
AN OPERATING SYSTEM AND A MICROPROGRAMMABLE MACHINE

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Louis Joseph Vogel

May 1970

k r* Q - 0 h 0 u O c J* v

ACKNOVJLEDGMENT

The author would like to thank Mr. J. B. Wyatt who found time

despite a very busy schedule to always be available to give advice and

consultation to the author during the development of this material.

He is thanked also for being the source of the notation scheme used in

Chapter 1 to describe the system algorithms.

Thanks are extended to my mother for typing drafts. Special

thanks are due my mother-in-laxv who spent much time, at night and on

weekends, typing the final draft.

Finally, extra special thanks are extended to my wife, Shelia,

who, in addition to typing draft after draft, proofreading, and

advising, put up with the author through all the strain during the

preparation of the thesis.

L.J.V.

Houston, Texas

May, 1970

iii

AN OPERATING SYSTEM AND A MICROPROGRAMMABLE MACHINE

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Louis Joseph Vogel

May 1970

ABSTRACT

Multiprogrammed interactive operating systems are usually

implemented with software. The growth of interest in microprogrammable

central processors creates a new dimension in effective computer

utilization. While the ability of microprogrammable machines to

emulate other machines is well known, the use of microprogramming to

aid in the implementation of operating systems is a new area of

interest. To investigate this area, a specific operating system and a

specific microprogrammable machine were needed. The availability cf an

INTERDATA Model 4 dictated the choice of machines, but there was not an

operating system available for this machine.

A model for a multiprogrammed interactive operating system is

developed and described. The system is intended for use on a hardware

configuration of the general size and capability of the INTERDATA

Model 4, but no special consideration is given to its microprogramming

characteristics during the development of the system. Selected micro­

programs are developed to illustrate some implementation features of

an emulated machine which has the properties desired by the operating

system model.

The effect of microprogramming is considered with respect to

speed of execution of the resulting system' utilization of primary

storage, needs for control storage, and desirability of the use of

microprogramming by the independent researcher or systems designer.

v

TABLE OF CONTENTS

Page

ACKNOV7LEDGMENT ill

ABSTRACT v

LIST OF FIGURES viii

Chapter

1. AN OPERATING SYSTEM MODEL 1

Section 1 - Introduction 1

Section 2 - Overview of the Model 3

Section 3 - System Assumptions 5

Section 4 - Model Description 9

Section 5 - System Algorithms 22

2. MICROPROGRAMMING 48

Section 1 - Introduction 48

Section 2 - Overview of Implementation Features .. . , 50

Section 3 - Hardware Description 52

Section 4 - Firmware Implementation 58

Section 5 - Conclusions 73

APPENDIXES 77

A. Micromachine Phase Structure 78

B. Model 4 Register Addresses 81

C. Model 4 Instruction Execution Times 82

D. Reproduction of Assembler Output 83

vi

vii

Page

REFERENCES... 85

LIST OF FIGURES

Figure Page

1. Hardware Schematic............................... . . . 6

2. Memory Addressing 7

3. Logical Schematic of the Process Lists 10

4. System Directory Structure 13

5. Current Memory Map (CM?I)................................ 14

6. Clock Interrupt Routine 23

7. Quantum Exhaustion Routine........................... . 23

8. Process Execution Routine 24

9. Process Execution Selector 24

10. Readying Routine 25

11. Priority Setting Routine................ . 26

12. Locking Selector Routine.............. 26

13. Ready Invoking Routine 27

14. Blocking Routine 27

15. Unlocking Selector Routine 28

16. Paging Handler... 29

17. Page Fault Interrupt Handler 30

18. Page Freeing Routine............................... . . 31

19. Paging Input Initiator 33

20. Output Controller 33

21. Input Controller .. 34

22. File Creation Routine....................... 34

viii

ix

Figure Page

23. File Deletion Routine 35

24. Device Assignment Routine 36

25. Device Releasing Routine 37

26. Input Initiation Routine 38

27. Output Initiation Routine 39

28. Input Output Interrupt Handler 41

29. Process Creation Routine 43

30. Activation Character Decoder 45

31. Process Deletion Routine 46

32. Input and Output Queue Description 47

33. General Flov? of User Instruction........................ 55

34. Model 4 System Block Diagram 56

35. Phase One Paging Microcode 62

36. Multiple-phase Mapping Routine 65

37. Phase Two Coding for Paging and Faults................. 67

38. Phase Two Exiting Code for Paged Processor............. 68

39. Execution Times............ 70

Chapter 1

AN OPERATING SYSTEM MODEL

Section 1 - Introduction

More and more today the use of computers is becoming commonplace

in our society. Coupled with this growth in usage, is a growth in

computer technology. Computer manufacturers are continually making

advances in the equipment that can be made available to a company or

individual that desires to use a computer.

The use of microprogramming [1], has been adopted by many

manufacturers to facilitate implementing these technological advances.

Sometimes the ability to modify the microprograms of the central

processor is given to the user. This attitude reflects a desire to

promote the adaptability of a given machine; thus, allowing the user to

tailor the system to his particular needs. The opposite attitude is

that microprogramming is a tool of the hardware designer and not the

user. What is the relationship of these two attitudes?

The implementation of a microprogram may utilize a read-only

memory (ROM) or a writable-control memory (WCM). The use of ROM to

implement the "firmware11 £2] is the more common method, but the use of

WCM is growing in popularity [jj]. What evaluation can be made of the

need for WCM as compared to ROM? Could a system utilize both a ROM and

* WCM?

The most important question that is to be asked by this thesis

is concerned with the uses of microprogramming. A microprogrammable

machine is usually noted for its ability to emulate the execution of

another machine by changing the ROM or WCM so that a new instruction set

is implemented. With the growth of large operating systems, however, a

new use for microprogramming is created. Since an operating system

often assumes a special hardware configuration, how can microprogramming

help provide the desired special properties if they do not exist? What

use can be made of the already established ability of microprogramming

to extend an instruction set? Can special system primitives be

developed to transfer the execution of the system into the ROM? What

advantages would this type of implementation have over one that was

simply a software feature? What disadvantages would have to be

accepted if this manner of implementation were chosen? It is these

questions which motivate this thesis.

3

Section 2 - Overview of the Model

The availability of an INTERDATA Model 4 dictated the machine

to be used in the study of microprogramming. Because there is no

operating system for the Model 4, the thesis shall first describe a

model for a software system. This model will be developed without

special regard to the microprogramming capabilities present in the

hardware. Then an investigation will be made of the effect that the

use of microprogramming a read-only memory might have if the model were

going to be implemented. The model that is developed is one which has

as a design objective the ability to serve multiple users in an

interactive mode. The scope of the model will be limited to the basic

elements of the system. The system design itself will be limited in

power only to allow greater depth of study in the areas of hardware and

memory multiplexing than could occur within the paper if a completely
I

specified or more powerful model were developed. The features not

modeled, or modeled only basically, could be expanded to provide

state-of-the-art powers at a later time.

The system design is pieced together from parts of operating

systems studied by the author at various times. It is not expected

that this operating system model will contribute originally to the body

of knowledge about sophisticated operating systems. Rather, as noted,

it is to serve as a vehicle for the investigation of the use of

microprogrammable read-only memories to ease the implementation of the

model; and, at the same time, allow full investigation of desired

special system properties before any money is spent to actually

"hard-wire" a design.

The model is intended to be logically complete within the

routines tha>t specify the hardware and memory multiplexing. Although

not always completely specified, such principles as Denning’s working

set concept (Vj, demand paging [5], two-component virtual memory

addressing [5J, process priority recognition [6j, virtual processors

£4], and interprocess protection are intended to be utilized.

Some omissions, such as multiple processes per user £sj, intraprocess

protection £7], and user execution overlapped with user I/O are not

intended to imply a lack of appreciation of the need for study in these

areas. Rather, such omissions indicate a desire on the part of the

author to restrict the scope of the paper to such proportions that some

detailed information may be examined in the included areas.

5

Section 3 - System Assumptions

It is expected that if this model were going to be implemented

one of the implementation criteria would be that the response time of

the system to a user be some reasonable amount of time. Almost

certainly it should be less than three or four seconds; preferably, as

much faster than that as possible. In order for this to be the case

the hardware system upon which this model is to be implemented would

have to have certain properties. (See Figure 1.) For example, it

would have to be the case that there exist some relocation scheme for

the system. This could take many forms: address modification, base

register usage, or paging [^5j. The model assumes that a paging

capability is desired. To have this paging capability, memory would be

addressed via a two-component addressing scheme so that the page

component of the address would actually be a one level indirect address.

(See Figure 2.) A second characteristic that the system would need to

have would be the capability to overlap computation by the CPU with

input and output. A third would be that the system have some moderately

high speed and large volume secondary storage devices. The result of

the absence of the first two characteristics would be very, very poor

response time, but the system could still function. Without large

volume secondary storage of at least moderate speed the system would

not be at all feasible.

