
STOCHASTIC-QUANTUM COMPARISON

THROUGH A FRICTIONLESS

STOCHASTIC EXPERIMENT

A Thesis

Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By
Joe David Regester

August, 1972

638616



Ill

ACKN0WLEDGEI4ENTS

The author wishes to express his sincere gratitude to 

Dr. R. E. Collins who brought the problem to the author, and 

whose advice and criticism were a considerable encouragement. 

Thanks are also extended to Dr. B. W. Mayes, II for his 

efficacy and encouragement. Love to my wife, Carol, for 

her unrelenting confidence In me, and for typing this thesis. 

Last, but not least, to my young son, David, for being good 

and keeping his hands off this paper.



STOCHASTIC-QUANTUM COMPARISON

THROUGH A FRICTIONLESS

STOCHASTIC EXPERIMENT

An Abstract of a

Thesis

Presented to

the Faculty of the Department of Physics

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

iv

By
Joe David Regester

August, 1972



V

ABSTRACT

A stochastic single-slit experiment is used to exhibit 

a counterexample to the proposal by several Investigators 

that quantum phenomena is equivalent to a frictionless 

stochastic process. The connection between Brownian motion 

and quantum mechanics is made by relating the diffusion 

coefficient and mean drift velocity of the Smoluchowski 
equation to $i/2m and h/mh respectively.' This is the connec­

tion usually made in relating quantum mechanics to Brownian 

motion. The omission of the damping term leads to an 

effective wavelength for the stochastic test problem which 

is changing in time and implies that is not the ideal 

stochastic test model to consider. The stochastic single- 

slit experiment is scaled to conform with a physical single- 

slit experiment which is known to agree with quantum 

calculations. An Intensity distribution is developed by 

using Langevin*s equation without damping to calculate 

(with a computer) the position of particles acted on by a 

random force. The intensity distribution is then compared 

to the diffraction pattern produced by the physical 

experiment and no similarity is noted.
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I. INTRODUCTION

This thesis is to test the hypothesis that Quantum 

phenomena can be accounted for as arising from stochastic 

processes. In particular it has been suggested by several 
1-4 Investigators that the motion of a particle, or ensem­

ble of identical particles, described by the Schrodinger 

equation is equivalent to Brownian motion. This thesis 

presents a direct test of this idea through the numerical 

calculation of the motion of a beam of classical particles 

through a single-slit with the particles being subject to 

classical Brownian fluctuations. The crux of this test 

is to ascertain whether such a beam-siit experiment can 

exhibit the diffraction effects called for by Quantum 

Mechanics.

In Section II of this paper the basis for this 

stochastic connection to Quantum Theory will be reviewed. 

In Section III the single-slit beam diffraction experiment, 

which was used as the basis for the Stochastic-Quantum 

comparison, will be described. In Section IV the test 

problem will be described and the results and discussion 

given in Section V.

1



II. QUANTUM MECHANICS AND BROWiNIAN MOTION

Of the several attempts to exhibit the equiva­

lence of the quantum mechanical motion of a particle to 

Brownian motion, that due to L. De La Pena-Auerbach and 
Leopoldo S. Garcla-Collzn* Is perhaps the most direct.

They start with the Schrodinger equation 

and write 'f' in the usual form

= eRtxs (2>

where R and S are real, dimensionless functions of the 

coordinates and the time. By the substitution of equation 

(2) Into (1) and equating real and imaginary parts, there 

results the system of equations

= (3)
" ="1V2R - 2^[(7R)z- (W/J V . w

Equation (3), by using the integrating factor C > may 

be written in the form

^e2R=-^V'Le2RV5].
Letting

^=£^=1^1" (6) 

2
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equation (5) becomes

+V-[M 7S] = o <7>
5which is the continuity equation of classical physics 

and Is the basis for interpretating **f as the probability 

density and 'P as the probability amplitude. Here also 

cKWS must be Interpreted as a ’’flux velocity vector”.
Introducing a new function Q defined by

Q = R+S (8)
equation (3) takes the form (In terms of R> and Q )

V = 1 [72Q- 7ZR] - Ki VR•(7Q- VR) <9>
which, with the aid of equation (6), may be written as

^W‘[(s7Q)f-a^Vf] =O . (10>
This equation has the form of a Smoluchowskl equation^0 

of a Brownian particle acted on by an external force K 

per unit mass given by

K = %1^7Q.. (11>
This also corresponds to a diffusion coefficient D 

given by

D = <12>
and where , in the stochastic sense, Is a viscosity 

"damping” coefficient but In the quantum sense must be
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a parameter which is a measure of the Interaction between 

the particle and the vacuum.

