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ABSTRACT 

With the demand for oil rising, unconventional oil reservoirs have taken a 

prominent role in the United States as a source of crude oil.  Different methodologies to 

estimate reserves for shale gas and coal bed methane have, thus far, proved to be reliable, 

but no simple yet accurate workflow has been generally accepted to forecast production 

and estimate reserves for shale oil.  To fill this gap in technology, we proposed and 

validated a workflow that integrates analytical methods with empirical methods.  The 

final methodology is both easily applied and accurate. In developing the final workflow, 

we evaluated several alternatives, most of which proved to be unsuitable.  We also 

investigated the use of a filter to eliminate outliers in a systematic way, as proposed by 

Rastogi (2014). 

The workflow was successfully applied to three of four volatile oil wells in the 

Eagle Ford shale, with similar results.  The analytical model that best matched the wells 

is called the Stimulated Reservoir Volume (SRV) Bounded Model by the software 

marketer Kappa. We tested this and other models using a Beta test version of new Kappa 

software. While accurate, this modeling approach is too time consuming for routine use. 

We found that a simple empirical approach that led to the same results as the analytical 

model was a 3-segment Arps decline model.  The early flow regime was transient linear 

for all the wells; thus an Arps ―b‖ parameter of two was appropriate. When boundary-

influenced flow (BIF) appeared later, b-values of 0.2 were found appropriate. The initial 

decline rate (Di) value during BIF was modified in mid-segment leading to a distinct third 

segment. Our workflow also led to reliable forecasts of production (to date) of the gas-oil 

ratio for the three wells.  
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CHAPTER 1 INTRODUCTION 
 

The unconventionals energy revolution started with shale gas in the Barnett Shale; 

this approach quickly migrated to shale oil propelled by average oil prices over 

$100/STB.   Advances in hydraulic fracturing and horizontal drilling have been the key 

enablers for commercial production of hydrocarbons in the majority of shale 

developments.  Despite the apparent success in shale oil exploration and production, there 

are still many unknowns in production forecasting and reserves estimations.   

Petroleum engineering has evolved through the years to recognize the 

characteristics that will make a conventional reservoir commercial.  However, for 

unconventional reservoirs the impact of these characteristics, like porosity, 

hydrodynamics, traditional phase behavior, permeability and hydrocarbon sourcing are 

still under study.   

Today shale oil is in a period of uncertainty, from drilling and completions 

techniques, optimal well spacing and, most relevant to this project, reserves estimations 

and production forecasting in shale oil.  Shale oil production has been increasing steadily 

since 2012 as seen in Figure 1.   There was not a wealth of data before that time. Now 

that five years of production data are available, it can be expected that research on shale 

oil forecasting will continue to flourish. 
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Figure 1 US crude oil production outlook. (Source: IHS CERA.) Notice how the tight oil 

is the category that is expected to increase the most. 

The purpose of this research is to develop a workflow that will help to streamline 

production forecasting for shale oil reservoirs. This workflow will combine empirical and 

analytical methods to generate a quick, simple and yet technically sound approach.    

The implications of this work are very broad, ranging from the use of current 

technology and sound theory to evaluate production trends, to quickly preparing data for 

audits and current legal bodies such as the Securities & Exchange Commission (SEC), 

and to the time savings that will be critically important when time is an issue and the 

number of wells to be processed would require more time than is available. 

 

 

 



3 
 

CHAPTER 2 THE WORKFLOW 
 

Our proposed workflow was taken from Clarkson (2013) and applied to the Eagle 

Ford shale oil. Clarkson‘s workflow was developed for coal bed methane and dry gas and 

had previously been applied largely to simulated data. In our proposed workflow, data 

provided by an operator in the Eagle Ford was used.  

The data set included four wells with production history and one representative 

PVT (Pressure-Volume-Temperature fluid behavior) data set for the entire oil reservoir.  

The workflow can be separated into nine major steps, each of which will be explained, 

and their application and results shown for each well individually. 

Well Data: 

Well Effective 

Horizontal 

Length 

(ft) 

# 

stages 

Average 

TVD/tubing 

depth (ft) 

Production 

method 

Reservoir  

temperature 

(°F) 

Initial 

pressure 

(psi) 

1 3569 12 11665‘ Rod Pump 314 9500 

2 3983 14 11600‘ Rod Pump 312 9000 

3 3897 14 11475‘ Rod Pump 310 9000 

4 6500 19 11190‘ Rod Pump 305 9500 

 

Well completions (all wells): 

 Outside diameter 

(inches) 

Inside diameter 

(inches) 

Casing 5.5 4.670 

Tubing 2.875 2.441 
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Oil PVT Data: 

Temperature 280 °F 

Pressure 9429.7 psia 

Saturation pressure (Pb) 3987.7 psia 

Solution Gas/Oil Ratio (Rs) 1405 scf/stb 

Formation Volume Factor (Bo) 1.9633 B/STB 

 Average Single –Phase 

Compressibility (co) 

1.24088E-5 psi-1 

Reservoir Fluid viscosity (µo) 0.270822 cp 

Reservoir Fluid density (ρo) 0.581261 g/cc 

Tank Oil Gravity 43.9 
o
API 

 

Reservoir Data: 

Thickness (ft) 150 

Porosity (%) 7 

Reservoir permeability  millidarcies to nanodarcies 

Initial water saturation (%) 30 

Initial oil saturation (%) 70 

Initial gas saturation 

(%) 

0 

Average fracture half length (ft) 250 

Wellbore diameter (in.) 2.875 

Skin factor 0 

 

STEP 1: ASSESS DATA VIABILITY. 
 

Ilk et al. (2006) and Ilk et al. (2011) drafted an extensive procedure on how to 

assess production data viability. While these are not the only procedures available, the 

steps they recommend are easy- to-follow guidelines.  This could easily be the most 

important step in any reservoir analysis; interpretations performed on incomplete or 

dubious data are not only dangerous but also can generate invalid reservoir/well data and 

ultimately an incorrect forecast. 

In this step the analyst will determine whether there is enough data to proceed 

with the analysis. All the data should come from direct measurements and not from 
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uncertain allocations. Daily measurements are preferred since the noise that could be 

introduced if the rates and pressure are gathered monthly may render the analysis invalid.  

All liquid data (water and hydrocarbons) should be reported, since water rates are an 

excellent indicator of fracture fluid clean up. 

Preliminary production diagnostics review the well data, rate correlations, 

production allocation, and identify changes in well architecture. All diagnostics should be 

completed before any further analysis is performed on the data. Skepticism is 

recommended when looking at a data set for the first time to avoid applying preconceived 

ideas that could mask the real nature of the data set. 

The four wells data sets available were provided without well histories, PVT data, 

or bottom hole pressures.  The flowing tubing pressures (      and the flowing casing 

pressures       were provided with the rate histories.  We immediately noticed a sudden 

change of     values to zero. This was not explained on any of the operational notes 

provided by the operator. Figure 2 to Figure 5 show the values of     and     vs time. 

Further investigation of the data showed that 2 7/8‖ diameter tubing was 

commonly installed after a short time of producing through 5.5‖ P-110 casing.  Ignoring 

these changes would lead to large errors in calculated     values and misleading rate 

appraisals.  

