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Abstract

Surgical procedures are complex tasks requiring a variety of specialized and expensive re-

sources. They are recognized amongst the most crucial activities in hospitals from social,

medical and economic points of view. Accordingly, operating room (OR) management has

gained significant attention within the past decade. Specifically, efficient planning and

scheduling of operating rooms has become a priority for both practitioners and researchers.

Planning problems deal with assigning surgical patients to certain days over a given planning

horizon (e.g., a week) considering limited resources (e.g., PACU bed). Scheduling problems

address the allocation of patients to the OR and the calculation of surgery start times on

a daily basis. One of the major problems associated with the development of accurate

OR planning and scheduling strategies is the uncertainty inherent to surgical procedures.

Among many sources of uncertainty mentioned in the literature, high variability of surgery

durations is identified as the biggest challenge towards developing practical OR schedules.

Uncertain surgery durations can cause a large deviation from the expected completion time

of all surgery cases scheduled for each day. Larger than average surgery durations cause

an extended overtime for surgical teams and waiting time for patients. On the other hand,

shorter than expected durations result in unnecessary resource idle time and lost revenue.

The goal of the proposed research is to address surgery duration uncertainty and make a

trade-off between optimizing average performance and reducing variability of the perfor-

mance measures via developing risk-based models and solution methods.

A risk averse solution method using Conditional Value-at-Risk (CVaR) is proposed to

reduce variability on overtime and its associated costs in a daily OR scheduling problem.

CVaR is a risk measure that is shown to be effective in simultaneously reducing the expected

value and the variance of a performance measure. The OR scheduling problem is formulated

as a stochastic mixed-integer linear programming model, where a surgery duration follows

a known probability distribution function. Numerical results from real-life instances show

that our approach not only outperforms the widely used expected value (EV) approach in

reducing variability on overtimes, but it also shows acceptable performance in minimizing
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the expected value of overtimes and idle times. We also show that the proposed method

performs well under distributional uncertainty of the random data. As compared to the

EV in terms of the total cost, the CVaR reduced the variance, interquartile range and

median absolute deviation by 37%, 25% and 24%, respectively, with a slight increase (4%)

in the expected value. The proposed method does not explicitly optimize the average

performance but focuses on a rather small portion of scenarios. Our next work tries to

tackle this limitation using chance-constrained programming.

This work proposes a two-stage chance-constrained model to solve the OR scheduling

problem under uncertainty. The goal is to minimize the costs associated with OR opening

and overtimes and patient waiting times. The risk of OR overtime is controlled using indi-

vidual chance constraints. A deterministic equivalent formulation of the model is proposed.

Numerical experiments on several test problems show that the proposed model provides a

better trade-off between minimizing costs and reducing solution variability compared to two

existing models in the literature. We used several criteria such as OR utilization, amount of

OR overtime, patient waiting time and the ratio of overtime scenarios to compare the three

models. We exploit the structure of the model in order to propose a decomposition algo-

rithm that solves large test instances of the OR scheduling problem, that of which is known

to be NP-hard. Strong valid inequalities are derived in order to accelerate the convergence

speed. It is shown that the proposed algorithm will achieve global optimality. Moreover,

the proposed algorithm outperforms a commercial solver and a basic decomposition algo-

rithm by solving instances of up to double size to optimality within one hour. Specifically,

this algorithm solves instances with up to 74 surgeries and 20 ORs to optimality. The next

chapter aims to develop more powerful solution techniques to solve even larger instances of

the stochastic OR scheduling problem.

Lower- and upper-bounds are derived for the two-stage model using Lagrangian relax-

ation and CVaR. An augmented decomposition algorithm is proposed that is able to find

high quality initial feasible solutions in reasonable solution times. Numerical experiments

show that the proposed bounds enhance the computational efficiency of the decomposition

algorithm significantly. The augmented algorithm is able to solve instances with up to

v



207 surgeries and 40 ORs to optimality within one hour. As the probability threshold for

OR overtime increases, the proposed algorithm provides stronger bounds on the optimal

objective value.
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Chapter 1

Introduction

1.1 Background and Motivation

Health care expenditures are expected to constitute 25% of the US gross domestic prod-

uct (GDP) in 2025, up from 15.9% in 2005 [66]. Operating rooms contribute to more than

30% of total expenses [56] and 40% of total revenues [33] in hospitals. The rapid growth

of healthcare expenditures adds to the significance of proper operating room management.

This increase is fueled by new technologies, new medications, aging population and the

shortage of skilled staff in hospitals [51].

Surgical expenses contribute to 30% of health care expenditures, and are expected to

grow from $572 billion in 2005 to $912 billion (2005 dollars) in the year 2025 (7.3% of US

GDP). Surgical procedures are complex tasks requiring a variety of specialized and expensive

resources. Weiss, Elixhauser and Andrews [94] reported that in 2011, hospitalizations that

involved surgical procedures constituted 29% of the total hospital stays and 48% of the total

hospital costs in the US. Hospital stays that involved a surgical procedure were about twice

as costly as other hospital stays. In light of these reports, surgeries are recognized amongst

the most crucial activities in hospitals from social, medical and economic points of view.

Therefore, operating room (OR) management has gained significant attention within the

past decade. Specifically, efficient planning and scheduling of operating rooms has become

a priority for both practitioners and researchers.
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1.2 Operating Room Scheduling

An operating room refers to a medical facility designed and equipped to perform surg-

eries. Cardoen, Demeulemeester and Beliën [12] categorized the operating room scheduling

process into four planning levels. The first stage, often regarded as case mix planning

(CMP), determines how much operating room time is assigned to the different surgeons or

surgical groups in the long run. This stage is situated on a strategic level. The second

stage, which is tactically oriented, deals with the development of a master surgery schedule

(MSS). This schedule determines the number and type of operating rooms available, the

operating time limits for the available rooms, and the surgeons or surgical groups to whom

the operating room time is assigned. Our research is focused on the third stage, where

surgical cases are scheduled on a daily basis. A two-step approach is commonly applied to

address this stage. In the first step, patients are assigned to different days in the planning

horizon (e.g., a week). In the second step, the patient population for a specific day is as-

signed to the available operating rooms and is sequenced. This stage will be explained in

further detail later in this chapter. Finally, the execution of the surgery schedule is mon-

itored online in the fourth stage. When uncertainties realize and the surgery schedule is

substantially disrupted, rescheduling may be necessary. Figure 1.1 shows the general work-

flow of a surgical procedure in an operating room. A variety of activities are performed

through pre-operative, peri-operative and post-operative stages. The pre-operative stage

begins with the surgery decision and continues until the patient’s arrival to the OR. It typ-

ically includes all preparations prior to the surgery such as physical examinations, medical

tests, and administrative work. The peri-operative stage includes all activities performed in

the OR and ends with the patient’s transfer to the recovery area. The post-operative stage

includes recovery and follow-up periods. Our research is focused on the activities performed

during the peri-operative stage and the resources that are involved during this stage.

Samudra, Van Riet, Demeulemeester, Cardoen, Vansteenkiste and Rademakers [79]

broke down the daily OR scheduling problem using seven descriptive fields: patient charac-

teristics, performance measures, decision delineation, upstream and downstream facilities,
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Figure 1.1: General Workflow of a Surgical Case in the OR [95]

uncertainty, operations research methodology, and testing phase and application.

• Patient types: Two major patient classes are considered in the literature: elective

patients and non-elective patients. Elective patients are those for whom the surgery

can be planned in advance (e.g., weeks, months). On the other hand, non-elective

patients arrive randomly to the hospital and their surgeries must be fitted into the

schedule on short notice. Elective patients are further divided into inpatients and

outpatients. Inpatients are hospitalized patients who are admitted to the hospital

following a doctor’s order and have to stay overnight. Outpatients are those patients

who are not officially admitted to the hospital and typically enter and leave the hos-

pital on the same day. There are some features that distinguishes an outpatient from

an inpatient. For instance, outpatient surgeries often include more standardized pro-

cedures such as routine surgeries and minimally invasive procedures. Moreover, the

actual arrival time of outpatients is uncertain because they are not admitted to the

hospital in advance. A non-elective surgery is commonly considered an emergency if

it has to be performed immediately and an urgency if it can be postponed for a short

time (i.e., days). Non-elective surgeries are often scheduled in two ways: 1) They are

incorporated in the elective surgery scheduling by reserving buffer OR time, or 2) A

number of ORs are exclusively assigned to the non-elective patients such that these
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operations take place with minimum waiting time.

• Performance criteria: Choosing the best performance measure depends on the an-

gle from which we are looking at the problem and what our priorities are. If we are

hospital administrators, achieving high utilization levels and low costs is the most

important goal. On the other hand, surgeons and medical staff care less about costs

and revenues and would rather have their working preferences met instead (i.e., less

overtime and less night shifts). The surgical patients, who are the client of the hospi-

tal, desire short waiting times and no postponed surgeries. The most common criteria

considered in the literature are waiting time, utilization, leveling, idle time, through-

put, preferences, financial measures, makespan, and patient deferral. Many articles

in the literature tried to address the interests of different stakeholders by considering

a multitude of criteria. They often assign an importance weight to each measure and

optimize the weighted sum of each. Waiting time is perceived as both direct (i.e.,

waiting time on the day of surgery to start the operation) and indirect (i.e., time

spent on the waiting list) waiting time. It is common to consider underutilization as

undertime and overutilization as overtime, although this might not be the case. Uti-

lization refers to the workload of a resource, while undertime or overtime are timing

aspects. Therefore, we can have an underutilized OR which runs into overtime. Min-

imizing overtime is one of the most favorable performance measures due to its huge

negative consequences, such as job dissatisfaction, high costs, and surgery cancella-

tions. Preference-based performance measures are often related to qualitative aspects

desired by either the medical staff or the patients. For example, surgeons prefer to

have their surgical patients scheduled on their selected date and at a single facility.

• Decision types: The decisions considered in the OR planning and scheduling prob-

lems can be categorized based on three main groups: 1) discipline level, 2) surgeon

level, and 3) patient level. The most common decisions are date, room, start time, and

resource capacity (e.g., OR time blocks, PACU beds). In the discipline level, decisions

are made for a whole medical department. In the surgeon level, decisions involve a
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surgeon or a whole surgical group with the same specialty. Similar rule applies to the

decisions made for the surgical patients. A large portion of the published literature

deals with assigning dates and rooms to individual patients or patient types. A very

important distinction when defining the decisions is the OR scheduling policy. In the

block scheduling policy, OR time slots are dedicated to a discipline or to a surgeon

group. Therefore, surgeons are only allowed to book cases into the blocks assigned

to them. On the other hand, the open scheduling policy relaxes this restriction and

allows surgeons to book their surgeries in any available time slots. Many articles in

the literature have reported that the majority of hospitals are conventionally using

the block booking policy.

• Upstream and downstream facilities: We mentioned earlier that a large portion

of hospital admissions belong to surgical patients. Therefore, many departments in a

hospital are involved in surgical procedures from the pre-operative stage to the post-

operative stage. Operating room scheduling affects the upstream and downstream

resources such as ward, PACU and ICU. Therefore, devising integrated models while

taking into account upstream and downstream resources can improve the overall per-

formance of a hospital. Many articles in the literature have considered the PACU

capacity in their models, while the other resources have been largely ignored by the

research community.

• Uncertainty: One of the major problems associated with the development of accu-

rate OR planning and scheduling strategies is the uncertainty inherent to surgical ser-

vices. Deterministic planning and scheduling approaches ignore uncertainty, whereas

stochastic approaches explicitly incorporate it. Stochasticity in the form of uncer-

tain patient arrivals and surgery durations is frequently incorporated. Non-elective

patient arrivals are in most cases impossible to predict in advance and additionally

occupy a random amount of OR time, which often leaves OR managers with no op-

tion but to reserve capacity for them. In contrast, the arrival of elective patients to

ORs contains little uncertainty and is frequently considered as deterministic in the

5



literature. Surgery durations are difficult to predict because the magnitude of the

procedure for some surgeries only becomes apparent once the surgery is already in

progress. Additionally, the durations often depend on various complex factors, e.g.,

the characteristics of the patient, the surgeon and the surgical team. As individual

surgery durations are uncertain, their sum, or the total workload per OR, is also un-

certain (See Figure 1.2). Surgery rescheduling limits the impact that deviations from

the initial OR schedule have on the hospital. These deviations on the day of surgery

are caused by an uncertain workload due to possible emergency arrivals, deviations

from the estimated surgery durations or variable LOS in downstream units. Other

causes that can lead to deviations include staff unavailability, equipment failure, late

arrival of patients or staff and, in an outpatient setting, patient no-shows. To limit

the impact, interventions throughout the day in the form of rescheduling might be

needed. Two main types of interventions are cancellations and OR reassignments. In

the case of an OR reassignment, the patient is still served on the planned day, but is

moved or rescheduled to another OR. A more severe intervention is when a patient

cannot be served on the planned day and needs to have the assignment canceled. This

patient will need to be fit into the elective schedule of another day.

• Operations research methodology: Throughout the decades of studying OR

scheduling problems, a wide variety of operations research techniques have been

employed. Simulation techniques, mathematical programming models, improvement

heuristics and scenario analysis are amongst the most commonly used approaches. A

significant increase in the application of mathematical programming models can be

observed from the beginning of the 21st century. Linear programming, goal program-

ming, and integer and mixed integer programming are widely used by the operations

research community to model the OR scheduling problems.

• Testing phase and application: Researchers have used both theoretical and real-

world data to evaluate the applicability of their models. Many articles have used

data collected from hospitals to show that their proposed approach can improve some
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Figure 1.2: The Effect of Surgery Duration Uncertainty on OR Overtime and Surgeon Idle Time:
A Simple Example [4]

aspects of performance such as utilization, overtime and waiting times. However, it

is important to note that the implementation of these models in practice might lead

to completely different outcomes than expected since there are a large number of

factors that are neglected when modeling the OR scheduling problems. Moreover, the

obtained results from one hospital may not be necessarily applicable to other facilities,

as each facility has its own rules and policies.

This research focuses on the second step of the OR scheduling problem, i.e., assigning

the patient population for each day to the available ORs and scheduling cases in each

OR. Elective patients are the only patient type considered in our study assuming that a

number of ORs are dedicated to non-elective patients. The fixed cost of opening ORs, the

expected costs associated with OR overtime and idle time, and the patient waiting time

are the performance measures to be minimized in the proposed models in this research.

The proposed models in our work make decisions regarding OR opening, surgery to OR
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assignment, and projected start time. Operating rooms are the only resources considered

in our study. It is assumed that the upstream and downstream resources are sufficiently

available and do not restrict our scheduling problem. Uncertain surgery durations are taken

into account in our research. It is assumed that surgery durations follow known probability

distributions. The underlying distribution is approximated by a discrete and finite support

using the Monte Carlo sampling method. We propose three types of stochastic mixed-

integer programming (MIP) models for the OR scheduling problem in our research. The

effectiveness of the proposed models and solution methods is tested using several criteria

on a variety of real-life and theoretical test problem instances borrowed from the literature.

1.3 Optimization under Uncertainty

Optimization under uncertainty refers to a class of optimization problems where there

are uncertainties involved in the data or the model. A key challenge in optimization under

uncertainty is when we are dealing with a huge uncertainty space that leads to large-scale

optimization models. Solving optimization problems under uncertainty becomes further

complicated in the presence of discrete decision variables (e.g., binary, integer) that model

logical and combinatorial decisions. This section briefly introduces the theory and method-

ology that have been applied to solve the OR scheduling problems under uncertainty. We

discuss and contrast the widely used approaches in the literature, namely recourse-based

stochastic programming and robust optimization. Furthermore, we introduce some of the

risk-averse approaches including chance-constrained programming, and discuss how they

can benefit operating rooms in the presence of variability in the problem parameters.

Many articles in the literature have used the two-stage stochastic programming approach

to model the OR scheduling problem under uncertainty. Under the standard two-stage

stochastic programming paradigm, the decision variables are partitioned into two sets. The

first-stage variables have to be decided before the actual realization of the uncertain param-

eters. Subsequently, once we know the value of the random parameters, recourse actions

can be made in the second-stage problem. Due to uncertainty, the objective function of
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the second-stage problem is a random variable. The objective is to choose the first-stage

variables in a way that the sum of the first-stage costs and the expected value of the random

second-stage costs is minimized. The standard formulation for the two-stage stochastic

mixed-integer programming model can be shown as [83]

Min cTx+ Eξ∈Ω[Q(x, ξ)],

subject to

Ax = b,

and x ∈ X

(1.3.1)

where the set X represents the integrality constraints, and Q(x, ξ) is the optimal value of

the second-stage problem.
Min
y∈<n2

+

q(ξ)T y,

subject to

T (ξ)x+W (ξ)y = h(ξ)

(1.3.2)

where c ∈ Rn2 and ξ is a random variable from a probability space (Ω, F, P ) with Ω ∈

Rk, f : Ω → Rn2 , h : Ω → Rm2 , W : Ω → Rm2×n2 , T : Ω → Rm2×n1 . The sample

average approximation (SAA) method [44] is a widely used approach to solve the two-stage

stochastic programs. To use this approach, it is assumed that the expectation function is

well defined and finite-valued for all y ∈ <n2
+ . This implies that the value of the second-stage

cost is finite for every realization of ξ. Suppose that we have a sample ξ1, ξ2, ..., ξN of N

realizations of the random vector ξ. This sample can be collected from historical data or

can be generated using the Monte Carlo sampling techniques. Therefore, for any feasible

solution to the first stage problem, say x̄, we can approximate E[Q(x̄, ξ)] by averaging

Q(x̄, ξj), j = 1, 2, ..., N as

Min
y∈<n2

+

1
N

N∑
j=1

Q(x̄, ξj). (1.3.3)

Unlike the stochastic programming approach, the Robust Optimization (RO) [7] relaxes
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the assumption of known probability distribution and provides optimal solutions that are

feasible for a defined set of values for the uncertain parameters. In other words, RO op-

timizes against the worst-case realization of the random vector. The conservatism of the

solution can be controlled by the means of a defined budget of uncertainty. When the

problem structure allows us to divide it to a first stage problem (i.e., before the realization

of uncertain parameters) and a second stage problem to adjust the solutions at the mini-

mum cost, a two-stage robust optimization model can be developed similar to a two-stage

stochastic model. The difference is in the second stage objective, where the minimum cost

under the worst-case scenario from the defined uncertainty set is calculated.

The recourse-based approach to stochastic programming requires the decision-maker to

assign a cost to recourse activities that are taken to ensure feasibility of the second-stage

problem. In essence, the philosophy of this approach is that infeasibilities in the second

stage are allowed at a certain penalty. The approach thus focuses on the minimization

of expected recourse costs. In the Chance-Constrained programming (CCP) models [15],

the focus is on the reliability of the system, i.e., the system’s ability to meet feasibility in

an uncertain environment. This reliability is expressed as a minimum requirement on the

probability of satisfying constraints. A generic chance-constrained programming model can

be shown as
Min
x∈X

f(x),

subject to

Pr[G(x, ξ) ≤ 0] ≥ 1− α.

(1.3.4)

The CCP model aims to find a solution x from the feasible set X that minimizes the

function f(x) while satisfying the chance constraint G(x, ξ) ≤ 0 with a probability of at

least (1− α)× 100%. It is assumed that the probability distribution of ξ is known.

The recourse-based model 1.3.1 makes a decision based on present first-stage and ex-

pected second-stage costs. In this model, the decision-maker is only interested in minimizing

the average cost neglecting the variability of the outcomes for different realizations of the

random vector. In other words, the decision maker is risk-neutral, i.e., does not differentiate
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between two solutions with the same expected value but significantly different variabilities.

To capture the notion of risk in stochastic programming, a modified version of 1.3.1 can be

formulated as

Min cTx+ λEξ∈Ω[Q(x, ξ)] + (1− λ)ρ(ξ, y) (1.3.5)

where ρ(ξ, y) is a risk measure that aims to minimize the variability of the outcomes under

different realizations of the random parameters. The concept of using the expected value

(EV) in scheduling optimization can be helpful for problems with predictable variability

(i.e., low risk) on the parameter. However, for problems with frequent changes in a less

predictable manner (i.e., high-risk), the optimal solution may show poor performance for

specific realizations of the random data. This is attributed to the risk-neutral [74] behavior

of the EV measure, which focuses on maximizing (minimizing) the expected profit (loss).

This means that the EV approach treats two different solutions as equivalent if they give the

same objective value without considering the characteristics of the variability such as the

magnitude and/or symmetry of variance. This can be a problem if a performance measure

in scheduling OR is to minimize unexpected variability to complete the planned surgeries

for the day. To address this issue, we propose a solution approach based on CVaR [78]

in Chapter 3, which was introduced in finance to minimize risk. CVaR has been shown

to reduce the variability of performance measures, while simultaneously minimizing the

expected value compared to EV [67]. Moreover, the proposed chance-constrained model in

Chapter 4 achieves a moderate trade-off between minimizing total cost and the variability

of costs [68].

1.4 Contributions

The proposed research aims to address surgery duration uncertainty and to make a

trade-off between optimizing average performance and reducing variability of the perfor-

mance measures via developing risk-based solution methods. A risk averse solution method

using Conditional Value-at-Risk (CVaR) is proposed in Chapter 3 to reduce variability on
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overtime and its associated costs in a daily OR scheduling problem. Our numerical exper-

iments show that the CVaR-based model proves effective in simultaneously reducing the

expected value and the variance of a performance measure. The OR scheduling problem

is formulated as a stochastic mixed-integer linear programming model, where a surgery

duration follows a probability distribution function. Numerical results from real-life in-

stances show that our approach not only outperforms the widely used expected value (EV)

approach in reducing variability on overtimes, but it shows acceptable performance in min-

imizing the expected value of overtimes and idle times. We also show that the proposed

method performs well under distributional uncertainty of the random data. The proposed

method does not explicitly optimize the average performance but focuses on a rather small

portion of scenarios. Our next work tries to tackle this limitation using chance-constrained

programming.