Schrodinger’s equation is considered valid for all 

time intervals. On the other hand, Smoluchowski’s equa­

tion which was derived directly from Schrodinger’s equa­

tion is, in the theory of Brownian motion, valid onlyIo
for time intervals such that . This leads to two

possibilities: either Smoluchowski•s equation is not 

equivalent to Schrodinger’s equation because of the added 

restrictions not contained in Schrodinger’s equation, or 

the same restrictions which apply to Smoluchowski•s equa­

tion also apply to the Schrodinger equation.
Pena-Auerbach and Garci'a-Coli'n assume the second con- 

ditlon)^Ajc.»l.) as an oversimplified form of the time-energy 

uncertainty relation with the physical interpretation being, 

“as the time intervals used to measure the mean value of 

the energy of the particles grows, the dispersion in the 

measured value is reduced, because more and more fluctua­

tions are taken into account”.

Rewritting equation (4) and taking its expectation 

value to obtain

-t<W=2^<(7Sf-(^-V2R>+<V> (i3)
along with the relations

E = ci*)
<E>=A<^jtS> us)

<P2>=-^<^R+(7/?f-(VS)x> ,
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equation (13) niay be written In the familiar form

= E ) - ( f V . (17)

To remove the limitation that , L. De La
Pena-Auerbach and Leopold© S. Gar cl a-Col in2, consider a 

quantum particle described by the classical Brownian
L 

motion In phase space of the Fokker-Planck equation 

under the Influence of a non-velocity-dependent force

toW = ^-((?CiW+cL7lLW) <18>
where V/stands for the probability density

n devolving by a Markoff process Is the total macrosco­

pic time derivative

= , (19)
ft Is the external force per unit mass, va Is a measure 

of the coupling between the system and Its surroundings 

and Is the diffusivity of the system. The equation 

which will be derived will be valid for all times of the 

particle’s motion.

Since V/ Is a real positive function, let

W = C2R , R=f(r,u,t) (20>

and define a vector F such that

F = - (3U. - (%/w) VuVJ (21)
which has the meaning of a mean force per unit mass which

Is developed on the particle as It moves through Its 
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surroundings.

Substitution of Equations (20) and (21) back into 

Equation (19) gives

F- . (22)

Since F is velocity-dependent, we assume it may be derived 

from a velocity-dependent potential S such that

F - . (23)

Substitution of Equation (23) into (22) gives

DtR =-^2S-zW-tiS. (2M

Defining a probability amplitude such that

Y - eR+ks (y)
and

V/ = lf*Y (26)

Equation (2^) becomes

where

n. = '^v-i[^2R+(w2-W]. (28>

This is the extended form of Schrodinger1s equation defin­

ing the probability amplitude in phase space, where the 
potential energy is given by the function XX..

This connection of the Fokker-Planck equation to 
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Schrodinger’s equation Is purely formal since on the left 
side of equation (27) we have Instead of'Vjt and on 

the right, the Laplacian acts on the velocity coordinates 
and IT Is a space-velocity-dependent function.

Ordinary quantum mechanics Is retrieved by talcing an 

asymptotic limit which corresponds to times longer than the relax­

ation time of the particle. This corresponds to times for 

which the description of the system by a Smoluchowskl equation 

Is equivalent to the description of the system by the Fokker- 

Planck equation.
7

When discussing the kinematics of a quantum particle, 

one must assume that there Is no friction Involved In order 
ui to preserve Galilean covariance. This leads Edward Nelson 

8 
to adopt the kinematics of the Elnsteln-Smoluchowskl theory 

and the dynamics as In the Ornsteln-Uhlenbeck theory to 

study Brownian motion In a medium with zero friction.

