PULSE HEIGHT ANALYSIS USING ATHENA COMPUTER

· · · · ·

An Abstract of a Thesis

Presented to

the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Electrical Engineering

by

Song Guk Lim May 1970

PULSE HEIGHT ANALYSIS USING ATHENA COMPUTER

> A Thesis Presented to

the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Electrical Engineering

> by Song Guk Lim May 1970

ABSTRACT

A pulse height analyzer which sorts and converts pulses according to their height with the remote operation mode has been designed and constructed. The analyzer system consists of a pulse height-to-digital converter, the Athena Computer, and two digital-to-analog converters. The pulse height-to-digital converter converts input data pulses (0.2V~2V height, 2µs~10µs width) to 7-digit binary outputs which are proportional to the pulse height. The digitized input data pulses are stored in the 127 different core addresses of the Athena Computer determined by their The digital-to-analog converters displays a plot height. of the number of pulses versus pulse height of the stored data on an oscilloscope. The remote operation which performs clearing of the magnetic core storage, data-loading, and readout-data is accomplished by using several of the special features of the Athena Computer.

TABLE OF CONTENTS

CHAPTER		PAGE
I.	INTRODUCTION	1
II.	SYSTEM AND CIRCUIT DESIGN	8
III.	MODIFICATION TO ATHENA AND PROGRAMMING	27
IV.	RESULTS	38
BIBLIOGI	RAPHY	40
APPENDIX	K ACircuit Diagrams for the Pulse Height	
	Analyzer	41
APPENDIX	K BProgram Listings	55

LIST OF FIGURES

Figure		Page
1-1	Block Diagram of System	2
2-1	Block Diagram of PHDC	9
2-2	Timing Diagram of System	10
2-3	Linear Gate	12
2-4	Pulse Height-to-Width Converter	13
2-5A	The Linearity of PHDC	15
2-5 B	The Linearity of PHDC	16
2-6	Clock Pulse Generator	17
2-7	Logic AND Gate, Counter, Data and Monitor Driver	19
2-8A	Trigger Pulse Generator	20
2-8 B	Sync. Pulse Generator	20
2-8C	Reset Pulse Generator	21
2-9	DAC _Y (Digital-to-Analog Converter)	23
2-10	DAC _X (Digital-to-Analog Converter)	24
2-11	Scale Switch	26
3-1	Block Diagram of Athena	28
3-2	Map of Magnetic Drum Storage	29
3-3	Remote Control Mode	30
3-4A	Flow Diagram of Clear M. C	32
3-4 B	Flow Diagram of Data Load	33
3- 4C	Flow Diagram of Readout Data	34
4-1	Number of Pulses vs Input Data Pulse Height	39

LIST OF TABLES

Table														Page
1-1	Specification	of	System	•	٠	•	•	•	•	•	•	•	•	5
1-2	Specification	of	System	•	•	•	٠	•	•	•	•	•	•	6
1-3	Specification	of	System	•	•	•	•		•	•				7

CHAPTER I

INTRODUCTION

In nuclear spectroscopy, data is often obtained from a detector in the form of electrical pulses whose height is proportional to the energy of the particle being detected. The physicist many times would like to sort these pulses into increments of pulse height and count the number of each increment of height. If the number of pulses is plotted versus pulse height then an energy distribution is obtained for the radiation being detected.

It is also often desirable to plot the number of occurrences of events versus the time of the event after some known occurrences. This time can be converted to a pulse whose height is proportional to the time and these pulse heights can then be sorted.

An instrument which sorts and converts pulses according to their height is called a pulse height analyzer. A system was built which would allow the Athena Computer to be used as a pulse height analyzer. The system is a selfcontained controller-digitizer which allows remote operation of the computer. The system block diagram is shown in Fig. 1-1.

The counter type pulse height-to-digital converter

Fig. 1-1 BLOCK DIAGRAM OF SYSTEM

Ν

(PHDC) provides 7-bit binary output for input pulses from +0.2V to 2.0V. The digital outputs are loaded in the 127 magnetic core addresses of the Athena by a data-loading program which performs the following functions:

- (1) Read the digitized pulse height from the pulse height-to-digital converter.
- (2) Add one to the contents of the core address given by the digitized data from the PHDC.
- (3) Send a timing pulse to the PHDC and receive a timing pulse from the PHDC.

