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ABSTRACT: 

 

During the Laramide Orogeny, the crystalline core of the Beartooth Plateau in northwest 

Wyoming and south-central Montana was thrust over Mesozoic and Paleozoic rock in the 

adjacent Big Horn Basin. Omar et al. (1994) reported apatite fission-track data of 30 

samples from ~4 km of vertical section through the Red Lodge corner of the Beartooth 

overthrust.  These authors presented two hypotheses to explain these data, both of which 

describe rapid uplift in the Paleocene with a second uplift event during the late Miocene 

or early Pliocene.  The period between these two uplift events was characterized by 

Oligocene and Miocene sedimentation (Hypothesis A), or by tectonic quiescence 

(Hypothesis B).  In an attempt to test the hypotheses of Omar et al. (1994), apatites and 

zircons from Precambrian crystalline clasts within the synorogenic Beartooth 

Conglomerate were analyzed by (U-Th)/He methods. In all, 25 apatite and 15 zircon 

aliquots from 5 basement clasts were measured. Two clasts presented average zircon ages 

older than average apatite ages, which I interpret to be the result of natural radiation 

damage (raising the closure temperature of apatite and lowering the closure temperature 

of zircon), the possible presence of zircons with uranium-rich rims, or zircon inclusions 

within apatite grains. Two apatite aliquots gave ages younger than the depositional age of 

the conglomerate (~55 Ma), suggesting low helium closure temperatures or an incorrect 

assessment of the age of deposition.  All remaining apatite apparent ages (~60 Ma to 

~190 Ma) and zircon apparent ages (~100 Ma to ~800 Ma) suggest a period throughout 

the Phanerozoic characterized by slow burial since Cambrian exposure, which continued 

until rapid uplift initiation of the Beartooth Range (~60 Ma). 
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1. Introduction 

A shift from normal high-angle subduction to flat slab subduction of the Farallon 

plate beneath the North American plate along the west coast of North America caused 

thick-skinned, basement-involved shortening throughout the Rocky Mountains of 

Colorado, Wyoming, and Montana (Dickinson and Snyder, 1976; Coney and Reynolds, 

1977; Bird, 1998; Saleeby, 2003; DeCelles et al., 2004). Today, these basement block 

uplifts, which formed from late Cretaceous to Eocene time, remain prominent features of 

the Rocky Mountain foreland extending up to 1000 km inland of the active margin 

(Foose et al., 1961; Figure 1). The Beartooth Range of northwest Wyoming and south-

central Montana is one of three major crystalline-cored uplifts flanking the Bighorn Basin 

that rose from the Cretaceous foreland basin of the western United States during the 

Laramide Orogeny (Figure 1).  This  ~80 by 40 km elevated crustal block of Precambrian 

crystalline basement trending northwest is nearly devoid of ~3-4 km of Paleozoic and 

Mesozoic sedimentary cover-rock present prior to uplift initiation (Foose et al., 1961). 

Uplift of the block during the Laramide Orogeny has generally been interpreted as the 

result of fault-propagation folding associated with movement along the 30-35° west-

dipping Beartooth and Line Creek faults (Figure 2; Wise, 1983; Blackstone, 1986; 

DeCelles, 1991b;).  It is likely that the Beartooth Range was not emplaced as a single 

thrusted block but rather was first deformed internally by folding and faulting (Wise, 

1983; DeCelles 1991b). Wise (1983) suggests, for instance, that the anticlinal fold of 

Clarks Fork Canyon (Figure 2 and 10) in the eastern Beartooth Range may have been an 

early structure of the Bighorn Basin floor, later structurally reworked by the Beartooth 

Thrust, tilting it to its current position.  Vertical displacement of the Red Lodge corner of 
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 the Beartooth Range associated with movement along the Beartooth and Line Creek 

thrusts has been estimated by regional cross-section of the Bighorn Basin constrained by 

well data (Blackstone, 1986), synorogenic conglomerate analysis (DeCelles, 1991b), and 

by thermochronological studies (Omar et al., 1994; Peyton et al., 2012) to be between ~6-

12 km since early Paleocene time, placing Precambrian basement rock on top of  

Paleozoic and Mesozoic sedimentary rock of the adjacent Clark’s Fork Basin (Foose et 

al., 1961; DeCelles et al., 1991b, Omar et al., 1994). 
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Although the age of uplift initiation (early Paleocene) and early-Laramide 

kinematics of the Beartooth block are generally well agreed upon, less is understood 

about the timing and amount of post-Laramide uplift due to the absence of middle-