As Nelson shows In his treatment of the kinematics 

of a Markoff process, there are two velocities to be 

considered which evolve In time according to the equations

- a-Cv-Vjv+CU’^UL+S) V7Zul , (3o)

*
where IL and V are the osmotic and current velocities 

respectively. Since the hypothesis Is that particles In 

empty space are subject to Brownian motion and macroscopic 

bodies do not appear to exhibit such behavior, he assumed 

that the diffusion coefficient Is Inversely proper- 
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tional to the mass and. set

S) = / zm . Ou
Since the Ornstein-Uhlenbeck theory is used, to des­

cribe the dynamics of the particle*s motion, the accelera­
tion term in equation (30) is given by F/m . Thus the 

system of equations (29) and (30) may be rewritten, using 

equation (29), in the form

^u.=(32,

^tV = fkF- (V-V)v + (u-V)u+^m V2Ll . (33)

In order to obtain the Time-Independent Schrodinger 

equation, it is necessary to assume the force to be derive­

able from a potential such that

F = - VV m
A

and assume that V is zero which means that the solutions 

are stationary in time. Under these conditions equa­

tion (32) becomes

= O (35)
and equation (33) is

Ci-7iL4mV20i = sVV. (36>
In Nelson*s treatment of the kinematics of a Markoff A 

process, is the gradient

u. = Vat > (3?) 
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so that

(UL-V)Cl = ± Vu.=

and

V2Cl = VIWL (39)

This means that equation (36) becomes

or

where E is a constant with dimensions of energy. Multiply 

by m'f and integrate equation (41) to obtain

E = 5imu?-f<J3x ■t-j'Vf d3x . (^i

Thus £ is the average value of zflUX +'V and may be 

interpreted as the mean energy of the particle.

By the change of dependent variable

R = 1 Jlm-l’ U*3)
and letting

V = eR w
so that

-f = , (^5)

equation (41) becomes equivalent to the time-Independent
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Schrodinger equation

"rm 77=[E-V]f. (46)

To find the general time-dependent Schrodinger equa- 
A

tlon, assume that V is the gradient

V - VS . ^7)
Keeping R as before (equation 43), equation (44) becomes

UJ —T - <2 (to)
which is shown to satisfy the Schrodinger equation

+ , (to)

where the potential S can always be chosen such that

= O . (50)

It is well to note that by the substitution of equa­

tion (48) into (49) and equating real and imaginary parts, 

the system of equations which result are just those of 
L, De La Pena-Auerbach and Leopoldo S. Garcia-Colin, 

i.e. equations (3) and (4). This would imply that since 
e* e #Pena-Auerbach and Garcia-Colin have already shown that these 

equations are equivalent to a Smoluchowski equation of a 

Brownian particle acted on by an external force, then the 

equations derived by Edward Nelson must suffer from the 

same restriction which applies to the Smoluchowski equa­

tion; this restriction being that



III. SINGLE-SLIT DIFFRACTION OF A THERMAL

POTASSIUM BEAM

To test the hypothesis that Brownian motion is equiv­

alent to a quantum dynamics, we first needed the results of a 

physical experiment in the quantum domain to compare with 

the results of our Stochastic experiment. John A. Leavitt 
io and Francis A. Bills made experimental observations of the 

diffraction of de Broglie matter waves of a full, thermal, 
neutral, atomic Potassium beam (A =0.1?5 X) by a single slit. 

The experimental diffraction patterns were all reproducible 

and in good general agreement with the predictions of n
de Broglie and simple scalar Fresnel diffraction theory(Figure 3) 

The experimental arrangement utilized by these investi­

gators (Figure 1) employed a source to slit distance of 96 cm, 

slit to detector distance of 100 cm and an oven temperature 
of 533 K. The slit was 23.0 (i 0 . in width and the source

slit was 2.5 (i D/tc in width. Their comparison of the experi­

mental diffraction patterns with the theoretical predictions 

of quantum theory are reproduced in Figure 2.

The presence of diffraction is clearly demonstrated by 

the occurrence of the two well-defined fringes on the experi­

mental patterns. The observed fringes are only 9.^^ above 

central-beam Intensity instead of the 1^.1« above central­

beam intensity of the theoretical fringes. These investiga­

tors attribute the discrepancy to a combination of the

11
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following factors:

(1) uncertainty in the.measured width of the source slit,

(2) high-frequency vibrations of the apparatus,

(3) defects in the diffracting slit edges,

(^) angular misalignment of the beam elements.

