
A simple analytic approximation to the Rayleigh-Bénard stability threshold

Andrea Prosperettia)

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 12 August 2011; accepted 24 October 2011; published online 7 December 2011)

The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It

is found that truncating the series to just the first term gives an excellent explicit approximation to

the marginal stability relation between the Rayleigh number and the wave number of the perturba-

tion. Where the error can be compared with published exact results, it is found not to exceed a few

percent over the entire wave number range. Several cases with no-slip boundaries of equal or

unequal thermal conductivities are considered explicitly. VC 2011 American Institute of Physics.

[doi:10.1063/1.3662466]

I. INTRODUCTION

A fluid layer heated from below—the so-called

Rayleigh-Bénard problem—is one of the most classical

examples of fluid dynamic stability problems (see, e.g., Refs.

1 and 2). In view of its widespread occurrence in a large

number of scientific disciplines it has formed the object of

literally thousands of investigations since the original studies

of Bénard in 1900 and Lord Rayleigh in 1916.3,4 It is, there-

fore, rather surprising that the simple approximate solution

of the linear threshold problem described in this paper does

not appear to be in the literature. As an example, in the par-

ticularly important case of no-slip plates with fixed tempera-

tures, we find that the relation

Ra ¼ ðp
2 þ k2H2Þ3

k2H2
1� 16p2kH

ðp2 þ k2H2Þ2
cosh2ðkHÞ=2

sinhðkHÞ þ kH

" #�1

;

(1)

in which Ra is the Rayleigh number, H is the separation of

the plates, and k is the dimensional wave number, approxi-

mates the exact result to better than 0.5% over the entire

wave number range.

The relative simplicity of the results given by our

approach enables us to investigate several other cases and in

particular the effect of finite thermal conductivity of the

plates as well as plates of different conductivities.5,6 When

exact results are available, we find that our approximations

have an error of at most a few percent.

To be sure, most of the interest in the Rayleigh-Bénard

problem centers on non-linear effects (see, e.g., the reviews

provided in Refs. 7–10) rather than the linear problem stud-

ied here. Nevertheless, the availability of a simple approxi-

mate solution may be used to develop analytically tractable

weakly non-linear theories, to check numerical codes and as

a starting point for numerical simulations. Furthermore, the

method of analysis used here is fairly general and may be ap-

plicable to other stability problems.

II. MATHEMATICAL FORMULATION

We consider a Boussinesq fluid contained between two

infinitely extended plates normal to the direction of gravity sep-

arated by a distance H. Since the mathematical framework of

the linear problem is so well known (see, e.g., Refs. 1 and 2),

we can omit many details.

In the equilibrium state, the fluid is at rest with a temper-

ature field T0(z) given by

T0 ¼
1

2
ðTC þ THÞ �

z

H
ðTH � TCÞ; (2)

in which TH,C denote the temperatures of the hotter lower

plate and of the colder upper plate. The frame of reference is

chosen, so that the two plates are located at z ¼ 61
2
H. The

temperature gradient in the fluid is therefore constant and is

given by

G � � dT0

dz
¼ TH � TC

H
: (3)

There will also be a steady temperature field in the upper

plate (index u), given by

T0u ¼
1

2
ðTC þ THÞ �

1

2
HG� K

Ku
G z� 1

2
H

� �
; (4)

and in the lower plate (index l), given by

T0l ¼
1

2
ðTC þ THÞ þ

1

2
HG� K

Kl
G zþ 1

2
H

� �
: (5)

Here, K is the thermal conductivity of the fluid and Kl,u those

of the plates, not necessarily equal. These expressions

embody the continuity of temperature and heat fluxes at the

plate surfaces exposed to the fluid. For simplicity, in this pa-

per, we treat the plates as semi-infinite. The results of Ref. 6

show that this is a good approximation for plates with a finite

thickness of the order of H or greater.