For the purpose of defining and discussing the model a process

will be defined as a program together with the elements of the virtual

processor on which it executes. For the purpose of this paper

multiprocessing and multiprogramming will be synonymous. In this model

there may be only one process per user at any given time. The address

6

overlap

TO CONSOLE DEVICES

Minimum I/O control demands some type of I/O-computation

Figure 1

Hardware Schematic

1

"r”"T—"v™"””1 OPtDRlIR PGIDISP I
, I I I .. I....—J

OP - operation code

DR - destination register

IR • index register

PG • page number

DISP - displacement

user’s page table

xx
XX
XX
XX
jCjC
0
A

Memory must be referenced via a two number address. Whether

this is used for associative memory referencing of the actual address

ar index referencing of that address is installation dependent. Thus

my instruction addresses memory in such a way that the reference is

st least one level indirect so that the address space may be larger

than actual memory. The system keeps a directory of information in

which the location of every page that belongs to a process is recorded

as to its location, either in memory or in secondary storage. The

first component of the address is the page reference and the second

$s the displacement within that page.

Figure 2

Memory Addressing

space of a process refers to those things in memory, either actual or

virtual memory, that can be referenced in a single instruction by a

8

statement in a program. Files, until they have been read, are not

considered to be in the address space of a process. Any external

references used must be resolved as routines are loaded into the

virtual memory. To make any system routine, or any other routine,

available to a process that routine must, of course, be brought into

the address space of that process. This could mean many things. In

MULTICS for example, it implies that the segment (unit of virtual

memory) containing the desired routine be assigned a segment number* and

a segment descriptor word for the calling process. This is referred to

as "making the segment known to the process” [jO. In this particular

model it means copying the desired routine into an area belonging to

that process.

9

Section 4 - Model Description

This is a model of a time-sliced multiprocess operating system.

There may be several interactive users interfacing with the system and,

as currently restricted by the input/output control system (IOCS),

there may be one "batch" job in the system at a time. Batch jobs are

treated as special cases of the interactive state. The major purpose

of this model is to provide an interactive system, and any batch jobs

are considered to be of secondary importance.

A process in the system may be in one of three states: ready

active locked (RAL), ready active unlocked (RAU), or blocked (B). A

process may change from any one of these states at any time. To which

state it changes depends on the reason for the change. These state

transitions are summarized by the drawing in Figure 3. The causes for

the transitions will be discussed throughout this section. A process

in the ready active locked state is a candidate for a time-sliced share

of the processor. It is called locked because none of its pages in

actual memory may be stolen by another process. A process in the ready

active unlocked state is also a candidate for a time-sliced share of

the processor but must be locked before it can actually receive control

of the processor. It is called unlocked because its pages of actual

memory may be stolen by needy processes. A process that is in the

blocked state is not a candidate for the processor because it is

waiting for some event to occur. For example, the IOCS that is

supplied with the model does demand input and output. Therefore, when

a process asks for either input or output it automatically goes blocked

until that transfer has completed. Then IOCS "wakes up" the blocked

process and it becomes ready. These states, although called by

10

EXECUTING
PROCESS (EP)

READY ACTIVE LOCKED
(RAL) LIST

READY ACTIVE UNLOCKED
(RAU) LIST

BLOCKED LIST (B-LIST)

Figure 3

Logical Schematic of the Process Lists

11

different names, were borrowed from the scheduler In the HITAC5020

system [lOj, The purpose of having a "locked" state with the pages of

a process tied down temporarily is to take a step toward minimizing

system "thrashing" [^4] where no work is done. The paging routines

take other steps to help minimize this problem.

The only way a process may change from the blocked state to the

ready state is by a system routine or some other process issuing either

an "unblock" or a "ready". The only place that a newly readied process

can go is on the end of the ready active unlocked (RAU) list.

Similarly, the only way a process may move from the unlocked state to

the locked state is by the system doing a "lock". The only place that

a newly locked process may go is on the end of the ready active locked

(RAL) list. From the RAL list, the process with the highest priority

that has been RAL the longest and which is not involved in a paging

operation is made the executing process (EP). When this process is to

be disposed from EP it may go to the tail of any of the lists. It may

not receive two quanta in a row. This was done to prevent one process

from monopolizing the system. However, two high priority processes may

together monopolize the system. A dynamic priority allocation idea is

used to further aid the system in responding to more than one or two

high priority processes. The approach taken is derived from the XDS

Universal Time-sharing System (UTS) J^llJ. The job control language

(JCL) interpreter of a process should be able to respond more rapidly

to the user than any other part of the process. The creation takes

place at level one, the interpretation of the JCL at level two, and

then the JCL interpreter dynamically assigns the priority level for the

procedure being used to some level below level two. When control

12

returns to the JCL routine the priority is reassigned to level two.

The basis for this scheme is that when inputing control commands the

user expects and deserves rapid response from the system. However,

when a user routine is in progress it should have a lower priority than

that of some other process that is in the midst of accepting JCL

commands.

The system maintains a system directory which contains the file

information, the page map for the process's pages, the accounting

information for the process, a pointer to the computation activity

block (CAB), and any other information that an implementation might

need. (See Figure 4.) The directory information may be stored in any

convenient manner. For the purpose of this model we may assume that

there is a caretaker program which performs all manipulation of data

within the directory and that look ups or entries of data are done

automatically. This omission will allow the directory to be stored in

a machine and installation dependent way, thus allowing for maximum

speed and system versatility. It also allows the thesis model to

access this information and not be forced to delve into details which

are superfluous to the goals of the thesis.

The system has a vector of page locations called the current

memory map (CMM). (See Figure 5.) Each process has its own copy of

the CMM which is loaded into the actual CMM when that process is given

control. This is done by accessing the process’s map stored in the

system directory. This map is then moved to the CMM which is used for

the indirect referencing feature. Loading the CMM is an overt action

of the system. When the operating system is given control via a trap

or interrupt, one of the first things that it must do is save the CMM

13

Figure 4

System Directory Structure

14

actual I/O In modified access
page progress switch countIuser s

page
number

#
#

0
0
0
#
0
#
#

Presence of zero in actual page field may mean different

things to supervisor and user programs. The map Itself may be

hardware, firmware, or software.

Figure 5

Current Memory Map (CMM)

15

of the interrupted process in the directory. Then the system loads its

own copy of the CMM. A user's CMM may have several zero entries. Such

entries are used to indicate missing pages that either are not in

memory or are not in the address space of the process. The current

memory map of the operating system reflects the actual configuration of

memory elements. The user process's CMM contains the actual location

of the logical page referenced, whether that page has been changed

since being loaded into memory or not, and a count field of the number

of accesses. The system CMM contains the page map for the system

routines which are in actual memory while the full page map shows an

indicator (perhaps a pointer) to the CAB to which that page currently

belongs. The system CMM also contains a switch for all pages currently

involved in I/O operations. It should be noted at this point that this

type of memory map implies an indexive mapping as available on the XDS

Sigma 7 rather than the associative mapping that is utilized by some

other computer systems |^10,12j. If the ultimate implementation is to

be on a machine with associative memory mapping, then the CMM should be

considered to be an information vector (possibly similar to the known

segment table in MULTICS) and the letters could denote current memory

management.

The hardware multiplexor routines are:

PRIORITY

QTICK Clock Interrupt Routine

QTIMEOUT Quantum Exhaustion Routine

ENTER Process Execution Routine

EXEC Process Selection Routine

READY Process Readying Routine

Priority Setting Routine

16

The memory multiplexor routines are:

LOCK Locking Selector Routine

UNBLOCK Ready Invoking Routine

BLOCK Blocking Routine

RALKIKOUT Unlocking Selector Routine

The routines associated with process creation and maintenance

PAGER Paging Handler

PAGEFAULT Page Fault Interrupt Handler

FINDPAGE Page Freeing Routine

FOUND Paging Input Initiator

The routines of the IOCS and file maintenance are:

OUTPUTER Output Controller

INPUTER Input Controller

CREATE File Creation Routine

DELETE File Deletion Routine

ASSIGN Device Assignment Routine

FREE Device Releasing Routine

READ Input Initiation Routine

WRITE Output Initiation Routine

I/O INTERRUPT Input/Output Interrupt Handler

are:

CREATOR Process Creation Routine

SWITCHER Activation Character Decoder

KILL Process Deletion Routine

The names were chosen to reflect the duties of each routine.

On some systems the hardware will perform the indicated functions and

these will then be primitive commands rather than system routine calls.

17

Exact algorithmic details of the duties of these routines

appear as figures in the next section. Before seeing the details of

the routines, following the progress of a process through the system,

from beginning to end, would be instructive.

First, it is assumed that a person sits down at a console

device and turns that device on. It is then necessary to be sure that

the device is physically connected to the system. This may or may not

be anything other than seeing that the plug is plugged in or may

involve dialing a telephone. Eventually, when the connection is made,

a key is depressed on the device. Either the processor is one that has

polling hardware and thus senses this character, or the depression of

the key causes an interrupt in the processor. In either case, the

character is read and IOCS notices that there is no entry in the INPUT

queue for this device. IOCS then activates the routine called SWITCHER

if the character that was received was an "attention-getting"

character. If not, the input is ignored. The user must, therefore,

press a character which has been chosen by the system as an "attention­

getting" character, probably from among those characters not usually

used for anything else. When one of these is transmitted, the IOCS

calls the routine SWITCHER. SWITCHER decides if the user is

interrupting a process in progress or wishing to enter the system. If

no process already exists that is using this device then the system

routine CREATOR, which is treated as a system process, is readied at

priority level one with the interrupting device entered in the CREATION

queue. CREATOR will request a log-on from the user to verify that he

has permission to utilize the system. The user has some number of

tries, which can be determined as a system parameter, before the

18

connection Is broken and he must reconnect. When the log-on is

verified, CREATOR uses a template of a CAB and copies this CAB into an

available area in secondary storage. The data in the CAB is initialized

in the blocked state. Then a copy of the JCL interpreter is made into

the user’s address space. The caretaker of the system directory is

requested to insert the new items in the directory. A process

identification (PROC ID) is assigned and transmitted to the user. The

process is then readied by CREATOR, at priority level two, so that

the JCL routine may begin to interpret what the user wishes to do.

