performs internal 
I/O to the driver. In short, the interactive nature of a 
terminal session is brought about, on one hand, by the user 
sitting in front of the terminal and, on the other hand, by 
a cooperating process performing internal I/O to the 
terminal driver.

2.2.1 Discussion the VAX/VMS Local Terminal Driver
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Fig. 2.4 External and Internal I/O Interfaces to a Terminal Driver
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The features of the VMS Terminal Driver are discussed; 
most of these features should also be available in our 
Remote Terminal Driver. The main parts of the Terminal 
Driver code are then discussed, followed by an explanation 
of the pertinent I/O data structures that are managed by VMS 
during driver operation. After that, the synchronization 
techniques that are used during an I/O request are 
discussed, followed by a description of the sequence of 
events that are initiated by an external I/O (via 
interrupts) and internal I/O (via the $QIO system call). 
Finally, a login sequence is traced from the time when the 
user depresses the carriage return key on the terminal's 
keyboard to the initial entry into VMS by way of the command 
language DCL.

2.2.1.1 Features of the VAX/VMS Local Terminal Driver

The VAX/VMS Terminal Driver provides the following 
features and capabilities [VAXMAN A]:

* Input processing
- Command line editing and recall
- Control characters and special keys
- Input character validation (read verify)
- ANSI escape sequence detection
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- Type ahead capability
- Specifiable or default input terminators
- Special operating modes, such as NOECHO and PASTHRU

* Output processing
- Efficiency
- Limited full-duplex operation
- Formatted or unformatted output

* Dial-up support
- Modem control
- Hangup on logging out
- Preservation of process across hangups

* Miscellaneous
- Terminal/mailbox interaction
- Autobaud detection
- Out-of-band control character handling

All these features and capabilities are accessible to 
the user via a defined set of arguments to the $QIO system 
service. Table 1 [VAXMAN B] displays the set of arguments, 
called function codes and function modifiers, that are valid 
and meaningful only to the VMS Terminal Driver.
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Terminal Driver

Functions Arguments Modifiers
IO$_READVBLK
IO$_READLBLK
IO$_READPROMPT

IO$_READVBLK

10$. WRITE VBLK 
IO$_WRITELBLK 
IO$_WRITEPBLK

lOS.SETMODE
IO$_SETCHAR

IO$_SETMODE 
10$ ..SETCHAR

IO$_SETMODE

IO$_SETMODE 
IO$_SETCHAR

10$ SETMODE 
IO$_SETCHAR

IO$_SETMODE
IO$_SETCHAR

IO$_SETMODE
IO$_SETCHAR

IO$_SENSEMODE
IO$_SENSECHAR

IO$_SENSEMODE
IO$_SENSECHAR

IO$_SENSEMODE

PI - buffer address 
P2 - buffer size 
P3 - timeout 
P4 - read terminator 

block address
P5 - prompt string 

buffer address
P6 - prompt string 

buffer size’

PI - buffer address 
P2 - buffer size 
P3 - access mode to 

probe Itemlist
P4 - (zero)
P5 - itemlist buffer 

address
P6 - Itemlist buffer 

size

PI - buffer address 
P2 - buffer size 
P3 - (ignored) 
P4 - carriage control 

specifier3

PI - characteristics 
buffer address

P2 - characteristics 
buffer size

P3 - speed specifier 
P4 - fill specifier 
P5 - parity flags 

(none)

PI - buffer address 
P2 - buffer size

PI - AST service 
routine address

P2 - AST parameter 
P3 - access mode to 

deliver AST

PI - AST service 
routine arldmss

P2 - character mask 
address

P3 - access mode to 
deliver AST

PI - address of 
control signals

(none)

PI - characteristics 
buffer address 

P2 - characteristics 
buffer size

PI - address of input 
modem signal 
block

PI - buffer address 
P2 - buffer size

IO$M ..NOECHO 
IO$M_CVTLOW 
IO$M_NOFILTR 
IO$M_TIMED 
IO$M_PURGE 
IO$M_DSABLMBX 
IO$M_TRMNOECHO 
IO$M_ESCAPE

IO$M_EXTEND2

IO$M CANCTHLO
IO$M ENABLMBX
IO$M. NOFORMAT
IO$M. REFRESH
IO$M .BREAK THRU

IO$M_HANGUP

IO$M BRDCST

IO$M. CTRLCAST
IO$M..CTRLYAST

l()$M OUIBAND
lt)$M II AUOHI4
IO$M. INCLUDE4

IO$M SET_ MODEM5 
IO$M-MAINT
IO$M LOOP5
IO$M UNI.OOP5
IO$M MAINT

IO$M_TYPEAHDCNT

IO$M_RD_MODEM

IO$M_BRDCST

Table 1 $QIO Function Codes and Modifiers for the VMS Terminal 
Driver
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Furthermore, total VMS compatability extends to the:
* VMS Accounting - keeps tab on the resources, cpu time, 
etc.

* VMS Operator Communication Process (OPCOM) - allows any 
terminal defined by the user (usually a systems personnel) 
to be an operator's terminal. Also, any broadcast 
messages are sent via OPCOM to all terminal devices. 
Terminal sessions are recorded in the Operator 
Communications log file.

* VMS Error Logger subsystem - any errors in the driver are 
recorded in the error log file which can be read by the 
SYE Utility.

At this juncture, it will suffice to say that the 
device driver must be written under VMS conventions and must 
be loaded by the VMS Utility in a specified way so that the 
device becomes integrated into the VMS operating system. 
Details on how to install a VMS driver are described in 
[VAXMAN H].

2.2.1.2 Main Components of the Driver Code
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Under the VAX/VMS operating system, the Terminal Driver 
is, as are all VMS device drivers, a set of routines and 
tables that the system uses to process an I/O request for a 
particular device type. Before the $QIO routine actually 
accesses the specific driver, it performs a standard set of 
functions and checks common to all devices; for example, 
validating those arguments of the I/O request that are not 
device specific, allocating system buffers for the I/O 
request etc. Such preprocessing is called VMS I/O 
preprocessing [VAXMAN C]. After the preprocessing, $QIO 
calls the specific driver; the driver gains control and 
device-specific processing commences. When the driver has 
completed all the device-specific tasks (according to the 
specified $QIO arguments), control is returned to the $QIO. 
Subsequently, $QIO does some common postprocessing 
functions, called VMS I/O postprocessing, such as returning 
allocated buffers to system memory, and other housekeeping 
operations. Finally, $QIO returns control to the user 
process that originated the system call [VAXMAN CJ. The 
following is a description of the main parts of the terminal 
device driver code that play a key role in carrying out the 
device-specific processing [VAXMAN D]. See Fig. 2.5.

* Function Decision Routines (FDT Routines)
The VMS Terminal Driver has many FDT routines to



21

FDT Routine

Device

Driver

Code

Interrupt Servicing Routine

Interrupt Servicing Routine

Main Driver Body

STARTIO: (entry point)

ALSTARTIO: (alternate entry point)

Fig. 2.5 Main Parts of Device Driver Code
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preprocess $QIO requests. Table 1 gives an idea of the 
number of FDT routines that are in the Terminal Driver. 
For example, the $QIO Read request with a prompt parameter 
allows the user to request a read operation from the 
terminal, while at the same time outputting a string to 
the terminal. The FDT Read routine will pack the output 
string with the read buffer in a specified way and call 
the main driver routine. In short, FDT routines accept a 
specific $QIO request and interpret the variable 
parameters for that request and pack the interpreted 
information at a specified block to be passed to the main 
driver routine.

* Main Driver Routine (STARTIO)
This routine analyzes the I/O function and branches to the 
driver code that prepares specific device for that I/O 
operation. There are many more functions that the main 
driver routine performs on behalf of the $QIO request. In 
short, the FDT interprets the $QIO device-specific 
request, and the main routine performs according to the 
specifications of the request.

* Alternate Driver Routine (ALSTARTIO)
This routine is entered from some FDT routines. The main 

difference between this entry point and STARTIO is one of
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synchronization concern. It will be discussed later.

* Interrupt Servicing Routines
A hardware originated device interrupt will ultimately 
trigger the correct interrupt servicing routine if the 
device driver follows the VMS driver conventions. In the 
terminal driver, there are two interrupt servicing 
routines, one for reading input from the keyboard and one 
for outputting a character to the CRT.

