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Abstract

Device-to-Device (D2D) communication has been recognae@ promising technique to offload
the traffic for the evolved Node B (eNB). However, the D2D s@ission as an underlay causes severe
interference to both the cellular and other D2D links, whiagtposes a great technical challenge to
radio resource allocation. Conventional graph based resoallocation methods typically consider
the interference between two user equipments (UEs), byt ta@not model the interference from
multiple UEs to completely characterize the interferedoethis paper, we study channel allocation
using hypergraph theory to coordinate the interferencerdset D2D pairs and cellular UEs, where an
arbitrary number of D2D pairs are allowed to share the uptimknnels with the cellular UEs. Hypergraph
coloring is used to model the cumulative interference frooitiple D2D pairs, and thus, eliminate the
mutual interference. Simulation results show that theesgstapacity is significantly improved using

the proposed hypergraph method in comparison to the caowahigraph based one.
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I. INTRODUCTION

With the increasing demand for local traffic, device-toidev(D2D) communications under
the control of evolved Node B (eNB) have recently receivedeafdeal of attention [1]—[3].
Reusing the same spectrum as for the cellular communicatioser equipments (UES) in a
cellular network in proximity can set up direct transmissipwhich potentially increases the
overall spectral efficiency [4]. In the Third Generation tRarship Project (3GPP), UEs are
provided with a resource pool (time and frequency) in whingytattempt to receive scheduling
assignments, and eNB controls whether UEs may apply sobédanbde or autonomous mode
D2D transmission[[5]. However, D2D communications gereeraterference to the cellular
network if the radio resources are not properly allocaigle[8. In addition, multiple D2D
pairs in the same channel also create mutual interfererice s, interference management
becomes one critical issue for D2D communications undertpgellular networks.

In the literature, much attention has been paid to managetbgerence in D2D networks.
The studies in[10] propose a radio resource allocationrdhgo using fractional frequency reuse
to alleviate the interference between D2D pairs and celllis. The work in[[11],[[12] tackles
the economy perspectives. In_[11], the authors formulagealocation problem as a reverse
iterative combinatorial auction game, and propose a jadia resource and power allocation
method to increase energy efficiency. Inl[12], a sequen&abisd price auction mechanism is
designed to allocate the spectrum resources for D2D conwations with multiple user pairs.

As shown in the literature, though D2D communication mayegate additional interference to
cellular systems, it improves the system throughput witbppr interference management/[13].
Therefore, the allocation of radio resources for D2D uraledommunications needs further
studies for efficient solutions with low complexity. Gragteory is a useful tool to solve this
kind of resource allocation problems in wireless commuioces [14], [15]. With graph theory,
cellular UEs and D2D pairs are modeled as vertices in a gaaphthe interference links between
the UEs are constructed as eddes [16]] [17]LIn [16], the Wtedfthe edges is used to represent
the interference between two vertices, and the channeadaditm is to iteratively gather vertices
from the corresponding channel, taking both the interfegevalue and the cluster value into

account. In[[17], the system model is constructed as a wedghipartite graph, and the channel



allocation problem is formulated as a matching problem taximee the capacity.

However, it is worth mentioning that the conception of edgegiraph theory might not be
sufficient in modeling the interference relation due to thenalative effect of the interference.
Specifically, the interference from several vertices maystitute a strong interferer, even though
the interference from each individual vertex is weak! [18B][ When the cumulative interfer-
ence from neighboring D2D pairs or cellular UEs exceeds estiold, it may reduce the the
communication quality of all the users. Hence, it is neagsiatake into account the cumulative
impact of multiple interference sources to the cellular @ag D2D pairs as victims.

To this end, in this paper, we use the hypergraph to solventeeference management problem
for D2D communication underlaying cellular networks. A eygraph is a generalization of an
undirected graph, in which the hyperedges are any subséte gfiven set of vertices, instead of
exactly two vertices defined in the traditional graph! [20].wireless networks, the hypergraph
achieves better approximation accuracy than the traditigraph as it effectively captures the
cumulative interference. As such, the system capacity eduiher improved by the hypergraph
based method, compared to the traditional graph approddh [2

The main contributions of this paper are summarized asvisllaVe first formulate a resource
allocation problem for multiple D2D pairs sharing channesaurces with one cellular UE
to maximize the cell capacity. Subsequently, we study t®uee allocation problem using
hypergraph theory. A hypergraph coloring method with lounptexity is proposed to address
the channel allocation for both D2D pairs and cellular UE&jch effectively increases the
cell capacity. Simulation results show that the proposeoehyraph based method can achieve
a performance very close to the optimal result, and perfamash better than the traditional
graph based method.