We used PIPESIM software to model multiphase flow from the reservoir to the 

wellhead.  This software was used in this step for two different applications: (1) to 

convert     and     to     by including PVT data and taking into consideration the 

multiphase flow in the horizontal portion of the well and in the vertical casing or tubing 
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flow; and (2) to recombine the PVT data provided by the operator to reconcile the 

observed GOR and the GOR estimated from PVT analysis. 

 

Figure 2 Well #1    and     Vs Time.  On days 30 to 50 the tubing   and the casing were 

in communication, because the casing flow pressure should have been zero once 

the tubing was installed on day 30. 

 

Figure 3 Well #2    and    Vs Time.  This is the expected behavior of pressures up to 

day 180, at which the casing pressure increased.  
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Figure 4 Well #3    and    Vs Time.  This figure shows that the casing and the tubing 

were always communicating, perhaps due to a faulty packer.  Around day 40 the 

casing pressure increased and remained above zero for the entire remaining 

production time. 

 

 

Figure 5 Well #4    and    Vs Time.  This figure shows that the casing and the tubing 

were communicating from the time the tubing was installed. The casing 

pressure should have been zero starting at day 110. 
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  The operator‘s practice of installing tubing and not sealing it for two days was 

also important information to gather later, since the oil was produced through two 

different paths: inside the casing-tubing annulus and inside the tubing, invalidating data 

for two or three days.  

Details such as when the well was closed, partially producing and why these 

events happened need to be known, located and correlated with the data set.  There were 

many cases in which the wells were closed due to hurricane season, and events like this 

should be noted on the review of the well history. 

Reviewing the production data is the next step recommended once pressure 

behavior is understood. Incompletely reported rates and incorrect allocation of rates were 

among the issues identified in this data set.   

 The oil and gas rates were plotted vs time to check for consistency, which can 

verify that the reported volume were correct and that they were reported at standard 

conditions. This may seem unimportant, but temperature at the meter can greatly affect 

the volume measured at the wellhead, leading to errors in rates that can percolate to the 

analysis later. 

The oil and gas rates at a first glance seemed to correlate with each other. Water 

rates during fracture fluid cleanup should drop to almost zero.  When negative water rates 

were found on the data report for two wells in the study the water rate was deemed 

unusable as a quantitative measurement and was considered only a qualitative indicator.  
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PVT properties were not provided initially, but since the values of pressures were 

reported at the wellhead, PVT data were requested from the operator to allow us to 

calculate bottom hole pressures from surface pressures. 

GOR was plotted vs time for each well individually (Figure 6 to Figure 9) to 

check for correlation.  In this step, PVT data have to be validated also or additional error 

will be introduced. 

In this case a compositional simulation was done with the PIPESIM PVT module 

and the production stream was flashed twice to calculate the correct GOR at meter 

conditions. We entered the composition of the reservoir fluid from in the PVT report into 

PIPESIM. The first-stage flash was performed at 94 °F and 110 psia. Next, the liquid 

phase from the first step was flashed at 60 °F and 14.7 psia. PIPESIM estimated the total 

GOR to be 1459 scf/bbl.  This value was in reasonable agreement with the value of 1429 

scf/bbl calculated from the data set (Figure 10), validating the PVT data report.  We 

could then incorporate the PVT data into the workflow with confidence. 
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Figure 6 Well #1 GOR vs production time.  This figure shows how the GOR lies between 

1000 and 2000 sfc/stb 

 

 

Figure 7 Well #2 GOR vs production time.  This figure includes a significant outlier 

when the well pump was replaced at 161 days. 
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Figure 8 Well #3 GOR vs production time. Note the two successive outliers around 500 

days, perhaps due to a well cleaning event. 

 

 

Figure 9 Well #4 GOR vs production time.  The graph shows that the GOR was constant 

at the start of production; then it began to increase for 100 days and then 

decreased, correlating with a well cleanup performed 160 days after the well 

was put on production. 
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Figure 10 GOR for the 4 wells and PVT comparison. The GOR‘s from flash calculations 

based on the PVT report and the four wells agree reasonably.  

 

 

STEP 2: CHECK DATA FOR CORRELATION 
 

Ilk et. al. (2011) methodology was used for this step, it is important to remark that 

it is crucial that this step is followed in order to reduce the uncertainty of the data set.  

Pressure and rate data must correlate or the analysis should be halted and the issue 

investigated, or simply do not proceed with the particular data set, making the data set 

invalid.  Simply put when pressures go up, rates should go down and when pressures go 

down, rates should go up.  The effort and time spent on just looking at the data, way 

before starting any analysis will pay off on data accuracy and faster analysis. 

This step when combined with the well history review can shed light to parts of 

the data set that can be acknowledged, modified or eliminated well before starting the 

analysis, and more importantly without any detrimental effects on the data set. 
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The diagnostics can be performed on a well to well basis or due on a group of 

wells that are known to come from the same reservoirs, the same field and or the same 

area, in order to compare it with some other group of wells.  Due to the amount of data in 

the data set, all four wells were studied individually. 

As can be seen on Figure 12 to Figure 15 every well has a data set of plots of raw 

and unfiltered data, this set of plots represent the history and data correlation plots.   

While well #1, well #3 and well #4 can be analyzed with some further filtering and data 

synchronization, well # 2 had a series of mechanical and completion issues that make the 

analysis extremely challenging, for this reason well #2 was removed from the data set.  

The wells for study are well #1, well #3 and well#4. 

  

Figure 11 Well #1 q and     vs time.      is relatively constant over time a necessary 

condition for decline analysis application. 
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Figure 12 Well #2 q and     vs time.  It can be seen that something was majorly changed 

around 100 days on well 2, the pump was changed and the drawdown was 

affected, to the point this well is unusable for the analysis. 

 

 

  

Figure 13  Oil Rate vs time for Well #2.  The figure shows how the decline rate changed 

drastically for well #2 
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Figure 14 Well #3 q and     vs time. There is an increase on borehole pressure at late 

time that doesn‘t correlate with the sudden decrease of oil rate, making this 

late period suspicious of bad reporting or gauge problems. 

 

  

Figure 15 Well #4 q and     vs time.  This figure also shows a major event at about 450 

days that altered the oil rate and had a major effect on     without having the 

same effect on the rate, further revision was required for this period. 
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STEP 3: PRELIMINARY DIAGNOSIS 
 

In this step, we prepare the data set for analysis. After the data is reviewed and 

correlated, an outlier filter proposed by Rastogi (2014) is used to smooth the data. While 

this filtering can be useful in lengthy data sets, in new wells with short histories the filter 

could eliminate data points that might be analyzed somehow with the workflow; 

therefore, caution is recommended when filtering small data sets.    

Rastogi‘s methodology recommends that we assume deviations from the 

production data are normally distributed.  Figure 16 shows that a range of one standard 

deviation, defined as the amount of dispersion from the average and denoted by σ, will 

cover +/-34.1% of the normally distributed errors. Outliers are defined as data points 

which lie outside the range of +1σ and -1σ from the identified data trend line. 

 

Figure 16 Typical dataset with respect to standard deviations.  