FIGURE 1

Arrangement of line source (8),slit (C), and detector (line

P in observation plane D) for calculation of the diffraction 

pattern of a slit of width 2d. (Leavitt and Bills, Reference 10)



The single-slit diffraction pattern of a full thermal atomic K 

beam-direct comparison of theory and experiment. The solid 

curve is the prediction of de Broglie1s hypothesis and simple 

scalar Fresnel diffraction theory, and the points are the 

experimental beam profiles, £Source slit width = 2.5(H)/t, 

collimating (diffracting) slit width = 23.0(1detector 

wire diameter = 3.0(10.1)/(, source-to-colllmator distances 
96 cm, collimator-to-detector distances 100 cm, oven-slit 

temperature = 533<>K, and source-slit temperature = 4-00*K, 
The solid curve was calculated for a3<lK beam; the experimental 

points were obtained with a natural K beam(93X3<tK, 7%s,K.l 

(Leavitt and Bills, Reference 10)
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DETECTOR POSITION (X) IN MICRONS

FIGURE 3

Calculated, velocity-selected, atomic 3SK-beam diffraction 

pattern of a 25.4—/<slit(infinitesimal source and detec­

tor widths, Q. =96cm, b =100cm,h =0.175 A).. (Leavitt and 

Bills, Reference 10)



IV. STOCHASTIC TEST PROBLEM

A stochastic experiment was performed, to test the pre­

dictions of Brownian motion with those of quantum theory- 

through the results of the diffraction experiment of Leavitt 

and Bills. This stochastic test problem consisted of the 

numerical calculation (with a computer) of the motion of a 

beam of particles subject to Brownian fluctuations through 

a single-slit. The crux of this stochastic test was to deter­

mine if the diffraction pattern, of the Leavitt and Bills 

experiment, could be reproduced through this stochastic model. 

The computer program with experimental data are given in 

Appendix I and II.

The stochastic equations of motion are taken to be

mV = K lx ^(t-u (51)*=i 
mx - <52>

for the test problem. The I;*s are the random impulses that the 

particle receives at random times, . These equations

correspond to Newton1s law

F = mo. (53)

where the dynamics of the stochastic test problem is given by

F = £lt . <5^>
A=i

We now integrate the equation InY over the limits 

,4 * frwi , noting that the equation InX is treated in slmi- 

15
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liar manner except the Initial velocity is taken to be zero, 

to obtain

mL Yd) ~ In . (55)

The random Impulse *Inis replaced by

AVn ■'irxln (56)

which says that the random impulse Ih will Impart to the 
particle a random velocity increment AVn . The AVn. s are 

IT. stochastically selected using a random number generator 
and the distribution function for the AVn* s is Gaussian

with mean zero.

Letting

Y(W = Vn (57)

along with Equation(56), Equation (55) takes the form

Va) = Vn + ZlsVn . (58)

Integrating this equation over the same limits as before 

gives

~Yn = EVn+AVnJO:-!^ (59)
and by letting

,£^6" (60)

At"* ivH।”* i-n (61
AXn ~ Yxai Yn (62)
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^here results

AYn - C. Vn + AVn 3 ZM: . (63)

The additional assumption is now made that thq, At 1 s are 

not stochastic which means that all Al’s are now equal.

The velocity at step ft is given by

Vn ~ Vn-i - AVn-1
which is the system of equations

Vn "" Vn-i ~ AVn-1
Vn-i Vn~2 " !SNn-L

\lf\-2_ — Vn-3 - AVn-3 (65)
<e
e

V. - Vo = AVo .

Summing these equations gives
n-i

Vn ”* Vo H AVm . (66)
m=o *

which is then written in the more convenient form
ft-l

\/fl t ^2 AVrrt . (6?)
m=o

Using this in Equation (63) for AY yields

AYn = C Vo 11 AVm + AVm 3 At (68)
m=o

AYn=[Vo*t AVm3At . <69)
‘ m=o
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This equation determines the evolution of the

The expectation value for

QYn^ = <tVL AVn]Zkt > (7°)
m:O

or

<&Yn> = VoM*t<AVm>At (7D
rheo

which collapses to

(AYn> = VoAi (72)

since the *s are Gaussian with mean zero. The disper­
sion, using Equations (69) and (72), Is found to be

<(AYn- < AYn>)Z> = < (1 AVmYtAtf > (73)
m-o

which, denoting the dispersion by becomes

«^Yn)1> = (Atf-<(i AViKEAVm) > . (7M
xzo cn=o

The velocity Increments Imparted to the particle at differ­

ent times are uncorrelated, therefore

^AM^AVm> = 0 ,1^01 (75)

and the dispersion Equation (7^) becomes
n

WnY> = (Ak)1L<(A'vm)K> (76)
mso

or, by using H as the number of steps that the particle has

taken, the dispersion Is

<(^YnY> = no; caw1 (77)
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with

(Tv = . (78)

The stochastic test problem evolves according to 

Equation (69), but In order for this to correspond to 

the experiment of Leavitt and Bills,, specific conditions 

must be imposed on (Jv ; these are now examined.