The paper is organized as follows. In Secfidn II, the D2D camitations underlying cellular
communication scenario is described, and the correspgnaiaource allocation problem is
formulated. In Sectiom_Ill, we review a graph based chantielcation method. In Section
V] a hypergraph based channel allocation method is prapdseSection V, the hypergraph
based channel allocation method is analyzed and its complexcompared to the graph based

method. In Sectiom_VI, simulation results are provided.alfinin Section[VIl, we draw the
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Fig. 1. System model for D2D communications underlayindutal network when sharing uplink resource.

conclusions.

[I. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As shown in Fig[ll, we consider an uplink transmission sdenara cellular network that
consists of NV cellular UEs andM D2D pairs. We denote a cellular UE ky,, 1 < n < N,
and a D2D pair byD,,, 1 < m < M. Here, we useD!, to represent the transmitter of D2D
pair D,,, and D] to represent the receiver of D2D padit,,. Orthogonal Frequency Division
Multiple Access (OFDMA) is employed to support multiple ass for both the cellular and D2D
communications, where a set &f channels are available for resource allocation. In thisesys
the eNB coordinates the resource allocation between aelllEs and D2D pairs. We assume
that D2D pairs transmit with the power denoted BY, and cellular UEs use the transmission
power P¢.

The channel is modeled as a Rayleigh fading channel, anchdoenel gains can be calculated



by

g5 = Lohs, cellular link from U,, to eNB;
g = Lbrpbr, D2D link from D!, to D ;
gt =Lt ht link from D! to eNB; (1)
G = Lyt b, link from U, to Dy ;
| gim = Limhir,,  link from D! to D7 |

whereL¢, Ltr, Lt L™ and L.” denote the corresponding distance-dependent path loss, an

n,m? m
t t
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and h';t”” denote the fading channel, respectivdlyg n < N, 1 <m < M,

1 <i < M, andi # m. The thermal noise satisfies independent Gaussian distiibwith zero
mean and variance?.
The instantaneous Signal to Interference-plus-NoiseoR&iNR) of the received signal at the

eNB from cellular UEU,, in channelk can be written as

PCgC
(& — n 2

meCy

and the instantaneous SINR at the D2D receiby in channelk is given by
Pdgt,r
o2+ 3 Pegim+ Y Plgpy)

n€eCy, 1#£m,i€Cy

YV = (3)

whereC;, represents the set of cellular UEs and D2D pairs to which mbldnis allocated.

B. Problem Formulation

We assume that a channel can be allocated to at most oneacdlli, and a maximum of
one channel can be utilized by a D2D pair or a cellular UE. Fmvenience, we denote the
channel allocation matrix by

Sovernr = | ). @
BMXK
where Ay x = [a,, ] represents the channel allocation matrix for the cellul&sUand
Buxx = [Bmi) Stands for the channel allocation matrix for the D2D pairs< n < N,

1<m < M,1<k<K. The value ofw, , andj,,; are defined as

1, when channek is allocated taU,,
Qn k= (5)
0, otherwise



and
1, when channek is allocated taD,,,

Bm,k = (6)

0, otherwise
Our objective is to maximize the cell capacity by optimizihg channel allocation variables

{ank; Bmr} for the cellular UEs and D2D pairs, which can be formulated as
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Zan,k <1, Zﬁm,k <1,
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wherev¢ and~? are given in[(2) and(3), respectively. ConstraintSin (8liyrthat each channel

can be allocated to at most one cellular UE, and a maximum efoiannel can be utilized by
each D2D pair or each cellular UE.

Note that the aforementioned resource allocation problerfy) is a NP-hard combinatorial
optimization problem with nonlinear constrainis [22], pfnacoloring is an approximate and
efficient method for such a resource allocation problem .[2Blus, we formulate the channel
resources ag< different colors, the cellular UEs a¥ (cellular) vertices, and the D2D pairs
as M (D2D) vertices in the plane. Consequently, the channetation problem is transformed
into a coloring problem of the vertices with fixed colors|[24] the following two sections, we

demonstrate the graph and the hypergraph based methoplsctiesly.

[Il. TRADITIONAL GRAPH BASED CHANNEL ALLOCATION

Before introducing the hypergraph based channel allocatiethod, we describe the conven-

tional graph based method.

Definition 1. A graphG is defined to be a paitX, F), where X = {zy,xs,...,x,} is a set
of elements called vertices, add= {e;, e, ..., ¢, } iS a set of 2-element subsets ¥fcalled

edges.