Perturbed quantities are denoted by a prime and are

determined from the linearized form of the equations

expressing conservation mass, momentum, and energy:
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$ � u0 ¼ 0; (6)

@u0

@t
¼ � 1

q
$p0 þ �r2u0 � bT0g; (7)

@T0

@t
þ u0 � $T0 ¼ Dr2T0; (8)

@T0l;u
@t
¼ Dl;ur2T0l;u: (9)

Here, u0, p0, and T0 are the fluid velocity, pressure, and tem-

perature; g is the acceleration of gravity, q is the density, � is

the kinematic viscosity, b is the thermal expansion coeffi-

cient, and D is the thermal diffusivity. The perturbation tem-

peratures and thermal diffusivities of the plates are denoted

by T0l;u and Dl,u.

As in the standard theory (see Refs. 1 and 2), it is con-

venient to take the double curl of the momentum Eq. (7) and

to project the result on the vertical direction to find

@

@t
r2u0z ¼ �r2ðr2u0zÞ þ bgr2

2T0; (10)

in which u0z is the vertical velocity and r2
2 is the Laplacian

operator in the horizontal planes.

We now assume that all the perturbation quantities are

proportional to a function of z multiplied by estf (x,y), where

s is a constant and the function f satisfies

r2
2 f ¼ �k2 f ; (11)

with k the wave number of the perturbation. Before writing

down the result we also effect a non-dimensionalization

using H, H2/�, and TH� TC as fundamental length, time, and

temperature scales, respectively. With this further step, and

upon retaining the same symbols to denote the non-

dimensional variables, the equations become

s
@2

@z2
� k2

� �
u0z ¼

@2

@z2
� k2

� �2

u0z �
Ra

Pr
k2T0; (12)

sT0 � u0z ¼
1

Pr

@2

@z2
� k2

� �
T0; (13)

sT0l;u ¼
Dl;u

�

@2

@z2
� k2

� �
T0l;u; (14)

in which Pr¼ �/D is the Prandtl number and

Ra ¼ bgH3ðTH � TCÞ
�D

(15)

is the Rayleigh number, the fundamental parameter of the

problem.

At the plate surfaces, we impose continuity of tempera-

ture and heat flux and zero normal velocity. If no-slip condi-

tions prevail, the tangential velocity vanishes as well so that,

from the equation of continuity, the first derivative of u0z also

vanishes. In the case of free-slip conditions, from the vanish-

ing of the tangential stress, it is the second derivative of u0z
which vanishes. We do not consider this latter situation as

the standard theory already produces a very simple result.1

III. MARGINAL STABILITY CONDITIONS

It is readily shown proceeding in the standard way that

the differential operator in the system (10) to (14) is self-

adjoint with the boundary conditions stated, so that the

eigenvalues s are real. In particular, at marginal stability con-

ditions, s vanishes and the system reduces to

@2

@z2
� k2

� �2

u0z �
Ra

Pr
k2T0 ¼ 0; (16)

1

Pr

@2

@z2
� k2

� �
T0 þ u0z ¼ 0; (17)

@2

@z2
� k2

� �
T0l;u ¼ 0: (18)

Upon solving Eq. (16) for T0, we find

T0 ¼ Pr

Ra k2

@2

@z2
� k2

� �2

u0z; (19)

which can be substituted into Eq. (17) with the result

@2

@z2
� k2

� �3

u0z ¼ �Ra k2u0z: (20)

The energy equations in the plates are readily solved to find

T0l ¼ T0Hekðzþ1=2Þ; T0u ¼ T0Ce�kðz�1=2Þ; (21)

in which T0H;C denote the temperature perturbations at the hot

and cold plates. Upon imposing the continuity of heat fluxes

at the plates z¼61/2, we then have

kjlT
0
H �

@T0

@z

����
�1=2

¼ 0; kjuT0C þ
@T0

@z

����
1=2

¼ 0;

with jl;u ¼
Kl;u

K
; (22)

which, by means of Eq. (19), become additional boundary

conditions on the perturbation velocity.

