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ABSTRACT

A stochastic single-slit experiment is used to exhibit
a counterexample to the proposal by several investlgators
that quantum phenomena is equivalent to a frictionless
stochastic process. The connection between Brownlan motion
and quantum mechanics 1s made by relating the diffusion
coefficlent and mean drift velocity of the Smoluchowski
equation to h/2m and h/mN respectively.  This is the connec-
tion usually made in relating quantum mechanics to Brownian
motion., The omlssion of the damping term leads to an
effective wavelength for the stochastic test problem which
1s changing in time and implies that 1s not the ideal
stoﬁhastic test model to consider. The stochastic single~
slit experiment 1s scaled to conform with a physlcal single-
sllt experiment which is known to agree with quantunm '
calculations. An intensity distribution 1ls developed by
using Langevin's equation without damping to calculate
(with a computer) the position of particles acted on by a
random force, The intensity distribution is then compared
to the diffraction pattern produced by the physical

experiment and no similarity 1s noted.
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I. INTRODUCTION

This thesis is to test the hypothesis that Quantum
phenomena can be accounted for as arising from stochastic
processes, In particular it has been suggested by several
1nvestigators!-q that the motion of a particle, or ensem-
ble of identical particles, described by the Schrddinger
equation is equivalent to Brownian motion. This thesis
presents a direct test of this idea through the numerical
calculation of the motion of a beam of classical particles
through a single~slit with the particles being subject to
classical Brownian fluctuations, The crux of thils test
1s to ascertain whether such a beam-slit experiment can
exhlbit the diffraction effects called for by Quantum
Mechanics,

In Section II of this paper the basis for this
stochastic connection to Quantum Theory will be reviewed,
In Section III the single-slit beam diffraction experiment,
which was used as the basls for the Stochastlic=Quantun
comparlison, will be described. In Sectlion IV the test
problem will bé described and the results and discussion

given in Section V.



IT. QUANTUM IECHANICS AND BROWNIAN FOTION

Of the several attempts to exhibit the equiva-

lence of the quantum mechanical motion of a particle to

Brownian motion, that due to L. De La Pela-Auerbach and

|
Leopoldo S. Garcia-Colin 1s perhaps the most direct,

They start with the Schrodinger equation

Y = P VYRV Y )

and write V) in the usual form

\_\) - ER\\-;\_S

(2)
where R and S are real, dimensionless functions of the
coordinastes and the time, By the substitutlion of equation
(2) into (1) and equating real and imaginary parts, there
results the system of equatlons

< —~h 72 R

{JtR- zmv S ‘ﬁr‘xVRVS (3)
g\ _ =k 72 ji.[ 2 2 1
%49 = LIVR= (W) ] +xV | ()
2R
Equation (3), by using the integrating factor C , may
be written in the form
) 2R _ -k V[ 2R ]
éte - m V c VS . (5)
Letting
— 2R 2
=" =]
LPl (6)



equation (5) becomes

Y Pt V[P V8] = O g

which is the continuity equations of classical physics
and is the basis for interpretating.f) as the probability
density and.\'\'> as the ﬁrobability amplitude., Here also
(Mm)VS must be interpreted as a "flux velocity vector.

Introducing a new function 62 defined by

Q= R+S 8

equation (3) takes the form (in terms of R and ® )

YuR= 2L VQ-VR]-E VR(VQ-VR) (9)

which, with the ald of equation (6), may be written as

btV [AVQP-AVE] = 0O . (10)

This equation has the form of a Smoluchowski equationb

of a Brownlan particle acted on by an external force K

per unit mass glven by

K ="@ VR . av

This also corresponds to a diffusion coefficient D

given by

D= )ﬁ/zm (12)

and where @ , in the stochastic sense, is a viscosity

"damping" coefficient but in the quantum sense must be
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a parameter which 1s a measure of the interaction between
the particle and the wvacuun,

Schrodinger's equation is considered valid for all
time intervals. On the other hand, Smoluchowski's equa-
tion which was derived directly from Schrodinger's equa-
tion is, in the theory of Brownian motion, valid only
for time intervals such that QA&))Jb. Thlis leads to two
possibilities: either Smoluchowski's equation is not
equivalent to Schrodinger's equation because of the added
restrictions not contained in Schrddinger's equation, or
the same restrictions which spply to Smoluchowskl's equa-
tion also apply to the Schrodinger equation.