TABLE |

ALGORITHM |: GRAPH BASED RESOURCEALLOCATION METHOD

Stage |: Graph Construction
* Cellular UEsSU,, andU; form an edgeVU,, U;, wheren # j.
* A cellular UEU,, and a D2D pairD,, form an edge if they satisfy 19) ol (1L0).
* D2D pairs D; and D,,, form an edge if they satisfy (11).
Stage I1: Graph Coloring Algorithm
x 1 = 1. Find a vertex of the maximum degree and labet;it
* repeat
1) Seti = i + 1. Select from the unexamined subgraph a vertewhich has the
maximum degree, and label ;.
2) Break the edges which connect to vertex
x until All the vertices in the graph are examined.
x Starting from: = 1, select a color randomly from the available color set to calo

If the available color set is empty, leave the vertexuncolored.

In a graph, vertices represent the cellular UEs and the D2Bs,pand edges indicate that
the interference between connected vertices does not dliewm to use the same channel
simultaneously([25]. The graph based method contains thphgconstruction and the channel
allocation algorithm as follows.

1) Graph Construction:We transform the interference information into a graph. Autar
UE U,, and a D2D pairD,, are connected by an edge which satisfies that the wantedl signa

ratio to the interference is below a threshold:

Pege .
In 0.; at the eNB receiver (9)
Pigt,
or
dgt,r .
iz —— < 04; at the D2D receiveD,,, (20)
“On'm

where . andd, are the thresholds selected to determine the severity ointeeference at the
eNB and the receiver of a D2D pair, respectively. Two D2D &l and D,,, are connected by

an edge if

t,r
Im

t,r

2,m

< 04; at the D2D receiveD,,, (11)



which indicates that if the interference from another D2Dx @ strong, these two D2D pairs
cannot share the same channel. Besides, two cellularlyBsd U; always form an edge for
the assumption that two cellular UEs cannot share the saareeh In this way, an interference
graph is constructed.

2) Channel Allocation Algorithm:After the graph construction, we use the greedy coloring
algorithm in [26] to color the constructed graph. We define #vailable color set by all the
colors except the colors used in the connected vertices.aldawithm successively colors the
vertices in a color randomly chosen in the correspondingabla color set, in descending order
of degree. If the available color set becomes empty, theexegmains uncolored. In this way,
the cellular UEs and the D2D pairs are classified into clgstgath different colors, where the
colors represent the channels. Finally, the channels &veatéd to the D2D pairs and cellular
UEs with mutual interference below the given threshold. SEhdetailed algorithms are shown
in Table[].

V. HYPERGRAPHBASED CHANNEL ALLOCATION

In the traditional graph based method of Sectioh Ill, theeedgnnecting two vertices is
not sufficient to model the interference in a wireless nekwtecause some weak interferers
together may constitute a strong cumulative interfererffiecathe link quality. In this section,
the hypergraph method, in which a hyperedge contains dewentices, is used for interference
modelling.

A. Hypergraph Preliminaries

Before proposing the hypergraph based channel allocatietmad, we first introduce some
preliminaries of hypergraph theory [27]. Hypergraph is aegalized graph, in which edges
consist of any subset of the given set of vertices insteadkacty two vertices defined in the

traditional graph.

Definition 2. Let X = {z1,2.,...,2,} be a finite set, a hypergrapi/ on X is a family



E = (ey,ea,...,6,) of subsets ofX such that

el#@ (i:1,2,...,m),
" (12)

Uei:X.

=1
The elements, zo, ..., z, of X are vertices of hypergrapli/, and the setg;,e,,...,¢,, are

the hyperedges of hypergragh.

The traditional graph can be specified from its incidencerihatr adjacency matrix/ [28].
The incidence matrix has one row for each vertex and one aofemeach edge. If vertex; is
incident to edge:;, then (i, j)-entry in the matrix is 1, otherwise it is 0. The adjacency nirat
has one row and one column for each vertex. If verteis adjacent to vertex;, then(s, j)-entry
in the matrix is 1, otherwise it is 0. However, different fraime traditional graph, there does
not exist one-to-one correspondence between a hypergraplitsaadjacency matrix, and only
the incidence matrix can determine a hypergraph. The edgia sehich all the edges contain
vertexz is represented by'(x). The degree of vertex can be then defined as the cardinality of
E(z), denoted by E(z)|. The traditional graph is a hypergraph in which the degreeedfices
is always 2. A simple example of a hypergraph is given in ElgwBere the left figure is a
hypergraph with five edges and the right table is its corredjpg incidence matrix. For instance,
as shown in Fid.]2, the hyperedggcontainsz,, x5 andxg, and in the incident matrix, elements
(1,3), (5,3), and (6, 3) are 1.

B. Hypergraph Construction

In this subsection, we will present a hypergraph based aHaaliocation method to solve
the resource allocation problem. The first step is to coostitve hypergraph for the mutual
interference between D2D pairs and cellular UEs, and the owes is to color the constructed
hypergraph. By hypergraph coloring, different subsetseatiutar UEs and D2D pairs are gener-
ated, where one subset corresponds to one channel. Fiodhggonal channels are assigned to
each subset, which means that the cellular UE and D2D paitfseirsubset share the channel.