For readout data from the computer to an oscilloscope, two digital-to-analog converters $(DAC_X \text{ and } DAC_Y)$ are used. The 7 digital outputs of the Index Register (pulse height) go to the DAC_X input stage and the analog output of the DAC_X is used as a horizontal input signal of the oscilloscope. A selected 6-bits group of the display register outputs (number of pulses) is applied to the DAC_Y to drive the vertical display on the oscilloscope. For the remote dataprocess there are three pre-loaded programs on the drum storage of the computer. These programs perform the following:

Clear the counter block of the magnetic core storage.

- (2) Load data.
- (3) Readout data.

The Athena was a special purpose digital computer which interpreted missile position data by the radar system. It operates in the parallel mode of data transmission. One of the advantages of using Athena is the remote programchoice. The choice of a program among the pre-loaded ten programs can be done simply by depressing a specified program pushbutton. Also, the current Athena has several modified features which include expanded word length (18 bits) of the drum storage, index register (8 bits), and more available operational codes. The major disadvantage is low speed of the drum (200 KC). More detailed specifications of the system are shown in Table 1-1, 1-2, and 1-3.

PULSE HEIGHT/DIGITAL CONVERTER

Input pulse height Input pulse width Quantization

Linearity

Clock-rate

Analysis Time

External timing pulse input Power supply

Complexity

positive 0.2~2.0V 2µs-10µs 7 bits, 127 levels of 20mV each <u>+</u> 1.6% 4.755 MHZ 38µs (max.) 0 to -2V (2µs) pulse from the Athena built-in +10V, +5V, -4V, -10V, -15V 3 W (max.) dissipation 6 I. C. packs 100 discrete semiconductors (approx.)

t

Table 1-1 SPECIFICATION OF SYSTEM

ATHENA COMPUTER

Magnetic drum speed 200KC (12000 rpm) Magnetic drum storage 8192 words 8 groups (1024 words/gr) 18 bits/word Magnetic core storage 256 words 24 bits/word Minimum execute time 40µs of an instruction Maximum number of 10 (256 drum words/sector) program sectors for remote selection . Number of current 45 instruction

Table 1-2 SPECIFICATION OF SYSTEM

•

1

,

DIGITAL/ANALOG CONVERTER

Decoder type	Resistor ladder R = 10K 1% 2R = 20K 1%
Op. Amp.	µA709 X2 (Fairchild)
Reference Voltage	-4V
Input stage	$DAC_{X} : 7-bit$ $Logic 1 0V$ $Logic 0 -2V$ $DAC_{Y} : 6-bit$ $Logic 1 -10V$
full scale output	+4V
Scale switch for	7 positions for
DAC	24 bits
± .	(1) $2^{\circ} - 2^{5}$ (2) $2^{2} - 2^{7}$
	$(2) 2^{4} 2^{9}$
	$(3) 2 - 2^{2}$
	$(4) 2^{\circ} - 2^{11}$
	$(5) 2^8 - 2^{13}$
	(6) $2^{10} - 2^{15}$
	$(7) 2^{12} - 2^{17}$

Table 1-3 SPECIFICATION OF SYSTEM

CHAPTER II

SYSTEM AND CIRCUIT DESIGN

Pulse Height-to-Digital Converter

The PHDC, shown schematically in Fig. 2-1, is of the capacitor-discharge, counter type. The input data pulses pass through the Linear Gate and generate pulses from the PHWC (Pulse Height-to-Width Converter) which are proportional to the amplitude of data pulses. These pulses gate the clock pulses with a logic and gate. The gated clock pulses are counted by 7-bit Binary Counter and the digital information is applied to the computer for data-loading through the Data Driver stage. The eight pilot lamps of Monitor Driver indicate the digital output of data pulses. The Trigger Pulse Generator is a monostable-multivibrator. The output gate of PHWC generates a trigger pulse which closes the Linear Gate to inhibit next coming pulses until the first data is stored in the computer memory. The Sync. Pulse Generator monostable-multivibrator is also triggered by the output gate of PHWC at the leading-edge (Fig. 2-21). The sync. pulses go to the computer to synchronize the dataloading process. The Reset Pulse Generator monostablemultivibrator receives a trigger pulse from the computer immediately after finishing data-loading of an input data

Fig. 2-1 BLOCK DIAGRAM OF PHDC

1

୬

NUMBER OF

PARALLEL LINES

pulse (Fig. 2-2A). The reset pulse clears the Binary Counter and open the Linear Gate so that another pulse can be processed (Fig. 2-2B). The manual reset switch is provided for initiating the system process.