Paleocene and younger rocks on the top of the Beartooth block as well as within the 

neighboring Bighorn Basin (Foose et al., 1961; DeCelles, 1991a). In this light it seems 

plausible the application of low-temperature thermochronometers on samples derived 

from the crystalline core of the Beartooth Range may have the potential to offer a better 

understanding of the timing of post-Laramide uplift and associated deformation. 
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1.1 Apatite Fission-track Data 

Omar et al. (1994) reported results of apatite fission-track analyses (Figure 5) 

from samples collected from the southeast margin of the Beartooth Range (Figure 3).  A 

fission-track is a narrow zone of deformation within a uranium-bearing grain that is 

caused by the movement of particles following the spontaneous fission of 238U.  Thus, 

fission-track density, the number of tracks per unit surface area, is a function of the 

apparent age of the grain and the concentration of 238U (Naeser, 1979).  An advantage of 

fission-track analysis is that it also provides valuable information about the grains 

temperature-time history (Omar et al., 1994).  Omar et al. (1994) analyzed 26 samples 

from the upper plate of the Beartooth overthrust within the uplifted crystalline basement 
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block; 16 of which were collected from exposure along U.S. Route 212 south of Red 

Lodge, Montana and 10 from the subsurface acquired from the Amoco Beartooth #1 well 

(Figures 3 and 4) drilled 7 km south of Red Lodge, Montana (Omar et al., 1994). The 

suite of samples also included 1 sample from the shear zone and 3 sedimentary rock 

samples from the lower plate (footwall). 

These 30 samples span 4 km of vertical section through the structure of the Red 

Lodge corner of the Beartooth Plateau (Omar et al., 1994).  Apatite fission-track data 

from the samples (Figure 5) fell into two distinct groups based upon apparent age and 

mean fission-track length.  The authors conclude from these data that the Red Lodge 

corner of the Beartooth overthrust was rapidly uplifted by 4-8 km during the late 
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Paleocene as well as a subsequent late Miocene-early Pliocene (15 – 5 Ma) ~4 km uplift 

event responsible for the present day topographic relief of the Beartooth Plateau. 

 Omar et al. (1994) present two hypotheses that explain the apparent two-stage 

uplift interpreted from their data. Figure 6 illustrates the initial condition of both 

hypotheses based on the following geologic constraints: (1) The upper and lower 

boundaries of the fission-track partial-annealing zone are ~70 and ~125°C respectively. 

(2) The point of break in slope was ~6.8 km (~125°C) below sea level prior to the 

Laramide uplift event. (3) By the end of the Laramide event (early Eocene), the Beartooth 

block was ~600-800 m a.s.l. (4) Immediately before the second stage of uplift, the lowest 

three samples in the well were between 80 and 90°C. 
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Hypothesis A: (Figure 7) After the first episode of uplift ended (early Eocene 

time), the lowest three samples from the upper plate were between 65 and 73°C. In order 

for these samples to have been between 80 and 90°C before the onset of the second 

period of uplift (15 – 5 Ma), this hypothesis suggests burial by 1-2 km of Oligocene or 

Miocene sediment. 

Hypothesis B: (Figure 8) Here no mid-Cenozoic sedimentation is required but 

rather a period of tectonic quiescence.  If cooling slowed or stopped after the first episode 

of rapid uplift while the samples at or near the break in slope were at temperatures <70°C 
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then samples near the bottom of the section would have stalled within the partial 

annealing zone at temperatures between 80-90°C for adequate time before the onset of 

the Miocene – early Pliocene uplift event to produce the observed fission-track data. 

1.2 Apatite (U-Th)/He Data 

Over the past two decades the application of (U-Th)/He thermochronometry to 

better understand the timing and extent of regional deformational processes has increased 

as apatite helium diffusion has become better understood. (Shuster and Farley, 2003; 

Shuster et al., 2006; Flowers et al., 2009; Spiegel et al., 2009) With an average closure 

temperature of ~75ºC, the apatite-He system has, potentially, the ability to better 
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understand that which occurs within the uppermost 1-3 km of the Earth’s surface (Wolf et 

al., 1996). Peyton et al., (2012), as part of a larger synthesis study of the low-temperature 

history of the Laramide ranges, reported apatite-He ages from 24 samples (Figure 9) 

collected both from the surface and subsurface of the Beartooth Range which resembles 

the sample suite measured by Omar et al., (1994). From the data obtained in Peyton et al., 

(2012) the authors suggest that the onset of rapid uplift of the Red Lodge corner of the 

Beartooth Range began no later than ~58 Ma.  While the trend in ages broadly 

approximates results of Omar et al. (1994), Peyton et al. (2012) report the data cannot be 

interpreted to better understand the timing and extent of post-Laramide deformation. 
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1.3 (U-Th)/He Data from Crystalline Conglomerate Clasts 

To date, thermochronogical studies of the basement-cored uplifts of the Laramide 

province have been applied to surface and subsurface samples in-place within the ranges. 

