
DENSITY-CONTOUR BASED FRAMEWORK FOR

SPATIO-TEMPORAL CLUSTERING AND EVENT

TRACKING IN TWITTER

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Yongli Zhang

December 2018



DENSITY-CONTOUR BASED FRAMEWORK FOR

SPATIO-TEMPORAL CLUSTERING AND EVENT

TRACKING IN TWITTER

Yongli Zhang

APPROVED:

Christoph F. Eick, Chairman
Dept. of Computer Science

Ricardo Vilalta
Dept. of Computer Science

Guoning Chen
Dept. of Computer Science

Yunsoo Choi
Dept. of Earth and Atmospheric Sciences

Dean, College of Natural Sciences and Mathematics

ii



Acknowledgment

This dissertation would not have been possible without the guidance of my advisor

Prof. Christoph F. Eick. I would like to first thank him for being an awesome advisor,

whom I have learned tons of research and time management skills from. The most

important aspect that I learned from him is being confident that I can conduct better

research. This journey was filled with both happy and frustrating times, but the best

times I had at the University of Houston surrounded the motivating discussions on

research ideas and the process that we collaborated in for scientific publications.

Under Dr. Eick’s supervision, I learned how to define a research problem, find a

solution to it and finally, publish the results. To sum up, I would give Dr. Eick most

of the credit for helping me to become the scientist I am today.

Aside from my advisor, I would also like to thank the other members of my

dissertation committee: Guoning Chen, Ricardo Vilalta and Yunsoo Choi. Their

expertise and invaluable comments helped to improve the dissertation significantly.

I would like to thank my collaborators from Data Analysis and Intelligent Systems

Laboratory: Sujing Wang, Romita Banerjee and Karima Elgarroussi. Without them,

much of the work in the dissertation would not have been possible. Sujing made a

significant contribution to our paper submitted to ISMIS 2017; she implemented the

SNN-based spatio-temporal clustering approach, which was used to compare with

the serial approach we propose. Karima and Romita also contributed significantly

to our tweet emotion mapping paper.

iii



Last but not least, I would not be able to finish my dissertation without the

support from my mom, dad, wife and friends. Thanks to them for always being my

strongest support.

iv



Previously Published Material

Chapter 1 revises a previous publication [77]: Y. Zhang and C. F. Eick. Novel

clustering and analysis techniques for mining spatio-temporal data. In Proc. ACM

SIGSPATIAL PhD Workshop, page 2, Dallas, TX, USA, November 4-7 2014.

Chapter 2 and Chapter 3.4 revise a previous publication [79]: Y. Zhang and C.

F. Eick. St-copot: Spatio-temporal clustering with contour polygon trees. In Proc.

ACM SIGSPATIAL International Conference on Advances in Geographic Informa-

tion Systems, pages 84:1-84:4, Redondo Beach, CA, USA, November 7-10 2017.

Chapter 3.2 revises a previous publication [78]: Y. Zhang and C. F. Eick. St-

dcontour: a serial, density-contour based spatiotemporal clustering approach to

cluster location streams. In Proc. ACM SIGSPATIAL International Workshop on

GeoStreaming, page 5, San Francisco, CA, USA, October 31 - November 3 2016.

Chapter 3.3 and Chapter 4 revise a previous publication [81]: Y. Zhang, S. Wang, A.

M. Aryal, and C. F. Eick. “Serial” versus “parallel”: a comparison of spatio-temporal

clustering approaches. In Proc. International Symposium on Methodologies for In-

telligent Systems, pages 396-403, Warsaw, Poland, June 26-29 2017.

v



Chapter 5 revises a previous publication [80]: Y. Zhang and C. F. Eick. A novel

two-stage system for detecting and tracking events in twitter. In Proc. IEEE In-

ternational Conference on Artificial Intelligence and Knowledge Engineering, pages

77-84, Laguna Hills, CA, USA, September 26-28 2018.

Chapter 5.5 briefly discusses a previous publication [6]: R. Banerjee, K. Elgarroussi,

S. Wang, Y. Zhang, and C. F. Eick. Tweet emotion mapping: Understanding us

emotions in time and space. In Proc. IEEE International Conference on Artifi-

cial Intelligence and Knowledge Engineering, pages 93-100, Laguna Hills, CA, USA,

September 26-28 2018.

vi



DENSITY-CONTOUR BASED FRAMEWORK FOR

SPATIO-TEMPORAL CLUSTERING AND EVENT

TRACKING IN TWITTER

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Yongli Zhang

December 2018

vii



Abstract

Due to the advances in remote sensors and sensor networks, different types of spatio-

temporal datasets have become increasingly available. Revealing interesting spatio-

temporal patterns from such datasets is very important, as it has broad applications,

such as understanding climate change, epidemics detection, and earthquake analysis.

The main focus of this research is the development of spatio-temporal clustering

frameworks.

In this dissertation, we introduce a density-contour based framework for spatio-

temporal clustering including several novel serial, density-contour based spatio-temporal

clustering algorithms: ST-DCONTOUR, ST-DPOLY, and ST-COPOT. They all rely

on a three-phase clustering approach, which takes the point cloud stream as input

and divides it into batches based on fixed-size time windows. Next, a density estima-

tion approach and contouring algorithms are employed to obtain spatial clusters as

polygon models. Finally, spatio-temporal clusters are formed by identifying continu-

ing relationships between spatial clusters in consecutive batches. The framework was

successfully applied to New York City (NYC) taxi trips data. The experimental re-

sults show that all the algorithms can effectively discover interesting spatio-temporal

patterns in taxi-pickup-location streams.

Recently, Twitter, one of the fastest-growing microblogging services, induced lots

of research; one hot topic was event detection from tweets. Since geo-tagged tweets

can be viewed as location streams with time tags and the content of tweets, we pro-

pose a novel two-stage system to detect and track events from Twitter by integrating

an LDA-based approach with the density-contour based spatio-temporal clustering

approach we introduced earlier. In the proposed system, events were identified as
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topics in tweets using an LDA-based (Latent Dirichlet Allocation) topic discovery

step. Next, each tweet was assigned an event label. After all locations were extracted

from each event, the spatio-temporal approach was employed to obtain event clusters

and track their temporal continuity. Through some case studies, we demonstrated

the effectiveness of the proposed system. In summary, we aimed to acquire not only

the semantic aspect of the events, but also the geographic distribution of the events

and their continuity along time. Such information can be used to help individuals,

corporations, or government organizations to stay informed of “what is happening

now” and to acquire actionable knowledge.
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Chapter 1

Introduction

Due to the advances in remote sensing and sensor networks, different types of

spatio-temporal datasets become increasingly available. Revealing interesting spatio-

temporal patterns from such datasets is very important, as it has broad applications,

such as understanding climate change [65], identifying crime patterns [33], epidemics

detection [48], flood risk analysis [29], geo-targeting, environment protection, and

earthquake analysis [56]. Spatio-temporal clustering is particularly useful in analyz-

ing large amounts of data since it allows domain experts to consider groups of objects

rather than individual objects and to focus on a higher-level and more summarized

representation of the data.

Consequently, spatio-temporal clustering has become a major research field of

GIS-related knowledge discovery, which aims to detect groups of similar spatio-

temporal entities. These clusters frequently identify trends, patterns related to

geographical phenomena. Practically speaking, spatio-temporal clusters capture a
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relationship between the spatial and temporal dimensions for a given phenomenon.

Therefore, identifying spatio-temporal clusters may provide valuable insight beyond

the determination of exclusively spatial or temporal clusters. In general, spatio-

temporal clustering can reveal interesting distribution patterns that serve as valu-

able inputs for other data mining techniques, such as classification and association

analysis [77].

Moreover, geospatial applications, such as location-based services (LBS) and In-

telligent Transportation System (ITS) have been widely used these days. In general,

geostreaming applications are growing both in quantity and scale due to recent ad-

vancements in sensing technology and the increased popularity of social media and

smartphones [43]. As a result, there is an exponential growth in data generation and

querying rates for these data, highlighting the importance of efficient techniques for

geostreaming. When it comes to processing geo-tagged data streams, we face the

following major stream processing challenges: querying, analysis and integration,

scalability, extensibility, one-time access to data, volume, and real-time analysis.

1.1 Dissertation Overview

In order to identify spatio-temporal clusters, one major challenge that needs to be ad-

dressed is determining how spatial and temporal information are combined. Almost

all existing approaches treat time and space in a parallel fashion. These approaches

pass over the data several times and cannot deal with the case when the dataset is

too large and the memory is limited, which raises a limitation on the scalability. For
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example, ST-DBSCAN proposed by Briant [10] is an extension of DBSCAN, which

introduces a temporal neighborhood radius in addition to the spatial neighborhood

radius. It then looks for dense regions both temporally and spatially at the same

time. Consequently, one of our research objectives is the development of novel spatio-

temporal clustering frameworks that use time and space in serial, which is capable

of clustering large-scale spatio-temporal data streams.

In this research, we propose a novel serial, three-phase density-contour based

framework for spatio-temporal clustering of point cloud streams (e.g., location streams).

It operates directly on density functions and applies contouring algorithms to extract

spatial clusters from density contours. A family of novel distance functions are subse-

quently proposed to extract spatio-temporal clusters. While contouring algorithms

are not very popular in machine learning and the data mining field, approaches

that directly operate on density functions are rarely investigated as well. Moreover,

based on the framework, we propose three spatio-temporal clustering algorithms: ST-

DCONTOUR, ST-DPOLY, and ST-COPOT. They all rely on a three-phase cluster-

ing approach, which takes the point cloud stream as input and divides it into batches

based on fixed-size time windows; next, a density estimation approach and contour-

ing algorithms are employed to obtain spatial clusters as polygon models; finally,

spatio-temporal clusters are formed by identifying continuing relationships between

spatial clusters in consecutive batches. The framework was successfully applied to

NYC taxi trips data [66]. The experimental results show that all the algorithms

can effectively discover interesting spatio-temporal patterns in taxi pick-up location

streams. This allows us to have a look into how citizens commute through taxis and
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helps taxicab companies to allocate resources using the identified demanding change

pattern.

To further utilize the serial, density-contour based framework, we propose a novel

system to detect and track events in Twitter streams. Nowadays, Twitter has become

one of the fastest-growing microblogging services, with around 328 million monthly

active Twitter users producing over 5 million tweets per day in 2017 1. People have

been using it to report everything from facts and experiences in their lives to the

latest local and global news and events. Monitoring and analyzing this rich and

continuously user-generated content can reveal unprecedentedly valuable knowledge

that can be used to help individuals, corporations, or government organizations to

stay informed of “what is happening now” and to acquire actionable knowledge. For

example, people are interested in getting updates, facts, opinions, or advice on news

and events [42, 82]; companies are increasingly using Twitter to recommend products,

brands, and services, to maintain reputations and to improve decision-making among

other things [41, 55]. Moreover, the government uses information from Twitter for

disaster and emergency management [67, 54].