Chapter 4 presents a chance-constrained mixed-integer programming model for the OR

scheduling problem with stochastic surgery durations. The individual chance constraints

control the risk of OR overtime. The goal is to minimize the sum of OR opening, OR

overtime and patient waiting costs. Our model is compared with two other stochastic

models in the literature: the EV model and the CVaR-based model. We demonstrate that

minimizing the expected costs when solving the chance-constrained OR scheduling model

results in significant savings compared to the case where only the deterministic costs are

minimized. Moreover, we compare the individual and joint chance constraints in terms of

allocated ORs, second-stage stochastic costs and solution times. A decomposition algorithm

with strong feasibility and optimality cuts is applied to effectively solve large-scale test

instances. We propose an algorithm that generates feasibility cuts using the first-stage

solutions, and as a result, reduces the time required to find feasible solutions significantly.

Numerical experiments demonstrates that the decomposition algorithm outperforms both

the IBM CPLEX solver and a basic decomposition algorithm by solving the largest test

instances to optimality within the one-hour time limit. Moreover, it is shown that the

individual chance constraints lead to higher OR utilization, reduced patient waiting times
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and shorter solution times. The next contribution of this research focuses on developing

stronger solution methods to solve very large-scale problems more efficiently.

In Chapter 5, we develop a computationally efficient decomposition algorithm aug-

mented by strong lower and upper bounds using Lagrangian relaxation and CVaR ap-

proximation. Numerical experiments demonstrate that our decomposition algorithm out-

performs the IBM CPLEX solver and the traditional Benders decomposition method in

solving large-scale test instances. The proposed algorithm can solve instances with more

than 200 surgeries and 40 ORs within one hour. It is also shown that the bounding meth-

ods result in finding high-quality initial feasible solutions. It is observed that the proposed

algorithm finds stronger bounds for the optimal objective function compared to other meth-

ods. These bounds become tighter as the probability threshold for OR overtime increases,

resulting in shorter solution times for large-scale test instances.

1.5 Outcomes

Journal Publications

• Najjarbashi, A., and Lim, G. (2015). Using augmented ε-constraint method for solving

a multi-objective operating theater scheduling. Procedia Manufacturing. 3:4448-4455.

• Lim, G. J., Mobasher, A., Bard, J. F., and Najjarbashi, A. (2016). Nurse scheduling

with lunch break assignments in operating suites. Operations Research for Health

Care. 10:35–48.

• Najjarbashi, A., and Lim, G. J. (2019). A variability reduction method for the oper-

ating room scheduling problem under uncertainty using CVaR. Operations Research

for Health Care. 20:25–32.

• Najjarbashi, A., Lim, G. J. (2020). A Decomposition Algorithm for the Two-Stage

Chance-Constrained Operating Room Scheduling Problem. IEEE Access. 8:80160–

80172.

Conference Presentations
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• Najjarbashi, A. and Lim, G. (2016). Solving stochastic operating room surgery

scheduling problem using conditional value-at-risk. INFORMS Annual Conference.

Nashville, Tennessee.

• Lim, G. J., Mobasher, A., Bard, J. F., and Najjarbashi, A. (2017). A swapping

heuristic for daily nurse scheduling in operating suites. INFORMS Computing Society

Conference. Austin, Texas.

• Najjarbashi, A., and Lim, G. J. (2018). Risk-averse methods for the operating room

scheduling problem under uncertainty. INFORMS Annual Conference. Phoenix, Ari-

zona.

1.6 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we review the

relevant literature on OR scheduling problems under uncertainty as well as risk measures,

as these subjects pertain to the application area and methodological domain considered

in the study. In Chapters 3, we propose our risk averse solution method to reduce vari-

ability of performance measures in the daily OR scheduling problem with surgery duration

uncertainty. The proposed solution method is compared against the commonly used EV

method. In Chapter 4, we describe our two-stage stochastic chance-constrained OR schedul-

ing model and a decomposition algorithm to solve large-scale instances. In Chapter 5, we

focus on developing stronger solution methods to solve even greater large-scale problems

more efficiently. This chapter presents a computationally efficient decomposition algorithm

augmented by strong lower and upper bounds using Lagrangian relaxation and CVaR ap-

proximation.
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Chapter 2

Literature review

Researchers started to survey the operating room planning and scheduling problems

since the late 70s. One of the first reviews was conducted by Magerlein and Martin [58]

where they divided the problem into two major processes: 1) Advance Scheduling: schedul-

ing patients for surgery on some future date, and 2) Allocation Scheduling: determining

sequence of surgical cases on a given day. Following the work by Magerlein and Martin

[58], other survey articles were published by Przasnyski [75], Smith-Daniels, Schweikhart

and Smith-Daniels[86], and Blake and Carter [9] using a variety of classification techniques

and frameworks. The number of published articles in the field faced a significant increase

since the beginning of the 21st century. Therefore, several researchers reviewed the articles

published within the past two decades. May, Spangler, Strum and Vargas [61] categorized

the literature based on the planning horizon of the schedule into six groups, ranging from

long-term capacity planning to the same-day scheduling and online monitoring. Similarly,

Guerriero and Guido [33] categorized the literature into three main groups based on their

planning horizon: strategic, tactical, and operational. Then, the articles in each group

were studied in more detail using criteria such as objectives, constraints and solution ap-

proach. However, classifying the literature using planning horizon may be inaccurate since

the boundaries between time frames can vary considerably for different settings. Moreover,

there are several other factors in the OR scheduling problems that can be used to pro-

vide an instructive review. Samudra, Van Riet, Demeulemeester, Cardoen, Vansteenkiste
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and Rademakers [79] completed the work in [13] and categorized the literature using seven

descriptive fields: patient characteristics, performance measures, decision delineation, up-

stream and downstream resources, sources of uncertainty, solution methodology, and appli-

cation and experiments. They identified the trends and common selections in each field.

Our research is focused on addressing surgery duration uncertainty using stochastic pro-

gramming approach. Therefore, we dedicate a major portion of this chapter to review the

articles using the uncertainty and solution methodology descriptive fields.

2.1 Uncertainty

One of the major problems associated with the development of accurate operating room

schedules or capacity planning strategies is the uncertainty inherent to surgical services.

There are several sources of uncertainty including but not limited to surgery durations,

patient arrivals, delays in support services, acute onset of abnormal medical conditions

(infections, chest pain, etc.) requiring delay or cancellation, inaccurate or inappropriate

reservations, and lack of a mechanism to enable dynamic scheduling. Random surgery du-

rations and emergency patient arrivals has received the most attention in the literature

amongst other factors. Surgery durations are difficult to predict because for some surg-

eries the magnitude of the procedure only becomes apparent once the surgery is already

in progress. Additionally, the durations often depend on various complex factors, e.g., the

characteristics of the patient, the surgeon and the surgical team. May, Spangler, Strum and

Vargas [61] elaborate on duration uncertainty by giving two main reasons for variations in

the predicted surgery duration: 1) surgeons do not always know in advance all the proce-

dures that must be performed on a scheduled patient, such as when the patient undergoes

exploratory surgery or when unexpected findings occur during surgery, the time required

to treat the patient may be much longer than expected, delaying subsequent patients, or

much shorter than expected, possibly creating a hole in the schedule; and 2) even in cases

where all procedures are known with certainty in advance, the time necessary to perform

those procedures may vary significantly, due to characteristics of the operation, the surgical
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team, and the patient. Therefore, uncertain surgery durations can cause a large deviation

from the expected completion time of all surgery cases scheduled for each day. When the

deviation is significantly large, it causes an extended overtime for the surgical team to com-

plete the scheduled cases for the day. Consequently, the hospital has to pay a substantial

overtime payment, which will result in reduced revenue. Reduced OR staff job satisfaction

and increased patient waiting times would be other ramifications of the uncertain comple-

tion times. On the importance of understanding and addressing uncertainty and its sources,

McManus, Long, Cooper, Mandell, Berwick, Pagano and Litvak [62] stated that “Improving

the healthcare system’s response to variability represents an opportunity for simultaneous

gains in effective capacity, cost-efficiency, improved outcomes, and patient satisfaction. A

precondition to such improvement, however, is a deeper understanding of the nature and

sources of variation in demand. Without such understanding and appropriate management

of variability, systems such as healthcare organizations become inefficient, overwhelmed,

and frustrating for all.” Guerriero and Guido [33] discuss possible effects of uncertainty in

planning and scheduling processes in an operating theater. Uncertainty strongly affects the

time to procedure, consequently the labor cost of an OR team. For instance, a longer than

predicted surgery results in a late start for the next surgery and, potentially, for the rest

of the surgeries in that day’s schedule. Late start results then in direct costs associated

with overtime staffing when the last surgery of the day finishes later than the scheduled

completion time. It is shown that mitigating the impact of disruptions in the schedule

due to uncertainty can lead to higher capacity utilization and lower costs [64]. Denton,

Viapiano and Vogl [23] state that while some surgeries have relatively predictable durations

others may have significant variability. The combination of tight schedules and uncertainty

in duration creates the need for careful consideration of OR schedules to balance the com-

peting criteria of OR team waiting, OR idle times, and overtime. This implies that failing

to address the uncertainty in durations can result in low resource utilization. Deterministic

models ignore the inherent uncertainty in surgical procedures. In spite of the significance

of uncertain surgery durations, there is a large body of literature that applied deterministic
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models to OR scheduling problems. Some of the deterministic models for the OR scheduling

problem can be found in [47, 81, 89, 90]. Numerical experiments in [48] show importance of

modelling the surgery duration uncertainties. Compared with a deterministic OR planning

model that only considers the average emergency demand but neglects its uncertainty, the

stochastic OR planning method yields about 4% reduction in overall costs. Batun, Denton,

Huschka and Schaefer [5] assessed the difference between the optimal objective function

value of the stochastic model against the deterministic model under uncertain surgery du-

rations. They showed that using the stochastic approach can reduce the optimal costs up

to 28% compared to the deterministic model.

2.2 Stochastic Programming

The number of papers that considered surgery duration uncertainty is almost doubled

during the past decade. The majority of these papers applied variations of the stochastic

programming approach to model the uncertainty in surgery duration.

Gerchak, Gupta and Henig [30] presented one of the first stochastic programming models

for operating room planning problem for elective surgeries by considering uncertain surgery

durations and uncertain demand for emergency surgeries. The objective function of this

problem is to maximize the expected profit which is a function of random emergency case

durations and random daily usage of the operating room by emergency cases. Surgery

durations and OR usage by emergency cases are assumed to follow normal distributions.

Authors used successive approximation method to solve the objective function recursively.

Denton and Gupta [22] proposed a two-stage stochastic linear program to minimize the

expected cost of customer waiting, server idling and tardiness by considering uncertain job

durations. They assumed a single-server system at which customers arrive punctually and

are served in the order of their arrival (i.e., fixed sequence). They developed a sequential

bounding approach based on the standard L-Shaped algorithm to solve the problem.

Guinet and Chaabane [34] dealt with the operating room scheduling problem in tactical

and operational levels. First, they solved a weekly operating room scheduling problem by
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considering resource constraints to assign surgical cases to operating rooms. Then, a daily

surgery sequencing and scheduling problem is modeled as a mixed-integer with the aim

of minimizing total hospitalization and overtime costs. A heuristic method is proposed

using an assignment model with resource capacity and time-window additive constraints.

This method is a primal-dual Hungarian-based method where most of the constraints are

integrated in the objective function.

Jebali, Alouane and Ladet [39] studied the same problem except that they considered

two strategies to deal with the surgery scheduling problem: 1) modifying the assignments

made in the weekly scheduling problem in order to improve resource utilization, and 2) se-

quencing and scheduling surgical cases without changing the assignments made in advance.

In addition to surgeries at operating rooms, they take pre-operative and post-operative

stages into account assuming uncertain process times at each stage. For each stage, suit-

able probability density functions are fit. Maximizing utilization and minimizing patients’

waiting times are considered as a single objective function.

Denton, Viapiano and Vogl [23] proposed a two-stage stochastic programming model to

deal with uncertain surgery durations in a single-OR surgery scheduling problem. In the

first stage, sequence of surgical cases are determined while in the second stage, start times

of surgical cases are set by considering random surgery durations. Three heuristic methods

that sequence surgical cases based on the increasing order of mean of durations, variance

of durations, and coefficient of variation of durations are proposed in order to minimize

the weighted sum of the expectation of waiting time, idling time and tardiness. Obtained

results from solving real data show the dominance of the second heuristic, which sequence

cases in increasing order of variation of durations, in almost all test cases.

Lamiri, Xie, Dolgui and Grimaud [48] proposed a stochastic model for the operating

room planning problem with elective and emergency patients. Elective surgical cases can

be planned ahead while emergency cases arrive randomly and have to be performed on the

day of arrival. The operating room capacity is shared among elective and emergency cases.

They assumed that surgery durations for elective patients are known and deterministic.
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However, total OR time required for emergency cases arriving in a specific period is a

random variable. A Monte Carlo simulation combined with mixed integer programming is

applied to minimize the expected OR overtime costs as well as elective patient-related costs.

Following this research, Lamiri, Grimaud and Xie[49] proposed several heuristic and meta-

heuristic methods to solve the problem because exact solutions for large-scale problems

cannot be obtained in a reasonable amount of time using the solution method applied

in their previous paper. They proposed three sequential optimization based heuristics as

well as two workload based heuristics. Observation of the obtained results shows that the

quality of heuristic solutions degrade as the uncertainty decrease. Simulated Annealing and

Taboo Search are the meta-heuristic approaches they applied. The proposed model and

methodology in these papers can be applied in hospitals who use block scheduling strategy.

Min and Yih [63] proposed a stochastic programming model to schedule elective surg-

eries. They assumed random surgery durations, length of stay at ICU and block capacity

with known discrete distributions with finite scenario sets. The random emergency demand

is implicitly incorporated in the block capacity by subtracting emergency demand from total

block capacity. Capacity constraint in ICU beds is also considered in their proposed model.

In order to minimize patient-related costs and overtime costs, they applied the sample aver-

age approximation (SAA) method in order to minimize the cost of patient admissions plus

the expected overtime costs in the surgery blocks. They showed that the applied solution

method outperforms the deterministic model using the average surgery durations and shows

better convergence behavior as the sample size increases.

Denton, Miller and Balasubramanian [24] proposed two models for assignment of surg-

eries to operating rooms on a given day. The first model is a two-stage stochastic linear

programming model with binary variables in the first stage and simple recourse in the sec-

ond stage. A longest processing time-based heuristic is improved to minimize total costs

including fixed costs of opening ORs and variable overtime costs by iteratively solving the

problem. The second model is the robust counterpart of the stochastic model trying to

minimize the maximum cost associated with an uncertainty set for surgery durations.
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Begen and Queyranne [6] studied an appointment scheduling problem by considering dis-

crete random process times given by a joint discrete probability distribution. The sequence

of jobs on a single server is assumed to be predetermined. The objective is to minimize

under-utilization and overtime costs. Under simple conditions on cost coefficients, they

show that the objective function is submodular and L-convex and an optimal solution to

the problem can be found in polynomial time. Their model can be extended to consider

emergency patients and no-shows.

Gul, Denton, Fowler and Huschka [35] proposed a bi-criteria model for outpatient

surgery scheduling assuming uncertain surgery durations. A log-normal probability distri-

bution is fit to surgery durations. Optimization criteria in this paper are expected patients’

waiting time and expected operating suite overtime. First, a discrete event simulation (DES)

model is constructed and used to evaluate the performance of 12 heuristics by combining

different sequencing and appointment time rules. The four sequencing rules applied in this

paper are increasing mean of procedure time, decreasing mean of procedure time, increasing

variance of procedure time, and increasing coefficient of variation of procedure time. Then,

a bi-criteria genetic algorithm is applied and the obtained solutions are compared with the

solutions produced by the heuristic methods. Comparisons show that expanding the com-

putational effort with a more sophisticated GA-based method does not make significant

improvement and the heuristic using the shortest processing time sequencing rule is favored

over the GA-based method.

Herring and Herrmann [38] proposed a dynamic stochastic programming model for the

daily surgery scheduling problem with random surgery duration. In the problem setting

considered in their research, the specialties are free to choose and sequence patients within

their allocated blocks as they see fit. In the meantime, specialties or surgeons that do not

have allocated time submit their cases to the surgical request queue (RQ). In the period

leading up to the day of surgery, OR managers try to accommodate these RQ cases by

looking for unused space in rooms originally allocated to other specialties. A number of

threshold-based heuristics are applied to obtain the optimal threshold policy that preserves
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a desired amount of operating room space for the remaining demand from the room’s

allocated surgical specialty.

Koeleman and Koole [45] studied an outpatient scheduling problem assuming random

arrival times which follows a Poisson distribution. In addition, they considered random

surgery times and possibility of no-shows by patients in their research. They assumed that

a newly arrived patient must be operated right after serving the current patient undergo-

ing surgery. A local search heuristic method is proposed to minimize a weighted sum of

outpatients’ waiting time and tardiness.

Mancilla and Storer [59] proposed a two-stage stochastic model for the single-OR daily

surgery scheduling problem with uncertain surgery durations. The problem under study

is similar to that in [23]. Sequencing and planned start times are determined in the first

stage while actual start times are calculated in the second stage once surgery durations are

realized. They applied the SAA method and used a benders decomposition-based heuristic

algorithm to minimize expected costs associated with patients’ waiting time, staff idling

time and overtime. This heuristic algorithm determines the sequence of surgeries (master

problem) and then performs the scheduling (subproblems).

Bruni, Beraldi and Conforti [10] modeled the problem using three recourse strategies

in order to model different reactive scheduling policies under a block booking system. The

recourse strategies are overtime recourse, swapping recourse and complete rescheduling.

Surgery durations and arrival of emergency patients are assumed random in a weekly plan-

ning horizon. Operating room capacity is the only resource constraint taken into account

and the objective is to maximize total revenue from operating surgical cases with different

priorities. An improvement heuristic method is proposed to solve the numerical instances.

Freeman, Melouk and Mittenthal [29] proposed a MIP model for the daily OR schedul-

ing problem with stochastic surgery times and random emergency arrivals. They used

break-in-moments to accommodate the emergency operations throughout the day. A two-

stage heuristic solution method is developed and lower bounds are generated by reducing
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the problem to a multiple knapsack problem. They compared the performance of the pro-

posed scenario-based model against deterministic and job hedging methods using two sets

of methodological and comparative experiments. They showed that the proposed model im-

proves profit and OR utilization while reducing the average waiting times for the emergency

patients.

Xiao, Van Jaarsveld, Dong and Van De Klundert [96] developed a three-stage model for

the single-OR scheduling problem with uncertain surgery times and resource availability.

The first stage deals with the sequencing and scheduling decisions. The patients are assigned

to two shifts where the patients in the first shifts must be operated. The second stage decides

if the second-shift patients remain on today’s schedule or moved to the waiting list for the

following days. In the final stage, second shift durations become known and proper recourse

decisions are made. They used the SAA approach to model the problem and applied an

L-shaped algorithm to solve instances derived from a hospital in China.

Pang, Xie, Song and Luo [73] developed a stochastic integer programming model for

the OR scheduling problem with surgery duration and case cancellation uncertainty. The

proposed model attempted to minimize patient- and hospital-related costs. The Benders

decomposition algorithm was used to solve numerical examples. They showed that the

proposed model reduces total cost by 27% using a case study based on two departments at

West China Hospital.

Wang, Zhang, Zhang, Tang and Mu [93] proposed a stochastic programming model for

the integrated OR and surgeon scheduling problem with the objective of minimizing oper-

ating room staffing costs. A patient preference-driven policy is proposed to satisfy patients’

personalised preferences for surgeons and surgery dates for high-end private hospitals. They

developed a column generation-based heuristic algorithm to solve the stochastic model. The

performance of the algorithm is tested on different scale instances. They showed that the

proposed heuristic method can obtain solutions within a 1.6% gap of the lower bound ob-

tained by the LP relaxation of the MIP model.

M'Hallah and Visintin [36] proposed a stochastic model for scheduling surgeries during
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a cyclic master surgical schedule (MSS). The model determines the number and type of

surgeries to schedule in a two-week planning horizon where each operating session is assigned

to a surgical specialty according to a fixed grid. They assumed stochastic surgery duration,

intensive care unit time and post-surgery length of stays and accounted for the availability of

both intensive care unit beds and post-surgery beds. The goal is to maximize the expected

operating room throughput. They applied the sample average approximation method to

approximate the stochastic parameters in the model. The effectiveness of the proposed

model is studied on a case study from a European Children's Hospital.

Robust optimization is another technique that is applied to surgery scheduling prob-

lems under uncertainty. Rath, Rajaram and Mahajan[77] developed a two-stage stochastic

model for the integrated anesthesiologist and OR scheduling problem. In the first stage,

surgical cases are assigned to available ORs and anesthesiologists aiming to minimize the

total OR opening and on-call anesthesiologist assignment costs. In the second stage, they

applied the robust optimization approach to minimize the maximum overtime costs given

the pre-specified budget of uncertainty. They used a data-driven approach to estimate the

uncertainty sets for the random surgery durations.

Neyshabouri and Berg [70] proposed a two-stage robust model for the surgery planning

problem under uncertain surgery durations and length of stay in ICU. The ICU beds are

considered as limited downstream resources. It is not known until after the surgery whether

a patient needs to go to the ICU. The objective is to minimize the patient admission costs,

patient cancellation costs, surgery block overtime costs, and ICU capacity violation costs.

A column-and-constraint generation algorithm is applied to solve the two-stage model.

2.3 Risk-Based Approach

The recourse-based approaches reviewed in the previous section requires the decision-

maker to assign a cost to recourse activities that are taken to ensure feasibility of the

second-stage problem. In essence, the philosophy of this approach is that infeasibilities

in the second stage are allowed at a certain penalty. The approach thus focuses on the
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minimization of expected recourse costs using some approximation methods such as the

widely used SAA method. In the chance-constraint approach, the focus is on the reliability

of the system, i.e., the system’s ability to meet feasibility in an uncertain environment.