In the hypergraph construction, we define two kinds of irtiefs. The first kind ismdependent
interferer, and the second one csimulative interfererWe define that the independent interferers
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Fig. 2. An example of hypergrapH and its incidence matrix.

of a D2D receiver or the eNB receiver are the D2D pairs andilegllUEs which decrease the
received SINR independently. The cumulative interferesréase SINR notably when combined
in the receiver. We construct the hypergraph by the follgnsteps:

1) Independent Interferer Recognitioihe first step is to select the independent interferers.
Under the assumption that a maximum of one channel can heedtiby a cellular UE, one
cellular UE can be regarded as an independent interferenathar, and thus, they form an
edge. This step is to avoid the severe interference whidinates from two UEs sharing the
same channel. We give an example in [Elg. 3 with three cellugs and three D2D pairs which
are denoted by, U,, Us, Dy, Dy and Ds, respectively. According to the aforementioned
construction, cellulat/;, U, andU; form edge 5, edge 6 and edge 7.

Next, we search the independent interferers for each UE,candtruct the corresponding
edges. Similar to the graph based method, for the cellular, W follow the pairwise comparison
as we have done in Sectionllll to select the independentfanegs. If cellular UEU,, and D2D
pair D,,, satisfy [9) or[(1D), they form an edge. Similarly, we also méhke pairwise comparison
for the D2D pairs to select independent interferers. If D2irgpD; and D,, satisfy [11), they
form an edge as well. As shown in FId.3; and D, form edge 1, and/; and D; form edge 2.

In the next paragraph, we construct the hyperedges, adoguior the cumulative interference

from different users.
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Fig. 3. An example of the hypergraph modeling.

2) Cumulative Interferer RecognitionAfter all the independent interferers are determined,
the next step is to find the cumulative interferers, and caosthe hyperedge. The cumulative
interference is gathered from more than one UEs, excepittependent interferers. We select
a number of UEs, and compare the cumulative interferende awitinterference thresholgdto
verify whether they become interferers if cumulated. Fatance, we selee) UEs, including
cellular and D2D interferers, and then compare the cunwalatiterference to the wanted signal
to determine whether they together form a hyperedge. FollaareUE U,,, if the wanted signal
to the cumulative interference ratio is below a threshgldthe cumulative interferers and the

cellular UE together form a hyperedge, i.e.,

Pegy,
G
> Pigt,

m=1

And for a D2D pairD,,, if the wanted signal to the cumulative interference rasidoelow a

< n.; at the eNB receiver (13)

thresholdr,, the cumulative interferers and the D2D pair together forhyperedge, i.e.,
Pdgt,r

- ~ < ng; at the D2D receiver (14)
2 Pogim + 2 Plgi,
J= i=
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Here, F},, and Z,, are the number of the cellular and D2D interferers in the hggge, respec-
tively, i.e, Z,, + F,, = Q. As the example shown in Figl 8},, D, and D; form edge 4, and
U,, Us and D, form edge 3.

It is worth mentioning that the value @f is optional. Here, we only consider constructing the
hypergraph withQ) equal to 2, because it would be sufficient for the modelinge igperedge
is to select@) UEs which generate severe interference to the examined ktEjualge whether
the interference meets the criteria. With a higher valué pthe complexity of the construction
will increase. However, from the simulation results in $atl/I] the cell capacity will increase
less than % when the value of) adds by 1. To achieve a compromise between cell capacity
and computational complexity, we construct the hypergnagh @ = 2.

By definition, the union of hyperedges need to be the verteX’sé\ special case may occur,
where one vertex is neither an independent interferer of @By nor any of the cumulative
interferers. In such a case, the union of hyperedges is natl e¢q the vertex seX. The vertex
which is not in any hyperedge forms a hyperedge itself. Ia tmy, the union of hyperedges is
equal to vertex sek . After all these steps, hypergragh can be constructed.

C. Hypergraph Coloring Algorithm

After hypergraph construction, hypergragh can be colored. A color in the hypergraph
corresponds to a channel, and coloring vertices is equivateallocating a channel to the D2D
pairs and cellular UEs. Similar to the graph coloring in 8edlll] the vertices contained in the
same hyperedge cannot be colored by the same color. In thistiv&a cumulative interference
can be alleviated.

Since coloring of the hypergraph is NP-hard, there is no agatnally efficient algorithm to
obtain the optimal solution [30]. Coloring algorithms hdween proposed to color a hypergraph
efficiently in [29]. The one mentioned in [30] is a greedy alton to color the hypergraph
which is colorable. This implies that there exists a suffitiaumber of colors to color the
hypergraph. However, in the OFDMA network, the conditionynmat be fulfilled, because the
number of vertices may change as a function of cell load,emti&é number of channels is fixed.