Compared to traditional media, social media platforms are a valuable knowledge

source for event detection as well. First, as they are online services, real-world

happenings can be revealed in a quicker fashion. Second, a more complete and

detailed picture of a real-world event can be obtained in large-scale from different

angles on social media as well [23]. These advantages have triggered a significant

amount of research in event detection from social media. Moreover, detecting and

1https://www.omnicoreagency.com/twitter-statistics/
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tracking events from tweets allows us to analyze and summarize the most important

aspects of an event, such as peoples opinion about a particular event, when and

where the event is taking place and how long it lasts. In summary, applying the

event detection techniques to social media provides actionable knowledge, thereby

enabling better, data-driven decision-making.

When it comes to the geo-tagged tweets specifically, they represent a spatio-

temporal signal (geolocation and timestamp of the tweet) with a semantic informa-

tion layer (content of tweet) [64]. According to the survey paper [64] published in

2015, among 92 papers concerning twitter event detection, only 33 percent of papers

use all information layers, including message content, geotag and the timestamp.

Therefore, the study of event detection by using both spatio-temporal information

and semantic analysis of content from location-based social networks represents a

promising but, still, underexplored field.

In this research, we propose a novel two-stage system to detect and track events

from tweets by integrating natural language processing techniques and machine learn-

ing techniques; specifically, it integrates an LDA-based approach [58] and an efficient

density-contour based spatio-temporal clustering approach. The density-contour

based approach extends a spatio-temporal clustering framework called ST-COPOT

[79], which is capable of processing very large data streams in approximately linear

time. The major modifications include: supporting “relative” density, including edge

correction and introducing distance functions to establish the spatial and temporal

continuity of events. In the proposed system, we first divide the geo-tagged tweet

stream into temporal time windows. Next, events are identified as topics in tweets
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using an LDA-based topic discovery step. Subsequently, each tweet is assigned an

event label and after locations for each event are extracted in each batch, a density-

contour based spatio-temporal approach is employed to identify spatio-temporal clus-

ters of each event. Moreover, event continuity is established through two perspec-

tives, topic continuity is established by calculating KL-divergence (Kullback-Leibler)

[46] between topics and spatio-temporal continuity is established by a family of newly

formulated distance functions that assess the similarity of spatial clusters obtained

for different density thresholds.

Moreover, the density-contour based approach considers two types of densities:

absolute density and relative density, used to identify regions with a high percentage

of tweets or a high density of tweets related to a particular event. By tracking events

from tweets, our proposed system can locate the target users that are interested in

the particular event and infer the most affected region by an event. For example, we

can locate a large number of sports fans in order to push advertisements to a target

region through social media, or we can identify regions where a high percentage of

the population is affected by a snowstorm.

1.2 Dissertation Contribution

Key contributions of the proposed research:

• We propose a serial, density-contour based framework for spatio-temporal clus-

tering.
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1. Our approach treats time and space in a serial fashion, which creates

spatial clusters first and then spatio-temporal clusters are constructed as

continuing spatial clusters in consecutive batches.

2. To the best of our knowledge, our proposed approach is the first approach

that directly operates on density functions and uses density-contour and

contour analysis to create spatio-temporal clusters from spatio-temporal

data streams.

3. We propose a novel data structure called contour polygon tree as our

spatial cluster model.

4. We propose a family of novel distance functions that operate on contour

polygon trees to establish continuity between spatial clusters in consec-

utive batches; spatio-temporal clusters are created at different levels of

granularity, e.g., continuing polygons, continuing trees, and continuing

forests.

5. The proposed framework is time efficient and can achieve approximately

linear time complexity for large-scale point cloud stream.

6. We propose three spatio-temporal clustering algorithms based on the se-

rial, density-contour based framework.

7. We evaluate the proposed framework and these algorithms in a challenging

real-world case study involving NYC taxi trips data. The experimental

results show that all of them can effectively discover interesting spatio-

temporal patterns in taxi pick-up location streams.
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• We propose a novel two-stage system by integrating an LDA-based approach

and an efficient density-contour based approach for event detection and tracking

in Twitter.

1. In contrast to other spatial-temporal clustering approaches, our approach

operates directly on density functions and uses contouring algorithms to

identify event clusters.

2. Our approach employs “relative” and “absolute” density to obtain spatio-

temporal clusters.

3. We propose a drill down operation—that operates on the identified event

clusters that have been obtained by our system—which summarizes the

spatial variation of tweet locations that are related to an event at a finer

granularity. This is accomplished by rerunning the spatial clustering algo-

rithms with a different set of parameters, such as different density thresh-

olds, kernel bandwidth, and grid cell sizes.

4. We demonstrate our approach using real-world data collected from Twit-

ter. The experimental results show that the proposed system can effec-

tively detect and track events from tweets.

5. Moreover, we discuss practical experiences in using LDA for topic discov-

ery in Twitter.

6. The proposed system is successfully applied in an emotion mapping ap-

proach that operates on tweets.
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1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the related

work about spatio-temporal clustering and presents the serial, three-phase density-

contour based clustering framework we propose. In Chapter 3, we discuss three

proposed serial algorithms that employ the three-phase density-contour based frame-

work. Chapter 4 discusses the comparison of “serial” and “parallel” spatio-temporal

clustering approaches. Chapter 5 introduces the two-stage system we propose for

event detection in Twitter. Chapter 6 concludes the dissertation.
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Chapter 2

Serial, Density-contour based

Framework for Spatio-temporal

Clustering

2.1 Inputs and Overview of the Framework

We propose multiple spatio-temporal clustering algorithms, for point cloud stream

specifically, the inputs are all the same.

One input of our framework is a spatio-temporal point cloud stream; for example,

taxi pick-up location cloud streams that are described by the location, e.g., using

longitude, latitude, and the pick-up/drop-off time. Moreover, we assume that data

originated from a data collection area, e.g., the New York Metropolitan Area and we

10



assume that this data collection area is given in the form of a rectangle or a polygon.

Moreover, prior to applying the framework, we subdivided the collected data into

temporal batches associated with a particular time window. Our approach assumes

that spatio-temporal point clouds are processed in batches and that each batch is

collected at a fixed interval, e.g., every hour. For many applications, it is challenging

to determine how to partition streams into batches. In this framework, we use a

simple approach that employs equal-time intervals as batch sizes and the goal is to

obtain spatial clusters and find a continuing relationship between spatial clusters in

consecutive batches.

Our proposed serial, density-contour based framework mainly consists of the fol-

lowing three phases:

1. A spatial density function is obtained for spatial point cloud collected in each

batch.

2. Spatial clusters are identified for each batch as polygons that are created from

density-contour lines of the spatial density function.

3. Continuing relationships between spatial clusters are identified and spatio-

temporal clusters are constructed as continuing spatial clusters in consecutive

batches.
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2.2 Phase 1: Obtain a Spatial Density Function

For phase 1, we use non-parametric kernel density estimation (KDE) [24] to ob-

tain a 2-dimensional spatial density function, f . For a bivariate random sample

X1, X2, . . . , Xn drawn from an unknown density, f , the kernel density estimator is

defined as follows:

f̂(x;H) =
1

n

n∑
i=1

KH(x−Xi), (2.1)

where x = (x1, x2)T , Xi = (Xi1, Xi2)T (i = 1, 2, . . . , n), K((x1, x2);σ) = 1
2σπ

e
−(x21+x

2
2)

2σ2

is the Gaussian kernel which is a symmetric, non-negative probability density func-

tion; H is bandwidth matrix which is symmetric and positive-definite, KH(x) =

|H|−1/2KH−1/2x. Our implementation uses the KernSmooth package [69] in R to

estimate the spatial density distribution for given spatial points in each batch.

2.3 Phase 2: Spatial Cluster Extraction

For the second phase of our framework, the goal is to identify dense spatial regions

in the data collection area as spatial clusters using the spatial density functions that

have been created for each batch in phase 1. A spatial cluster is defined as a region

which is enclosed by a polygon and whose probability density of data points is above

a given threshold. Our approach uses the contouring algorithm—marching square

and post-processing to get such polygons.

The process of extracting spatial cluster from a spatial density function mainly

consists of the following six steps:
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1. The data collection area is gridded using a two-dimensional grid.

2. Probability density values for all grid intersection points are calculated using

the spatial density function and a density matrix is obtained. A table T is cre-

ated to store locations of all grid intersection points and corresponding density

matrix.

3. Table T , along with a pair of density threshold θ1, θ̂1 are passed to marching

square, which returns two sets of contour lines.

4. Open contour lines are closed.

5. The obtained contour lines are classified into holes and spatial clusters.

6. The step 3 to step 5 are iterated for density threshold pairs: θ2,θ̂2, θ3, θ̂3,, . . .,

θN ,θ̂N , respectively.

In step 6, we use multiple density thresholds to extract polygons that are embed-

ded into each other for each batch 1. As a compact representation of the clustering

results, we defined a novel data structure called Contour Polygon Tree (CPT) whose

nodes store polygons. The contour polygon tree satisfies the containment relation-

ship between a node and its children and polygons of children of the same parent in

the tree have to be non-overlapping, as is specified below.

Definition 1. Let T be a contour polygon tree, child(n) denotes the set of successor

nodes of n in the tree, and n.polygon be the polygon associated with n:

1Using solely one density threshold, sometimes we might obtain a poor clustering result, and
more importantly, it does not allow one to view a dataset at different density granularities.
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Contour Polygon Tree(T )⇔

∀n ∈ T (not(leaf(n)))⇒ ∀n̂(child(n)⇒ (n̂.polygon ⊆ n.polygon)) ∧

∀n̂ ∈ T ∀ˆ̂n ∈ T ∃n(n̂ ∈ child(n) ∧ ˆ̂n ∈ child(n)⇒ n̂.polygon ∩ ˆ̂n.polygon = ∅)

where, “⊆” represents the polygon containment relationship: p ⊆ p̂ ⇐⇒ p ∩ p̂ = p,

with “∩” represents the polygon intersection operator.

Spatial clusters obtained for three thresholds

Figure 2.1: Example and visualization of contour polygon trees

Contour polygon tree represents a hierarchical structure. The root of each tree

stores a polygon that has been generated using the lowest density threshold and

the polygons of lower levels of the tree are always contained in the polygon of the
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higher levels. In cases when get more than one contour polygon tree for each batch,

we call the clustering result a contour polygon forest. Figure 2.1 gives an example

of two contour polygon trees that have been generated and depicts their associated

polygons. A similar data structure called density contour tree was first introduced

and briefly discussed in [35]. However, it has not been further investigated in other

methodologies or applications.

2.4 Phase 3: Spatio-temporal Cluster Extraction

We need to establish the temporal continuity to extract spatio-temporal clusters.

In order to identify continuing relationship from two sets of contour polygon trees

obtained for two consecutive batches, we propose a set of novel distance functions

for contour polygons, contour polygon trees, and contour polygon forests. Using

those density functions, spatio-temporal clusters are defined and obtained at different

granularities continuing contour polygons, continuing contour polygon trees, and

continuing contour polygon forests.