2.2.1.3 Driver Data structures

The VMS I/O database is a collection of data structures 
that provide various information to the VAX/VMS operating 
system and drivers to help monitor the status of, and 
control the functions of, the I/O subsystem. The following 
is a description of the major data structures that pertain 
to the terminal driver operation [VAXMAN E].

* Unit Control Block (UCB)
Each device unit on the system has its own UCB. The UCB 
describes the device type, its current status, current I/O 
activity. It also provides pointers to other data 
structures. The UCB, within this discourse, can be viewed 
as the central data structure from which other data
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structures and crucial device status information can be 
obtained. All UCBs belonging to the same controller type 
are linked together. A UCB field indicates whether the 
device is busy (i.e., a fork process is currently using 
the device).

* Device-Data Block (DDB)
Represents the generic device name and driver name for a 
set of devices attached to the same type of controller. 
For example, the DZDRIVER controller for all TT terminal 
devices share one DDB. That DDB points to the first UCB 
(i.e., TTAO:) Also, DDEs are connected by a linked-list.

* Driver-Dispatch Table (DDT)
This data structure points to the entry points of the 
driver code e.g. FDT routines, STARTIO and ALSTARTIO 
entry points. Each DDB points to a common DDT for the 
same controller.

* Channel-Request Block (CRB)
The activity of each controller is described in the CRB. 
It also contains pointers to the driver's 
Interrupt-servicing routines and to the corresponding IDB 

(see below).



25

Interrupt-Dispatch Block (IDB)
The IDB records is corresponding controller 
characteristics. It also contains the memory-mapped 
address of the Central Status Register (CSR). The CSR, 
one for every terminal controller, is the only register 
the interrupt-handlers of the driver need to access and 
control the specific terminal unit. The terminal 
controller takes care of the arbitration and multiplexing 
responsibilities for its designated terminal units.

I/O-Request Packet (IRP)
When a user queues a valid I/O request by issuing a $QIO 
or $QIOW system service, the service creates an IRP. The 
IRP contains a description of the request and receives the 
status of the I/O processing as it proceeds. The IRP is 
queued to the UCB when the UCB indicates that a fork 
process is currently executing the device unit. See 
Section 2.3 for its relevance to the monitor concept in 
the main driver code.

System Control Block (SCB)
The SCB is a table containing the vectors used to dispatch 

(software and hardware) interrupts and exceptions. An 
external interrupt will result in the hardware switching 
the system to an interrupt context, followed by the
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accessing of one of these vectors to transfer control to.

Fig. 2.6 describes the data structures which are 
traversed by VMS when the external I/O occurs via interrupts 
and when internal I/O occurs via the $QIO system call. It 
is important to note here that despite the different set of 
data structures that are traversed , the objective of VMS is 
always to track down the correct UCB of the interrupting 
terminal device, the correct CSR address of the interrupting 
device's controller, and the correct driver code for the 
device - in this case the VMS Terminal Driver.

2.2.1.4 Synchronization of I/O processing

Synchronization of I/O processing involves three main 
synchronization techniques [VAX 84B]:

(1) Interrupt Priority Levels (IPL)
In an interrupt-driven system like VMS follows a 
convention of Interrupt Priority Levels (IPL). There 
are 32 levels of IPLs :
* IPL 0 - User-mode software
* IPL 1 - 15 - Software interrupts

Initiated by the MACRO SOFTINT.
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■> Pointer

$QIO

Fig. 2.6 I/O Data Structure traversals by VMS
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* IPL 16 - 31 - Hardware interrupts
Initiated by external interrupts.

Because higher IPLs take precedence over lower 
IPLs, a routine executing at one IPL can block 
interrupts at the selected level and all lower IPLs. 
The VMS operating system assigns progressively higher 
IPLs to progressively important events. For example, 
the following is a descending order in priorities: 
machine check (IPL 31), device interrupts (IPL 
20-23), device driver processes (called fork 
processes IPL 8), AST delivery (IPL 2) and the 
user-mode process (IPL 0).

(2) Fork Processing
Fork Processing is the technique that allows device 
drivers to lower IPL in a manner consistent with the 
interrupt nesting scheme defined by the VAX 
architecture. When a device driver receives control 
in response to a device interrupt, it performs 
whatever steps are necessary to service the interrupt 
at device IPL. For example, any device registers 
whose contents would be destroyed by another 
interrupt must be read before the driver dismisses 
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the device interrupt. Usually, however, there is 
some processing that can be deferred; to execute at 
device IPL for extended periods of time would slow 
down the system. The driver signals that it wishes 
to delay further processing until the IPL in the 
system drops below a predetermined value, the fork 
IPL associated with the driver. This signaling is 
accomplished by calling system routine GAEXE$FORK 
that saves the address of the next instruction in the 
driver in a data structure called a fork block. The 
fork block is then inserted at the end of the fork 
queue for that IPL value (8 through 11) and a 
software interrupt at the appropriate IPL is 
requested.

(3) Synchronization within the Driver
Synchronization within a device driver, in 
particular, requires the implementation of the 
"monitor" concept. For example, when the FDT routine 
has completed all the device-dependent preprocessing 
at IPL 2, it calls the system routine via JSB 
GaEXE$QIODRVPKT (a MACRO instruction) to execute the 
main driver code at STARTIO at IPL 8. That is, it is 
an event waiting to enter the monitor. Now, if there 
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was a previous incomplete write operation executing 
the driver code (i.e., in the monitor) that was 
prempted by some higher IPL, entering the driver code 
just because the processor grants the process access 
at IPL 8 would erroneously overwrite the write 
buffer. Thus, to avoid this, the system routine will 
check to see if the code is being executed by a 
process (a fork process). If not, the system creates 
a fork process to execute the code starting at 
STARTIO. Otherwise, the system routine queues the 
request (represented by the I/O Request Packet) in a 
queue and removes the next IRP in the queue to 
execute in fork process context. Thus, the entry at 
STARTIO is the entry to a monitor. Only one fork 
process can execute at a time in the same device 
unit. The queue waiting on entry is priority based 
(according to the caller's base priority) and FIFO. 
Fig.2.7A describes the implementation of the monitor 
concept.

There are some instances when it is necessary to 
bypass the monitor implementation in the main driver 
code. That is, a process, on gaining the CPU, may 
want to enter the main driver code as long as it is 
at IPL 8. It does not care whether there is actually 
another process waiting to enter nor whether the same 
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device unit is actually being executed by another 
fork process. Bypassing the monitor constraint is 
done by calling G"EXE$ALTQUEPKT in the FDT routine. 
Fig. 2.7B describes the execution of ALSTARTIO - the 
alternate startio entry point to the main driver 
code.

This feature is used in the VMS local terminal 
driver when a user process does a $QIO Write system 
call to the terminal driver and the terminal line 
characteristic ALTYPEAHEAD is set. The driver will 
process the Write IRP even though there may be a Read 
IRP waiting to enter the driver.

This feature will also be used in the 
implementation of the remote terminal driver, albeit 
for a different purpose.

2.2.1.5 The Sequence of Events during Internal and 
External I/O.

This section describes the sequence of events which 
are initiated by a $QIO Write request and another sequence 
of events which are initiated by an input interrupt. It 

is important to emphasize that movement from one event to 
another is by either creating fork processes or by
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IRPs

Fig. 2.7A Monitor Construct at IPL 8

IRPs

Fig. 2.7B Bypassing the Monitor Construct
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directly raising the IPL level.

Fig. 2.8 describes the sequence of events which 
occur during a $QIO Write.
(1) The user issues a $QIO to a terminal device to write 

a string of characters. The user process executes in 
process context in user mode.

(2) The $QIO system service gains control in process 
context but in kernel mode. It performs 
device-independent processing of the I/O request e.g. 
validating channel number, checking that the process 
does not exceed process' quotas, etc.

(3) The $QIO system service uses the driver's function 
decision table to decide which function decision 
routine within the driver code it will execute.

---------------  driver code ----------------

(4) The appropriate function decision routine 
TTY$FDTWRITE in the driver code is executed in 
process context in kernel mode. In this routine, the
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IPL 0

Fig. 2.8 $QIO Write Events
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user buffer that contains the string is checked to 
see if it can be accessed. Also $QIO buffered I/O 
operations with the specific parameters to a terminal 
driver device are interpreted. Thus, this routine 
(and all FDT routines) performs device-specific tasks 
for the $QIO. Finally, a system buffer is 
constructed containing the character string and a 
wealth of information concerning specific $QIO write 
buffered operations. This system buffer, along with 
other information, is passed to the main driver code 
called STARTIO. All FDT preprocessing routines 
execute in full process context but in kernel mode.