Peha-Auerbach and Garcia-Colin assume the second con-
dition,(sA‘);»l, as an oversimplified form of the time-energy
uncertainty relation with the physical interpretation being,
Yas the time intervals used to measure the mean value of
the energy of the particles grows, the dispersion in the
measured value 1s reduced, because more and more fluctua-
tions are taken into account",

Rewritting equation (4) and taking its expectation

value to obtain

~H<%0 = B US(TRE-VRY 4V s

clong wLth the relabions
E= ih Y (14)

CEY= - <Yy | (15)

<P =R VRHTRF- (7S] | (16)



equation (13) may be written in the familiar form
X3
Y — = -
Rt = CEY = (Tt ) (17)

To remove the limitation that QAX»1 , L. De La
Pena-Auerbach and Leopoldo S. GarcYa~Col{r® consider a
quantum particle described by the classical 3rownlan
motion in phase space of the Fokker-Planck equation

under the influence of a non-velocity-~dependent force

W=7 (elw+q, VW) (18)

where WI{fjw %) stands for the probability density

n D
evolving by a Markoff process sDx 1s the total macrosco-
plc time derivative

< A '
8= 1Bk

R is the external force per unit mass, (3 1s a measure
of the coupling between the system and its surroundings
and q) is the diffusivity of the system.  The equation
wnich will be derived will be valid for all times of the
particle's motion.

Since W is a real positive function, let
w=e® R (20)
and define a vector% such that
F=-@l-@Q/w) VW (21)

which has the meaning of a mean force per unit mass which

is developed on the particle as it moves through 1ts



surroundings,
Substitution of Equations (20) and (21) back into

Equation (19) gives
» - c_F
BER = ';‘_KZLF“FV,‘R . (22)
A

Since F' 1s velocity-dependent, we assume it may be derived

from a velocity-dependent potential S. such that

ﬁ =29 VS . (23)

Substitution of Equation (23) into (22) gives

B%R =-9 V@,ZS‘Z)Q,\ZR'VQS ) (24)

Defining a probability amplitude Y such that
LP - eR+lS (25)
and
w=%*Y (26)
Equation (24) becomes
16%:?:-%%25'} *‘QLT) C(27)

where

O = S VAR ], o

This is the extended form of Schrodinger's equation defin-
ing the probability amplitude “’ in phase space, where the
potential energy is glven by the funotionuf)., |

This connection of the Fokker-Planck equation to



Schrodinger's equation is purely formal since on the left
side of equation (27) we have qﬁx instead ofJQH; and on
the right, the Laplacian acts on the velocity coordipates
and {1 1is a space-veloclty-dependent function.

Ordinary quantum mechanics 1s retrieved by teking an
asymptotic 1limit which corresponds to times longer than the relax-
ation time of the particle, Thls corresponds to times for
which the description of the system by a Smoluchowski equation
1s equivalent to the description of the system by the Fokker-
Planck equation.

When discussing the kinematics of a quantum particléz
one must assume that there is no friction involved in order
to preserve Galilean covariance., This leads Edward Nelson"i
to adopt the kinematics of the Ii:instc-zfln-Smoluc:howskf:.a theory

1 to

and the dynamics as in the Ornstein-Uhlenbeck theory
study Brownlan motion in a medium with zero friction.

As Nelson shows in hls treatment of the kinematlcs
of a Markoff proce331 , there are two velocities to be

considered which evolve in time according to the equations
dﬁk&"" v V(VU)" V(V'LU (29)
%V = o.- V-V + (W) +v VA , (30)

~ A
where WL and V are the osmotic and current velocitles

respectively., Since the hypothesls 1s that particles in
empty space are subject to Brownlan motlon and macroscopic
bodies do not appear to exhibit such behavior, he assumed

that the diffusion coefficient‘o is inversely propor-



tional to the mass and set

N = h/2m

Since the Ornstein~Uhlenbeck theory is used to des-
cribe the dynamics of the particle's motion, the accelera-
tion term in equation (30) is given by %/m . Thus the
system of equations (29) and (30) may be rewritten, using

equation (29), in the form

dtu (VV)”V(A°A )
= ff- (\7' U+ (V)0 m VA

In order to obtain the Time-Independent Schrodinger

equation, it is necessary to assume the force to be derive-

able from a potential such that

F=-vV

[
and assume that \ 1s zero which means that the solutions

are stationary in time, Under these conditions equa-

tion (32) becomes

3 &
Wl = O

and equation (33) is

e VU. *zm VAl = m VvV .