There exist many approaches calculating the distance between two density func-

tions [15]. However, these approaches track the global change, that is, they analyze

change over the whole data collection area. The approach that we present in this

section emphasizes how the spatial clusters change over time, focusing on how dense

areas in space change over time; that is, if our task is crime analysis, we are interested

in where the main crime hotspots are and how they change over time. To support

this kind of analysis, we introduce novel distance functions in this section.
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Before we define those distance functions, let us introduce the following notations:

let p and p be contour polygons that correspond to the same density threshold, t and

t be contour polygon trees, S and S be sets of contour polygons at the same level

for polygon trees t and t, respectively, F and F be contour polygon forests, and N

is the number of density thresholds. Moreover, we assume that p and p, S and S, t

and t, F and F are created for two consecutive batches, respectively.

We first define a distance function for polygons to identify continuing relationships

between contour polygons as follows:

dP (p, p) = 1− area(p ∩ p)
area(p ∪ p)

, (2.2)

where area(p ∩ p) is the intersection area of p and p, and area(p ∪ p) is the union

area of p and p.

Since our clustering result for each batch consists of sets of trees, a distance

function to assess the similarity of trees from two consecutive batches is needed.

Since the root of a tree, always corresponds to the lowest density threshold, a näive

distance function could be defined as follows:

d∗T (t, t) = d(t.root.polygon, t.root.polygon), (2.3)

where, t.root.polygon is the polygon at the root level (level 1) of tree t and t.root.polygon

is the polygon at the root level (level 1) of tree t.

We are also interested in obtaining a distance function for comparing sets of

polygons at levels 2, 3,. . ., N of the trees. To accomplish this, firstly we define a
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“forward” distance function for sets of polygons as follows:

d∗S(S, S) =



0 if S = ∅ and S = ∅

1 if S = ∅ or S = ∅
∑
p∈S(minp∈S(dp(p,p)))

|S| otherwise

, (2.4)

where |S| is the total number of polygons in S, and the distance d(p, p) is calculated

using Equation 2.2. We try to sum up the closest distance from polygons in S to the

polygons in S by iterating over all the polygons in S. If there exists a polygon that

doesn’t have any overlap with the polygons in S, this distance will be 1. Finally,

in order to normalize total distance, we divide the total distance by the number of

polygons in S.

We also propose an area-weighted forward distance function as alternative for

Equation 2.4 by putting more emphasis on agreement with respect to larger polygons,

which is defined as follows:

d∗S(S, S) =



0 S = ∅

1 if S = ∅ or S = ∅
∑
p∈S(area(p)·minp∈S(dp(p,p)))∑

p∈S area(p)
otherwise

. (2.5)

From Equation 2.4 and Equation 2.5, we observe that sometimes d∗S(S, S) 6=

d∗S(S, S), as S and S might consist of a different number of polygons; consequently,

the last distance function we introduced is not symmetric. To deal with this problem,

we use the same formula to calculate the backward distance: d∗(S, S) which sums

up the closest distance from polygons in S to polygons in S iterating over S. By
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averaging the forward and backward distances to obtain the symmetric distance for

sets of polygons, which is calculated as follows:

dS(S, S) = dS(S, S) =
d∗S(S, S) + d∗S(S, S)

2
. (2.6)

Now we have a distance function to assess the similarity of polygons at a specific

tree level, next, we propose a distance function for pairs of contour polygon trees

that compares all the levels of each tree, which is defined as follows:

dT (t, t) =
d∗T (t, t) +

∑N
j=2 ρ

j−1 · dS(level(j, t), level(j, t))

1 +
∑N

j=2 ρ
j−1

, (2.7)

where N is the number of levels of t and t, respectively; and level(i, t) and level(i, t)

are the sets of polygons at level i for t and t, respectively. Moreover ρ ∈ (0, 1] is a

parameter called discount factor 2.

Equation 2.7 puts more importance to polygons closer to the root when assessing

the similarity between two CPTs; however, the above distance function dT (t, t) can

be generalized to put more importance to a particular level of a contour polygon

tree, which is defined as follows:

dT,s(t, t) =

∑N
j=1(ρ|j−s| · dS(level(j, t), level(j, t)))∑N

j=1 ρ
|j−s|

, (2.8)

where N is the number of levels of t and t, respectively; s is the focus granularity

level with 1 5 s 5 N ; level(i, t) and level(i, t) are the sets of polygons at level i

for t and t, respectively. Moreover, ρ ∈ (0, 1] is the discount factor. For example, if

N = 5 and s = 3, level 3 agreement is weighted by 1, level 2 and 4 agreements are

2Disagreement counts less the deeper we go down the tree.
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weighted by ρ and level 1 and 5 agreements are weighted by ρ2 when computing the

distance between t and t, moreover, the following holds dT (t, t) = dT,1(t, t).

Furthermore, using the same approach of defining d∗S(S, S), the forward distance

function for two contour polygon forests is defined as follows:

d∗F (F, F ) =



0 if F = ∅ and F = ∅

1 if F = ∅ or F = ∅
∑
t∈F (mint∈F (dT (t,t)))

|F | otherwise.

, (2.9)

where |F | is the total number of trees in F , and the distance dT (t, t) is calculated

using Equations 2.7 or 2.8. Basically, we sum up the closest distance from the trees

in F to the trees in F by iterating over all the trees in F . If there exists a tree that

doesn’t have any overlap with the trees in F , the distance will be 1. Furthermore,

in order to normalize the total distance, we divide the total distance by the number

of trees in F .

We also propose an area-weighted forward forest distance function using the root

area of each tree as the weight:

d∗F,s(F, F ) =



0 if F = ∅ and F = ∅

1 if F = ∅ or F = ∅
∑
t∈F (mint∈F (area(t)∗dT,s(t,t)))∑

t∈F area(t)
otherwise.

. (2.10)

Also, from the definition above, we know that sometimes d∗F (F, F ) 6= d∗F (F , F ),

as F and F might consist of a different number of trees, and we reuse the earlier
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approach to make the forest distance function symmetric, which is calculated as

follows:

dF (F, F ) = dF (F , F ) =
d∗F (F, F ) + d∗F (F , F )

2
. (2.11)

In summary, we defined a family of distance functions for pairs of polygons, pairs

of sets of polygons, pairs of contour polygon trees and pairs of contour polygon forests.

Next, we use the distance functions to propose computational methods that identify

continuing relationships between consecutive batches at different granularities:

• If the distance between two contour polygons from two consecutive batches is

less than a certain threshold, γ1, we conclude that the contour polygon doesn’t

change significantly over two consecutive batches, and create a ‘continuing’

relationship between the two polygons, if the following condition holds:

Continuing(p, p)⇔ dP (p, p) < γ1. (2.12)

• If the distance between two contour polygon trees from two consecutive batches

is less than a certain threshold, γ2, we create a ‘continuing’ relationship between

the two contour polygon trees, if the following condition holds:

Continuing(t, t)⇔ dT (t, t) < γ2. (2.13)

• Similarly, if the distance between two contour polygon forests from two con-

secutive batches is less than a certain threshold, γ3, we infer a ‘continuing’

relationship between the two forests, if the following condition holds:

Continuing(F, F )⇔ dF (F, F ) < γ3. (2.14)
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2.5 Time and Space Complexities

Table 2.1: Time and space complexities

Phases Time Complexity Space Complexity
Phase 1 O(m2 × n) O(n+m2)
Phase 2 O(m2) O(m2 + e2)
Phase 3 O(e2) O(e2)

Table 2.1 gives the time and space complexities of the framework we propose.

We assume that the grid size we use is m × m, n is the total number of points, e

is the average number of edges of a spatial cluster. Since e is usually smaller than

m and it is a serial approach, the overall time complexity of our framework would

be O(m2 × n); in cases where the number of data points is much larger than the

number of grid cells (n >> m2), the time complexity becomes O(n), which means

that the proposed framework is capable of processing very large data streams in

approximately linear time.

2.6 Related Work

Most existing density-based clustering approaches extract clusters with one single

layer of boundary, e.g., DBSCAN [26]. Approaches that obtain hierarchical cluster-

ing result also have been investigated; for example, OPTICS [5] generalizes DBSCAN

to extract hierarchical clustering structure. Our framework is different from those ap-

proaches, not only in the way it creates the hierarchical clustering structure, but also

in its application. OPTICS, based on DBSCAN, has the time complexity of O(n2)

21



while our density-contour based approach achieves much lower time complexity—

approximately linear complexity O(n), which makes our approach more suitable for

processing large-scale stream data. Hierarchical clustering result can offer addi-

tional insights into the distribution of the data, e.g., locating “hotter-spots” inside

a hotspot. Approaches that use density functions are also investigated, e.g., DEN-

CLUE [37] proposed by Hinneburg first identify density attractors as local maxima

of the overall density function, then clusters are formed by associating data objects

with density attractors using hill climbing, while our approach applies a contouring

algorithm directly to the density function to extract spatial clusters.

Spatio-temporal clustering and hotspot discovery techniques for point objects also

have been well-studied in the literature. Kulldorff et al. [47] introduced a spatial

scan statistic for the detection of spatio-temporal cylinders where the point objects

occur consistently for a significant period of time. Iyengar et al. [40] extended the

basic scan statistics using the flexible square pyramid shape to detect clusters with

restrictive shapes, and the proposed framework can model growth and shifts in lo-

cation over time. Wang et al. [70] proposed a spatio-temporal clustering algorithm

ST-GRID, which maps the spatial and temporal dimensions into multidimensional

cells and then extracts and merges spatio-temporal dense regions to obtain a final

cluster. Birant et al. [10] proposed ST-DBSCAN as an extension of DBSCAN for

spatio-temporal clustering by introducing a second parameter of temporal neighbor-

hood radius in addition to the spatial neighborhood radius. Wang et al. proposed a

spatio-temporal clustering approach, ST-SEP-SNN [71], which combines spatial and
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temporal distances into a joint spatio-temporal distance function, and then general-

izes the SNN clustering algorithm to operate on the obtained joint distance function.

However, most existing spatio-temporal clustering algorithms mentioned above

are not suitable to deal with large data streams. For example, both ST-DBSCAN

and ST-SEP-SNN pass over the data several times and assume that the data fit into

main memory.

Clustering from data streams has also been well-studied. Farnstrom et al. [27]

proposed a single-pass partitioning algorithm known as an extension of k-means. The

main idea is to use a buffer where the dataset is kept in a compressed way, and the

streams are processed in blocks while all available space on the buffer is filled with

points from the streams. Aggarwal et al. [2] proposed a CluStream system as an ex-

tension of BIRCH [76], which can generate approximate clusters for any user-defined

time granularity. This micro-clustering approach divides the clustering process into

two phases, where the first phase is online and summarizes the data stream in lo-

cal models (micro-clusters) and the second phase generates a global cluster model

from the micro-clusters. Barbará et al. [7] proposed a Fractal Clustering system,

which is a grid-based approach. It processes data points in batches and assigns the

data points to the group in which that assignment produces a less fractal impact.

Chen et al. [17] proposed a framework for clustering stream data that uses an online

component to map input data into a grid and an offline component to compute the

grid density and cluster the grids. Wan et al. [68] also proposed an online-offline ap-

proach, which is able to detect arbitrarily shaped, evolving clusters with high quality.

