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Abstract

In this work, we propose a new dynamic migration (DM) heuristic method inte-

grating dynamic voltage scaling (DVS), dynamic power management (DPM) and

task migration in multi-core real-time systems which can feasibly balance the task

load and reduce energy consumption during execution to achieve energy efficiency.

Meanwhile, voltage scaling-based dynamic core scaling (VSDCS) is presented for re-

ducing leakage power consumption under low task load conditions. The framework

used for the proposed methods is composed of a partitioner, a local earliest deadline

first (EDF) scheduler, a power-aware manager, a dynamic migration module, and a

dynamic core scaling module. The primary unit is the power-aware manager which

controls the frequency for the power consumption and the voltage scaling based on

the feedback of the dynamic migration module and the dynamic core scaling module.

Simulation results show that the DM heuristic can produce further energy savings

of about 3 percent compared with the closest previous work [44]. That is (1− (1−

8%) · (1 − 3%)) = 11% energy saved with the new DM techniques. This work also

greatly reduces the cost of task migration among the multi-core processors. The

results show that VSDCS can achieve up to 33 percent of energy savings under low

load conditions as compared with previous methods.
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Chapter 1

Introduction

1.1 Motivation

The increasing computational demand is presently satisfied by using a large number

of the cores on a single chip. For example, Villalpando et al. [47] evaluated the Tilera

64-core TILE64 processor which performed well in the real-time hazard detection and

avoidance system of the Altair Lunar Lander. Maestro has been developed with the

explicit purpose of enabling space-borne, embedded multi-core real-time systems.

It is a radiation-hardened 49-core version of the TILE64 processor [35]. With the

recent technological advances in multi-core chips, the power consumption has become

an important design issue in modern multi-core processors. This fact is even more

critical with the growth of mobile and portable platforms/devices and embedded

systems.
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Much research is being conducted to improve the performance of the chemical

batteries while reducing energy consumption of the computer systems to extend

battery lifetime. Power management plays an important role in the operation of

mobile systems and embedded systems to prolong battery lifetime and reduce the

increasing power consumption. The power consumption of a device is generally

classified as: (1) Dynamic power consumption which arises due to the execution of

instructions [17] [33]; or (2) Leakage power consumption or static power consumption

which is proportional to leakage current of CMOS [25]. In order to reduce energy

consumption, lowering the supply voltage Vdd is one of the most effective ways, since

energy consumption E of CMOS circuits has a quadratic dependency on the supply

voltage Vdd [34]. Frequency and voltage are two related elements. In other words,

when lowering the frequency of the processor, the processor becomes much more

stable. Dynamic voltage and frequency scaling (DVFS), dynamic voltage scaling

(DVS), and dynamic power management (DPM) are the techniques to change the

frequency and/or operating voltage of processors in terms of system computational

demands at a given point of time [34]. The voltage increase or decrease can be used

as a factor on computer operating systems, such that DVS/DVFS and DPM can be

used as a power management technique from the system point of view. Voltage and

frequency scaling are often used together to save power in mobile devices, embedded

systems, and the real-time applications. By adopting energy-efficiency DVS CPUs

and power-aware subsystems [42], a modern processor may operate at different supply

voltages. Thus, the frequency (speed) of the processor can change accordingly. Intel

StrongARM SA1100 processor [6] and Intel XScale [7] are such well-known DVS
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processors in embedded systems.

In general, partitioned scheduling assigns the tasks statically to the processors by

a certain partitioning heuristic algorithm. Each processor is scheduled individually

using a uniprocessor scheduling policy such as earliest deadline first (EDF) or rate-

monotonic (RM). Global scheduling occurs when all the tasks are scheduled in a

queue. In a multi-core system, the DVFS regulator can work with either global

states on the cores or local states on the cores. As a result, DVFS regulator can

properly adjust the frequency of the cores in each partition to satisfy its application

requirements. Simultaneously, the power consumption can be reduced by loading

the workload evenly [22] [36] on multi-core systems with a global DVFS regulator.

In this case, an extra module is required to distribute the workload among local

partitions according to a given algorithm. In order to save energy, the system allows

task migration from one core to another, which results in energy savings as well as

workload balancing.

1.2 Contributions

The contributions of this work are briefly outlined as follows:

First, we introduced an energy-efficient management system model that exploits

DVS/DVFS and DPM to save both dynamic and leakage power consumption. This

system model includes a partitioner, a local EDF scheduler, a power-aware manager,

a dynamic migration module, and a dynamic core scaling module. The primary

module is the power aware manager. It utilizes DVS/DVFS and DPM to control
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the power consumption and the voltage scaling with the feedback of the dynamic

migration and the dynamic core scaling modules. This system model applies to a

periodic real-time system on multi-core processors when it combines with the fre-

quency settings of the underlying hardware.

Second, we extended dynamic repartitioning into dynamic migration (DM) [44]. Our

voltage scaling-based dynamic core scaling (VSDCS) utilizes the critical frequency

to determine the number of the cores instead of calculating the complicated function

during run-time execution [44]. Compared with Euiseong Seo’s work [44], DM fur-

ther reduces the dynamic power consumption by reducing the total number of task

migrations as explained in section 4.1 and 4.2. VSDCS further decreases the leakage

power consumption by avoiding the non-negligible overhead as explained in section

4.3 and 4.4.

The third contribution of this study is that the algorithms can be applied for schedul-

ing CPU-intensive applications on heterogeneous multi-core systems. Future work

intends to improve the algorithms for both CPU-intensive and data-intensive appli-

cations by considering memory resources in the algorithms.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 introduces related work

and existing techniques. Chapter 3 describes a power model and a task set model

used for the energy-efficient management system model. Additionally, it discusses an

energy-efficient management system model. Chapter 4 describes the DM heuristic

4



algorithm and VSDCS heuristic algorithm which efficiently reduce dynamic power

consumption and leakage power consumption. Chapter 5 analyzes simulation results

for the above two algorithms. Chapter 6 presents the future directions.
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Chapter 2

Related Work and Background

2.1 Related Work

Partitioned scheduling is a commonly used multiprocessor real-time scheduling ap-

proach [21]. The bin-packing problem implies that finding an optimal task assign-

ment in all cases is an non-deterministic polynomial-time (NP) hard problem [21].

In [10], the authors have stated that worst fit (WF) is the best partitioning heuristic

approach in terms of the energy efficiency. There has been much research work [41]

[15] [46] [30] about using dynamic voltage scaling (DVS) on a unicore processor. The

partitioning approach has the advantage of utilizing DVS. However, the use of each

partitioned set should be well balanced to maximize the energy efficiency [16]. Don-

ald et al. [22] stated that if the workload is properly balanced among the cores, global

DVS can be as efficient as local DVS. Also, several commercialized processors, such

as the IBM Power 7 [28], have implemented global DVS. After partitioned scheduling,
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the existing DVS techniques for unicore processors are easily accomplished on each

processor [41] [15]. EDF is the optimal algorithm for preempted periodic real-time

task scheduling [32]. Pillai and Shin [41] proposed three DVS scheduling heuristics:

static, cycle-conserving and look-ahead to conserve energy in a system requiring real-

time deadline guarantees. Cycle-conserving DVS for EDF is also implemented using

actual measurements and has provided significant energy savings in the real world

[41]. Yang et al. [48] presented a DVS-enabled chip multiprocessor (DVSCMP),

and suggested a heuristic algorithm for scheduling a framed, periodic, real-time task

model, since they proved that the energy efficient scheduling of the periodic real-

time tasks on DVSCMP system is an NP-hard problem. Based on cycle-conserving

DVS, Euiseong Seo et al., [44] suggested two algorithms: dynamic repartitioning

and dynamic core scaling for reducing both dynamic and leakage power consump-

tion. Dynamic repartitioning algorithm is based on existing partitioning approaches

for multiprocessor systems to dynamically balance the task loads among the cores

based on the requirements of the computational demands. It can minimize the power

consumption during execution. In addition, dynamic core scaling algorithm coupled

with dynamic repartitioning adjusts the number of active cores to reduce leakage

power consumption when the task load on each core is low.