In Nelson's treatment of the kinematics of a HMarkoff
A
process, \l 1is the gradient

= Vin?t

(31)

(32)

(33)

(3k)

(35)

(36)

(37)



so that

(LWL =3 VI

Vel = V(.

This means that equation (36) becomes
VEEAMI =R VYV

s AVIL=RIV-E]

where E is a constant with dimensions of energy. Multiply

by mY¥ and integrate equation (41) to obtain
\ Py
- - 2 3 S 2
E=Samizedk v J VP .
\ A2
Thus £ 1s the average value of MW +\V  and may be

interpreted as the mean energy of the particle,

By the change of dependent variable
R= 3 inY
and letting
Y=e"
80 that
P =y

equation (4#1) becomes equivalent to the time-independent

)

(338)

(39)

(40)

(41)

(42)

(43)

(kk)

(#5)
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Schrodinger equation

= VY=lE-V]Y. (46)

To find the general time-dependent Schr'ddinger equa-
A
tion, assume that V 1is the gradient

v = VS . | (47)
Keeping R as before (equation 43), equation (44) becomes
\_‘J - GRH.% - (1)
which is showm to satisf‘y- the Schrodinger equation
V=% V-5 Ve (49)

where the potential S can always be chosen such that

Ak = O | (50)

It is well to note that by the substitution of equa-
tion (48) into (49) and equating real and imaginary parts,
the system of equations which result are just those of
L. De La Pena-Auerbach and Leopoldo S, Garcfa-Colfh,

i.e. eguations (3) and (4). This would imply that since
Pefia-Auerbach and Garcia-Colin have slready shown that these
equations are equivalent to a Smoluchowskl equation of a
Brownian particle acted on by an external force, then the
equations derived by Edward Nel§on must suffer from the

same restriction which applies to the Smoluchowski equa-

tionsy this restriction being that @Ak"'l .



III, SINGLE-SLIT DIFFRACTION OF A THERMAL
POTASSIUM BEAM

To test the hypothesis that Brownian motion is equiv-
alent to a quantum dynamics, we first needed the results of a
physical experiment in fhe quantum domain to compare with
the results of our Stochastic experiment., John A. Leavitt
and Francis A. Bills‘<> made experimental observations of the
diffraction of de Broglie matter waves of a full, thermal,
neutral, atomic Potassium beam ( N\ =0.175 &) by a single slit.
The experimental diffraction patterns were all reproducible
and in good general agreement with the predictions of
de Broglie and simple scalar Fresnel diffraction theor;EFigure 3).

The experimental arrangement utilized by these investi-
gators (Filgure 1) employed a source to slit distance of 96 cnm,
slit to detector distance of 100 cm and an oven temperature
of 533 K. The slit was 23.0 (% O.4) AL in width and the source
slit was 2.5 (X 1) in width. Thelr comparison of the experi-
nental diffraction patterns with the theoretical predictilons
of quantum theory are reproduced in Figure 2,

The presence of diffraction is clearly demonstrated by
the occurrence of the two well-defined fringes on the experi-
mental patterns. The observed fringes are only 9.4% abvove
central-beam intensity instead of the 14,1% above central-
beam intensity of the theoretical fringes, These investiga-

tors attribute the discrepancy to a combination of the’

11
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followihg factors:

(1) uncertainty in the measured width of the source slit,
(2) high-frequency vibrations of the apparatus,

(3) defects in the diffracting slit edges,

(4) angular misalignment of the beam elements.

| ’

cj- — N sam w—

FIGURE 1

Arrangement of line source (S),slit (C), and detector (line
P in observation plane D) for calculation of the diffraction

pattern of a slit of width 24, (Leavitt and Bills, Reference 10)
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DETECTOR POSITION IN MICRONS
FIGURE 2

The single-slit diffraction pattern of a full thermal atomic K
beam-direct comparison of theory and experiment. The solid
curve is the predlction of de Broglie's hypothesis and simple
scalar Fresnel diffraction theofy, and the points are the
experimental beam profiles, L Source slit width = 2.5(21)«u,
collimating (diffracting) slit width = 23.0(t0.hbﬁ, detector
wire diameter = 3.0(*0,1)4, source-to~-collimator distance=