Hadjieleftheriou [34] introduced a grid-based framework for answering density-based
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queries in moving object databases based on the notion of density in space and time.

Overall, density-based stream clustering algorithms are categorized into two broad

groups, density micro-clustering algorithms and density grid-based clustering algo-

rithms [4]. In density micro-clustering algorithms, micro-clusters extract synopsis

information about stream data, then clustering is performed on the summary infor-

mation. Some example algorithms in this category are DenStream [14], HDenStream

[51], SOStream [39] and PreDeConStream [36]. In density grid-based clustering al-

gorithms, the data space is divided into grids, then the clusters are formed based on

the density of grids. Some example algorithms in this category are D-Stream [17],

PKS-Stream [59], DENGRIS-Stream [3], and ExCC [9].

However, our proposed approach is neither strictly a micro-clustering nor strictly

a grid-based clustering approach. It uses grids only for the contouring algorithm.

To the best of our knowledge, our proposed approach is the first approach that

uses density-contour and contour analysis to create spatio-temporal clusters from

spatio-temporal data streams. Moreover, our spatio-temporal clustering approach

can identify spatio-temporal clusters at different levels of granularity.

Other existing stream clustering algorithms use incremental approaches that re-

ceive and process data elements one at a time. For example, Zhang et al. [76]

proposed a system called BIRCH, which compresses data and builds a hierarchical

data structure to incrementally cluster the incoming points using available mem-

ory and minimizing the amount of I/O required. Song et al. [62] introduced a

probability-density-based data stream clustering approach, which incrementally up-

dates the density estimate taking only the newly arrived data and the previously
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estimated density. Unlike these incremental approaches, our approach is a batch

clustering algorithm. Instead of modifying an existing summary based on newly

coming data, we combine and connect the summaries without changing them. More-

over, incremental clustering methods are strictly weaker than batch algorithms in

their ability to detect clustering structure, while in the batch model, a good cluster

structure is easier to detect [1].

2.7 Summary

In this chapter, we present a serial, density-contour based framework for spatio-

temporal clustering of a point cloud stream, which first employs a non-parametric

density estimation approach to obtain spatial cluster as regions enclosed by poly-

gons generated from contour lines whose density corresponds to certain thresholds.

To support these activities, our approach employs a data structure called contour

polygon tree as a compact representation of clustering result for each batch. Using

a family of novel distance functions, our approach forms spatio-temporal clusters by

identifying continuing relationships between temporally consecutive spatial clusters.

Therefore, spatio-temporal clusters are defined and obtained at different granulari-

ties: continuing contour polygons, continuing contour polygon trees, and continuing

contour polygon forests. The proposed framework meets the one-time access require-

ment for streaming data processing, as the data in each batch are only read once.

The framework is capable of processing very large data streams in approximately

linear time. To the best of our knowledge, our approach is the first approach that
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uses contouring algorithms and contour analysis to obtain spatio-temporal clusters.
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Chapter 3

Serial, Density-contour Based

Spatio-temporal Clustering

Algorithms

3.1 Dataset for Evaluation

To evaluate all the proposed algorithms, we use the TLC Trip Record Data [66],

which was collected by technology providers authorized under the Taxicab and Liv-

ery Passenger Enhancement Programs (TPEP/LPEP), containing data for over 1.1

billion taxi trips from January 2009 through June 2016. Each trip record contains

precise location coordinates for where the trip started and ended, timestamps for

when the trip started and ended, and a few other variables.
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3.2 ST-DCONTOUR

In [78], we proposed our first serial, density-contour based spatio-temporal clustering

algorithm called ST-DCONTOUR, which employs a model-based clustering method-

ology in phase 1 of the proposed framework.

3.2.1 Phase 1: Spatial Density Estimation

In phase 1, we use mixtures of bivariate Gaussians as a spatial density model, whose

density function is defined as follows:

N(x|µ,Σ) =
1

(2π)2(|Σ|)1/2
exp−

1
2

(x−µ)TΣ−1(x−µ), (3.1)

where µ is a two-dimensional mean vector, Σ is a covariance matrix, and |Σ| is the

determinant of Σ.

Spatial density functions are defined as k-component Gaussians mixture models:

p(x|λ) = ΣK
k wk ∗N(x|µk,Σk), (3.2)

where, wk is the weight of each component, µk is the mean of k-th Gaussian, Σk

is the covariance matrix of k-th Gaussian, x is the data point under consideration,

N(x|µk,Σk) is the density of k-th Gaussian and K is the total number of Gaussian

components.

In general, the Gaussian mixture model is parameterized by the mean vectors,

covariance matrices, and component mixture weights:

λ = {wi, µi,Σi}, i = 1, 2, 3, . . . , K. (3.3)
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In order to obtain the final spatial density function, the EM algorithm [22] is used

to create GMMs for different k-values and model-types, maximizing the log-likelihood

which is given by:

lnL(w, µ,Σ;x1, . . . , xn) = ΣN
i=1ln{wkN(xi|µk,Σk)} (3.4)

3.2.2 Phase 2 and Phase 3 of ST-DCONTOUR

For phase 2 of ST-DCONTOUR, we use solely one density threshold in the contouring

algorithm to identify spatial clusters.

In phase 3, to extract the relationship between temporarily consecutive spatial

clusters, we use the distance function defined in 2.2.

3.2.3 Experimental Results

We created spatio-temporal clusters using yellow taxi pick-up locations collected in

one-hour intervals as batches. We analyzed three consecutive hours from 11 pm on

January 6th to 2 am on January 7th (2016). Figure 3.1 shows two spatio-temporal

clusters that ST-DCONTOUR created: SC1 continues for three consecutive batches

and SC2 appears at batch 2 and continues for two batches. According to the spatio-

temporal clusters we obtained, the midtown area of New York City is busy at mid-

night (11 pm-2 am) as far as taxi pick-ups are concerned, which means many people

hang around that area during that time, particularly nearby the Time Square area.

A newly appearing cluster, such as SC2 located in the time square at batch 2, shows
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that people start leaving that area at midnight but do not require taxi cab services

at an earlier time as there isn’t a spatial cluster for the 11 pm to midnight batch—it

is too early for New Yorkers to go home yet.

3.3 ST-DPOLY

Instead of using the parametric Gaussian Mixture Model as the density estimation

model, we decide to use non-parametric kernel density estimation (presented in Sec-

tion 2.3), which is faster and improves the performance significantly. We call the

new approach ST-DPOLY [81].

Using ST-DPOLY as baseline “serial” approach, we also give a thorough com-

parison between a serial spatio-temporal clustering approach and a parallel spatio-

temporal clustering approach—ST-SNN [71]. More details will be covered in Chapter

4.

3.4 ST-COPOT

We extended ST-DPOLY to support multiple density thresholds. The obtained spa-

tial clusters have the hierarchical structure that allows us to look into clusters at

different density granularities. We name the data structure Contour Polygon Tree,

in terms of how we obtain contour polygon trees as spatial cluster models, see Section

2.2. We propose a family of distance functions to obtain spatio-temporal clusters at

different granularities, for more details, see Section 2.3. The new approach is named
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ST-COPOT [79].

3.4.1 Experiment and Analysis

3.4.1.1 Demonstration of ST-COPOT

We reused the TLC Trip Record Data [66] to evaluate ST-COPOT. Specifically, we

used yellow taxi pick-up locations collected on January 8th, 2014 in our experiments.

The data collection area is the Manhattan metropolitan area and the total number

of taxi pick-ups is over 430,000. The clustering result is presented in Figure 3.2.

We picked a two-hour interval as batch size and used 0.45 as the density thresholds

to extract all those continuing relationships. Using ST-COPOT can easily track the

evolution of clusters over time by looking into the continuing relationship at different

granularities, for example:

• There is a region centered around Time Square in the late night and before

dawn, which shows that Time Square is where many people gather around

during this time window.

• Early in the morning, in east of Midtown area, there are two sub-regions with

high density, one is southwest of Time Square and is close to several train and

bus terminals. The other sub-region is further southwest, which is close to the

34 Street Penn Station. We infer that, early in the morning, after New Yorkers

get off trains, many of them go in search of taxi rides. Similarly, in the 6-8 am

and 8-10 am batch, a contour polygon tree centering around the Grand Central
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Terminal exhibits a similar taxi pick-up pattern.

• We observe between 2 pm and 8 pm in the afternoon, there are a lot of people

who look for taxis at W 34th St. In the following 2 hours (8-10 pm), the contour

polygon tree disappears, indicating that the demand for taxis decreases. Such

information can help a taxi company to allocate taxis.

• Since all those spatial clusters are dense regions in terms of taxi pick-ups,

it means it is harder to get a taxi in those regions during the time window

when they are identified as spatial clusters. People who take taxis can better

plan their activities beforehand using such information, which also shows the

potential practical value of ST-COPOT for people who take taxis, especially

commuters.

• Such results can also help taxi drivers to locate customers as well, as those

regions are dense pick-up regions within a specific time window.

Through changing the batch size, we can identify hourly, daily, and weekly pat-

terns as well.

3.4.2 Quality of Clustering Results of ST-COPOT

In order to evaluate the quality of the clustering results of ST-COPOT, we applied a

density-based clustering validation method proposed by Moulavi [53] to the clusters

obtained. Using this method, we can obtain a relative validity index for each cluster

we created, the range of validity index is between -1 and 1. One flaw of the validation
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method is that it does not consider the case that only a single cluster is obtained, so

in this case, we ignore the validity index.

Validity Indexes of Clusters

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

Figure 3.3: Histogram of validity indexes for clusters in Figure 3.2

In the experimental result depicted in Figure 3.2, we observe 43 contour polygon

trees. The number of spatial clusters for each level are 43 clusters for root, 26

clusters for level 2, and six clusters for level 3. Figure 3.3 gives the histogram of

validity indexes obtained for each cluster. Over 77 percent of the clusters have a

validity index larger than 0.5, and over 69 percent of clusters have a validity index

larger than 0.6. The average validity index is 0.6415, which shows that most of the
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spatial clusters obtained have good quality.

Figure 3.4: Depicted is a clustering with low quality. In the map, the black points are
pick-up locations and the two contour polygon trees are spatial clusters we obtained.
Different colors of the contours correspond to different thresholds. The bottom table
depicts the validity indexes for each spatial clusters. Note: the map is extracted
from the 4-5 am batch subfigure in Figure 3.2.

For those clusters with low validity indexes, it occurs when two clusters are close.
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In this case, the validation method considers them as low-quality clusters, suggesting

they should be merged. However, due to the characteristics of the contouring algo-

rithm, we will obtain two separate clusters that are close to each other if the region

between them has relatively low density. For example, both the purple and black

clusters that are shown in Figure 3.4 have low validity indexes, but as we can see

from the density of pick-up locations, it is reasonable to split them into two trees.

Since there is a gap where the density of points is low, which causes the splitting

by the contouring algorithm. The same thing happened to the two trees on the

left of the 6-7 am figure in Figure 3.2. The validity indexes for these two trees are

black (-0.3362291, -0.2200243) and purple (0.07295217, -0.02499342), which further

justify the case that though some clusters obtained by ST-COPOT have low validity

indexes, it does not mean they have low quality.