7



2.2 Partitioned Scheduling Heuristics

Partitioned scheduling on multiprocessors is known to be a NP-Hard problem [48],

since solving the task allocation problem on multiprocessors is equivalent to a bin-

packing problem. Partitioned scheduling can be implemented by applying existing

uniprocessor techniques on each partition (i.e., each core). In comparison with global

scheduling, partitioned scheduling has its advantages. Partitioned scheduling uses a

separate run-queue for each processor rather than a single global queue. One task

can only affect the other tasks on the same processor if a task exceeds its worst-case

execution time budget. The key of partitioned scheduling is to ensure the work load

is balanced on each core. Then, assigning the tasks to a multi-core system can be

converted to assign the tasks to m simpler single core problems.

Some research [21] [40] [19] has adopted EDF or fixed-priority scheduling using

RM combined with bin packing heuristics including first fit (FF), next Fit (NF), best

fit (BF), and worst fit (WF) in partitioned multiprocessor scheduling. The worst-

case utilization bound of partitioned scheduling for periodic task sets with implicit

deadlines is given in Formula (2.1) [12]:

U = (m+ 1)/2 (2.1)

where m is the number of processors/cores.

8



2.2.1 Bin-packing

The bin-packing problem is a classic NP-hard problem [48]. The problem is to assign

a set of n items x1,...xn to a bin with capacity V so that there is no bin that has

a capacity totaling more than one and the number of bins used is minimized. In

the context of partitioned scheduling, a set of items is a task set and the size of

the capacity is given by the utilizations. Each processor/core has a capacity of

1.0 under the conditions of implicit deadlines and EDF. Partitioning a task set is

equivalent to solving a bin-packing problem. Thus finding an optimal task assignment

by partitioned scheduling is intractable (unless P = NP). We can use existing bin-

packing heuristics to find valid task assignments, which is a practical method. In

order to describe the heuristic algorithms below, we define the set of items as Formula

(2.2):

Sj = x1, ..., xn (2.2)

which are assigned to the bin of a number of j. Here, items x1,...xn are with corre-

sponding sizes y1, ..., yn. Then, we define the remaining capacity of the jth bin is Vj

[27]. That is,

Vj = V −
∑
xi∈Sj

yi (2.3)

At the beginning, there is only one empty bin, but when the capacity of the existing

bins is not sufficient to use, additional bins can be added according to the heuristic.

In this work, items are sorted in the order of decreasing sizes in (2.4):

y1 ≥ y2 ≥ ... ≥ yn (2.4)
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We used first fit decreasing (FFD), next fit decreasing (NFD), best fit decreasing

(BFD), and worst fit decreasing (WFD) heuristic algorithms for partitioned schedul-

ing.

First Fit Decreasing

Assign item xi to the first bin into which it will fit. That is, item xi is placed to Sj

if it fits, then [27]:

Vj + yi ≤ 1 (2.5)

If no such j exists, xi will be placed in a new empty bin.

Best Fit Decreasing

Assign xi into a bin to make the best of usage of the bin into which it goes. That

means xi goes to the bin with the lowest remaining capacity. So, if it fits, then [27]:

let L = {l|Vl ≥ yi}, xi ∈ Sj = min{j ∈ l|Vj + yj ≤ 1} (2.6)

BFD maximizes the usage of the bin. If more than one bin satisfies (2.6), the left-

most one will be chosen.

Worst Fit Decreasing

Assign xi into the bin with the most remaining capacity. Otherwise, xi will be put in

the left-most empty bin. The worst fit heuristic is the inverse of the best fit heuristic,

then [27]:

let L = {l|Vl ≥ yi}, xi ∈ Sj = max{j ∈ l|Vj + yj ≤ 1} (2.7)

If more than one bin satisfies (2.7), the left-most one will be chosen.

10



Next Fit Decreasing

When processing the next item, see if it fits in the same bin as the last item. Start

a new bin only if it does not.

There is a slight difference between the problem of partitioning a task set onto

a fixed number of the cores on a multi-core platform and the bin-packing problem.

Since there are initially m empty bins, it is not possible to allocate additional bins

to the task set. This benefits the worst fit heuristic because WFD attempts to

allocate the total utilization evenly among all the cores. Instead, FFD, BFD, and

NFD heuristics attempt to fully allocate a core before assigning to the next core.

Assigning the load among all the cores is preferable under partitioned scheduling on

multi-cores. Thus, WFD is the best heuristic among the above for our work.

2.2.2 A Case Study

In the case study, 7 tasks are sorted in decreasing order. The sizes of the tasks are

given as the following: 0.45, 0.35, 0.28, 0.25, 0.17, 0.09, and 0.01. There are three

empty cores. Due to its size yi and the selected bin-packing heuristic, the next task

xi will be put into the fit core, as indicated in Figure 3.2. At first, x1 arrives with y1

= 0.45. Then for all heuristic algorithms, x1 will be assigned to S1. When x2 with

y2 = 0.35 comes in, WFD will assign x2 to the next core S2 with the most remaining

capacity. However, BFD will assign x2 to S1 with the least remaining capacity that

is still sufficient to fit for. FFD will assign x2 to S1 which is the first fit core. NFD

will assign x2 to S1 which is the same bin as the last item.

11



Figure 2.1: A Case Study of WFD, BFD, FFD, and NFD
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2.3 Cycle-conserving DVS for EDF

2.3.1 Cycle-conserving DVS for EDF

EDF can guarantee that all the tasks will meet the real-time constraints when the

total utilization of all the tasks is less than one. For preemptible periodic real-

time task scheduling, EDF is the optimal algorithm. Based on EDF, Pillai and

Shin [41] proposed a cycle-conserving DVS scheduling heuristic for dynamic power

aware scheduling on uniprocessors. Cycle-conserving avoids wasting cycles by taking

advantage of surplus time to run the other remaining tasks at a lower CPU frequency

rather than accomplish more work, e.g. slack time stealing [12]. When the task

completes, the actual processor cycles used by the tasks may be less than the worst-

case specification. Any unused cycles that were allotted to the task would be wasted.

Therefore, cycle-conserving reclaims the extra time by recaculating utilization using

the actual computation time consumed by the task, when a task completes earlier

than its worst-case computation time. This lower operating frequency is used until

the task is released again for its next invocation.

The cycle-conserving algorithm works as follows:

The total utilization of the tasks is initialized with the utilization calculated

with worst case execution time (WCET). The value of each task’s utilization is

updated both when the task is scheduled and when the task is finished. Upon

completion of a task, the task utilization is updated based on the task’s actual

execution time. On the release of the task before execution, its utilization is restored

to the original value based on the task’s WCET. The cycle-conserving algorithm

13



Task Period WCET Utilization cc1 cc2
τ1 10ms 3ms 0.3 2ms 1ms
τ2 14ms 4ms 0.286 2ms 1ms
τ3 15ms 3ms 0.2 1ms 1ms

Table 2.1: Example Task Set

Figure 2.2: A Case Study of Cycle-conserving DVS for EDF

may change the frequency with a fraction of the maximum frequency at the point

when it completes. In this manner, the cycle-conserving algorithm may obtain the

reduced frequency during the period between a task’s completion and the start of its

next invocation. Then, a conservative assumption must be made that it will need its

worst case computation time when the tasks are rescheduled according to the EDF

schedulability test. At this point, the deadline guarantees are maintained.

2.3.2 A Case Study

Figure 2.2 shows an example of the cycle-conserving algorithm. Table 2.1 lists the

actual execution time cc1 and cc2, WCET, and period (deadline) of the tasks τ1,

τ2, and τ3. The actual execution time of instance 1 of τ1 is 2ms. Then, the total

utilization of τ1, τ2, and τ3 is thus updated from 0.786 to 0.686 after τ1 is completed.