In Brownian motion the diffusion coefficient is
U»I3 given by

_ J. <CSYat>
“ Ajc (79)

where <wy> Is calculated over the transition probability 

distribution. On the other hand, from the results of Section 

II the diffusion coefficient In the quantum domain Is found 

to be given by

(80)

Relating the two expressions for D yields

<^>= f)/m (81)

USimilarly, the mean drift velocity for a Brownian particle 

has been shown to be

V = (82)

while in the quantum domain the velocity Is given by
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de Broglie as

V = =
2JT 
7\ m (83)

Relating the stochastic velocity to the quantum velocity 

through Equation (82) and (83) gives

<j^> - v wT\ rn .

Similarly using the diffusion relation, Equation (79)» for 
<

the term /mIn Equation (84) gives

<AYn> _ rn < (5YnY>
At - A*. 15

After replacing the terms and < In Equation (85)

by their equivalents through Equations (?2) and (77) we 

have
\/o M _ 2rr
TKF" A At (86)

and upon rearranging this becomes
ZTTG-v

X - . (8?)

Equation (87) expresses the sought after relationship 

between the parameters which condition the stochastic 

experiment and the effective wavelength. Notice should 

be taken that the effective wavelength grows In time In 

relation to the number of steps taken by the particle.

Denote the source to slit distance by S and the slit 

to detector distance by L. The average number of steps 

a particle will take from the source to the slit and from
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the silt to the detector are given respectively by

ns ~ S / voAt (83)
Hu L+S / VoZXt . (89)

We now show how Equation (87) for the wavelength can be 

used, together with the physical geometry of the slit 

experiment, to set up scaling conditions to match the 

stochastic scale to the experiment of Leavitt and Bills.

Using Equation (88) for Fl , in Equation (87) and 

dividing both sides by the distance from the source to 
the sllt,S , gives

ZTVOTyjs/ 2./s ~ / v/ (90)

Treating Equation (89) in slmlllar manner gives

/ Tv zq1 x/'u/l+s / Vo

From the experiment of Leavitt and Bills the ratios A/S 

andX/l*s were easily obtained. Equating those ratios with 

Equations (90) and (91) gives

= ^s/S 3; ^TTCT^/v,2- (92)

and

^e/u-s> - ~ 2-Tra;'- / (93)

From Equations (92) and (93)t the ratio of the wavelength 

to the distance is the important quantity and not the 
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individual element.

To assure that the wavelength in the slit for the sto­

chastic test problem is the same as the wavelength used in 

the physical experiment, the appropriate value for Gv must be 

used in Equation (90). To find <Tv we first need to determine 

the value for the Initial velocity Vo .

Choose the number of steps, ft , that the particle will 

make from the source to the slit to be 100. Equation (88) 

then becomes

\/0ZXt ~ s/ioo ~ 1 w
where the distance,S, from the source to the slit is fixed 

by the geometry of the physical experiment, i.e.S^: 100 cm.
13

Statistical mechanics gives the average velocity of a 

particle in a dilute gas to be

Vo = V = 43KT/m' (95)

where K is Boltzmann’s constant and the temperature,T , is 

fixed by the physical experiment. The time interval,At, 

can now be determined, from Equation (9^) as

Lt- ~ ~ . <96)
Using Equation (95) in Equation (90) the expression for

dv ls
SKTbe 

Gv ~ ZTTS ” Zrn T[‘ (97)
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where of the stochastic test problem is equal to Ae , of 

the physical experiment.
From the physical experiment, $ and. I— have nearly the 

same value, which means that in the stochastic test problem 

the wavelength in the region for the slit to the detector 

will be two times greater than the wavelength in the region 

from the source to the slit (Equations 92 and 93) for the 

value of . This should cause a blurring in the fringes 

of the Intensity distribution pattern.



V. RESULTS AND DISCUSSION

In the stochastic test problem, the particles were 

emitted from a line source located above (Y>0) a single- 
line-slit, The position, Equatlon(63), of a particle 

at each step, Yn, was conditioned by a random increment, 

AVn , in the velocity, Equation (56). The random velocity 

increment was calculated through a Gaussian transition 

probability distribution with mean zero and a standard devia­
tion, Qv (Equation ?8), The time parameter. At, was chosen 

to be nonstochastic, meaning all time intervals are equal. 