When this task is finished CREATOR looks for further creation tasks

by looking in the CREATION queue. If it is empty, this process blocks

itself.

The user will now communicate with his process. This process

takes its turn getting CPU time as decided by the hardware multiplexor.

Via the JCL routine, the programs in the system library are made

available to the user by copying system files and executing them as

routines of his process at various levels of priority. To get out of

the system the user causes control to be returned to the JCL routine

and indicates that it is to call the routine KILL which deletes the

executing process, the caller in this case, from the system.

How a user gets in and out of the system should now be clear.

How he fares while in the system is not yet fully clear. For the

remainder of the descriptions a specific process, call it P, shall be

followed. The computation activity block of P is referred to by

CAB (P). After the log-on procedure described previously, P begins by

having a CAB created in the blocked state. This is done so that

secondary storage may be used for the creation process and the CAB (P)

19

may be simply moved to the blocked list by the caretaker program.

A READY is performed for the CAB (P) by CREATOR and the CAB (P)

is moved to the end of the RAU list with a priority level of two.

Eventually, P will become either the highest priority process or

the level two process that has been in the RAU list for the longest

time. It is then selected to be locked by the LOCK routine and the

paging routines initiate paging-in of the page containing the entry

point of the JCL routine. This entry point is the address pointed to

by the location counter (LC) of CAB (P). The process resides on the

RAL list until it is the oldest process or the highest priority process

on the list and paging has completed. Then, it is selected by the EXEC

routine to be given control of the CPU. Its time quantum is set by a

formula which is installation dependent. For the sake of discussion,

the following formula for the time quantum may be assumed. Let

QUANTUM ■ (M*10)/(N*PR) where M is the maximum number of processes to

be allowed in the system, N is the number of users currently in the

system, and PR is the priority level of the process receiving the

quantum. The process is now given control of the CPU. One of the

first things that the JCL routine must do is execute the PRIORITY

primitive to assure that the process is at level two since, later, it

can be entered by being called by a user routine.

Eventually, the quantum will pass and this process will be

moved to the end of the RAU list or the RAL list depending upon the

presence or absence, respectively, of other processes with the same or

higher priority. It is possible, however, that while the process was

executing it tried to do I/O in which case it would have gone blocked

to wait for the I/O to complete. IOCS then takes the responsibility of

20

issuing a READY when the I/O has completed. Thus the cycle is begun

again. If the quantum has elapsed, and the process moved to the RAU

list or the tail end of the RAL list, then its turn will come again,

and the process will continue to receive execution time. The other

possibility that could occur while P is executing is the page fault.

The occurrence of a page fault could move P to the tail of the RAL list

with its paging switch on. When the paging operation has completed,

the paging routines turn off that switch and P is not overlooked in

receiving a quantum of execution time.

In order to follow the system through its paging philosophy,

suppose there are five processes, Pl, P2, P3, P4, and P5, and that all

are of the same priority. Suppose that Pl is the EP and all are RAL.

EP RAL List RAU List
|P1[P2 P3 PA* Zl [EMPTY I

Blocked List

jEMPTY]

Suppose that during the quantum assigned to Pl, it has a page fault.

The paging routines try to find a blocked process from which to steal a

page. But, none exist so the RAU list is searched for the lowest

priority process that has been RAU the longest. But none of these

exist either. Therefore, the routine responsible for finding a page

for Pl, FINDPAGE, has a problem. All pages of memory are occupied by

locked processes. The only course open to the system is to unlock one

of the processes. RALKIKOUT is the routine responsible for the

selection of one of the RAL processes other than Pl (since there are

some) which is then made RAU and FINDPAGE can then select one of its

21

pages. This routine, RALKIKOUT, chooses the lowest priority process

In the RAL list and among those of equally low priority It selects the

process that has been In the system the longest. For example, P4.

EP RAL List
|P2|P3 P5

paging
switch on

RAU List
j P4|

Blocked List

j empty"!

P4 Is then made an unlocked process. This Is done because it Is felt

that a process that has been In the system for a long time (relative to

the other processes In the system) has had the most opportunity to get

work done. Therefore, newer processes should have an opportunity to

get some work accomplished. This attitude Is derived from the

philosophy adopted for the early time-sharing system (TSS) at MIT as

reported by Corbato and others Q13j. A similar attitude was chosen for

the XDS UTS system Q11J. Pl then gets a page from that process. The

system resumes operation and selects some process other than Pl to get

an execution time quantum. This Is done to allow time for the paging

operation to be completed.

22

Section 5 - System Algorithms

This section contains the figures which show the algorithms of

the routines and primitives of the system. Double asterisks at the end

of a statement indicate a terminal exit. No return is ever executed to

the next statement. The number of processes that may be in the locked

state is limited as a parameter of the system implementation. Note

that no attempt is made to provide for multiprocessor situations.

23

QTICK

- save virtual processor

- subtract one from QUANTUM of EP

- is QUANTUM equal to zero?

-no - ENTER. EP at interrupted point **

- yes - call QTIMEOUT **

Figure 6

Clock Interrupt Routine

QTIMEOUT

- lock q timer

- save virtual processor

- is there a CAB in RAU list with a priority greater than or
equal to process EP?

- yes - place EP at tail of RAU list and unlock it

- delete EP from RAL list

- LOCK a process

- call EXEC **

-no - place EP at tail of RAL list

- LOCK a process

- call EXEC **

Figure 7 •

Quantum Exhaustion Routine

2ti

ENTER

- is entry point of process in memory?

- yes - restore virtual processor

- unlock q timer

- branch to entry point (LC of CAB) **

-no - move CAB of EP to tail of RAL list

- set paging switch to on

- call PAGER to initiate page transfer (CAB)

- call EXEC **

EP points to the process to be entered. This routine attempts

to give the CPU to the EP process.

Figure 8

Process Execution Routine

EXEC

- set EP to point to CAB of highest priority in RAL list
which does not have its paging switch on

- initialize QUANTUM of EP

- ENTER EP **

This routine selects the process with the highest priority

which does not have the paging switch on and gives the processor

to it.

Figure 9 '

Process Execution Selector

25

READY (CAB)

- lock q timer

- save virtual processor

- is CAB on RAL or RAU list?

- yes -set wake-up switch to on

- unlock q timer

- return **

-no - place CAB on tail of RAU list

- set wake-up switch to off

- delete CAB from B-list

- restore virtual processor

- unlock q timer

- return **

Figure 10

Readying Routine

26

PRIORITY (CAB, level)

- find out from directory if called from within the limits of
the JCL routine

-no - return **

- yes - set priority field of this CAB to level

- return **

Figure 11

Priority Setting Routine

LOCK (CAB)

- is there a process CAB in the RAU list?

-no - return **

- yes - is RAL list full? (number depends on
installation)

- yes - return **

-no - search RAU list for highest priority CAB

- set locked switch to on

- move CAB to RAL list

- set paging switch to on

- call PAGER for this CAB for at least LC
(possibly for complete working set)

- return **

Figure 12

Locking Selector Routine

27

UNBLOCK (PROC ID)

- get CAB address from directory

- READY (CAB)

- return **

Figure 13

Ready Invoking Routine

BLOCK (EP)

- lock q timer and save CPU conditions

- is wake-up switch on?

- yes - set wake-up switch to off

- unlock q timer

- return **

-no -put CAB on B-list

- unlock CAB and delete from RAL list

- call EXEC **

Figure 14

Blocking Routine

28

RALKIKOUT (CAB, svz)

- are there any RAL processes except CAB?

-no -is any page of CAB not involved in I/O?

-no - re-enter FINDPAGE without disturbing linkage
and parameters (thus wait for I/O to
complete and produce a free page)

- yes - set sw equal to this page

- return **

- yes - from among the processes at the lowest priority
level in RAL list select the one that has been in
the system the longest and put it at the head of
RAU list and set it unlocked

- set sw equal to zero

- return **

Figure 15

Unlocking Selector Routine

29

PAGER (CAB ptr)

- is page containing LC of CAB in memory?

- yes - is page containing the word pointed to by the
address field of the instruction referenced by
the LC field in memory?

- yes - turn paging switch off

- return **

-no - look up secondary storage address in the
directory for this page

Pl - is there a request for this page in the
INPUT queue?

- yes - return **

-no - place this page number and CAB in
INPUT queue ahead of any non-paging
requests

- call FINDPAGE (CAB, sw)

- is sw greater than zero?

- yes - put sw as actual page for this
new entry into INPUT queue

- call INPUTER

- return **

-no -is sw equal to zero?

- yes - return **

-no - turn paging switch off

- return **

-no - look up secondary storage address in directory for
this process for page containing LC

- go to Pl

Figure 16

Paging Handler

30

PAGEFAULT

- save virtual processor

- lock q timer

- turn paging switch on

- call PAGER (EP)

- is paging switch on?

-no - unlock q timer

- restore processor **

- yes - delete CAB (EP) and place on tail of PAL list

- call EXEC **

When an instruction tries to reference a page that is not in

memory, this routine is activated.

Figure 17

Page Fault Interrupt Handler

31

FINDPAGE (CAB, sw)

- are there any free pages in CMM?