The Linear Gate

The Linear Gate, shown in Fig. 2-3, uses a N-Channel Field Effect Transistor Q_1 and a J-K FF for gating Q_1 . The high level output (+5v) of FF provides OFF gating bias (-15v) through the gate driver Q_2 . The high impedance of drain-source junctions of Q_1 (OFF state) prevents passing any pulses. Reset pulse from Reset Pulse Generator change the high level output of FF into low level (0v). The low level output turns on Q_1 and the drain-source junctions have low impedance (200 ohms) allowing a data pulse to the PHWC stage. A trigger pulse by the output gate of PHWC changes the low level to the high level of FF, then turns OFF Q_1 . (Fig. 2-2B)

Pulse Height-to-Width Converter

Conversion of the +0.2 to 2-volt input pulse to a gate whose width is proportional to the height is accomplished by the PHWC, shown in Fig. 2-4. Action of the gate is dependent on a constant-current generator discharging capacitor C_1 which is charged to the pulse height. Since

Fig. 2-3 LINEAR GATE

Fig. 2-4 PHWC (PULSE HEIGHT-TO-WIDTH CONVERTER)

the capacitor C_1 is connected to the collector of the NPN grounded-base transistor Q_3 , it starts to discharge after the input pulse has dropped to zero. The high impedance in the emitter of the transistor Q_3 limits the emitter to a low current. The I vs E characteristics of this configuration show that the collector current is constant for wide variation of the collector voltage. The charge on the capacitor C_1 is removed at a constant rate; therefore the voltage is reduced linearly (Fig. 2-2D). The constant-current generator run-down is set at 22.6 µsec for a 2-v input pulse. The output pulse of Q_3 is differentiated by the capacitor C_2 , resulting in a leading-edge spike and a gate whose width is proportional to the height of the pulse (Fig. 2-2E). The operational amplifier (integrated circuit) amplifies the gate and inverts the polarity. The diode D₁ clips the unwanted spike and the comparator (integrated circuit) produces a positive level gate (+3v) comparing with ground level (Fig. 2-2F). Then, the gate is applied to the logic AND gate with the clock pulses (4.755 MHz) for counting proportional to the data pulse height. The linearity of PHWC vs data pulse height and width is shown in Fig. 2-5A,B.

Clock Pulse Generator

The Clock Pulse Generator, shown in Fig. 2-6, is

Input Input Pulse Pulse HEIGHT Width	2µs	3µs	4μs	5μs	6µs	7µs	8µs	9µs	lOµs
0.2V	10	12	12	12	12	12	12	12	11
0.25V	14	14	14	14	14	14	14	14	14
0.50V	27	28	28	28	28	28	28	28	28
0.75V	40	41	42	42	42	42	42	42	42
1.00V	52	56	56	56	56	56	56	56	56
1.25V	64	66	67	68	68	68	68	68	68
1.50V	76	80	82	82	82	82	82	82	81
1.75V	88	92	93	93	93	93	93	93	93
2.00V	100	106	108	108	108	108	108	108	108

Fig. 2-5A THE LINEARITY OF PHDC

.

.

•

.

Fig. 2-5B THE LINEARITY OF PHDC

crystal-control multivibrator whose frequency is 4.755 MHz. To improve the clock pulse a squaring Schmitt trigger circuit is used.

Counter, Data and Monitor Driver (Fig. 2-7)

The output gate of PHWC enables the logic AND gates G_1 and G_2 , and allows the clock pulses (Fig. 2-2H) to be applied to an 7-bit binary counter composed of two integrated circuit 4-bit counters (A_1 and A_2). The digital information stored in the binary counter is transferred via the Data Driver stage to the computer input stage. The Data Driver circuits translate the digital levels of the PHDC (Logic 1 = +5v, Logic 0 = 0v) to those of the computer input stage (Logic 1 = -4v, Logic 0 = 0v). The Monitor Driver provides visual indication of data pulse by 8 pilot lamps with one pilot lamp indicating overflow of the 7-bit counter.