Because many of these ranges are flanked by synorogenic conglomerates rich in range 

derived crystalline basement clasts, it seems reasonable that a low-temperature 

thermochronological investigation of grains within these clasts may offer tests of the 

post-Laramide hypotheses proposed by Omar et al., (1994).  This study applies the (U-

Th)/He thermochronometer to apatite and zircon grains from clasts harvested from within 

the Beartooth Conglomerate (Figure 10 and 11) with the goal of testing the two 

hypotheses of Omar et al. (1994). 

Informally defined by DeCelles (1991a; Figures 10 and 11) as the belt of coarse, 

Upper-Paleocene conglomerate that extends around the perimeter of the Beartooth Range 

from Clark’s Fork of the Yellowstone River in Wyoming to West Red Lodge Creek in 

Montana, the Beartooth Conglomerate was deposited in angular unconformity above 

Cretaceous rocks in the Bighorn Basin (DeCelles et al., 1991b). The Upper-Paleocene 

depositional age determination is widely agreed upon though the name and areal extent 

vary. Floral data reported by Hickey (1980) from within the Beartooth Conglomerate 

suggest a late Paleocene age and the unit is reported to interfinger with the rocks of the 

Fort Union Formation, thought to be late Paleocene based on floral and faunal fossil ages. 

These ages are consistent with Fleuckinger, (1972) and Jobling, (1974). Intra-formational 

structures indicative of growth strata and evidence of synorogenic deposition, including 

several angular unconformities, exist within the Beartooth Conglomerate, which formed 
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as proximal fan sedimentation rotated eastward as a result of uplift of the Beartooth 

Range. Each successive uplift stage caused basin-ward rotation and stepwise deposition 

of conglomeratic facies which lie in angular unconformity on top of one another (Dutcher 

et al., 1986; DeCelles et al., 1991b). Figure 10 shows the clast-type distribution within 

the Beartooth Conglomerate. Precambrian crystalline clasts are reported by DeCelles et 

al., (1991b) to be present within the facies between Bennett Creek and Line Creek 

(Figure 10).   

Prior to processing the samples collected for this study, predicted apatite-He ages 

were obtained using HeFty modeling software (Ketchem, 2005) for samples that lie just 

below the break in slope described by Omar et al., (1994) (Figure 5) and samples at the 

bottom of the well for both suggested hypotheses and are summarized in Table 1. 

Because the authors provide uncertain age ranges for the end of the Laramide 

event (early Eocene) and the onset of the second period of uplift (15 – 5 Ma), apparent 
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ages were modeled using both the upper and lower limits of given age ranges. In 

addition, two hypothetical samples were modeled initially residing at temperatures of 70 

and 100°C before the onset of the Laramide Orogeny (Figures 6,7, 8, Table 1).  Samples 

at hypothetical depths, according to the proposed hypotheses of Omar et al., (1994), 

would have been eroded and deposited in the adjacent basin by the end of the Laramide 

event. Thus, these predicted apatite apparent ages represent possible ages for crystalline 

clasts collected from the Beartooth Conglomerate.  

Predicted apatite apparent ages from samples collected near the break in slope 

following the temperature-time path suggested by Hypothesis A range from 58.6 Ma and 

54.2 Ma. Samples from the bottom of the well range between 10-2.9 Ma. Ages of 

samples from both 70 and 100°C range between 61 and 58 Ma, respectively.  Modeled 

apatite-He ages following the temperature-time path of Hypothesis B range between 57.5 

Ma and 52.6 Ma for samples near the break in slope and from 10 Ma to 3 Ma for samples 

at the bottom of the well. Again, as in Hypothesis A, samples beginning at temperatures 

of 70 and 100°C range between 61Ma and 58 Ma. 