The filter is used to identify the outliers and remove them while smoothing the 

spikes on rate and pressure vs. time plots. A fit of the data is found, using a hybrid of the 

YM – SEPD (Stretched Exponential Production Decline) model from Yu and Miocevic 

(2013) for transient flow and Arps (1945) for boundary dominated flow, we find a best fit 
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for the entire dataset.  The SEPD model is, by definition, a transient flow model hence its 

applicability to the early transient flow found in all the wells in the study. The Arps 

decline model is designed to fit boundary-dominated flow and thus can be used for 

boundary dominated flow regime in our wells  

First we will explain Arps‘ hyperbolic decline equation Arps (1945). The Arps 

model includes three variables: the initial rate, qi; the initial decline rate, Di, and a 

parameter, b, which controls the curvature of the line.  

Arps (1945) noted that decline rate, D, in a production profile is defined as Equation 1 

    
  

  

 
         (1) 

        

Arps defined the change in the ―loss ratio,‖ 1/D, with time as a parameter b as seen on 

Equation 2: 

   
 (

 

 
)

  
          (2) 

         

At this point, Arps noted that, for a majority of wells that he and co-workers had 

analyzed, b was constant (unchanged with time). Assuming b constant, Arps arrived at 

the result 
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         (3) 

As Lee (2012) pointed out Arps‘ decline models have met the test of time: they 

have been applied successfully (when the conditions required for their applicability have 

been satisfied) for almost 70 years. We noted that Arps observed that most of the 
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production profiles for most of the wells that provided the basis for his decline models 

exhibited values of b that did not change with time.  

Next, we will explain the SEPD model (Valko et. al 2010).  The SEPD model can 

also be used to forecast production rates, based on the following equation 

          (
 

 
)

 

             (4) 

We construct a log-log plot of     (
  

 
)       , suggested by Yu and Miocevic 

(2013). Here    is the initial production rate, conveniently assumed to be the highest rate 

observed in history. Based on the straight line fit of the plot, we obtain the value of n. 

This is calculated by representing the equation of the straight line on the plot in the form  

                              (5) 

In the equation (5), int is the intercept and the exponent of   is  . The value of   

is calculated from  

 

                             (6) 

  

Once the values of         are obtained, the SEPD model can be used to forecast 

production rates from equation (4).  This equation will be used to forecast rates until the 

end of transient flow, after which switch from YM-SEPD to boundary dominated flow 

will take place 

The end of transient flow, almost always transient linear flow, is the time        

obtained visually after applying the procedure recommended by Chen (2000) and 

Anderson and Mattar (2003). These authors suggested by log q vs log t and log q vs log 
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MBT (material balance time, cumulative production/rate) for the unfiltered data. This 

particular procedure will be explained in more detail in step 4. 

After the end of the transient linear flow is identified and the boundary dominated 

flow has begun, we apply the Arps model, for which we must assume a value of decline 

exponent b. As Okuszko et al. (2005) predicted, shale gas wells producing at the highest 

possible drawdown will show b values approaching 0.5.  Based on these transient and 

boundary-dominated flow regime trend lines, the outliers are identified as points which 

lie more than one standard deviation from the lines. 

For the Well #1 data set a value of   =1300 stb/d was used and the values of    

and      were found using the procedure suggested by Yu and Miocevic (2013) as seen in 

Figure 17. These values were used to construct the SEPD curve. The same procedure was 

followed for wells #3 and #4 as shown on Figure 19 and Figure 21.   The      was 

obtained manually for all three wells, after plotting log q vs log t and log q vs log MBT as 

shown on Figure 18 and Figure 23.  Once this time was found, the decline model was 

switched to the Arps model. For each well in the data set, sensitivities for the b value 

were run; for well #1, the values were b=1, b=0.5 and b=0.2.  The value of b=0.5 best fit 

the data as predicted by Okuszko et al. (2005).  Figure 18 shows the match.  For Well #3 

a value of   =889 stb/d was selected and the values of b=0.5 and b=0.8 were used to 

assess the sensitivities, with b=0.5 proving to be the better choice (Figure 20). For Well 

#4 a value of   =1100 stb/d was used and Arps‘s exponent value of b=0.5 was also used 

as seen on Figure 22. 
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Once the outliers are identified as points which lie outside one standard deviation 

from the chosen trend lines, these points are removed from the analysis. While the 

original method suggested a second pass with the filter, since the data set was not 

extensive, we decided to use only one pass.  The filter was applied only to rates and not 

to pressures, remembering that maintaining correlation between the two is critical for 

data analysis. 

 

Figure 17 Yu Plot for Well #1.  This figure shows that the early time data do not lie on 

the linear trend line fitting the later data. 
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Figure 18 Model matching Well #1. Of,the different b values, b=0.5 provides the best fit 

during for the late time period. 

 

 

Figure 19 Yu Plot for Well # 3. Early data do not fall on a linear trend, hence these points 

are excluded from the regression used to find the model parameters. 
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Figure 20 Model matching Well #3.  The sensitivities were ran for different b values and 

b=0.5 was optimum.  

 

Figure 21 Yu Plot for Well # 4.  The figure shows that about 20 days of the cleanup 

period and initial production were removed from the data correlation for the 

Yu plot. 
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Figure 22 Model matching Well # 4.  Sensitivities were run for the b values and a value 

of b=0.5 was optimum. 

Figure 24 shows how the data set looks after the filter is applied.  The preliminary 

diagnostics plot can be cleaned up easily and the data trends can be visualized clearly. 

  

Figure 23 Well #1 before filtering. The figure shows how badly the data scatter how the 

flow regime identification can be hindered by this scatter. 
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Figure 24 Well #1 after filtering in comparison to Figure 23 the scattering is diminished 

and the flow regime identification is clearer. 

 

STEP 4: FLOW REGIME IDENTIFICATION  
 

In this step, we identify flow regimes in the historical production data. Several 

authors have studied flow regimes in horizontal wells with multiple transverse fractures 

including Song and Ehlig-Economides (2011) and Clarkson et al (2009).  They have 

pointed out that the two regimes that may be predominant are early transient linear flow, 

attributed to the flow from the reservoir to the fractures, and a boundary dominated flow 

regime after the fractures interfere with one another. We may also see a second transient 

linear flow regime if flow from outside the Stimulated Reservoir Volume (SRV) occurs 

to a meaningful extent. 
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This could be the most critical step in the workflow.  The literature suggests 

several methods to identify flow regimes; based on the procedure proposed by Lee (2013) 

the following plots were used:  log-log plot of hydrocarbon rate vs time, pressure-drop 

normalized hydrocarbon rate vs time, hydrocarbon rate vs material balance time, and  

pressure-drop normalized hydrocarbon rate vs material balance time.  

We expect a fracture-fluid clean-up period, which is identified by decreasing 

water rate and off-trend oil rate. This period of the production history should be excluded 

from the flow regime identification step. When pressure data are available, the use of 

normalized rate data is encouraged, and the times at which the pressure data do not 

correlate with the production data should be investigated and later excluded if nothing 

can be done to improve the data quality. 

Chen et al (2000) noted that if we plot of 
 

(      )
 vs. time on a log-log graph, we 

obtain the shapes in Figure 25 during transient flow (upper left) and boundary-dominated 

flow (BDF, lower right), with the parameter on the lower right being Arps‘ b-factor: 
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Figure 25 Chen‘s modification of the classic Fetkovich type curve. Arps‘ b=2 correlates 

with -1/2 slope during the transient linear flow regime (early times, upper left). 

During boundary-dominated flow (lower right) a family of curves that are all 

concave downward appear. (After Chen (2002)). 