14



At this time, the core will be operated at 0.686 times the highest frequency. In this

manner, after the instance 1 of τ2 is completed, the total utilization decreases to

0.543 since the actual execution time of τ2 is 2ms shorter than WCET of τ2. Thus,

the remaining task τ3 will be operating at 0.543 times the highest frequency. When

the first instances of τ1, τ2, and τ3 are completed, T1 begins executing in the next

period. Then the utilization of τ1 is restored to the original WCET/period. The

utilizations of τ2 and τ3 reserve the actual execution time/period.

15



Chapter 3

An Energy-efficient Management

System on Multi-core Processors

In this chapter, we first propose a power-aware model, which has been generally used

in energy-efficient research. Then we discuss a task set model for the periodic tasks

on multi-core systems. In the end, we discuss an energy-efficient management system

to improve the trade-off between energy conservation and load balancing.

3.1 Power Consumption Model

There are two kinds of energy consumption on ICs: dynamic power consumption

and leakage power consumption [17] [33]. Dynamic power or switching power is the

result of charge and subsequent discharge of digital circuits. Leakage power or static

power is the result of leakage current in CMOS circuits.
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3.1.1 Dynamic Power Consumption

The dynamic power consumption can be calculated using (3.1) [17] [33][20]:

Pdynamic =
N∑
k=1

Ck · fk · V 2 (3.1)

where V is the supply voltage, N is the number of gates in a circuit, Ck is the load

capacitance of gate and f is the switching frequency of gate. Let

N∑
k=1

Ck · fk · V 2 = C · f · V 2 (3.2)

Then, Pdynamic can be expressed as (3.3):

Pdynamic = C · f · V 2 (3.3)

where C is the collective switching capacitance, f is the operating frequency. In the

assumed processor model, lowering the supply voltage V restricts the frequency f

accordingly because:

f ∝ (V − Vt)2/V (3.4)

where Vt is the CMOS threshold voltage. The changes in frequency are accompanied

by appropriate adjustments in voltage. There is a quadratic relation between the

power and the voltage. Thus, lowering the supply voltage can decrease the energy

consumption significantly.

17



3.1.2 Leakage Power Consumption

Leakage power or static power consumption of a CMOS circuit can be simply ex-

pressed by (3.5) [26] [33]:

Pleakage =
∑

Ileakage · V (3.5)

where Ileakage is the total leakage current that flow through the CMOS gates of the

processor and V is the supply voltage. The dominant types of the leakage power

consumption are subthreshold leakage and gate leakage. Pleakage is caused mainly

by subthreshold leakage current Isubn and the reverse bias junction current Ij as the

leakage power function defined in (3.6) [26] [33] [37]:

Pleakage = Lg(V Isubn+ | Vbs | Ij) (3.6)

where Lg is the number of components in the circuit. Isubn can be expressed as (3.7)

[26] [33] [37]:

Isubn = k1We−Vt/nVθ(1− e−V/Vθ) (3.7)

k1 and n are experimentally derived, W is the gate width, and Vθ in the exponents

is the thermal voltage. In order to decrease Isubn, we can either lower or turn off the

supply voltage V , or increase the threshold voltage Vt. In Formula (3.6), Ij can be

expressed as (3.8) [26] [33] [37]:

Ij = k2W (V/Tj)e
−αTj/V (3.8)

k2 and α are experimentally derived. Tj is the oxide thickness. Thus, when the cores

are idle, only Pleakage is consumed, whereas the cores consume both Pdynamic and

Pleakage when executing instructions.
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A multi-core processor actually shares some resources, such as caches, intercon-

nection buses, and so on. Our work is based on dynamic repartitioning and dynamic

core scaling (Euiseong Seo et al. [44]). We made the same assumptions about these

shared components as the previous work [44]. That is, in this work, we do not

consider the power consumption from these shared components, and we count only

the power consumption of the cores themselves. Our goal is to decrease the energy

consumption of the independent cores. Also, we do not consider the energy con-

sumption from sharing these resources and corresponding overhead by using these

resources. A CPU could consume less power when it runs in a sleep mode, which is

an inactive mode of the CPU when the CPU turns off circuits and signals. There is

possible power consumption when the CPU turns on from sleep mode. In this work,

we do not consider the overhead caused by the state transition from the sleep mode

to the active mode because this overhead can be treated easily in the real-world

implementations.

As shown in Figure 3.1 [44], Euiseong Seo et al. simulated the power consumption

model of the 70 nm technology based on the original values of Transmetas Crusoe

Processor which uses 180 nm technology [33] [37]. The ratio of Pleakage to Ptotal

increases as f decreases. Above a critical speed (1.2 GHz), the CPU running higher

than this speed will consume more Pdynamic. Thus, Ptotal rapidly increases in the high

f domain. Below this speed, Pleakage is greater than Pdynamic.
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Figure 3.1: Power Consumption of a 70 nm Core as a Function of Clock Frequency
[44].
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3.2 Task Set Model

As we mentioned in the previous section, the closest work to ours has been done by

Euiseong Seo et al. who proposed two energy saving techniques: dynamic reparti-

tioning and dynamic core scaling [44]. Our contributions are threefold. First, we

reduce the power consumption of migration overhead in DM. Second, we use the

critical frequency to decide the number of the active cores in the system. Third, our

algorithm can be applied to multi-core platforms where each core can have different

maximum frequencies. As in [44], we also assume a set of n independent periodic

real-time tasks as (3.9):

T = {τ1, ..., τn} (3.9)

on a set of cores as (3.10):

S = {C0, ..., Cm} (3.10)

The nth core in S is denoted as Cn. Each core Ci has the variable discrete DVS feature

and can adjust its voltage independently of others. For convenience, we normalize

the CPU speed with respect to smax, the maximum frequency. We consider the

normalized si as the following in (3.11):

αi = si/smax,i (3.11)

Thus, we assume that smax,i=1.0. The speed varies between 0 and an upper bound

1.0. si represents the relative computational capacity of Ci. αi represents the scaling

factor for the CPU frequency of Ci. The operating frequency is the highest possible

frequency of Ci multiplied by the factor αi if the computational demand on Ci is si.
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On each core, the voltage is assumed to be dynamically switched upon the release

or completion of task instances. A strictly increasing convex function on non-negative

real numbers, g(s) can be given to describe the power consumption of the processor

under the speed s [13] [14] [24] [45]. The workload of a task is measured by the

worst-case number of CPU cycles required for executing the task. If τk executes on

the cores during the time interval [T1, T2] and the speed of the core Ci is given by

sk(T ), then the energy consumed during this interval is defined by (3.12):

Ek(T1, T2) = g(sk(T ))dT (3.12)

where g(sk(T )) is calculated before the execution of τk and the fixed CPU speed sk

is used during the execution of τk.

The period of τi is denoted by pi which is also assumed to be equal to the relative

deadline of the current invocation. It means that each instance of a task must com-

plete the execution before starting the next instance of the same task. All the tasks

are assumed to be independent and ready simultaneously at T=0. Each partitioned

task set is EDF schedulable on its corresponding core. More precisely, we consider a

set of n implicit deadlines. Thus, the periodic tasks are denoted as (3.13):

T = {τ1(p1, w1), ..., τn(pn, wn)} (3.13)

where each task τi has its own predefined period pi and WCET wi. WCET of task

τi is defined as the maximum execution time required to complete task τi at the

maximum frequency. Also, each task has its actual execution time which may vary

with respect to the system workload. The nearest deadline at the current time is

defined as di.