IV. SOLUTION

The general solution of the 6th-order differential equa-

tion (20) is readily written down. Upon imposing the bound-

ary conditions one is then led to an equation relating the

wave number k and the Rayleigh number Ra along the mar-

ginal stability boundary (see, e.g., Refs. 1 and 2). The proce-

dure is straightforward, but the resulting equation is too
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involved to obtain explicit results. Here, we follow a differ-

ent path.

A complete set of eigenfunctions of the operator @2/@z2

vanishing at z¼61/2 is given by

sin 2npzf g; cosð2n� 1Þpzf g; n ¼ 1; 2;…: (23)

Since u0z ¼ 0 on the plates, it can be expanded on the basis

formed by these eigenfunctions

u0z ¼�
1

k2Ra

X1
n¼1

½k2 þ 4p2n2�3Un sin 2npz
n

þ½k2 þ p2ð2n� 1Þ2�3 ~Un cosð2n� 1Þpz
o
: (24)

Here, the as yet undetermined coefficients of the expansion

have been written so as to simplify later expressions. Upon

substituting into the right-hand side of Eq. (20), we have

ð@2 � k2Þ3u0z ¼
X1
n¼1

½k2 þ 4p2n2�3Un sin 2npz
n

þ½k2 þ p2ð2n� 1Þ2�3 ~Un cosð2n� 1Þpz
o
;

(25)

in which we write @ in place of @/@z. This relation may be

regarded as the Fourier expansion of the quantity in the left-

hand side. We integrate once to find

ð@2� k2Þ2u0z¼�
X1
n¼1

½k2þ4p2n2�2Un sin 2npz
n

þ½k2þp2ð2n�1Þ2�2 ~Un cosð2n�1Þpz
o

þWcFcþWsFs; (26)

in which, for later convenience, the solutions of the homoge-

neous equation have been written as

Fc ¼ cosh kz; Fs ¼ sinh kz; (27)

and Wc,s are integration constants. Two further integrations

give

u0z ¼ �
X1
n¼1

Un sin 2npzþ ~Un cosð2n� 1Þpz
� �

þWcHc

þWsHs þ VcGc þ VsGs þ UcFc þ UsFs;

(28)

in which Vc,s and Uc,s are integration constants, and the terms

in the second line are additional four solutions of the homo-

geneous equation associated with the left-hand side of

Eq. (20). It is convenient to express them in the form

Gc;s ¼
1

2k
@kFc;s; Hc;s ¼

1

4k
@kGc;s ¼

1

4k
@k

z

2k
Fs;c

� �
: (29)

Equating the two representations (24) and (28) of u0z, multi-

plying by each eigenfunction in turn and integrating between

z¼�1/2 and z¼ 1/2, we find

� ½k
2 þ 4p2n2�3

2Ra k2
Un ¼ �

1

2
Un þWsI

H;s
n þ VsI

G;s
n þ UsI

F;s
n ;

(30)

� ½k
2 þ ð2n� 1Þ2p2�3

2Ra k2
~Un ¼ �

1

2
~Un þWcIH;c

n þ VcIG;c
n

þ UcIF;c
n ; (31)

in which

IF;s
n ¼

ð1=2

�1=2

sin 2npz Fsdz;

IF;c
n ¼

ð1=2

�1=2

cosð2n� 1Þpz Fcdz;

(32)

IG;c;s
n , IH;c;s

n are given by similar expressions with Fc,s

replaced by Gc,s and Hc,s, respectively.