 

As Lee et al (2003) mentioned, none of these lines during BDF have a slope of 

exactly negative unity, as is sometimes assumed to be diagnostic, and which some 

consider required to positively identify boundary-dominated flow. However, each curve 

has a slope that is concave downward; this is the characteristic influence of boundaries. 

The smaller the b-value during boundary-dominated flow, the steeper the slope becomes 

with increasing time. During transient linear flow, the log-log plot is a straight line with a 

slope of -½. A lengthy transition region may appear between transient linear flow (or 

transient radial flow or bilinear flow in some cases) and boundary-dominated flow. 

 The rate or normalized rate vs. MBT plot was first introduced by Blasingame 

(1986), and he was able to show that the boundary-dominated flow equation for variable-

rate production could be written in a form similar to Arps‘ hyperbolic flow model (b=1) 

if we replace actual time in the flow equation with MBT. Later Anderson and Mattar 

(2003) explained that MBT transforms normalized pressure or rate data gathered from a 
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well produced at constant BHP to the equivalent data that would have been obtained had 

the well been produced at constant rate. Lee et al. (2013) stated that this plot is among the 

most powerful tools that we have available for flow regime identification.  

As Clarkson, (2013) recommended, flow regime identification should be done in 

parallel or after well completions, surveillance, geological, microseismic or any other 

field data is appraised to more accurately identify flow regimes.  

In this study, all the data used in the workflow were filtered data. Figure 24 and 

Figure 26 are log-log plots of oil rate vs. time and oil rate vs. material balance time for 

well #1.  In the figures and as predicted in the literature reviewed, two regimes were 

clearly identified: early transient linear flow and late boundary dominated flow. This 

information must be taken into account in the rest of the workflow because it will have 

important implications on the analytical model to be chosen in step 7. 

The same plots and procedure were followed for well #3 and well #4. Figure 27 to 

30 show that the wells have similar decline characteristics and that flow regime 

identification is clearer after the outliers are removed.  When production data from all 

three wells are plotted in Figure 31, we see that they have similar flow regimes.  To make 

this comparison meaningful and unbiased, the rate had to be normalized by lateral length; 

otherwise, true well behavior could be masked. This is important in this data set since t 

well #4 is almost 50% longer than wells #1 and #3. 
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Figure 26 Log q vs. log MBT for well #1.  Slopes of -1/2 and -1 allow us to identify 

unequivocally the start and end of the flow regimes. 

 

Figure 27 Log q vs. log t for well #3.  The figure shows how the early data deviates from 

the linear flow as expected and how much clearer after the filter is applied the 

flow regime identification is. 

1

10

100

1000

10000

1 10 100 1000 10000

R
at

e
, B

P
D

 

MBT, days 

Log q vs MBT  

Oil Rate

Slope -1/2 
Linear 
 

Slope -1 
boundary 
 
 

1

10

100

1000

10000

1 10 100 1000 10000

R
at

e,
 B

P
D

 

Time, Days 

Log q vs Log t 

Oil Rate

Slope -1/2 
Linear 
 



29 
 

 

Figure 28 Log q vs. MBT Well #3.  The figure shows that around 40 MBT days the slope 

of -1/2 becomes more evident, probably due to fracture clean up. The 

boundary-dominated flow regime is more clearly identified than in other wells 

is the study. 

 

Figure 29 Log q vs. log t Well #4.  The figures shows clearly that the early time rate data 

do not match any simple flow regime. The boundary-dominated flow regime 

appears but more production data would be necessary to refine the flow regime 

identification at later times. 
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Figure 30 Log q vs log MBT Well #4. Once again the MBT plot is a more useful and 

explicit indicator of where the flow regimes appear in the data. Boundary-

dominated flow is clearly present in the latest data. 

 

Figure 31 Oil rate (normalized by lateral length) vs. oil MBT.  This figure shows clearly 

that once the rates are normalized by lateral length all 3 wells have similar 

behavior in the linear flow regime and in the boundary-dominated flow regime. 

1

10

100

1000

10000

1 10 100 1000 10000

R
at

e
, B

P
D

 

MBT, days 

Log q vs MBT 

Series1

Slope -1/2 Linear 
 

Slope -1 boundary 
 



31 
 

Figure 32 shows that well #4 appears to perform better than the two other wells.  

A feature of the KAPPA Citrine software that we used in this phase of the work allows us 

analyze this behavior more definitively. This feature allows us to organize wells by work 

group. KAPPA Citrine software permits the rapid loading of mass public, client or 

simulation sources for the processing of multiwell data. Using visualization, trend 

identification, and multiwell comparison, the user can fully understand and interpret field 

performance using diagnostics and decline curve analysis. Citrine can transfer single well 

data to KAPPA Topaze NL (another module in the KAPPA software package), retrieve 

the analytical or numerical forecast from Topaze NL and use it as a seed for a single or 

multiwell analysis and forecast. KAPPA Topaze NL is reservoir production software 

suited for rate decline analysis, with a wide range of well, reservoir and boundary 

models. Topaze NL can simulate bottom-hole pressures given rate data.  Production 

history is matched is using nonlinear regression of pressure, rate, cumulative production 

or any weighted average compared to a proposed well and reservoir model.  Topaze NL 

integrates additional specialized plots and substantially enhanced analytical and 

numerical models, especially adapted to the low permeability range of unconventional 

formations. In step 6, we used this software to match the field data to the analytical 

models we selected. 

It can be misleading to think that well #4 is a better performer than the other two 

wells, when we compare only cumulative oil production.  Expertise and a close look at 

the data in Figure 33 can prevent a gross error.  The industry is still selecting well lateral 

length by trial and error, and sometimes the lateral length has nothing to do with the 

reservoir and has everything to do with lease permits and other factors. Due to these 
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variables, normalization by lateral length is strongly recommended.  Note that Figure 32 

and  Figure 33 were generated using the KAPPA Citrine software. 

 

Figure 32 Comparison of cumulative oil production vs. time for wells #1, #3 and #4. If no 

lateral length optimization is applied, well #4 appears to perform better than 

wells #1 and #3. 

 

Figure 33 Comparison of cumulative oil production vs. time for wells #1, #3 and #4, with 

production data normalized by lateral length.  When the data are normalized 

we see that the behavior shown in Figure 32 is due to the masked effect of 

lateral length.  Well #1 is actually the best performer of the three wells. 
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After we normalize for lateral length with Citrine, we see that the three wells are 

quite similar, and well #1 is a more efficient producer than the other two wells. An 

additional plot of productivity index vs. time in Figure 34  also compares all three wells. 

Figure 34 confirms that the wells behave in similar ways, important to know because the 

completion procedure was the same for each well. Conclusions reached from a study of 

one of the wells may then be applicable to other wells in the group. 

 

Figure 34 Oil productivity index vs production time.  Once the cumulative production is 

normalized by lateral length, the productivity index is about the same for all 

three wells. 

 

STEP 5: STRAIGHT LINE ANALYSIS  
 

If 
           

    
 versus      

      

    
 is plotted on a log-log scale the boundary dominated 

flow will exhibit a unit slope line, similar to constant rate data in the pseudo-steady state 

flow regime. Also, if we take the derivative of the normalized pressure with respect to the 
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logarithm of tmb, we can identify flow regimes with even more confidence. 

Unfortunately, the noise level in the derivatives is usually too high for further analysis.  