(5) STARTIO - this is the main driver code and executes 
in fork process context (explained later). Its first 
statement is a CASE statement to decide which FDT 
routine it originated from. In this case, it 
branches to the location DO_WRITE. At DO_WRITE, the 
current cursor position, and other perfunctory duties 
of the terminal driver are performed and any 
additional control characters are inserted into the 
output buffer. This output buffer thus consists of:
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* the original character string
* control characters prefixing and suffixing the 

character string as requested by $QIO arguments.
* control characters that are inserted for cursor 

control and other perfunctory duties of the 
terminal driver.

The system buffer resides in the terminal driver 
waiting to be output. On a output-ready device 
interrupt from an UART, the driver's interrupt 
servicing routine, executing in interrupt stack, 
temporarily "freezes" all other activity and outputs 
contents of the buffer byte by byte to the CRT. The 
driver returns to $QIO for device independent 
post-processing

----------- exiting driver code----------------

* $QIO post processing cleans up the $QIO request e.g. 
copying the status of the iosb block, etc. It queues 
a special Kernel Ast back to the original user 
process. It has to do this because the user process 
may not be active any more.

* VMS returns control to the user process



37

* User process executes the next instruction

Fig. 2.9 describes the events that occur when initiated by 
an input interrupt. From this figure, it is clear that 
external interrupts have much higher priority over the rest 
of the system.

Terminal I/O (input via the keyboard, an output on the 
CRT) are two separate interrupt-driven events. For the 
sake of simplicity, we will concentrate on movement of a 
byte of data to and from the Central Status Register (CSR). 
VAX microcode and controller hardware take care of the 
movement of the data to and from to the correct terminal 
device via the UNIBUS.

2.2.1.6 The Logging Process

The following is an attempt to explain the sequence of 
events that the user goes through to log into the VMS 
system. The sequences are explained graphically in Fig 
2.10A, Fig. 2.10B, and Fig. 2.IOC.

2.3 Remote Terminal Modules



38

IPL 21

Device generates 
Interrupts

Driver analyzes 
Interrupt; services 
the interrupt and 
returns

IPL 8

IPL 4

IPL 2

IPLO

Fig. 2.9 Interrupt initiated Events
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Fig. 2.1 OA Schematic Diagram of User Logging into a VMS System via the
VMS Terminal Driver
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Fig. 2.10B Schematic Diagram of User Logging into a VMS System via the
VMS Terminal Driver
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There are many instances when one autonomous computer 
system (the remote node) needs to remotely access another 
autonomous computer system (the host node). Despite the 
different physical mediums used to connect these systems, 
be it high-speed coaxial cables or low speed asynchronous 
lines, there are two remote host software modules that are 
common in all implementations seeking to remotely access 
the host node from a remote node. These modules are:

* Terminal Emulator

Terminal emulators are software modules that are located 
at the remote node and provide virtual terminal service 
to the host node. That is, a user at the remote node 
can remotely access the host node, as if his remote 
terminal were directly connected to the host node.

The functions of the terminal emulator are:

(1) to pass input from the remote terminal's keyboard 
to the host node in its raw mode.

(2) to pass output from the host node to remote 
terminal's screen in its raw mode.



43

(3) to perform key code mapping if the remote terminal 
is not ANSI/VT52 compatible.

(4) to perform key relocation if the remote terminal 
does not have the same key locations as the 
standard host terminal. For example, DIGITAL'S 
VT100 compatible terminals have a special keypad 
for editing functions. A terminal emulator on a 
remote node wishing to remotely access a DIGITAL 
host node, where the remote terminal does not have 
this keypad, will map the keypad locations on other 
available keys on the keyboard.

* Terminal Servers

Terminal servers are background processes running at 
both the remote and host nodes that set up the virtual 
terminal connection between the remote terminal and the 
host. In addition, housekeeping functions like keeping 
a maximum on the lines that can remotely access the host 
system, and recovery from line errors are the 
responsibilities of the servers.



CHAPTER 3

DESIGNING AND IMPLEMENTING THE REMOTE TERMINAL ACCESS

The design of Remote Terminal Access (RTA) adheres to 
the layered concept of the Open Services Interconnection

model. We call this the RTA Layer.

(OSI) Reference Model of the International Standard
Organization (ISO). As seen in Fig. 3.1, the RTA
encompasses the Session and Application layer of the OSI

The peer processes, which constitute the RTA layer, 
utilize the primitives provided by the underlying 
Inter-Process Communication (IPC) layer for virtual 
communication with other peer processes on other nodes. 
Such virtual communication between peer processes follow 
rules and conventions specific to that layer- known 
collectively as the Virtual Terminal Protocol.

The discussion on the design of RTA will begin with a 
brief description of the IPC primitives that are used by the 
RTA layer for virtual communication. The discussion then 

moves on to the design of RTA; it is is conveniently divided 
into three sections: the design of the Remote Terminal 
Driver, the Terminal Emulator and the Terminal Servers. The

44
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IMP 7-layer OSI
Reference Model

Fig. 3.1 RTA layers with respect to the OSI Reference Model
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next section encapsulates the design of RTA by formalizing 
the Virtual Terminal Protocol. The approach taken here is 
based on DECNET's formalization of its Network Terminal 
Protocol [VAXMAN G]. Finally, the last section discusses 
the end-to-end flow control strategies that are used in the 
RTA.

3.1 The Inter-Process Communication

The interprocess communication protocols are in the 
heart of any distributed/networking system [HIL 86]. They 
are responsible for exchanging data reliably between 
processes within the same machine and, more importantly, 
between different machines. The IPC interface to the RTA 
layer consists of primitives in three categories: naming 
and addressing, datagram and virtual circuit services [HIL 
86]. The following is a brief description of these three 
categories of the IPC. For a detailed description of the 
IPC, the reader should refer to [IPC].

3.1.1 Naming and Addressing Primitives
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In order for a process to communicate with a remote 
process, the process must acquire a socket which identifies 
the process address at the particular node. Since there are 
only a fixed number of sockets available, the sockets are to 
be returned to the IPC after usage. IPC provides primitives 
to get local and remote sockets, and to return them.

The primitives are:

(1) Getsocket:
This primitive requests a socket for a process from a 
local IPC. To get a socket, the process must supply the 
PUN. When the request is honored, a socket number is 
returned to the requesting process.

(2) Returnsocket:
This primitive will release a socket back to the local 
IPC when it is no longer needed. Processes that die 
will have their sockets automatically returned to the 
local IPC.

(3) FindRemoteSocket:
This primitive will search for a remote socket, given 
the PUN as the input parameter.
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3.1.2 Datagram Services

IPC provides a reliable datagram service to the RTA. 
That is, when a process (a peer process in RTA) at one node 
uses this service, IPC will make sure that the datagram will 
arrive at the destination node.

The primitives are:
(1) SendDG:

This primitive will reliably send a variable-length 
datagram to the remote process. The send parameters 
include a remote and local socket, and a buffer which 
contains the message to be sent. A maximum length is 
imposed on the message.

(2) RcvDG:
This primitive will reliably receive variable-length 
datagrams. The parameters include a local socket, a 
buffer pointer, and a buffer length.

3.1.3 Virtual-Circuit Services

The IPC provides the RTA with the perfect channel where 
there are no errors and all packets are delivered in order. 
In other words, a virtual circuit simulates a physical 
connection between two communicating peer processes.
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The primitives are:

(1) OpenVC:
This primitive establishes a VC between two processes. 
The input parameters include the local socket, the 
remote socket, and an optional window size n (in order 
for the RTA process to exchange VC initiation packets). 
The "open" returns a VC number if the two processes 
agree to open a circuit and returns an error if the 
process on the other end has rejected the proposal.

(2) Listen:
This primitive is a kind of passive open because it does 
not result in any packets being sent or any connections 
being established. A local process uses this primitive 
to inform the local IPC of its willingness to open a VC 
if a remote process attempts to activate a connection. 
This mechanism speeds up establishing a VC by recording 
an entry for it in the VC table with incomplete 
information. The "Listen" parameters include a local 
socket and a remote host. The "Listen" returns a VC 
number of a one-side passive VC.

(3) SendVC:
This primitive sends a variable-length packet on a 
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specific VC to the remote process. The parameters of 
this primitive include a VC number and a message 
(message pointer and length). A maximum length is 
imposed on messages.

(4) RcvVC:
This primitive receives a variable-length packet on a 
specific VC from a remote process. Packets are only 
accepted in sequence. The parameters include a VC 
number, a buffer pointer, and a buffer length.