Each particle was released from the line source with an 

initial velocity in the negative Y-direction. The initial 

velocity of each particle in the X-dlrection was set equal 

to zero. This assured that the movement of the particles in 

the X-direction were not biased. The position of each particle 

was calculated until the particle went from positive Y to 

negative Y, When this condition occurred, the slope of the 

lines from the position (X^^Y^j) to (Xn,Yn) and from (Xft.l,Yn_t) 

to edges of the slit, was calculated and compared, to determine 

if the slope of the line from (Xn.,,Yn.t) to (Xn,Yn) lay between 

the slopes from (X^.^Yj^.,) to the edges of the slit. If this 

condition was true, then the particle went through the slit. 

If this condition was false, the particle hit the wall and 

its motion was terminated. In this case another particle was 

released from the line source and the above procedure starts 

again.

24-
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If the stochastic particle went through the slit, its 

position was calculated, continually until the particle traveled, 

a "sllt-to-detector" distance L. When the Y-posltlon of the 

particle passed the point L, the equation of the line from 
(Xfx-nYp.!) to (Xn,Yn) was constructed. Using Y was equal to L 

at the detector along with the equation of the line from 

(Xn.v,Yn.|) to (Xn,Yn), the X-intercept was found and the final 

position of the stochastic particle was known. The particle 

was then placed in the “detector box" corresponding to the 

position of (X,L).
5The above procedure was repeated until a total of 2 X 10 

particles had been emitted from the line source. An intensity 

distribution was formed by counting the number of particles 

in each detector box as a function of distance from the center 

of the slit.

The values for the above parameters along with the values 

for the parameters used in the physical experiment of Leavitt 

and Bills are given in Tables 1 and 2.

Before discussing the intensity distribution of random 

particles, let us look at a weak point in the design of the 

stochastic test problem. The damping term in the stochastic 

test problem was omitted to be in accord with the arguments 

of Nelson given in Section II. This omission of the damping 

term meant that the relaxation time of the particle was never 

reached. This led to a wavelength for the stochastic test 

problem which was changing in time, or with distance from 

the source (Equation 8?). In the stochastic experiment.
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by using the parameters of the Leavitt and. Bills experiment, 

the wavelength at the detector was twice the wavelength 

at the slit. By including damping, the relaxation time of 

the particle would be reached and an effective wavelength 

could be defined for all regions of the stochastic experi­

ment.

Obviously, using a time-dependent wavelength was not 

a desirable condition, and implies that either: this was 

not the proper stochastic test problem because the wave­

length was changing in time or that the identlfication of 

stochastic quantities to quantum quantities made in Equation 

(80) and (84) was not correct.

To show the effect that wavelength has on the stochastic 

test problem, the intensity distribution shown in Figure 4 

was calculated using a wavelength approximately two thousand 

times greater than the wavelength used for the distribution 

shown in Figure 5* In Figure 5» symmetry has been used to 

increase, in effect, the number of particles collected in 

each detector-box. This increase of particles is accomplished 

by adding together the number of particles in the detector­

boxes which are at equal distances from the center of the 

slit on the right and the left. This means that the Intensity 

distribution is forced to be completely symmetric as it would 

in fact be for an infinite number of particles. The area of 

Interest, in the comparison of the intensity distribution of 

the stochastic experiment and the experiment of Leavitt and 

Bills, is the top portion of the distribution curve.



Figure 6 is an expanded view of the top portion of the 

symmatrized intensity distribution. Figure 7 is an expanded 

view of the top portion of the actual intensity distribution 

without the forced condition of symmetry. In both Figures 6 

and 7 the fluctuations in the top portion of the curve are 

within the limits of normal statistical fluctuations, that Is 

the fluctuations are of the order of nfN®, where Na Is the 

number of particles In a detector box. This much fluctuation 

can be expected by chance alone and hence these deviations 

are not statistically significant.

Comparing the Intensity distribution from the stochastic 

test problem (Figures 5, 6, and 7) to the diffraction pattern 

of Leavitt and Bills (Figure 2), the conclusion must be that 

the stochastic experiment failed to produce an equivalent 

intensity distribution pattern. Thus, for this case, It would 

seem that a counterexample has been found for the results of 

Section II.