If the network is heavily loaded, it is not possible to colbe twhole hypergraph. In the light
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TABLE Il

ALGORITHM Il: HYPERGRAPHBASED RESOURCESHARING METHOD

Stage |: Hypergraph Construction
x One cellular UE can be regarded as the independent inteidé@nother, and thus,
two cellular UEs form an edge.
* repeat
1) Compare the SINR with the threshofdto select independent interferers. For a
cellular UE U, if it satisfies [9), the D2D paiD,, is an independent interferer.
And for a D2D pairD,,, if it satisfies [10) or[(I1), the cellular UE,, or D2D
pair D; is an independent interferer as well.
2) Form edges with the independent interferers.
x until All UEs find their independent interferers.
* repeat
1) Compare the SINR with the threshojdo find cumulative interferers. For a cellular
UE U,, if it satisfies [IB), the D2D pairs are the cumulative ireegfs. And for a
D2D pair D,,, if it satisfies [T#), the cellular UEs and D2D pairs are thenalative
interferers.
2) Form hyperedges with the cumulative interferers.
x until All UEs find their cumulative interferers.
x The vertex which is not in any hyperedge or edge forms a hygerétself.
Stage I1: Hypergraph Coloring Algorithm
x1=mn, H, = H. Find a vertex of the minimum monodegree i, and label itz,,.
* repeat
1) Seti = i — 1, and strongly delete the vertex;, 1 and form an induced sub-
hypergraphH; = Hit1 — it+1-
2) Find a vertex of the minimum monodegreefifh and label itx;.
* until 4 = 0.
x Starting from: = 1, color the vertexz; in a color randomly selected from the
corresponding available color set, successively. Whenatlalable color set is empty,

remain the vertex:; uncolored.

of these observations, we propose to modify the greedy rdatientioned in[[30] to meet the

needs in an OFDMA cell. The necessary definitions are fortadlaelow.

Definition 3. In a hypergraphH (X, F), strong deletiorof a vertexz € X from H is to delete
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all the edges containing from E, and deleter from X.

Definition 4. A hypergraphH (X', E') is called sub-hypergraplof a hypergraphi (X, E) if
X' C X,andE' C E. And the sub-hypergrapi’ (X', E') is called induced sub-hypergraph
when the hyperedges &f(X, E') completely contained i’ form the hyperedge séf’ .

An induced sub-hypergrapH’ is a special case of sub-hypergraphs, which can be obtained
from H by strong deletion of verticeX — X'. If at least one hyperedge d&f being a subset

of X' is empty, the sub-hypergraph is not induced.

Definition 5. The monodegreen(z, H) [80] of vertexz € X in a hypergraphH (X, E)
is the maximum cardinality of a hyperedge subfanfil(z) C FE(z) such that two elements
€i, € € El(l'), €; N €; = {ZE}

In other words, the monodegree of vertexs the maximum size of such a hyperedge set,
where every two hyperedges share precisely one vettéxuitively speaking, the hyperedge set
looks like a star, where vertexis in the center of the star. If a graph has no loops, whichiespl
that the two vertices in an edge are not the same, the moreelégequal to the degree in the
graph. We consider the valud (H) = glg%glgﬁ m(z, H\Y). It can be obtained by selecting a
vertex of the minimum monodegree, and making the monodegeeeémum over all the induced
sub-hypergraphs. The valud (H) is related to the minimum number of colors needed when
the hypergraph is totally colored. This property will bether discussed in Sectign V.

The modified method is presented in Table Il. The differenegvben this modified method
and the greedy method ih [30] lies in the number of colors. fwalified method uses a fixed
number of colors instead of the lowest number of colors ifj.[B@cording to Algorithm I, the
D2D pairs and the cellular UEs have equivalent opportunityesource allocation. When the
D2D pairs have better channel conditions, the D2D pairs @mllmcated to channels instead
of the cellular UEs.

It is worth mentioning that hypergraph coloring is a methoabtain the sub-optimal solution
in polynomial time. According to the description of Algdmh Il, the vertex with maximum

monodegree is colored first. This implies that the UE whichegate largest interference are
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allocated to the channels first, then other UEs can utilirerathannels to avoid the interference.
In this way, more UEs can be allocated to channels, and héeaeapacity increases. Hypergraph

coloring is therefore a greedy method to obtain a sub-optsoktion.

V. THEORETICAL ANALYSIS

In this section, we first evaluate the performance of the tgnaph based method, and then

address the computational complexity of both the graph hadhypergraph methods.

A. Property Analysis

For the comparison of these two methods, we provide theviatig propositions.

Proposition 1. When the number of cellular UEs and the number of channelfad, the cell

capacity will first increase and then become saturated asntimaber of D2D pairs increases.