3.4.3 Change Analysis Using ST-COPOT

Time in hour

Fo
re

st
 d

ist
an

ce

Figure 3.5: Area-weighted serial forest distances for contour polygon forests obtained
for consecutive hours (black for Wednesday, red for Thursday)

In most cases, spatio-temporal data is not static, but changes over time. In

terms of static data, it is reasonable to assume that the data was generated by a
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Figure 3.6: Parallel forest distances for contour polygon forests obtained for the
same hour of Wednesday and Thursday (black for non-area weighted forest distance
function, red for area-weighted forest distance function)

fixed process, but spatio-temporal data has a temporal dimension, and mostly the

underlying process that generates the data will change over time [73]. This will

create a major challenge in the field of spatio-temporal data analysis, in particular,

the change analysis of spatio-temporal data. Below outlines some preliminary results

we obtained concerning change analysis.

We tried to verify some interesting hypotheses using ST-COPOT. Such as, for

weekdays, how dense regions change over time should show a similar pattern. Dense

regions identified for the same time window of different weekdays should be similar.

That is, we hypothesize that the forest distance values for consecutive hours of week-

days would exhibit a similar time-series pattern. The forest distance values for the

same time window for different weekdays should be small. To verify these hypothe-

ses, we randomly sampled 15% of one-year’s data and use Wednesday and Thursday

as the example. Experimental results are presented in Figure 3.5 and Figure 3.6. The

forest distance value is between 0 and 1, low values mean significant agreement for

two contour polygon forests and high values correspond to significant disagreement.
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In Figure 3.5, it displays the serial forest distance values for consecutive hours of

Wednesday and Thursday, these two time series are really close. Figure 3.6 displays

the parallel forest distance values for the same hour of Wednesday and Thursday. The

average non-area weighted forest distance value is 0.3 and the average area-weighted

forest distance value is 0.27. These two experiments verify our hypotheses that how

the dense regions evolve over time shows a very similar pattern for Wednesday and

Thursday and the clustering result for the same hour of Wednesday and Thursday

shows significant agreement.

3.5 Summary

Table 3.1: Comparison of three algorithms

ST-DCONTOUR ST-DPOLY ST-COPOT

Phase 1
Parametric Gaussian
mixture model

Parametric kernel
density estimation

Parametric kernel
density estimation

Phase 2 One density threshold One density threshold
Multiple density
thresholds

Phase 3 Equation 2.2 Equation 2.2 Equation 2.2 to 2.11

In summary, we present three spatio-temporal clustering algorithms (ST-DCONTOUR,

ST-DPOLY, and ST-COPOT) that are based on the serial, three-phase density-

contour based framework we proposed. The comparison of these three algorithms

is presented in Table 3.1. We improved the algorithms over time and ST-COPOT

is the complete implementation of the whole framework. ST-COPOT first employs

a non-parametric kernel density estimation approach to obtain the spatial density

distribution of the points in each batch. Next, we use multiple density thresholds
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in contouring algorithms and post-processing to extract spatial clusters. Our ap-

proach at last forms spatio-temporal clusters by using a family of distance functions

to identify continuing relationships between temporally consecutive spatial clusters.

We demonstrated the effectiveness of these algorithms using the NYC taxi trips data.

It shows that all of these algorithms can discover interesting spatio-temporal patterns

in taxi pick-up location streams. We also learned that the clustering results have

sufficient quality, and the proposed algorithms have great potential in the application

of change analysis as well.
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Chapter 4

“Serial” versus “Parallel”: a

Comparison of Spatio-temporal

Clustering Approaches

As mentioned before, in order to identify spatio-temporal clusters, one major chal-

lenge that needs to be addressed is to determine how spatial and temporal informa-

tion are combined. In many existing approaches, time and space are treated in a

parallel fashion. Approaches that use time and space in a serial fashion are rarely

investigated.

In this Chapter, a serial, density-contour based spatio-temporal clustering ap-

proach (ST-DPOLY) is compared with a parallel approach called ST-SNN [71], which

relies on a spatio-temporal distance function that combines spatial and temporal dis-

tances and then modifies the well-established generic clustering algorithm—Shared
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Nearest Neighbor (SNN) to operate on that distance function. In contrast to ST-

DPOLY, ST-SNN does not subdivide the stream into batches. Instead, it processes

all the input data together and uses its spatio-temporal distance function to compute

shared neighbors for pairs of spatio-temporal objects and then uses this information

to obtain the clustering results.

4.1 ST-SNN: the “Parallel” Approach

The SNN algorithm [25] is a density-based clustering algorithm proposed by Ertöz. It

can identify clusters of different shapes, sizes and densities, as well as deal with noise.

We generalize the traditional SNN algorithm to create spatio-temporal clusters and

the obtained algorithm is called ST-SNN [71]. A spatio-temporal event a is associated

with a time t when it occurs and a location vector (la, lo) indicating where it occurs.

The distance function for spatio-temporal events is defined as follows:

dst(ai, aj) = w × ds(ai, aj)

MaxS
+ (1− w)× dt(ai, aj)

MaxT
, (4.1)

where ai, aj are two spatio-temporal events. Function ds(ai, aj) is any function that

can measure the spatial distance between two points on a sphere from their longitudes

and latitudes, e.g., the Haversine formula. Function dt(ai, aj) is any function that

can compute the temporal difference between two events taking into account the

cyclical behavior of time (hours, days, years, season, etc.). w is a weight factor that

determines the importance of spatial and temporal distances when measuring spatio-

temporal distances (0 ≤ w ≤ 1). MaxS and MaxT are the maximum values of the
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spatial distance and temporal distance in the spatio-temporal event dataset, and are

used for normalizing the spatial and temporal dimensions. The similarity between

a pair of spatio-temporal events ai, aj, denoted as similarity(ai, aj) is the number

of the k nearest spatio-temporal neighbors that they share. Next, SNN density

is computed as the sum of the similarities between the event ai and its k nearest

neighbors. Spatio-temporal events that have the SNN density of at least MinPs are

labeled as core points. Clusters are then formed by computing the transitive closure

of events that can be reached from an unprocessed core event using its k nearest

neighbor list. This process continues until all core events have been assigned to a

cluster. The remaining events are classified as outliers, which are not included in

any cluster.

4.2 Experiments and Analysis

4.2.1 Experimental Results of ST-DPOLY

We reused the TLC Trip Record Data [66] for the evaluation. We used 20 minutes

interval as batches and analyzed taxi pick-ups from 6 am to 7 am on January 8th

(2014), Figure 4.1 shows the clustering results. For 6-6:20 am batch, we obtained

three clusters. For the 6:20-6:40 am batch, we obtained two clusters and we obtained

four clusters for the 6:40-7 am batch. According to the result, east of Midtown of

New York is a hotspot that is crowded with people looking for taxis early in the

morning, as well as the region centered around the Grand Central Terminal.
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Analyzing these results, we can see some interesting patterns. In terms of west

of the Midtown area, two clusters continue for three consecutive batches. We find

one cluster is near the south-west of Time Square, which is close to several train

and bus terminals, such as 42 St - Port Authority Bus Terminal. The other cluster

is also centered around several bus terminals and train stations, such as 34 Street

Penn Station. We infer that, early in the morning, after New Yorkers get off trains or

buses, many people choose to look for taxi rides, which explains the presence of high-

density clusters of taxi pick-ups around the train and bus stations. Similarly, cluster

3 in the 6:00-6:20 am batch, and cluster 3 in the 6:40-7 am batch are all centered

around the Grand Central Terminal, exhibiting a similar taxi pick-up pattern. For

2nd batch, there is no cluster found at the region around Grand Central Terminal,

which shows that there are less passengers looking for pick-ups within the 6:20-6:40

am time frame.

4.2.2 Experimental Results of ST-SNN

We applied the ST-SNN algorithm to the same dataset. The input parameters for

ST-SNN are assigned as k = 100, MinPs = 60 and w = 0.5. We used Euclidean

distance to compute the spatial distance. There were 16 clusters obtained. Fig 4.2

visualizes clusters 2, 13 and 14, and they are centered around several bus terminals

and train stations, which shows a similar pattern of the clustering results generated

by ST-DPOLY. Clusters 2 and 13 are similar in the spatial domain, however, the time

slots corresponding to these two clusters are different. We also found that ST-SNN

can identify clusters with different spatial and temporal densities.
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4.3 Comparison between ST-DPOLY and ST-SNN

4.3.1 Time and Space Complexity

Table 4.1: Time and space complexities of ST-DPOLY and ST-SNN (Let’s say the
grid size we use in ST-DPOLY is m ×m, n is the total number of points, e is the
average number of edges a spatial cluster has.)

Time Complexity Space Complexity

ST-DPOLY
Phase 1 O(m2 × n) Phase 1 O(n+m2)
Phase 2 O(m2) Phase 2 O(m2 + e2)
Phase 3 O(e2) Phase 3 O(e2)

ST-SNN O(n2) O(k × n)

Table 4.1 gives the time and space complexities of ST-DPOLY and ST-SNN. For

ST-DPOLY, in general, e is smaller than m, and since it is a serial approach, the final

complexity would be O(m2 × n). In cases that the number of data points is much

larger than the number of grid cells (m2 << n), ST-DPOLY’s complexity becomes

O(n). The time complexity of ST-SNN is the same as SNN, which is O(n2) without

the use of an indexing structure. The space complexity is O(k × n) since only k-

nearest neighbor lists need to be stored. The k-nearest neighbor can be computed

once and used repeatedly for different runs of the algorithms with different parameter

values. In cases where m2 << n, the space complexity of ST-SNN is worse than ST-

DPOLY. In summary, ST-DPOLY is superior to ST-SNN in terms of both time and

space complexity.
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Table 4.2: Variation measurements of three clusters of ST-DPOLY in Fig. 4.1

Time Longitude Latitude
range 20 0.003552 0.002071
mean
(µ)

9 -73.9772 40.7528

sd(σ) 7.33 0.00116 0.000509

(a) cluster 3 from batch 1 (38 points)

Time Longitude Latitude
range 20 0.004863 0.005282
mean
(µ)

29.64 -73.9904 40.7563

sd(σ) 5.956 0.000773 0.00076

(b) cluster 1 from batch 2 (216 points)

Time Longitude Latitude
range 0 0.005263 0.004274
mean
(µ)

50 -73.993 40.75057

sd(σ) 5.547 0.00147 0.000805

(c) cluster 2 from batch 3 (259 points)

Table 4.3: Variation measurements of three clusters of ST-SNN in Fig. 4.2

Time Longitude Latitude
range 19 0.0026 0.0024
mean
(µ)

9.199 -73.9904 40.7565

sd(σ) 5.620 0.0005 0.0005

(a) cluster 2 (141 points)

Time Longitude Latitude
range 19 0.0025 0.0032
mean
(µ)

49.10 -73.9904 40.7564

sd(σ) 5.720 0.0005 0.0006

(b) cluster 13 (212 points)

Time Longitude Latitude
range 19 0.002264 0.002881
mean
(µ)

49.74 -73.9906 40.6862

sd(σ) 5.519 0.0086 0.009

(c) cluster 14 (122 points)

4.3.2 Temporal Flexibility

In terms of temporal flexibility, ST-SNN is more flexible as clusters have more tem-

poral variation with respect to temporal mean and standard deviation. The temporal

variation in ST-DPOLY clusters is significantly limited, since all observations belong

to a time window with a fixed size and its clustering results are independent of tem-

poral variation within a particular batch. Though batch size can be selected based

on application needs, it is fixed throughout the clustering process once selected, as

well as in the clustering result. However, the clustering result of ST-DPOLY is more

straightforward, and in terms of change analysis in location streams, ST-DPOLY as

a serial approach is more appropriate.
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4.3.3 Quality of Clusters

To compare the quality of the clustering result, we measured the variation of the

clusters obtained, which is shown in Table 4.2 and 4.3. The clusters generated by

ST-SNN have smaller values of standard deviation and range of time, longitude,

and latitude than those clusters identified by ST-DPLOY. Depending on parameter

settings, ST-SNN can integrate different temporal distance functions and different

weights to identify clusters that are dense in both the temporal and spatial domain,

while ST-DPOLY only looks for spatial dense regions within each batch, which fa-

cilitates the visualization of its clustering results.