- yes - set sw to one

- return **

-no - are there any B-list processes?

- yes - set used switches to off for all B-list CABs

FP1 - set pointer to CAB of lowest priority and
rear-most of processes with used switches
off

- are there any pages in this process not
being used for I/O?

- yes - select the least used page in this
process

FP4 - has this page been changed since
loaded into memory?

-no - set directory to secondary
storage address

- set sw to actual page in memory

- return **

- yes - put this page and appropriate
information in OUTPUT queue

- call OUTPUTER

- set sw equal to zero

- return **

-no - set used switch to on in this CAB

- is there another CAB in this list?

- yes - go to FP1

-no -go to FP2

Figure 18

Page Freeing Routine

32

FP2 -no - are there any RAU processes?

FP5 -no -is this CAB the EP?

-no - set sw equal to minus one

- return **

- yes - call RALKIKOUT (CAB, sw)

- is sw equal to zero?

- yes - go to FP2

-no - set ptr to page pointed
to by sw

- go to FP4

- yes - set all used switches to off for CABs
in RAU list

FP3 - set ptr to CAB of lowest priority and
rear-most of processes with used
switches off

- are there any pages in this process
not involved in I/O?

- yes - select the least used page in
this process

- go to FP4

-no - set used switch to on

- are there any other CABs in this
list?

- yes - go to FP3

-no -go to FP5

If a page was found, its number is returned in sw. If no page

was found, but a pageout was initiated, sw is set equal to zero. If no

paging was initiated sw is set equal to minus one.

Figure 18 (continued)

33

FOUND (ptr)

- pick up actual page from entry in OUTPUT queue pointed to
by ptr

- delete this entry

- put actual page in destination page address of first paging
entry in INPUT queue

- call INPUTER

- return **

Figure 19

Paging Input Initiator

OUTPUTER

- find first entry in OUTPUT queue that is not in progress

12 - is the device busy?

- yes - move to next item

- is this the end of the queue?

- yes - return **

-no -go to 12

-no - set in progress switch to on

- issue WRITE command

- return **

Figure 20 •

Output Controller

34

. INPUTER

- find first entry in INPUT queue that is not in progress

Il - is the device busy?

- yes - move to next item

- is this the end of the queue?

- yes - return **

■ - no - go to II

-no - set in progress switch to on

- issue READ command

- return **

Figure 21

Input Controller

CREATE (file, size, PROC ID)

- is a file already created with this name for this process?

- yes - return **

-no - search directory for space of size

- if not found - output error message

- call KILL (EP) **

- if found - put secondary storage address into
the directory for this PROC ID

- delete this space from available
secondary storage list

- put file name into directory

- return **

Figure 22-

File Creation Routine

35

DELETE (file name)

- is there a file by this name?

-no - return **

- yes - put this space on available list

- return **

Figure 23 '

File Deletion Routine

36

ASSIGN (object, code, direction, record, account number)

- is CAB system device an interactive device?

- yes - return **

-no -is direction IN?

-no -is the object a file?

-no - set CAB output device to point to
object of type, code

- return **

- yes - is account number present?

AS1 -no - get secondary storage address of
the file from directory and put
in CAB output device

- return **

- yes - find permanent file of name
given in object under account
given in account number

- go to AS1

- yes - is the object a file?

-no - set CAB input device to point to
object of type, code

- return **

- yes - is account number present?

AS2 -no - get secondary storage address
of the file from directory and
put in CAB input device

- return **

- yes - find permanent file of name
given in object under account
given in account number

- go to AS2

Figure 24 .

Device Assignment Routine

37

FREE (device, sw)

- remove from CAB

- remainder of action depends on device

i.e., if tape - write end of file and rewind

if printer - skip to a nexv page and print system
header

etc.

Figure 25 "

Device Releasing Routine

38

READ (address, size)

- look in the CAB of EP to see if either a device or a file
has been assigned

-no - output "no device or file assigned for read"
message to the system output device

- call KILL (EP) **

- yes - is it a device?

- yes - is it capable of input?

-no - output error message

- call KILL (EP) **

- yes - set page containing address to show
I/O is in progress

- put address, device, 0, size, CAB
pointer on INPUT queue

- call INPUTER

- BLOCK (EP)

- return **

-no - has a file been created?

- yes - look up secondary storage address for
file, record number

- put address, device, secondary storage
address, size, CAB pointer, record
number on INPUT queue

- call INPUTER

- BLOCK (EP)

- return **

-no - output error message

- call KILL (EP) **

Figure 26'

Input Initiation Routine

39

WRITE (address, size)

- look in the CAB of EP to see if either a device or a file has
been assigned

-no - output "no device or file assigned for write"
message to the system output device

- call KILL (EP) **

- yes - is it a device?

- yes - is it capable of output?

-no - output error message

- call KILL (EP) **

- yes - set page containing address to show
I/O is in progress

- put address, device, 0, size, CAB
pointer on OUTPUT queue

- call OUTPUTER

- BLOCK (EP)

- return **

-no - has a file been created?

W1 - yes - is record too big, i.e. past EOF?

- yes - output error message

- call KILL (EP) **

-no - look up secondary storage
address for file, record number

- put address, file, file address,
size, CAB pointer, record number
on OUTPUT queue

- set I/O in progress switch on

- call OUTPUTER

Figure 27

Output Initiation Routine

40

- BLOCK (EP)

- return **

-no - output error message

- call KILL (EP) **

Figure 27 (continued)

41

I/O INTERRUPT

- save processor

- lock q timer

- discover interrupting device

- was transfer in or out?

-in - was transfer requested by an entry in the INPUT
queue?

- yes - was this a page transfer?

- yes - set page address in directory to
actual page address

- delete entry from INPUT queue

- turn paging switch off in CAB

- turn I/O in progress switch off for
appropriate page in CMM

- call INPUTER

- unlock q timer

- restore processor **

-no - turn I/O in progress switch off for
appropriate page in CMM

- call UNBLOCK for this PROC ID

- delete appropriate entry in INPUT
queue

INT 1 - call INPUTER

- call OUTPUTER

- unlock q timer

- restore processor **

-no - call SWITCHER (device) **

Figure 23

Input Output Interrupt Handler

out - was this a page transfer?

- yes - call FOUND (ptr) with ptr setting to entry
in queue that caused interrupt

- call OUTPUTER

- unlock q timer

- restore processor **

-no - turn I/O in progress switch off for
appropriate page in CMM

- call UNBLOCK for this PROC ID

- delete entry in OUTPUT queue

- go to INT 1

Figure 28 (continued)

43

CREATOR

Cl - is there an entry in the CREATION queue?

- no - BLOCK SELF

- go to Cl

- yes - is there sufficient secondary storage to create
another process?

C3 - no - output appropriate message

- delete entry from CREATION queue

- go to Cl

- yes - are there M users in the system?

- yes - go to C3

- no - output log-on request to all devices
for which there are entries in queue
for which this has not been done

- set try counter to 1

C2 - input log-on information

- is log-on valid?

-no - increment try counter

- is try counter less than or
equal to maximum number?

- yes - go to C2

-no - delete entry from CREATION
queue

- BLOCK SELF

- go to Cl

- yes - copy a CAB onto new place in
secondary storage for the first
process on the CREATION list
that does not have one

Figure 29

Process Creation Routine

44

- insert necessary Information
into that CAB

- copy JCL routine into this file

- place CAB location on secondary
storage into system directory as
a BLOCKED process

- assign a PROC ID and transmit it
to the user

- set priority to level 2

- call UNBLOCK (PROC ID)

- go to Cl

Figure 29 (continued)

45

SWITCHER (device)

- is there a process assigned to this device?

-no - put entry in OUTPUT queue to output system
response indicator

- execute a READY for CREATOR'S CAB

- put device address in CREATION queue

- call OUTPUTER

- unlock q timer

- restore processor **

- yes - place entry point of JCL copy into LC of CAB
assigned to this device

- is CAB ready?

-no - READY (CAB)

- are any I/O in progress switches set for
this CAB?

- yes - turn off all that are not paging
switches

— delete same from INPUT queue and
OUTPUT queue

- go to SI

-no -go to SI

SI - yes - unlock q timer

- restore processor **

Figure 30

Activation Character Decoder

46

KILL (ptr)

- return all non-permanent files to the available secondary-
storage list and delete from directory

- return all pages in secondary storage to available status

- terminate all I/O for pages belonging to this process

- set CMM to indicate all pages of this process in memory are
free

- disconnect system device from the CAB

- delete the CAB

- is this CAB the EP?

- yes - call EXEC **

- no - ENTER EP **

Figure 31

Process Deletion Routine

47

An entry in the INPUT or OUTPUT queue contains at least the following:

address of buffer

size of buffer

CAB address

paging switch

actual page address

secondary storage address

CAB’s page number

in progress switch

device address or file address

Notice that the address of the buffer could contain a buffer

address if the paging switch is off, or an actual page address if the

paging switch is on. Similarly, some of the other fields could do

double duty depending upon whether the entry is for page transfer or

for regular I/O.

Figure 32

Input and Output Queue Description

Chapter 2

MICROPROGRAMMING

Section 1 - Introduction

M. V. Wilkes, in an article for Computing Surveys, summarizes

the reasons microprogramming appeals to designers by the following

statements:

1. It provides economical means whereby the smaller machines
of a series can have large instruction sets compatible with those
on the larger ones.