Proof: For a large number of D2D pairs, we assume that the monode§ie2D pair x is
the lowest. If the monodegree of D2D pairis higher than the number of colofs, the D2D
pair x cannot be colored, i.e., allocated to the channels. Whemuh&er of D2D pairs grows,
the traditional graph and the hypergraph methods only séese D2D pairs, which generate
less interference to replace the previous candidates.iJ kiie reason why the capacity becomes

saturated with the increasing number of D2D pairs. [ ]

Observation 1. The maximum value of the minimum monodegree generated byitAig Il
is equal toM (H).

Proof: According toDefinition B, the maximum value of the minimum monodegree over
all verticesd generated by Algorithm Il needs to satisfy thatl M (H). On the other hand,
Algorithm 1l strongly deletes the vertex of the minimum maegree, and there must be an
induced sub-hypergrapH\Y;, obtained by also strongly deleting those verticesYjn For a
vertexy € Yp,

mly, H\Yo) = minm(z, H\Y;) = M(H) (1)

In the generic step > 1 of Algorithm I, the first vertex is deleted from séf, such that the

minimum monodegree of the induced hypergraphky; is equal toM (H). Thus, H\Y, is an
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induced sub-hypergraph df;. The minimum monodegree:(z;, H;) of H, is higher than that
of H\Y;. Therefore,
M(H) =m(y, H\Yy) < m(x, H;) < d. (16)

Proposition 2. The minimum number of colors to make all the vertices in hypgh H
colored is defined by (H), and X (H) = M(H) + 1.

Proof: From Observatiorll, the upperbound of the minimum monodegteained by
Algorithm 1l is equal toM(H). In the coloring process, vertex, will be in at mostM (H)
hyperedges. In the case where the vertices in these hymsradg colored differently, the number
of required colors is largest. Thus, in the coloring procéss number of colors used is not less
than M (H). In addition, these hyperedges have the unigue commonxvesteThus, the next
new color is needed for this vertex. [ |

Proposition[2indicates that if the number of the channels is larger th&i ), all the cellular

UEs and D2D pairs can be allocated to channels.

Proposition 3. We assume the vertex s¥tof hypergraphH is divided into cellular setX,
and D2D setX,. When the number of cellular UEs increases by 1, the cellulgs and D2D
pairs form a new hypergraphl’. If M(H) = Imax géi? m(z, H\Y), thenM(H') = M(H) +1;
Otherwise, M (H) < M(H') < M(H) + 1.

Proof: In hypergraph construction, if the number of vertices iases by 1, the monodegree
of the other vertices will increase by at most 1. The reasaimas once two vertices form an
edge, one vertex will not be the cumulative interferer of tiber, and they cannot form a
hyperedge. In addition, any two cellular UEs are bound tanfan edge, and thus, if the number
of cellular UEs increases by 1, the monodegree of each aelWiE will increase by 1 as well.

Under the assumptio® (H) = max 1523 m(z, H\Y), cellular UEz is the vertex which has
the maximum value of the minimum monodegree. According edforementioned analysis, if
the monodegree of cellular UE increases by 1, then the monodegree of the other verticés wil

increase by at most 1. Thus, cellular UHs still the vertex which has the maximum value of
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the minimum monodegree, and (H') = M(H) + 1. Otherwise, a D2D pair is the vertex
which has the maximum value of the minimum monodegree. Iinl¢ual interference between
D2D pair z and the new cellular UE cannot form an edge nor a hyperetitfd/ ) = M (H).
Therefore, if the vertex is not a cellular UB/(H) < M(H') < M(H) + 1. u

B. Complexity Analysis

According to Algorithm I, the graph based resource allaratmethod can be processed in
a greedy manner. For the graph based method, the compldxiaglculating the interference
of the D2D pairs and cellular UEs is proportional @M N + N?). For graph coloring, it is
necessary to go through all the vertices and break at fidst N)(M + N — 1) edges. The

computational complexity of the graph based channel dilmecas quadratic given by
Cq o< O((M + N)?). (17)

According to Algorithm II, the hypergraph based resourdecailtion method is processed
in a greedy manner as well. For the hypergraph based methed;amplexity of finding the
independent interferers is equal to the graph based metieodproportional taO (M N + N?).
The complexity of finding the cumulative interferers of th pairs and cellular UEs is
proportional toO((M + N)?). For hypergraph coloring, there exist at mésf + N — 1) two-
verticed edges andM + N — 1)(M + N — 2) hyperedges, and the method requires going
through all the vertices and breaking at most/ + N)(M + N —1)(M + N — 2)) edges. The

computational complexity of the hypergraph based chanlfetaion method is cubic given by
Cy o< O((M + N)?). (18)

From this analysis, we can conclude that the hypergraphdiasanel allocation method takes
cubic polynomial time, in comparison to the graph based eabkallocation method, which takes

guadratic polynomial time.