96 cm, collimator-to-detector distance= 100 cm, oven~slit
temperature = 533°K, and source-slit temperature = 400°K,

The solld curve was calculated for a®*K beam; the experimental
points were obtained with a natural K beam(933>'x, 7%Z“'k.]
(Leavitt and Bills, Reference 10) ‘
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FIGURE 3

Calculated velocity~selected atomic *'K-bean diffraction

pattern of a 25,4-4 slit(infinitesimal source and detec-
tor widths, O =96cm, b =100cm,N =0,175 A)., . (Leavitt and
3ills, Reference 10)

14



IV, STOCHASTIC TEST PROBLEM

A stochastlc experiment was performed to test the pre-
dictions of Brownlan motion with those of quantum theory
through the results of the diffraction experiment of Leavitt
and Bills, This stochastic test problem consisted of the
nunerical calculation (with a computer) of the motion of a
beam of particles subject to Brownlian fluctuations through
a single-slit, The crux of this stochastic test was to deter-
mine if the diffraction pattern, of the Leavitt and Bills
experiment, could be reproduced through this stochastic model.
The computer program with experimental data are gliven in
Appendix I and II.

The stochastic equations of motion are taken to be
myY = Z'I;, PICEN (51)
L=
.o — “__ 2)
mx = I St-1) v

for the test problem, The Ii's are the random impulses that the

particle recelves at random times, ,Ii‘L:M}... These equatlions

correspond to Newton's law
F=mo. (53)

where the dynamlcs of the stochastic test problem is given by

F = zI-LWX-m , (54)

We now integrate the equation 1nﬁ( over the limits

xhﬁt £ tm‘ s noting that the equation inA is treated in simi-

15
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liar manner except the inltial velocity is taken to be zero,

to obtain
mL Yo - Y] = I.. (55)

The random impulse 1n1s replaced by

_ 1
A\/r\ "F\I.n (56)

which says that the random impulse:Inwill impart to the
particle a random velocity increment AVp . The Aﬁéﬂs are
stochastically selected using a random number generatorw'
and the distribution functlon for the‘AAﬁ(s 1s Gausslan
with mean zero,

Lettling
Y(in\ = \/f\ (57)
alonz with Equation(56), Equation (55) takes the form

Yix) = Vot AV, . (58)

Integrating this equation over the same limits as before

glves

Yek) = Yo = LVo tAVG 10K~ 1) (59)

= kuir€ ,€~0C (60)
At = tan— n | (61)
A\(n = Yn-u- Yn (62)



there results

-AYn= [.Vn +AVF\]M .

The additional assumption is now made that the A 's are

17

(63)

not stochastic which means that all A'k's are now equal,

The velocity at step | is given by

Vi = Vn-1 = AVa-

which is the system of equations

Vn - Vn-l Avn-t
Va-1 — \/n-z = AVh-2
Vﬂ—Z_ - \/n-3 = A\/n-3

Vi - Vo = AV,
Summing these equations gilves

fi~
Vo = Vo = 2 AVem |
m=o
which is then written in the more convenient form
-4
\/ﬂ = Vo T mZOAVm .

Using this in Equation (63) for AY ylelds

A= [ Vot ) Mot AN T AK

which becones

NN S

(64)

(65)

(66)

(67)

(68)

(69)
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This equation determines the evolutlion of the L\Yn's.

The expectation value for AY,is

CAY = CTVG*L M dAk> oo

or

(A = VA +§°<A\IM)A’; (1)

which collapses to

CAY,)Y = LA (72)

since the AVm's are Gausslan with mean zero, The disper-

slon, using Equations (69) and (72), is found to be

C(AY,- <AYD ) =< (;AVMY(AHZ' > (73)

which, denoting the dlspersion by ((§Y02>, becomes

SV = AUE ANNE ) ) (74)

The veloclity increments lmparted to the particle at differ-

ent times are uncorrelated, therefore

CN; VL>=0 | ksm (75)

and the dispersion Equation (74) becomes
n
k2
(Y = (AN "Z_ CCAVRYED (76)
B~
or, by using N as the number of steps that the particle has

taken, the dispersion is

CBYLYD) = NGy (ARY (77)
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with

ALY (78)

The stochastic test problem evolves according to
Equation (69), but in order for this to correspond to
the experiment of Leavitt and Bills,. specific conditions
must be imposed on Jv 3 these are now examined.