 From these predictions some inferences can be made. For instance, if apatite 

apparent ages from the Beartooth Conglomerate are much older than ~61 Ma, it may 

suggest that the thickness of Paleozoic and Mesozoic sedimentary cover (~3.4 km) used 

in the two hypotheses of Omar et al. (1994) has been over estimated. On the other hand, 

if apatite-He ages from clasts within the Beartooth Conglomerate are much younger than 

~58 Ma it would suggest, possibly, that erosion of the Beartooth Plateau and deposition 

of the Beartooth Conglomerate may have carried some time into the Eocene. 
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2. Sampling, Descriptions and Methods 

 With the motivation of contributing to the elucidation of post-Laramide 

deformation in the Beartooth Range with respect to the two hypotheses presented by 

Omar et al., (1994), six crystalline clasts (LC1-A through LC1-F) were collected from the 
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synorogenic Beartooth Conglomerate.  All samples were harvested from a mixed-clast 

facies exposure along Line Creek described by DeCelles (1991a; Figure 10 and 11). 

LC1-A (Figure 12) is a moderately weathered granite composed of quartz, 

potassium feldspar, plagioclase and biotite. Grain size averages around 3mm and the 

sample shows slight banding of clay minerals. 
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 LC1-B (Figure 12) is a moderately weathered dark green diorite dominantly 

composed of anhedral amphibole and euhedral plagioclase feldspars occurring in equal 

proportions.  The feldspar grains range in size from .1-2 cm and are randomly distributed 

throughout the sample with no preferred orientation.  Alteration is common in the 

amphibole where oxidation has occurred. 

LC1-C and LC1-D (Figure 13) are moderately weathered, well-foliated granitic 

gneiess containing quartz, potassium feldspar, plagioclase feldspar and biotite. Most 

grains are anhedral and range in size from <1mm to 2cm. Foliation is defined by clay 

minerals and feldspars. 

LC1-E (Figure 14) is a moderately weathered, very well foliated granitic gneiss 

containing quartz, potassium feldspar, plagioclase feldspar and biotite.  The sample is 

banded alternating between dark biotite rich and lighter feldspar and quartz-rich areas. 

LC1-F (Figure 14) is a weathered, well-foliated garnet-bearing schist dominantly 

composed of amphibole, plagioclase and biotite which has been oxidized. 

Each of the six clasts were crushed, washed and sieved to produce two separate 

grain-size aliquots motivated by A) the necessity of grains large enough to contain a 

measureable amount of radiogenic helium as well as minimize the role of α-ejection on 

helium age (Farley et al., 1996; Farley et al., 2002) and B) the possibility that suitable 

apatite and zircon grains would not be present in the largest grain-size fraction.  The first 

aliquot was processed to contain grains 150-212 µm and the second (smaller fraction) 

150-125 µm.  
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Grains were then separated with bromoform to isolate minerals with densities >3.0 and 

again with methylene iodide to isolate minerals with densities >3.32, thus, separating 

apatite grains from zircon grains. Finally, each aliquot for the 6 samples was further 

separated by magnetic susceptibility. Apatite and zircon grains were selected via 

binocular petrographic microscopy based on crystal size, preservation of habit and 

absence of visible inclusions to mitigate the presence of parentless helium in apatite 

analyses and anomalously old apatite apparent ages (Vermeesch et al., 2006). Selected 

apatite and zircon grains were measured, photographed then packaged in Pt and Nd tubes, 

respectively. Radiogenic helium measurement was performed in the University of 

Houston Geochronology Laboratory using Nd:YAG laser heating and quadrupole mass-

spectrometry (Copeland et al, 2007).  Analyses were completed via isotope dilution and 

HR-ICP-MS at The University of Arizona following procedures described in Reiners et 

al. (2004). Raw ages were corrected for α-ejection in accordance with Farley et al., 

(2002).  In total, 40 samples were prepared for analysis. Five apatite aliquots (two of 

which contained multiple grains, the remaining three were single grain aliquots) were 

analyzed from cobbles LC1-B, LC1-C, LC1-D, LC1-E, and LC1-F and three single 

crystal zircon aliquots from LC1-B, LC1-C, LC1-E, and LC1-F. Photographs of all 

analyzed grains are shown in Figures 15-19. 
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3. Results 

 Apatite: Two aliquots containing multiple apatite crystals and three aliquots of 

single-grain apatite crystals from cobbles LC1-B, LC1-C, LC1-D, LC1-E and LC1-F 

were analyzed (Table 2). Measured aliquot apparent ages are plotted against their 

respective effective uranium concentration, (eU = [U] + 0.235 [Th]) in (Figures 20, 21 

and 22). Apparent ages for all aliquots are also plotted against grain-size represented as 

equivalent spherical radius (Rs), the radius of a sphere of equal surface area to volume 

ratio of the mineral calculated from physical grain dimension measurement (Figure 21 

and 22; Farley et al. 1996). 