22



The utilization of a task on a core is the ratio of the CPU time required to

complete its execution to the period of the task. The utilization ui of task τi is

defined by (3.14):

ui = wi/pi (3.14)

According to [45], the EDF schedule of τ is feasible to be executed on Ci as long as

the total utilization of all the tasks in T does not exceed the computation capacity

of Ci. U , the total utilization of T , is defined as (3.15) [44]:

U =
∑
∀τi∈T

ui (3.15)

The system adopts Worst Fit Decreasing (WFD), Best Fit Decreasing (BFD), Next

Fit Decreasing (NFD), and First Fit Decreasing (FFD) heuristic partitioned schedul-

ing policies [32] as the initial partition scheduling. After the initial partitioning

stages, the partitioned task set allocated to core Cn is denoted as Pn. If each in-

stance of a task τi can obtain at least certain CPU cycles to complete before its

relative deadline, a schedule of Pn on Cn is feasible. The utilization of Pn is defined

by (3.16) [44]:

Un =
∑
∀τi∈Pn

ui (3.16)

For simplicity, we further define two functions Π(τi) and Φ(τi) in (3.17) and (3.18)

[44]:

Π(τi) = {Cj} in which τi was initially partitioned, (3.17)

Φ(τi) = {Cj} in which τi is currently partitioned. (3.18)
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Π(τi) indicates the core that τi was initially partitioned into. Φ(τi) indicates the core

that τi is currently located in.

Based on EDF scheduling, we apply the Cycle-conserving DVS scheduling heuris-

tic [41] on each core. We define the utilization li of task τi in (3.14) [44] and the

utilization Ln of a core running with the Cycle-conserving technique. li is updated

after every deadline of τi.

li =

 wi/pi if τi is unfinished

cci/pi if τi is finished
(3.19)

li is initially equal to ui as Formula (3.14) is defined. li is updated to the most

recent actual execution time cci replacing wi in (3.14) after the completion of a task

instance. The task will be executed again and the worst case execution time will be

used at the beginning of the next period pi. Thus, the utilization of the task τi will

be reset to ui as (3.14) if τi is noted as unfinished.

Then Ln, the dynamic utilization of core Cn, is denoted in (3.20) [44]:

Ln =
∑

∀finished τi∈Pn

cci/pi +
∑

∀unfinished τi∈Pn

wi/pi (3.20)

Ln is the current computational demand on core Cn. Ln refers to Cycle-conserving

utilization of Cn when the context is unambiguous.
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3.3 An Energy-efficient Management System Frame-

work

As Figure 3.2 shows, our system performs the following steps: (1) the partitioner

assigns all the tasks to each core according to partitioned scheduling algorithms; (2)

Local EDF schedulers schedule the tasks in the order of increasing deadlines; (3) a

power-aware manager monitors a DVFS controller, a DPM module and a voltage

scaling module, and also handles the dynamic values of the accumulated utilization

L of all the scheduled tasks; (4) a dynamic migration module uses the updated

information from the power-aware manager to manage the task migration among

the cores; and (5) a dynamic core scaling module determines if a core needs to be

powered on/off.

Lin, Song and Cheng implemented Real-energy [31], a new framework to evalu-

ate the power-aware real-time scheduling algorithms. Six DVS algorithms [31] for

unicore systems, including the cycle-conserving EDF scheduler called ccEDF, were

implemented and studied in Real-energy. Real-energy is a modulized system. A

new DVS unicore algorithm can be easily plugged into the system. Our system ex-

tended Real-energy with the new modules for multi-core systems, including a task

partitioner, a dynamic migration module and a voltage scaling module. The other

advantage to use Real-energy is that six unicore DVS scheduling algorithms were

already implemented.
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Figure 3.2: System Framework

3.3.1 Partitioner

The partitioner [21] assigns all the tasks to each core according to partitioned schedul-

ing heuristics, e.g., WFD, BFD, FFD, and NFD, as discussed in section 2.1. Thus,

we will discuss other components of the system below.

3.3.2 EDF Scheduler

The EDF scheduler [32] has two functionalities. It maintains a task queue for all the

tasks and schedules the tasks in the order of increasing deadlines. If a task with an

earlier deadline arrives, preemption may be applied to the running task. Each task,

τi, is released periodically once every pi (actual units can be seconds or processor

cycles) time units. The task needs to complete by its deadline, typically by the end

of the period [32]. When a task is released and completed on a local core, the EDF
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scheduler [31] selects the task with the nearest deadline among the unfinished tasks

on its local core by following the Cycle-conserving EDF algorithm on a schedulable

task set and informs the global DVFS controller about this requirement. In order

to guarantee meeting the task deadlines, hard real-time scheduling approaches rely

on a priori knowledge of the worst-case execution times of the tasks. However, in

the real world, the task’s execution time may be significantly less than its worst-case

execution time. It means that the actual computational demands may be lower than

the peak computational demands [38]. Thus, when the load is lower, DVFS can

dynamically scale the operating frequency to meet the computational requirements

and reduce the power consumption.

3.3.3 Power-aware Manager

The power-aware manager in the system controls the voltage of each core in order to

reduce the overall energy consumption without violating timing constraints. A global

DVFS controller, a DPM module, and a Voltage/Frequency Scaling module are three

components of the power-aware manager. The power-aware manager gathers data of

the underlying multi-core system during run-time, such as the actual execution time

of the tasks, the unfinished tasks, and the current power consumption based on the

actual execution time of the tasks, etc.. These values are calculated when a task is

released and completed in order to update the current computational demands and

the power consumption of all the finished and the unfinished tasks running on the

different cores.
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3.3.3.1 DVFS Controller

The DVFS controller handles the voltage fluctuations because each task is executed

at the supply voltage Vi which can be a fraction of the maximum supply voltage

Vmax. This is because the actual execution time of each task may be less than

or equal to its WCET with respect to the system workloads. For the purposes

of balancing CPU workloads and lowering the power consumption, the task of re-

allocation can be made effective by considering the updates of dynamic utilization

and voltage/frequency of all the tasks. The DVFS controller will provide the cores’

appropriate voltages/frequencies to fulfill the computational demands received from

the EDF schedulers in the system.

3.3.3.2 DPM Module

The DPM module [31] shuts down devices including the processors when they are

idle and wakes them up when the tasks have arrived. For example, the PXA270

specification states when the CPU is in a deep-sleep state, the power consumption

is only 0.1014mW [8]. When the hardware can support sleep, deep-sleep, and idle

states, the DPM can manage the energy consumption by lowering the voltage or

powering off the cores [18].

3.3.3.3 Voltage/Frequency Scaling Module

The voltage scaling module selects the voltage/frequency supported by the hardware

systems for a core. When a task is released and completed, the power-aware manager
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runs the energy-efficient scheduling heuristics based on the updated information,

such as the actual execution time of the tasks, the current power consumption,

and the current DVFS information. The lower voltage/frequency may be derived

to save energy. Moreover, this module will run the voltage scaling algorithm to

decide if the current operating voltage/frequency should be changed (Section 4.1

and 4.2). If the operating voltage/frequency should be changed, it will pass the new

voltage/frequency value and its core number to the power-aware manager.

The voltage scaling module has been modeled with a series of voltage/frequency

levels. For example, the Marvell PXA270 processor supports the dynamic volt-

age/frequency adjustments. The frequency of the CPU can take one of the following

values: 13/104/208/312/416/520/624MHz [3].

3.3.4 Dynamic Migration Module

Balanced distribution of workload among the cores can lower the energy consumption

for a multi-core system, which needs online information of the used computational

demands on each core to find a solution. As the dynamic frequency is proportional

to the power consumption, the related information of the power consumption can be

estimated from the actual computational demands. In other words, it is possible to

derive a lower speed with task migration when knowing the actual execution times.

The task migration is a trigger which tries to reallocate the tasks from a core with

higher voltage/frequency to a core with a lower voltage/frequency. In this manner, it

can reduce the energy consumption more efficiently. Meanwhile, it needs to guarantee
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meeting the deadlines despite abrupt changes in the workload.