Shylo, Prokopyev and Schaefer [84] proposed a stochastic model for operating room

planning problem under uncertain surgery durations. Considering a block booking policy,

the objective is to minimize the expected OR block idle times. They used individual chance-

constraints for every OR block to ensure that the risk of overtime more than a pre-specified

level is under control. Cumulative surgery durations are approximated using a normal

distribution. This approximation is only appropriate for those surgical specialties with

high demand level. Using the properties of overtime and under-time functions, a mixed-

integer model is formulated that provides lower and upper bounds on the optimal solution

of the stochastic model. A batch scheduling algorithm is proposed that solves the problem

iteratively and tries to improve the lower bound on the optimal solution and provide near-

optimal solution to the stochastic problem.

Zhang, Denton and Xie [98] studied the OR surgery allocation problem with uncer-

tain surgery durations. They proposed two different chance constrained models based on

assumptions on the available distributional information. First, they assumed known prob-

ability distributions for the random parameters and modelled the individual chance con-

straints to ensure preventing OR overtime. Second, they assumed insufficient information

on the random surgery durations and formulated a distributionally robust chance con-

strained model. They applied a column generation reformulation of the problem to divide

the original model into a master problem and subproblems. Then, they developed a branch-

and-price algorithm to solve the reformulated model. They also provided lower bounds and

upper bounds on the subproblems using conditional value-at-risk and probabilistic covers,

respectively.

Deng, Shen and Denton [18] proposed two chance-constrained programming models

for the surgery planning problem with stochastic surgery durations. In the first model,

it is assumed that distributional information is available for the random parameters. On
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the other hand, the second model is a distributionally robust chance constrained model

assuming ambiguous distributions for the random surgery durations. Two types of chance

constraints are formulated to ensure the specified risk tolerances on patient waiting times

and OR overtime. The distributionally robust model constructs confidence sets of all the

possible distributions that results in a chance constrained model with higher reliability

requirements for both waiting time and overtime. The authors developed a decomposition-

based cutting plane algorithm to solve the models in order to minimize the OR opening

costs as well as meeting the required quality of service levels.

Deng and Shen [19] studied the OR scheduling problem under stochastic surgery dura-

tion with a joint chance constraint for limiting the risk of OR overtime. They developed a

two-stage stochastic model in a way that the second stage can be decomposed and solved

separately for each OR. Each surgery must be operated in a pre-specified time window

and the goal is to minimize the total OR usage costs. They proposed bounds on the pro-

posed model and applied cutting-plane approaches to improve the computational efficiency.

A brand-and-cut algorithm is developed to solve the two-stage model. A relaxed master

problem as a chance constrained binary packing problem is used in order to provide better

solutions to the second stage problem.

Jebali and Diabat [40] considered a surgery planning problem on a weekly planning

horizon by assuming limited capacity of the ICU beds. Three sources of uncertainty are

assumed in their research: surgery duration, length of stay in ICU, and the arrival of emer-

gency patients that is incorporated as random ICU capacity. They developed a two-stage

stochastic programming model with chance constraints on the violation of ICU capacity.

The aim of the model is to minimize patient-related costs and the expected penalty costs for

violating the ICU beds capacity. They applied the SAA method to solve the proposed model

and showed that the objective value converges to that of the true problem as the sample

size grows. Noorizadegan and Seifi [71] proposed a chance-constrained programming model

for the surgery planning problem with uncertain surgery durations. The individual chance
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constraints ensure that the violation of OR time limits do not exceed the specified risk tol-

erances. Surgeon assignments to the ORs are also considered in their model. They modeled

the uncertain surgery durations in two ways: 1) a set of discrete scenarios (e.g., historical

data) are available, and 2) the probability distributions are known. A column generation

formulation is developed for the problem where the master problem has a set-partitioning

problem structure and the subproblems can be decomposed over ORs and time periods.

The subproblems are reformulated as shortest path problems to accelerate the solution

process and solved using a search algorithm. They showed that using a continuous approx-

imation of distribution functions lead to reduction of the expected probability of exceeding

OR overtime compared to discrete scenarios. They also found that the performance of the

proposed method depends heavily on the search space of the column generation subproblem

and efficiency of the employed branch-and-bound method.

Wang, Li and Peng [92] proposed a distributionally robust chance-constrained model for

the surgery planning problem with stochastic surgery durations. It is assumed that the first

two moments (i.e., mean and covariance) for the random parameters are known. The chance

constraints control the risk of facing OR overtime within the specified limits. They showed

that the model can be reformulated as a second order cone programming problem. They

considered the ICU and ward beds as limited downstream resources and tried to minimize

their peak demand during the planning horizon as well as operation-related costs.

Kamran, Karimi and Dellaert [41] proposed a two-stage stochastic programming and a

two-stage chance-constrained stochastic programming for the advance scheduling problem

with surgery duration uncertainty. The proposed models attempt to minimize several cri-

teria such as patients waiting time, tardiness, cancellation, block overtime, and the number

of surgery days of each surgeon within the planning horizon. The stochastic models are

approximated using the SAA method and the Benders decomposition algorithm is applied

to solve real-life numerical examples.

Deng, Shen and Denton [21] developed a distributionally robust chance-constrained

programming model for the surgery planning problem. The proposed model make OR

27



opening, surgery allocation, sequencing and start time decisions. It is assumed that the

lack of historical data leads to unknown distributional information. They used φ-divergence

measures to build an ambiguity set of possible distributions of random surgery durations,

and derived a branch-and-cut algorithm for optimizing a mixed-integer linear programming

reformulation based on finite samples of the random surgery durations. The proposed

methodology is tested on real hospital-based surgery data.

2.4 Identified Challenges

We showed in the previous sections that the stochastic programming models have been

widely used in the literature to address the OR scheduling problems with uncertain surgery

durations. The majority of these articles attempted to minimize the expected value of

penalty costs corresponding to some performance measure (e.g., waiting time, overtime)

after the random parameters are realized. The concept of using the expected value (EV)

in scheduling optimization can be helpful for problems with predictable variability (i.e.,

low risk) on the random parameter. However, for problems with frequent changes in a

less predictable manner and in short-term (i.e., high-risk), the optimal solution may show

poor performance for specific realizations of the random data. This is attributed to the

risk-neutral behavior of the EV measure, which focuses on maximizing (minimizing) the

expected profit (loss). In other words, optimizing the EV ignores the variability of the

performance measure in different scenarios. This means that the EV approach treats two

different solutions as equivalent if they give the same objective value without considering the

characteristics of the variability such as the magnitude and/or symmetry of variance. This

can be a problem if a performance measure in scheduling OR is to minimize unexpected

variability to complete the planned surgeries for the day. In order to enhance predictability

of an operating room (OR) schedule by minimizing variability of an outcome measure in

the worst case, Chapter 3 proposes a risk-based OR scheduling model that pursues reducing

variability of costs associated to overtime and idles time as well as the expected value of

the costs. The OR scheduling problem is formulated as a stochastic programming model,
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where a surgery duration follows a known probability distribution function. To the best of

our knowledge, this is the first study that proposes a CVaR-based optimization model for

the OR scheduling problem underuncertainty. We use real-life test instances collected from

a Dutch hospital [50] and use several criteria to compare the CVaR-based model with the

EV model. Table 2.1 summarizes the selected published literature on chance-constrained

programming (CCP) models and identifies the research gaps that are addressed in this

chapter. First, it can be observed that very few articles proposed a CCP model for the OR

scheduling problem under uncertainty [19, 21]. Surgery scheduling problems often have a

more complex structure resulting from a variety of decisions, such as OR opening, patient-

to-OR assignment, surgery sequencing, and projected and actual start times before and

after the realization of random surgery durations, respectively. CCP-based models have the

potential to effectively handle such large variabilities in daily surgery scheduling problems

[61].

Second, a majority of the models have neglected the importance of minimizing the

stochastic second-stage costs. Their primary focus has been on providing schedules within

the specified risk tolerances while also aiming to minimize deterministic performance mea-

sures, such as fixed OR opening costs [21, 71]. Unlike existing approaches, Chapter 4 pro-

poses a chance-constrained model that aims to minimize both deterministic and stochastic

costs for the OR scheduling problem. The significance of considering both classes of costs

is highlighted using numerical experiments.

Third, we provide insightful observations about the performance of three different models

(CCP, CVaR and EV) in solving the stochastic OR scheduling problem under various risk

thresholds. The proposed model is compared alongside EV and CVaR models using several

metrics such as total costs, OR utilization and solution time. Moreover, the performances of

both individual and joint chance constraints are compared in terms of OR opening decisions,

minimizing the second-stage costs and computational efficiency.
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Finally a computationally efficient decomposition algorithm is applied to provide high-

quality solutions for the large-scale test instances within reasonable time frames. We pro-

posed an algorithm to derive feasibility cuts using the first-stage solutions that accelerate

finding feasible solutions and the convergence speed.

Table 2.1: Research Gaps in the Chance-Constrained OR Scheduling Literature

Authors (Year) Decisions Objective

OR Resource
Allocation

Sequencing &
Scheduling

Deterministic
Costs

Stochastic
Costs

Shylo et al. (2012) X OR Idle Time
Zhang et al. (2015) X OR Overtime
Deng et al. (2019) X X X OR Opening
Noorizadegan &
Seifi (2018) X X X

OR Opening &
Turn-Over

Wang et al. (2017) X X Operational

This Work X X X OR Opening
OR Overtime &
Patient Waiting

Time

The stochastic programming models are often note scalable to large models. Hence, a

large body of heuristic and metaheuristic methods in the literature aim to solve the opti-

mization fast, but they do not guarantee optimality [65, 91, 95]. Decomposition algorithms

have been widely used in the literature to solve large-scale mixed-integer programming

models [76]. Lagrangian methods were applied in the early 1970s to general integer pro-

gramming problem [28, 82] and scheduling problems [26]. Several papers in the literature

have used Lagrangian relaxation to solve the OR scheduling problem [3, 32, 99]. In Chap-

ter 5, we develop a computationally efficient decomposition algorithm that is augmented

by strong lower and upper bounds using Lagrangian relaxation and CVaR approximation.

We show that the proposed algorithm outperforms the well-known Benders decomposition

method and achieves the global optimal solution for large-scale test instances in less than

60 minutes. Moreover, the proposed lower and upper bounds obtain high-quality initial

feasible solutions and perform consistently for different probability thresholds.
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Chapter 3

A Variability Reduction Method for the Operating

Room Scheduling Problem under Uncertainty

using CVaR

3.1 Introduction

An operating suite refers to a medical complex which includes multiple rooms designed

and equipped to perform surgeries. Operating suites contribute to more than 30% of total

expenses [56] and 40% of total revenues [23] in hospitals. One of main challenges dealing

with operating suites is unexpected surgical interventions occurring every day [61]. This

uncertainty hampers the efficiency of the provided schedules along with incurring excessive

costs to hospitals due to improper resource utilization in practice. In order to enhance

predictability of an operating room (OR) schedule by minimizing variability of an outcome

measure in the worst case, a risk-based OR scheduling model is proposed in this chapter.

The objective of the model is to reduce variability of a performance measure (e.g., overtime

and/or idles time associated expenses) as well as the expected value of the measure.

Cardoen, Demeulemeester and Beliën [12] categorizes the operating room scheduling

process into four planning levels: case mix planning (CMP), master surgery scheduling

(MSS), daily OR scheduling, and adaptive scheduling. The daily OR scheduling problem

itself is divided into two steps. The first step is a longer-term planning in which patients
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are scheduled for certain days over a given planning horizon (e.g., weekly, monthly). The

second step is to determine the sequence of surgery cases with surgery start time for the

specific day. This work focuses on the second step of the daily OR scheduling problem for a

set of elective [12] patients, whose surgery durations follow a known probability distribution

function (PDF).

Several good survey articles in OR planning and scheduling have been published over

the years [9, 13, 58, 75]. Samudra, Van Riet, Demeulemeester, Cardoen, Vansteenkiste and

Rademakers [79] classified the literature using seven different perspectives of OR scheduling

problems. May, Spangler, Strum and Vargas [61] found high variability of surgery durations

as the biggest challenge towards developing practical OR schedules among many sources

of uncertainty mentioned in their review. The required time for surgical interventions may

vary significantly based on the type of operations being performed, the surgical team and

the patient. Due to such uncertainty in scheduling, reducing variability of the performance

measures in the provided schedules can help elevate capacity utilization, cost-efficiency and

patient satisfaction [62]. Hence, this study aims to develop an OR scheduling approach

that can effectively tackle the uncertain surgery times and control the variability of the

performance measure.

Stochastic programming models have been widely used in the literature to address the

OR scheduling problems with uncertain surgery durations [10, 20, 23, 40, 48, 59, 63, 64, 77,

84]. The majority of these articles attempted to optimize the expected value of a perfor-

mance measure. The concept of using the expected value (EV) in scheduling optimization

can be helpful for problems with predictable variability (i.e., low risk) on the parameter.

However, for problems with frequent changes in a less predictable manner and in short-term

(i.e., high-risk), the optimal solution may show poor performance for specific realizations of

the random data [67, 72]. This is attributed to the risk-neutral [74] behavior of the EV mea-

sure, which focuses on maximizing (minimizing) the expected profit (loss). Consequently,

the EV approach treats two different solutions as equivalent if they give the same objective

value without considering the characteristics of the variability such as the magnitude and/or
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symmetry of variance. This can be problematic if a performance measure in scheduling OR

is to reduce unexpected variability to complete the planned surgeries for the day.

This could be achieved by minimizing a direct measure such as variance [60]. However,

using variance as the risk measure has a number of drawbacks. First, calculating the vari-

ance involves quadratic expressions that result in a non-linear discrete optimization model.

Solving such models for large-scale instances can be computationally difficult. Second, vari-

ance shows a poor performance when the probability distribution of the random parameters

are non-symmetric [43] because the skewness of the random parameters, if exists, is not fully

reflected. The variation in the daily OR schedule is identified as one of the main factors that

constrain OR productivity and efficiency. Cima, Brown, Hebl, Moore, Rogers, Kollengode,

Amstutz, Weisbrod, Narr, Deschamps and Team S.P.I [17] emphasized designing surgical

scheduling processes that reduce the variation of both under- and over-utilization of OR

resources. Smith, Spackman, Brommer, Stewart, Vizzini, Frye and Rupp [85] showed that

a 20% decrease in the daily schedule variation can reduce the staff turnover rate by 41%.

CVaR has been shown to reduce variability of performance measures compared to EV[67],

while simultaneously reducing the expected value [80].

Therefore, this chapter presents a risk-based solution approach using the concept of

Conditional Value-at-Risk [78] to reduce variability on overtime, idle time, and associated

costs in a daily OR scheduling problem. The OR scheduling problem is formulated as

a stochastic mixed-integer linear programming (SMILP) model, where a surgery duration

follows a probability distribution function. The objective of the SMILP model is to minimize

the CVaR of overtime and idle time costs. CVaR [78] was introduced in finance to minimize

the extreme losses in the tail of the distribution of possible return. An advantage of using

a CVaR approach is that the resulting model can be reduced to a linear programming

model. CVaR takes the skewness of the random parameters into account. To the best of

our knowledge, this is the first study that proposes a CVaR-based optimization model for

the OR scheduling problem under uncertainty.

The remainder of this chapter is organized as follows. Section 3.2 describes the daily
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OR scheduling problem considered in this work. In Section 3.3, the CVaR measure is first

discussed, and the proposed stochastic MILP model using CVaR is described for the OR

scheduling problem. Numerical experiments are conducted on a benchmark set in Section

3.4 and the observations are reported. Conclusions are drawn in Section 3.5.

3.2 Problem Description

We consider operating suites with R operating rooms. For a given set (I) of elective

patients each day, the problem is to determine the assignment of patients to available

OR rooms, and the sequence of surgeries to be performed so as to minimize the total cost

associated with excessive overtimes and idle times. We assume that our operating suites use

the block booking strategy [25] with B blocks. Each OR block is to be assigned to a surgical

team or a surgeon via the master surgery schedule. An incidence matrix EI×R is constructed

to show the eligible patient-to-OR assignments. The surgery durations are uncertain with

a known probability distribution function. The Monte Carlo sampling method is used to

produce S scenarios comprising the realizations of the stochastic surgery durations.

There are three decision variables in the OR scheduling problem considered in this re-

search, namely: (1) patient-to-room assignment, (2) surgery sequencing, and (3) surgery

start time. In surgery sequencing, an overlap is not allowed between two successive opera-

tions because operations cannot be interrupted or stopped once they are started. The goal

is to minimize the sum of overtime and idle time costs. In the remainder of this chapter, we

refer to the performance measure as the total cost. The OR cost is divided into overhead

cost and variable cost as in [57]. The overhead cost is the same among all ORs, whereas the

variable cost can differ from one OR to another depending on surgeon-to-OR assignments

from the MSS. Section 3.4.1 provides more detail on parameter settings. The following sec-

tion introduces CVaR and explains how we utilize it to develop a risk-based optimization

model for the daily OR scheduling problem under uncertainty.
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3.3 Risk-based OR Scheduling

3.3.1 Conditional Value at Risk: a brief introduction

Let f(x, y) be the objective function with the decision vector x and the random vector y

having density p(y). Then, for a fixed x, the objective function is a random variable. Given

a probability level α ∈ (0, 1), the corresponding Value-at-Risk (VaR) and the CVaR of the

objective function can be formulated, respectively, as

ζα(x) = Min {ζ ∈ Re : ψ(x, ζ) ≥ α} (3.3.1)

and φα(x) = 1
1− α

∫
f(x,y)≥ζα(x)

f(x, y)p(y)dy (3.3.2)

where ψ(x, ζ) is the cumulative density function (CDF) of f(x, y) for fixed x. Therefore,

φα(x) is the expectation of those outcomes of f(x, y) that exceeds VaR. The CVaR function

φα(x) can be simplified as [88]

Fβ(x, ζ) = ζ + 1
1− α

∫
y∈Rem

[f(x, y)− ζ]+p(y)dy (3.3.3)

where t+ = max{t, 0}. Fβ(x, ζ) is convex with respect to ζ, and minimizing it gives the

minimum CVaR and calculates VaR, simultaneously. By generating a finite number of

scenarios from the density function of the random vector y, Fβ(x, ζ) can be approximated

as

F̃β(x, ζ) = ζ + 1
s(1− α)

s∑
k=1

[f(x, yk)− ζ]+p(y)dy (3.3.4)

where scenarios are assumed to be equally likely. When f(x, y) is linear with respect to x,

minimizing F̃β(x, ζ) can be reduced to a linear programming (LP) problem [88].

Artzner, Delbaen, Eber and Heath [2] stated a set of properties that should be desirable

for a risk measure. Any risk measure which satisfies these axioms is said to be coherent.

The four axioms are monotonicity, translation equivariance, subadditivity, and positive

homogeneity. CVaR is a coherent risk measure for all p(y) whereas VaR is not coherent
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when the random data follow non-Normal distributions. VaR is difficult to optimize when

it is approximated using finite scenarios and it may show multiple local extrema. Moreover,

optimizing CVaR gives the VaR at the same confidence level as a by-product.

In the next section, we present the MILP formulation to minimize the CVaR of total

cost for the OR scheduling problem with stochastic surgery durations.

3.3.2 Mathematical Formulation

In practice, historical data and knowledge about surgery cases are commonly used to

estimate elective surgery durations [14, 29]. This study assumes that a surgery duration

follows a known probability distribution function.

This makes the optimization model extremely difficult to solve due to (1) the correspond-

ing model having a large number of integer variables, and (2) the presence of the stochastic

variables (i.e., surgery duration). Therefore, a scenario-based formulation is proposed to

address the computational burden to solve the model [29]. Our MILP model formulation is

based on a finite set of scenarios generated using the Monte Carlo sampling method, where

each scenario contains a specific realization of the elective surgery duration. Using this

information, the objective is to minimize the costs associated to overtimes and idle times.