3.1.4 Examples of Virtual Communication on a Virtual Circuit

The order in which the different IPC primitives are 
actually used depends on the objectives of the RTA peer 
processes using them. Fig. 3.2 provides an example of how 
two RTA peer processes, A and B, at separate nodes set a 
virtual circuit over time t. Process A will then send a 
packet through its Virtual Circuit to B.

3.2 Design of a Remote Terminal Driver
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Legend: X > Y implies event X must precede event Y

Fig. 3.2 Example of how two RTA peer processes A and B 
establishes a Virtual Circuit to send data from A 
to B
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The internal interface (via $QIO system calls) to the 
Remote Terminal Driver must be identical to that of a VMS 
Terminal Driver. Only then would all VMS utility programs 
and all user programs which use the system call interface to 
the VMS Terminal Driver also work for the Remote Driver.

As for the external interface to the driver, the 
problem was twofold. First, a method had to be established 
by which an ordinary user process could communicate with the 
driver. This was because the user process, acting as an 
intermediary, also communicated with the rest of the network 
system. Secondly, this method had to simulate external 
interrupts from the terminal device.

A tempting solution may be to somehow use the existing 
VMS Local Terminal Driver to provide remote terminal access. 
The internal interface via the $QIO system call is readily 
available. As for the external interface, we would have to 
somehow simulate hardware interrupts from the terminal 
keyboard and screen so that the external I/O interface to 
the driver originates not from the directly connected 
asynchronous terminal device but from the remote terminal. 
Since VMS allows privileged user programs to initiate 
software interrupts via the MACRO instruction SETIPL, there 
may be a way to initiate software interrupts from the 
intermediary process which would, in turn, activate the 
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interrupt-handlers of the VMS Driver. Unfortunately, the 
IPL range for software interrupts is only from IPL 1 through 
15. Consequently, the possible range of interrupt-handlers 
that are addressed as offsets to the SCB vector table does 
not include the interrupt-handler of the terminal driver at 
IPL 21 - only accessible by a hardware interrupt.

Another alternative may be to somehow use DECNET's 
remote terminal driver. Again, the internal interface via 
$QIO is readily available. However, as Fig. 3.3 [VAX 84C] 
illustrates, we have to know the format of the internal IRP 
and the proper address from which to insert and remove 
"internal IRPs" (they form the external interface to the 
driver). Such knowledge requires an intricate knowledge of 
DECNET's Remote Terminal Driver design - which we have not.

Given that we cannot use any of the available VMS 
terminal drivers, we are left with the task of developing 
one. The $QIO system service, being the standard internal 
interface to all VMS drivers, was chosen as the internal 
interface to the driver. Since the internal interface must 
meet all VMS Terminal Specifications, the required 
programming (in VMS MACRO with calls to system routines) was 
substantial. This task, while being a tedious one, was not 
insurmountable.
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HETACP

Fig. 3.3 Internal IRPs as the External Interface to the VMS 
Terminal Driver
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To provide the external interface to the driver, the 
$QIO system service was also chosen as the way to 
communicate with the driver. Since this mode of entry is 
normally the internal interface's way of communicating with 
the driver, special function modifiers are selected to 
distinguish these simulated interrupt requests from regular 
$QIO request. Henceforth, simulated $QIOs will be referred 
to as Network $QIO as opposed to regular $QIOs. Table 2 
shows the valid function codes and function modifiers that 
are understood by the Remote Terminal Driver (recall Table 1 
for valid codes of the VMS Terminal Driver).

Given that $QIO system service as the means of 
communicating with the driver, the design of simulating 
interrupts was approached by looking at the Input and Output 
Interrupts separately.

3.2.1 Output-Ready Interrupts (UART)

To recap on the events that occur when a process 
request a regular $QIO Write to a VAX/VMS Driver, we will 
begin by emphasizing that, in the VMS driver, the regular 
$QIO Write Requests operate asynchronously with Output-Ready 

Interrupts. A process issuing a $QIO Write request would 
write a string into a specified system buffer, the
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Remote Terminal Driver

Functions Arguments Modifiers

{ same as Table 1 - for the VMS Terminal Driver }

IO$_READVBLK P1 - BUFFER IO$M_NETWORK
ADDRESS
P2 - SIZE

IO$M_EXTEND

IO$_WRITEVBLK P1 - BUFFER 
ADDRESS 
P2 - SIZE

IO$M_NETWORK
IO$M_EXTEND

Table 2 $QIO Function Codes and modifiers for the Remote Terminal Driver



57

Output-Interrupt line is enabled and control would be 
returned to the user. When the screen of the CRT is ready 
to accept another byte, the interrupt-servicing routine for 
the output to the CRT is activated, and byte transfer to the 
CRT occurs transparently to the calling process. Fig. 3.4A 
illustrates this sequence of events.

Simulating the Output-Ready Interrupt means that 
whenever a user process performs a regular $QIO Write 
request entering the driver code via STARTIO, the buffer 
contents of the accompanying regular IRP must be "written" 
to the remote CRT before the control passes back to the user 
process requesting the $QIO Write. In this implementation, 
the contents of the $QIO Write IRP's buffer are copied to 
the buffer of a pending $QIO Network Read IRP - see Fig. 
3.4B. The process that performed the pending read IRP, 
called here the UART process, must have previously issued a 
Network $QIO request.

Fig. 3.4C traces the IPL transition due to events 
described in Fig. 3.4B. The crucial features used in 
synchronization of different events are the usage of IPLs 
and fork-processing. The VMS post-processing of the Network 
IRP is queued at IPL 4, and followed by the queuing of 
regular Write IRP. When this happens, VMS actually 
post-processes the Network IRP first, followed then by the
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Fig. 3.4 A Output-Ready Interrupts in a VMS 
Terminal Driver.

Sequence:

1 User Program calls $QIO Write.
2 FDT Write does preprocessing, and enters Driver via 

STARTIO.
3 The driver puts string into a system buffer (pointed to by 

the IRP of the $QIO Write request).
4 The driver enables the Output-Interrupt for the line.
5 The driver returns control to User process.

1 Output-Ready interrupt activates the UART (when 
the line is free and Output-Interrupt for the line is 
enabled. The contents of the system buffer are discharged a 
byte at a time.
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Network $QIO Read

Fig. 3.4B Simulating Output-Ready Interrupts in a 
Remote Terminal Driver

1 "UART" process does a Network $QIO Read.
2 FDT Read processes the special $QIO Read request by queing the IRP of the Network Read 

Request into a network IRP queue.
3 FDT Read routine calls a.special VMS routine to set the IPL back to 0, and make the UART 

process wait.
4 User process does a regular $QIO Write.
5 FDT Write enters the main driver code via STARTIO.
6 The driver puts string into a system buffer (pointed to by the IRP of the $QIO Write request).
7 "Enables Output Interrupt" for the line by removing the Network Read IRP from the network IRP 

queue and transferring the contents of its system buffer into the Network IRP's system buffer 
space. The Network IRP is then queued for postprocessing at IPL 4.

8 VMS removes the Network Read IRP from its FIFO queue at IPL 4 and queues again at IPL 2 for 
special kernel AST processing. The AST is required to return control back to the UART process. 
Next IRP in the FIFO queue at IPL 4 is the regular write IRP. Again, postprocessing is done at 
IPL 4 and it is queued at IPL 2 for special kernel ast to return control to the User process. 
Notice that the UART process is always one step ahead of the User process in IPL queuing. 
Hence, the special kernel AST will return control first to the UART process, which in turn, 
queues a Network $QIO Read request again after it has discharged the read string of bytes 
through the network virtual line (via IPC). After all this only will VMS return control to the 
User Process.

9 The Driver initiates the return of control to the user by queuing the regular IRP for postprocessing 
at IPL 4.
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Fig. 3.4C IPL transitions for events described in Fig. 3.4B
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regular IRP. After post-processing, VMS queues a special 
kernel AST at IPL 2, again, for the Network IRP first, 
followed by the regular IRP.

The UART process gains the processor first at IPL 0. 
This process now has the output string intended for the CRT. 
In our implementation, the process uses a network primitive 
to transfer the string to the remote process. The network 
primitives performs many system calls to finally transport 
the string to the remote process. After that, the UART 
process issues another Network $QIO Read. When the UART 
process returns from the driver FDT, pending its $QIO Read 
completion, the VMS Scheduler finally returns control to the 
user process.