To accomplish this, the dynamic migration module is needed to drive the task

migration among the cores based on the analysis of the power consumption provided

by the power-aware manager. This module maintains the state information of all

the tasks. Also, this module checks the voltage scaling module and decides if it is

required to migrate the tasks when the voltage scaling module changes frequency for

a core. When frequency changes from a higher level to a lower level, the dynamic

migration module may start the task migration. After the task migration, the module

is updated with new inputs from the completed migrated tasks.

3.3.5 Dynamic Core Scaling Module

The dynamic core scaling module updates the related frequency values provided by

the voltage scaling module for each core in the system when a task is released and

completed. It runs the VSDCS algorithm and determines which cores are needed

to guarantee that the applications can meet their real-time constraints. It will then

inform the DPM module to power the cores on/off accordingly.
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Chapter 4

Energy-efficient Heuristic

Approaches for Multi-core

Processors

The energy-efficient management system gains higher energy efficiency by providing

the appropriate number of the active cores with dynamic task migration among the

cores for multi-core systems. We will discuss two algorithms in this chapter: dynamic

migration (DM) and voltage scaling-based dynamic core scaling (VSDCS).

In [44], the authors assume that all the cores must run at the same speed, which

is a limitation of their work. Because of the new technologies including Intel Turbo

Boost Technology, Intel Enhanced Speed Stepping Technology, and the different C-

states [4] [2] [29], multi-core processors have the capability to automatically adjust

the core voltage and speed individually. Compared with dynamic repartitioning and
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dynamic core scaling, our work can be applied to an asymmetric multi-core system

in which the cores can have different clock frequencies.

4.1 Dynamic Migration

Dynamic migration balances task loads between the cores by considering frequently

changed computational demands on each core during run-time operation, even though

the partitioning heuristic can assign task sets evenly with the well-balanced utiliza-

tion [16]. Migrating the tasks from a high-load core to a low-load core is an essential

way to solve the temporal imbalance and conserve energy. These energy-efficient

heuristic algorithms also provide higher energy efficiency by choosing the appropri-

ate number of the active cores for a multi-core system combined with dynamic task

migration, which we will discuss in the next section. To explain our algorithms, we

introduce the following denotations and analysis.

Let u′i denote the remaining dynamic utilization of τi, which is defined by Formula

(3.19) in section 3.2 at a time point T in the current period pi. Let cmi denote the

executed time [44] of τi normalized to the maximum performance by the present

time in the period pi . Let wi be the worst-case execution time. Let di be the next

deadline, and T be the present time. Formula (4.1) determines how much processor

performance should be reserved for τi to be completed from now to di [44]:

u′i =
wi − cmi

di − T
(4.1)
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Assuming an instance of a task migrates from the source core Csrc to the destina-

tion core Cdst at T , dynamic utilization of Csrc and Cdst defined in (3.19), (i.e. Lsrc

and Ldst) should be adjusted accordingly. That is u′i should be reduced from Lsrc.

The changed Ldst is given by the definition (3.20) in section 3.2. τi will be finished

before di on Cdst to meet the deadline constraint. That is, the additional CPU cycles

to execute τi will be consumed before di accordingly. Then, L′dst will be the same as

Ldst after di. Thus, Formula (4.1) will be adjusted to (4.2) [44]:

L′dst =

 Ldst + u′i until di

Ldst after di

(4.2)

Feasible Scheduling After Task Migration

As Formula (4.2) shows, L′dst is larger than Ldst until di. A feasible EDF scheduling

on the core is ensured before migrating the tasks. That is the maximum L′dst should

be guaranteed not to exceed 1.0 before migrating the tasks. Let Mdst,di denote the

maximum Ln of all the tasks on Cdst from the current time to a certain time point

T , such that importing τi into Cdst can be scheduled only when u′i + Mdst,di < 1.0

[44].

In this work, the migration of a task is allowed only if it has the nearest deadline

among the unfinished tasks on Csrc. This migration occurs for the current period

only. When the next period starts, the migrated task should be returned to its

original core assigned by partitioned scheduling policy. However, the task τi that

was executed on Csrc can be migrated into Cdst again if all the conditions described

in the next section have been met when τi is released in the next period. A migrated
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task may be finished earlier than its worst case execution time, which allows reducing

L′dst as (4.3) [44] after combining Formula (4.2) and Formula (3.20) in section 3.2:

L′′dst =

 Ldst + cci−cmi
di−T until di

Ldst after di

(4.3)

If two conditions, Ldst+u
′
i < Lsrc∧u′i+Mdst,di < 1.0 and τi has the nearest deadline

among the unfinished tasks scheduled on Csrc [44], are met, the migration operations

can be taken recursively. Thus, a task migrated to a core can be exported to the

other core within a period as long as all the above conditions are met. Furthermore,

if a core has imported an unfinished task, it can export multiple tasks to the other

cores [44]. That is, the migration can be overlapped.

4.2 Dynamic Migration Heuristic Algorithm

The DM heuristic algorithm includes Algorithm 1-6 as below.

∀τi ∈ T , di ← the next deadline of τi at every release of τi

Γ(C) returns a task τr such that:

∀τi where Φ(τi) = C,

(di ≥ dr > 0 ∧ (u′r > 0) ∧ (Φ(τr) = C)

Cmax ← core with highest L;

Cmin ← core with lowest L;

Mn,i ← the maximum Ln from the calling point to di with the current schedule

Ai = αi,1, ...αi,k ← scaling factors of the ith core in C which has k available frequen-

cies, αi,j = Fi,j/Fmax, αi,1 < αi,2 < αi,k
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Fmax ← maximum frequency of the processors

Algorithm 1 DM Heuristic Algorithm

Input: T = (τ1(p1, w1, cc1), ..., τn(pn, wn, ccn))
Input: S = (C0, C1, ..., Cm)
1: on task release (τi, Ci)
2: on task completion (τi, Ci)
3: try to allocate(τi, Ci)

DM Heuristic Algorithm (Our Extension). There are 3 internal operations

in this algorithm. The first and the second internal operations are on task release()

(Line 1 in Algorithm 1) and on task completion() (Line 2 in Algorithm 1) defined in

dynamic repartitioning algorithm in [44]. The third internal operation try to allocate()

(Line 3 in Algorithm 1) is called whenever a task is completed or a new task period

starts. The function migrates the task in Cmax with the highest required utilization

at that time to Cmin when the conditions are met. The conditions are: 1) (Ldst

+u′i < Lsrc) (Line 8 in Algorithm 4); 2) (u′i +Mdst,di < 1.0) (Line 8 in Algorithm 4);

3) τi has the nearest deadline among the unfinished tasks scheduled in Csrc (Line 5 in

Algorithm 4), and 4) the corresponding frequency on the selected destination core for

τi is close to the higher end of the frequency range, i.e. (αdst,p+αdst,q)/2 < Li ≤ αdst,q.

If τi has the nearest deadline among the unfinished tasks scheduled in Csrc, export-

ing τi can be treated as if it was finished at that time [44]. Condition 4 is designed

for two reasons. One is that the available frequencies in the real world are discrete

values. Thus, a selection method is needed to choose the frequency value based on

the calculated scaling factor. To meet the real-time deadline constraint, a higher or

equal discrete frequency value needs to be selected. The other reason is that migra-

tion overhead in the real world is non-negligible. Thus, the tasks are not migrated
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when the energy savings from the migration is less than the power consumption of

the migration overhead. We use a simple heuristic method to decide if a task should

be migrated or not: when Li falls in the higher half range between αdst,p and αdst,q,

the task τi will be migrated; otherwise, no migration occurs. try to allocate() func-

tion calls try to migrate() function (Line 10 in Algorithm 4) to ensure condition 4 is

satisfied, which reduces the total number of the task migration compared with [44].