2. Maintenance aids can be provided; for example, the read­
only memory can have a parity bit, and special diagnostic
microroutines can be provided for the use of the maintenance
engineers.

3. Emulation is possible.
4. Flexibility exists to provide new features in the

future, [jlj

Among the hardware manufacturers who currently use micro­

programming in the construction of their machines, the two attitudes

mentioned in Chapter 1 are prevalent. There are, of course, many

variations between these two extremes. An interesting observation is

that IBM, when announcing the System/360, chose to allow the user

access to the microprograms but by the time the system was readily

available had decided microprogramming was exclusively a designer's

tool. Another manufacturer has adopted the permissive attitude.

INTERDATA has provided the user the ability to microprogram the

Model 3 and the Model 4.

This chapter presents evidence to be used in an evaluation of

the capabilities of microprogramming in the area of operating systems

48

49
and the emulation of special properties for that system.

50

Section 2 - Overview of Implementation Features

A number of existing microprogrammable systems could be studied

to investigate the fourth reason, the flexibility inherent in micro­

programming, noted by Wilkes in the previous section. An alternative

to the use of an existing system for this study would be the

postulation of a hypothetical machine which would exhibit the

characteristics common to microprogrammable processors. Some such

postulations have been done [jbCl > but due to the availability of an

actual machine, the INTERDATA Model 4 was chosen as the vehicle to be

used for the investigation.

The discussion of microprogramming and the microprograms that

are included are not intended to implement the entire operating system

modeled in the first chapter. Instead, the uses of microprogramming

will be investigated with an interest in the underlying principle of

the adaptability of the microprogrammable machine. Some postulation

will occur in regard to specific features of the operating system, but

the results of the investigation will be used as evidence in attempting

to answer the questions posed in the first section of Chapter 1. The

example microroutines presented later in this chapter to illustrate the

coding necessary for implementation of the normal user-machine are not

necessarily those provided by INTERDATA. Rather, the reference manual

was studied, and the routines written as an example of what the code

might be. In order to verify that the micro-instructions worked in the

manner described herein (see Appendix A), a microprogram to emulate a

simple instruction set was prepared. This program was then assembled

and a binary tape produced. The printed output from this assembly

appears in Appendix D. This binary tape was then loaded into the

51

microsimulator "PANDORA" provided by INTERDATA to test microroutines.

A small user program was then executed by the simulated micromachine.

The response of the simulated micromachine was as expected. If the.

simulator was working properly the micro-instructions and phase

relationships described in Appendix A were properly understood.

52

Section 3 - Hardware Description

For the purpose of discussion and distinction, the machine

which interprets and executes microprograms is called the micromachine

while the ‘'emulated" machine is called the user-machine. The reason

that emulation is straightforward is that all user-machines are

emulated, and one need only choose the characteristics that he wishes

to emulate.

The INTERDATA Model 4 recognizes ten instructions.

These are:

ASSEMBLER SYMBOL DEFINITION

A Add

S Subtract

X Exclusive OR

N AND

O Inclusive OR

L Load

C Command

T Test

B Branch on Condition

D Decode

When writing the microprogram, the designer has many of the standard

assembler capabilities if he uses the micro-assembler provided by

INTERDATA. He may use symbolic names and mnemonics for the commands,

as well as make use of special addressing functions and predefined

register symbols.

Model 4 processor operation is directed by the read-only

53

memory (R.0'4). Instructions loaded into the processor are placed in the

RD register from which the micro-instruction is decoded.

ROM with its pre-wired micro-program, directs the Processor
through the control unit. Processor Control can, depending on the
micro-operation code, set-up the Arithmetic Logic Unit (ALU) to the
desired mode of operation, test for specified hardware conditions,
issue functional commands to establish hardware conditions,
initiate memory cycles, set-up micro-instruction loops, or load and
unload selected registers in the hardware register stacks.[215]

The format of a micro-instruction is generally:

OP CODE DESTINATION REG,SOURCE REG,MODIFIERS

For example, the micro-instruction

L MAR,MDR,NC

says to Load the Memory Address Register with the contents of the

Memory Data Register and Not to OR in a bit from the Carry position of

the FLG register. There are also some immediate type micro­

instructions. For example, the micro-instruction

L MR4,X’O1’

says to Load into MicroRegister 4_ the immediate operand "01". The "X"

indicates that the number in quotes is hexidecimal.

In all arithmetic and logical operations, the arithmetic

register (AR) is assumed to be one operand. Thus, to add a one to the

contents of MieroRegister either of these two sets of micro­

instructions would accomplish this task:

L AR.X'Ol*
A MR4,MR4,NC

or

L AR,MR4,NC
A MR4,X,01’

A list of the registers accessible by the micromachine appears

in Appendix B and the execution times of the micro-instructions appear

54

in Appendix C. For a more complete specification of the details of

microprogramming the Model 4, the reader is referred to the Model 4

reference manual [152 •

The Model 4 has a special Decode Read-Only-Memory (DROM) which

is used to address the microroutines that perform user’s instructions.

While the INTERDATA Model 3 has no particular orientation beyond byte

addressing of memory, the Model 4 is oriented toward the standard

INTERDATA user instruction set.

In the Model 4 there are four hardware conditions known as
"phases". Each phase has corresponding sets of micro-instructions.
In general, Phase Zero is dedicated to user’s instruction fetch and
class decoding: Phase One to indexing for the second operand;
Phase Two to user’s instruction execution; and Phase Three for
interrupt service and display support. These phases effect and
in-turn are effected only by the Decode micro-instruction. When
the Decode micro-instruction is used to bring about a phase change,
the subsequent state of the phase pointer is dependent on user’s
instruction format; whether or not the instruction is indexed and
the current state of the phase pointer. [jL5j

The diagram in Figure 33 shows the flow through the phases, and

Appendix A presents a summary of the instructions necessary to move

through the phases. In addition. Appendix A shows pictorially the

actions of the location pointer and the contents of the registers for

the necessary parts of the phases of the normal machine.

The Model 4 has a configuration available which has high speed

secondary storage via a "selector channel" connected to the high speed

memory bus. In addition, there is a capability for a "direct memory

access channel". The multiplexor bus of the Model 4 controls the

devices not connected to the high speed selector channel. (See Figure

34.) The actual details of input/output are avoided to accentuate the

de-emphasis of attention to the IOCS and, again, allow concentration

on the properties of hardware and memory multiplexing. The response to

55

• • flRMWint OfeRATIOKl

Figure 33

General Flow of User Instruction [15]

56

LINE RRIWTER PAPER TAPE CARD READER

DISPLAY PANEL

Figure 34

Model 4 System Block Diagram [16]

57

I/O that must occur in the micromachine occurs in phase three, and no

discussion of phase three beyond the code necessary to enter phase

zero will occur.

58

Section 4 - Firmware Implementation

The normal Model 4 user instruction set is similar to that

found on the IBM System/360 [17] . The major difference between the two

is the lack of the base register in the Model 4. Since the micro­

machine is oriented toward the implementation of the normal user­

machine, a brief discussion of the format of the normal Model 4 user

instructions will clarify the microcode examples given later.

In the normal Model 4, there are three basic types of user

instructions: RR, RX, and RS. Those user instructions which move

information from user register to user register are RR format

instructions. These user instructions are one halfword in length and

have the general format:

OP CODE REG ONE REG TWO

The eight bit operation codes which are recognized by the hardware as

RR format user instructions are: X’On’, X’2n’, and X’9n*.

The other two types of user instructions each take one full

word of memory. Their general format is:

OP CODE REG ONE REG TWO ADDRESS FIELD

The RS user instructions are the immediate operand types with the

address field containing the operand. The register two field is an

index register reference if it is non-zero. The register referenced

in the register one field is the destination register. The operation

codes which are recognized by the hardware as RS format user

instructions are: X’Cn’ and X’En’. The RX user instructions contain

the address of the desired operand in the address field and thus

require another memory reference to access the desired operand. As in

the RS format user instructions, the register specified by the register

59

two field is used as an index register if the field is non-zero. The

operation codes which are recognized by the hardware as RX format user

instructions are: X'4n’, X'6n’, X'Dn’, and X’C2'.

In order for these user instructions to be emulated, the type

(class) must be decoded by the micromachine. Phase zero of the micro­

machine is dedicated to decoding the class of a user instruction in

memory pointed to by the LOG register. Phase zero micro-instructions

begin at X’010’ in the ROM. This address, as well as those associated

with all phases except the ones generated by the DROM to enter phase

two, are predetermined by the hardware according to user instruction

type being emulated and current phase of the micromachine. Mien phase

one is entered, if it is at all, the address chosen is X’004' for

RS-indexed user instructions, X’OOS* for non-indexed RX user

instructions and X'OOC’ for RX-indexed user instructions. Phase three

begins at location X*014*.

Those user instructions which are RS without an index cause the

micromachine to go directly from phase zero to phase two and the

address in ROM is chosen by the DROM as a function of the operation

code. This is also true for RR user instructions. The DROM selects an

address in ROM for execution of phase two to begin for the emulation of

user instructions for which phase one has been completed. These

address constraints must be met by a microprogram whether it is for the

emulation of the normal user-machine or a specially prepared one. This

preselected addressing speeds up execution on the normal machine. For

example, phase zero in the normal machine contains the following

micro-instructions:

60

ROM ADDRESS

010 L IR,t£DR,NC
Oil L MAR,LOG,NC
012 D AR,YD,P0

This code sequence is not self explanatory because the

execution of phase zero is embedded in the decode (D) micro-instruction

which is executed to leave phase zero. It automatically selects either

phase one or phase two to be entered and automatically selects the

address to which control is to be transferred. The LOO register,

which points to the user instruction in memory, is also automatically

incremented and a memory read is performed if the destination phase is

phase one.