A definite conclusion should not be made until the sto­

chastic experiment has been reformulated to Include damping. 

With damping Included, the wavelength would not be changing 

in time and a different intensity distribution might well 

be developed.
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FIGURE U-



FIGURE 5
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DETECTOR POSITION IN. MICRONS
FIGURE 6
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FIGURE 7
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PHYSICAL EXPERIMENT

PARAMETER SYMBOL VALUE

WAVELENGTH A
-80.175 x 10 cm.

SLIT WIDTH D
23 X IO"4 cm

DETECTOR WIDTH C
-H3 X 10 cm

SOURCE WIDTH P
2.5 X IO*1 cm

DISTANCE FROM .
SOURCE TO SLIT S 96 cm

DISTANCE FROM 
SLIT TO DETECTOR 100 cm

RATIO OF WAVELENGTH 
TO SLIT WIDTH 0.76 X lO^

RATIO OP SLIT WIDTH 
TO DETECTOR WIDTH D/p -50.7 x 10

TEMPERATURE uiyri 533 eK

TABLE 1
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STOCHASTIC EXPERIMENT

PARAMETER_______________________SYMBOL______ VALUE

WAVELENGTH -80.175 X 10 cm

SLIT WIDTH o 23 X 10** cm

SOURCE WIDTH p 2.5 X 10K cm

DETECTOR WIDTH c ^.48 X 10H cm

DISTANCE FROM SOURCE 
TO SLIT s 96 cm

DISTANCE FROM SLIT 
TO DETECTOR 100 cm

TIME INTERVAL zst. 2.54 X 10S sec

INITIAL VELOCITY Vo H3.93 X 10 cm/sec

STANDARD DEVIATION <rv 4.48 X 103

NUMBER OF STEPS FROM 
SOURCE TO SLIT n 100

RATIO OF WAVELENGTH TO DISTANCE 
FROM SOURCE TO SLIT

-H1.82 X 10

RATIO OF WAVELENGTH TO DISTANCE 
FROM SLIT TO DETECTOR ^/l+s 0.892 x iou

TABLE 2
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APPENDIX I

COMPUTER PROGRAM FOR STOCHASTIC EXPERIMENT

INTEGER P,S,A,W,M,Z,N(60),TN,PP

REAL B,X0,C0,D,L,Y0,MT,MV,SDT,SDV,VELX,VELY,XF,X(2),
C Y(2),IV,V(5000)

105 FORMAT(’ CPUTIME=»,125,’MICROSECONDS’/)

106 FORMATf CPU TIME/PARTICLE=’I20,’MICROSECONDS’/)

10? FORMAT(’ NUMBER OF COLLISIONS’,E15.8/)

1 FORMAT( 10110/)

20 FORMAT(110)

100 FORMAT(’ XO=’,E15.8,5X,’ YO=*,E15.8,5X,’ B=’,E15.8,
C 5X,’ D=’,E15.8/ ’ L=’,E15.8,5X,’ CO=’,
C E15.8,5X,’ MV=’,E15.8,5X,’ MT=’,E15.8/ ’ SDT=’
C ,E15.8,5X,’ SDV=’,E15.8,5X,’ IV=’,E15.8,
C 5X,’ A^’,13 /)

300 FORMAT(’ P=*,I8/)

C GEOMETRY DATA:
DATA YO,D,L,A/96.,23E-4,100.,30/

C DYNAMICAL DATA:
DATA MT, MV, SDT, SDV, M, NNN/2.5^E-5,0., 0., .48E-3,2000,50/

C COUNTERS:
DATA Z,S,P,TN,KK,K/0,0,0,0,l,2/

DO 16 PP=l,60

16 N(PP) = 0

XX = 5.
IV = -3.93EZI-

XX = XX + 1.