Dynamic Repartitioning Algorithm (Existing Algorithm [44]). There are 3

internal operations in this algorithm. The first and the second internal operations

are the same as on task release() (Line 1 in Algorithm 1) and on task completion()

(Line 2 in Algorithm 1). The third internal operation repartitioning() is called when-

ever a task is completed or a new task period starts. The function migrates the task

in Cmax with the highest required utilization at that time to Cmin when the follow-

ing three conditions are met. The conditions are: 1) (Ldst +u′i < Lsrc) (Line 8 in

Algorithm 4); 2) (u′i + Mdst,di < 1.0) (Line 8 in Algorithm 4); 3) τi has the nearest

deadline among the unfinished tasks scheduled in Csrc (Line 5 in Algorithm 4).

Algorithm 2 on task release [44]

Input: T = (τ1(p1, w1, cc1), ..., τn(pn, wn, ccn))
Input: S = (C0, C1, ..., Cm)
Output: (L1, ..., Lm)
1: τi ← Γ(C)
2: Π(τi)← Φ(τi)
3: update L of C(τi)
4: try to allocate(τi, Ci)
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Algorithm 3 on task completion [44]

Input: T = (τ1(p1, w1, cc1), ..., τn(pn, wn, ccn))
Input: S = (C0, C1, ..., Cm)
Output: (L1, ..., Lm)
1: update L of C(τi)
2: try to allocate(τi, Ci)

Algorithm 4 try to allocate [44]

Input: τi, Ci
Input: Φ(τi)
1: if (Γ(C) 6= NULL) and (Φ(Ti) 6= NULL) then
2: while (true) do
3: Csrc ← Cmax
4: Cdst ← Cmin
5: di ← nearest deadline of Csrc
6: u′i updated by Formula (4.1)
7: Lsrc updated by Formula (3.20) in section 3.2
8: if (Ldst +u′i < Lsrc) and (u′i +Mdst,di < 1.0) then
9: if (di > dτi) then
10: try to migrate(τi, Csrc, Cdst)
11: end if
12: end if
13: end while
14: end if

4.2.1 A Case Study

An example of DM heuristic algorithm with 5 tasks is depicted in Table 4.1. There are

2 cores in the multi-core system. Assume all the tasks are released at T1 = 0ms. The

initial partition is decided by the WFD heuristic as shown in the left side of Figure

4.1. The total utilization of CA is LA = 0.2+0.263+0.3 = 0.763. The total utilization

of CB is LB = 0.278 + 0.286 = 0.564. Thus, the algorithm looks for a task in CA to

migrate. However, no task can be migrated because LB + ui > LA, i ∈ (1, 2, 3). CA
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Algorithm 5 try to migrate

Input: τi, Csrc, Cdst
Output: Φ(τi)
1: L′dst updated by Formula (4.2)
2: if voltage scaling(τi) = true then
3: migrate task(τi, Csrc, Cdst)
4: delete task(τi,Φ(τi) )
5: delete core(Csrc,Γ(C))
6: end if

Algorithm 6 voltage scaling

Input: τi, Csrc, Cdst
Output: True or False
1: Adst = (αdst,1, ..., αdst,k)
2: if (αdst,p + αdst,q)/2 < Li < αdst,q, αdst,p, αdst,q ∈ Adst then
3: Fdst = Fmax · αdst,q
4: return True
5: else
6: if Li = αi,1 then
7: Fdst = αi,1 · Fmax
8: return True
9: end if
10: end if

runs at 520MHz (0.763 × 624 = 476MHz) and CB runs at 416MHz (0.564 × 624 =

352MHz). A task migration happens after the tasks τ1 and τ2 are completed at

T2 = 2. The total utilization of CA is updated to L′A = 0.2+0.263+0.2 = 0.663. The

total utilization of CB is updated to L′B = 0.278 + 0.143 = 0.421. All the conditions

are satisfied: 1) L′B + u′1 = 0.421 + 0.2 = 0.621 < L′A = 0.663; 2) u′1 + M(B, d2) =

0.2+(0.286+0.278) = 0.764 < 1; 3) τ3 has the nearest deadline among τ3 and τ5; and

4) the scaling factor to adjust the operating frequency of CB falls in the higher end of

the frequency range, 0.764 > 0.75 = (520MHz/624MHz + 416MHz/624MHz)/2.

The current partition at T2 = 2ms is depicted in the right side of Figure 4.1.
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Task p w cc1 Π(τi) Φ(τi) ui u′i
τ1 10ms 3ms 2ms A B 0.3 0.2
τ2 14ms 4ms 2ms B B 0.286 0.143
τ3 15ms 3ms 1ms A A 0.2 0.067
τ4 18ms 5ms 1ms B B 0.278 0.056
τ5 19ms 5ms 3ms A A 0.263 0.158

Table 4.1: Example Tasks and System with Core A and Core B

Figure 4.1: An Example of DM Heuristic Algorithm

4.3 Voltage Scaling-based Dynamic Core Scaling

Heuristic

Multi-core processors have to consider leakage power increase in order to gain energy

efficiency. A fivefold increase in leakage power [17] is predicted with each technol-

ogy generation. Leakage current is proportional to the total number of circuits as
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described in section 3.1. Obviously, a multi-core processor has a greater leakage cur-

rent than a unicore processor. In [26], the critical speed is defined as the operating

point that minimizes the energy consumption per cycle. For example, a critical speed

was calculated based on the leakage characteristics of the 70nm technology in [26].

As shown in Figure 3.1, processors using 180 nm manufacturing technology running

higher than a critical speed (1.2 GHz) will consume more Pdynamic. Below this speed,

Pleakage is the dominant power consumption [44]. Thus, this critical speed is a signifi-

cant factor in determining the needed number of the active cores for reducing Pleakage

on multi-core systems. Above this critical speed, more cores can deliver more com-

putational capacity for the real-time applications. Instead, below this critical speed,

more cores in fact consume more energy. Thus, our VSDCS is designed based on the

critical speed to determine how many the active cores are needed to power off/on

dynamically.

Leakage power can be saved at the initial stage by simply adopting the number of

the active cores to load the tasks for satisfying computational demands, since most

commercial multi-core processors are designed to be able to dynamically adjust the

number of the active cores [39] [1]. Since the dynamic utilization, Ln (defined by For-

mula (3.20) in section 3.2) changes, the frequency of each core is changed accordingly.

If the varying frequency is around critical speed, a dynamic core scaling approach

can achieve even higher energy efficiency. In the next section, we propose VSDCS

algorithm that meets the dynamic requirements of the computational demands while

saving energy.

In order to determine the number of the cores by dynamic core scaling algorithm,
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Formula (4.4) in [44] is given to define the power consumption expectation function

X as below:

X(L, n) = n(clV
2
ddf + Lg(VddIsubn + |Vbs|Ij)) (4.4)

and, Vdd can be defined by (4.5):

Vdd =
(fLdK6)

1
θ + Vth1 −K2Vbs
K1 + 1

(4.5)

X is affected by the number of the active cores, the supply voltage, the subthreshold

leakage, the gate leakage, and the number of components. The subthreshold leakage

is determined by the supply voltage. The threshold voltage and the thermal voltage

are derived from the subthreshold by Formula (3.7) in section 3.1. Also, the gate

leakage is related to the structure of circuits. In the real world, this function is

too complex to apply for online applications. Instead, VSDCS considers only the

critical frequency Fcritical. Then, we will activate more cores for maximizing the

computational demands when F > Fcritical, and try to put more cores in a sleep

state when F < Fcritial, where F is the operating frequency of an active core. The

following VSDCS algorithm will meet this purpose, as defined in Algorithm 7, 8, and

9 in the next section.