One workaround is to use a normalized pressure integral, in a manner analogous to the 

Palacio-Blasingame type-curves (Palacio and Blasingame, 1993). The integral preserves 

the signature of the flow regimes and can significantly reduce the noise in the data.  

As Song and Ehlig-Economides (2011) noted, when both linear and boundary 

dominated flow regimes appear on the rate normalized pressure vs. material balance time 

plot, both permeability and the average half-length of created fracture can be estimated. 

This is another reason why it is so important that flow regimes are accurately identified; 

otherwise, parameters such as permeability and fracture length can be seriously 

miscalculated. 

 In our study, we used the rate normalized pressure vs. material balance time, the 

normalized rate vs. square root of time, and the normalized rate vs. cumulative 

production plots, to obtain preliminary hydraulic fracture properties, reservoir 

permeability and original oil in place. 

Geomechanics suggests that, in horizontal wells with multi-stage fractures, 

fracture often has symmetrical ‗bi-wing‘ geometry. The model used in this workflow 

assumes that the fracture wings are two perfect rectangles, with a total length of  m  as in 

Figure 35.  For fully penetrating fractures the height of the rectangle is the formation 

thickness. To calculate the individual fracture length (  ) for a well with n fractures we 

assume that  m =n*   , as in the model proposed by Ambrose et al. (2011). See Figure 36. 
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Figure 35 Single fracture intersecting the wellbore.  This is the simplest model available 

in the Kappa software. (After KAPPA, 2003). 

 

 

Figure 36 Equally spaced fractures, perpendicularly intersecting the well, each cluster 

generating a fracture. We assume that all fractures intersect the wellbore path 

at a 90
o
 and that  m =n*   . (After KAPPA, 2003). 

 

The early time flow regime in a well with a high conductivity fracture is 

characterized on a log-log plot by a half slope on both the pressure and derivative curves.  

The position of these two half slope straight lines will establish a link between the 

time and pressure match, providing a unique result for   m ².  From the derivative we can 

calculate  , and the half fracture length will be calculated from   m ².  

Figure 37 shows the log-log plot for well #1, with the help of the specialty lines 

(lines in Topaze NL that have a prefix ½ slope and 1 slope) and the values of       , the 

end of the transient linear flow regime identified earlier in the workflow. The software 

created the linear flow half-slope line and the boundary dominated unit-slope line. The 

half-slope line provides us with the opportunity to estimate   m ². Since the permeability 
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range is known and since we can use the assumption that  m  is the sum of all individual 

fracture half-lengths, i.e., xm =n*  , a first approximation for    was obtained. We used 

lateral length 3569ft for well 1, and we assumed that each of the 60 perforations 

(cluster*perforations=12*5=60=n) created a fracture, and we calculated    =239 ft. 

Table 2 summarizes the results from using  the same methodology for wells #3 and well 

#4. Note that n can also be considered to be the number of fractures created. 

If the permeability is unknown, the literature suggests many methods to estimate 

the permeability; however, in ultralow permeability reservoirs, the process will be an 

iterative, with convergence assumed when the analytical, empirical and numerical models 

match the data with the same value of permeability.  Thus, we recommend that, even 

when the permeability value is known, we use all the tools available to ensure an 

appropriate fit of field data with the analytical model.   

Using the square root of time plot, and fitting a straight line during the linear flow 

regime as shown in Figure 38, another value of    can be obtained following the logic 

mentioned earlier.  Assuming that we create a fracture in each perforation, then we can 

estimate an independent value of. Table 3 shows that, following this methodology,    

=241 ft is estimated for well 1. 

While the two values of    found for every well are not exactly the same, they are 

similar in size and validate each other. These two graphical methodologies are important 

steps to establish a first approximation of fracture length to use in the analytical model. 

The same procedure described for Well #1 was followed for Well #3 and Well #4, 

the values are in Table 2 and Table 3 and in Figure 40 to Figure 45 .  The estimated 
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fracture lengths are similar to choose provided by the operator for wells #1 and #3.  

However, for well #4 our estimated fracture length is considerably smaller than the 

operator‘s, but the permeability near well 4 is larger, and we do not enough information 

to identify a single root cause of this discrepancy. It may be that the reservoir properties 

are different at the location of well 4, or perhaps there is a nearby well that affects 

fracture propagation.  

Clarkson (2013) also pointed out that while obtaining an estimate of stock tank oil 

originally in place (STOIP) is not the main objective of most studies, the value of STOIP 

can be also acquired using the log-log and linear plots.  Figure 39, known as the flowing 

material balance plot, can be used to calculate a rough estimate of STOIP using the 

boundary dominated flow regime data and extrapolating to a normalized rate of zero.  

 If a volumetric STOIP is calculated assuming the drainage volume of the well is 

simply the Stimulated Reservoir Volume– (SRV), another value of STOIP is acquired. 

However, this is an unrefined estimate. Table 4 summarizes the results for all 3 wells. 

Note that well length has a direct impact on STOIP; e.g., well #4 has larger STOIP than 

wells #1 and #3. 
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Table 1 Main Model Parameters results 

Main Model Parameters 

 Well #1 Well #3 Well #4 Units 

Tmin 10 10 11.89 days 

Tmax 881 891 575 days 

 h, 0.00254 0.00218 0.00621 md.ft 

 , average 1.7E-5 1.45E-5 4.14E-5 md 

Line: Slope 1 - closed system 

Area 34.9 35.6 50.6 acre 

Circle radius 695 703 838 ft 

Square size 1230 1250 1480 ft 

Line: Slope 1/2 - fracture 

 * m  ² 3340 3150 9130 ft
2
.md 

 m  14030 14718 14848 ft 

 

Table 2 Results from the Log-Log Plot 

 

Well #1 Well #3 Well #4 Units 

  1.70E-05 1.45E-05 4.14E-05 md 

 * m  ² 3340 3150 9130 
ft

2
.md 

 m  14030.8 14700 14848.27 ft 

   12 14 19  

Fractures per 

Cluster 5 5 5 

 

   233.8 210.3 156.3 ft 

   3569 3897 6500 ft 

conversion 5.614 5.614 5.614 bbl/ft
3
 

 

Table 3 Results from the square root of time plot 

 

Well #1 Well #3 Well #4 Units 

  1.70E-05 1.45E-05 4.14E-05 md 

  m  ² 3552 3329 13271 
ft

2
.md 

 m  14469.27 15130.67 17385 ft 

   12 14 19  

Fractures per 

Cluster 5 5 5 

 

   241.1546 216.1525 183 ft 

   3569 3897 6500 ft 

conversion 5.614 5.614 5.614 bbl/ft
3
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Table 4 Volumetrics STOIP using   from model 

 Well #1 Well #3 Well #4 Units 

   from 

Model 225 206 169 

ft 

  150 150 150 ft 

   0.07 0.07 0.07 ft
3
/ft

3
 

Sw 0.3 0.3 0.3  

STOIP 1.401789 1.401365 1.917581 MMSTB 

 

 

 

Figure 37 Well #1 log-log plot.  Using MBT the linear flow regime was correctly placed 

and the boundary dominated period was also located.  The transition region is 

clearer in this plot. 
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Figure 38 Well #1 square root of time plot.  Even though a linear region can be found in 

several places, the MBT plot allowed us to apply linear regression to only the 

correct linear flow regime. 