CALL CPUTIM(IJ)
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DO 35 JJ = l»5000
35 V(JJ) = MV+(SDV/2)*GAUSS(XX)

CALL CPUTIM(IJJ)

IIJJ = (IJJ-IJ)*200

WRITE(6,105) IIJJ

XO = -1.25E-4

B = 1.25E-6

CO = 1.E5
WRITE(6,100) XO,YO,B,D,L,CO,MV,MT,SDT,IV,A

CALL CPUTIM(III)

AA = L/(-IV*MT)

WRITE(6,10?) AA

9 S = S+l

IF ( S .GE. M ) GO TO 2

3 X(l) = XO + 2,*P*B

Y(l) = YO

VELX = 0

VELY = 0

GO TO 4 /i
2 P = P + 1 o

3 = 0

IF ( P ,LE. 2»nnn ) GO TO 3

CALL CPUTIM(II)

IIII = ( II-III )*200 / (M»NNN*2)

WRITE(6,106) IIII

25 WRITE(6,1) ( N(Z),Z=1,6O )

WRITE(6,3OO) P
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do 6 z=l,60
6 TN = TN + N(Z) 

WRITE(6,20) TN

S = 2*M*NNN
WRITE(6,20) S

GO TO 7

4 VELX = VELX + V(KK) + V(K)

VELY = VELY + V(KK+1) + V(K+1)

KK = KK + 2

K = K + 3

IF ( KK .GE. 4-998 ) KK=1

IF ( K .GE. 4996 ) K = 1

T = MT

X(2) = X(l) 4- VELX*T

Y(2) = Y(l) + ( VELY + IV )*T 

IF ( Y(2) .LT. 0. ) GO TO 8 

X(l) = X(2)

Y(l) = Y(2)

GO TO 4

8 XOX = X(l)+((-Y(l))/(Y(2)-Y(l)))*(X(2)-X(l)) 

IF ( XOX .LE. -D/2 ) GO TO 9 

IF ( XOX .GT. D/2 ) GO TO 9

10 IF ( Y(2) .LT. L ) GO TO 11

X(l) = X(2)

VELX = VELX + V(KK) + V(K)

VELY = VELY + V(KK+1) + V(K+1)
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KK = KK + 2

K = K + 3
IF ( K .GE. 4996 ) K=1

IF ( KK .GE. 4998 ) KK=1

T = MT

X(2) = X(l) + VELX*T

Y(2) = Y(l) + ( VELY + IV )*T

GO TO 10

11 XF = X(l)+( (L-Y(1))/(Y(2)-Y(1)))*(X(2)-X(D)

W = XF * CO

N(W+30) = N(W+30) + 1

GO TO 9

7 end

FUNCTION GAUSS(X)

Y=0.

DO 10 1=1,12

10 Y = Y+RANDM(X)

GAUSS = Y-6.

RETURN

END
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FUNCTION RANDM

DATA 1/11111/

IF(ABS(X).GT.l.) GO TO 10

1=11111

10 RAMDM= UDRNRT(I)

RETURN

END

FUNCTION UDRNRT(I)

I = IDRNRT(I)

UDRNRT = FLOAT(I)*(2.**-35)

UDRNRT = ABS (UDRNRT)

RETURN

END
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APPENDIX II

INTENSITY OF PARTICLES IN EACH
COLLECTOR BOX OF 1 MICRON WIDTH

DETECTOR BOX 
NUMBER TO 
RIGHT OF 
CENTER OF 
THE SLIT

NUMBER OF
PARTICLES IN 
DETECTOR BOX

DETECTOR BOX 
NUMBER TO 
LEFT OF 
CENTER OF 
THE SLIT

NUMBER OF
PARTICLES IN
DETECTOR BOX

1 8033 1 8033

2 8054 2 7870

3 7842 . . 3 7944

7937 4 7802

5 .. 7598 .. ... . 5.... . 7779
6 7556 6 7342

7 7222 7 ... ... 7611

8 6953 8 7221

9 .. 6581 9 6853

10 5929 10 6140

11 .. 5405 ... 11 5528
12 4669 12 4984

13 . 3860 ... 13 4169

14 . 3273 14 346?

... 15 25^5 . 15 2868

16 1874 16 2266

17 _ ....   1348... 17 _ . 1636

18 934 18 1178

19 564 ..  19 790

20 .... 3.25 20 4?4

21 177 21 294

22 88 22 190
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DETECTOR BOX 
NUMBER TO 
RIGHT OF 
CENTER OF 
THE SLIT

NUMBER OF
PARTICLES IN 
DETECTOR BOX

DETECTOR BOX 
NUMBER TO 
LEFT OF 
CENTER OF 
THE SLIT

NUMBER OF
PARTICLES IN
DETECTOR BOX

23 37 _ 23 107
24 20 24 58 _____

25 _ 7 ... . 25 35
26 6 26 14

27.. 2 .... 2? _ .. 5......

28 0 28 1

29 0 29 1

30 0 ___ 22____ _______ 0
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