4.4 Voltage Scaling-based Dynamic Core Scaling

Heuristic Algorithm

Algorithms:

I is the set of inactivated C
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A is the set of actived C

Cmax ← core with highest L in A

Cmin ← core with lowest L in A

Γ(C) returns a task τj such that:

∀τi where Φ(τi) = C, Fi ← frequency of C

(di ≥ dj > 0 ∧ (u′j > 0) ∧ (Φ(τr) = C)

Fcritical ← critical frequency of the processors

Algorithm 7 on task completion(ti)

1: update L of C(τi)
2: if L · Fmax,i < Fcritical,i then
3: inactivate Φ(τi)
4: try to allocate(τi, Ci)
5: end if

Algorithm 8 try to migrate(τi, Cm)

1: if (voltage scaling()= True) and (Fdst > Fcritical,dst) then
2: if Cdst ∈ I then
3: I = I - Cdst
4: A = A + Cdst
5: activate Cdst
6: end if
7: Φ(τdst) = migrate task()
8: delete task()
9: delete core()
10: end if

VSDCS Heuristic Algorithm: It’s the same as try to allocate() is called

when a task releases and completes. However, the critical frequency is checked in

try to migrate() to ensure that it is energy efficient to activate an inactive core. As

described in Algorithm 8, τi will be migrated to the selected core if Fdst > Fcritical,dst.
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The cores with operating frequencies lower than their critical frequencies are inacti-

vated when a task instance completes (Algorithm 8, Line 2-3).
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Chapter 5

Evaluation Results and Analysis

5.1 Simulation Environment

STORM (Simulation TOol for Real-time Multiprocessor scheduling) is able to simu-

late the actual execution time of the real-time tasks and the computational demands

during the task execution in terms of the scheduling policies in use, such as EDF

and RM on multiprocessor or multi-core systems [43]. The architecture supported

by STORM is symmetric multiprocessing (SMP). That is, all the processors in the

simulated architecture have the same hardware features. The shared components of

SMP architecture, including the memory hierarchy, the shared buses, and the net-

work, are simplified into a defined penalty value. As explained in section 3.1.2, we

made the same assumptions as [44] that we do not consider the power consumption

of the shared components and we count only the power consumption of the cores.

In this case, the abstract SMP architecture is defined by the hardware features of
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one processor, and the simulation of the scheduling algorithms on the abstract archi-

tecture can reveal the simulated algorithms’ behavior on the symmetric multi-core

processor. Thus, the core in the simulation is exchangeable with the processor in the

experiments.

STORM implements energy conservation methods, such as DPM and DVS [43].

Our tests are aimed to achieve the workload balance and the low power consumption.

We integrated DVS and DPM with task migration in order to minimize the power

consumption when executing an independent EDF scheduled set of the tasks on one

or more cores. STORM can take the task sets and the physical processor description

as two inputs. Additionally, preemption is allowed in the STORM environment.

The hardware features of PXA270 are simulated in STORM and we use them

for the following simulations. PXA270 is an embedded processor based on the ARM

family of Marvell XScale that is supporting DVS. PXA270 [3] can be clocked at six

different speeds: 104MHz, 208MHz, 312MHz, 416MHz, 520MHz, and 624MHz. Also,

PXA270 supports sleep, deep-sleep, standby, and low power consumption states.

When PXA270 is in an idle state, the clock speed is 13MHz. When PXA270 is in a

deep-sleep state, there is no power consumed.

Similar with Real-energy [31], STORM allows users to plug in their new schedul-

ing algorithms to run with the underlying abstract architecture. In this study, the

algorithms of dynamic migration (DM) and voltage scaling-based dynamic core scal-

ing (VSDCS) are implemented as a new scheduling algorithm. The detailed steps

are described in the below.
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5.2 Simulation Methodology

As mentioned earlier, some research suggests that worst fit decreasing (WFD) parti-

tioning heuristic technique is the best energy-efficient partitioning approach in com-

parison with best fit Decreasing (BFD), first fit decreasing (FFD), and next fit de-

creasing (NFD). We used WFD as the partitioning approach to assign the tasks to

each core. To compare with WFD, other partitioning heuristic approaches were used

including BFD, FFD, and NFD. Our two algorithms were evaluated by simulating

the system model described in Section 3.3. Also, simulation results compared energy

consumption of the algorithms we have developed with dynamic repartitioning and

dynamic core scaling [44].

DVS/DVFS lowers the voltage/frequency of the multi-core processor, and thus

slows the execution of a task. The speed of the multi-core processor is recalculated

and updated in terms of the actual execution time after each release and completion

of the tasks based on the cycle-conserving DVS algorithm [41].

Based on related research work [41] [11] [16] [15] [23], there are many factors

that can affect energy consumption when using the DVS/DVFS policy on multi-core

processors. As we mainly focused on energy consumption of the real-time systems,

task load, utilization and the actual execution time are four important factors to us.

Table 5.1 gives the parameters which can reflect these four factors [44], including

utilization, task load, the number of the cores, and the ratio of the execution time

to WCET. The generated task sets have a certain upper limit on the utilization u.

u follows a normal distribution with µ = 0.3 and σ2 = 0.2. We can use the task sets
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when u is more than 0.3. However, the number of the tasks running on each core

may be less than 3 in order to satisfy the schedulability condition of EDF when u is

more than 0.3. α in Table 5.1 is an upper limit on u. The average task load across

all the cores is used. It is calculated by dividing U over m.

We randomly generated 1600 task sets with the above desired properties. The

tasks were generated for the various combinations of the different numbers of the

cores and the different average task load. Currently, dual-core processors are still

commonly used in commercial embedded systems and DM was used for embedded

multi-core systems. Thus, we also tested our algorithms with 2 cores and the other

numbers of the cores tested by dynamic repartitioning algorithm. We generated the

task sets for platforms with 2 cores, 4 cores, 8 cores, and 16 cores. The average

values of task load U/m are 0.5 and 0.75. Thus, the total number of combinations

is 4× 2=8, i.e. (m = 2, U/m = 0.5), (m = 4, U/m = 0.5), (m = 8, U/m = 0.5), (m

= 16, U/m = 0.5), (2)(m = 2, U/m = 0.75), (m = 4, U/m = 0.75), (m = 8, U/m

= 0.75), and (m = 16, U/m = 0.75). Each task set has at least (m × 2 + 1) tasks.

WCET w and the period of the tasks p are generated randomly following normal

distribution with C + + template normal distribution.

Each task set needed to satisfy the following three restrictions. First, the actual

execution time has to be between 0.1 and 0.9 times of the worst case execution time,

i.e. cc ∈ (0.1 · w, 0.9 · w) and em = cc/w. Second, each task load was less than or

equal to 0.3, i.e. w/p <= 0.3 . Third, the average values of task load are 0.5 and

0.75.

Due to the difficulty to implement dynamic core scaling with 7 hardware variables
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Parameters Values
α 0.3
Number of Cores (m) 4, 8, 16
Task Load (U/m) 0.5 and 0.75
Ratio of cc to WCET (em) Normal Distribution with µ= (0.3, 0.5,

0.7) and σ2 = 0.2

Table 5.1: Parameters Used in the Evaluation [44]

and 8 hardware constants [44], we ran our experiments for DM algorithm, dynamic

partitioning [44], and VSDCS.

5.3 Results and Analysis

Figure 5.1 shows a sample simulation result for DM. On the left side of Figure 5.1,

the EDF scheduling of several tasks is depicted. Power consumption of 4 cores is

on the right side. Power consumption scales from 0mW to 1000mW on the vertical

axis and 624MHz corresponds to 1000mW. The horizontal axis shows the elapsed

time in millisecond during task execution. Power consumption goes up because the

frequency increases. Frequency is dynamically changed based on task load of 35 tasks

in this case. We observed that less power is consumed because the lower frequency

was used before 150 ms. We also observed that the power consumption increased

at several levels, which were around 104MHz, 208MHz, 312MHz, 416MHz, 520MHz,

and 624MHz. These frequencies are associated with PXA270 physical features. In

general, a discrete set of working frequencies is related to the characters of the

processors [41]. There are only several discrete frequency values supported by the

underlying hardware.
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As we mentioned earlier, WFD is the best energy-efficient partitioning approach.

Also, WFD is the most energy-efficient partitioning approach compared with BFD,

FFD, and NFD when it is used as the partitioning method in dynamic repartitioning

[44]. We can observe the obvious difference in energy consumption between BFD and

WFD under DM. This is because the task load among the cores is balanced by DM.