In Brownlan motion the diffusion coefficient is

L3
glven by

AN,
D=z g-gf" (79)

where ((SYRF> 1s calculated over the transitlion probabllity
distribution., On the other hand, from the results of Section
II the diffusion coefficient in the quantum domain is found

to be given by

f/zm . (30)

Relating the two expressions for D) yields

<(sm> _h/m o1

b
Similarly, the mean drift velocity for a Brownlan particle

has been shown to be

OYRD
vy = Ak o2

while in the quantum domain the velocity is given by
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de Broglie &s

21T
m

V="mm= 5 : (83)

Relating the stochastic velocity to the quantum velocity.
through Equation (82) and (83) gives

(OY.) _ 2T §

Ak - N ™ . (84)

Similarly using the diffusion relation, Equation (79), for
the term ™min Equation (84) gives

{AYL) A (YYD

X A (85)

After replacing the terms LAY, and <(SY‘.\\2) in Equation (85) -
by their equivalents through Equations (72) and (77) we

have
ok _ 2T QG sk
Ak~ 0N AX (86)

and upon rearranging this becomes

N= < nex (87)

Equation (87) expresses the sought after relationship

between the parameters which conditlion the stochastic

experiment and the effective wavelength, Notice should
be taken that the effective wavelength grows in time in
relation to the number of steps taken by the partlicle, -

' Denote the source to slit distance by S and the slit'

to detector distance by L. The average number of steps

a particle will take from the source to the slit and from



the slit to the detector are given respectively by

N, = S/ VAL (83)
Ne = L+S /7 Vvook . (89)

We now show how Equation (87) for the wavelength can be
used, together with the physical geometry of the slit
experiment, to set up scaling conditlons to match the
stochastlc scale to the experiment of Leavitt and Bills.

Using Equation (88) for N , in Equation (87) and
dividing both sides by the distance from the source to
the slit,S, gives

~ 21T 0%
7\5/S ~ 2 0"\:/ Voz (90)

Treating Equation (89) in similiar manner gives

Nojieg & 2700/ 2 (91)

From the experiment of Leavitt and Bills the ratios Nls
and NL+s were easily obtained. Equating those ratios with
Equations (90) and (91) glves

7\75 = 7\5/5 = 2Ty /2 (92)
and

— 7\L -~
Mirs = Mias T 2T JVE (93)

From Equations (92) and (93), the ratio of the wavelength

to the distance 1s the important quantity and not the
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indlvidual element,

To assure that the wavelength in the slit for the sto-
chastic test problem 1s the same as the wavelength used in
the physical experiment, the appropriate value for Qv must be
used in Equation (90). To find @Gy we first need to determine
the value for the initial velocity Vo .

Choose the number of steps, I\ , that the particle will
make from the source to the slit to be 100. Equation (88)

then becomes

VoAk = oo 1 (%)

where the distance, S , from the source to the slit is fixed

by the geometry of the physical experiment, i.e.S= 100 cm.
. 13

Statistical mechanics glves the average veloclty of a

particle in a dllute gas to be

Vo = ¥ = {3KT/m’ (93)

where K is Boltzmann's constant and the temperature,T', is
fixed by the physical experlment. The time 1nterva1,[&t,

can now be determined from Equation (94) as
~l, - |
At = w, =Mt | (96)

Using Equation (95) in Equation (90) the expression for

@ 1s

7\@\4}__ _E_

Ov = zws = zm (97)

:ll>’
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where )\5 of the stochastlic test problem is equal to 7\&, of
the physical experiment,

From the physical experiment,s and L. have nearly the
same value, which means that in the stochastic test problem
the wavelength in the region for the slit to the detector
will be two times greater than the wavelength in the region
from the source to the slit (Equations 92 and 93) for the
value of @y . This should cause a blurring in the fringes

of the intensity distribution pattern.