We refer to the resulting formulation as a scenario-based daily OR scheduling (SDORS)

model. Consider the following notation for the SDORS model:

Sets:

I set of elective patients I = {1,...,I}

R set of operating rooms R={1,...,R}

S set of scenarios S={1,...,S}

Indices:

i, j, k elective patients i, j, k ∈ I
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r operating rooms r ∈ R

s scenarios s ∈ S

Parameters:

Eir incidence matrix for eligible patient-to-OR assignments

dis surgery duration for patient i under scenario s

µi mean value of surgery duration for patient i

cr expected open time of operating room r

wr operation cost per minute for the surgeon working in room r during regular hours

π overtime cost coefficient, π > 1

α probability level, α ∈ (0, 1)

M a sufficiently large number

Variables:

xir =
{ 1 if patient i is assigned to room r

0 otherwise

yijr =
{ 1 if patient i precedes patient j in room r

0 otherwise

tis surgery start time for patient i under scenario s

ovrs overtime of room r under scenario s

idrs idle time of room r under scenario s

ζ VaR of total overtime and idle time costs
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zs amount of cost exceeding the threshold value zeta under scenario s

The formulation of the SDORS model is given as follows:

Min

[
ζ + 1
|S|(1− α)

∑
s∈S

zs

]
, (3.3.5)

ζ + zs ≥
∑

r

πwrovrs +
∑

r

wridrs ∀s ∈ S, (3.3.6)

ovrs ≥
∑
i∈I

xirdis − cr ∀r ∈ R, s ∈ S, (3.3.7)

idrs ≥ cr −
∑
i∈I

xirdis ∀r ∈ R, s ∈ S, (3.3.8)

∑
r∈R

xir = 1 ∀i ∈ I, (3.3.9)

xir ≤ Eir ∀i ∈ I, r ∈ R, (3.3.10)∑
i∈I

µixir ≤ cr ∀r ∈ R, (3.3.11)

yijr + yjir ≤
1
2(xir + xjr) ∀i 6= j ∈ I, r ∈ R, (3.3.12)

yijr + yjir ≥ xir + xjr − 1 ∀i 6= j ∈ I, r ∈ R, (3.3.13)

yijr + yjkr − 1 ≤ yikr ∀i 6= j 6= k ∈ I, r ∈ R, (3.3.14)

tis + dis − tjs ≤M(1− yijr) ∀i 6= j ∈ I, r ∈ R, s ∈ S, (3.3.15)

zs ≥ 0 ∀s ∈ S, (3.3.16)

ζ unrestricted, (3.3.17)

xir, yijr ∈ {0, 1} ∀i 6= j ∈ I, r ∈ R, (3.3.18)

ovrs, idrs ≥ 0 ∀r ∈ R, s ∈ S, (3.3.19)

and tis ≥ 0 ∀i ∈ I, s ∈ S. (3.3.20)

The objective function (3.3.5) minimizes the CVaR of total cost associated with over-

times and idle times. For each scenario, constraint (3.3.6) along with constraints (3.3.16 –

3.3.17) determines zs as the amount of cost that exceeds, if at all, the threshold value of
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ζ. Constraints (3.3.7,3.3.8) calculate the overtime and idle time for each OR in each sce-

nario, respectively. Constraint (3.3.9) ensures that all patients will be operated on during

the day. It is assumed that each OR is equipped for specific surgical specialties. Therefore,

Constraint (3.3.10) enforces eligible patient-to-OR assignments. Constraint (3.3.11) ensures

that the sum of the mean duration of the assigned patients to an OR does not exceed its

expected open time. Constraints (3.3.12-3.3.14) enforce the sequencing rules. Constraint

(3.3.12) prevents sequencing of cases that are not assigned to the same OR. Constraint

(3.3.13) along with constraint (3.3.12) enforces surgery i to start before/after surgery j if

they are allocated to the same room. Constraint (3.3.14) defines the order transitivity of a

schedule such that surgery i starts before surgery k, if surgery i starts before j and surgery

j precedes surgery k, for any distinct surgeries i, j, k ∈ I. Constraint (3.3.15) determines

the operation start times according to the sequencing decisions. The proposed MILP model

with the CVaR objective function is called the SDORS-CVaR model. In a special case,

CVaR measure can be converted to EV by setting the confidence level (α) to zero. The re-

sulting model is called SDORS-EV and will be compared to SDORS-CVaR later in Section

3.4.

3.3.3 Strengthening the big M parameter

A proper value for the big M parameter can be calculated to tighten the feasible region

of the model. Assuming that yijr = 0, the left-hand-side of constraint (3.3.15) takes the

largest value when tj = 0 and case i is the last surgery scheduled in room r. Therefore, a

sufficiently large M can be calculated as

M = Max
r∈R,s∈S

{∑
i

Eirdis

}
. (3.3.21)

3.4 Numerical Experiments

The proposed SDORS-CVaR model is evaluated using a set of eight numerical examples

in this section. The optimal schedules obtained by SDORS-CVaR are compared to that of
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the SDORS-EV model (SDORS-EV) in terms of the total cost associated with the schedule.

The comparison is based on the ability of the models in reducing the variability on total

cost as well as minimizing the expected value of total cost. Section 3.4.1 explains how

the test problems are set up for experiments, followed by an analysis of the results (Section

3.4.2) and performance evaluations on variability reduction of the proposed method (Section

3.4.3). Using robust and non-robust measures of variability [37], it is observed that the

SDORS-CVaR model outperforms the SDORS-EV model in reducing the variability of the

performance measure. The SDORS-CVaR also outperforms the SDORS-EV in reducing

the worst-case cost. Moreover, the SDORS-CVaR model offers a great level of flexibility to

the decision-maker to incorporate his or her risk preferences into the created schedule by

changing the probability level α.

3.4.1 Experiment Setup

A set of eight test problem instances are obtained from [50]. The instances are different

from each other in terms of surgery types and specialties such as neurology, orthopedic,

thoracic, and oncology. The surgery durations are assumed to follow a three-parameter log-

normal distribution [29, 35, 87]. The instances are labeled in numeric order {1, 2, · · · , 8},

and they vary greatly in problem size, i.e., number of patients and number of ORs. These

cases are selected to appropriately test the ability of the proposed model in handling prob-

lems with different complexity levels.

There are a total of 432 surgical cases in all eight instances. The mean surgery duration

is between 1-2 hours in almost half of the cases (197 out of 432). In instances {1,2,4,5,6},

45% of the cases (93 out of 208) require more than two hours of OR time, while 46% of the

cases (104 out of 224) in instances {3,7,8} take less than one hour on average. All instances

have low to moderate variability based on their coefficient of variation (CV), that ranges

between 55% and 71%. We used the estimates of the OR overhead ($10 per minute) and

variable costs presented in [55, 57]. However, choosing a proper value of the OR variable

cost is not straightforward due to large variations among different surgeons. In this study,
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each OR has one block that is assigned to a surgeon to perform surgical cases. Hence, the

OR variable cost varies from one surgery case to the next depending on the surgical team.

For example, according to 2,848 surgery cases reported in [55], the average variable cost

ranged between $9 and $34 per minute.

All numerical experiments in this chapter are based on the following configuration.

One hundred scenarios are generated for random surgery duration using the Monte Carlo

sampling method. All ORs are planned to operate for 9 hours [29] for the day. The sum

of the expected surgery durations in each OR should not exceed its availability. However,

if a surgery duration in a generated scenario exceeds the limit for the OR availability, an

overtime cost will incur according to the amount of violation. Optimization models are

implemented in GAMS modeling language and solved using the IBM CPLEX 12.6 solver

on a workstation with 24 cores, 3 GHz processors, and 384 GB of memory. Table 3.1

summarizes the data used in our numerical experiments.

Table 3.1: Numerical instances and parameter settings

Instance ID 1 2 3 4 5 6 7 8

Number of Patients 9 22 34 40 63 74 89 101

Number of ORs 5 5 5 10 20 20 15 20

Average CV 0.667 0.628 0.579 0.617 0.551 0.713 0.605 0.585

PDF Three-parameter Log-normal

OR availability (minute) 540

OR blocks 1

Overhead cost ($/minute) 10

Variable cost ($/minute) Ranges between 9 and 34

Scenarios 100

3.4.2 Numerical Results

In this section, we first show that using the SDORS-CVaR model reduces the variation

of the sum of overtimes and idle times in the daily schedule. Once the SDORS model
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generates a schedule for a given problem instance, the sum of overtimes and idle times,

and the corresponding total cost are calculated for all scenarios (|S|). As a result, a vector

τ ∈ R|S| is generated, in which each entry corresponds to the sum of overtime and idle

time of a scenario. We call τ a utilization vector. Each problem instance is solved using

both SDORS-CVaR and SDORS-EV models, and the corresponding utilization vectors are

obtained. Note that the SDORS-EV model is equivalent to the SDORS-CVaR when the

confidence level parameter (α) equals zero. Then, the average and the standard deviation

of the utilization vector are calculated.

We define two parameters µ∆(α) and σ∆(α) in a normalized scale to make performance

comparison between the two models. Let µ∆(α) be the percentage of difference in the

average value between the two models (CVaR - EV) and it is calculated based on the

average values µℵ(α) of the total cost corresponding to model ℵ ∈ {CV aR,EV }

µ∆(α) = µCV aR(α)− µEV (α)
Max {µCV aR(α), µEV (α)} × 100%.

Similarly, let σ∆(α) be the percentage of difference in standard deviations, σℵ

σ∆(α) = σCV aR(α)− σEV (α)
Max {σCV aR(α), σEV (α)} × 100%.

Figure 3.1 shows these comparisons where the x-axis corresponds to its average value dif-

ference µ∆(α) and the y-axis is for σ∆(α). As the value of α increases there shows a clear

advantage of using the CVaR in reducing cost variability as compared to the EV, i.e., the

value of σ∆(α) was decreased by almost 18%. However, an opposite trend was observed on

the average cost as it continues to climb up as the value of α increases. Hence, one must

be careful about choosing an appropriate value of α that works well for the organization’s

goal.
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Figure 3.1: CVaR vs. EV in reducing the variance of overtimes and idle times

We now analyze the sensitivity of the CVaR model on µCV aR(α) and σCV aR(α) of the

total cost as we vary the value of α. Figure 3.2 shows the correlation between the average

value and the standard deviation of the total cost (overtime cost + idle cost). As we increase

the value of α, the total cost variability reduces and the average cost increases. For example,

using the SDORS-CVaR with α = 50% reduces the standard deviation of total cost from

$5,435 to $3,968 compared to the SDORS-EV at the price of increasing the total cost from

$12,680 to $14,000. Hence, a decision-maker should look at such trade-offs between the

decrease of variability and the corresponding increase of the average cost and select an

appropriate schedule.

Further numerical results are analyzed to show the advantages of using the CVaR over

the EV. The cost vector , χ ∈ R|S|, is used for this purpose, in which each entry of χ ∈ R|S|

corresponds to the total cost of a scenario.

Using the cost vector χ, both SDORS-CVaR and SDORS-EV models are solved for the

performance comparison between the models. Hence, the average (χ̄) and the variance (ν)

of the cost vectors are calculated for each model. Unlike the EV, the CVaR allows the user

to develop a schedule based on the preferred level of confidence for reducing variability of
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Figure 3.2: Pareto frontier schedules given by the SDORS-CVaR model

the random parameter. Figure 3.3 illustrates the mean-variance comparison between CVaR

and EV, using four different probability levels, 60%, 70%, 80%, and 90%. One can use ratio

χ̄CV aR/χ̄EV to show the relative performance comparison between the CVaR-based model

and the EV model. The ratio of 1 implies that both models perform about the same in

minimizing the average total cost. If the ratio is less than 1, it can be interpreted that CVaR

performs better than EV, and vice versa. Similarly, the ratio νCV aR/νEV = 1 implies as

the optimal cost vectors of CVaR and EV have equal variances.

Our numerical results show that CVaR outperformed EV in reducing the variance of

total cost. For each probability level, CVaR lowered the variance of the cost by 37%

compared to EV on average. In 29 out of 32 cases (90.6%), the variance reduction resulted

from the CVaR model was 20% or more than that of EV. Furthermore, CVaR produced

schedules with at least 40% lower variance than EV in 37% of the cases (12 out of 32).

More importantly, the CVaR significantly outperformed the EV in reducing the variance at

a slight increase of the expected value of the total cost. We compared the performance of

the CVaR and EV in minimizing the average total cost using the ratio
(
χ̄CV aR−χ̄EV

χ̄CV aR

)
. The

average value of the ratio from all 32 cases was 3.625%. Overall, CVaR demonstrated a
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superior performance by producing OR schedules with a lower variance of cost. On average,

CVaR contributed a 37% lower variance at an increase of 3.6% in the average cost compared

to EV. Note that CVaR can perform well in average cost savings if reducing the worst-case

scenarios is the primary interest in OR scheduling.
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Figure 3.3: CVaR vs. EV: total cost mean-variance comparison

Risk-averse (i.e., conservative) decision-makers are often interested in minimizing the

cost in the worst-case rather than the average value. The SDORS-CVaR model is designed

to address such a case better than the EV model because the EV is a risk-neutral approach.

Figure 3.4 shows the cost savings for the worst (1 − α)% of the scenarios when CVaR is
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selected over EV. The savings are calculated using the following formulas

Savings = E (χEV |F (χEV ) > α)− E (χCV aR|F (χCV aR) > α)
E (χEV |F (χEV ) > α) × 100%

where F (.) is the CDF of a cost vector. Figure 3.4 illustrates the savings for all instances

using two different probability levels, 80% and 90%, to show how CVaR corresponds to

a different confidence level. When α = 80%, CVaR results in cost savings between 1.47-

4.25%. Also for α = 90%, cost savings range between 3.28-7.16%. The average savings

percentage for α = 80% and 90% are 2.52% and 4.04%, respectively. The cost savings tend

to increase as the problem size grows. Figure 3.4 shows that if the decision-maker is focused

on minimizing the worst outcomes, using the SDORS-CVaR model with higher probability

levels is preferred. Moreover, the SDORS-CVaR model resulted in lower worst-case costs

than the EV; CVaR reduces the worst-case cost by 9.36% on average.
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Figure 3.4: CVaR vs. EV: average cost savings in the worst (1− α)% of the scenarios

3.4.3 Discussions on Variability Reduction

Previously we showed that using CVaR produces superior results to EV in terms of

reducing the variance of the total cost. However, variance and standard deviation are called

non-robust measures of scale because outliers have a large impact on such measures. In this

section, we use the widely used robust measures of scale, the interquartile range (IQR) and

the median absolute deviation (MAD) to validate the ability of the SDORS-CVaR model
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in reducing the variability of cost. All instances are solved using the SDORS-CVaR model

with four different probability levels, and the SDORS-EV model. For each instance and

probability level, the IQR and MAD of the cost vectors obtained by CVaR are divided by

that of the EV. Then, the ratios are plotted on Figure 3.5 and Figure 3.6. It is observed

that for all instances and probability levels, CVaR achieves lower IQR and MAD values

than EV for the cost vector. In more than half of the cases, the variability of the cost

vector produced by CVaR is at least 20% lower than that of the EV. On average, CVaR

results in cost vectors with 25.2% lower IQR and 24.4% lower MAD than EV. It is observed

that setting the probability level to 60% and 70% in the SDORS-CVaR model leads to the

largest variability reductions in the cost vector, where CVaR achieves 32.95% lower IQR

and 33.65% lower MAD than EV on average.
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Figure 3.5: CVaR vs. EV: total cost mean-variance comparison using IQR
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Figure 3.6: CVaR vs. EV: total cost mean-variance comparison using MAD

Figure 3.7 depicts the PDF plots of the cost vectors obtained by CVaR and EV for

the instances {2,4,6,8}. The CVaR results are shown for two different probability levels.

The PDF plots are estimated using a normal kernel function in MATLAB. The estimated

PDF plots shown below add further proof that the SDORS-CVaR model shows promise for

reducing the variability of the cost. It is also noticed that choosing higher probability levels

in the SDORS-CVaR model results in larger reductions in the worst-case cost.
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Figure 3.7: CVaR vs. EV: variability comparison using PDF estimates

3.4.4 Computational Complexity of SDORS-CVaR

It has been shown that the surgical case scheduling problem is NP-hard [11]. The opti-

mization model is extremely difficult to solve due to the corresponding model having a large

number of integer variables. For example, even the deterministic version of the SDORS-

CVaR model contains more than 200,000 binary variables for a test problem instance solved

in this chapter. Table 3.2 show the computational complexity of the SDORS-CVaR model

when 100 scenarios are used for each problem instance.

Table 3.2: Computational complexity of SDORS-CVaR model

Problem Instance ID 1 2 3 4 5 6 7 8

Number of Patients 9 22 34 40 63 74 89 101

Number of ORs 5 5 5 10 20 20 15 20

Binary variables 405 2,420 5,950 16,400 80,640 111,000 120,150 206,040

Constraints 40,040 280,748 747,660 2,171,422 12,622,268 18,698,210 22,092,250 40,408,424

We also compared the computational efficiency of the SDORS-CVaRmodel with SDORS-

EV in solving the problem instances. Table 3.3 shows the computation times for problem
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instances that are solved to optimality within a one-hour time limit. We added two more

problem instances, containing 16 and 31 patients, that are numbered 9 and 10 in the table,

respectively. It is observed that the the SDORS-CVaR model converges to the optimal solu-

tion faster than the SDORS-EV model as the problem size grows. For example in problem

instance 3, the SDORS-CVaR with α = 90% finds the optimal schedule within 8 minutes

while the SDORS-EV fails to do so within one hour.

Table 3.3: CVaR vs. EV: solution time comparison

Problem Instance
CPU Time (sec) Optimality Gap (%)

EV CVaR (α = 50%) CVaR (α = 90%) EV CVaR (α = 50%) CVaR (α = 90%)

1 3.36 2.82 2.32 0.0 0.0 0.0

2 3352 1868 389 0.0 0.0 0.0

3 3600? 2909 451 4.5 0.0 0.0

9 2.5 4.2 2.3 0.0 0.0 0.0

10 1065 119 99 0.0 0.0 0.0
? Stopped due to exceeding the solution time limit and not solved to optimality.

3.5 Conclusion

A risk-based solution method is proposed for the daily OR scheduling problem with

stochastic surgery durations. The problem was modeled using a scenario-based MILP for-

mulation to reduce computational burden to solve the model. Instead of using the commonly

used expected value-based method, we have developed a CVaR-based approach to control

variability on overtime and idle time, and reduce worst-case outcomes of an OR schedule

in terms of cost. The proposed solution method was tested using a set of real-life numer-

ical instances. In all test cases, the CVaR outperformed the EV in reducing variability

on overtime, idle time, and the associated worst-case costs. As compared to the EV, the

CVaR reduced variance on total cost by 37%, produced a 25% lower interquartile range

and 24% lower median absolute deviation while increasing the average cost by less than

4%. Furthermore, we have introduced an adjustable confidence level parameter that allows
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a decision-maker to be able to switch the emphasis between reducing variability and reduc-

ing the average of total cost associated with overtime and idle time. When the region of

interest is narrowed by selecting higher confidence levels (e.g., 90%), it resulted in better

performance in terms of reducing the variability.
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Chapter 4

A Decomposition Algorithm for the Two-Stage

Chance-Constrained Operating Room Scheduling

Problem

4.1 Introduction

Health care expenditures are expected to constitute 25% of the US gross domestic prod-

uct (GDP) in 2025, an increase from 15.9% in 2005 [66]. Surgical expenses contribute to

30% of health care expenditures and are expected to grow from $572 billion in 2005 to $912

billion (2005-valuated dollars) in the year 2025. Surgical procedures are complex tasks re-

quiring a variety of specialized and expensive resources. In 2011, hospitalizations involving

surgical procedures constituted 29% of total hospital stays while contributing to 48% of

total hospital costs in the US [94]. In light of these reports, surgeries are recognized as the

most crucial activities performed in hospitals from a social, medical and economic point of

view.

Several survey articles have recognized the surgery duration uncertainty as a major

obstacle to developing practical and cost-effective OR schedules [61]. This chapter proposes

a chance-constrained programming model that: 1) provides cost-effective OR schedules

by considering both deterministic and stochastic costs, 2) maintains a low OR overtime

probability and compares individual and joint chance constraints, 3) results in a better
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cost-variability trade-off compared to two existing models in the literature, and 4) solves

such problems at a faster rate than the two aforementioned existing models before applying

any solution algorithms. Moreover, a computationally efficient solution method and strong

valid inequalities are provided to facilitate timely decision-making in the case of disruptions

in the schedule.

The OR scheduling literature has been reviewed in several survey articles [13, 61, 79].

The published literature has been classified using several categories, including uncertainty.

Variable surgery duration is one of the most commonly studied sources of uncertainty by

the Operations Research community. It is shown that mitigating the impact of disruptions

in the schedule due to uncertainty can lead to higher capacity utilization and lower costs

[62, 65]. Hence, it is crucial to ensure that the provided schedule works reliably in the

presence of large variability in surgery durations.

Numerous works have used stochastic programming to model the uncertain surgery du-

rations in the OR scheduling problems [5, 29, 73, 93]. The majority of these models consider

optimizing the expectation of costs/revenues during the planning horizon [36]. For problems

with moderate variability, using the expected value (EV) can result in desirable outputs.

However, the obtained solutions may show poor performance for problems displaying fre-

quent changes in a less predictable manner [72]. A number of articles considered using

the Conditional Value-at-Risk (CVaR) [78] to account for undesirable realizations of the

uncertain parameters [52, 67, 80]. The CVaR function minimizes the expected tail of costs.

Another array of articles have used the chance-constrained programming (CCP) models

[15] to address the uncertainty. This approach mitigates the risk of disadvantageous events

(e.g., OR overtime, patient waiting time) exceeding the specified thresholds, rather than

merely minimizing their expected value [19, 42, 97]. Shylo, Prokopyev and Schaefer [84]

applied chance-constraints to control the OR block overtime in the OR surgery planning

problem. Zhang, Denton and Xie [98] studied a chance-constrained OR surgery allocation

problem. Deng and Shen [19] developed a two-stage stochastic model for the multi-server

appointment scheduling problem with a joint chance constraint on server overtime. They
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applied the proposed model and solution approach to solve OR scheduling problem test

instances. Jebali and Diabat [40] studied the surgery planning problem under uncertain

surgery duration, length of stay in the intensive care unit (ICU), and emergency patient

arrival. They employed chance constraints to control the violation of ICU capacity. Wang,

Li and Peng [92] proposed a distributionally robust chance-constrained model for the surgery

planning problem with stochastic surgery durations. Noorizadegan and Seifi [71] proposed

a CCP model for the surgery planning problem with uncertain surgery durations. Kamran,

Karimi and Dellaert [41] proposed a two-stage stochastic model with chance constraints on

OR overtime for the advance scheduling problem. Deng, Shen and Denton [21] developed

a distributionally robust chance-constrained model for the OR scheduling problem. They

control the risk of OR overtime and surgery waiting using joint chance constraints.

Table 4.1 summarizes the selected published literature and identifies the research gaps

that are addressed in this chapter. First, it can be observed that very few articles proposed

a CCP model for the OR scheduling problem under uncertainty [19, 21]. Surgery scheduling

problems often have a more complex structure resulting from a variety of decisions, such

as OR opening, patient-to-OR assignment, surgery sequencing, and projected and actual

start times before and after the realization of random surgery durations, respectively. CCP-

based models have the potential to effectively handle such large variabilities in daily surgery

scheduling problems [61].