Aliquots from LC1-B have a wide apparent age scatter from 29.9 ± 1.2 Ma to 62.1 

± 4.3 Ma. The two multi-crystal aliquots (MCA-LC1-B1-3 and MCA-LC1-B2-4) and one 

single grain aliquot (SCA-LC1-B-2) have similar ages of 51.7 ± 2.3 Ma, 62.1 ± 4.3 Ma 

and 60.7 ± 1.6 Ma, respectively. The remaining two single grain aliquots (SCA-LC-B1-3 

and SCA-LC1-B-4) report ages similar to each other, 34.7 ± 0.8 Ma and 29.9 ± 1.2 Ma, 

but are substantially younger than the other three aliquots. Cobble data, plotted apparent 

age vs. eU (Figure 21), show minor variance in eU between all aliquots and a positive 

correlation between apparent age and eU. The same data, plotted apparent age vs. grain 

size, a correlation is absent.  

Cobble LC1-C, a granitic gneiss, apparent ages scatter between 87.9 ± 2.9 Ma and 

179.2 ± 11.4 Ma. The multiple crystal aliquots have common ages of 177.6 ± 9.6 Ma and 

179.2 ± 11.4 Ma and two of the three single grain aliquots (SCA-LC1-C-2 and SCA-

LC1-4) have common ages of 87.9 ± 2.9 Ma and 89.9 ± 3.4 Ma. On an apparent age vs. 
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eU plot (Figure 21) a strong positive correlation shown. When plotted as apparent age vs. 

grain size a negative correlation is present where apparent age increases as a function of 

decreasing grain size.  

Ages obtained from cobble LC1-D show similar characteristics to samples LC1-B 

and LC1-B. A large age scatter exists between 88.7 ± 4.8 Ma and 150.4 ± 5.6 Ma and, 

once more, the multiple crystal aliquots have similar ages of 113.5 ± 4.5 Ma and 112.1 ± 

4.8 Ma. The three single crystal ages, however, share no age commonality within, nor 

with the multiple crystal aliquots. Plotted apparent age vs. eU these data correlate 

positively; however, a trend when apparent age is plotted against grain size cannot be 

established.  

Apparent ages measured from cobble LC1-E scatter from 85.3 ± 3.2 Ma to 149.2 

± 92 Ma. One multiple crystal aliquot (MCA-LC1-E4-6) and two single-crystal aliquots 

(SCA-LC1-E-2 and SCA-LC1-E-5) have similar ages of 115 ± 6.6, 107.5 ± 3.6 and 

109.5±5 Ma. The remaining multiple crystal apatite is ~30% older and the third single 

crystal aliquot (SCA-LC1-E-5) is ~30% younger. When apparent age is plotted against 

eU no trend is observed. Such is the case when plotted apparent age vs. grain size. 

 Cobble LC1-F aliquots report helium ages between 57.2 ± 3.8 Ma and 64.3 ± 2.1 

Ma for four of the five aliquots. The fifth (SCA-LC1-F-3) has an apparent age of 104.1 ± 

4.2 Ma. These data plotted apparent age vs. eU show a positive correlation and, to a 

lesser extent, on a plot of apparent age vs. grain size. 
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Zircons: Three single-grain zircon aliquots from samples LC1-B, LC1-C, LC1-E, and 

LC1-F were analyzed. Results are reported in Figure 23, 24, 25, and Table 3.  

Apparent zircon ages determined from cobble LC1-B show similar ages ranging 

from 103.5 ± 8.5 Ma to 112.9 ± 16.7 Ma.  Measured eU between the samples range 

between 200 ppm and 800 ppm and no correlation with age is visible (Figure 24). Grain-

size variance between the aliquots is minimal, thus when plotted against zircon apparent 

age, no trend is observed.  

Data generated from cobble LC1-C show a moderate dispersion of very young 

apparent ages between 4.9 ± 0.6 Ma and 11.9 ± 1.4 Ma. When apparent age is plotted 

against eU (Figure 24), we see a positive correlation, where the youngest sample (SCZ-

LC1-C-2) contains the lowest concentration of eU and oldest sample (SCZ-LC1-C-5) 
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contains the highest of the three aliquots. A positive correlation is also observed when 

these measured ages are plotted against grain size, between 70-86 µm.   