A micro-implementation of a paging feature uses the first 80

hexidecimal locations of core as a page table. This micro­

implementation of a property desired by the operating system model will

be compared with a micro-implementation of the normal machine. This

paging machine is not completely specified, but the components that

perform the paging are given in figures along with the conventions

needed to finish specifying the user-machine. The phase zero micro­

instructions for this paging machine are as follows:

ROM ADDRESS

010 0 CUT
Oil L IR,MDR,NC
012 L MAR,LOO,NC
013 D AR,YD,P0

The only difference in the two phase zero routines is the presence of

the command to reset (clear) the utility flip-flop.

The phase one micro-instructions for the normal machine for all

three types of user instructions are:

61

ROM ADDRESS

004
005
006

L
A
D

AR,YS,NC
MDR,MDR,NC+NF
LOG,LOG,PC

PHASE 1-RS WITH INDEX

008
009

L
D

MAR,MDR,NC
LOG,LOG,Pl

PHASE 1-RX WITHOUT INDEX

OOC
00D
00E

L
A
D

AR,YS,NC
MAR,MDR,NC+NF
LOG,LOG,Pl

PHASE 1-RX WITH INDEX

In the case of indexed user instructions this code adds the contents of

the index register into either the address in the RX user instruction

or the "effective" data in the RS user instruction and then executes a

decode micro-instruction. In the non-indexed RS case, the micro­

instructions set up the registers for a memory reference and then a

decode micro-instruction is executed. The decode micro-instruction

that terminates phase one causes a memory reference to fetch the

addressed operands if the IR register contains an RX user instruction.

The address to which control is then transferred is selected by an

index down the contents of the DROM by the operation code of the user

instruction. The contents of that DROM location are then used to

specify to what ROM address control is transferred. This same indexive

technique occurs upon leaving phase zero if the user operation code is

RR or non-indexed RS. Phase two is the new hardware condition.

The phase one microcode that is needed to support automatic

paging appears in Figure 35. This represents quite an expansion in the

operations that must occur. Some of this expansion was made more

difficult by the special properties of the decode instruction that are

so helpful in the normal implementation. This phase one code checks

both the location counter for paging and the user address in the

62

HEX ADDRESS OP OPERAND COMMENTS

004 C CB CLEAR BANK FLIP-FLOP
005 L CNTR.X'l' COUNTER REG SET TO 1
006 L RAH,H(ADLOC) BRANCH TO »
007 L RAL,L(ADLOC) ADLOC *
008 C CB CLEAR BANK: FLIP-FLOP
009 L CNTR.X’O’ COUNTER REG SET TO 0
00A L RAH,H(ADLOC) BRANCH TO
00B L RzM,L (ADLOC) ADLOC
00 C C CB CLEAR BANK FLIP-FLOP
00D L CNTR,X’2’ COUNTER REG SET TO 2
00E L RAH,H(ADLOC) BRANCH TO
OOF L RAL,L(ADLOC) ADLOC

ADLOC C SUT SET UTILITY FLIP-FLOP
L AR,LOC,NC+CS
N MR4,X'FC’ GET LOG VALUE
S MR4,MR4,NC+NF IN MR4
L AR,MR4,CS+NC
S MR4,X'2’
L AR.X'O* TEST IF ZERO

• 0 MR4,MR4,NC BRANCH IF
B 3,NOCHNG NO PAGE CHANGE
L AR,L0C,NC4CS
N MR4,X’FC’
C SB
L MR0,H(RET2)
L AR,MRO,CS+NC
A MR0,L(RET2)
C CB BRANCH TO MAPPING
L RAH,H(MAPPER) ROUTINE MAPPER
L RAL,L(MAPPER)

RET2 B 3,FAULT
L MAR,MR4,CS+NC
C MR

NOCHNG L AR.X'l*
L MRO,X'O'
C RPT
A MR0,MR0,NC+NF
C SB
L AR,MR0,NC
L MR4,X’l’
S MR0,MR4,NC
B 1,ADDRS
L AR,YS,NC
A MDR,MDR,NC
L AR.X’O1

Figure 35 •

Phase One Paging Microcode

63

A MRO .MRO.NC
B 2, ADDRS
D LOG,LOG,PC RS -- EXIT

ADDRS L MR4,MDR,CS+NC
L MRO,H(RET)
L AR,MRO,CS+NC
A MRO,L(RET)
C CB
L RAH,H(MAPPER)
L RAL.L(MAPPER)

RET B 3,FAULT
L FLAR,MR4,CS+NC
D LOG,LOG,Pl

FAULT L MR4,X’C3’ SPECIAL LPSW
L IR,MR4,CS+NC OPCODE -
L MAR,X’8O' DROM GIVES
D LOG,LOG,Pl SPSW AS ADDRESS

This must all appear in one ROM page. Otherwise, the branch

instructions must all be coded as:

C CB
L RAH,H(branch address)
C SB
B __.branch address

Phase zero must reset utility flip-flop.

Figure 35 (continued)

64

instruction for paging. When the user reference is made to memory the

routine MAPPER, shox-m in Figure 36, is called. MAPPER is also called

from phase tx»o and is, therefore, considered a multi-phase routine.

The microcode in phase tx^o performs the operations needed to

execute user instructions. To exit phase tx-zo another decode

instruction is used. This time either phase zero is re-entered or

phase three is entered. Phase three is for the support of the console

display and controls and for interrupt support. In the normal machine

phase two code simply does its job, then exits by the folloxving

sequence of micro-instructions:

L MAR,LOG,NG
D LOC,LOC,P2N

In the paging machine, when phase two is entered RR and RX

instructions are ready to be emulated. All RS instructions must,

however, cause the execution of the code shoxm in Figure 37 if the

utility flip-flop is reset. All of the routines in phase two must

execute the code in Figure 38 to exit to phase zero or phase three.

This exiting routine might appear only once in the ROM and be branched

to as a common routine.

These routines may detect a page fault. A page fault occurs

when the actual page specified in the page table at the location

indicated by the user page specification is zero and the master mode

bit of the current program status word (PSW) is off. When a page fault

occurs, the current PSW is saved at location X’84-87’, the user address

reference causing the fault is saved at X’88-89’, and a nex^ PSW is

taken from X’SA-SD*. The microcode which executes this response to a

page fault is embedded in the previous figures. Specifically, the

65

This routine must all reside in one page of ROM.

MAPPER C SB INDEX PAGE
L AR,MR4,NC MAP
N MAR.X’FC’ USER PAGE IN 4
S MR4,MAR,NC+NF ACTUAL PAGE IN 3
L MAR,MAR,SR+NC
C MR
L AR.MDR.CS+NC SEE IF IN
N MR3,X’FC’ MASTER MODE
L AR,PSW,CS+NC YES TO SKIP
N MR2,X’l’ NO - PAGEFAULT
L AR.X’O'
A MR2,MR2,NC
B 2, SKIP
A MR3,MR3,NC ACTUAL PAGE ZERO
B 3,SKIP NO TO SKIP
C CB YES
L RAH,H(PGFLT)
L RAI, ,L (PGFLT)

SKIP L AR,MDR,NC
N AR.X'FF* COUNT ACCESS
A AR,X’l'
L AR,MDR,NC
N MR2,X’FF’
S AR,MR2,NC+NF
A MDR,MR1,NC+NF
C PW
L AR,MR4,NC
A MR4,MR3,NC
L FLG.X’O’

RETURN C CB
L AR,MRO,CS+NC RETURN TO
N RAH,X’FF' CALLER VIA
L AR,MR0,NC MRO
N RAL.X'FF*

PGFLT L MAR,X’8O’
C MR
L MAR,X,84* SET UP FOR PAGE-
C PW FAULT
L MAR,X,82'
C MR
L MAR,X’86'
C PW
L AR,MR4,NC
N MR4,X’FC’
L MR4,MR4,SR+NC
L MDR,MR4,SR+NC

Figure 36

Multiple-phase Mapping Routine

66

L MAR,X’88'
C PW
L MAR.X’SA*
C MR
L MAR.X’SO*
C PW
L MAR,XT8C*
C MR
L MAR,X,82'
C PW
L LOC,MDR,NC
L FLG,X’3’
B 3,RETURN

Figure 36 (continued)

67

All RS instructions must check the UT flip-flop and branch to

this routine if it is reset, with MRO containing the return address.

PSLOC L AR,LOC,NC+CS
N MRA.X'FC’
S MR4,MR4,NC
L AR,MR4,CS+NC
S MR4,X’2’
L AR,X'O’
0 MR4,MR4,NC
B 3,NOPROB
L AR,LOC,NC+CS
N MR4,X’FC’
C CB
L RAH,H(MAPPER)
L RAL,L(MAPPER)

NOPROB L FLG,X’O'
L AR,MRO,CS+NC
C CB
M RAH.X'FF*
L AR,MRO,NC
N RAL.X'FF'

The phase two code must do the following upon return to the

caller:

B 3.0KADD
C CB
L RAH,H(SPSW)
L RAL,L(SPSW)

OKADD --------------

normal sequence of phase two code

SPSW L MAR,X’82’ SPSW IS REFERENCED
C MR IN PHASE ONE WHEN
L PSW,MDR,NC FAULTS OCCUR IN
L MAR,X'84* THAT PHASE. DROM
C MR PROVIDES ADDRESS
L LOC,MDR,NC IN THAT CASE.
L MAR,LOG,NC
D LOC,LOC,P2N

Figure 37

Phase Two Coding for Paging and Faults

68

User (phase two) instructions that set the condition code, must

do so in PSW in memory at Page 0, X'80'. All instructions must execute

the following sequence of code. This code must be all in one ROM page.