Table 4.1: Research Gaps in the Chance-Constrained OR Scheduling Literature

Authors (Year) Decisions Objective

OR Resource
Allocation

Sequencing &
Scheduling

Deterministic
Costs

Stochastic
Costs

Shylo et al. (2012) X OR Idle Time
Zhang et al. (2015) X OR Overtime
Deng et al. (2019) X X X OR Opening
Noorizadegan &
Seifi (2018) X X X

OR Opening &
Turn-Over

Wang et al. (2017) X X Operational

This Chapter X X X OR Opening
OR Overtime &
Patient Waiting

Time
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Second, a majority of the models have neglected the importance of minimizing the

stochastic second-stage costs. Their primary focus has been on providing schedules within

the specified risk tolerances while also aiming to minimize deterministic performance mea-

sures, such as fixed OR opening costs [21, 71]. Unlike existing approaches, this chapter pro-

poses a chance-constrained model that aims to minimize both deterministic and stochastic

costs for the OR scheduling problem. The significance of considering both classes of costs

is highlighted using numerical experiments.

Third, we provide insightful observations about the performance of three different models

(CCP, CVaR and EV) in solving the stochastic OR scheduling problem under various risk

thresholds. The proposed model is compared alongside EV and CVaR models using several

metrics such as total costs, OR utilization and solution time. Moreover, the performances of

both individual and joint chance constraints are compared in terms of OR opening decisions,

minimizing the second-stage costs and computational efficiency.

Finally a computationally efficient decomposition algorithm is applied to provide high-

quality solutions for the large-scale test instances within reasonable time frames. We pro-

posed an algorithm to derive feasibility cuts using the first-stage solutions that accelerate

finding feasible solutions and the convergence speed.

4.2 Mathematical Formulation

4.2.1 Problem Description

Let I be the set of elective surgeries and R be the set of operating rooms. The problem

is to schedule surgeries over a daily planning horizon. We assume that operating rooms use

the block booking policy [25]. Each OR is allocated to a surgical specialty according to the

master surgery schedule. The incidence matrix E = {eir} for all i ∈ I, r ∈ R allows specific

surgery-to-OR assignments. The surgery duration is random, denoted by a random vector

δ = (δ1, ..., δ|I|)T ∈ R|I|+ where δi shows the random duration for surgery i ∈ I. We assume

that the random surgery duration has finite and discrete support S for δ. The probability

density of each scenario s is denoted by ps, where
∑
s∈S ps = 1. Each realization of δ in
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scenario s is shown by δs = (δs1, ..., δs|I|)T . Every surgery on the daily booking list must

be operated. No interruption is allowed once an operation has started. It is desired to

decrease the probability of working OR overtime. This restriction is enforced using chance

constraints. Each surgery must be assigned an OR and a projected start time. Our goal

is to minimize the sum of fixed OR opening costs and expected costs corresponding to OR

overtime and patient waiting times.

4.2.2 Chance-Constrained OR Scheduling Problem

We propose a two-stage stochastic model for the daily OR scheduling problem with indi-

vidual chance constraints enforcing overtime restrictions on every OR. Table 4.2 introduces

the notation used in our model.

Table 4.2: Sets, parameters and variables used in the model

Symbol Definition

Indices
i index for elective surgeries, i ∈ I
k index for order of surgery appointments in OR, k ∈ K
r index for operating rooms, r ∈ R
s index for scenarios, s ∈ S

Parameters

eir 1, if surgery i can be assigned to OR r; 0, otherwise
δis duration of surgery i in scenario s
fr fixed cost of opening OR r
capr operating time limit for OR r
cor unit overtime cost of OR r
cwr unit waiting cost for surgery i
ps probability density of scenario s
αr overtime probability threshold for OR r (confidence level)
M a sufficiently large number

Decision Variables

ur 1, if OR r is opened; 0, otherwise
yikr 1, if surgery i scheduled as kth surgery in OR r; 0, otherwise
zrs 1, if chance constraint on OR r is violated in scenario s; 0, otherwise
tpkr projected start time for surgery i
trkrs actual start time for surgery i in scenario s
ors OR r overtime in scenario s
wrs total patient waiting times in OR r and scenario s

The first-stage problem involves deterministic decision-making (i.e., OR opening and

surgery case assignment) prior to the realization of uncertain surgery durations. After the

uncertain parameters are revealed, the second-stage problem determines recourse actions

(e.g., adjusting start times and adding OR overtime) that incur additional costs to provide
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meaningful schedules based on first-stage decisions. The goal is to minimize total costs as

well as satisfy the chance constraints on OR overtime.

The first-stage problem (M1) can be formulated as

Min
∑
r∈R

frur (4.2.1)

and x ∈ X (4.2.2)

where x = (u, y) is the vector of first-stage variables. Set X is the resulting set from the

deterministic constraints (4.2.3)-(4.2.7) formulated as

yikr ≤ ur ∀i ∈ I, k ∈ K, r ∈ R, (4.2.3)∑
k,r

yikr = 1 ∀i ∈ I, (4.2.4)

yikr ≤ eir ∀i ∈ I, k ∈ K, r ∈ R, (4.2.5)∑
i

yi(k+1)r ≤
∑
i

yikr ∀k ∈ K \ {|K|}, r ∈ R, (4.2.6)

and ur ∈ B|R|, yikr ∈ B|I|×|K|×|R| ∀i ∈ I, k ∈ K, r ∈ R. (4.2.7)

Objective function (4.2.1) minimizes the total cost of opening operating rooms. Con-

straints (4.2.3) and (4.2.4) ensure that every surgery will be assigned to one and only one

spot in an open OR during the day. Constraint (4.2.5) enforces eligible surgery-to-OR as-

signments. Constraint (4.2.6) determines the order of operating surgical cases in each OR.

Constraint (4.2.7) enforces binary values for the first-stage decision variables.

The chance-constrained second-stage problem (M2) is formulated as

tpkr ≤ tp(k+1)r ∀k ∈ K \ {|K|}, r ∈ R, (4.2.8)

tpkr ≤ trkrs ∀k ∈ K, r ∈ R, s ∈ S, (4.2.9)

trkrs ≤ tr(k+1)rs ∀k ∈ K, r ∈ R, s ∈ S, (4.2.10)∑
k

(trkrs − tpkr) ≤ wrs ∀r ∈ R, s ∈ S, (4.2.11)
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Pr{trkrs +
∑
i

δisyikr ≥ capr ∀k ∈ K, s ∈ S} ≤ αr, ∀r ∈ R, (4.2.12)

and tpkr, trkrs, wrs ≥ 0 ∀k ∈ K, r ∈ R, s ∈ S. (4.2.13)

Constraint (4.2.8) determines the projected start time for each surgery according to the

sequencing decisions. Constraint (4.2.9) ensures that each surgery starts after its projected

start time. Constraint (4.2.10) is similar to (4.2.8) in that the actual start times must

follow the sequencing decisions. Constraint (4.2.11) calculates the amount of waiting time

in every OR per scenario. The chance constraints (4.2.12) state that the surgeries assigned

to an OR must be finished during the regular hours (i.e., no overtime) with high probability.

Constraint (4.2.13) enforces the non-negativity of the second-stage decision variables. The

objective function of the second-stage problem is formulated in the remainder of this section.

The set P(s) of the first-stage solutions that are made to satisfy the chance-constrained

second-stage problem is derived as

P(r, s) =
{
x ∈ X | ∃tp, tr : trkrs +

∑
i

δisyikr ≤ capr

}
(4.2.14)

and P(s) =
⋂
r∈R

P(r, s). (4.2.15)

Proposition 1. Let αr|S| be an integer for every r. Then, chance constraints (4.2.12) are

equivalent to

trkrs +
∑
i

δisyikr ≤ capr +Mzrs ∀k ∈ K, r ∈ R, s ∈ S (4.2.16)

and
∑
s

zrs ≤ αr|S| ∀r ∈ R, s ∈ S. (4.2.17)

where binary variable zrs = 1 when the time capacity of room r is violated.

Proof. According to constraints (4.2.12) and (4.2.13), an overtime occurs if

trkrs +
∑
i

δisyikr > capr,∀k ∈ K, r ∈ R, s ∈ S. (4.2.18)
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Therefore, the value of zrs in (4.2.16) captures scenarios where an OR runs overtime. Given

that the random surgery duration has a discrete and finite support, constraint (4.2.17)

limits the number of scenarios where each OR can run overtime.

For each scenario s ∈ S, an operation may be completed during regular hours (zrs = 0)

or may run into overtime (zrs = 1). Therefore, the second-stage cost, g(x, s), will be

calculated differently in each case

 g1
r (x, s) = cwrwrs zrs = 0 (4.2.19)

g2
r (x, s) = cwrwrs + corors zrs = 1 (4.2.20)

where ors is a non-negative variable representing overtime. Therefore, the objective function

of the second-stage problem can be formulated as

Es [g(x, s)] = Es

(∑
r

(1− zrs)g1
r (x, s) + zrsg

2
r (x, s)

)
. (4.2.21)

Objective function (4.2.21) minimizes the expected costs corresponding to OR overtime and

patient waiting times. The deterministic equivalent formulation for the two-stage chance-

constrained OR scheduling model (MDEF ) can be modeled as

Min obj =
∑
r

frur + 1
|S|

∑
r,s

(cwrwrs + corors) , (4.2.22)

s.t. (4.2.8)− (4.2.11), (4.2.13),

trkrs +
∑
i

δisyikr ≤ capr +Mzrs ∀k ∈ K, r ∈ R, s ∈ S, (4.2.23)

trkrs +
∑
i

δisyikr ≤ capr +M(1− zrs) + ors ∀k ∈ K, r ∈ R, s ∈ S, (4.2.24)

∑
s

zsr ≤ αr|S| ∀r ∈ R, s ∈ S, (4.2.25)

and x ∈ X, zrs ∈ B|R|×|S| ∀k ∈ K, r ∈ R, s ∈ S. (4.2.26)

Using a big M value can lead to weak LP relaxations. Assigning a smaller value for M

can help tighten the feasible region for the LP relaxation of MDEF . Therefore, instead of
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setting a single large value for M , constraint-specific formulae used to calculate the big M

values are developed for constraints (4.2.23) and (4.2.24) as

Mrs =
∑
i

eirδis,∀r ∈ R, s ∈ S. (4.2.27)

The values in (4.2.27) are valid because the total operation time in each OR does not exceed

the duration of all surgical cases that can be allocated to the specific operating room.

4.3 Solution Approach

This section describes a decomposition algorithm that solves the proposed model in

Section 4.2. The proposed algorithm can solve the model to optimality if the following

assumptions are satisfied [53, 54]:

• The random vector S has discrete and finite support. Specifically, ps = 1
|S| for s ∈ S.

We have stated this assumption in the problem description in Section 4.2.1.

• Set X and P(s), s ∈ S are non-empty compact sets.

Without loss of generality, we can assume that for every s ∈ S, there exists a feasible

first-stage solution that satisfies the chance constraints. Therefore, sets X and P(s)

are finite sets of points that qualifies them as compact sets.

• Set conv (P(s)), s ∈ S have the same recession cone, i.e., there exists C ⊆ RN such

that C =
{
θ ∈ RN |x+ λθ ∈ P(s);∀x ∈ P(s), λ ≥ 0

}
for all s ∈ S, where N := |R| +

|I| × |K| × |R| .

Proof. Since all of the first-stage decision variables are binary, P(s) is bounded by a

hypercube of dimension N . Therefore, θ = 0 is the only solution that satisfies the

condition in the definition of C. In other words, C = {0} for all s ∈ S.

• There does not exist an extreme ray θ̃ of conv(X) with fT θ̃ < 0, i.e., the two-stage

problem has a bounded optimal solution.
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Proof. We need to show that both first-stage and second-stage problems have bounded

optimal solutions. We know from Assumption 2 that both problems are feasible. The

highest objective function value for the first-stage problem is when all operating rooms

are open, i.e., ∑r fr, which is bounded. Given the first-stage solution, every open

operating room will run overtime in up to αr|S| scenarios. The amount of overtime

is bounded by maxk∈K{trkrs + ∑
i δisyikr − capr}, which is also a finite value given

trkrs ≥ 0 and the minimization objective function in the second-stage problem.

Proposition 2. Model MDEF has an optimal solution (x∗, z∗) in which
∑
s z
∗
rs = αr|S| for

all s ∈ S [54].

Proof. This holds for the individual chance constraints in our model without loss of gen-

erality. Assume that in the optimal solution to our model, there exists r ∈ R where∑
s z
∗
rs = ε < αr|S|. The optimal solution will allow (αr|S|− ε) scenarios to run in overtime

mode (zrs = 1) with the corresponding overtime variables ors set to zero.

We begin the decomposition algorithm by defining feasibility (F) and optimality (O)

sets as

F =
{
x ∈ X, z ∈ B|R|×|S| :

∑
s

zrs = αr|S|, r ∈ R, zrs = 0⇒ x ∈ P(r, s), s ∈ S
}
, (4.3.1)

O =
{

(x, z, ρ) ∈ F× R+ : ρ ≥ 1
|S|

∑
r,s

(1− zrs)g1
r (x, s) + zrsg

2
r (x, s)

}
. (4.3.2)

These sets will be approximated using feasibility and optimality cuts in the following master

problem (MP)

Min
x,z,ρ

fTu+ ρ, (4.3.3)∑
s

zrs = αr|S| ∀r ∈ R,

x ∈ X, z ∈ B|R|×|S|, ρ ≥ 0,
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(x, z) ∈ F̃,

and (x, z, ρ) ∈ Õ.

The sets F̃ and Õ are the outer approximations of the feasibility (F) and optimality (O)

sets, respectively. In the remainder of this section, we will derive strong valid inequalities

to define F̃ and Õ.

4.3.1 Feasibility Cuts

Two sets of subproblems are required to formulate the strong feasibility cuts: single-

scenario optimization and single-scenario separation [53]. The optimization subproblem for

the OR scheduling problem is formulated as

hrs(γ) = Min
x

{
γx | x ∈ P(r, s) ∩ X̄

}
(4.3.4)

where γ ∈ RN and X̄ ⊇ X, such that P(r, s) ∩ X̄ 6= Φ.

Proposition 3. Problem (4.3.4) is feasible and has a finite optimal value if γ ∈ RN .

The separation subproblem can be formulated as

%rs(x̂) = Max
π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
, (4.3.5)

(
π1

(k−1)rs − π
1
krs

)
+ π5

rs ≤ 0 ∀k ∈ K, (4.3.6)(
π2

(k−1)rs − π
2
krs

)
+ π3

krs − π4
krs − π5

rs ≤ 0 ∀k ∈ K, (4.3.7)

π4
krs ≤ cor ∀k ∈ K, (4.3.8)

π5
rs ≤ cwr, (4.3.9)∑
k

(
π1
krs + π2

krs + π3
krs + π4

krs

)
+ π5

rs = 1, (4.3.10)

and π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0 ∀k ∈ K. (4.3.11)

Solving this subproblem to optimality returns a separating hyperplane of the form γx ≥
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β for all x ∈ P(r, s). Let x̂ be a solution to the master problem (MP). If %rs(x̂) > 0 and

π̂ is the optimal solution, the separating hyperplane −∑k π̂
4
k

∑
i d̃iyikr ≥ −

∑
k π̂

4
kcapr cuts

off x̂ from F̃. Therefore, we define the valid feasibility cuts as

Theorem 4.3.1. The following sets of inequalities are valid for F:

γx+
l∑

i=1

(
hgi(γ)− hgi+1(γ)

)
zgi ≥ hg1(γ) (4.3.12)

where hσ1 ≥ hσ2 ≥ ... ≥ hσ|S|, G = {g1, g2, ..., gl} ⊆ {σ1, σ2, ..., σp} and hgl+1 = hσp+1.

The remainder of this section presents another class of feasibility cuts derived from

the solutions to the first-stage problem (M1) or master problem (MP ) that result in the

violation of chance constraints (4.2.12).

Theorem 4.3.2. The following set of inequalities are valid for F

zrs −
∑

i∈TB,k
yikr ≥ 1− |TB| ∀r ∈ R, s ∈ S (4.3.13)

where TB is the subset of surgeries that lead to the violation of chance constraints when

they are assigned to the same OR.

Let ŷikr be the set of surgery-to-OR assignments obtained from solving (M1) or (MP ).

Algorithm 1 generates inequalities of type (4.3.13).
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Algorithm 1 Feasibility Cut Generation
1: input: Sets and parameters in Table 4.2, ŷikr.

2: initialize: vrs ← 0, Cntr ← 0, TB ← Φ.

3: Calculate vrs = ∑
k,i δisŷikr − capr, ∀r ∈ R, s ∈ S.

4: if vrs > 0, ∀r ∈ R, s ∈ S then

5: • Cntr ← Cntr + 1.

6: if Cntr > αr|S|, ∀r ∈ R then

7: • TB ← {i|ŷikr = 1}.

8: • Add feasibility cut (4.3.13) to F̃ in (MP).

9: end if

10: end if

11: output: Feasibility cuts to add to the model (MP).

4.3.2 Optimality Cuts

In this section, we derive optimality cuts to add to Õ. First, we formulate the dual

problems for regular and overtime modes of the second-stage problem. For every r ∈ R and

s ∈ S where zrs = 0, the regular mode dual problem is formulated as

ν1
rs(x̂) = Max

π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
, (4.3.14)

(
π1

(k−1)rs − π
1
krs

)
+ π5

rs ≤ 0 ∀k ∈ K, (4.3.15)(
π2

(k−1)rs − π
2
krs

)
+ π3

krs − π4
krs − π5

rs ≤ 0 ∀k ∈ K, (4.3.16)

π5
rs ≤ cwr, (4.3.17)∑
k

(
π1
krs + π2

krs + π3
krs + π4

krs

)
+ π5

rs = 1, (4.3.18)

and π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0 ∀k ∈ K. (4.3.19)

Since the only difference between the regular and overtime mode is the introduction

of overtime variables (when zrs = 1), the overtime mode dual problem can be derived by
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replacing π with π̄ and adding the dual constraints corresponding to overtime variables as

ν2
rs(x̂) = Max

π̄

∑
k

π̄4
krs

(∑
i

d̃isŷikr − capr

)
, (4.3.20)

s.t. (4.3.15)− (4.3.19),

and π̄4
krs ≤ cor ∀k ∈ K. (4.3.21)

The set of dual optimal solutions for the regular and overtime modes are shown by Πrs

and Π̄rs, respectively. Then, we formulate optimality subproblems for each mode. For a

given τ ∈ RN , r ∈ R and s ∈ S, we formulate the optimality subproblem for the regular

mode as

ψ1
rs(τ) = Min

{
g1
r (x, s) + τTx : x ∈ P(r, s)

}
. (4.3.22)

Similarly, we formulate the optimality subproblem for the overtime mode as

ψ2
rs(τ) = Min

{
g2
r (x, s) + τTx : x ∈ X

}
. (4.3.23)

Proposition 4. Let dom ψrs(τ) =
{
τ ∈ RN : ψrs(τ) > −∞

}
. There exists D ⊆ RN where

dom ψ1
rs(τ) = dom ψ2

rs(τ) = D.

Proof. From Assumption 4, we know that both (4.2.19) and (4.2.20) are non-negative and

bounded. We also know that x is binary. It suffices to have τ ∈ RN+ such that ψ1
rs(τ) > −∞

and ψ2
rs(τ) > −∞. Therefore, D = RN+ satisfies the condition.

Proposition 5. Let Q ⊆ S, πrs ∈ Πrs and τrs = ∑
i,k π

4
krsd̃is for s ∈ Q, and π̄rs ∈ Π̄rs and

τrs = ∑
i,k π̄

4
krsd̃is for s ∈ S \Q. The following inequality is valid for O

ρ+ 1
|S|

∑
r,s∈Q

(
−
∑
k

π4
krscapr − ψ2

rs(τrs)
)
zrs (4.3.24)
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+ 1
|S|

∑
r,s∈S\Q

(
−
∑
k

π̄4
krscapr − ψ1

rs(τrs)
)

(1− zrs)

≥ 1
|S|

∑
r,s∈Q

(
−
∑
k

π4
krscapr

)

+ 1
|S|

∑
r,s∈S\Q

(
−
∑
k

π̄4
krscapr

)
+ 1
|S|

∑
i,r,s

(τrsŷikr) .

4.3.3 Decomposition Algorithm

A decomposition algorithm is proposed to solve the two-stage chance-constrained OR

scheduling problem. This algorithm has a similar structure to the Benders decomposition

algorithm [76]. Rather than traditional Benders cuts, we use strong valid inequalities derived

in Section 4.3.1 and Section 4.3.2. Parameter ε in Algorithm 2 represents the upper bound

on the relative optimality gap, calculated as UB−LB
UB .

Algorithm 2 Decomposition Algorithm
1: input: sets and parameters in Table 4.2, model MDEF .
2: initialize: LB := −∞, UB := +∞, ε ∈

[
10−3, 10−6]

3: while UB−LB
LB > ε do

4: Solve master problem (4.3.3).
5: if (4.3.3) is infeasible then
6: Stop. Original problem is infeasible.
7: else
8: Let (x̂, ẑ, ρ̂) be an optimal solution to (4.3.3).
9: • LB ← fT û+ ρ̂.

10: • Check feasibility of the second-stage problem by calling Algorithm 1 and eval-
uating the inequalities (4.3.12).

11: if there exists violated inequalities then
12: • Add feasibility cuts (4.3.12) and (4.3.13) to F̃.
13: else
14: • UB←∑

r
frûr+ 1

|S|
∑

r,s[g1
r(x̂,s)+g2

r(x̂,s)]
15: • Add optimality cuts (4.3.24) to Õ.
16: end if
17: end if
18: end while
19: output: optimal cost obj∗ and decision variables (x∗, z∗, tp∗, tr∗, o∗, w∗).

Theorem 4.3.3. Algorithm 2 converges to an optimal solution in finite iterations.