We primarily compared DM and dynamic repartitioning. The comparison of WFD

and BFD is not the purpose of this thesis because DM and dynamic repartitioning

both use WFD as the partitioned scheduling heuristic approach.

A number of factors affecting the simulation results are the task set load, the

actual execution time, and the number of the cores in the processor.

Number of Cores:

In general, more energy is saved when the number of the cores increases. This

holds for both DM and VSDCS. DM algorithm is slightly better than dynamic repar-

titioning on the task sets run on 2 cores and 4 cores as shown in Figure 5.4(a) and

5.5(a). The difference is about 1 percent energy savings when the task sets run on

2 cores with em = 0.3 and the task sets run on 8 cores with em = 0.3 as shown in

Figure 5.4(a) and Figure 5.6(a). With the same trend, when the task sets run on 16

cores, the energy saving grows as shown in Figure 5.6(a) and Figure 5.7(a). Because

the computational demands in each core are higher, more energy is saved.

In Figure 5.4(a) and Figure 5.7(a), when the task load is 0.5 and average em

is 0.3, 6 percent more energy is saved when m = 16 is compared with m = 2

by using VSDCS. This difference is larger when the task load and average em are

higher. Since leakage power consumption is reduced by shutting down the cores with
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operating frequencies lower than their critical frequencies, VSDCS performs better

on a large number of the cores.

Task Load and Average Actual Execution Time:

To compare DM with dynamic repartitioning, we performed several simulations

by varying the task load and the average em for m = {2, 4, 8, 16}. Figure 5.7(b)

shows that DM saves additional 3 percent energy when compared with dynamic

repartitioning when m = 16, average em = 0.7 and task load = 0.75. This is

because when the number of the cores increases, the tasks running on the cores with

higher task load have higher possibilities to migrate to the other cores with lower

task load. Thus, when task load = 0.75 and m = 16, energy consumption can be

reduced up to 3 percent. Regarding DM, the cores have less imbalance of the task

load, and thus have lower possibilities to migrate the tasks under low average em

as shown in Figure 5.4, 5.5, 5.6, and 5.7. Thus, when em is higher, more energy is

conserved. The same holds true for the task load. That is, the higher task load, the

more energy savings.

Regarding VSDCS coupled with DM, all the simulation results show that it saves

the most energy among three algorithms in comparison. Figure 5.4, 5.5, 5.6, and 5.7

show that more energy is saved when the total task load is lower. Specifically, up to

33 percent of the energy is saved when taskload = 0.5 and em = 0.3. When VSDCS

is applied with DM, up to 22 percent of the energy is saved due to less leakage power

consumed when taskload = 0.5 and em = 0.3.

Experiment setup and process:

STORM is a real time simulator with graphics interface. It currently allows users
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(a) Task load = 0.5; The number of cores = 2; Task sets = 200; The average number of tasks in each
task set = 7

(b) Task load = 0.75; The number of cores = 2; Task sets = 200; The average number of tasks in
each task set = 11

Figure 5.4: Normalized Energy Consumption at m = 2

54



(a) Task load = 0.5; The number of cores = 4; Task sets = 200; The average number of tasks in each
task set = 16

(b) Task load = 0.75; The number of cores = 4; Task sets = 200; The average number of tasks in
each task set = 23

Figure 5.5: Normalized Energy Consumption at m = 4
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(a) Task load = 0.5; The number of cores = 8; Task sets = 200; The average number of tasks in each
task set = 30

(b) Task load = 0.75; The number of cores = 8; Task sets = 200; The average number of tasks in
each task set = 46

Figure 5.6: Normalized Energy Consumption at m = 8

56



(a) Task load = 0.5; The number of cores = 16; Task sets = 200; The average number of tasks in
each task set = 120

(b) Task load = 0.75; The number of cores = 16; Task sets = 200; The average number of tasks in
each task set = 92

Figure 5.7: Normalized Energy Consumption at m = 16
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to implement their own real-time schedulers and compile them with the existing

framework. It only prints out simulation information within the GUI. The available

downloadable package is a jar file without source code available to modify.

To make a new scheduler working with STORM, the implemented scheduler needs

to be compiled with the existing framework as the following [9]:

javac− cp./storm− 3− 2 FL.jarEDF P FLDCS Scheduler.java

To use the simulator to schedule a task set, the below steps need to be followed:

1. Launch the simulator with enough memory allocation as the following. STORM

now is ready to run scheduling simulation.

java− jar −Xms1024m−Xmx1024mstorm− 3− 2 FL.jar

This step is shown in Figure 5.10.

2. Figure 5.8 and 5.9 depict our xml file generator. To schedule a task set, a XML

file with the scheduler class name, processor type and information of the tasks

in the task set has to be used as the input. This is depicted in Figure 5.11.

After the xml file is loaded into the system, the simulation is actually finished.

The total time spent on the simulation is printed out. All the information and

graphs are now ready to print in the simulator. This is shown in Figure 5.12.

3. There is a set of console commands provided by STORM to print out the graphs

and simulator information [43]. To print out the execution time and energy

information, the console command ′′showdvfs < timeslot1 >< timeslot2 >′′

is used as shown in Figure 5.13. Note that STORM can only print DVFS
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Figure 5.8: XML Generator
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Figure 5.9: XML Files

related information up to time slot 250. The log file of data is also shown in

Figure 5.13.
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Figure 5.10: STORM Installation

Figure 5.11: Simulation Process-1
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Figure 5.12: Simulation Process-2

62



Figure 5.13: Simulation Data
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We introduced an energy-efficient management system model that exploits DVS/DVFS

and DPM to save both dynamic and leakage power consumption. This system model

includes a partitioner, a local EDF scheduler, a power-aware manager, a dynamic

migration module, and a dynamic core scaling module. We extended dynamic repar-

titioning into dynamic migration (DM) [44]. It migrates the tasks among the cores to

balance the computational demands while simultaneously preserving real-time dead-

line guarantees. DM selects the discrete operating frequency with a simple heuristic

to reduce the power consumption of the task migrations. Our voltage scaling-based

dynamic core scaling (VSDCS) utilizes the critical frequency to determine the num-

ber of the cores instead of calculating the complicated function during run-time

execution [44]. Operating at a speed lower than the critical frequency allows the
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leakage energy consumption to dominate the overall energy consumption. Also, the

leakage power can increase greatly in multi-core processors because of their vastly

increased number of integrated circuits in advanced technology generations. Thus,

VSDCS considers shutting down the cores when the tasks are executed below the

critical speed on the cores.

Simulations predicted several energy consumption characteristics of the system

model and two algorithms. Simulation results showed that DM can conserve up

to 3 percent energy savings compared to dynamic repartitioning algorithm. It is

(1− (1− 8%) · (1− 3%)) = 11% energy saved with the new DM techniques. This is

because dynamic repartitioning migrates the tasks among the cores only for balancing

the computational demands and ignores the frequency settings of the underlying

hardware in the real world. Our algorithm greatly reduces the total number of the

task migration. In the related work, dynamic voltage scaling needs to be frequently

updated with a complicated power consumption expectation function to determine

the number of the active cores. It is very difficult to implement such a function

in practice. Our algorithm determines the number of the active cores only by the

critical frequency according to the hardware. Thus, our algorithms are simpler to

use in the real world. Furthermore, VSDCS can achieve greater energy savings than

dynamic repartitioning [44]. Specifically, up to 33 percent of the energy was saved

during the simulation experiments.
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6.2 Future Work

In the future, we are going to implement this work on the real-world systems. In

particular, we will extend Real-energy [31] with our system model and two algorithms

on a real-time Linux system to achieve the purpose of this study. We also analyzed the

current RT-Linux [5] implementation which supports multi-core systems. According

to the requirements of our system design, we decided to develop our algorithms with

the combination of RT-Linux and Real-energy.
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