EXIT L AR,LOC,CS+NC
N MR4,X’FC’
S MR4,HR4,NC
B 2,OK
L MAR,X*82'
C MR
L AR,MDR,CS+NC
N AR.X'FC*
A MR4,X’4’
L MDR,MR4,CS+NC
C PW
L MR0,H(BACK)
L AR,MR0,CS+NC
A MRO.L(BACK)
C CB
L RAH,H(MAPPER)
L RAL,L(MAPPER)

BACK B 3,SPSW
L LOC,MR4,CS+NC
L MAR,LOG,NC
D LOC,LOC,P2N

OK L MAR,X* 82*
C MR
L AR,MDR,CS+NC
N MR4,X'FC’
L AR,LOC,CS+NC
N MR3,X’FC’
S AR,MR3,NC+NF
A MR4,MR4,NC+NF
L MDR,MR4,CS+NC
C PW
L MAR,LOG,NC
D LOC,LOC,P2N

Figure 38

Phase Two Exiting Code for Paged Processor

69

sections labelled SPSW, FAULT, and PGFLT are responsible for

implementing the fault trapping mechanism. The amount of expansion

required for the ROM routines to implement automatic paging is not

small; however, the power of the automatic paging hardware is a

significant capability. Execution of each user instruction is slowed

considerably; exactly how much depends on two factors. These factors

are: (1) where the user instruction is located; that is, whether a

page boundary is in the middle of an instruction, immediately after it,

or nowhere near it, and (2) whether a page fault occurs during a

memory reference. Furthermore, being in master mode can speed up the

execution time somewhat since page fault tests are skipped. The

results of the timing considerations are illustrated by Figure 39. To

summarize this figure, the increase in normal execution time from the

normal user instruction set to an automatic paging set is in the range

of 8 microseconds to 58.4 microseconds depending on the previously

stated conditions. The apparent number of ROM locations added by this

paging code is 170 locations, (X’AA*). This is less than one ROM page •

(a ROM page is X’100’ locations). When the total ROM size capability

of 1536 locations is considered this amount is relatively insignificant.

If another model had the same characteristics as the Model 4 but more

read-only memory (4096 locations are addressable by the 12 bit contents

of DROM), the 170 locations would positively represent an insignificant

cost in space for the increase in user memory that was automatically

addressable with the paging property.

70

RR instruction - no address reference

- page boundary not following

increased normal time by 8.0 microseconds

- page boundary following (assume no page fault)

if not in master mode

increased normal time by 24.4 microseconds

if in master mode

increased normal time by 23.3 microseconds

- if address reference occurs (assume no page fault) also add
the following times

if not in master mode

increased normal time by 40.0 microseconds

if in master mode

increased normal time by 37.6 microseconds

The maximum increase in RR instruction execution time assuming

no page fault occurs is 40.0 microseconds and the minimum increase in

execution time is 8.0 microseconds.

RX instruction

- if no page boundary near and no page fault occurs

if in master mode

indexed - increased normal time by 36.6 microseconds

non-indexed - increased normal time by 33.6 microseconds

if not in master mode

indexed - increased normal time by 38.4 microseconds

non-indexed - increased normal time by 34.0 microseconds

Figure 39-

Execution Times

71

- if page boundary near in after

if in master mode

indexed - increased by 52.6 or 55.4 microseconds

non-indexed - increased by 49.6 or 52.4 microseconds

if not iii master mode

indexed - increased by 55.6 or 58.4 microseconds

non-indexed - increased by 51.2 or 54.0 microseconds

A page boundary may appear either in the middle of an

instruction or at the end of the instruction. The maximum increase in

RX instruction execution time if no page fault occurs is 58.4 micro­

seconds and the minimum increase in execution time if no page fault

occurs is 33.6 microseconds.

RS instruction

- if no page boundary near

indexed - increased normal time by 29.8 microseconds

non-indexed - increased normal time by 32.0 microseconds

- if page boundary near in after

if in master mode

indexed - increased by 38.4 or 36.4 microseconds

non-indexed - increased by 27.6 or 22.0 microseconds

if not in master mode

indexed - increased by 39.6 or 37.6 microseconds

non-indexed - increased by 28.8 or 23.2 microseconds

A page boundary may appear either in the middle of an

instruction or at the end of the instruction. The maximum increase in

Figure 39 (continued)

72

RS instruction execution time if no page fault occurs is 39.6 micro­

seconds and the minimum increase in execution time if no page fault

occurs is 23.2 microseconds.

Figure 39 (continued)

73

Section 5 - Conclusions

The operating system model in the first chapter assumed that

the machine upon which it would be implemented, the target machine,

would have certain properties. Some of these properties might not have

existed. (Paging hardware, in fact, did not.) If the hardware of the

target machine had not been microprogrammable, then some other method of

providing the needed properties would have to be chosen. Among these

are: (1) changing the system model to no longer require these

properties, (2) buying a new computer upon which the desired features

already exist, (3) buying special hardware to modify the existing

computer, thus creating the desired properties, (4) having a special

computer with the required properties designed and built, and (5)

simulating the target machine with software.

The paging implementation described in the previous section

provided evidence which may be used to evaluate microprogramming as an

alternative to the above choices. The two main problems encountered

by the paging microcode were concerned with the use of core memory for

the CMM and the degradation of execution time for user instructions.

The core memory problem could be solved by making available some WCM

for use as a scratchpad memory. The speed of execution problem is

simply a price that must be paid for utilizing a method of

implementation other than the special hardware modification. Assume

the sum of the execution times of the micro-instructions necessary to

emulate normal user instructions on the firmware system is equal to

the execution time of the equivalent user instructions on the hardware

system. Then, the firmware implementation could not help but be faster

than a software emulation provided that the feature being added was one

74

which effected every user instruction as did the paging feature. As

the speed of execution of hardware implemented user instructions

increases relative to the firmware implemented ones, the value of

microprogramming over softxvare simulation decreases. However,

increasing the hardware implemented user instruction execution rates

usually implies a rapid increase in CPU cost.

The already established ability of microprogramming to extend

and modify instruction sets more easily than in hard-wired systems

opens a door to further use of ROM and WCM for the implementation of

operating systems. Usually, the major portions of an operating system

can be pure procedures. Those parts that are "pure" would lend

themselves to implementation in ROM. The routines, or parts of them,

that comprise the operating system would then become system

primitives. They would be recognized by the emulated system as "user

instructions" although the master-slave distinction remains. The

effect of this implementation would be similar to having a computer

with a hard-wired operating system. Those routines which needed

parameters passed to them could be invoked utilizing the address field

normally present in a user instruction to point to the data area

containing the necessary information. If enough WCM were present, then

some system data bases could be maintained in it, with a resulting

speed increase.

This compression of system routines into ROM would not have an

adverse effect on normal instruction execution time. This is true

since new instructions would not need to cause a general modification

affecting all instructions. In the INTERDATA Model 4, for example, all

such routines would only require the addition of appropriate phase two

75

code to-perform the routines. In fact, this firmware system would be

faster than the equivalent software on the Model 4, because for each

instruction previously executed as software in a routine and now only

a part of a primitive, there will be a saving of from 8.0 to 58.4

microseconds. This means that the system would run much faster if

implemented in firmware on the Model 4. In general, the utilization of

firmware to build primitives can reduce the amount of ’'decoding" of

user instructions that must occur; only one decoding function need be

performed. Also, only one memory fetch is required to fetch the

primitives instead of many fetches for the many instructions of the

routines of a software system. Only one increment of the location

counter need occur per primitive executed. These features each

contribute to the saving of time over the equivalent software system.

All of the hardware multiplexor routines of the model in Chapter 1,

described on pages 23 through 28, are good examples of routines that

could become system primitives in a firmware implementation.

In addition, all of the memory multiplexor routines and some

special data structure manipulation primitives could also be

implementable in firmware. If the latter course were chosen

exclusively, the user might be allowed to execute some of the

primitives to ease his own data manipulation problems.

The major problem that occurs in a firmware implementation of

an operating system is the loss of ability to provide the user with

powerful instruction sets. If the ROM space is at all limited, then

only a certain amount of extra space was provided which can be used by

the operating system. Implementation beyond that would require the

sacrifice of user instruction routines and thus limit the user

76

instruction set even more. There exists some point at which an even

trade-off between speed and capability of the system and speed and

capability of the user instruction set occurs. Microprogramming does,

however, allow this trade-off point to be determined dynamically by the

system designer.

These conclusions indicate that the ability to modify a machine

after it has left the drawing board is a powerful research and design

tool. Although the normal user of a computer need not be concerned

with microprogramming, such a powerful capability should not be denied

that group of researchers or system designers who are willing to spend

the extra time necessary to understand and benefit from its use.

APPENDIXES

77

Appendix A. Micromachine Phase Structure

During phase three of a previous instruction

PP DR RR L '?