Cobble LC1-E zircons yields a narrow scatter of ages ranging between 42.5 ± 6.4 

Ma and 50.2 ± 8.2 Ma. No trend is visible when these ages are plotted against eU. On a 

plot of apparent age vs. grain size however, a positive correlation between the youngest 

zircon, SCZ-LC1-E-2 and the oldest SCZ-LC1-E-5.   

Samples measured from the final cobble, LC1-F, report comparatively old ages to 

the former three cobbles with the greatest age dispersion and uncertainty between the 

three aliquots. Ages from these aliquots range from 507.5 ± 72 Ma to as old as 874.7 ± 

86.5 Ma. When zircon ages from this cobble are plotted against the aliquots respective 

concentration of eU, no trend is visible. An observable trend between grain size and the 

apparent ages of these zircons is also absent. 
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Apatite vs. Zircon: To better understand the relationship between apatite 

apparent ages and zircon apparent ages measured from the same cobble, weighted 

averages were taken of apatite aliquots and zircon aliquots representing apparent apatite 

cobble ages and apparent zircon coble ages. When plotted against each other (Figure 25) 

with a 1:1 trend line, two cobbles LC1-B and LC1-F are observed above the line and 

represent, on a clast basis, that apatite apparent ages are younger than zircon apparent 

ages. Samples LC1-C and LC1-E fall below the line where apparent apatite ages are older 

than apparent zircon ages. 
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4. Discussion and Conclusions 

There are several problematic aspects of the data obtained from this study which 

must be addressed before a geologic interpretation can be made from them. First of which 

is the inversion of apatite and zircon apparent ages.  It is expected that samples taken 

from the same rock would show apparent zircon ages older than apparent apatite ages. A 

zircon from the sample would have spent more time below the closure temperature of 

~200°C (Reiners et al., 2001) and therefore, would accumulate more radiogenic helium 

than an apatite from the same sample, as apatite would not start accumulating helium 

until it reaches temperatures lower than ~70ºC.  However, two of the four cobbles 

analyzed (LC1-C and LC1-E) show average apparent zircon ages younger than apparent 

apatite ages (Figure 25). It is my interpretation that this relationship is an artifact of 

abnormally young zircon apparent ages rather than abnormally old apparent apatite ages.  

The weighted average of zircon aliquot apparent ages from sample LC1-C is 9.1 ± 0.6 

Ma, ~110 Ma younger than the average apparent apatite age of the same clast.  Sample 

LC1-E has an average apparent zircon age of 47.1 ± 4.3 Ma with coincident apatite 

aliquots averaging to 106.7 ± 2.1 Ma. One potential explanation for the anomalously low 

apparent zircon ages is a change from a crystalline matrix which impedes 4He mobility to 

a metamict state which greatly accelerates 4He diffusion as a function of natural radiation 

damage within old zircons having a long low-temperature thermal history (Hurley, 1954; 

Nasdala et al., 2004; Reiners et al., 2005).  It is important to note that the helium 

diffusion characteristics of zircon, whether apparent ages are young (Reiners et al. 2004) 

or old (Nasdala et al. 2004) do not change as long as [U] < ~1000 ppm and that a sharp 
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decrease in zircon apparent age occurs with increasing uranium concentration above 

~1000 ppm (Reiners, 2005).   The three single-grain aliquots from sample LC1-C (SCZ-

LC1-C-2, SCZ-LC1-C-3, and SCZ-LC1-C-5), have uranium concentrations of 3,278 

ppm, 3,915 ppm, and 4,130 ppm, respectively. Sample aliquots from LC1-E (SCZ-LC1-

E-2, SCZ-LC1-E-3, and SCZ-LC1-E-5) have similarly high uranium concentrations of 

5,220 ppm, 4,493 ppm, and 2,530 ppm. Thus, it is my interpretation that these zircon 

samples have young ages as a result of natural radiation damage producing lower closure 

temperatures than “normal” zircons. It is not clear from the data how low the closure 

temperature has been lowered, but it must be below the nominal lower limit of the apatite 

helium partial retention zone of ~50ºC. 