The boundary conditions permit now the determination

of the integration constants Uc,s,Vc,s,Wc,s. The algebra is tedi-

ous but straightforward, and it is carried out in detail in the

supplementary material.15

It is found that, from the velocity boundary conditions,

the Uc,s and Vc,s can be expressed in terms of the Wc,s; the

relevant expressions are given in the Appendix. Finally, the

temperature boundary conditions determine Wc,s. When these

results are substituted into Eqs. (30) and (31), we find

1�½ð2m�1Þ2p2þk2�3

Rak2

 !
~Um

¼ac
m

X1
n¼1

ð2n�1Þð�1Þnþ1 ~Unþbc
m

X1
n¼1

ð�1Þnþ1½�c
nUnþlc

n
~Un�;

ð33Þ

1� ð4p2m2 þ k2Þ3

Ra k2

 !
Um ¼ as

m

X1
n¼1

2nð�1Þnþ1Un

� bs
m

X1
n¼1

ð�1Þnþ1½ls
nUn þ �s

n
~Un�;

(34)

with the quantities ac;s
m , bc;s

m , lc;s
m , and �c;s

m dependent on m
and k given in the Appendix. By way of example, we show

here explicit expressions for the quantities appearing in the

first equation for n¼ 1

ac
1 ¼

16p2k

ðp2 þ k2Þ2
cosh2 k=2

sinh k þ k
; (35)

bc
1 ¼

p

k2ðp2þ k2Þ2
k2 sinh k=2þ ðsinh k� kÞcosh k=2

sinh kþ k

	

�4k2 cosh k=2

p2þ k2



; (36)
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lc
1 ¼ pðp2 þ k2Þ2 ðjl þ juÞ sinh k=2þ 2 cosh k=2

k jlju þ 1ð Þ sinh k þ ðjl þ juÞ cosh k½ � ;

(37)

�c
1 ¼

2pð4p2 þ k2Þ2 sinh k=2

k jlju þ 1ð Þ sinh k þ ðjl þ juÞ cosh k½ � ðjl � juÞ: (38)

It is seen from Eq. (38) and, more generally, from the defi-

nitions (A9) and (A10), that �c;s
m / ðjl � juÞ so that these

quantities vanish when the plates have equal conductivities.

In this case, the two equation sets decouple and the modes

separate into even and odd families, as is well known. It

also follows from this dependence proportional to (jl�ju)

that �c;s
m change sign upon exchanging the thermal conduc-

tivities. The further transformation Un ! �Un which, as is

evident from Eq. (24), amounts to reversing the direction of

the z-axis, leaves then the system unchanged. We thus con-

clude that the problem is invariant under an exchange of

the conductivities of the two plates. The same conclusion

has been reached for the fully non-linear problem in

Ref. 11.

Equations (33) and (34) constitute a homogeneous linear

algebraic system of infinite order. The solvability condition

determines lines Ra¼Ra(k), which express the stability

boundaries of the different modes of the system.

V. ONE-TERM TRUNCATION

Since both u0z and its derivative vanish at z¼61/2, a

standard theorem on the Fourier series guarantees that the

coefficients Un and ~Un decrease at least as fast as n�3.12,13

Therefore, it may be expected that a low-order truncation—

in particular limited to n¼ 1—may already give a useful

approximation. From Eqs. (33) and (34), the relevant equa-

tions are then

1� ac
1 � bc

1l
c
1 �
ðp2 þ k2Þ3

Ra k2

" #
~U1 � bc

1�
c
1U1 ¼ 0; (39)

bs
1�

s
1

~U1 þ 1þ bs
1l

s
1 � 2as

1 �
ð4p2 þ k2Þ3

Ra k2

" #
U1 ¼ 0: (40)

Let us now consider a few special cases.

A. Constant plate temperature

This is the standard textbook case and can be recovered

from the general expressions given in the Appendix by tak-

ing jl,u ! 1. In this case, lc;s
1 ¼ �

c;s
1 ¼ 0 and the threshold

for the even modes is simply

k2 Raeven ¼ ðp2 þ k2Þ3 1� 16p2k

ðp2 þ k2Þ2
cosh2 k=2

sinh k þ k

" #�1

; (41)

while, for the odd modes,

k2Raodd ¼ ð4p2 þ k2Þ3 1� 64p2k

ð4p2 þ k2Þ2
sinh2 k=2

sinh k � k

" #�1

:

(42)

The results for the even and odd modes are shown by the

dashed lines in Figures 1 and 2, respectively; the symbols

show the exact values given in Refs. 1 and 5. A comparison

of the actual numerical values is given in Table I. It is seen

that the even modes are affected by an error of about 0.5%,

while the odd modes have a slightly larger error of the order

of 1%. The minimum of the curve for the even modes occurs

at k ’ 3:114 rather than the exact value k ’ 3:117, a differ-

ence of less than 0.1%. For the odd modes, the minimum

occurs at the same k as for the exact calculation to the preci-

sion available for the latter.