Pulse Generators

Three monostable-multivibrators (Fig. 2-8A, B, and C) generate trigger pulses for the Linear Gate FF, sync. pulses for the computer Data-loading process, and reset pulses for Binary Counter and Linear Gate FF. Reset pulses are obtained by triggering the Reset Pulse Generator with a manual switch or external pulses from the computer. Reset pulses to the Linear Gate FF which requires negative-going pulses are

Fig. 2-7 LOGIC AND GATE, COUNTER, DATA AND MONITOR DRIVER

Fig. 2-8A TRIGGER PULSE GENERATOR

ι

.

.

ι

3

•

Fig. 2-8C RESET PULSE GENERATOR

.

.

inverted by a NAND gate (Fig. 2-8C).

Digital-to-Analog Converter

A digital-to-analog converter (DAC) consists essentially of two parts: the actual decoding unit which is usually a high-output-impedance low current device and a high-gain summing amplifier with a low-output-impedance. The resistor-ladder type decoder was chosen because of the simplicity of the circuit. An IC operational amplifier (μ A709) is used as the summing amplifier (Fig. 2-9, 10). The relationship between output and input of the circuit of Fig. 2-9 is given by

$$V_{0A} = -\frac{R_{f}}{R} \left[\frac{V_{R}(2^{5})}{2} + \frac{V_{R}(2^{4})}{4} + \frac{V_{R}(2^{3})}{8} + \frac{V_{R}(2^{2})}{16} + \frac{V_{R}(2^{1})}{32} + \frac{V_{R}(2^{0})}{64} \right]$$

for 6-bit decoder where R_f is the feedback resistor of Op.Amp. and R is the decoder resistor. For data read-out two DAC's are provided; DAC_y (Fig. 2-9) for the accumulated digital information in the magnetic core storage and DAC_x (Fig. 2-10) for the addressing digital information in the index register. The input stage of DAC_y consists of 6-bit decoder instead of 24-bit since 6 bits yield sufficient accuracy for display on the oscilloscope. Therefore a

ANALOG SWITCH (AS)

Fig. 2-9 DACY (DIGITAL-TO-ANALOG CONVERTER)

ANALOG SWITCH (AS)

scale switch is arranged, which selects a 6-bit group and thus the scale of the vertical axis. As the analog switch two silicon PNP transistors are used for each bit. The scale switch is shown in Fig. 2-11. FROM DISPLAY REGISTER

.

SWITCH POSITION	SCALE LSB	RANGE MSB	FULL (+4V) SCALE (+4V)
Sl	1	32	63
S2	, 4	128	252
S3	16	512	1008
S4	64	2048	4032
S5	256	8192	16128
S6	1024	32768	64512
S7	4096	131072	258048

Fig. 2-11 SCALE SWITCH

MSB

CHAPTER III

MODIFICATION TO ATHENA AND PROGRAMMING

The functional diagram of the Athena Computer¹ is shown in Fig. 3-1. The Athena Computer has a special operational code, Coefficient Jump (CJ), which provides means of selecting particular programs stored on the drum storage. A specific program stored in a given sector of drum groups four, five, and six (Fig. 3-2) can be selected by the Program Selecting pushbutton with this instruction. Each sector address is a 2-bit binary number while each magnetic drum group address is a 3-bit binary number. The program selecting pushbuttons introduce into the Program Address Register (PAR) a 4-bit binary number which selects the drum group and sector address of a given sector. The most significant bit of the 5-bit binary number drum addresses for drum groups four, five, and six is always a "1". This bit is entered into the PAR from the CJ instruction during program operation. The remote data-process diagram is shown in Fig. 3-3.

There are three data-process programs which are pre-loaded in the given sectors of magnetic drum storage. Those are as follows:

(1) Clear magnetic core storage where data

Fig. 3-1 BLOCK DIAGRAM OF ATHENA

DRUM GROUP ADDRESS

Fig. 3-2 MAP OF MAGNETIC DRUM STORAGE

PUSHBUTTON SW.