Another unexpected relationship exists in aliquots SCA-LC1-B-3 and SCA-LC1-

B-4 which have apparent ages of 34.7 ± 0.8 Ma and 29.9 ± 1.2 Ma respectively, younger 

than the generally accepted Upper-Paleocene depositional age of the Beartooth 

Conglomerate. The remaining three aliquots from this cobble have apparent ages between 

51.7 ± 2.3 Ma and 62.1 ± 4.3 Ma. If the common ages of aliquots SCA-LC1-B-2, MCA-

LC1-B1-3, and MCA-LC1-B4-6 are taken to be true (a reasonable assumption given the 

remainder of all aliquots have apparent ages older than ~55 Ma), perhaps the 

anomalously low ages of the aliquots in question are the product of lower closure 

temperatures for some unrecognized reason (i.e., processes which lead to a lowering of 

closure temperature on a grain by grain basis of approximately the same size from the 

same sample are not described in the literature). That said, all single grain aliquots from 

the sample have common eU concentrations and grain sizes yet, measured 4He from the 
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young aliquots are comparatively much lower (0.8 ncc and 0.6 ncc) than the third (1.2 

ncc) suggesting the possibility of lower closure temperatures, preferential zoning of U 

and Th towards the rim of the grains causing young ages as a result of alpha-ejection or, 

potentially, unaccounted for analytical error. 

The remainder of the data obtained from this study are consistent with the 

depositional age of the Beartooth Conglomerate, that is, all aliquots have apparent ages of 

~55 Ma and older. Another observation that must be addressed is scatter of apparent 

apatite ages within individual clasts.  Corrected ages determined from this study have 

ages spanning over 100 million years. Single-sample apparent apatite age scatter as well 

as anomalously old apparent apatite ages compared to coincident apatite fission-track 

data is commonly reported from a variety geologic settings (Crowley et al., 2002, Green 

et al., 2006; Peyton et al., 2012). Several causes of apparent apatite age scatter are the 

effect of natural radiation damage on helium diffusion (Shuster et al., 2006; Flowers et 

al., 2009), the effect of grain size (Reiners and Farley, 2001) and the presence of U- and 

Th-rich inclusions (House et al. 1997, Vermeesch 2006).  Shuster et al. (2006), with the 

motivation of characterizing the relationship between apatite apparent age and eU 

concentration as a possible mechanism to describe the occurrence of scattered apparent 

apatite ages, conducted stepwise degassing diffusion experiments on 39 apatite samples. 

Results from ther study indicate that the closure temperature of apatite varies from ~50 to 

115ºC. Shuster et al. (2006) argue that [4He] is a proxy for natural radiation damage 

accumulated below the closure temperature and this damage acts to impede the mobility 

of radiogenic helium in the form of helium “traps” thereby increasing the grains bulk 4He 
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retentivity, leading to older apparent ages as a function of increasing natural radiation 

damage and cooling rate.  This helium trapping model (HeTM; Figure 26), coupled with 

a 4He production-diffusion model indicated that the closure temperature of apatite will 

vary with both cooling rate and with eU concentration (Shuster et al., 2006). 
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Reiners and Farley (2001) describes the relationship between grainsize and 

apparent apatite age from a sample suite collected from the Bighorn Mountain Range 

which demonstrates that larger crystals retain more radiogenic helium than smaller 

crystals and thus, large crystals will measure older apparent ages than coincident smaller 

crystals.  Vermeesch et al. (2006) suggests that if an inclusion of high [U] and [Th] (e.g., 

zircon) were present  within a measured apatite sample, α-producer concentration may go 

under reported with respect to radiogenic helium as the methods used to dissolve sample 

apatite grains are not aggressive enough to dissolve zircon thus, leading to an 

overestimated apparent apatite age.  It is my interpretation that apparent age scatter 

present within many samples of this study can be explained by one or a combination of 

these factors coupled with slow cooling i.e., extended periods of time spent in or near the 

apatite helium partial retention zone. 

I interpret, barring the two aliquots with apparent ages younger than conglomerate 

depositional age, based on the apatite data from sample LC1-B to have approximately the 

same closure temperature (~65ºC) and cooled through this temperature ~60 Ma. Coupled 

with zircon apparent ages from sample LC1-B (~100 Ma) it is possible that this sample as 

a whole experienced slow cooling from ~190ºC to ~65ºC over a period of roughly 40 Ma.    