B. Equal thermal conductivities

For equal thermal conductivities, jl¼ju¼ j, as seen

from Eq. (38), �c;s
n ¼ 0 and again the even and odd modes

are uncoupled. The threshold of the even modes is given by

k2 Raeven ¼
ðp2 þ k2Þ3

1� ac
1 � bc

1l
c
1

; (43)

and that of the odd modes by

k2 Raodd ¼
ð4p2 þ k2Þ3

1þ bs
1l

s
1 � 2as

1

: (44)

Comparisons of these approximations with the exact results of

Ref. 5 are given in Figure 1 for the even modes and Figure 2

for the odd modes for j¼ 0.5, 1, and 2.

C. Insulated plates

For small k, the quantities appearing in Eq. (43) are as-

ymptotic to

FIG. 1. (Color online) The Rayleigh number for the neutral stability of the

even modes with equal plate thermal conductivities j. In ascending order,

the lines correspond to j¼ 0 0.5, 1, and 2. The topmost line, dashed, is for

fixed plate temperature, i.e., j ! 1. The symbols show the exact results

from Refs. 1 and 5.
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ac
1 ’

8

p2
; bc

1 ’ �
1

p3

4

p2
� 1

3

� �
; (45)

while

lc
1 ’

p5

k

2þ ðjl þ juÞk
ð1þ jljuÞk þ jl þ ju

: (46)

If the conductivities are equal and non-zero, the limit of this

expression for k! 0 is

lc
1 ’

p5

kj
(47)

and

Raeven ’
p4j

kð4=p2 � 1=3Þ (48)

tends to infinity for k! 0. However, if jl¼ju¼ 0 at the out-

set, we find lc
1 ’ 2p5=k2 and

Raeven !
p4

8=p2 � 2=3
’ 676:91 for k ! 0: (49)

This problem can be solved exactly by a regular perturbation

expansion in powers of k2 and in this way one finds

Ra¼ 720 as noted by Ref. 5, who also commented on the

singular nature of the two limits k ! 0 and j ! 0 for equal

conductivities. The difference with Eq. (49) is about 6.4%.

The perturbation expansion gives the leading order, O(k2),

term of the velocity field

u0z / z2 � 1

4

� �2

; (50)

from which we obtain the Fourier coefficients

~Un /
ð2n� 1Þ2p2 � 12

ð2n� 1Þ5p5
: (51)

For large n, the decay rate is proportional to n�3 as expected.

No problem with the two limits affects the odd modes

which, for equal conductivities and k ! 0, are found to be

given by

Raodd ’
1

k2

64p6

3� 2p2=15� 6=p2
’ 57176:3

k2
: (52)

No exact result with which this estimate can be compared

appears to be available in the literature. A straightforward

perturbation solution is given at the end of the Appendix. It

is found that the numerical constant multiplying k�2 is

61528.9, which differs from Eq. (52) by about 7.6%.

The differences between our approximate theory and the

exact results in the neighborhood of k¼ 0 are the largest

ones that we have encountered. The explanation is likely that

the term k2 added to (2n� 1)2p2 in equations such as

Eq. (33) or to 4n2p2 in Eq. (34) promotes a faster decay of

the coefficients with increasing n. One may, therefore, have

a greater confidence in the accuracy of the one-term trunca-

tion used here when the problem at hand centers on values of

k that are not too small.

The lowest lines in Figures 1 and 2 show the results for

insulated plates, j¼ 0.