LOG

a decode instruction is executed to exit phase three

L
D

MAR,LOG,NG
LOG,LOG,P3

After the execution of this instruction:

Pp’,,",,dr~rr"T ?
LOG

mdr |crp~DR rr"'|

and the phase pointer is zero. The phase zero microsequence appears

to be:

010
Oil
012

ir,mdr,nc
MAR,LOG,NG
AR,YD,P0

L
L
D

Now, either phase one or phase two is entered, depending on whether the

OP in IR is RR, RX, or RS indexed or unindexed.

If OP is not RR or unindexed RS, the status of the hardware is:

|0P DR RR | add?

MDR | add | MAR | c(LOC)j

IR
78

79

If OP is indexed RS, X’004' is jammed into the microlocation

counter

004
005
006

AR,YS,NC
MDR,MDR,NC+NF
LOG,LOG,PC

L
A
D

and phase two is entered.

If OP is non-indexed RX, X’008’ is jammed into the micro­

location counter.

008 L MAR,MDR,NC
009 D LOG,LOG,Pl

and phase two is entered.

If OP is indexed RX, X’OOC’ is jammed into the microlocation

counter

000
00D
00E

AR,YS,NC
MAR,MDR,NC+NF
LOG,LOG,Pl

L
A
D

and phase two is entered.

After any of these except the RS case the situation is as

follows:
add foPERANll

|0P DR Rr| add
LOGMAR I add

MDR IoPERANdIIR [OP DR RR |

If RS was the case, whether indexed or not, the following

conditions apply upon entering phase two.

MAR

IR |OP" "'DR RR] MDR [OPERAND+c (RR)

80

If RR x^as the case, then the following conditions apply upon

entering phase two.

|pP DR RRj NEXT INST ‘ "

IR i0P DR RRI ARI C(DR) I

Appendix B. Model 4 Register Addresses [15j

CODE DESTINATION SOURCE

0000 RAH*MR0** MR0

0001 RAL*MR1** MR1

0010 YS* MR2** MR2

0011 MR3 MR3

0100 MR4 MR4

0101 MAR MAR

0110 LOG LOG

0111 PSW PSW

1000 AR NULL

1001 IR IR

1010 MDR MDR

1011 FLR IRA

1100 CNTR NULL

1101 io*** io***

1110 YD YD

1111 YDP1 YDP1

* Bank must be reset
** Bank must be set

*** Not a register

81

Appendix C. Model 4 Instruction Execution Times [^15j

Add

Add Immediate

Subtract

Subtract Immediate

Exclusive OR

Exclusive OR Immediate

AND

AND Immediate

Inclusive OR

Inclusive OR Immediate

Load

Load Immediate

Load I/O

Command

Test

Branch on Condition

Decode

800 nsec

800 nsec

800 nsec

800 nsec

400 nsec *

* Exceptions: The instruction takes 800 nsec: if RAL is
specified as a Destination Register.

400 nsec *

400 nsec *

400 nsec *

400 nsec *

400 nsec *

400 nsec *

400 nsec *

1200 nsec

400 nsec

400 nsec

True: 800 nsec
False: 400 nsec

800 nsec

82

Appendix D. Reproduction of Assembler Output

MODEL 4 MICRO CODE

* THIS IS A TEST OF THE ROM PROGRAMS FOR
* A SUBSET OF THE NORMAL INSTRUCTION SET
* CONSISTING ONLY OF THE FOLLOWING:
*
* LH REG,ADDRESS(INDEX) RX
* LHR REG1.REG2 RR
* AH REG,ADDRESS(INDEX) RX
* AHR REG1,REG2 RR
* STH REG,ADDRESS(INDEX) RX
* B ADDRESS RX
*
* AND THE SPECIAL WRITE WITH CONVERSION
* INSTRUCTION VJHICH HAS THE FORT-IAT
* WWC REG1,REG2 RR
*
* THE FIRST REG IS NOT USED.
*
*

ORG X’4’
0004 48E0 L AR,YS,NC PHASE 1 - RS W/INDX
0005 CAAO A MDR,MDR,NC+NF
0006 0661 D LOG,LOG,PC
0007 4660 L LOG,LOG,NC NO-OP
0008 45A0 L MAR,MDR,NC PHASE 1 - RX WO/INDX
0009 066B D LOG,LOG,Pl
000A 4660 L LOG,LOG,NC NO-OP
000B 4660 L LOG,LOG,NC NO-OP
000C 48E0 L AR,YS,NC PHASE 1 - RX W/INDEX
GOOD C5A0 A MAR,MDR,NC+NF
000E O66B D LOG,LOG,Pl
0 00F 4660 L LOG,LOG,NC NO-OP
0010 49A0 L IR,MDR,NC PHASE ZERO
0 011 4560 L MAR,LOG,NC
0 012 08EB D AR,YD,P0 EXIT TO PHASE 1 OR 2
0013 4660 L LOG,LOG,NC NO-OP

*
* PHASE THREE COMES NEXT
*

0 014 4560 L MAR,LOG,NC
0 015 066B D LOG,LOG,P3 EXIT TO PHASE 0

ORG X’OID'
001D 4AE0 LHRR L MDR,YS,NC

83

84

END

OO1E 4 EAO LHRX L YD,MDR,NC
OO1F 4 8 AO L AR,MDR,NC
0020 6AA4 0 MDR,MDR,MC
0021 4560 L MAR,LOG,NO
0022 066F D LOG,LOG,P2J
0023 4AE0 AHRR L MDR,YS,NC
0 024 CEAS AHRX A YD,MDR,CO
0025 4560 L MAR,LOG,NG
0026 066B D L0C,L0C,P2N
0027 4AE0 STH L MDR,YD,NC
0028 3200 C MW
0029 4560 L MAR,LOG,NC
002A O66B D L0C,L0C,P2N
002B 5302 WCRR L MR3,X’O2’
0 02C 4D31 L IO,MR3,ADRS
0 02D 54A8 L MR4,X*A8 ’
002E 4D43 L IO,MR4,CMD
002F 48E0 L AR,YS,NC
0030 D430 A MR4,X’3O’
0031 4D31 L IO,MR3,ADRS
0 032 4D42 L IO,MR4,DA
0 033 4560 L MAR,LOG,NC
0 034 066B D L0C,L0C,P2N
0035 4650 BRX L LOG,MAR,NG
0036 066B D L0C,L0C,P2N

SYMBOL TABLE
AHRR 0023 AHRX 0024 BRX 0035
LIIRR 001D LHRX 001E STH 0027
WWCRR 002B

REFERENCES

85

REFERENCES

Abbreviations used in the references:

AFIPS American Federation of Information Processing Societies

SJCC Spring Joint Computer Conference

ACM Association for Computing Machinery

References, in order cited:

C1J Wilkes, M.V., "The Best Way to Design an Automatic Calculating
Machine," Manchester U. Computer Inaugural Conf., 1951, p. 16.

[^2] Opler, A., "Fourth Generation Software," Datamation, 1, 13
(1967), p. 22.

(XJ Wilkes, M.V., "The Growth of Interest in Microprogramming:
A Literature Survey," Computing Surveys, 1^, 3 (1969), p. 139.

[jQ Denning, Peter J., "The Working Set Model for Program Behavior,"
Communications of the ACM, 5^, 11 (1968), p. 323.

DC] Randell, B., and Kuehner, C.J., "Dynamic Storage Allocation
Systems," Communications of the ACM, 5^, 11 (1968), p. 297.

^6] Lampson, Butler W., "A Scheduling Philosophy for Multiprocessing
Systems," Communications of the ACM, 5_, 11 (1968), p. 347.

Q7j Graham, Robert M., "Protection in an Information Processing
Utility," Communications of the ACM, _5, 11 (1968), p. 365.

Qs] Saltzer, J.H., Traffic Control in a Multiplexed Computer System,
MAC-TR-30 (thesis), M.I.T., Cambridge, Massachusetts, July, 1966.

Q9j Bensoussan, A., Clingen, C.T., and Daley, R.C., "The MULTICS
Virtual Memory," The Second Symposium on Operating Systems
Principles, (October, 1969), Princeton University Press, p. 30.

QlO] Motobayashi, S., Masuda, T., and Takahashi, N., "The HITAC5020
Time Sharing System," Proceedings of the 24th National Conference
of the ACM, (1969), ACM Publications, p. 69.

86

87
[^1Q Bruffey, B., Bryan, E. , Doeppel, B., and Smith, J., "Universal

Time-sharing System Functional Specifications." Unpublished
design specification, September 20, 1968.

ri2] Daley, Robert C., and Dennis, Jack B., "Virtual Memory, Processes
and Sharing in MULTICS," Communications of the ACM, 5^, 11 (1968),
p. 306.

[213] Corbato, F.J., Merwin-Daggett, Marjorie, and Daley, R.C., "An
Experimental Time-Sharing System," AFIPS Conf. Proc.
(1962 SJCC), National Press, Palo Alto, 1962, pp. 335-344.

I214J Rosin, Robert F., "Contemporary Concepts of Microprogramming and
Emulation," Computing Surveys, IL, 4 (1969), p. 135.

Cl5] Model 4 Micro -instruction Reference Manual, publication number
29-032R01, INTERDATA, INC., 1968, p. 1.

C16j Reference Manual, publication number 29-004R02, INTERDATA, INC.,
1969.

[jLl] IBM System/360 Principles of Operation, form A22-6821-6,
International Business Machines Corp., 1967.