VI. SIMULATION RESULTS

In this section, we present the simulation results of theehymph based method in Tablé Il,

in comparison to the graph based method in Table I, and theagcewithout D2D, where all



Cell Capacity (bit/s/Hz)

TABLE 1l

PARAMETERS FORSIMULATION

Cellular layout Isolated cell

Cell Radius 500 m

Maximum D2D Pair Distance 20m

Cellular UE’s Transmit PoweP¢ | 23 dBm

D2D’s Transmit PowerP? 13 dBm

Carrier Frequency 2.3 GHz

Transmission Bandwidth 20 MHz

Noise Figure 5dB

Thresholdd. = 7. 20 dB

Thresholddq = na 20 dB

Path Loss Model UMi in [31]

Small Scale Fading Rayleigh fading coefficient with
zero mean and unit variance
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Fig. 4. The cell capacity with the number of cellular UBsfor K = 30, and M = 20.
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Fig. 5. The cell capacity with the number of D2D paiv$ for K = 10, and N = 10.

the UEs are in the cellular mode. We investigate the relatiotine cell capacity to the number
of cellular UEs and D2D pairs under two conditions: 1) the bemof channels is sufficient
for orthogonal access; 2) the number of channels is not gritidor orthogonal access. For
the simulations, we consider a single cell scenario, whefilar communications and D2D
communications co-exist, and they can share the channbks.c&llular UEs and D2D pairs
are distributed randomly in a cell, where the communicatmtance of each D2D pair cannot
exceed a given maximum distance. In this simulation, we bheeShannon capacity mogab

evaluate the cell capacity. In addition, we focus on theuesgy domain, and there is no time

multiplexing. The simulation parameters are given in Tdble

In practical system, the signal will be modulated to an OFDJvhisol with a certain kind of constellation, such as 64 QAM.
Then the receiver will decode this symbol according to theeikeed SINR. The spectrum efficiency is the number of colyect
decoded bits per second over the given bandwidth for botleehelar UEs and D2D pairs which use the same channel. In most
cases, the received SINR will fall into the linear dynamioga of the decoder. Because of the linear effect, we canrobtai

similar result where the value is only rescaled.



20

700 ‘
X/ Hypergraph based !
6001 | ¥ Graph based *
- ©® - Without D2D Pt ie
Optimal result Pt T
. 500f L ,
N P
E \f"‘u‘\\
(2 Kd
Xy
8 400 eV |
> PR
g -
2 300+ ,\,\'V ‘ ]
2 s P < b Q-------- ®
8 0 | \¢" * ”—’
"O‘
10 a" i
O 1 1 1
10 20 30 40 50

The Number of Channels

Fig. 6. The cell capacity with the number of channélsfor M = 30, and N = 30.

In Fig. 4, we show the cell capacity as a function Mfcellular UEs with M = 20 D2D
pairs, andK = 30 channels. We can see that the cell capacity with the graphypergraph
based method increases at first and then decreases. Whkegfo0, the cell capacity obtained by
the hypergraph based method is almost the same as that exbtaynthe graph based method,
because of low mutual interference. Besides, the cell ¢gpacreases as the number of cellular
UEs grows due to the channel sharing. Wh€n> 20, the mutual interference becomes large
and leads to the decrease in the cell capacity. In additienthe hypergraph based method,
the mutual interference is alleviated by allocating orthrogj channels, since the cumulative
interferers are well modeled. Thus, whéh= 50, the cell capacity obtained by the hypergraph
based method is 60 bit/s/Hz higher compared to the graptdbasthod. Compared to the graph
based method, the capacity obtained by the hypergraph bas#tbd is closer to the optimal
result.

Fig.[8 illustrates the cell capacity as a function of the nemtf D2D pairsM with N = 10,
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and K = 10. The cell capacity increases as the number of D2D pairs grsiwse more D2D
pairs are allocated to channels. In addition, it shows tHemi/ > 40, the increase of the cell
capacity slows down. This indicates that when the number2i Pairs becomes larger than 40,
the cell capacity will be limited by the number of channelsider the assumption that the UEs
in the same edge or hyperedge cannot utilize the same chanaelell capacity finally becomes
saturated, because the number of channels is not suffi@@ntilation results are consistent with
Proposition 1in Section Y. WhenV/ = 20, the cell capacity with the hypergraph based method
is about 63 bit/s/Hz higher than that with the graph basechatgtand the gap becomes 130
bit/s/Hz whenM = 50. The reason is that when the number of D2D pairs grows, moreWwlk
share the same channel, leading to larger mutual intederdrhe hypergraph models cumulative
interference with sufficient accuracy, the mutual intesfexe gets alleviated well. Therefore, the
gap between the cell capacity using the hypergraph basdaohaind the graph based method

increases. From Fid] 4 and Fig. 5, if the number of channefixésl, it can be observed that
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the effect of cumulative interference modeling is more sigant when the number of UEs is
larger.