D. Short-wavelength perturbations

In the opposite limit of k!1, for equal conductivities,

we find

Raeven ’ k4 1þ 3p2

k2
þ 8jþ 5

jþ 1

p2

k3

� �
;

Raodd ’ k4 1þ 12p2

k2
þ 8jþ 5

jþ 1

4p2

k3

� �
;

(53)

both with an error of order k�4. It is interesting to note that

Jeffreys14 proposed Ra¼ k4 as the exact stability boundary

for jl¼ ju¼ 0. As pointed out in Ref. 5, however, this result

FIG. 2. (Color online) The Rayleigh number for the neutral stability of the

odd modes with equal plate thermal conductivities j. In ascending order, the

lines correspond to j¼ 0, 0.5, 1, and 2. The topmost line, dashed, is for fixed

plate temperature, i.e., j ! 1. The symbols show the exact results from

Refs. 1 and 5.

TABLE I. The Rayleigh number for neutral stability with fixed plate tem-

peratures; the results labelled “exact” are from Refs. 1 and 5.

Wave number Even modes Odd modes

K Exact

Equation

(41) Error % Exact

Equation

(42) Error %

1.0 5854.48 5870.35 0.27 163130.0 164719.66 0.97

2.0 2177.41 2184.89 0.34 47005.6 47482.89 1.0

3.0 1711.28 1718.38 0.41 26146.6 26420.84 1.0

3.114 — 1714.979 — — 25273.26 —

3.117 1707.762 1714.98 0.42 — 25244.97 —

4.0 1879.26 1888.18 0.47 19684.6 19896.36 1.1

5.0 2439.32 2451.81 0.51 17731.5 17924.86 1.1

5.365 — 2757.87 — 17610.39 17802.60 1.1

6.0 3417.98 3435.81 0.52 17933.0 18128.09 1.1

7.0 4918.54 4943.52 0.51 19575.8 19784.58 1.1

8.0 7084.51 7118.33 0.48 22461.5 22692.43 1.0

9.0 10090.0 10133.76 0.43 26600.0 26859.50 0.97

10 14130.0 14190.08 0.43 32100.0 32398.15 0.92

124101-5 A simple analytic approximation Phys. Fluids 23, 124101 (2011)



is incorrect as the associated fields fail to satisfy some of the

boundary conditions.

E. One plate with fixed temperature

Nield6 studied the case in which the temperature of the

lower plate is kept fixed, so that jl ! 1, while the upper

plate has a finite thickness with its upper surface (not in con-

tact with the fluid) at a fixed temperature. As already noted,

he found that when the thickness of the upper plate is greater

than that of the fluid layer, the plate behaves essentially as a

semi-infinite solid, so that we can compare his results with

ours.

In this case, the modes no longer have a definite parity,

and the approximate characteristic equation is found by set-

ting to zero the determinant of the systems (39) and (40).

The lowest Rayleigh numbers for the first and second modes

calculated by Nield are compared with those of the present

approximation in Table II.

The picture that emerges from the comparison of Nield’s

exact result with ours is similar to that of Table I. The errors

do not reach 3% in the worst case.

F. One plate insulated, the other conducting

One insulated and one thermally conducting plate is

another situation in which the modes no longer have a definite

parity, and the approximate characteristic equation is found by

setting to zero the determinant of the systems (39) and (40).

As noted before the system is symmetric upon exchange

of the thermal properties of the plates and, without loss of

generality, we may take jl¼ 0, ju¼j � 0. Figure 3 shows

the Rayleigh number for the neutral stability of the lowest

mode and Figure 4 the Rayleigh number for the neutral stabil-

ity of the next higher mode. In both figures, the lowest line is

for j¼ 0 and is the same as that shown in Figures 1 and 2,

respectively.

VI. CONCLUSIONS

By solving the Rayleigh-Bénard linear marginal stability

problem by a strategy somewhat different from the standard

one, we have found relatively simple analytical approxima-

tions with an error of at most a few percent over the entire

range of wave numbers and plate thermal conductivities.