 

 

Figure 39 Well #1 normalized rate vs. cumulative production plot.  The OOIP value in 

the plot is 1.14 MMSTB which differs by about 30% from the value found 

using the analytic al model. 
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Figure 40 Well #3 log-log plot.  The pressure derivative confirms the two flow regimes 

found with the MBT plot and it shows a short transition period. The derivative 

is quite noisy at early times. 

 

 

Figure 41 Well #3 square root of time plot.  While a straight line could be fit in several 

places on the figure, the correct straight line is determined from the diagnostic 

plot. 
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Figure 42 Well #3 Normalized rate vs. cumulative production plot.  The regression line 

through the final data points is not clearly defined. Results from analysis of 

this plot are not as accurate as a volumetric calculation of STOIP. 

 

 

Figure 43 Well #4 log-log plot. Once the derivative stabilizes the half slope can be easily 

recognized and the boundary dominated flow regime is also apparent.  The 

model matches the late time data well. 
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Figure 44 Well #4 square root of time plot.  It is apparent that the linearity deteriorates 

beyond the end of the linear flow regime. 

 

 

Figure 45 Well #4 Normalized rate – cumulative plot.  This match is obviously not good, 

which can be explained by the relative lack of data at late times for this well. 
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STEP 6: FIND ANALYTICAL MODEL MATCH 
 

For this step, Kappa Topaze NL was used.   The software capabilities and features 

were described previously in step 5.  With the reservoir properties estimated in step 5, a 

first run with an analytical model is possible. The initial estimates from step 5 are key 

components of the iterative history-matching step with analytical models.  Once the 

parameters are acquired from the previous steps, iterations consistent with the physics of 

the reservoir are needed.  

The importance of the analytical models in this workflow is that they can validate 

the fluid/rock behavior and interactions in the reservoir.  History can be matched quickly 

and with many models at the same time. At this point, a major issue arises that Zhao et al. 

(2012) brought up with model matching in unconventionals: the non-uniqueness of the 

response.    

This is where the importance of all the previous steps on the workflow come to 

light, because a model matched and with the wrong parameters and then used for 

forecasting will result in an invalid data set.  A word of caution: the correct model might 

match only 80% of the field data, while an incorrect model may appear to match rates, 

cumulative oil and pressures even better.   

 Only when the model is deemed appropriate for the reservoir and the data can the 

forecast be recommended. Notice that forecasting with constant bottom hole pressure 

implies that the operational conditions will remain unchanged; this means that drilling 

wells nearby that interfere with drainage area, changing completions or alterations of the 

well architecture will deem the forecast invalid.  There are several methods to terminate a 
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forecast: at the economic limit rate, at a physically minimum achievable rate or a 

combination of both. Terminal rate generally varies from company to company and even 

from internal reporting to external reporting. 

Ozkan, et al. (2009) suggested that for MFHW the drainage volume be limited to 

the inner reservoir between the fractures even for relatively large matrix permeabilities.  

The authors suggested that the best model for low permeability reservoirs could be their 

trilinear-flow model.  

The basis of Ozkan trilinear-flow model is the premise that the productive life of a 

multiply-fractured-horizontal-well is dominated by linear flow regimes shown in Figure 

46.  The trilinear-flow model couples linear flows in three contiguous flow regions: the 

outer reservoir, the inner reservoir between fractures, and in the hydraulic fracture.   

This was the first model we used to fit to the data and to forecast production, but 

the forecast appeared to be extremely optimistic. When based only 1-2 years of 

production.  The SRV bounded model (no flow from outside the SRV) was matched and 

considered to be a better fit of what is actually occurring in the reservoir. 
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Figure 46 Schematic of the trilinear-flow model (after Okzan et al. 2009).  The system is 

called trilinear because of the linear flow from the outer reservoir to the inner 

reservoir, the linear flow from the inner reservoir to the hydraulic fracture and 

the linear flow within the hydraulic fracture to the well. 

Nobakht et al. (2012) proposed the SRV bounded model. In this model the 

reservoir is divided into two major parts, SRV and reservoir outside the SRV. The portion 

of reservoir directly influenced by the hydraulic fractures is known as SRV. Bello and 

Wattenbarger (2008) and Mayerhofer et al. (2006) reported that the contribution from the 

reservoir beyond the SRV is usually negligible in the case of extremely low permeability 

reservoirs; as a consequence, drainage beyond the SRV is insignificant. The SRV 

bounded model can be regarded as a special case of the trilinear flow model with 

negligible contribution from the outside reservoir. Alternatively, the trilinear model can 

be considered as a direct extension of the SRV bounded model with contribution from the 

outer zone modeled as a late time linear flow toward the fractured horizontal well. 

For this particular set of wells, with the initial value of    ~250‘ and the 

permeability also known, we were ready to apply the input for the first pass of the 

numerical model. A first attempt was made to obtain a match between the models and the 

real data in all the relevant plots including the history plot. While this step may appear to 
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be unimportant, forced application of expertise and knowledge of the reservoir can be 

quite important. 

The matches can start with the most basic model, which is the homogenous model 

for a vertical well with constant skin in a closed circle. This is obviously an inappropriate 

model but it could give the analyst a useful start in some cases.  In this case, our initial 

assumed model was the trilinear model (Figure 47). 

 

Figure 47 Trilinear model match for well #1.  The figure shows how the trilinear model is 

a perfect match to the data set and how the early data is hard to be match due 

the data scattering. 

An initial value of    ~250‘, obtained from the previous steps was used. As a 

second step in the model creation, we varied the    value to improve the fit to cumulative 

production, and to the rate in the late period. We did not attempt to improve the match of 

early data since the early data was noisy for all 3 wells in the study. 

While the pressures, rates and cumulative production matches are excellent, when 

the model is used to generate forecasts it will assume that the outer matrix will continue 
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to drain into the well and historically this is likely in ultra-low permeability reservoirs. 

The issue with this assumption is not at the match itself; the more important 

consequences can be seen in the forecasts with such model, because they can be 

unrealistically optimistic.   

Since this analysis is a sequential process, the SRV bounded model was selected 

as the next model that can match the data set.  Once again the value of    was the main 

iteration parameter.  This type of completion scenario assumes every hydraulic fracture 

connected to a perforated cluster is equal in length and height (Ambrose et al., 2011).   

The infinite fracture conductivity model was also included on this model match 

and the assumption was that there is no pressure drop within the fractures.  Figure 48 

shows that this model has difficulties in matching match early data set but agrees well 

with late data. 

The same procedure of model matching was followed for wells #3 and #4 (Figure 

49 and Figure 50).  The trilinear model with low matrix permeability the best match that 

we found for these the two wells; however, the SRV bounded model is the most accurate 

for the physics and mechanics of the reservoir. Table 5 summaries all the final values of 

match parameters for the three wells in the study. 

While Topaze has  an ―improve‖ function that can be used with any parameter, 

this function can introduce even more variation in the model if values like initial 

pressure, number of fractures, wide ranges of permeability, effective well length or 

number of fractures start changing without reflecting the true reservoir characteristics.  
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This can create the perfect model match, but it will be a match that does not honor known 

reservoir and well values. 

For all the wells in the data set, the improve function was used, since the value of 

   is very hard to estimate unless microseismic surveys are used regularly in the field or 

there is another means of establishing well interference. Also, the permeability was 

varied within the range of the values provided by the operator. 