4.4 Summary

To summarize the comparison between “serial” and “parallel” spatio-temporal clus-

tering approach, in terms of time and space complexity, ST-DPOLY has advantages

over ST-SNN, while ST-SNN is superior in terms of temporal flexibility. In terms of

clustering results, results of ST-DPOLY are easier to interpret and more straightfor-

ward, while ST-SNN usually obtains a significant number of clusters which overlap

either spatially or temporarily. It makes interpreting ST-SNN’s clustering results

more complicated.
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Chapter 5

A Novel Two-stage System for

Detecting and Tracking Events in

Twitter

5.1 Related Work

5.1.1 Twitter-related Research Approaches

Recently, the potential of analyzing Twitter data has been increasingly recognized

by numerous research domains, e.g., social science, information science, geoscience

and computer linguistics [64]. When it comes to analyzing data from Twitter, based

on which information have been used, the research methodologies are mainly classi-

fied into 3 categories: semantic approaches, spatio-temporal approaches and hybrid
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approaches (semantic and spatio-temporal).

Semantic approaches analyze the content of tweets only, e.g., Latent Dirichlet

Allocation [12] as a probabilistic topic model has been very popular in recent years,

and it has been used in a lot of papers [83, 72, 45]. Spatio-temporal approaches use

geo-tags and timestamps only, e.g., [50]. The hybrid approach considers the content

of tweets as well as geotags and timestamps of the tweet. For example, Boettcher

et al. proposed a real-time local event detection scheme through keyword frequency

analysis of DBSCAN clustered tweets [13]. Veloso et al. proposed an ST-DBSCAN

based approach in which tweets are filtered with a set of keywords [31].

5.1.2 Twitter Event Detection Approaches

When it comes to event detection in Twitter, a variety of approaches have been

proposed. Some approaches detect real-world events by detecting abnormal spatial,

temporal, and semantic tweet frequencies in real time [74, 16]. Other approaches

detect events by analyzing hashtags [19, 18, 28]. There are also approaches that

involve popular machine learning techniques (e.g., term frequencyinverse document

frequency (tf-idf), Naive Bayes, Support Vector Machine (SVM)). Becker et al. iden-

tified the real-world events and news content on Twitter by extracting and classi-

fying topics using tf-idf and Naive Bayes Classifier [8]. Starbird et al. analyzed

mass disruption events by using the support vector machine algorithm to identify

on-the-ground Twitterers during mass disruptions [63].
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There are many existing approaches that use LDA. Weng et al. used wavelet-

based signal in Twitter for clustering and classifying events by applying tf-idf and

LDA algorithm [72]. Lau et al. proposed an online LDA-based approach to track

emerging events in Twitter [49].

The system we propose belongs to the hybrid approach category. It integrates an

LDA-based approach and a density-contour based clustering approach. As mentioned

above, the LDA topic modeling has been successfully used in many approaches for

extracting semantic topics from Twitter. There are existing density-based clustering

approaches for event detection on Twitter (e.g., [60]). However, none of them are

“serial” approaches, our density-contour based approach uses time and space in a

serial fashion. Its advantage over the “parallel” approach is discussed in Chapter 4.

Many existing approaches are designed for specific application, e.g., disaster man-

agement [67], disease management [61, 31], traffic management [75], etc. Some ap-

proaches need to build a pre-trained classifier, e.g., [60, 8]. But our system is quite

general, it takes solely geo-tagged tweets as inputs and applies to all trending topics

including disaster, concerts, games, riots, etc. Depending on the application, the user

can decide to detect and track events using either “absolute” density or “relative”

density as well.
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Figure 5.1: Depicted is the architecture of the Twitter event detection and tracking
system. It consists of two stages, in the first stage, we take geo-tagged tweets as input
and identify events as topics by using an LDA-based topic discovery step. In the sec-
ond stage, after locations for each event are extracted in each batch, a density-contour
based spatio-temporal approach is employed to identify spatio-temporal clusters of
each event.
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5.2 Overview of the Two-stage System

5.2.1 The Architecture of the System

Figure 5.1 presents an architecture of the proposed two-stage system for detecting

and tracking events on Twitter. Stage 1 mainly consists of the following steps:

1. The geo-tagged tweets are divided into temporal batches associated with a

fixed-size time window.

2. Each tweet is preprocessed, e.g., removing non-alphabetical characters, URLs,

stop words, etc.

3. An LDA-based approach is applied to tweets within each batch to extract

dominating topics as our benchmark event labels.

4. The most probable topic is assigned to each tweet by iterating over all the

topics, summing up the posterior probabilities of all words in a tweet for each

topic. In case the sum of the weights for the most probable topic is less than

a certain threshold, no topic label will be assigned to the tweet.

In stage 2, for each event, the density-contour based clustering approach is applied

to all event-annotated tweet locations to extract spatio-temporal event clusters 1. It

mainly consists of the following steps:

1. Both relative and absolute kernel density estimation of the locations of a par-

ticular topic are obtained.

1In case we have more than one event, we run stage 2 for each event separately.
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2. Contouring algorithms and post-processing are applied to extract spatial clus-

ters as polygons describing the scope of the event, e.g., three event clusters in

Figure 5.1.

3. Spatio-temporal clusters are extracted by establishing the continuity for each

event for consecutive batches. Topic continuity is established by calculating

KL-divergence between topics, spatio-temporal continuity is established by a

family of distance functions.

4. A drill down operation is used to locate the events at different geographical

granularities, then steps 1-3 of stage 2 are repeated, more details will be given

in Section 5.3.2.5.

By integrating an LDA-based approach and density-contour based clustering ap-

proach, we can not only identify trending events from tweet messages semantically

as topics, but also identify spatial event clusters and establish event continuity tem-

porally for consecutive batches. Our framework represents events as follows:

• Semantically, an event is viewed as a set of weighted words that describe a

specific topic.

• Spatio-temporally, an event is visualized as a set of polygons with a hierarchical

density structure indicating the spatial scope of the event, and the continuity

of event is visualized as a directed graph connecting event scope polygons for

consecutive batches.
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5.2.2 Inputs and Outputs of the System

The inputs to our system are geo-tagged tweets, including the content of the tweet,

the geolocation and the timestamp of each tweet. Stage 1 will produce a list of topics

as intermediate results, each topic consists of a list of weighted words. Stage 2 will

produce a set of hotspots on map. Depending on how we calculate the densities,

each hotspot is either a region with high density of tweets or a region with high per-

centage of tweets associated with a particular event. Specifically, each hotspot will

be a multilayer of polygons extracted by a contouring algorithm using different den-

sity thresholds. After the temporal continuity is established, temporally continuing

spatial clusters in consecutive batches will be connected.

In Figure 5.1, on the bottom of Stage 2, it shows an example output of the

two-stage system. For batch ti, we identify two events, both of them consist of three

layers of polygons. For batch ti+1, we identify three event clusters. After establishing

continuity for both the topics and the spatial event clusters, we find that event 1 and

event 2 continue for two batches while event 3 is a newly appearing event at batch

ti+1.
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5.3 The Two-stage System

5.3.1 Stage 1: LDA-based Topic Extraction

5.3.1.1 Preprocessing

We first divide the geo-tagged tweets into batches based on their timestamps. Next,

text preprocessing is applied to each tweet where we remove all non-alphabetical

characters, URLs, mentions, and stop words. To facilitate the analysis, we convert

all letters to lower case as well.

5.3.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) proposed by Blei et al. [12] is a generative model

that allows sets of observations to be explained by unobserved groups. If observations

are words collected into documents, it hypothesizes that each document is a mixture

of a small number of topics and that each word’s creation is attributable to one of

the document’s topics. The LDA generative model mainly consists of the following

3 steps.

1. The term distribution β is determined for each topic by

β ∼ Dirichlet(δ). (5.1)

2. The proportions θ of the topic distribution for the document ω are determined

by

θ ∼ Dirichlet(α). (5.2)
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3. For each of the N words ωi,

a) choose a topic zi ∼Multinomial(θ),

b) choose a word wi from a multinomial probability distribution conditioned

on the topic zi : p(wi | zi, β),

where β is the term distribution of the topics and contains the probability of a word

occurring in a given topic.

Estimating parameters for LDA by directly maximizing the likelihood of the

whole dataset is intractable. Multiple approximate estimation methods have been

proposed to solve the problem, e.g., variational expectation-maximization (VEM)

[38] and Gibbs sampling [32]. For Gibbs sampling, the posterior distribution p(z|w)

is obtained by sampling from (for details, see [32, 58])

p(zi = K|w, z−i) ∝
n

(j)
−i,K + δ

n
(.)
−i,K + V δ

n
(di)
−i,K + α

n
(di)
−i, + kα

, (5.3)

where z−i is the vector of current topic memberships of all words without the ith

word wi. The index j indicates that the word wi and jth term in the vocabulary

are equal. n
(j)
−i,K denotes the frequency of the jth term being assigned to topic K

without wi. di is the document in the corpus where wi belongs to. The dot . indicates

performing the summation over this index. The predictive distributions of the term

distribution of the topic β and the topic distributions of documents θ is given by

β̂
(j)
K =

n
(j)
K + δ

n
(.)
K + V δ

(i = 1, 2, ..., V ), (5.4)
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θ̂
(d)
K =

n
(d)
K + α

n
(d)
(.) + kα

(d = 1, 2, ..., D). (5.5)

There are several implementations that use Gibbs sampling for Bayesian esti-

mation. In our system, we use GibbsLDA++ proposed by Phan et al. [58] as our

baseline approach for topic extraction.