Proof. The feasibility cuts are added to the master problem (4.3.3) to remove the first-stage
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decisions that result in infeasible M2. It is known from Assumption 2 that the set of feasi-

ble solutions to M1 is finite. Therefore, a finite number of inequalities of type (4.3.12) and

(4.3.13) can be added to (4.3.3). Moreover, the sets Πrs and Π̄rs of the optimal solutions

to the dual problems in Section 4.3.2 are finite since there is no constraint parallel to the

objective function (4.3.14). Therefore, a finite number of optimality cuts (4.3.24) will be

generated. Given that there are finite numbers of feasibility and optimality cuts, Algo-

rithm 2 converges in a finite time following the convergence of the Benders decomposition

algorithm [76].

4.4 Numerical Experiments

Test problem instances are obtained from Leeftink and Hans [50]. The instances consist

of different surgical specialties such as orthopedic, otorhinolaryngology, and oncology. The

surgery durations follow a three-parameter lognormal distribution [35]. We used the Monte

Carlo sampling method to generate a finite set of scenarios for random surgery durations.

The overhead and variable costs for operating rooms are determined using the cost settings

in [29]. The OR opening cost is calculated by multiplying the overhead cost by the OR

available time. Each OR operates an 8-hour workday and has one block that is assigned to

a surgical specialty. Optimization models are implemented in Python using IBM CPLEX

on a workstation with 24 cores, 3 GHz processors, and 384 GB of memory. A time limit

of one hour is imposed for all instances. The valid cuts are implemented using the CPLEX

lazy constraint callback function.

4.4.1 Comparing CCP with Other Stochastic models

We compare the performance of the proposed chance-constrained model with the two

models proposed in [67]: SDORS-EV and SDORS-CVaR. SDORS-EV is a stochastic pro-

gramming model that attempts to optimize the expected value of OR overtime and patient

waiting costs. SDORS-CVaR is a risk-based model that minimizes the expected tail of

overtime and waiting costs by using the CVaR function [67]. For simplicity, the following
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terminology is used in our experiments: CCP (chance-constrained), CVaR (SDORS-CVaR)

and EV (SDORS-EV). The performance of these models are evaluated using several criteria.

Table 4.3 compares the performance of the three models after solving eight OR schedul-

ing instances within the specified time limit. A finite set of 100 scenarios is generated for

each surgery, and the parameter αr is set to 0.10. The second and third columns show the

number of surgical cases and available ORs for surgery operation. The column Time shows

the computational time in seconds. Finally, the optimality gap reported in the last column

is calculated as
(
UB−LB
UB

)
× 100%. It can be observed that the CCP model outperforms

CVaR and EV in convergence speed. The chance-constrained model can solve all instances

to optimality within the specified time limit while EV and CVaR only solve instances with

up to 12 and 16 patients, respectively.
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Table 4.3: Computational efficiency of CCP, CVaR and EV

Instance |I| |R| Model Time (s) Gap (%)

1 6 5

CCP 1.6 0.0

CVaR 3.5 0.0

EV 6.8 0.0

2 7 5

CCP 2.2 0.0

CVaR 7.5 0.0

EV 32.1 0.0

3 9 5

CCP 11.3 0.0

CVaR 132 0.0

EV 87.1 0.0

4 12 5

CCP 140 0.0

CVaR 550 0.0

EV 1258.8 0.0

5 16 5

CCP 1169.5 0.0

CVaR 2623.8 0.0

EV 3600 1.38

6 20 5

CCP 1230 0.0

CVaR 3600 4.2

EV 3600 5.02

7 23 10

CCP 2204.3 0.0

CVaR 3600 11.7

EV 3600 21.0

8 29 10

CCP 2889.5 0.0

CVaR 3600 39.5

EV 3600 41.0

In Figure 4.1, the trade-off between minimizing costs and controlling the variability of
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costs is compared for each model. Several values are used for the confidence level parameter

α in order to mimic the behavior of these models under different risk attitudes. A high α

resembles an aggressive approach to minimize expected costs while accepting a substantial

risk of OR overtime. On the contrary, a low α depicts conservative decision-making (i.e., ac-

cepting higher costs given that the chance of OR overtime is low). As observed in Figure 4.1,

CVaR places emphasis on minimizing variability while EV focuses on providing the mini-

mum average costs. However, CCP provides a more moderate trade-off between minimizing

average costs and reducing variability. Assuming a given tolerance for the OR schedule

variability, CCP outperforms CVaR by providing more cost-effective solutions. Similarly,

CCP outperforms EV by providing OR schedules with lower variability, assuming a fixed

budget.

Figure 4.1: Trade-off between average total cost and variability of total cost

In Figure 4.2, we use several metrics to compare the performance of CCP, EV and CVaR

under different values for α. The metrics are [A,B,C,D,E] = [total cost, total waiting time
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& overtime, utilization, overtime scenarios, open ORs].

For small α values, CCP and CVaR suggest opening more ORs to reduce the risk of

overtime and reduce the expected tail costs, respectively. Therefore, they incur higher

average total costs and lower OR utilization than EV. EV displays better OR utilization at

the risk of experiencing increased overtime. CPP is the superior method in terms of reducing

overtime and patient waiting times. Moreover, CCP performs best in reducing the number

of scenarios where overtime occurs. Overall, using CCP results in fewer occurrences of

overtime and better OR utilization than CVaR when α is not very restrictive (i.e., α > 0.1

in our numerical experiments). It is also observed that the three models converge in all

metrics as α increases.
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Figure 4.2: Impact of using different risk thresholds on the performance of CCP, EV and CVaR
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Proposition 6. CCP, CVaR and EV provide the same optimal solution when α = 1.

Proof. When α = 1, the chance constraints (4.2.12) can be written as

Pr{trkrs +
∑
i

δisyikr ≤ capr : ∀k, s} ≥ 0 ∀r ∈ R (4.4.1)

which holds for all feasible solutions to the first-stage problem. Therefore, the chance

constraints are redundant and we have CCP ≡ EV when α = 1. Now, it suffices to show

that CV aR ≡ EV . CVaR is defined as the expectation of those outcomes where total

costs exceed a threshold value, called Value-at-Risk (VaR) [78]. For α = 1, the VaR of

second-stage costs is defined as

V aR1 = Min {g(x, s) : CDF (g(x, s)) ≥ 0} (4.4.2)

where CDF represents the cumulative density function. Given that CDF ≥ 0 for every

random variable, we conclude

g(x, s) ≥ V aR1 ∀x ∈ X, s ∈ S. (4.4.3)

Therefore, from Assumption 2 and inequality (4.4.3), the CVaR model minimizes the total

costs over all scenarios, thus indicating equivalence to using the EV model.

4.4.2 Solving Large-scale Test Instances

It is observed in Table 4.3 that the solution times increase exponentially as the problem

size grows. Therefore, we apply the valid inequalities and the decomposition algorithm

presented in Section 4.3 to solve larger test instances in shorter time periods. We used the

Monte Carlo sampling method to generate a set of 100 scenarios, and the parameter αr

was set to 0.10. Table 4.4 compares the performance of feasibility cuts (4.3.12) and (4.3.13)

when used separately and combined to solve the test problem instances shown in Table 4.3.

It can be observed that both valid inequalities are effective in reducing the solution time
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when compared to the cuts generated by the CPLEX solver. It is also observed that using

both types of cuts leads to longer solution times for small test instances due to the time

spent for generating inequalities. However, as problem size grows, adding both types of

feasibility cuts to F̃ leads to significantly faster convergence than applying them separately.

Therefore, we use valid inequalities (4.3.12) and (4.3.13) to generate feasibility cuts in the

following numerical experiments.

Larger test problem instances are solved and reported in Table 4.5 to evaluate the

performance of the proposed decomposition algorithm. We compare the performance of our

algorithm with that of the IBM CPLEX MIP Solver 12.9 and a decomposition algorithm

that uses the big-M optimality cuts introduced in [54]. The solution time and the optimality

gap are reported for each algorithm. The column Basic Decomposition illustrates the results

from the decomposition algorithm using feasibility cuts (4.3.12) and big-M optimality cuts.

The last column highlights the results of the proposed decomposition algorithm in this

chapter. As shown in Table 4.5, we observe that the CPLEX solver is the least desirable

option for solving MDEF , as expected. For the largest problem instance, the CPLEX solver

does not find any feasible solutions within the time limit. User-defined feasibility and

optimality cuts can improve solution speed. It can also be observed that using stronger

optimality cuts rather than the big-M cuts can reduce solution time significantly. Neither

the CPLEX solver nor the basic decomposition algorithm can solve any of the instances to

global optimality within the time limit. Nevertheless, the proposed decomposition algorithm

outperforms other methods by solving all test instances to optimality within 48 minutes.
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Table 4.4: Performance of different feasibility cuts

Instance Surgeries ORs
Cuts (4.3.12) Cuts (4.3.13) Both Cuts

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 6 5 2.5 0.0 1.9 0.0 3 0.0

2 7 5 2.6 0.0 2 0.0 5.1 0.0

3 9 5 8.2 0.0 7.5 0.0 9.8 0.0

4 12 5 69.1 0.0 75 0.0 49.6 0.0

5 16 5 205.6 0.0 243.7 0.0 131.3 0.0

6 20 5 216.2 0.0 285.2 0.0 150.5 0.0

7 23 10 357.9 0.0 405.1 0.0 231.7 0.0

8 29 10 653.4 0.0 732.9 0.0 405.4 0.0

Table 4.5: Performance of different solvers/algorithms on large-scale problems

Instance Surgeries ORs Scenarios
CPLEX Basic Decomposition This Chapter

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

9
40 10 100 3600 2.3 3600 1.5 713.8 0.0

40 10 500 3600 5.6 3600 4.0 1400.3 0.0

10
63 20 100 3600 11.2 3600 9.8 1333.2 0.0

63 20 500 3600 16.8 3600 13.4 2246.6 0.0

11
74 20 100 3600 19.4 3600 15.9 2270.8 0.0

74 20 500 3600 28.7 3600 21.7 2631.6 0.0

12
89 20 100 3600 45 3600 32.3 2819.5 0.0

89 20 500 - - 3600 51.5 2851.2 0.0

4.4.3 Importance of Minimizing Expected Costs

Our numerical experiments show that a significant portion of total costs comes from

the expected overtime and waiting time costs. Neglecting these measures in OR scheduling

models can result in surpassing the predicted overtime budget by 200%, disheartening staff

from longer-than-expected shifts, and causing dissatisfaction to patients [31]. We solved 10

replications of all test instances in Table 4.3 using two different objective functions: objective

(4.2.22); and objective (4.2.22) minus the expected second-stage costs. Then, we calculated
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the sum of costs pertaining to OR opening, OR overtime, and patient waiting time for each

optimal solution of each case. The percentage of savings obtained from optimizing both

deterministic and stochastic costs is calculated as
(
obj∗2−obj

∗
1

obj∗2
× 100%

)
. It is observed from

Figure 4.3 that minimizing the expected costs leads to greater savings when larger α values

are used. This highlights the importance of minimizing the expected costs in addition to

satisfying the chance constraints when solving stochastic OR scheduling problems.

Figure 4.3: Advantage of minimizing expected costs when solving the chance-constrained OR
scheduling model

4.4.4 Individual vs. Joint Chance Constraints

The chance constraints in Section 4.2.2 are enforced on each OR independently. How-

ever, a decision-maker might be interested in controlling the chance of OR overtime on an
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aggregate level. In such cases, the chance constraints (4.2.12) are replaced by

Pr{trkrs +
∑
i∈I

δisyikr ≤ capr,∀k, r, s} ≥ 1− α. (4.4.4)

This section compares the joint chance-constrained OR scheduling model (MJoint) with the

proposed model MDEF presented in Section 4.2. In the following numerical experiments,

the Monte Carlo sampling method is used to generate a set of 100 scenarios for each test

instance. We applied the decomposition algorithm proposed in Section 4.3 and the same

classes of valid inequalities to both models. Figures 4.4 and 4.5 compare MDEF and MJoint

after solving the larger test instances shown in Table 4.5. Figure 4.4 illustrates that MJoint

tends to open more ORs to satisfy the tighter limit on OR overtime. The joint chance

constraints restrict the occurrence of overtime to α|S| scenarios while the individual chance

constraints allow up to min{αr|S||R|, |S|} scenarios with OR overtime. As the probability

threshold α loosens, the gap between the optimal number of open ORs obtained by the two

models shrinks due to the converging feasible regions. Similar to Proposition 6, it can be

shown that the two models achieve equivalent optimal solutions when α = 1. Figure 4.5

compares the performance of MJoint and MDEF in reducing the OR overtime and patient

waiting times. The vertical axes depict the average overtime and waiting time per OR per

scenario, respectively. It can be observed thatMJoint achieves greater success at controlling

OR overtime by opening more ORs and setting the projected start times earlier to satisfy

the stricter chance constraints. However, these measures lead to lower OR utilization and
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Figure 4.4: Optimal number of open ORs

higher waiting times when compared to that of MDEF .

Figure 4.5: Optimal overtime and waiting times

Table 4.6 compares the run times of the two models after solving the test instances

presented in Table 4.3 and Table 4.5. Column First Feasible shows the run time to find

the first feasible solution. Column 1% Gap details the run time to reach 1% optimality
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gap. It is observed that MDEF can find feasible solutions and attain near-optimal solutions

in shorter time lengths compared to MJoint. For the largest test instance, MDEF finds a

feasible solution within half the time required byMJoint and solves the problem to optimality

within 48 minutes. On the other hand, MJoint fails to reach 1% optimality gap within the

one-hour time limit.

Table 4.6: Computational performance of MJoint and MDEF

Instance MJoint MDEF

First Feasible (s) 1% Gap (s) First Feasible (s) 1% Gap (s)
1 1.2 4.7 0.8 3.1
2 1.7 7.8 1.3 5.5
3 2.6 13.8 1.8 9.5
4 7 50.1 5 38.8
5 26.6 151 19.7 111.1
6 23.5 163.7 16.6 121.9
7 50.7 244.4 34.8 179.3
8 73.8 448.3 52.7 317.4
9 137.1 988.9 80.2 649.3
10 296.8 2066 172.5 1312.2
11 519.1 3056.2 339.3 2090.7
12 616.4 3609.9 316.8 2594.6

4.5 Conclusions

In this chapter, a chance-constrained mixed-integer programming model was proposed

for the OR scheduling problem with stochastic surgery durations. The individual chance

constraints controlled the risk of OR overtime. The goal was to minimize the sum of OR

opening, OR overtime and patient waiting costs. Our model was compared with two other

stochastic models in the literature: an expected value model and a CVaR-based model.

We demonstrated that minimizing the expected costs when solving the chance-constrained

OR scheduling model results in significant savings compared to the case where only the

deterministic costs are minimized. Moreover, we compared the individual and joint chance

constraints in terms of allocated ORs, second-stage stochastic costs and solution times. A
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decomposition algorithm with strong feasibility and optimality cuts was applied to effec-

tively solve large-scale test instances. We proposed an algorithm that generated feasibility

cuts using the first stage solutions, and as a result, significantly reduced the time required

to find feasible solutions. Numerical experiments demonstrated that the decomposition al-

gorithm outperformed both the IBM CPLEX solver and a basic decomposition algorithm

by solving the largest test instances to optimality within the one-hour time limit. Moreover,

it is shown that the individual chance constraints lead to higher OR utilization, reduced

patient waiting times and shorter solution times. This work has the following limitations.

First, it is assumed that the surgery duration follows a known probability distribution.

Second, we considered the upstream and downstream resources (e.g., nurses, beds) to be

sufficiently available. However, such assumptions do not hold true for all real-life cases. It

is also demonstrated that finding strong cuts can increase the convergence speed signifi-

cantly. Therefore, relaxing the above assumptions and discovering stronger feasibility and

optimality cuts in order to solve more complex problems in shorter time frames can be a

promising topic for future research.
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Chapter 5

Using Lagrangian Relaxation and Conditional

Value-at-Risk Approximations to Develop an

Augmented Decomposition Algorithm for the

Stochastic Surgery Scheduling Problem

5.1 Introduction

Operating rooms contribute to more than 30% of total expenses [56] and 40% of total

revenues [33] in hospitals. The rapid growth of healthcare expenditures adds to the sig-

nificance of optimal operating room management. This increase in expenditures is fueled

by new technologies, new medications, aging population and the shortage of skilled staff in

hospitals [51]. Surgical expenses contribute to 30% of healthcare expenditures. Hospitaliza-

tions involving surgical procedures constituted 29% of total hospital stays while contributing

to 48% of the total hospital costs in the US [94]. In light of these reports, surgeries are

recognized amongst the most crucial activities in hospitals from social, medical and eco-

nomic points of view. The OR scheduling problem can be categorized into four planning

levels: case mix planning, master surgery scheduling, daily surgery scheduling and online

monitoring/re-scheduling [12]. The daily surgery scheduling problem itself can be divided

into two stages. The first stage addresses the assignment of patients to specific days over

a given planning horizon. In the second stage, the scheduled patients are sequenced and
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surgery start times are generated. In this chapter, we focus on the second stage of the daily

surgery scheduling problem, that is developing a single-day schedule for a set of elective

operations in an operating theater. The schedule provides the assignment of patients to

operating rooms along with a projected start time for each operation.

Several survey articles have studied the OR planning and scheduling problems and iden-

tified main challenges over the years [13]. Samudra, Van Riet, Demeulemeester, Cardoen,

Vansteenkiste and Rademakers [79] classified the literature using seven different perspec-

tives on OR scheduling problems, including uncertainty. They found uncertain surgery

durations and random emergency patient arrivals as the most commonly studied sources

of uncertainty by the Operations Research community. The required time for surgical in-

terventions may vary significantly based on the type of operations being performed, the

surgical team and the patient. In another survey paper, May, Spangler, Strum and Vargas

[61] recognized high variability of surgery durations as the biggest challenge towards devel-

oping practical and cost-effective OR schedules amongst other sources of uncertainty. Due

to such uncertainty in scheduling, reducing variability of the performance measures in the

provided schedules can improve capacity utilization, cost-efficiency and patient satisfaction

[62]. Hence, it is crucial to ensure that the provided schedule works reliably in the presence

of large variability in surgery durations. Stochastic programming models have been widely

used in the literature to address the OR scheduling problems with uncertain surgery dura-

tions [5, 29, 59]. One of the biggest disadvantages of the stochastic programming models

is that they are not scalable. In many cases, commercial solvers fail to find even feasible

solutions within a reasonable solution time. A large body of heuristic and metaheuristic

methods in the literature aim to solve the optimization model fast, but they do not guaran-

tee optimality [65, 91, 95]. This chapter proposes a new bounding approach to improve the

quality of initial feasible solutions found for the two-stage stochastic OR scheduling model.

The strong bounds are utilized to develop an augmented decomposition algorithm that can

optimally solve the stochastic model in finite iterations.

Stochastic programming models have been widely used in the literature to address the
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OR scheduling problems with uncertain surgery duration [29, 59]. The majority of the

existing stochastic programming models attempted to optimize the expected value of a per-

formance measure. The concept of using the expected value (EV) in scheduling optimization

can be helpful for problems with predictable variability (i.e., low risk) on the parameter.

However, for problems with frequent changes in a less predictable manner and in short-term

(i.e., high-risk), the optimal solution may show poor performance for specific realizations

of the random parameter [67].

The chance-constrained programming (CCP) models [15] have been used by researchers

to address the optimization problems under uncertainty in healthcare [42, 97]. This ap-

proach controls the risk of undesirable events (e.g., OR overtime, patient waiting time)

exceeding a specified tolerance, rather than merely minimizing their expected value. Shylo,

Prokopyev and Schaefer [84] applied chance-constraints to control the OR block overtime in

the OR surgery planning problem. Zhang, Denton and Xie [98] studied a chance-constrained

OR surgery allocation problem.

Jebali and Diabat [40] studied the surgery planning problem with uncertain surgery

duration, the length of stay in Intensive Care Unit (ICU), and emergency patient arrival.

Wang, Li and Peng [92] proposed a distributionally robust chance-constrained model for the

surgery planning problem with stochastic surgery durations. Noorizadegan and Seifi [71]

proposed a chance-constrained programming model for the surgery planning problem with

uncertain surgery durations. Deng and Shen [19] developed a two-stage stochastic model

for the OR scheduling problem with a joint chance constraint on OR overtime.

It is shown that the surgery scheduling problem is NP-hard [11]. A major drawback

of using the stochastic programming models is that they are not scalable. In many cases,

commercial solvers fail to find even feasible solutions within a reasonable solution time.

A large body of heuristic and metaheuristic methods in the literature aim to solve the

optimization model fast, but they do not guarantee optimality [65, 91, 95]. Moreover, generic

decomposition methods such as the Benders decomposition may show poor performance in

solving large-scale test instances [54, 68].
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In this chapter, we develop a chance-constrained programming model for the OR schedul-

ing problem using individual chance constraints to reduce the risk of OR overtime. The main

contribution of this chapter is to develop a fast decomposition algorithm that is augmented

by strong lower and upper bounds using Lagrangian relaxation and CVaR approximations.

5.2 Two-Stage Stochastic Programming Models for the OR Scheduling

Problem

A frequently used stochastic programming approach in the literature is the two-stage

model in which the decision-maker assigns surgical cases to operating rooms in the first

stage. On the day of surgery, random surgery durations affect the outcome of the first-

stage decision. Hence, a recourse decision can be made in the second stage to minimize

the expected costs (e.g., overtime, waiting time) as a result of the first-stage decision. The

optimal policy from such a model is a single first-stage policy and a collection of recourse

actions defining which second-stage decision should be taken in response to each random

outcome. It is assumed that the random parameters in the second stage are either known

or can be estimated by appropriate probability distributions.

The classical two-stage linear stochastic problems can be formulated as [8]

Min
x∈<n

g(x) = cTx+ E[Q(x, ξ)],

subject to

Ax ≥ b,

and x ∈ X.