Fig. 3-3 REMOTE CONTROL MODE

to be stored. (Flow diagram in Fig. 3-4A)

- (2) Add 1 to the core address given by the digitized pulse height information from the PHDC. (Flow diagram in Fig. 3-4B)
- (3) Cycle through the core address and read the contents of each address. (Flow diagram in Fig. 3-4C)

During the data-loading program (2) operation the Wait Partial (WP) instruction is used to slave the computer to the PHDC. When this instruction is decoded, the computer will be stopped by inhibiting the Main Pulse Distributor (MPD). When a Partial Sync Pulse is received from the PHDC, the MPD is enabled again to issue main pulses, and the computer continues. During the first cycle of the dataloading program, operation the WP instruction will be decoded. This applies the output of the WP logic circuits (Fig. 2-2A) to the Reset Pulse Generator (RPG) of the PHDC. Then the reset pulse from the RPG clears the Binary Counter, and opens the Linear Gate to receive an input data pulse. At the trailing-edge of the data pulse a partial sync pulse (Fig. 2-2J) is generated by the Sync Pulse Generator of the PHDC which releases the computer from the stop state. This

Fig. 3-4A FLOW DIAGRAM OF CLEAR M.C.

Fig. 3-4B FLOW DIAGRAM OF DATA LOAD

Fig. 3-4C FLOW DIAGRAM OF READOUT DATA

allows the data to be stored in a magnetic core address. The operation of data-loading program (Fig. 3-4B) is as follows:

- Transfer the contents of the Acc.
 (former input data information) to the core address given by the contents of Index Register.
 - (2) Transfer the digitized input data from the PHDC to a certain core address except the reserved ones. (for temporary storage) Load the certain address data into the Index Register.
 - (3) Clear the contents of Acc. and load+1 into the Acc.
 - (4) Add the contents of Acc. (+1) to the contents of the core address given by the contents of Index Register and place the results in the Acc.
 - (5) WP instruction code is decoded. A reset trigger pulse is supplied to the PHDC and receive a sync pulse from the PHDC while an input data pulse is processing in the PHDC.

Only one data pulse can be processed during one cycle of the data-loading program.

The operation of clearing the magnetic core storage program (Fig. 3-4A) is as follows:

- (1) Load zero into the Accumulator.
- (2) Load 127 (the number of reserved core addresses) into the Index Register.
- (3) Transfer the contents (zero) of the Acc. to the magnetic core address given by the contents of Index Register. Decrement the contents of Index Register by one.
- (4) If the contents of Index Registerbecomes zero, jump to the Step (1).If it is not, jump to the Step (3).

But the next cycles after the first one are redundant.

The operation of readout data program (Fig. 3-4C) is as follows:

- Load 127 (the number of reserved core addresses) into the Index Register.
- (2) Transfer the contents of the core address given by the contents of the Index Register to the Acc.

- (3) Transfer the contents of Acc. to the scale switch via the Display Register, and also the contents of Index Register to the DAC_X input stage. Decrement the contents of Index Register by one.
- (4) If the contents of Index Registeris zero, jump to the Step (1). Ifit is not, jump to the Step (2).

CHAPTER IV

RESULTS

The system was built and tested using a pulse generator with variable output as a source. Fig. 4-1 shows the pulse height distribution which is obtained by storing 1.0V data pulses for 100 seconds and 1.5V data pulses for 50 seconds with a pulse width of 10μ s and pulse rate of 1000 PPS.

The maximum processing rate of the Athena Computer is about 500 PPS since the seven necessary data-loading instructions have a minimum execution time of 40μ s each and the Wait Partial instruction has an execution time of 0 to 5ms depending on the occurrence of an input data pulse.

During the data processing it is possible for the turn on of the linear gate to coincide with the occurrence of an input pulse thus producing a pulse whose width is less than 2μ s. In this case the pulse height is incorrectly digitized. However, the probability of this event is very small for random input data pulses at low rates.

Input Data Pulse Height

Input Data Pulse

3

Height	1.0V, 1.5V
Width	10 µs
Rate	1000 PPS

Fig. 4-1 Number of Pulses vs Input Data Pulse Height

BIBLIOGRAPHY

- 1. USAF Model SM68, Missile Weapon System Radio-Inertial Guidance System Computer (UNIVAC). Function Manual T.O. 21-SM68-2F-6-1 Digaram Manual T.O. 21-SM68-2D-6-1 T.O. 21-SM68-2D-6-2 Air Force; Univac; Mpls., Minn., July 1963.
- Zey, R. B. "Generalizing the Athena Computer," Thesis, University of Houston, 1970.