From preceeding discussion, it may seem that the VMS 
Scheduler always returns control to the UART process before 
returning control to the user process. However, this is not 
the case because the VMS Scheduler may reschedule processes 
due to resource wait or process quantum expiration. 
Therefore, depending on the system activity, the user 
process may "overtake" the UART process. In that case, the 
driver does not attempt to copy the contents of the $QIO 
Write IRP's buffer into the buffer of the pending Network 
$QIO Read - simply because there is no pending Network $QIO 
Read IRP yet. Instead, the driver will append the contents 



62

of the $QIO Write buffer to the last non-empty space of a 
storage buffer. This buffer, part of the UCB buffer space, 
starts at UCB$L_NETREAD_STORE. The size of the buffer, at 
UCB$W_NETREAD_CT, is incremented accordingly and control is 
returned to the user process. Then, when the UART process 
is able to perform another Network $QIO Read, all the 
contents in the UCB buffer space are transferred to the 
buffer of the Network Read IRP and the UCB$W_NETREAD_CT is 
equated to zero. Control is then returned to the UART 
Process.

It should be noted that there may be many occurrences 
of the "overtake" condition resulting in an accumulation of 
bytes in the storage buffer. The question, then, is how 
large should the storage buffer be? In an empirical 

fashion, we arrived at the size of 800 bytes, citing that 
there was not a single instance of the accumulation of bytes 
exceeding the buffer's size at 500 bytes in our many 
testings under different loads. In any case, code has been 
included in the driver that would merely return control to 
the user process when this happens. Essentially, the output 
that was intended to appear on the screen would then be 
lost, as remote as the case may be when such a situation 
would arise.
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A much greater inadequacy is the inability of the 
TERM_CALLEE process to delete the UART process. In an ideal 
situation, TERM_CALLEE should be able to delete UART and 
SILO processes after the user has logged off the remote 
terminal. While there are no complications involved in 
deleting a SILO process, deleting an UART process leads it 
to a miscellaneous RWAST state because VMS is unable to 
properly release UART's channel to the remote terminal unit. 
At the present time, the author does not possess the full 
knowledge of those restricted VMS routines required to 
complete the deletion of the UART process. Thus, for the 
present, the problem of deletion of UART is circumvented by 
moving the inter-process communication, originally in the 
UART, to another process called UART_COMBINE. UART would 

still retain the remote terminal drivers Network $QIO Read 
interface and UART_COMBINE and UART would communicate with 
each other through a common mailbox. Then, when the user 
has logged off the remote terminal, TERM_CALLEE will delete 
the SILO and UART_COMBINE processes. Fig. 3.4D illustrates 
the scheme.

3.2.2 Input Interrupts (SILO)

Input Interrupts are simulated in another way. Unlike the
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External Interface

J

Internal Interface

Fig. 3.4D Scheme of processes to simulate Output-Ready Interrupts
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regular $QIO Write requests, the regular $QIO Read requests 
are obviously dependent on the Input Interrupt to provide 
the input. Fig. 3.5A illustrates the sequence in which the 
VMS Terminal Driver's input interrupt-servicing routine 
store the input byte in the type-ahead buffer. If there was 
a pending regular $QIO Read request, the byte is transferred 
to the regular IRP's buffer. If the terminal characteristic 
in a UCB field for the unit had the echo characteristic set, 
the byte is moved to an output buffer and the line is 
Output-Enabled. The interrupt servicing routine duly 
terminates and the pending regular $QIO read request is 
satisfied. The Input-interrupt Servicing routine processes 
one byte at a time because the echo byte is full-duplex 
(with no local CRT echo) and because many VMS applications 
have different kinds of responses depending on the type of 
byte input.

Simulating the Input Interrupt means that whenever 
there is an input from the remote keyboard, the byte must be 
transferred eventually to the type-ahead buffer. In this 
implementation, the process which receives the byte from the 
remote keyboard and does the Network $QIO Write to the 
driver is called the SILO process. When the SILO process 
does the abovementioned, and if there is a pending regular 
$QIO Read request, the driver moves the byte to the regular 
$QIO Read's IRP and the pending User Process is completed.
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Fig. 3.5A Input Interrupts In a VMS Terminal Driver

1 User Program calls $QIO Read

2 FDT Read does preprocessing, enters driver via STARTIO

3 The type-ahead buffer Is empty, so Driver calls special VMS Routine to set IPL back 
to 0.

4 Input Interrupt activates the SILO when a key, say "A" is depressed at the keyboard. The character 
"A"
is passed to the interrupt-servicing routine.

5 The driver puts the byte Into the type-ahead buffer (pointed to by UCB of the terminal unit).

6 If Read request Is pending (as is the case), SILO first moves the byte from the type-ahead buffer 
Into the regular Read IRP's system buffer and then queues the regular, pending Read IRP for VMS 
postprocessing at IPL 4. The driver then enables Output-Interrupt for full-duplex echo.

7 The driver returns from Interrupt by the REI instruction.

8 Output-Ready Interrupt activates the UART (when UART is free and line is enabled)

9 The driver outputs a byte to UART (If any). In most cases the byte is the echo character (full duplex 
mode) and returns from Interrupt by the REI Instruction.

10 Eventually, VMS postprocessing at IPL 4 gets its turn at the processor, and queues a special 
kernel AST at IPL 2 to return control to the user process. Later, at IPL 2, the special kernel AST 
queues return control to the process.
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"SILO"

2
(■

STARTIO.

(g) "REI" by queuing Network 

Write IRP for VMS post­
processing

EOT

Reid

FDT 

Write

ALSTARTIO:

Queues regular Reid IRP 
for VMS postprocessing

Q "Enables Output Interrupt1 

for byte echo. Queues 
Network Reid IRP for 
VMS Post Prooessing.

network 
UCB irp qutut User Progrim

$010 Read

Fig. 3.5B Simulating Input interrupts in a Remote Terminal Driver
Precondition: steps 1,2 and 3 are already done. Refer to Fig. 3.5A.

1 User program calls $QIO Read.

2 FDT does preprocessing, and enters the main driver code via STARTIO.

3 The type-ahead buffer Is empty, so Driver calls a special VMS routine to set the IPL back to 0.

4 "SILO* process calls Network $QIO when it receives a character "A" via the virtual line.

5 FDT Write processes the Network SQIO request by moving the byte "A" into a system buffer pointed to 
by its IRP. Then, the FDT routine enters the main driver code via ALSTARTIO.

6 The driver moves the byte 'A" Into the system buffer of the pending, regular write IRP’s system buffer 
and queues the VMS postprocessing for the UART process at IPL 4.

7 ■Enables Output Interrupt" by moving byte "A" Into the pending Network Rnnd IflPs ny-.lnm hullnr mid 
queues the VMS postprocessing lor the UART process at IPL 4. This, In elford, "echoes- the Input byte.

8 The driver returns control to the "SILO" process by the REI Instruction. This will result In the queuing of 
the VMS postprocessing at IPL 4.
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© Fork Process Context

Fork Process Context
Fork Process Context

©

© © ®

FDTRead FDT Write

User UART SILO 
Postprocessing

©

User User SILO
User UART SILO 

Kernel ASTs

User UART SILO
Time t —>

Fig. 3.5C IPL transitions for events described in Fig. 3.5B



69

External interface Internal interface

Fig. 3.5D Scheme of Processes to Simulate Input Interrupts
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Fig. 3.5B illustrates this. Since the echoing of input 
bytes requires the feature of a pending Network $QIO Read 
IRP (see Section 3.2.1), the problem of "overtaking" is 
again empirically solved by appending the contents of the 
$QIO Write IRP's buffer to the last non-empty space in the 
storage buffer. Fig. 3.5C traces the IPL transitions due 
to the events described in Fig. 3.5B. The crucial features 
used to synchronize events here are:
(1) Usage of IPLs
(2) Fork Processing
(3) The entry point of the SILO process at ALSTARTIO.

This entry bypasses the monitor constraint at STARTIO 
where many pending regular $QIO Read requests may be 
waiting to enter the monitor (driver code)

Finally, Fig. 3.5D illustrates the design as a scheme of 
processes (recall its counterpart in Fig. 3.4D).