5.3.1.3 Topic Assignment

After we train an LDA topic model on all tweets in each batch, we obtain both the

topic distribution zi for all the tweets and the term distributions β for topics. By

iterating over all the topics summing up the posterior probabilities wij of all the

words in a tweet, we pick the topic with the highest sum. If the maximal sum is

less than a certain threshold θ, no topic label will be assigned. The topic label l is

calculated as follows:

l =


none if max(

∑J
j=1 p(wij p zi, β)) < θ, i = 1, 2, 3, ..., k

i with maximum value for
∑J

j=1 p(wij p zi, β), i = 1, 2, 3, ..., k

, (5.6)

where j is the word index for the tweet, i is the topic index and k is the number

of topics. Next, we extract all the locations for the topic that we are interested in,

and use them as the input for the density-contour based approach in stage 2 to track

the events spatio-temporally.
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5.3.2 Stage 2: Spatio-temporal Event Tracking

In this section, we first present two different mechanisms for estimating the densi-

ties of the event-annotated tweet locations. After we obtain the location density

distribution for the event, we will use contouring algorithms and post-processing to

extract the spatial clusters for each event. Finally, the topic continuity is established

by calculating the KL-divergence and the spatio-temporal continuity is established

by using a family of distance functions.

5.3.2.1 “Absolute” Density Estimation

We use non-parametric kernel density estimation to estimate the “absolute” densities

of all locations of event tweets. For more details, please refer to Section 2.4.

5.3.2.2 “Relative” Density Estimation

In epidemiological studies, one important topic is to investigate the dispersion of

some diseases within a geographical region. A common objective of such study is

to determine the way in which the risk of contraction of the disease varies over the

spatial data collection area. To avoid confounding by the underlying population

dispersion, it is necessary to not only obtain the disease case location data, but also

control case data describing the at-risk population. Relative Risk Functions have

been proposed in the literature to provide relative density estimation capabilities

[11]. In our system, we employ this approach to estimate the relative density of

event tweets with non-event tweets.
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A straightforward relative risk function can be expressed as the ratio of the actual

case density f and control case density g, respectively

r(z) =
f(z)

g(z)
. (5.7)

In our application, we consider the event tweet locations as the case, and all the

geo-tagged tweets collected in the data collection area as the control case. In order

to make the treatment of these two densities symmetric, Kelsall et al. suggest the

use of log-risk function ρ = log(r) [44].

When it comes to the bandwidth selection, choosing standard fixed bandwidth

would fail in many applications, as the lack of the spatial adaptability would question

its appropriateness for relative density estimation. For example, human population

distributions tend to be highly heterogeneous with natural geographical features

such as rivers, cities, and mountains affecting both the case and control densities

within the data collection region. In terms of fixed bandwidth case, a large amount

of smoothing is applied to densely populated regions in order to control the noise

where the data is sparse. It makes it hard to capture important finer details in

densely populated regions [20]. To solve this problem, using an adaptive bandwidth

to handle inhomogeneities in the distribution of data has been proposed. In our

system, we use the symmetric adaptive smoothing schema proposed by Davies et al.

for the bandwidth selection [21]. It uses a single bandwidth function for both cases

and controls, which is defined as follows:

h(x) = h0α(x)(i = 1, 2, ..., n), (5.8)
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where the term αi ≡ α(xi) is called ith local bandwidth factor:

α(x) =
1

γf(x)1/2
(5.9)

and

γ = exp

{
1

n

n∑
i=1

log[f(xi)
− 1

2 ]

}
. (5.10)

From the equations above, we can see that the kernel smoothing will decrease for

relatively high density regions, and increase for regions with sparse observations.

5.3.2.3 Edge Correction for Density Estimation

As the data is collected over a restricted region, there is a common problem that part

of the kernel contributions of observations that lie near the observation area boundary

are underestimated. Since there are no observations occurring on the other side of

the boundary, it creates bias near the boundary. To solve this issue, Marshall et al.

[52] proposed a sample-point adaptive estimator, defined as:

f̂h0(y|X) =
1

n

n∑
i=1

h(xi; f)−2K

(
y − xi
h(xi; f)

)
qh(y)(y|D)−1 (y ∈ D), (5.11)

where D is the study region, qh(y)(y|D)−1 is the correction factor, which is calculated

as:

qh(y;f)(y|D)−1 = h(y; f)−2

∫
D

K

(
u− y
h(y; f)

)
du (y ∈ D). (5.12)

This can be considered as the proportion of the kernel weight that falls within D for

a kernel centered at y with bandwidth h.
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5.3.2.4 The Extraction of Spatial and Spatio-temporal Clusters for an

Event

After we get a density distribution of locations of event-annotated tweets at the data

collection area, we identify spatial dense regions as spatial clusters using contouring

algorithms and post-processing. For more details, see Section 2.3 .

To extract spatio-temporal clusters of the event, we need to establish the tem-

poral continuity including the topic continuity and the spatial continuity. The topic

continuity among consecutive batches is established as follows. Since we train an

LDA for tweets in each batch, as a result, we get a list of topics for each batch. By

calculating the KL-divergence of topic lists for consecutive batches, we are able to

calculate the distances between those topics. If the distances between two topics are

less than a specific threshold, we consider them as continuing topics/events.

In order to identify a continuing relationship between spatial clusters of the same

event obtained for two consecutive batches, we will reuse distance functions intro-

duced in Section 2.4.

5.3.2.5 Drill Down Operation to Locate Events at different Geographic

Granularities

Using the system we introduced so far, we are able to obtain the spatial event clusters

that locate the area affected by a particular event. But sometimes we want to locate

the center of an event or we want to provide a much more fine-grained analysis of

the spatial variation in the region occupied by the spatial cluster. We propose the

63



following drill down operation.

We use the region of the spatial cluster as the observation area, rerun the 2nd

stage of the system with a much smaller grid cell size, much higher density thresholds,

and larger bandwidth for density estimation step. Since the event center will be a

much smaller region compared to the region affected by an event. The key idea

of the drill down operation is to initially identify spatial clusters by just running

the spatial clustering framework for a few parameters at a somewhat low level of

granularity, and then to conduct a more in-depth analysis for the obtained spatial

clusters. We also claim that this approach is more efficient, as fine-grained analysis

is only conducted for the regions obtained as spatial clusters and not for other parts

of the observation area. That is, we initially identify the spatial clusters using a

larger grid cell size—the spatial clustering will also be obtained more quickly for a

larger grid cell size—and then, supposing we get multiple contour polygon trees, we

use the root polygon of each tree as the new boundary of the observation area and

rerun the second stage of the system with a new set of parameters to obtain more

fine-grained contour lines.

In summary, after we obtained spatial clusters, the drill down operation provides

a much more fine-grained analysis of the spatial variation in the region that the

spatial cluster occupies.
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5.4 Experimental Results

We demonstrate and verify our approach using two real-world events and geo-tagged

tweets data collected from Twitter. Data is downloaded from [57].

5.4.1 Case Study 1: Buffalo Snowstorm Event

The case study centers on a snowstorm event. On November 17-19 2014, a major

lake effect snowstorm hit the Great Lakes region, dumping a record-breaking eight

feet (2.4 m) of snow in the Buffalo, New York region. The storm stranded hundreds,

killed 13, and caused a state of emergency.

Table 5.1: The top 20 words of snowstorm-related topic for three consecutive days

Date Word list of snow-related topic

Nov 17
back, going, work, home, school, snow, morning, class, wait, sleep,

tomorrow, rain, wanna, days, bed, come, cold, coming, weather, winter

Nov 18
snow, today, school, buffalo, tomorrow, house, still, days, car,

crazy, high, coming, south, stuck, closed, open, help, feet, west, hit

Nov 19
snow, buffalo, still, house, days, way, long, help, car, weather,
stay, finally, hit, open, hours, away, storm, hour, closed, end

We applied our approach to daily batches and used the State of New York as

the data collection area. The word list of the snowstorm-related topic for three

consecutive days is presented in Table 5.1. The KL-divergence between these topics

are 0.6424 (Nov 17→Nov 18) and (Nov 18→Nov 19) 0.4524. Both values indicate a

strong continuity among the topics listed in 5.1. Some sample tweets are presented

in Table 5.2. As outlined, people started tweeting about the snow on Nov 17, but
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Table 5.2: Sample snowstorm-related tweets for three consecutive days

Date Sample snow-related tweets

Nov 17
1. And the snow has begun to fall in Buffalo.

2. Wet snow this morning.
3. And the heavy snow begins.

Nov 18

1. Drove by 4 cars stuck on the California Abbott hill. Deepest snow
on Route 20 I’ve ever seen. #LakeEffect #Snow #Warning. #WNYwx

2. Only in West Seneca still stuck at work with co-workers
and the snow continues @ Rosina Food Prods.

Nov 19
1. My car buried in the snow behind me @Comfort Inn

near Walden Galleria Mall
2.Snowstorm in Buffalo Area Kills at Least 4.

the snow hadn’t caused a serious problem yet. On Nov 18 and Nov 19, the topic

shifted a little and people started tweeting about the effect of the snowstorm, e.g.,

traffic, house, school, car, etc.

Figure 5.2 shows the clustering result for the snowstorm event. As depicted,

Buffalo city is a continuing hotspot of the snowstorm events for two consecutive

days. But according to the heat map, we know that there is also a high density of

snow-related tweets at New York City, which has a much higher tweet density.

Next, we focused on the Buffalo metropolitan area only, where the clustering

results are presented in Figure 5.3. Using relative density, we are not able to identify

any continuing clusters. On November 18th, three dense regions are identified, east

of Cheektowaga, West Seneca, and a small region at West Seneca. Using absolute

density, a continuing cluster at the west of West Seneca is identified. Another cluster

is located in downtown Buffalo, the area of cluster increases on the following day.
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Snow event clusters using relative density  
@New York State, November 18, 2014 

Snow event clusters using relative density  
@New York State, November 19, 2014 

Heatmap of tweets with snow topic label 
@ New York State, November 18, 2014 

Heatmap of tweets with snow topic label 
@ New York State, November 19, 2014 
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Figure 5.2: Depicted are the snowstorm event tracking results using New York State
as our data collection area. The upper two subfigures are clustering results for two
consecutive days using relative density, the purple polygons are snowstorm event
clusters and the arrow denotes the continuing relationship. The lower two subfigures
are the heatmaps of tweets with snowstorm event label, which reflects the absolute
density.

67



La
tit
ud

e

Longitude

La
tit
ud

e

Longitude

Snow event clusters using relative density 
@ Buffalo, November 18, 2014 

Snow event clusters using relative density 
@ Buffalo, November 19, 2014 

Snow event clusters using absolute density 
@ Buffalo, November 18, 2014 

Snow event clusters using absolute density 
@ Buffalo, November 19, 2014 

Figure 5.3: Depicted are the snowstorm event tracking results for two consecutive
days using Buffalo City as our data collection area. The upper two subfigures are
clustering results using relative density and the lower two subfigures present results
using absolute density. The contours are snowstorm event clusters and different colors
correspond to different thresholds. The arrow denotes the continuing relationship
and different colors correspond to different cases (black arrows: continuing contour
polygon trees, other arrows: continuing polygons).
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5.4.2 Case Study 2: Ferguson Riots Event

The second case study centers on a riot event. On November 24-26, riots break out

in Ferguson (a suburb of St. Louis, Missouri) after it was announced that there was

insufficient evidence to indict Officer Darren Wilson for shooting Michael Brown.