APPENDIX A

Circuit Diagrams

For

The Pulse Height Analyzer

.

.

.

Fig. A-1 LINEAR GATE

 \mathcal{L}

Fig. A-3 CLOCK PULSE GENERATOR

Fig. A-4 LOGIC AND GATE, COUNTER, DATA AND MONITOR DRIVER

Fig. A--5A TRIGGER PULSE GENERATOR

Fig. A-5B SYNC PULSE GENERATOR

ı

Fig. A-5C RESET PULSE GENERATOR

Fig.

9--V

DЛC_Y

.

Fig.

A-7

DAC_X

ANALOG SWITCH (AS)

Fig. A-8 POWER SUPPLY

.50

PULSE HEIGHT ANALYZER	PIN NO. & JACK	TERMINAL BOARD	ATHENA COMPUTER
WAIT SYNC →	5A	BA34	J154(11B)
OPEN GATE +	7A	BB34	J123(11B)
DIGITAL			
OUTPUT 0	10A	AAl	J80101
1	1 1A	AA2	J80102
2	12A	AA 3	J80103
3	13A	AA4	J80104
4	14A	AA5	J80105
5	15A	AA6	J80106
6	16A	AA7	J80107
7	17A	AA8	J80108
CLEAR M.C. SW	20A	BB26	TARGET SW4
DATA LOAD SW	22A	BB27	TARGET SW2
READOUT DATA SW	24A	BB28	TARGET SW6
SW COMMON	1 A	BB29	TARGET SW COM
CLEAR M.C. LAMP	21A	BC26	TARGET LAMP 4
DATA LOAD LAMP	2 3A	BC27	TARGET LAMP 2
READOUT DATA LAMP	- 25A	BC28	TARGET LAMP 6
LAMP COMMON	27A	BC29	TARGET LAMP COM
READY SW (C)	3A	BB32	READY SW (C)
READY SW (N.O.)	4 A	BB31	READY SW (N.O.)
READY LAMP	6A	BC31	READY LAMP
READY LAMP (COM)	26A	BC32	READY LAMP (COM)
GROUND	2A	BC34	GROUND

Fig. A-9 ATHENA-PULSE HEIGHT ANALYZER CABLE INTERCONNECTION

PULSE HEIGHT ANALYZER	PIN NO. & JACK	TERMINAL BOARD	ATHENA COMPUTER
DACy			
DIGITAL INPUT			DISPLAY REGISTE
1	1 B	BA5	J80205
2	2 B	BA6	206
3	3 B	BA7	207
4	4 B	BA9	209
5	5B	BA10	210
6	6B	BAll	211
7	7 B	BA13	213
8	8B	BA14	214
. 9	9 B	BA15	215
10	10 B	BA17	217
11	11 B	BA18	218
. 12	12B	BA19	219
13	13 B	BA21	221
14	· 14B	BA22	222
15	1 5B	BB1	224
16	16B .	BB3	226
17	1 7 B	BB4	227
18	18 B	BB5	228
19	19 B	BB7	230
20	2 0B	BB8	231
21	21 B	BB9	232
22	22 B	BB11	J80234
23	23B	BC14	DR-29
24	24 B	BC16	DR-30

•

PULSE HEIGHT ANALYZER	PIN NO. & JACK	TERMINAL BOARD	ATHENA COMPUTER
DACX		<u> </u>	
DIGITAL INPUT			INDEX REGISTER
1	30B	BA26	J242B (7B)
2	31 B	BA27	J242A (7A)
. 3	32B	BA28	J252B (7B)
4	33 B	BA29	J252A (7A)
5	3 4B	, BA30	J253A (7A)
6	3 5B	BA31	J250A (7A)
7	36B	BA32	J272B (5B)

Fig. A-10 ATHENA-PULSE HEIGHT ANALYZER

CABLE INTERCONNECTION

.

Fig. A-11 FRONT PANEL OF THE PULSE HEIGHT ANALYZER

٠

54

٦.

.

APPENDIX B

Program Listings

.

. .