3.2.3 Special Driver UCB fields

The implementation of SILO and UART processes require 
the addition of new fields and the manipulation of an 
existing field in the UCB data structure.They are:
(1) UCB$Q_SAVE_STATE (new field)

The existing UCB field - UCB$Q_TT_STATE - reflects the 
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current state of the Terminal Driver. For example, the 
state may be a READ state, with sub-states EDITOR, 
CONTROLO etc. All in all, there are more than 100 
states that reflect exactly the current state of the 
driver. Now, as shown in Fig. 3.5C, the user process 

eventually returns to IPL 0. This allows the UART and 
SILO processes to reissue the Network $QIO requests. 
The problem here is that VMS I/O preprocessing (before 
FDT device-dependent processing) erases the 
UCB$Q_TT_STATE field. Since the SILO and UART 
processes are supposed to simulate interrupts, all the 
fields in the UCB should not change during "interrupt 
servicing". To meet this requirement, all changes to 
UCB$Q_TT_STATE made within the driver code (numerous 
locations) were also made to UCB$Q_SAVE_STATE. Then, 
when a SILO or UART process enters the FDT, the 
UCB$Q_TT_STATE (which had been erroneously cleared) is 
restored by the field UCB$Q_SAVE_STATE.

(2) UCB$W_WREFC (new field)
Every $ASSIGN system service call to a particular 
device unit will increment the existing UCB$W_REFC 
field corresponding to the device unit by one. Since 
both SILO and UART processes are separate processes 
requiring individual channels to the same device unit, 
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the UCB for the corresponding device unit will have its 
UCB$W_REFC field incremented by two. Now, since both 
these processes are supposed to simulate interrupts, 
the count should not be incremented. To meet this 
requirement, the FDT Write routine decrements the 
UCB$W_REFC count by two at the initial entry of SILO 
process's first Network $QIO Write request. The field 
UCB$W_WREFC, acting as a flag, is then set to indicate 
that the decrement should only be done once. All 
following Network $QIO Write requests should not 
decrement the UCB$W_REFC field; after all, only the 
first Network $QIO Write request (by the SILO) should 
decrement UCB$W_REFC by two to nullify the preceding 
two $ASSIGNs by the SILO and UART processes - which 
incremented UCB$W_REFC by one each.

(3) UCB$L_IT_RIRPFL and UCB$L_IT_IRPBL (new field)
These fields are used to queue the Network IRPs as 
described in Section 3.2.1

(4) UCB$L_PID (old field)
This field must be cleared after the UART and SILO 
process have assigned a channel to the terminal unit. 
If this field is not cleared, no other user process 
will be able to assign a channel to the same terminal
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unit except those processes that have the same username
(or login name).

In summary, the SILO, UART and UART_COMBINE processes, 
residing in the host node, provide the external interface to 
the driver. It should be noted here that, so far, the 
details of network inter-process communication aspects have 
been avoided. For example, the preceding discussion only 
mentions that the UART process receives a byte from the 
driver and writes it to a "remote CRT". The discussion of 
inter-process communication will be deferred to the later 
section.

3.3 Design of the Terminal Emulator

From the discussion of the previous section, it is 
apparent that the SILO and UART_COMBINE processes residing 
in the host node are to have complementary or partner 
processes at the remote node. The partner processes 
residing at the remote node, in effect, function as the 
Terminal Emulator.
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The process, TERM_READ, at the remote node, is the 
communicating partner of SILO process at the host node. 
TERM_READ simply reads byte by byte from the remote 
terminal's keyboard and passes the byte, via the IPC virtual 
circuit service, to the SILO process. Similarly, TERM_WRITE 
at the remote node, receives a string of bytes from 
UART_COMBINE via the IPC virtual circuit service and writes 
the string of bytes to the remote terminal. Fig. 3.6 is a 
schematic representation of TERM_READ and TERM_WRITE 
processes at the remote node and their complementary 
processes at the host node. The actual code of these 
processes is illustrated by Fig. 3.7. As can be seen, a 
total of two virtual circuits are required for one virtual 
terminal line.

The task of setting up virtual lines, amongst other 
functions, is the responsibility of the Terminal Server 
Process on both the remote and host node.

3.4 Design of the Terminal Server

In our implementation, the functions of the Terminal 
server are:

(1) to set up virtual terminal lines by request of the user
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Remote Node Network Interface Host Node

Fig. 3.6 Scheme of Processes for a Virtual Terminal Line.



program term_write(input, output);

begin
i~ Getsocket(TW CSVS'); ( get a local socket number )
j ~ Listen(i,CSV3 ); { Listen at remote node for remote socket)

while forever do
begin

RevVC(j,Buff f size); (read data from the VC)

(write to the terminal)
state~$QIOV(func™io$_writevblk, chan:= device-channel 1, pl := Buff,

, p2.-size);
end.

end.

program term_read(input, output);

begin
i Getsocket( TR CSVS'); ( get a local socket)
).■« FindremotesocketCSILO CSVS',i ); { get a remote socket) 
m^OpenVC(i,j, 15);

SendVCC m, buffer, 1):

while forever do
begin

state := $QIOV(func :=int(uor(io$_readvblk,io$m_noecho)), 
chan := device—channe 12, 
pl := buffer, 
p2:=1 );

(write the data to remote node via VC)
SendVC(m, buffer, 1);

end,
end.

CSV2 - Remote Node

program uart(input,output);

begin

i-GetsocketCUART CSVS'); ( get a local socket) 
( get a remote socket number)

j:=Findremotesocket('TV CSV3',i);
m:=OpenVC(i,j,15);

while forever do
begin
status:= $QIOW( funcr* io$_readvblk, chan:= devchannell 

iosb—iosbk, 
pl t= buffer,p2:=512);

(write the data to the remote node via VC } 
SendVC(m ,buffer, iosbk.count);

end.
end.

program S LOCinput,Output) ;

begin

i: » GetsocketCSLO CSVS');
j: =Listen(i,CVS3 );

while forever do
begin

Rev VC( j .buffer ^ize) ;
( Do a Network Write to Remote Terminal Driver } 
status := $qiow(func :=int(uor((uor(io$_writevblk, 

io$m_network)) ,io$m_extend), 

chan:- device-channel 1,
end; pl :=buffer,p2:=1 );

end.

CSV3 ~ Host node

Fig. 3.7 Actual Code of Processes in Fig. 3.6
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at the remote node.

(2) to release the terminal line by request of the user.

(3) to regulate the total number of virtual terminal lines 
that a host node can allow.

The Terminal Server is implemented as two background 
processes on both the remote and host node. These 
processes, the TERM_CALLER at the remote node, and 
TERM_CALLEE at the host node, use the IRC Datagram service 
for Inter-process communication. There is no need to use 
the Virtual Circuit service since inter-process 
communication is required only intermittently - during line 
setup and release. To use virtual circuits, say in an n 
node network would require a node to maintain n-1 virtual 
circuits to the other n-1 nodes. This would certainly be a 
waste of resources.

To best explain the design of TERM_CALLEE and 
TERM_CALLER, the following sections will first discuss how a 
Virtual Terminal line is set up and how such a line is 
released. The last section formalizes the design in terms 
of the Virtual Terminal Protocol. The tables that are 
provided in that section encapsulates the rules and 
conventions used to communicate between the server processes 
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and the subprocesses that they spawn per virtual terminal 
line.

3.4.1 Setting Up a Virtual Terminal Line

On the request of the user at the remote node, the 
Terminal Server processes - TERM_CALLER and TERM_CALLEE - 

cooperate in order to set up a Virtual Terminal line. 
Setting up such a line requires the Terminal Server 
processes to create the subprocesses: UART_COMBINE, UART 
and SILO at the host node and the TERM_READ and TERM_WRITE 
at the remote node. In turn, it is the subprocess pairs: 
(TERM_WRITE,UART_COMBINE) and (TERM_WRITE,SILO) that set up 
a Virtual Circuit between the host and remote node. The 
pair of Virtual Circuits, together, constitutes a Virtual 
Terminal line. The following are the various concerns of 
Terminal Server processes when setting up a Virtual Terminal 
line:

(1) Naming of Local and Remote Socket Names between 
Terminal Server subprocesses:
In order for these subprocesses to set up the two 
Virtual Circuits per Virtual Terminal line, they need 
to establish a unique local socket name and find a 
unique remote socket name per Virtual Circuit. Now 
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since the Remote Terminal Access design should allow 
multiple Virtual Terminal lines to emanate from a 
remote node, and conversely multiple Virtual Terminal 
lines to converge at any host node, the naming of local 
and remote sockets must reflect this capability. In 
other words, the name of the remote and local socket is 
dependent on both the name of host node and the 
specific Virtual Terminal line that it is granted. In 
this implementation, the local and remote socket names 
are a concatenation of such a combination.