Apparent apatite ages obtained from aliquots of sample LC1-C show a bimodal 

distribution which is interpreted to be linked to eU concentration. Two single-grain 

samples, SCA-LC1-C-2 and SCA-LC1-C-4, have apparent apatite ages of 87.9 ± 2.9 Ma 

and 89.9 ± 3.4 Ma, respectively and eU concentration of 18.9 ppm and 17.4 ppm. The 

remaining three aliquots have apparent ages of >140 Ma. Effective uranium 
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concentrations of these samples are 28 ppm and higher. The positive correlation between 

apparent apatite age and eU can be seen in Figure 21. I interpret the bimodal distribution 

of apatite data obtained from clast LC1-C, and the observable dependence on eU 

concentration, to be the result of natural radiation damage. There is, however, another 

relationship observed whereby the multiple crystal aliquots from the sample (smaller in 

grain-size) have some of the oldest ages. This is at odds with the finding of Reiners and 

Farley (2001). One possibility allowing these smaller grained multiple crystal aliquots to 

have older apparent ages is the presence of U- and Th-rich inclusions (House et al., 1997, 

Vermeesch, 2006) despite the fact that great care was taken to select only the most 

pristine apatites for age determination. Smaller than observable U- and Th- rich 

inclusions may be interpreted to have little effect on the bulk producer concentration 

however, multiple grain aliquots from this study contained 15 individual apatite grains 

thus, the probability of  measuring grains containing inclusions increases. I interpret these 

clasts to have spent ~100 Ma cooling slowly through each apatite’s respective helium 

partial retention zone prior to the onset of rapid uplift of the Beartooth Plateau. Aliquots 

from sample LC1-D and LC1-F, also show a positive correlation between eU 

concentration and apparent age and are interpreted to demonstrate the influence of natural 

radiation damage on closure temperature and that slow cooling though variable closure 

temperatures is responsible for the scatter in ages within each sample. Shuster et al., 

(2006) suggest that the closure temperature in apatite can range from ~50 to ~115ºC 

(Figure 27) as a function of cooling rate and eU concentration. It is also suggested even a 

small variance in eU concentration between intra-clast apatites, such is the case in the 

samples measured in this study, can change the closure temperature of an apatite by 
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~5ºC. Thus, I interpret radiation damage to be the leading cause of age scatter. However, 

the contributions of radiation damage, grain size effects and possible uranium and 

thorium rich inclusions do not explain all apparent age scatter within samples suggesting 

another cause, perhaps U and Th zonation, or analytical error.  

Based on the data measured from samples LC1-C, LC1-D, LC1-E, LC1-F, and the 

apatite data from LC1-B, it is my interpretation that these samples resided within  ~4 km 

of a column of presently eroded basement, an additional ~1 km of  basement used in the 
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hypotheses of Omar et al. (1994), in middle Cambrian time and was never buried deeper 

than ~3-4 km. The maximum burial depth being obtained in the late Jurassic-early 

Paleocene just before the onset of rapid uplift of the Beartooth Plateau. During the period 

of Phanerozoic burial, I suggest that each clast underwent slow cooling in or near the 

apatite partial retention zone, prior to uplift initiation ~60 Ma.  Forward and Inverse 

modelling using HeFTy (Ketcham, 2005) demonstrate that the above thermal history on 

an aliquot by aliquot basis, seems plausible (Figure 28). However, when multiple aliquots 

from the same sample with a large scatter of apparent ages are modeled, no good paths 

are established. I attribute this to the inability of the software to resolve the presence of 

multiple closure temperatures within clasts and therefore does not preclude the suggested 

thermal history. Further, the thermal history can also be resolved by HeFTy when apatite 

apparent ages and zircon apparent ages from sample LC1-F are used as inputs (Figure 

28). However, modelling in HeFTy cannot resolve apparent apatite ages with apparent 

zircon ages (~100 Ma) measured from sample LC1-B. 
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From this study I conclude the amount of basement overburden (~3-4 km) used in 

the hypotheses of Omar et al., (1994) is supported by apparent apatite and zircon ages 

measured from clasts within the Beartooth Conglomerate. Further, results presented in 

this study are consistent with the late-Paleocene depositional age designation of the 

Beartooth Conglomerate i.e., all measured apatite aliquots, with the exception of two, 

have ages ~55 Ma and older. These data indicate subdued tectonism since the Cambrian, 

when present-day eroded basement of the Beartooth Range was at or near the surface 

prior to Paleozoic sedimentation.  Burial continued throughout the Mesozoic just prior to 

uplift, erosion and deposition during the late-Paleocene.  
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