Type 2

Operational Code	·	Mode
9 bits	3 b	its

Туре З

Operational Code	Constant
6 bits	13 bits

Type 4

Operational Code	Drum Address
5 bits	13 bits

Fig. B-1 TYPES OF PROGRAM WORDS OF ATHENA

•

	· ·		1
Instruction	Octal Code	Type of Instruction	Instruction Description
СХ	12-	3	Transmit the rightmost 12 bits of instruction word to the x register at bit positions X ₀₀₋₁₁ .
CA	14-	3	Transmit the rightmost 12 bits of instruction word to the x register at bit positions x_{12-23} . Clear the accumulator and add the quantity in x to the accumulator.
SA	004	1	Store the contents of the accumulator in magnetic core storage.
LI	52-	3	Transmit the rightmost 8 bits of instruction word to the index re- gister.
TD	024(001)	2	Cause the following in- struction to be indexed.
TD	024(003)	2	Cause the following instruction to be indexed and then the index register to be decremented.
TJ	30-	4	Jump to the 13-bit drum address specified in the instruction word if the contents of index register are zero.

Fig. B-2 INSTRUCTION REPERTOIRE OF ATHENA (1)

Instruction	Octal Code	Type of Instruction	Instruction Description
UJ	20-	4	Unconditional Jump
SI	006	1	Store the input data in magnetic core storage.
LV	426	2	Transmit 8 bits in x ₀₀₋₀₇ to the index register.
TP	060	1	Clear accumulator and add the quantity in magnetic core storage.
AD	064	1	Add to contents of accumulator the quantity in magnetic core storage and place results in accumulator.
WP	34-	4	Wait for Partial Sync Pulse
DD	417 (003)	2	Transmit data from the accumulator to the out- put jack-panel via the display register (24-bit binary, no print cycle).
CJ	37-	4	Co-efficient Jump. Jump to a drum group sector in drum groups four, five, and six; the specif: sector being determined by the PROG-SEL push- button selected.

Fig. B-3 INSTRUCTION REPERTOIRE OF ATHENA (2)

•

PROGRAM	PROGRAM ADDRESS (OCTAL)	OP CODE	INSTRUCTION (OCTAL)
Store +1 in the core address, 310	⁾ 8	CX CA SA	120001 140000 004310
Remote Program Selecting	00040*	CJ	370000

*When READY pushbutton is depressed during operation the computer always returns to this address.

Fig. B-4 SUB-PROGRAM

Program Address (Octal)	OP Code	Instruction (Octal)
12000	сх	120000
12001	CA	140000
12002	LI	520177
12003	\mathtt{TD}	024003
12004	SA	004000
12005	TJ	312000
12006	UJ	212003

*Program Location --- Drum Group 5

Sector Block 4

* ···· INDEXING

٠

Fig. B-5 CLEAR M. C. PROGRAM

60

 Program Address (Octal)	OP Code	Instruction (Octal)
11000	TD	024001
11001	SA	004000
11002	SI	006300
11003	LV	426000
11004	TP	060310
11005	TD	024001
11006	AD	064001
11007	WP	351000

*Program Location ---- Drum Group 4

Sector Block 2

Fig. B-6 DATA LOAD PROGRAM

Program Address (Octal)	OP Code	Instruction (Octal)
13000	LI	520177
13001	\mathbf{TD}	024003
13002	\mathbf{TP}	060000
13003	DD	417003
13004	TJ	313000
13005	UJ	213001

*Program Location --- Drum Group 5

Sector Block 6

* ···· INDEXING

Fig. B-7 READOUT DATA PROGRAM

- (1) STANDBY the computer in NORMAL RATE
- (2) depress READY
- (3) depress CLEAR M.C.
- (4) depress RUN check the zero display on the oscilloscope with the 7 scale switch positions.
- (5) depress STOP
- (6) depress READY
- (7) depress LOAD DATA
- (8) depress RUN
- (9) depress STOP by the given schedule
- (10) depress READY
- (11) depress READOUT DATA
- (12) depress RUN
 study results on the oscilloscope
 with changing the scale switch position
- (13) depress STOP

It is also possible to continue the LOAD DATA after a READ-OUT DATA without a CLEAR M.C.

Fig. B-8 SYSTEM OPERATION