(2) The order which the sub-processes are created:
The order in which the subprocesses are created is a 
function of the the IRC Virtual Circuit feature and the 
role of each individual subprocess. For example, 
looking at the partner processes TERM_READ (at the 
remote node) and SILO (at the host node), it is the 
TERM_READ process that receives a byte from the 
keyboard and sends the byte using SendVC service to the 
SILO process (recall Fig. 3.6). Therefore, the SILO 
process is the one that performs the Listen service, 
and since IRC requires a process that uses the Listen 
service to be created first, SILO must be created 
before TERM_READ. Similarly, it is the UART_COMBINE 

process (at the host node) that receives a string of 
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bytes from a local mailbox and writes to its partner 
TERM_WRITE via the IPC SendVC service. Therefore, the 
creation of TERM_WRITE must precede UART_COMBINE. Now 
the question still remains on which pair of 
subprocesses should be created first - (TERM_READ,SILO) 
or (TERM_WRITE,UART_COMBINE)? Since the remote user 
must be guaranteed an output for every input from his 
keyboard, the creation of TERM_WRITE should precede 
TERM_READ, lest the user initially hits the carriage 
return key when TERM_WRITE is not yet created. This 
would result in lost output which should have appeared 
at the remote screen. So the final conclusion is that 
TERM_WRITE-UART_COMBINE should be set up first. Fig. 
3.8A and Fig. 3.8B describes the sequence of events 
that take place when a line is set up.

3.4.2 Releasing a Virtual Terminal Line

The escape sequence ESC ] B is entered by the remote 
user when he wishes to release the virtual terminal line. 
To effect this, the Terminal Server processes must delete 
the two sub-process pairs. Unlike the setting of a virtual 
terminal line, the order of processes is unimportant. The 
only concern here is that the line is released so that 
TERM_CALLEE (at the host node) is able to reissue that line
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1 The User requests remote login to a specified remote node. EMUL_GEN (emulator generator) is
activated on the user's behalf. EMUL_GEN then sends a message to the local terminal server TERM_CALLER to 
Initiate the virtual line request.

2 TERM CALLER sends a message to the remote terminal server TERM_CALLEE at the specified remote 
node.

3 TERM_CALLEE will search for a free virtual line. If there are none, it will send a "Bind Reject- 
message back to the originating TERM_CALLER. If there is an available line, TERM_CALLEE sends 
that line number to the originating TERM_CALLER.

4 TERM_CALLER relays the line number received to the originating EMUL_GEN (l.e. the originating user)
5 EMUL_GEN creates the subprocess TERM_WRITE on the user's behalf.
6 TERM_WRITE acknowledges its creation to EMUL_GEN.
7 EMUL_GEN, In turn, acknowledges TERM_WRITE's creation to TERM. CALLER.
8 TERM_CALLER, In turn, acknowledges Te"rM_WRITE's creation to TERM_CALLEE.
9 TERM_CALLEE proceeds to "create the UART and SILO processes. It will wait until all the created subprocesses 

acknowledge their creation before continuing. See Fig. 3.8B.
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Remote Node Host Node

Fig. 3.8B Setting up a virtual terminal line

•| Q TERM_CALLEE, continues execution by sending a second message to the 
originating TERM_CALLER.

1 1 TERM_CALLEE proceeds to create the UART_COMBINE subprocess.

1 1 TERM_CALLER, on receiving the message from TERM_CALLEE, will notify the 
originating EMUL_GEN process.

1 2 EMUL_GEN creates the subprocess TERM_READ on the user's behalf. It will send 
a carriage return via IPO to Initiate the remote login.

Note: The events represented by 11 and 11 can occur concurrently.
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at some later request. Fig. 
events that take place when a 
be noted that only 
(TERM_WRITE,UART_COMBINE) and 
deleted.

3.9 describes the sequence of 
line is released. It should 
the sub-process pairs - 
(TERM_READ,SILO) are actually

3.5 Virtual Terminal Protocol

As we have seen, the Terminal Server Processes and its 
spawned subprocesses communicate across the network using 
certain rules and conventions; they constitute the Virtual 
Terminal Protocol. It is noteworthy to point out that the 
IPC primitives themselves do not form the Virtual Terminal 
Protocol. The protocol is formed by the specific rules and 
conventions in the naming and addressing of socket names, in 
the content and size of message fields, and the fixed order 
by which certain primitives are used.

In an effort to formalize the protocol, it is described 
in tables in terms of the types of messages, their functions 
and message formats. In addition, supplementary tables 
describe the sequence of message exchange that occur over 
time t. This approach is based on DECNET's formalization of 

its Network Virtual Terminal Protocol [VAXMAN G].
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Remote Node Network Interlace Remote Node

Fig. 3.9 Releasing a virtual terminal line

1. The user enters the escape sequence to Initiate the line release. 
TERM_READ sends a message to EMUL_GEN and dies.

2. EMUL_GEN then notifies TERM_WRITE to 'commit suicide'.

3. EMULJSEN then notifies TERM_CALLER to Initiate line release at the
remote node and then 'commits suicide".

4. TERM_CALLER notifies TERM_CALLEE at the host node via IPC.

5. TERM_CALLEE notifies UART_COMBINE and SILO subprocesses to
'commit suicide'.
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The Virtual Terminal Protocol can be subdivided into 
two categories: the protocol which is observed by the 
Terminal Server processes - called the Server Protocol - and 
the protocol which is observed by the spawned subprocesses - 
called the Virtual Line protocol.

Table 3 shows the Server Protocol message types, their 
functions, the originating process initiating the request 
and the message format. It should be noted that all message 
types are implemented as IPC communication primitives. Fig. 
3.10A then describes a successful binding sequence. An 
unsuccessful binding sequence is describes in Fig, 3.10B. 
Similarly, the Virtual Line Protocol is described by Table 4 
and Fig. 3.11.

3.6 Flow Control

End-to-end flow control in the RTA is enforced by:
(1) The XON/XOFF signals from the Remote Terminal's screen 

hardware to Driver:
The Terminal hardware stores incoming characters in a 
64-character buffer and processes them in a FIFO basis. 
When the buffer content reaches 32 characters, the
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Table 3 Terminal Server Protocol

Message Function Source IRC Format

Bind 
Request

Requests a binding; 
identifies the 
specific remote node 
and specific process.

TERM_CALLER )Uffer

SendDG(i,j,b

own_mbx 
3ource_node_name

uffer, 16)

Bind 
Accept

Accepts a Bind 
Request; identifies 
the granted virtual 
line and the remote 
process that 
originated the call.

TERM_CALLEE buffer

SendDG(i,j,bi

own_mbx 
line_number

jffer, 16)

Bind
Ack

Acknowledges the 
Bind Accept

TERM_CALLER 1 ’+'

SendDG(i,j,

] ack_message

buffer,8)

Bind 
Reject

Rejects a virtual 
line

TERM_CALLEE buffer

•O"
SendDG(i,j,

own_mbx 
line_number

buffer, 16)

Unbind Releases a virtual 
line

TERM_CALLER buffer

SendDG(i,j,

1ine_number 
kill_meisage

buffer,16)
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Fig. 3.10A A successful binding sequence

Host Node Message 
Description

TERM_CALLER

Messages Remote Node Message 
Description

TERM_CALLEE

Request to establish 
a virtual terminal

Bind Request
—Accepts the Bind Request;
r searches for an available

line. line. There Is one available.

Notifies EMUL_GEN.

EMUL_GEN creates

- Bind Accept

Bind Ack — K Creates SILO and five
TERM WRITE and notifies * UART subprocesses and waits for
TERM_CALl.ER when acknowledgments
TERM-WRITE Is actually 
created.

of their successful creations.

Notifies EMUL GEN.
Bind Accept

Sends the line number again andc creates SILO 
subprocess.

Receives message from 
EMUL GEN to

Unbind
\ Releases line by deleting
* UART COMBINE and SILO

release line. subprocesses.

Host Node Message 
Description

TERM_CALLER

Messages Remote Node Message 
Descriptions

TERM^CALLEE

Request to establish a virtual 
terminal line

Bind Request

Bind Reject

for an available line. There is none 
available.