The results confirm much that is already known: the sta-

bility threshold increases with the plate thermal conductivity

and so does the critical wave number. The same trend is

observed if both plates have the same thermal conductivity,

or one has a fixed temperature (i.e., an infinite conductivity)

and the other one a finite conductivity, or one is insulated

and the other one conducting. Exact results for the last case

do not seem to be in the literature.

While the present results refer to the linear threshold

problem and are only approximate, their accuracy might

make them useful as the starting point for weakly non-linear

theories or to check other approximations or computer codes.

Furthermore, they enable one to get a quick understanding of

the system response to the plate thermal conductivities, the

small- and large-wave number behavior and other features.

The same approach may be useful to study other situa-

tions such as plates of finite thickness, mixed stick-slip

boundary conditions, convection in a porous medium, and

possibly for other stability problems as well.

TABLE II. The Rayleigh number for neutral stability of the two lowest

modes when the temperature of one plate is fixed, while the other plate has a

finite thermal conductivity.

First mode Second mode

Reference 6 Present Reference 6 Present

j Ra k Ra k Ra k Ra k

0 1295.8 2.553 1262.6 2.525 15 278 4.91 15 143 4.888

0.01 1299.4 2.556 1266.4 2.529 — — 15 165 4.891

0.03 1306.5 2.565 1273.9 2.538 — — 15 206 4.897

0.1 1329.6 2.594 1298.5 2.567 15 467 4.94 15 343 4.917

0.3 1383.4 2.665 1356.2 2.638 — — 15 665 4.968

1 1492.7 2.815 1475.0 2.793 16 382 5.11 16 342 5.080

3 1598.9 2.964 1592.3 2.951 — — 17 040 5.211

10 1668.0 3.062 1670.1 3.055 17 380 5.31 17 518 5.307

100 1703.4 3.110 1710.1 3.108 — — 17 772 5.358

1 1707.8 3.117 1715.1 3.114 17 610 5.37 17 803 5.365

FIG. 3. (Color online) The Rayleigh number for the neutral stability of the

lowest mode when one plate is insulated, while the thermal conductivity of

the other one is, in ascending order, j¼ 0, 0.5, 1, 2 and very large.

FIG. 4. (Color online) The Rayleigh number for the neutral stability of the

second mode when one plate is insulated, while the thermal conductivity of

the other one is, in ascending order, j¼ 0, 0.5, 1, 2 and very large.
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APPENDIX: SOME ALGEBRAIC DETAILS

We give here some additional details on the calculations

summarized in Sec. IV. A detailed derivation is provided in the

supplementary material.15

Starting from Eq. (28), the velocity boundary conditions

lead to

Uc ¼
1

32k2

sinh k � k

sinh k þ k
Wc � p

sinh k=2

sinh k þ k

�
X1
n¼1

ð2n� 1Þð�1Þn ~Un; (A1)

Us ¼
1

32k2

sinh k þ k

sinh k � k
Ws � p

cosh k=2

sinh k � k

X1
n¼1

2nð�1ÞnUn;

(A2)

Vc ¼
1

4k2

sinh k � k cosh k

sinh k þ k
Wc þ

4pk cosh k=2

sinh k þ k

�
X1
n¼1

ð2n� 1Þð�1Þn ~Un; (A3)

Vs ¼
1

4k2

sinh k � k cosh k

sinh k � k
Ws þ

4pk sinh k=2

sinh k � k

�
X1
n¼1

2nð�1ÞnUn: (A4)

The remaining constants Wc,s are found from the conditions

on the temperature field, which is given by Eq. (19) the

right-hand side of which is proportional to Eq. (26). The

result of this calculation is

Wc ¼
X1
n¼1

ð�1Þn½�c
nUn þ lc

n
~Un�; (A5)