V. RESULTS AND DISCUSSION

In the stochastic test problem, the particles were
emltted from a line source located above (Y>0) a single-
line-slit, The position, Equation(63), of a particle
at each step, Y, was conditioned by a random increment,
AVn, in the velocity, Equatlon (56). The random velocity
' increment was calculated through a Gausslan transition
probabllity distribution with mean zero and a standard devia-
tion, Uy (Equation 78). The time parameter, At, was chosen
to be nonstochastic, meaning all time intervals are equal.
Each particle was released from the .line source with an
initial veloclity in the negative Y-direction, The initial
_velocity of each particle in the X-dlrectlon was set equal
to zero, This assured that the movement of the particles in
the X-direction were not bilased, The position of each particle
was calculated until the particle went from positive Y to
negative Y. When this condltion occurred, the slope of the
lines from the position (X, s¥,.,) to (Xn,¥n) and from (Xg.,Y¥,.,)
to edges of the slit, was calculated and compared, td determine
if the slope of the line from (X,.,,Y,.,) to (XnsY,) lay between
the slopes from (X,.,,Y,,) to the edges of the slit. If this
condition was true, then the particle went through the slit.:
If this conditlon was false, the particle hit the wall and
its motion was terminated, In thls case another particle was
released from the line source and the above procedure starts

again.

24
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If the stochastic particle went through the slit, its
position was calculated continually until the particle traveled
a "slit-to-detector™ distance I.., When the Y-position of the
particle passed the point L, the equation of the line from
(Xpet s Yo ) to (X,5Yn) was constructed., Using Y was equal to L
at the detector along with the equation of the line from
(Xpey s Y.y ) to (Xp,Y,), the X-intercept was found and the final
position of the stochastic particle was known. The particle
was then placed in the "detector box" corresponding to the
position of (X,L).

The above procedure was repeasted until a total of 2 X 10s
particles had been emitted from the line source, An intensity
distribution was formed by counting the nunber of particles
in each detector box as a function of distance from the center
of the slit,

| The values for the atove parameters along with the valués
for the parameters used in the physical experiment of Leavitt
and Bills are given in Tables 1 and 2,

Before discussing the intensity distribution of random
particles, let us look at a wesk point in the design of the
stochastic test problem, The damping term in the stochastilc
test problem was omitted to be in accord with the arguments
of Nelson given in Section II. This omission of the damping
term meant that the relaxatlon time of the particle was never
reached, Thils 1ed to a wavelength for the stochastic test
problem which was changling in time, or with distance from

the source (Equation 87). 1In the stochastic experiment,
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by using the parameters of the Leavitt and Bills experiment,
the wavelength at the detector was twice the wavelength-
at the slit. By inqluding damping, the relaxation time of
the particle would be reached and an effectlive wavelength
could be defined for gll regionsvof the stochastic experi-
ment,

Obviously,'using a time-dependent wavelength was not
a desirable conditlion, and implies that either: this was
not the proper stochastic test problem because tﬁe wave-
length was changing in time or that the identification of
stochastlec gquantities to quantum quantities made in Egquation
(80) and (84) was not correct.

To show the effect that wavelength has on the stochastilc
test problem, the intensity distribution shoﬁn in Figure &4
was calculated using o wavelength approximately two thousand
times greater than the wavelength used for the distribution
shown in Plgure 5. In Figure 5, symmetry has been used to
increase, in effect, the number of particles collected in
each detector-box, This increase of particles is accomplished
by adding together the number of particles in the detector-
boxes which are at equal distances from the center of the
slit on the right and the left., Thls means that the intensity
distribution is forced to be completely symmetric as it would
in fact be for an infinite number of particles, The area of
interest, in the comparison of tﬁe intensity distribution of
the stochastic experiment and the experiment of Leavitt and

Bills, 1s the top portion of the distribution curve,



27

Figure 6 is an expanded view of the top portion of the
symmatrized intensity distribution. Figure 7 is an expanded
view of the top portion of the actual intensity distribution
without the forced conditlion of symmetry. In both Figures 6
and 7 the fluctuations in the top portion of the curve are
within the 1imits of normal statistlcal fluctuations, that is
the fluctuations are of the order of v¥Ng, where Ng is the
nunber of partlcles In a detector box. This much fluctuation
can be expected by chance alone and hence these deviations
are n§t statistically significant.