In Fig. [, we provide the cell capacity as a function of the bemof channelsk with
M = 30 and N = 30. When the number of channels grows, the more UEs can be tdtbta
channels for communication. Therefore, the cell capacitygases as the number of channels
grows. The cell capacity obtained by the hypergraph baseatiades about 90 bit/s/Hz higher
than that obtained by the graph based method wkiea 20. This implies that the hypergraph
can model the interference with sufficient accuracy and éeatleviates it. Wherk' = 50, the
cell capacity with the graph based method is narrowly clasthat with the hypergraph based
method. The reason is that the number of channels becongs,land hence the number of
cumulative interferers decreases.

In Fig.[4, we show the Cumulative Distribution Function (QQf the throughput of a cellular

UE with M = 30, and N = 30. Note that we do not use any time time multiplexing, we
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only provide the throughput in one time interval in this pap#e can observe that the outage
probability whenK = 20 is about 0.3 higher than that whén = 30. Under the assumption that
different cellular UEs cannot be allocated to the same oblarat least 10 UEs are in outage
when K = 20, and thus leads to the gap betwe&n= 20 and K = 30. On average, the cellular
UE throughput obtained by the graph based method is 0.8Hut/sigher than that obtained by
the hypergraph based method wh&n= 20. The outage probability with the hypergraph based
method is 0.15 higher than that with the graph based metha@shkh= 20, which implies that
more cellular UEs can be allocated to channels with the ghbssed method.

Fig.[8 shows the CDF of the throughput of a D2D pair with = 30, and N = 30. The
D2D throughput is about 3.0 bit/s/Hz higher with the hypepdr based method than that with
the graph based method whén = 20, and 2.1 bit/s/Hz higher whe® = 30. This shows
that the hypergraph based method can effectively improgetihroughput of a D2D pair. The
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outage probability obtained by the graph based method i$igier than that obtained by the
hypergraph based method whé&nh= 20, which implies that more D2D pairs can be allocated
to channels with the hypergraph based method. [Big. 7 and8F&tpow that whenk” = 20, on
average, there are 13.8 cellular UEs, 6.3 D2D pairs outage tive hypergraph based method,
and 10.2 cellular UEs, 18.3 D2D pairs outage with the gragethanethod. We can conclude
that more UEs can be allocated to channels with the hypdnrdgraped method when the number
of channels is fixed, and hence the spectrum efficiency isawgat.

In Fig.[9, we compare the cell capacity with different nunsbef cumulative interferers in a
hyperedge) and selection thresholds. and ;. Here, we assume that = n; = 7. The cell
capacity with@) = 3 is about 3 bit/s/Hz higher than that with = 1 when K = 20. Therefore,
we can conclude that the cell capacity increases less thawliéa the value of) increases.

However, the increase @) will bring significant increase on the computational corntjile The
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increase of the cell capacity may not make up for the increassomplexity. Therefore, we
construct the hypergraph witf) = 2.

In Fig.[10, we provide the cell capacity as a function of theigaf Q under the assumptions
that M = 30, N = 30, and K = 30. As the value of() increases, more cumulative interferers
in a hyperedge would make it easier to form a hyperedge. Tdrerethe cell capacity increases
because the cumulative interference is well eliminateth@lgh the cell capacity will increase,
the increase might not make up the increase in complexitgrétbre, we construct the hyper-
graph with@ = 2. In addition, with the same value @p, if the threshold becomes high, the
cell capacity decreases because the hyperedge will be bdam. If the threshold becomes
low, the number of hyperedges will increase. Under the aptomthat the UEs in the same
hyperedge cannot use the same channel, fewer UEs will beasd#id to channels, and hence the

cell capacity decreases.

VIlI. CONCLUSIONS

In this paper, we investigate channel allocation by a hyjagdy method which coordinates
the interference among D2D pairs and cellular UEs in ordent¢oease the cell capacity using
D2D underlay communications. We formulate the channelcation problem as a hypergraph
coloring problem to maximize the cell capacity. We also pres greedy coloring algorithm with
polynomial complexity proportional t&((M + N)3), where N and M respectively represent
the number of cellular users and D2D pairs. The analysicatds that proper allocation of D2D
pairs can actually increase the cell capacity. The througlop D2D pairs first increases and
then saturates with the increasing number of D2D pairs. Bitian results show that the studied
hypergraph based channel allocation method increasegtheapacity by 33% compared to the
traditional graph based method witth = 50, M = 20 and K = 30, where K is the number of
available channels.
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