Ws ¼
X1
n¼1

ð�1Þn½ls
nUn þ �s

n
~Un�; (A6)

in which

lc
n ¼(2n - 1)p

ðjl þ juÞ sinh k=2þ 2 cosh k=2

k jlju þ 1ð Þ sinh kþ ðjl þ juÞ cosh k½ �
� ½ð2n� 1Þ2p2 þ k2�2; (A7)

ls
n ¼ 2np

ðjl þ juÞ cosh k=2þ 2 sinh k=2

k jlju þ 1ð Þ sinh k þ ðjl þ juÞ cosh k½ �
�ð4p2n2 þ k2Þ2; (A8)

�c
n ¼

2npðjl � juÞ sinh k=2

k jlju þ 1ð Þ sinh k þ ðjl þ juÞ cosh k½ � ð4p2n2 þ k2Þ2;

(A9)

�s
n ¼

ð2n� 1Þpðjl � juÞ cosh k=2

k jlju þ 1ð Þ sinh k þ ðjl þ juÞ cosh k½ �
� ½ð2n� 1Þ2p2 þ k2�2: (A10)

Calculation of the integrals appearing in Eqs. (30) and (31)

is facilitated by the relations (29) and one finds

WcIH;c
m þ VcIG;c

m þ UcIF;c
m ¼

1

2
ac

m

X1
n¼1

ð�1Þnþ1ð2n� 1Þ ~Un

� 1

2
bc

mWc; (A11)

WsI
H;s
m þ VsI

G;s
m þ UsI

F;s
m ¼

1

2
as

m

X1
n¼1

ð�1Þnþ1
2n ~Un þ

1

2
bs

mWs;

(A12)

in which

ac
m ¼ ð�1Þmþ1 16ð2m� 1Þp2k

½ð2m� 1Þ2p2 þ k2�2
cosh2 k=2

sinh k þ k
; (A13)

as
m ¼ ð�1Þmþ1 32mp2k

ð4m2p2 þ k2Þ2
sinh2 k=2

sinh k � k
; (A14)

bc
m¼

ð�1Þmþ1ð2m�1Þp
k2½ð2m�1Þ2p2þ k2�2

� k2 sinhk=2� k coshk=2þ sinhk coshk=2

sinhkþ k

	

� 4k2 coshk=2

ð2m�1Þ2p2þ k2

#
; (A15)

bs
m¼

2ð�1Þmþ1mp

k2ð4m2p2þ k2Þ2

� k2 coshk=2� k sinhk=2� sinhk sinhk=2

sinhk� k

	

þ4k2 sinhk=2

4m2p2þ k2



: (A16)

We conclude with a sketch of the solution procedure for the

k! 0 behavior of the lowest odd mode of the exact problem

when the plates are insulated (i.e., jl,u¼ 0). We proceed per-

turbatively by setting Ra¼ S/k2þO(1), u0z ¼ u0 þ Oðk2Þ,
T
0 ¼ T0þO(k2) in Eqs. (16) and (17). To lowest order, we

are led to solving

@4u0

@z4
� S

Pr
T0 ¼ 0; (A17)

@2T0

@z2
þ Pr u0 ¼ 0; (A18)

subject to u0¼ 0, @u0/@z¼ 0, @T0/@z¼ 0 at z¼61/2. By

combining the two equations, we find
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@6u0

@z6
þ Su0 ¼ 0 (A19)

the real and odd solution of which may be written as

u0 ¼ A0 sin S1=6z
� �

þ A1 cos
S1=6

2
z

� �
sinh

ffiffiffi
3
p

S1=6

2
z

� �

þ A2 sin
S1=6

2
z

� �
cosh

ffiffiffi
3
p

S1=6

2
z

� �
: (A20)

The temperature gradient is readily found from Eq. (A18) by

integration. The requirements that it vanish at z¼ 1/2, to-

gether with the velocity and the velocity derivative, gives

rise to a homogeneous system of 3 linear equations, the solv-

ability condition of which is satisfied for a value of S some-

where in the range of 6.283185< S1/6< 6.283186.
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