(5.2.1)

where Q(x, ξ) is the optimal value of the second-stage problem under scenario ξ given the
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first-stage decisions x
Min
y∈<m

q(ξ)T y,

subject to

T (ξ)x+W (ξ)y ≥ h(ξ),

and y ∈ Y.

(5.2.2)

Sets X ⊆ Rn1 and Y ⊆ Rn2 enforce the non-negativity, continuous and/or integrality

constraints on the first-stage and second-stage decision variables. Vectors b ∈ Rm1 and

h(ξ) ∈ Rm2 show the right-hand side parameters. Finally, A ∈ Rn1×m1 , T (ξ) ∈ Rn1×m2

and W (ξ) ∈ Rn2×m2 are the coefficient matrices used in the two-stage problem. It is

often assumed that the random vector ξ has a finite number of possible realizations, called

scenarios, say ξ1, ξ2, ..., ξ|S| with respective probability masses p1, p2, ..., p|S|. Then the

expectation in the first-stage problem’s objective function can be written as E[(Q, ξ)] =∑|S|
s=1 psQ(x, ξs).

The two-stage problem can be formulated as one large mixed-integer programming model,

called the deterministic equivalent formulation (DEF) of the original problem

Min fTx+ p1q(1)T y(1) + p2q(2)T y(2) + ...+ p|S|q(|S|)T y(|S|),

subject to

T (1)x+W (1)y(1) ≥ h(1),

T (2)x+W (2)y(2) ≥ h(2),

. . .

. . .

. . .

T (|S|)x+W (|S|)y(|S|) ≥ h(|S|),

and x ∈ X, y(s) ∈ Y, s ∈ S.

(5.2.3)

Introducing a large number of scenario-specific variables, i.e., ys, combined with the
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existing integrality constraints adds to the computational complexity of the resulting model.

Solving DEF in its current form is a very challenging task for commercial solvers.

Decomposition algorithms have been widely used in the literature to solve large-scale

mixed-integer programming models [19, 68, 76]. Lagrangian methods were applied in the

early 1970s to general integer programming problem [28, 82] and scheduling problems [26].

Several papers in the literature have used Lagrangian relaxation to solve the OR scheduling

problem [3, 32, 99]. This chapter proposes a scalable decomposition algorithm to solve large-

scale instances of the two-stage chance-constrained OR scheduling problems efficiently. The

Lagrangian Relaxation and CVaR methods are utilized to derive lower and upper bounds

for the proposed model, respectively.

5.2.1 Mathematical Formulation

Let I be the set of elective surgeries and R be the set of operating rooms. The problem is

to schedule surgeries over a daily planning horizon. We assume that operating rooms use the

block booking policy [25]. Each OR is to be assigned to a surgical team or a surgeon via the

master surgery schedule. An incidence matrix E = {eir} for all i ∈ I, r ∈ R is constructed

to show the eligible surgery-to-OR assignments. The surgery duration is random, denoted

by a random vector δ = (δ1, ..., δ|I|)T ∈ R|I|+ , where δi shows the random duration for surgery

i ∈ I. We assume that the random surgery duration has finite and discrete support S for

δ. The probability density of each scenario s is denoted by ps, where
∑
s∈S ps = 1. Each

realization of δ in scenario s is shown by δs = (δs1, ..., δs|I|)T . Every surgery on the daily

booking list must be operated. No interruption is allowed once an operation has started.

It is desired to avoid OR overtime with high probability. This restriction is enforced using

chance constraints. Each surgery must be assigned an OR and a projected start time. Our

goal is to minimize the total costs corresponding to OR opening and overtimes, and patient

waiting times.
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5.2.2 Chance-Constrained OR Scheduling Problem

We propose a two-stage stochastic model for the daily OR scheduling problem with indi-

vidual chance constraints enforcing overtime restrictions on every OR. Table 5.1 introduces

the notation used in our model:

Table 5.1: Sets, parameters and variables used in the model

Symbol Definition

Sets

I elective surgery, i ∈ {1, ..., |I|}

R operating room, r =∈ {1, ..., |R|}

K order of surgery appointment in OR, k ∈ {1, ..., |K|}

S scenario, s ∈ {1, ..., |S|}

Parameters

eir =1 if surgery i can be assigned to OR r; 0 otherwise

δis duration of surgery i in scenario s

fr fixed cost of opening OR r

capr operating time limit for OR r

cor unit overtime cost of OR r

cwr unit waiting cost for surgery i

ps probability density of scenario s

αr overtime probability threshold for OR r (confidence level), αr ∈ (0, 1)

M a sufficiently large number

Variables

ur =1 if OR r is open; 0 otherwise

yikr =1 if surgery i scheduled as kth surgery in OR r; 0 otherwise

tpkr projected start time for surgery i

trkrs actual start time for surgery i in scenario s

ors OR r overtime in scenario s

wrs total patient waiting times in OR r and scenario s

zrs =1 if chance constraint on OR r is violated in scenario s, 0 otherwise

The first-stage problem involves deterministic decision-making (i.e., OR opening and
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surgery case assignment) prior to the realization of uncertain surgery durations. The first-

stage problem (M1) can be formulated as

Min
∑
r∈R

frur

and x ∈ X
(5.2.4)

where x = (u, y) is the vector of first-stage variables. Set X is the resulting set from the

deterministic constraints (5.2.5)-(5.2.9) formulated as

yikr ≤ ur ∀i ∈ I, k ∈ K, r ∈ R, (5.2.5)∑
k,r

yikr = 1 ∀i ∈ I, (5.2.6)

yikr ≤ eir ∀i ∈ I, k ∈ K, r ∈ R, (5.2.7)∑
i

yikr ≥
∑
i

yi(k+1)r ∀k ∈ K \ {|K|}, r ∈ R, (5.2.8)

and ur ∈ B|R|, yikr ∈ B|I|×|K|×|R| ∀i ∈ I, k ∈ K, r ∈ R. (5.2.9)

Objective function (5.2.4) minimizes the total cost of opening operating rooms. Con-

straints (5.2.5) and (5.2.6) ensure that every surgery will be assigned to one and only one

spot in an open OR during the day. Constraint (5.2.7) enforces eligible surgery-to-OR as-

signments. Constraint (5.2.8) determines the order of operating surgical cases in each OR.

Constraint (5.2.9) enforces binary values for the first-stage decision variables.

After the uncertain parameters are revealed, the second-stage problem determines re-

course actions (e.g., adjusting start times and adding OR overtime) that incur additional

costs to provide meaningful schedules based on the first-stage decision. The goal is to

minimize the total cost as well as satisfying the chance constraints on OR overtime. The

chance-constrained second-stage problem (M2) is formulated as

Min Es [g(x, s)] =
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Es

(∑
r

(1− zrs)g1
r (x, s) +

∑
r

zrsg
2
r (x, s)

)
, (5.2.10)

tpkr ≤ tp(k+1)r ∀k ∈ K \ {|K|}, r ∈ R, (5.2.11)

trkrs ≥ tpkr ∀k ∈ K, r ∈ R, s ∈ S, (5.2.12)

trkrs ≤ tr(k+1)rs ∀k ∈ K, r ∈ R, s ∈ S, (5.2.13)∑
k

(trkrs − tpkr) ≤ wrs ∀r ∈ R, s ∈ S, (5.2.14)

trkrs +
∑
i

δisyikr ≤ capr +Mzrs ∀k ∈ K, r ∈ R, s ∈ S, (5.2.15)

∑
s∈S

zrs ≤ αr|S| ∀r ∈ R, s ∈ S, (5.2.16)

tpkr, trkrs, ors, wrs ≥ 0 ∀k ∈ K, r ∈ R, s ∈ S, (5.2.17)

and zrs ∈ B|R|×|S| ∀r ∈ R, s ∈ S. (5.2.18)

Objective function (5.2.10) minimizes the expected costs corresponding to OR overtimes

and patient waiting times, where

gr(x, s) =

 g1
r (x, s) = cwrwrs zrs = 0, (5.2.19)

g2
r (x, s) = cwrwrs + corors zrs = 1, (5.2.20)

Non-negative variable ors is to capture the OR overtime. Constraint (5.2.11) is to determine

the projected start time for each surgery according to the sequencing decisions. Constraint

(5.2.12) ensures that each surgery starts after its projected start time. Constraint (5.2.13)

is similar to (5.2.11) in that the projected start times must follow the sequencing deci-

sions. Constraint (5.2.14) calculates the amount of waiting time in every OR per scenario.

Constraints (5.2.15) and (5.2.16) enforce the chance constraints stating that the surgeries

assigned to an OR must be finished during the regular hours (i.e., no overtime) with a high

probability. Constraints (5.2.17) and (5.2.18) enforce non-negative and binary values for

the second-stage decision variables, respectively.

Set P(s) of first-stage solutions satisfying the chance-constrained second-stage problem
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is derived as

P(r, s) =
{

(u, y) ∈ X | ∃tpkr, trkrs : trkrs +
∑
i

δisyikr ≤ capr

}
, (5.2.21)

P(s) =
⋂
r∈R

P(r, s) =
{

(u, y) ∈ X | ∃trkrs : trkrs +
∑
i

δisyikr ≤ capr,∀r ∈ R
}
. (5.2.22)

The deterministic equivalent formulation for the two-stage chance-constrained OR schedul-

ing model (MDEF ) can be modeled as [68]

MDEF : Min
∑
r∈R

frur + 1
|S|
∑
r,s

(cwrwrs + corors) , (5.2.23)

subject to (5.2.11)− (5.2.14), (5.2.16)− (5.2.18),

trkrs +
∑
i

δisyikr ≤ capr + zrs(M − capr) ∀k ∈ K, r ∈ R, s ∈ S, (5.2.24)

trkrs +
∑
i

δisyikr ≤ capr + (1− zrs)(M − capr) + ors ∀k ∈ K, r ∈ R, s ∈ S, (5.2.25)

and x ∈ X. (5.2.26)

Suppose δ contains d independent random components, each of which has three possible

realizations (e.g., low, medium and high), then the total number of scenarios is K = 3d.

This is a very large scale mixed-integer program that challenges even the state-of-the-art

optimization solvers [46]. Moreover, using a big M value can lead to weak LP relaxations.

Assigning a smaller value forM can help tighten the feasible region for the LP relaxation of

MDEF . Therefore, instead of setting a single large value forM , constraint-specific formulae

used to calculate the big M values are developed for constraints (5.2.24) and (5.2.25) as

Mrs =
∑
i

eirδis, ∀r ∈ R, s ∈ S. (5.2.27)

The values in (5.2.27) are valid because the total operation time in each OR does not exceed

the duration of all surgical cases that can be allocated to the specific operating room. The

next section introduces a decomposition algorithm to address this issue and solve MDEF
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efficiently.

5.3 Solution Approach

This section describes a decomposition algorithm to solve the proposed model in Sec-

tion 5.2.1. The proposed algorithm can solve model MDEF to optimality if the following

assumptions are satisfied [68]:

• The random vector S has discrete and finite support. Specifically, ps = 1
|S| for s ∈ S.

We have stated this assumption in the problem description in Section 2.1.

• Sets X and P(r, s), s ∈ S are non-empty compact sets.

Without loss of generality, we can assume that for every s ∈ S, there exists a feasible

first-stage solution that satisfies the chance constraints. Therefore, sets X and P(s)

are finite sets of points and they are compact sets.

• Sets conv (Pr, (s)), s ∈ S have the same recession cone, i.e., there exists C ⊆ RN

such that C =
{
θ ∈ RN |x+ λθ ∈ P(s);∀x ∈ P(s), λ ≥ 0

}
for all s ∈ S, where N :=

|R|+ |I| × |K| × |R|.

• There does not exist an extreme ray θ̃ of conv(X) with fT θ̃ < 0, i.e., the two-stage

problem has a bounded optimal solution.

We begin by defining feasibility (F) and optimality (O) sets as

F =
{
x ∈ X, z ∈ BR×S :

∑
s

zrs = αr|S|, r ∈ R, zrs = 0⇒ x ∈ P(r, s), s ∈ S
}
, (5.3.1)

O =
{

(x, z, ρ) ∈ F× R+ : ρ ≥ 1
|S|
∑
r,s

(1− zrs)g1
r (x, s) + zrsg

2
r (x, s)

}
. (5.3.2)

These sets will be approximated using feasibility and optimality cuts in the following

master problem (MP)
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Min
x,z,ρ

fTu+ ρ,∑
s

zrs = αr|S| ∀r ∈ R,

x ∈ X,

z ∈ B|R|×|S|,

ρ ≥ 0,

(x, z) ∈ F̃,

and (x, z, ρ) ∈ Õ.

(5.3.3)

The sets F̃ and Õ are the outer approximations of the feasibility (F) and optimality (O)

sets, respectively. Najjarbashi and Lim [68] showed that the following inequalities are valid

and can be used as strong feasibility and optimality cuts to define F̃ and Õ

γx+
l∑

i=1

(
hgi(γ)− hgi+1(γ)

)
zgi ≥ hg1(γ). (5.3.4)

and zrs −
∑

k∈K,i∈TB
yikr ≥ 1− |TB|, r ∈ R, s ∈ S (5.3.5)

where hσ1 ≥ hσ2 ≥ ... ≥ hσ|S| , G = {g1, g2, ..., gl} ⊆ {σ1, σ2, ..., σp} and htl+1 = hσp+1 . Set

TB is the subset of surgeries that lead to the violation of chance constraints when they are

assigned to the same OR.

ρ+ 1
|S|

∑
r,s∈Q

(
−
∑
k

π4
krscapr − ψ2

rs(τrs)
)
zrs + 1

|S|
∑

r,s∈S\Q

(
−
∑
k

π̄4
krscapr − ψ1

rs(τrs)
)

(1− zrs)

≥ 1
|S|

∑
r,s∈Q

(
−
∑
k

π4
krscapr

)
+ 1
|S|

∑
r,s∈S\Q

(
−
∑
k

π̄4
krscapr

)
+ 1
|S|
∑
i,r,s

(τrsŷikr) .

(5.3.6)

The following decomposition algorithm is proposed to solve the two-stage chance-constrained

OR scheduling problem [68]. This algorithm has a similar structure to the Benders de-

composition approach [76]. Rather than traditional Benders cuts, strong feasibility cuts
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(5.3.4)-(5.3.5) and optimality cuts (5.3.6) are used to enhance solution speed.

Algorithm 3 Decomposition Algorithm
1: Initialization: LB := −∞, UB := +∞
2: while UB − LB > ε do
3: Solve master problem (5.3.3).
4: if (5.3.3) infeasible then
5: • Stop. Original problem is infeasible.
6: else
7: • Let (x̂, ẑ, ρ̂) be an optimal solution to (5.3.3).
8: • LB ← fT û+ ρ̂.
9: • Check feasibility of the second-stage problem by evaluating the inequalities

(5.3.4) and (5.3.5).
10: if there exists violated inequalities then
11: • Add feasibility cuts (5.3.4) and (5.3.5) to F̃.
12: else
13: • UB ←

∑
r frûr + 1

|S|
∑
r,s

[
g1
r (x̂, s) + g2

r (x̂, s)
]

14: • Add optimality cuts (5.3.6) to Õ.
15: end if
16: end if
17: end while

Although Algorithm 3 converges to the optimal solution [68], the non-convex first-stage

problem can pose a limitation to the computational efficiency of this algorithm. In the

remainder of this section, we derive approximation methods to find stronger bounds for

MDEF .

5.3.1 Deriving Lower and Upper Bounds

Many MIP based optimization models are often difficult to solve due to a relatively small

number of side constraints that significantly increase computational complexity. Dualizing

the computationally difficult side constraints produces an associated Lagrangian dual for-

mulation that is easier to solve and whose optimal value gives a dual bound on the optimal

objective value of the original problem. The Lagrangian model can thus be used in place of

a linear programming relaxation to provide bounds in a branch-and-bound algorithm. The
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Lagrangian relaxation of the master problem (5.3.3), MPLR, is formulated as

Min
x,z,ρ

φ = fTu+ qr

(∑
s

zrs − αr|S|
)

+ ρ,

x ∈ X, z ∈ B|R|×|S|, ρ ≥ 0,

(x, z) ∈ F̃,

and (x, z, ρ) ∈ Õ.

(5.3.7)

where qr is the Lagrangian multiplier for the chance constraints (5.2.16). There are three

common approaches to solve the Lagrangian relaxation [27]: (1) the subgradient method, (2)

various versions of the simplex method implemented using column generation techniques,

and (3) multiplier adjustment methods. The subgradient method is widely used because

it is easy to program and has worked well on many practical problems. The subgradient

method for solving MPLR can be described as follows:

Algorithm 4 Subgradient Method for MPLR

1: Initialization:
2: • Set an upper bound φ0 by finding any feasible solution to MPLR.
3: • Set an initial vector of Lagrangian multipliers q0 = 0.
4: • Set an initial value for the scalar θ that satisfies 0 ≤ θ ≤ 2.
5: Subgradient Iterations:
6: while iter ≤MAXiter do
7: • Calculate the subgradient of φiter over q, γiter =

(∑
s z

iter
rs − αr|S|

)
.

8: • Calculate the stepsize parameter titer = θiter(φ0 − φiter)/
∥∥γiter∥∥2.

9: • Update the Lagrangian multipliers qiter+1 = max
{
0, qiter + titerγiter

}
.

10: if
∥∥γiter+1 − γiter

∥∥ < ε then
11: • Stop. Print the optimal solution.
12: end if
13: if no improvement in more than C iterations then
14: • θiter+1 = θiter/2
15: end if
16: iter = iter + 1
17: end while

To derive a lower bound for MDEF , Algorithm 3 is called where the master problem in

line 3 is replaced with MPLR (5.3.7). Algorithm 4 is used to obtain the optimal solution of

MPLR.

94



It can be readily shown that the Expected Value (EV) model [67] provides a lower bound

for the chance-constrained OR scheduling model MDEF . The EV model is equivalent to

the model MDEF after relaxing the chance constraints (5.2.15) and (5.2.16), i.e., setting

αr = 0. The next step is to derive an upper bound for the two-stage chance-constrained

OR scheduling problem.

Proposition 7. Let Fr(tr, y, δ) = trkrs +∑
i δisyikr. We can use CV aR1−αr(Fr) to derive

an upper bound for MDEF by replacing the chance constraints

Prob {Fr(tr, y, δ) ≥ capr} ≤ αr ∀r ∈ R (5.3.8)

with the following inequalities

CV aR1−αr(Fr) ≤ capr ∀r ∈ R. (5.3.9)

Proof. For the probability threshold parameter α, VaR is defined as [78]

V aR1−α = min {β : Prob {Fr(tr, y, δ) ≤ β} ≥ 1− αr} . (5.3.10)

We show that CV aR1−αr(Fr) provides a convex conservative approximation for the chance

constraint Prob {F (tr, y, δ) ≥ capr} ≤ αr. From Nemirovski and Shapiro [69], we know that

V aR1−αr(Fr(tr, y, δ)) ≤ capr ≡ Prob {F (tr, y, δ) ≥ capr} ≤ αr ∀r ∈ R. (5.3.11)

The conditional value-at-risk (CVaR) of Fr(tr, y, δ) is defined as the conditional expec-

tation of Fr when Fr is equal or greater than VaR

CV aR1−αr(Fr) = V aR1−αr(Fr) + E
(
[Fr − V aR1−αr(Fr)]+

)
≥ V aR1−αr(Fr) ∀r ∈ R.

(5.3.12)

From (5.3.11) and (5.3.12) and the convexity of (5.3.11), it is concluded that the in-

equalities (5.3.9) provide conservative convex approximations for the chance constraints in
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the two-stage OR scheduling problem.

Therefore, the chance constraints (5.2.15) and (5.2.16) can be replaced by [67]

εr + γrs ≥ trkrs +
∑
i

δisyikr ∀k ∈ K, r ∈ R, s ∈ S, (5.3.13)

εr + 1
αr

∑
s

γrs ≤ capr ∀r ∈ R, (5.3.14)

and γrs ≥ 0 ∀r ∈ R, s ∈ S. (5.3.15)

where εr represents V aR1−αr and γrs = [Fr(tr, y, δs)− εr]+.

Replacing the chance constraints with the conservative CVaR approximation converts

the original problem to a two-stage stochastic model with relatively complete recourse, i.e.,

the second-stage problem is feasible for every x ∈ X. The resulting model can be solved

using the Benders decomposition algorithm effectively [46]. The dual problem of the linear

second-stage problem for each OR and random scenario is formulated to derive the Benders

optimality cuts as follows:

%rs(x̂) =

Max
π

∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
+
∑
k

π6
krs

(∑
i

d̃isŷikr

)
− π7

rcapr, (5.3.16)

(
π1

(k−1)rs − π
1
krs

)
+ π5

rs ≤ 0 ∀k ∈ K, (5.3.17)(
π2

(k−1)rs − π
2
krs

)
+ π3

krs − π4
krs − π5

rs − π6
krs ≤ 0 ∀k ∈ K, (5.3.18)

π4
krs ≤ cor ∀k ∈ K, (5.3.19)

π5
rs ≤ cwr, (5.3.20)

π6
krs − π7

r = 0 ∀k ∈ K, (5.3.21)

π6
krs −

1
αr
π7
r ≤ 0 ∀k ∈ K, (5.3.22)

∑
k

(
π1
krs + π2

krs + π3
krs + π4

krs + π6
krs

)
+ π5

rs + π7
r = 1, (5.3.23)

and π1
krs, π

2
krs, π

3
krs, π

4
krs, π

5
rs ≥ 0 ∀k ∈ K. (5.3.24)

96



After solving the above problem to optimality, the Benders optimality cuts can be formu-

lated as

ρ ≥ 1
|S|
∑
r,s

[∑
k

π4
krs

(∑
i

d̃isŷikr − capr

)
+
∑
k

π6
krs

(∑
i

d̃isŷikr

)
− π7

rcapr

]
. (5.3.25)

Algorithm 5 describes the augmented decomposition algorithm (LRCVaR) using the

lower and upper bounds derived by solving the Lagrangian and CVaR approximations of

MDEF .