Comparing the intensity distribution from the stochastic
test problem (Figures 5, 6, and 7) to the diffraction pattern
of Leavitt and Bills (Flgure 2), the conclusion must be that
the stochastic experiment falled to produce an equlvalent
intensity distribution pattern. Thus, for this case, it would
seem that a counterexample has been found for the results of
Section II.

A definite conclusion should not be made until the sto-
chastic experiment has been reformulated to include damping.
With demping included, the wavelength would not be changing
in time and a different intensity dlstribution might well

be developed.
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PHYSICAL

PARAVMETER

SYHM30L

EXPERIMENT

VALUE

WAVELENGTH

A

-8
0.175 X 10 cm

SLIT WIDTH

23 X 10 cn

DaTECTOR WIDTH

3 X lgqcm

SOURCE WIDTH

2.5 X ld-.‘ cm

DISTANCE FROH -

D
C
P
S

SOURCZ TO SLIT 96 cm
DISTANCE FROM

SLIT TO DETZCTOR | 100 cm
RATIO OF WAVELENGTH N\ -4
TO SLIT WIDTH /D 0.76 X 10
RATIO OF SLIT WIDTH D -
TO DETECTOR WIDTH /P 0.7 X 10
TEWMPERATURE T 533K

TABLE 1




STOCHASTIC EXPERIMENT

PARAMETER SYMBOL VALUE
-8
WAVELENGTH N |0.175x10 em
-4
SLIT WIDTH D |23x10 em
-y
SOURCE WIDTH P 2,5 X10 cm
-4
DETECTOR WIDTH C 4.48 X 10 @ cm
DISTANCE FROM SOURCE
TO SLIT S 96 cm
DISTANCE FROM SLIT
TO DETECTOR L {100 cm
-8
TIME INTERVAL Ak | 2.5% X 10 sec
\-!
INITIAL VELOCITY Vo |3.93 X 10 cm/sec
A -3
STANDARD DEVIATION as 4,48 X 10
NUMBER OF STEPS FROM
SOURCE TO SLIT ~ n 100
RATTO OF WAVELENGTH TO DISTANCE [\ -
FROM SOURCE TO SLIT S }1.82 x10
RATIO OF WAVELENGTH TO DISTANCE A | -1
FROM SLIT TO DETECTOR /L+S 0.892 X 10

TABLE 2




34

APPENDIX I
COMPUTER PROGRAM FOR STOCHASTIC EXPERIMENT

INTEGER P,S,A,W,H,Z,N(60),TN,PP

REAL B,X0,CO,D,L,Y0,MT,MV,SDT,SDV, VELX, VELY,XF,X(2),
¢ . Y(2),Iv,V(5000)

105 FORMAT(' CPUTIME=',I25,'MICROSECONDS'/)
106 FORMAT(' CPU TIME/PARTICLE='I20,*'MICROSECONDS*/)
107 FORMAT(' NUMBER OF.COLLISIONS',E15.8/)

1 FORMAT( 10110/)

20 FORMAT(I0)
100 FORMAT(' XO:',E15.8,5X,' Y0=',E15.8’5X,' &"E]-S.S’.
BX,' M',Els.B/ ¢ L="El5o8,5x,' Co=',
E15.8,5X,' Mv=',El5.8,5X,' #MT=',El5.8/ ' SDT=!
,E15o8,5X,' SDV="E15.8,5X" IV=.,E1508,
5%,' A=",1I3 /)

300 FORMAT(' P=',I8/)

aQaaoaa

C GEOMETRY DATA:
DATA Y0,D,L,A/96.,23E~4,100,,30/
c DYNAMICAL DATA:
DATA MT,MV,SDT,SDV,M,NNN/2.54E-5,0,,0.,4 ,48E-3,2000,50/
c COUNTERS
DATA Z,S,P,TN,KX,K/0,0,0,0,1,2/
DO 16 PP=1,60
16 N(PP) = 0O
XX = 5.
IV = -3.93E4
XX = XX + 1.