 

 

Figure 48 SRV bounded model match for Well #1.  While the SRV bounded model does 

a poor job matching the early time of the data set, it does match the late 

time data, which is more important for forecasting. 
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Figure 49 SRV model match for Well #3.  It is quite apparent that the filter does a great 

job eliminating the outliers, however if the filter is applied strictly the early 

times will have little to no data left, affecting the model match even more. 

 

 

Figure 50 SRV model match for well #4.  While there is a good correlation between 

pressure and rate, and the points that did not correlate were filtered out, the 

model is still sensitive to the pressure changes and tried to create an increased 

rates as pressure decreased. Late time changes in pressure were not 

accompanied by the expected decreases in rate; hence, we eliminated the 

points from the model match. 
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Table 5 SRV Model input and output for Well #1, Well#3 and Well #4  

Model Option SRV 

Model 

Well 3 

SRV Model 

Well 3 

SRV Model 

Well #4 

 

Main Model Parameters 

Tmin 10 10 11.8918 Days 

Tmax 881 891.884 575 Days 

k.h, total 0.00254 0.00218 0.00621 md.ft 

k, average 1.7E-5 1.45E-5 4.14E-5 md 

Pi 9500 9000 9500 psia 

Reservoir & Boundary parameters 

hw 3569 3897 6500 ft 

Zw 75 75 75 ft 

Skin 0 0 0 -- 

No of Fractures 60 70 95 -- 

xf of Fractures 225.371 206.376 169.857 ft 

Fc of Fractures 5000 5000 5000 md.ft 

 

STEP 7: TYPE CURVE ANALYSIS 
 

 Type curves in essence are preplotted solutions to flow equations, which are 

specific to different well/fracture geometries, reservoir types and boundary conditions. 

The objective of matching type curves to the data set on this workflow is to verify that 

the parameters found are in concordance with the ones found during the straight line 

analysis. 

Extracted from Clarkson (2013) once the selection of type-curve set matching the 

identified model is done, it is followed by matching of the data to the type-curve and 

subsequently the extraction of hydraulic fracture/reservoir properties data from the type-

curve match and ultimately the comparison of the derived properties with those obtained 

from straight-line analysis.  
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For MFHW in low permeability reservoirs, there have been recent developments 

in type curves generation, with the most popular among the current reservoir engineering 

community being the Bello and Wattenbarger (2010); this set of type curves is already 

included on the commercial version of Fekete Harmony (which is the KAPPA Topaze 

competitor) and it is currently use for volatile oil decline analysis plays like the 

Eagleford. The Fekete Harmony software was not available for this work. 

 For this particular data set the only type curves available in the kappa software 

were the Blasingame type curves.  An attempt to match the data to the type curves was 

performed; as expected the match was not correct, because the only model available at 

the software is only suitable for multi-fractured vertical wells. These results can be seen 

on Table 6 and while the STOOIP is considerable underestimated the permeabilities 

values are within the expected range for the formation but the STOIP is within range of 

the one obtained on the previous steps. 

Table 6 Blasingame Type curve plot results for Well #1, Well #3 and Well#4 

 

Well #1 Well #3 Well #4 

 STOIP 1 1.17 1.53 MMSTB 

Re 692 748 855 ft 

rwa 0.39 0.244 0.192 ft 

k 0.151 0.125 0.308 md 

Skin -0.531 -0.0638 0.179 -- 
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Figure 51 Well #1 Blasingame type curve match.  It can be observed that the match is 

pretty poor as expected since the Blasingame model does not include MFHW. 

 

 

 

Figure 52 Well #3 Blasingame Type curve match.  The match for this well is completely 

off, however this was an expected result due to the fact that this set of type 

curves are not designed for horizontal wells. 
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Figure 53 Well #4 Blasingame type curve match.  The figure shows a very poor fit, if the 

type curves from Bello and Wattenbarger (2010) were the ones used, this fit 

might have been a better fit than the fit with Blasingame curves. 

 

STEP 8: PERFORM FORECAST WITH ANALYTICAL MODEL 
 

It cannot be stressed enough that a production forecasting analysis should be 

treated as a holistic process, even when the perfect match that is in agreement with all 

previous steps is found. After matching with an analytical model, we match with an 

appropriate empirical model. In this case, this the empirical model we used was a 

modified three-segment Arps model. The first segment is defined by the end of the linear 

flow; the second segment starts at the end of linear flow, until a need for a third segment 

is recognized visually. For this data set, this third segment was always added at the start 

of the forecast. This three-segment approach can be called a modified Arps model.  A 

final quality check is not only extremely important, but also required. There are many 

possible fits based on empirical models; however, the analyst with all the knowledge 

acquired from the previous steps must ensure that not only a match with the analytical 
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model forecast is found, but that this particular match reflects the well/reservoir 

performance. 

If more than one model fits the data well, once the match with the model is found, 

we recommend that the model be used to forecast and forecasted performance be 

examined to ensure that it is reasonable given what is expected under the current 

reservoir conditions.  Our forecasts in this study assumed operating conditions will 

remain the same for the next 5 years.  A longer period was selected first but the oil rate 

dropped below a reasonable economic limit in a short period of time, hence the 5 year 

well-life assumption. Operators can change future rates by changing operating conditions 

can select appropriate economic limit rates in a given situation.  

Figure 54 shows the forecast using the SRV bounded reservoir model.   The rate 

declines rapidly to values in the 1-2 BPD range three years into the forecast.  The forecast 

is thus an excellent tool to predict when a workover might be performed to improve 

production.  Figure 56 and Figure 57 show similar behavior for wells #3 and #4; 

suggesting that with the current completion in two years a re-stimulation to increase the 

size of the  SRV may be in order to keep the wells producing. 

Comparing the trilinear model and the SRV bounded model forecast for well #1 at 

Figure 54 and Figure 55, we see that, despite the trilinear model being a close fit for the 

data, it overestimates production at late times, not following the behavior observed in 

older wells in the area in which these wells are located.  Such behavior was also predicted 

for wells #3 and #4.  
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The SRV bounded model was generated after finishing the workflow and trying to 

match the forecast with a multi-segment Arps model. This work highlighted the fact that 

the trilinear analytical model was not appropriate even though it provided a better overall 

match of the data, especially at early times.  

This experience highlighted the fact that the workflow has to be done in 

sequential steps that ensure self-correction, meaning that the user cannot go blindly 

through the steps without comparing the results from the previous steps, checking for 

consistency and more importantly without taking into account the nature and observed 

behavior of the reservoir in study and the significance of an holistic approach to reserve 

estimations. 

 

 

Figure 54 SRV bounded forecast for well #1. This forecast matches late time data well 

and assumes that the bottom hole pressure will remain constant until the end of 

the forecast. 
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Figure 55 Trilinear model forecast for well #1. The forecast of future cumulative 

production is more optimistic than performance of other wells in the area 

suggests. 

 

Figure 56 SRV Bounded model forecast for Well #3. This forecast better matches 

observed behavior in analog wells. 
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Figure 57 SRV bounded model forecast for Well #4. Despite the limited amount of 

production time for this well, the forecast matches the well behavior at later 

times. 