Algorithm 5 LRCVaR
1: Input: sets and parameters in Table 5.1, model MDEF , optimality gap threshold (ε).
2: Initialization: LB := −∞, UB := +∞, iter := 0
3: • Solve the Lagrangian relaxation approximation of MDEF and get the optimal cost
LBLR. Solve the EV model and get the optimal cost LBEV .

4: • Update lower bound, LB ← max {LBLR, LBEV }.
5: • Solve the CVaR approximation model using Benders decocmposition and get the

optimal cost UBCV aR.
6: • Update upper bound, UB ← UBCV aR.
7: while UB−LB

UB > ε do
8: if iter = 0 then
9: • Set the initial feasible solution

(
x̂, ẑ, t̂p, t̂r

)
to the optimal solution of the CVaR

approximation model.
10: else
11: • Solve master problem (5.3.3). Let (x̂, ẑ, ρ̂) be an optimal solution to (5.3.3).
12: end if
13: • Check feasibility of the second-stage problem by evaluating the inequalities (5.3.4)

and (5.3.5).
14: if there exists violated inequalities then
15: • Add feasibility cuts (5.3.4) and (5.3.5) to F̃.
16: else
17: LB ← max

{
LB, fT û+ ρ̂

}
.

18: UB ← min
{
UB,

∑
r frûr + 1

|S|
∑
r,s

[
g1
r (x̂, s) + g2

r (x̂, s)
]}

19: Add optimality cuts (5.3.6) to Õ.
20: end if
21: iter = iter + 1.
22: end while
23: Output: optimal cost obj∗ and decision variables (x∗, z∗, tp∗, tr∗, o∗, w∗).
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5.3.2 Selecting a Proper Size for Finite Samples

Selecting a larger sample size generally results in more accurate approximations of

stochastic models [16]. However, it is shown in section 5.2.2 that the size of model MDEF

can grow exponentially as the number of possible values (i.e., scenarios) for the random

parameters — hence the number of second-stage variables tkrs — increases. Therefore, it is

important to take a sufficiently large sample that approximates the stochastic model accu-

rately as well as caps the model complexity. Kleywegt et al. [44] showed that as the sample

size increases, the probability that an optimal solution to the sample average approxima-

tion (SAA) model converges to the optimal solution of the original problem approaches one

exponentially fast.

Algorithm 6 illustrates a SAA-based approach to find desirable sample sizes for the

stochastic OR scheduling problem.

The verification sample size N ′ is set to a very large number (e.g., 10000) to approximate

the original stochastic model with an accuracy close to 1. It should be noted that one can

calculate ḡN
′

m (x̂) efficiently because such task does not require any optimization.

5.4 Numerical Experiments

In this section, we evaluate the performance of the proposed decomposition algorithm

in solving large-scale test instances of the stochastic OR scheduling problem. The solution

speed of the algorithm is also compared with Benders decomposition algorithm [76], the

strong-cut decomposition algorithm (SCDA) in [68] and the IBM CPLEX solver.

5.4.1 Test Setup

Test problem instances are obtained from Leeftink and Hans [50]. The instances are

different from each other in terms of surgery types and specialties such as orthopedic,

otorhinolaryngology, and oncology. All numerical experiments in this chapter are based on

the following configuration. The surgery durations are assumed to follow a three-parameter

lognormal distribution [35]. Scenarios are generated for random surgery duration using the
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Algorithm 6 SAA-Based Method to Find Sample Size
1: Input: Sample size (N), Number of replications (M), Increment (c), approximation

gap (µ), accuracy threshold (ε), verification sample size (N ′).
2: Initialization: N ← 0, µ← +∞.
3: while µ > ε do
4: • N ← N + c.
5: for replication m = 1, ...,M do
6: • Generate a sample of size N for the random surgery durations.
7: • Solve the scenario-based OR scheduling model MDEF . Let ˆobjNm and x̂Nm be

the optimal objective value and optimal first-stage solutions, respectively.
8: • Generate a verification sample of size N ′ . Given x̂Nm, calculate the second-

stage variables for the verification sample and estimate the optimal objective value of
the original model as

ĝN
′

m (x̂) = 1
N ′

N
′∑

s=1

[∑
r

(cwrwrs + corors)
]
.

9: end for
10: • Calculate the average lower bound ( ¯objNm) and upper bound (ḡN

′

m (x̂)) for the orig-
inal model [44] as

¯objN = 1
M

M∑
m=1

ˆobjNm and ḡN
′
(x̂) = 1

M

M∑
m=1

ĝN
′

m (x̂).

11: • Calculate an upper bound of the accuracy gap µ as

µ = ḡN
′
(x̂)− ¯objN .

12: end while
13: Output: Selected sample size (N∗).

Monte Carlo sampling method. The OR opening cost is calculated by multiplying the OR

overhead cost into the OR available time. For simplicity, all ORs are planned to operate

for 8 hours for the day. Each OR has one block that is assigned to a surgeon to perform

surgical cases. Optimization models are implemented in Python using IBM CPLEX on

a workstation with 24 cores, 3Ghz processors, and 384GB of memory. A time limit of 60

minutes is enforced for all instances. The valid cuts are implemented using the CPLEX lazy

constraint callback function. The feasibility and optimality cuts are added to the master

problem whenever CPLEX finds an integer solution to the master problems (5.3.3) or (5.3.7)

that violates the inequalities (5.3.4), (5.3.5)) and (5.3.6) (or (5.3.25)), respectively.
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Table 5.2 illustrates the set of 10 test problem instances solved in this chapter. The

column Surgeries shows the number of surgical cases to schedule during the daily planning

horizon. The column OR shows the number of available operating rooms in the operating

theater. The column CV illustrates the average coefficient of variation for the surgical cases

considered in each test instance. The size of the uncertainty set, |S|, is shown in column

Scenarios. The last two columns show the number of binary variables and constraints in

model MDEF , respectively. Each test problem is solved using two different sample sizes to

examine the scalability of the solution algorithms. The overtime probability threshold, αr,

is set to 0.1 for all operating rooms. Each instance is solved for 5 replications.

Table 5.2: Test problem instances

Instance Surgeries OR CV Scenarios Binary Variables Constraints
1 40 10 0.617 100 17,010 211,840
2 40 10 0.617 500 21,010 863,840
3 63 20 1.055 100 81,400 750,723
4 63 20 1.055 500 89,400 2,790,723
5 74 20 0.713 100 111,540 929,594
6 74 20 0.713 500 119,540 3,321,594
7 89 20 0.605 100 160,440 1,196,909
8 89 20 0.605 500 168,440 4,068,909
9 101 25 0.585 100 257,550 1,787,726
10 101 25 0.585 500 267,550 5,857,726
11 116 25 0.957 100 338,925 2,182,616
12 116 25 0.957 500 348,925 6,852,616
13 132 30 0.575 100 525,750 3,169,212
14 132 30 0.575 500 537,750 9,541,212
15 151 40 1.205 100 916,080 5,176,351
16 151 40 1.205 500 932,080 14,888,351
17 185 40 0.771 100 1,373,040 7,093,985
18 185 40 0.771 500 1,389,040 18,981,985
19 207 40 0.621 100 1,718,000 8,482,647
20 207 40 0.621 100 1,734,000 21,778,647

5.4.2 Numerical Results

First, the SAA-based algorithm is called to determine a desirable sample size. We

evaluated the accuracy of different sample sizes on the test instance 9 with 101 surgeries
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and 25 ORs using Algorithm 6. The accuracy threshold ε is set to 1% and the initial

sample size N = 10. We increased the sample size by increments of c = 10 until the desired

accuracy is obtained. Each iteration is solved for M = 10 replications and the verification

sample size N ′ = 10, 000. Figure 5.1 illustrates that a finite sample with 100 scenarios can

achieve the desired 99% accuracy in approximating the original stochastic OR scheduling

model. Increasing the sample size to 200 can increase the accuracy to 99.9%.
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Figure 5.1: Impact of Sample Size on Approximation Accuracy

Table 5.3 and Figure 5.2 portrait the performance of each algorithm in solving the test

problem instances when αr = 0.10. A “-” entry in Table 5.3 shows that the algorithm failed

to find a feasible solution within the time limit. It can be observed that the CPLEX solver

was the least desirable option for solving the test instances because it failed to find a feasible

solution within the time limit when the number of surgeries and ORs exceeded 89 and 20,

respectively. The Benders decomposition method outperformed the CPLEX solver, and it

found a feasible solution for test instances with up to 151 surgeries and 40 ORs within one

hour. However, it solved only one test problem to optimality and failed to provide near-

optimal solutions when the number of surgical cases exceeded 60. The strong feasibility

and optimality cuts in SCDA improved solution speed compared to the traditional Benders

cuts. The SCDA solved instances with 74 surgeries to optimality and provided acceptable

optimality gaps for instances of up to 132 surgeries and 30 ORs. However, as the problem

size was increased and the number of surgeries to schedule went beyond 150, the optimality
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gap increased up to 15%. The proposed LRCVaR algorithm outperformed other methods in

solution speed and quality. Despite Benders and SCDA that required more than 60 minutes

for solving instances with more than 74 surgeries, LRCVaR solved instances quadrupled in

size to optimality within the time limit. Moreover, it was able to solve all test instances

with up to 4% optimality gap. Our decomposition algorithm achieved schedules that were

at least 96.39% close to the optimal solution, for large-scale test instances with more than

200 surgeries and 40 ORs.

Table 5.3: Performance of different methods on large-scale problems

Instances CPLEX Benders SCDA LRCVaR
Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 3600 6.73 2934 0.0 901.2 0.0 432 0
2 3600 9.12 3600 0.87 1893.6 0.0 562 0
3 3600 13.37 3600 1.82 1845.3 0.0 674 0.0
4 3600 16.81 3600 3.61 2934.5 0.0 741 0.0
5 3600 19.45 3600 6.92 3035.0 0.0 874 0.0
6 3600 28.77 3600 9.30 3600 0.72 1006 0.0
7 3600 45.06 3600 13.14 3600 0.89 1207 0.0
8 - - 3600 16.89 3600 1.07 1424 0.0
9 - - 3600 20.35 3600 1.86 1852 0.0
10 - - 3600 22.78 3600 2.21 2166 0.0
11 - - 3600 25.02 3600 3.01 2491 0.0
12 - - 3600 28.64 3600 3.97 2741 0.0
13 - - 3600 29.47 3600 4.55 3152 0.0
14 - - 3600 33.39 3600 5.67 3472 0.0
15 - - 3600 41.71 3600 6.12 3600 0.67
16 - - 3600 48.20 3600 7.38 3600 1.24
17 - - - - 3600 8.91 3600 1.79
18 - - - - 3600 9.46 3600 2.21
19 - - - - 3600 12.89 3600 2.83
20 - - - - 3600 14.96 3600 3.61

5.4.3 Quality of Bounds

This section assesses the effectiveness of the proposed bounding approaches discussed in

Section 5.3.1 in reducing the solution time for large-scale OR scheduling test instances. The

goal is to determine if the additional time spent on solving the Lagrangian relaxation and

CVaR approximations of the modelMDEF helps accelerate the convergence speed. A subset

of the instances in Table 5.2 having 100 scenarios (i.e., odd instance numbers) is selected.
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Figure 5.2: Comparing Benders, SCDA and LRCVaR in solving large-scale instances

Each instance was solved for 5 replications and αr is set to 0.10. Table 5.4 illustrates the

average run time to find the initial feasible solution and the corresponding optimality gap

for Benders, SCDA and LRCVaR. The Benders algorithm failed to find a feasible solution

within the time limit for instances with 150 and more surgeries. It is observed that the

proposed bounds in LRCVaR enhance the performance of SCDA and achieve initial feasible

solutions with 50% lower optimality gaps in shorter times. Moreover, LRCVaR achieved

the initial feasible solutions up to 40% faster than SCDA. Figure 5.3 shows that LRCVaR is

more scalable than Benders and SCDA to the increases in problem size. LRCVaR requires

between 6% to 37% of the 60-minute time limit to find a feasible solution compared to

Benders that requires between 16% to 100%, and SCDA between 8% to 60%.

The overtime probability threshold parameter, αr, allows a decision-maker to adjust the

emphasis between cost-effectiveness and variability of the optimal OR schedule [67]. There-

fore, consistent performance of the proposed algorithm under different risk preferences is

critical. Further numerical experiments are conducted to examine the quality of the pro-

posed bounds for different αr values. We solved all test instances in Table 5.2 and calculated

the average optimality gap of the initial feasible solution. Table 5.5 shows that LRCVaR

delivers a superior performance to the other methods for all αr values. All algorithms find

better feasible solutions in shorter run times as αr increases. Figure 5.4 shows that the
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Table 5.4: The quality of initial feasible solution using different algorithms

Instances Benders SCDA LRCVaR
Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 586.8 18.71 295.9 11.74 216 5.7
3 684 21.84 443.19 12.54 323.5 6.27
5 1080 23.06 538.68 14.14 402 6.9
7 1224 38.65 738.22 14.87 531.1 7.59
9 2304 36.56 1120.03 17.03 777.8 8.35
11 3240 33.36 1414.88 17.71 996.4 9.18
13 3486.9 30.42 1664.94 19.39 1197.8 10.1
15 3600 41.71 1879.2 20.79 1296 10.61
17 - - 1953.6 21.92 1320 11.13
19 - - 2144 23.96 1350 11.69
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Figure 5.3: Comparing Benders, SCDA and LRCVaR in finding the initial feasible solution

quality of feasible solutions obtained by LRCVaR improves at a faster rate than Benders

and SCDA.

Proposition 8. CCP, CVaR and EV models provide the same optimal solution when αr =

1.

Proof. When αr = 1, the chance constraints (5.2.15)-(5.2.16) can be written as

Pr{trkrs +
∑
i

δisyikr ≤ capr : ∀k, s} ≥ 0 ∀r ∈ R (5.4.1)
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Table 5.5: Quality of the initial feasible solution under different αr values

α
Benders SCDA LRCVaR

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)
10 2025.63 30.54 1183.22 17.70 841.06 8.75
20 1985.11 29.02 1124.06 16.70 773.78 7.09
30 1885.86 27.80 1067.86 15.86 704.14 5.21
40 1791.56 29.02 982.43 15.07 633.72 4.01
50 1719.9 26.57 913.66 14.32 576.69 3.03
60 1668.30 27.80 858.84 13.46 530.55 2.33
70 1634.94 28.41 807.31 12.84 482.8 1.55
80 1602.24 26.88 750.8 12.65 439.35 1.06
90 1522.13 26.31 705.75 11.88 404.2 0.64
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Figure 5.4: Quality of the initial feasible solution under different αr values

which holds for all feasible solutions to the first-stage problem. Therefore, the chance con-

straints are redundant and we haveMDEF as a two-stage stochastic problem with relatively

complete recourse. For αr = 1, VaR of second-stage costs is formulated as

V aR1 = Min {g(x, s) : CDF (g(x, s)) ≥ 0} . (5.4.2)

Given that CDF ≥ 0 for every random variable, we conclude

g(x, s) ≥ V aR1 ∀x ∈ X, s ∈ S. (5.4.3)
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Therefore, from Assumption 2 and inequality (5.4.3), the CVaR model minimizes the total

costs over all scenarios that is equivalent to MDEF without the chance constraints. We

also know that the EV model is equivalent to the model MDEF after relaxing the chance

constraints.

The previous observations of LRCVaR outperforming Benders and SCDA in solution

quality and efficiency can be explained by Proposition 8. As αr increases, the proposed lower

and upper bounds in LRCVaR result in tighter approximations of model MDEF . Moreover,

the iterative process starts with a better initial feasible solution that is given by the CVaR

approximation of model MDEF . On the other hand, the performance improvements in

Benders and SCDA is mainly attributed to the reduced number of generated feasibility cuts

as the chance constraints are easier to satisfy when αr increases.

Table 5.6 provides more details on the improved efficiency of LRCVaR as αr approaches

1. LRCVaR Algorithm solves all test instances to optimality within one hour when αr ≥

40%. Moreover, we solved all instances in Table 5.2 using Benders and SCDA for αr = 20%,

40%, 60% and 80% and calculated the average solution time and optimality gap. Table 5.7

shows that SCDA and LRCVaR provide acceptable solutions within the 60-minute time

limit. Figure 5.5 verifies the observations in Table 5.5 and Figure 5.4 stating that all algo-

rithms provide better solutions in shorter times as αr increases with LRCVaR showcasing

a sharper decrease in solution time.

5.5 Conclusions

In this chapter, a two-stage chance-constrained mixed-integer programming model is

proposed for the OR scheduling problem with stochastic surgery durations. The individual

chance constraints control the risk of OR overtime. The goal is to minimize the sum of OR

opening, OR overtime and patient waiting costs. We developed an augmented decomposi-

tion algorithm, LRCVaR, using strong lower and upper bounds. The bounds are obtained

from Lagrangian relaxation and CVaR approximations of the proposed two-stage stochastic
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Table 5.6: Performance of LRCVaR under different αr values

Instances αr = 20% αr = 40% αr = 60% αr = 80%
Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 389 0 251 0 181 0 130 0
2 534 0 326 0 225 0 191 0
3 580 0 384 0 330 0 229 0
4 667 0 437 0 348 0 230 0
5 830 0 498 0 402 0 262 0
6 865 0 573 0 463 0 302 0
7 1110 0 676 0 579 0 422 0
8 1310 0 826 0 598 0 498 0
9 1685 0 1074 0 852 0 630 0
10 2058 0 1191 0 866 0 715 0
11 2366 0 1445 0 1221 0 772 0
12 2522 0 1590 0 1179 0 850 0
13 2679 0 1891 0 1355 0 977 0
14 3160 0 2048 0 1736 0 1042 0
15 3590 0.41 2292 0 1910 0 1184 0
16 3600 0.88 2437 0 1764 0 1302 0
17 3600 1.20 2634 0 2264 0 1617 0
18 3600 1.72 2898 0 2084 0 1728 0
19 3600 1.75 3187 0 2293 0 1901 0
20 3600 2.24 3567 0 2645 0 2030 0

Table 5.7: Comparing the performance of Benders, SCDA and LRCVaR under different αr values

α
Benders SCDA LRCVaR

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)
20 3471.98 17.7 3001.7 3.64 2117.25 0.41
40 3358.4 16.66 2770.75 3.18 1511.28 0
60 3182.14 15.63 2447.92 2.75 1164.8 0
80 2993.71 14.7 2126.77 2.38 850.62 0

model. Numerical experiments demonstrate that LRCVaR outperforms the Benders decom-

position method and another decomposition algorithm, SCDA, in solving large-scale test

instances. The proposed algorithm can solve instances with more than 200 surgeries and 40

ORs within 35 minutes. It is also shown that LRCVaR showcases a consistent behavior in

providing high-quality solutions using different values for the overtime probability threshold

parameter (αr). The proposed bounds in LRCVaR enhance the performance of SCDA and

achieve initial feasible solutions with 50% lower optimality gaps in shorter times. Moreover,
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Figure 5.5: Comparing Benders, SCDA and LRCVaR in finding the initial feasible solution

LRCVaR achieved the initial feasible solutions up to 40% faster than SCDA. The numeri-

cal experiments were conducted on test instances where surgery durations follow log-normal

distrubution functions. This can be a limitation of the current research. Therefore, evaluat-

ing the performance of LRCVaR on a variety of distribution functions can be an interesting

topic for future research. Moreover, comparing different approximation methods in provid-

ing lower and upper bounds for the two-stage stochastic model can be another candidate

topic for future research.
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Chapter 6

Future Work

This research is directed toward addressing surgery duration uncertainty and providing

risk-based stochastic models and solution methods that

• Maintain a trade-off between optimizing average cost and reducing variability of costs.

• Control the risk of undesirable events such as operating room overtime.

• Solve large-scale instances of the OR scheduling problem to optimality within reason-

able time frames.

The proposed work can be enhanced in a variety of aspects. The remainder of this chapter

identifies the limitations of the current work and proposes topics for future research.

6.1 Distributionally Robust Chance-Constrained Models for the Stochas-

tic OR Scheduling Problem with Limited Upstream and Downstream

Resources

In this research, we assumed that the surgery duration follows a known probability dis-

tribution. However, fitting proper distribution functions to the historical data, if available,

may not be achieved for all cases [57]. It is also demonstrated that finding tailored cuts and

bounds can accelerate the convergence to optimality significantly. Therefore, proposing a

distributionally robust chance-constrained model coupled with efficient solution algorithms
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can ensure timely generation of OR schedules regardless of the underlying probability dis-

tribution of the random data.

6.2 Stochastic Models for the OR Scheduling Problem with Uncertain

Surgery Duration and Emergency Patient Arrival

This research limits the scope of the proposed models to elective surgeries. It is also

assumed that the upstream and downstream resources (e.g., nurses, ICU beds) are suffi-

ciently available. It is shown that the random arrival of emergency patients to hospitals is

one of the main sources of uncertainty in operating suites [79]. Moreover, it is shown that

the majority of published articles have incorporated the availability of upstream and/or

downstream resources in their work. Challenging the efficient decomposition algorithms

proposed in this research by considering limited upstream and downstream resources as

well as random patient arrivals can be an interesting topic for future research. The ob-

tained solutions from this model can enable decision-makers to mitigate potential resource

conflicts and implement integrated OR schedules.
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Appendix A

Robust Measures of Variability for Numerical

Experiments in Chapter 3

A.1 Interquartile Range:

The IQR measure can be calculated as

IQR = Q3 −Q1 = CDF−1(0.75)− CDF−1(0.25)

where Q1 and Q3 are the first and the third quartile of the cost vector, respectively.

A.2 Median Absolute Deviation:

The MAD measure can be calculated as

MAD = median(|χs −median(XX)|)

where χs and XX are the total cost in scenario s and the cost vector, respectively.
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