The protests included mass looting and the burning of 12 buildings in Ferguson, as

well as 29 arrests.

Table 5.3: The top 20 words of riot related topic for three consecutive days

Date Word list of riot-related topic

Nov 24
ferguson, tonight, police, city, louis, stl, brown, grand, jury, decision, safe,
justice, family, wilson, peace, fire, stay, violence, verdict, fergusondecision

Nov 25
ferguson, police, city, louis, say, man, stl, well, see, missouri, fire,

protesters, car, keep, grand, national, guard, michael, burning, kansas

Nov 26
ferguson,people, police, stl, right, tonight, missouri, need, black,
man, brown, live, south, grand, see, new, car, great, louis, way

Table 5.4: Sample riot related tweets for three consecutive days

Date Sample snow-related tweets

Nov 24
1. The Michael Brown case verdict is supposed to be announced at 9 ET.
I believe Ferguson will violently riot no matter what. Start praying now

2. The purge is beginning down here! #StLouis.

Nov 25
1. Tear gas everywhere, police dogs, helicopter circling overheard #Ferguson

2. Wild afternoon protesters shut down I70 and police use pepper spray
and arrests to disperse crowd. #mikebrownverdict.

Nov 26
1. National guards take over #Ferguson tonight.

2. 44 arrested tonight. #Ferguson

Table 5.3 shows the word list of the riot-related event and Table 5.4 shows some

69



sample tweets. People started tweeting about the decision on Nov 24 and the riot

had started. On Nov 25 and Nov 26, the topic shifted a little and people started

tweeting about how the government handled the riot, e.g., National Guard, police,

etc.

We first applied our approach to daily batches and used State of Missouri as the

data collection area. The result with absolute density is presented in Figure 5.4. We

are able to identify continuing clusters at St. Louis. For relative density, we get

similar results.

Next, we focused on the City of St. Louis only. The clustering result is presented

in Figure 5.5. Using relative density, we were able to locate continuing clusters at

Ferguson from November 24th to November 25th. The identified cluster became

larger on November 26th. On November 25th and November 26th, the density be-

came higher, which reflected that the riot event discussions became more intense.

Using absolute density, we obtained a continuing cluster at Ferguson for three con-

secutive days. We also identified a cluster in downtown St. Louis on November 25th,

which means a high density of people at downtown St. Louis who also cared about

this event and discussed it on Twitter.

5.4.3 Practical Experience of LDA-based Topic Extraction

When we designed and evaluated our system, we applied LDA to a lot of tweets.

This section summarizes our experiences in using LDA-based approaches to identify

topics in tweets.
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• People use Twitter to report daily routine activities, which are not of much

interest to our system and are challenging to be filtered out automatically.

For example, some people like to post a tweet before they go to bed. Some

examples of top-weighted words for such topic are night, sleep, late, tired, bed,

etc.

• LDA-based tools force us to give a number k and then the LDA-based tools

identify exactly k topics for an input set of tweets. In case our selected k

value is too small, we risk missing out an important topic, e.g., sometimes the

important event might be ranked lower than the daily routine topic.

• In the case we choose a high k value, sometimes we might end up with more

than one topic discussing the same event. In extreme case, during a popular

event, such as the FIFA World Cup when the majority of the tweet stream is

discussing the same topic, there will be one single dominating event. Almost

all the topics identified will be referring to the same event. To deal with

this problem, we have to post-process the topic list to merge tweets that are

associated with the same event. Again, it seems difficult to come up with an

automated procedure for this “unavoidable” topic merging task.

• LDA is very sensitive to initialization as well: different runs will return different

results, which exhibit discrepancies with respect to top-weighted words and

top-ranking topics.

• In order to get a clean word and topic lists with LDA, we have to use a large

list of stop words. Initially we used LDA with a default stop word list and
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the results the topic list we obtained were often “blurry” and very hard to

understand. Only after we merged stop word lists from multiple sources, were

we able to identify more “crisply” defined topics.

5.5 Extension to Emotion Mapping

We extended the proposed two-stage system and successfully applied it to a Twitter’s

emotion mapping approach [6]. Here are some major modifications:

• At the first stage, instead of doing LDA-based topic modelling, we applied a

rule-based sentiment analysis model called VADER to obtain the emotional

scores for each tweet [30]. It is a sentiment analysis tool specifically built for

the sentiments expressed in social media. It uses a lexicon of commonly used

sentimental words to rate each tweet. For each tweet, the analyzer parses

the tweet and then checks its lexicon for the sentimental words. Finally, the

weighted average of sentimental words is returned as the final emotional score.

The obtained scores range in [-1,1], represent negative, neutral, and positive

emotions.

• At the second stage, instead of doing regular relative and absolute density

estimation, we came up with an emotion weighted density estimation approach.

The density in datasets O is defined as follows: the influence of o on v is

measured as a product of E(o) and a Gaussian kernel function. The influence

of object o ∈ O on a point v ∈ F is defined below:
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finfluence(v, o) = E(o) ∗ e
−d(v,o)2

2σ2 . (5.13)

If ∀o ∈ O, E(o) = 1 holds, the above influence function becomes a Gaussian

kernel density function. The parameter σ determines how quickly the influence

of o on v decreases as the distance between o and v increases. The accumulated

influence of all data objects o ∈ O on a point v ∈ F is used to define a density

function ψO(v), as follows:

ψO(v) = Σo∈Ofinfluence(v, o). (5.14)

• In addition to identifying a continuing relationship, the new approach gener-

alizes it to a change analysis schema by looking at other relationships as well,

e.g., growing, shrinking, disappearing, etc.

We have used daily batches in our experiments. Figure 5.6 and Figure 5.7 show

some experimental results of the emotion mapping framework. As we can see, overall

there are more positive emotions. One interesting observation is that June 1 seems

to have more clusters than June 2. This can be attributed to the fact that June 1

was a Sunday when people were more active on social media. We also see that the

spatial clusters are more concentrated in the cities, e.g., Buffalo and New York City.
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Figure 5.6: Depicted is a spatial clustering of emotions in tweets for June 1, 2014.
The contours are spatial emotion clusters and different colors correspond to different
thresholds. Red and blue contours are clusters with high negative emotion while
green and orange contours are clusters with high positive emotion.

5.6 Summary

The chapter introduces a novel serial, spatio-temporal system for detecting and track-

ing trending events in tweet streams. The system characterizes such events using a
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Figure 5.7: Depicted is a spatial clustering of emotions in tweets for June 2, 2014.
The contours are spatial emotion clusters and different colors correspond to different
thresholds. Red and blue contours are clusters with high negative emotion while
green and orange contours are clusters with high positive emotion.

set of weighted keywords, spatial regions describing where the particular event occurs

and by establishing continuity of those event regions over time. The approach relies

on contouring algorithms to obtain such regions and area-weighted distance func-

tions to assess temporal continuity. This is the first system that considers relative
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densities in addition to absolute densities for event tracking, and our experimental

results demonstrate the need for providing such capabilities. Our spatio-temporal

clustering approach supports a drill drown operation that identify high densities of

tweets about a particular event at finer-grained level of granularity. Through two

case studies, we demonstrate that the proposed system can effectively detect and

track trending events. At last, our proposed approach has been successfully applied

to an emotion mapping approach, which proves its effectiveness.
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Chapter 6

Conclusion

The main objective of the presented study is the development of density-contour

based framework for spatio-temporal clustering algorithms and event detection. In

this research, we proposed a serial, density-contour based framework for spatio-

temporal clustering of point cloud streams (e.g., location streams), including several

algorithms we proposed, namely ST-DCONTOUR, ST-DPOLY, and ST-COPOT.

They all rely on the three-phase clustering approach, which takes the point cloud

stream as input and divides it into batches based on fixed-size time windows. Next,

a density estimation approach and contouring algorithms were employed to obtain

spatial clusters as polygon models. Finally, spatio-temporal clusters were formed by

identifying continuing relationships between spatial clusters in consecutive batches.

The framework was successfully applied to NYC taxi trips data, the experimental

results showed that all the algorithms could effectively discover interesting spatio-

temporal patterns in taxi pick-up location streams.
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To further utilize the density-contour based framework, we proposed a novel

system to detect and track events from Twitter streams by integrating an LDA-

based topic discovery approach with our density-contour based approach. The system

characterizes events using a set of weighted keywords, spatial regions describing where

the particular event occurs and by establishing continuity of those event regions over

time. This is the first system that considers relative densities in addition to absolute

densities for event tracking. We also proposed a drill drown operation that identify

high densities of tweets about a particular event at very fine levels of granularity. The

experimental results demonstrated that the proposed system can effectively detect

and track trending events.

In summary, the main contributions are as follows:

• We propose a serial, density-contour based framework for spatio-temporal clus-

tering.

1. Our approach treats time and space in a serial fashion, which creates

spatial clusters first and then spatio-temporal clusters are constructed as

continuing spatial clusters in consecutive batches. Our proposed approach

operates directly on density functions and uses density contours and con-

tour analysis to create spatio-temporal clusters from spatio-temporal data

streams.

2. We propose a novel data structure called contour polygon tree as our

spatial cluster model. We propose a family of novel distance functions that

operate on contour polygon trees to establish continuity between spatial
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clusters in consecutive batches. Spatio-temporal clusters are created at

different levels of granularity, e.g., continuing polygons, continuing trees,

and continuing forests.

3. The proposed framework is time efficient and can achieve approximately

linear time complexity for large-scale point cloud streams.

4. We evaluate the algorithms that are based on the proposed framework in

a challenging real-world case study involving NYC taxi trips data [66].

The experimental results show that all of them can effectively discover

interesting spatio-temporal patterns in taxi pick-up location streams.

• We propose a novel two-stage system by integrating an LDA-based approach

and an efficient density-contour based approach for event detection and tracking

in Twitter.

1. Our approach employs “relative” and “absolute” density, in particular,

the density contours for event detection in Twitter.

2. We propose a drill down operation—that operates on the identified event

clusters that have been obtained by our system—which summarize the

spatial variation of tweet locations that are related to an event at a finer

granularity. This is accomplished by rerunning the spatial clustering algo-

rithms with a different set of parameters, such as different density thresh-

olds, kernel bandwidth, and grid cell sizes.
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3. We demonstrate our approach using real-world data collected from Twit-

ter. The experimental results show that the proposed system can effec-

tively detect and track events from tweets.

6.1 Looking forward

Our work on density-contour based framework inspired various follow-up research,

e.g., efficient clustering of data streams, as well as novel systems that require efficient

clustering approaches. Spatio-temporal clustering is becoming more important as

huge amounts of spatio-temporal datasets are becoming available these days. We

envision more efficient and reliable spatio-temporal clustering algorithms to come up

in the next several years.

We provide initial work for density-contour based systems for event detection

scenarios. We envision novel work that may further push the boundary and improve

the efficiency and reliability of these systems. The potential use for our work in

this dissertation could be extended to other systems that require tracking temporal

changes as well.
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