 

STEP 9: FIT EMPIRICAL MODEL TO ANALYTICAL MODEL 

FORECAST 
 

Oil and gas production rates decline naturally as a function of time. Loss of 

reservoir pressure or the changing relative volumes of the produced fluids are usually the 

cause. Fitting a curve through the performance history and assuming this same trend 

continues into the future forms the basis for decline curve analysis. The requirements for 

the correct application of Arps‘ decline models include the following: production at 

constant bottom hole pressure, boundary-dominated flow, fixed drainage area, 

unchanging radius of drainage with time, constant b, constant productivity index and 

unchanged skin factor. 
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It is well known that, in low and ultra-low permeability reservoirs, many of these 

conditions are not meet; since they remain in transient flow for long times, b is not 

constant and it decreases with time. Bottom-hole pressure also decreases with time. Thus, 

the Arps decline models are inappropriate in principle.   

 However many investigators, including us, have found ways to mitigate the 

problem. The first step is identify whether the wells are in transient flow or if they 

eventually reach boundary dominated flow, both of which occurred in the wells in this 

study. The next step is to determine whether the bottom hole pressure remains constant.  

This may be an artificially created situation due to a pump installation but it does impose 

the constraint.  We can avoid the limitation of the requirement of production at constant 

BHP in most cases if we use normalized rate, 
  

(      )
 instead of rate itself in our analysis.   

The third step is to assume that the drainage volume does not change with time, this is 

exactly what the premise of the SRV bounded model is once boundary-dominated flow is 

achieved.  The fourth step is to address the changing b value; this is where using multiple 

b values assists us in applying the Arps model.  In this workflow we recognized three 

distinct b values and three different Di values. 

Kupchenko et al. (2008) demonstrated that for a tight gas well in a bounded 

reservoir, the Arps b exponent changes from b=2 during the early linear flow and 

decreases during the transition to boundary-dominated flow. b then changed to 0.5 during 

boundary dominated flow. Kupchenko et al. went on to propose a b exponent fitting on 

transient data of b=2 and once boundaries are reached a b=<0.5 can be used based on the 

drawdown and the completion details. 
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  The two segment model proposed by Nobakht et.al (2010) and Kupchenko et al. 

(2008) can be slightly modified and used to forecast production rates for this type of 

completion scenario.  Topaze NL and Citrine software was used in this work to provide 

an analytical validation of the empirical forecasts. 

There were three segments evident for all 3 wells:  b=2 for the linear flow period 

with a Di=0.1254 days
-1

, a second segment starting from      to the beginning of the 

forecast time with b=0.2 and Di=0.003640 days
-1

 and a third segment from the forecast 

time until the end of the five years with b=0.2 and Di=0.003943 days
-1

. The behavior 

predicted with this approach is similar to that predicted by Nobakht et al. and Kupchenko 

et al. The EUR estimated with this match is 130.61 MSTB of oil and the analytical model 

forecast is 130.25 MSTB.  The same procedure was applied to well #3and well #4 and the 

results can be seen on the Table 7 for all three wells in the data set and the match can be 

observed on the to Figure 58 to Figure 63. 

 While an acceptable match could have been achieved with a dual segment Arps 

model, a three segment model is recommended for a better match.  However, if the 

accuracy of the results is secondary to speed, the dual segment Arps model, used by 

many, will be a more appropriate approach.  The third segment can be based on a visual 

match, but in this study the third segment was based on final observed data and a smooth 

transition into the forecast. 

 The first segment was chosen with the help of the rate-MBT and the rate-time 

plots. Following the departure from linear flow, a second Arps segment with b=0.2 

appears.  The initial rate for this second segment is the final rate in the first segment, and 

Di in the second segment is the final decline rate in the first segment. Time in the Arps 
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model for this period is elapsed time since the end of linear flow. The third initial rate is 

the final rate in the second segment, and the third Di is the final decline rate in the second 

segment. 

These three flow periods are observed consistently in all three wells.  This 

corroborates the hypothesis that the wells are in similar reservoir rock and, if the 

completion procedures were the same, a forecast could be done for only one of the wells 

and applied to the others, if time were a limitation.  Early data are not taken into account 

for the match; despite the data is being filtered, it is not on the same decline trend 

observed during the transient linear flow period; including it would introduce error in 

decline model parameters. 

Initial rates also have significant impact on the match of the data and there could 

be many non-unique matches of the data, but honoring the data itself is preferred to the 

matching data without imposing constraints known from observations and knowledge of 

the reservoir.  

Table 7 Analytical model forecast results for Well #1, Well #3 and Well #4                 

 

 

  Well #1 Well #3 Well #4 

qi  1300  STBD 890 STBD 1200 STBD 

Region 1 b 2 2 2 

Di 0.1254  days
-1

 0.052  days
-1

 0.0208  days
-1

 

Region 2 b 0.2 0.2 0.2 

Di 0.003640  days
-1

 0.003956  days
-1

 0.005820  days
-1

 

Region 3 b 0.2 0.2 0.2 

Di 0.003943  days
-1

 0.003582  days
-1

 0.006766  days
-1

 

EUR @ 5 Years 

MSTB 

 130.61 118.45 179.18 

TOPAZE Estimated 

Forecast MSTB 

 130.25 117.97 178.46 
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Figure 58 Rate and Time graph for Well #1. Two different switch times are indicated on 

the graph. 

 

Figure 59 Rate cumulative ratio and time for well 1. The earlier data were not be 

matched, but the later data match is excellent and the match of the forecast 

from the analytical model is also excellent. 
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Figure 60 Rate vs. time graph for well #3.  This figure shows the three different intervals 

where the proposed 3-segment Arps was applied, with good fits at all times. 

 

Figure 61 Rate cumulative ratio and time for well #3.  The cumulative ratio scatters at 

earlier times but matches well at later times. The curvature of the line changes 

at exactly the same times we call the switch times. 
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Figure 62 Rate and time graph for well #4.   The early data are noisy, leading to matching 

difficulties. 

  

Figure 63 Rate cumulative ratio and time for well #4. Once again the dispersion of the 

data at early times make it matching difficult.  A longer production history 

would help to refine the model. 
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CHAPTER 3 CONCLUSIONS  
 

The workflow proposed by Clarkson (2013), initially developed to integrate the 

use of analytical and empirical production data analysis with the purpose of production 

forecasting/reserves estimations and reservoir characterization for gas reservoirs, was 

applied and validated for a volatile oil in this study. However, a limitation of this work is 

that the wells produced with single-phase flow in the reservoir, since pressure remained 

above bubble-point pressure. The decline trend could change after multiphase flow 

begins in the reservoir. 

Data filtering using the Rastogi (2014) method helped to smooth the data; 

however, models were created with both raw and filtered data and the final outcome did 

not change significantly.  The filter may be applied more appropriately to data sets with 

production histories longer than five years. 

The seamless integration between the CITRINE and the TOPAZE workflows 

ensure the validation of an analytical reservoir model before forecasting production in 

order to base the forecast on sound science, avoiding the mere curve fitting usually 

associated with DCA. 

The use of triple segment Arps for volatile oil production forecasting and reserve 

estimation is the most rapid forecasting method due to its simplicity and the fact that it 

respects the different flow regimes observed in the reservoir. A dual segment Arps can be 

used, however accuracy in forecasting may be compromised. And, of course, when 

multiphase flow begins in the reservoir, the decline trend may change. 
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