Notifies EMUL_GEN of line 
reject

Sends a message to reject request

Fig. 3.1 OB An unsuccessful binding sequence
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Table 4 Virtual Line Protocol

Message Function Source Destination IRC Format

Send byte Sends a byte 
of data

TERM_READ SILO
buffer

SendVC(m,buffer,1)

Receive 
byte

Receives a 
byte of data SILO TERM_READ buffer

RcvVC(m,buffer,1)

Send String Sends a string of 
bytes of variable 
length

UARTCOMBINE TERM_WRITE
buffer

SendVC(m, buffer,size)
Receive
String

Receives a 
string of bytes 
of variable 
length

TERM_WRfTE UART_COMBINE
buffer

RcvVC(m,buffer, size)
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Node Message Description Messages Node Message Description

SILO requests to receive Receive Byte _xbyte

. Send Bytec

AND

TERM WRITE romiocte fn
» Receive String

receive a string of bytes
k

String of bytes received
Send String

) UART_COMBINE sends a

string of bytes.

Fig. 3.11 Interprocess Communication on a Virtual Line
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terminal will transmit XOFF (octal 023). On this 
signal, the host stops transmission to the terminal. 
Eventually, if the host stops transmitting, the 
terminal will deplete the buffer. When 16 characters 
remain in the buffer the terminal will transmit XON 
(octal 028) to signal the host that it may resume 
transmission. The Virtual Terminal unit's TTSYNC 
characteristic must be set for the driver to respond to 
the XON/XOFF signal.

(2) The XON/XOFF signals from the Driver to Remote 
Keyboard:
When the typeahead buffer for the Virtual Terminal is 
full, the driver sends a XOFF character to the Remote 
Keyboard. The keyboard hardware will then "freeze" all 
user input until the typeahead buffer clears. Then the 
driver will send a XON to the remote keyboard to free 
the keyboard. The Virtual Terminal unit's HOSTSYNC 
characteristic must be set for the keyboard to respond 
to the XON/XOFF signal.

(3) The inherent FIFO nature $QIO and the added 
stop-and-wait of $QIOW system service:
The VMS $QIO system service allows a user to initiate 
an I/O operation by queuing a request to the device's 
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associated driver. Once the I/O operation has been 
initiated, control will be returned to the user. The 
total size of the buffering, and the maximum size per 
message are adjustable $QIO parameters. The user then 
has the option of carrying on with the next instruction 
or it can wait for the I/O operation to complete. The 
$QIOW service caters to this feature. The FIFO nature 
of $QIO and the additional stop-and-wait feature of 
$QIOW are utilized by UART_COMBINE, the UART and SILO 
processes at the Remote Node - see Fig. 3.12.

The UART_COMBINE does a $QIOW Read from a mailbox 
and waits for input. When it finally reads a message 
from the mailbox, it will write this message to the 
remote TERM_WRITE via the SendVC primitive. Therefore, 
UART_COMBINE never has to go into a busy loop to wait 
for input from the mailbox.

Now the purpose of the UART process is to wait for 
input from the terminal driver. On the arrival of 
input, UART writes the string to mailbox and queues 
another $QIOW Network Read as soon as possible. 
Therefore, UART does a $QIO Write to the Mailbox and 
does not bother to wait for I/O completion to the 
mailbox.
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Fig. 3.12 Using the $QIO for flow control
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The purpose of SILO, on receiving a byte via the 
RcvVC IPC primitive, is to write as quickly as possible 
to the terminal driver ("Input Interrupt") and return 
to wait for the next byte from the network. Therefore, 
it makes sense to do a $QIO to the Terminal Driver and 
go back to wait for the byte input from the network.

(4) The arrangement of IPLs within the Driver:
The arrangement of IPLs as described in Sections 3.2.1 
and 3.2.2 allow the simulation of interrupts by using 
the Network $QIO Reads and Writes. However, as was 
pointed out, the flow control was not failsafe when 
system activity was high. Whereupon, the driver 
storage buffer (described in 3.2.1) was used to correct 
the situation.



CHAPTER 4

CONCLUSIONS

Of the three most popular application-level software 
services: Virtual Terminal, File Transfer and Electronic 
Mail, providing the Virtual Terminal feature is perhaps the 
most complicated of them all. While the implementation of 
File Transfer and Electronic Mail can be readily achieved by 
using programming techniques available to the general user, 
we have seen that providing a Virtual Terminal service 
requires programming a kernel-mode Virtual Terminal Driver 
at the host node.

Although the design of Remote Terminal Access relied on 
the IPC for network interprocess communication, the design 
and implementation of the Remote Terminal Driver itself is 
implementation independent. That is, the key feature of the 
design is the method by which the I/O from the external 
interface to the driver is no longer carried out by hardware 
interrupts but by regular system calls. Thus, the Virtual 
Terminal (or Remote Terminal Access) can be implemented on 
any network communication software. Another advantage of 
the design is that the implementation of a terminal server 
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and terminal emulator modules at the remote node is 
relatively simple. The remote node need only to conform to 
the Virtual Terminal Protocol to set up the virtual circuits 
and remote terminal access would be a reality. Yet another 
advantage, and this is the cornerstone of this 
implementation, is the full DEC VAX/VMS terminal 
compatability of remote terminal driver.

However, the design is not without its shortcomings. 
The empirical solution of using a storage buffer to the 
problem of "overtaking" (Section 3.2.1) does not guarantee, 
under very heavy loads, that all output will appear at the 
screen of the remote terminal. While we could increase the 
storage buffer size, the tradeoff is the preservation of 
system dynamic memory versus the importance of guaranteed 
output. Given the infrequency of the "overtaking" condition 
culminating in storage buffer overflow, the preservation of 
system dynamic memory would seem to be the overriding 
concern. This is especially true since the increase in 
buffer space per unit is multiplied by the number of remote 
terminal units that are made available for remote login. 
Another shortcoming, perhaps a more serious one, is the 
inability of TERM_CALLEE to kill the UART process once it 
has started (Section 3.2.1), and as already mentioned, a 

guaranteed, cleaner method requires further knowledge of 
restricted VMS system routines.
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Yet another shortcoming is that the speed of the 
virtual terminal line is comparable to that of a 1200 baud 
line. The main reason for this slowness in response is that 
the virtual line is a full-duplex line. That means that any 
character typed at the remote keyboard travels round-trip to 
the host system and back to the remote CRT. An improvement 
in responsiveness would entail the development of a 
"front-end" line processor at the remote node that would be 
constantly aware of the mode the remote user is in. For 
example, if the user is in the command line mode (VMS DCL), 
the "front-end" line processor would local-echo all 
characters and send the string to the terminal driver at the 
host node only when a carriage return key is entered. 
However, the line-processor would revert back to a 
full-duplex line when the user is in the VMS Editor and 
other modes that have byte oriented inputs. The complexity 
of "front-end" line processor is substantial, considering 
the out-of-band Control-Y, command recall, line editing and 
other features that are available in the VMS DCL 
interpreter. In addition, there would be some overhead 
involved in having the "front end" line processor having to 
constantly keep tab of the current user mode.
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Since the Remote Terminal Access, in its current form, 
is usable and since all these shortcomings are rectifiable, 
the design of the Remote terminal Access was a very- 
worthwhile project.

4.1 Summary

The topic of thesis concentrates on the design and 
implementation of remote terminal access from any computer 
to a VAX/VMS system. The only prerequisite condition is 
that the computer - the remote node - which accesses the 
VAX/VMS node - the host node - be on the same heterogenous 
network system based on the ETHERNET standard.

The strength of this design is a fully VMS compatible 
terminal driver that provides all the screen-oriented 
capabilities of a DEC VAX/VMS Terminal Driver. Also, its 
design involves terminal server functions to manage the 
total number of remote logons, and to set up and release 

virtual terminal lines.

4.2 Future Extensions
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We suggest the following future extensions:
(1) Crash recovery

In the current implementation, crash-recovery, in both 
the IPC and the RTA, is not taken into consideration. 
In the event of a crash, especially during the setting 
of the virtual terminal line, the terminal server on 
the working node will get "hung-up". If the node was 
the remote node, this would prevent users at that node 
from remotely accessing to other host nodes that may be 
alive. Since crash recovery, in its strictest sense, 
should be the responsibility of the underlying network 
communication software, a future extension would be to 
implement a foolproof crash recovery scheme on the IPC. 
Then, the design of the RTA should be modified to take 

advantage of IPC's recovery scheme.

(2) Virtual Terminal Service to other systems.
A future extension could be to develop Virtual Terminal 
service to a UNIX system based on the RTA design on 
IPC. The existing RTA design could be used to set up 
and release virtual terminal lines. However, a 
kernel-based Virtual Terminal Driver will have to be 
implemented on UNIX system.
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