CALL CPUTIM(IJ)



DO 35 JJ = 1,5000
35 V(JJ) = MV4+(SDV/2)*GAUSS(XX)
CALL CPUTIM(IJJ)
I1IJJ = (IJJ-1J)*%200
WRITE(6,105) IIJJ
X0 = -1,25E-4
B = 1,25E=6
CO = 1.E5
WRITE(6,100) Xo0,YO,B,D,L,CO,MV,MI,SDT,IV,A
CALL CPUTIM(III)
AA = L/(=IV#MT)
WRITE(6,107) AA
9 S = S+1
IF (8 .GE. M ) GO TO 2
3 X(1) = X0 + 2,%P*B
Y(1) = YO
VELX = O
VELY = O
GO TO &4
2P=P+ 1 2
S=0
IF ( P ,LE, 2%nnn ) GO TO 3
CALL CPUTIM(II)
IIII = ( II=-III )*200 / (M¥NNN*2)
WRITE(6,106) IIII
25 WRITE(6,1) ( N(Z),2=1,60 )
WRITE(6,300) P
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DO 6 Z=1,60

TN = TN + N(Z)

WRITE(6,20) TN

S = 2*M*NNN

WRITE(6,20) S

GO TO 7

VELX = VELX + V(KK) + V(K)
VELY = VELY + V(XK+1) + V(K+1)
KK = KK + 2

K=K+ 3

IF ( KK .GE. 4998 ) KK=1

IF ( XK .GE, 4996 ) K =1

T = MT

X(2) = X(1) + VELX*T

Y(2) = ¥Y(1) + ( VELY + IV )*T
IF ( ¥(2) .LT. 0. ) GO TO 8
X(1) = X(2)

Y(1) = Y(2)

GO TO 4

X0X = X(1)+((-¥(1))/(¥(2)-Y(1)))*(xX(2)-X(1))
IF ( X0X ,LE. =D/2 ) GO TO 9
IF ( X0X .GT. D/2 ) GO TO 9
IF ( ¥(2) .LT. L ) GO TO 11
X(1) = X(2)

VELX = VELX + V(XK) + V(K)

VELY = VELY + V(KK+1) + V(K+1)

36
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10

37

KX - KX 4+ 2

K=K+ 3

IF ( K .GE, 4996 ) K=l

IF ( KK .GE. 4998 ) Kx=1

T = MT

X(2) = X(1) + VELX*T

Y(2) = Y(1) + ( VELY + IV )*T
GO TO 10

XF = X(1)+((L-¥(1))/(Y(2)-¥(1)))*(xX(2)-X(1))
W= XF % CO

N(W+30) = N(W+30) + 1

GO TO 9

END

FUNCTION GAUSS(X)
Y=0.

DO 10 I=1,12

Y = Y+RANDM(X)
GAUSS = Y=6,
RETURN

END
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FUNCTION RANDM
DATA I/11111/
IF(ABS(X).GT.l.) GO TO 10
I=11111

RANDM= UDRNRT(I)

RETURN

END

FUNCTION UDRNRT(I)
I = IDRNRT(I)

UDRNRT = FLOAT(I)*(2,%%=35)
UDRNRT = ABS (UDRNRT)
RETURN

END

38
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APPENDIX II

INTENSITY OF PARTICLES IN EACH
COLLECTOR BOX OF 1 MICRON WIDTH

DETECTOR BOX | NUMBER OF DETECTOR BOX | NUMBER OF
NUMBER TO PARTICLES IN| NUMBER TO PARTICLES IN
RIGHT OF DETECTOR BOX| LEFT OF DETECTOR BOX
CENTER OF CENTER OF
THE SLIT THE_SLIT |
1 8033 1 8033
2 8054 2 7870
3 7842 3 7944
L 2937 L 7802
5 7598 5 7779
6 7556 6 7342
7 7222 7 7611
8 6953 8 7221
9 6581 9 6853
10 5929 10 6140
11 5405 11 5528
12 4669 12 4984
13 3860 13 4169
14 3273 14 3467
15 25k5 15 2868
16 1874 16 2266
17 1348 17 1636
18 934 18 1178
19 564 19 790
20 325 20 Lok
21 177 21 294
22 88 22

190




DETECTOR BOX

NUMBER OF

DETECTOR BOX

NUMBER OF

NUMBER TO PARTICLES IN| NUMBER TO PARTICLES IN
RIGHT OF DETECTOR BOX }| LEFT OF DETECTOR BCX
CENTER OF 1 CENTER OF
THE SLIT THE SLIT

23 32 23 107

24 20 24 58

25 7 25 35

26 6 26 14

27 2 27 5

23 0 28 1

29 0 29 1

30 0 30 0
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