
INTEGRATING AND ANALYZING DATABASES AND

INTERRELATED DOCUMENTS

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Carlos Garcia Alvarado

December, 2012

INTEGRATING AND ANALYZING DATABASES AND

INTERRELATED DOCUMENTS

Carlos Garcia Alvarado

APPROVED:

Carlos Ordonez Ph.D., Chairman
Dept. of Computer Science

Jaspal Subhlok Ph.D.
Dept. of Computer Science

Jehan-Francois Paris Ph.D.
Dept. of Computer Science

Omprakash Gnawali Ph.D.
Dept. of Computer Science

Richard Andrews M.D.
HOPE Clinic

Dean, College of Natural Sciences and Mathematics

ii

To my wife, Johnna, and our family and friends.

iii

INTEGRATING AND ANALYZING DATABASES AND

INTERRELATED DOCUMENTS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Carlos Garcia Alvarado

December, 2012

iv

Abstract

The velocity, variety, and volume of present-day data bring about new problems that

Database Management Systems (DBMS) must handle. In particular, text data en-

capsulate the essence of the so-called “unstructured data” and the need for efficient

in-database algorithms and data structures for their analysis. Multiple solutions have

been proposed for preprocessing, integrating, and analyzing heterogeneous sources

via ad-hoc systems. This dissertation defends the idea that text corpora can be

managed efficiently inside a relational database management system via SQL and

database extensibility mechanisms. It presents data layouts and algorithms for pre-

processing, storing, and querying text data efficiently within a DBMS. The optimiza-

tions focus on one-pass algorithms, pushing in-memory computations and reducing

the number of I/Os. Furthermore, the DBDOC project introduces a new algorithm

and properties for integrating and querying structured information stored in a re-

lational database management system and the unstructured data living outside the

DBMS realm. In a complementary manner, an original query recommendation al-

gorithm based on OLAP cubes enhances the querying system for finding related

concepts. The last chapter of this dissertation is based on exploring heterogeneous

data analysis in the form of text corpora stored within a DBMS. The results of this

research are a couple of original OLAP-based algorithms for extracting knowledge

from text corpora. ONTOCUBE and CUBO focus on extracting and generating

OLAP cubes from ontologies, respectively. The distinguishing trait of both algo-

rithms is that they exploit the sparse nature of text data and perform efficient fre-

quency summarizations. In addition, ONTOCUBE presents new measurements for

v

building ontologies using OLAP cubes and CUBO formalizes the notation to map

the hierarchy behind an ontology to compute multidimensional aggregations on clas-

sified documents. Finally, all of these document data exploration algorithms are then

refined and adapted for exploring source code files that reference a database schema.

This dissertation concludes with important open problems.

vi

Contents

1 Introduction 1

1.1 Advantages of a DBMS-based Approach 4

1.2 Motivation . 5

1.3 Challenges . 7

1.4 Chapter Roadmap . 9

2 Background 11

2.1 Definitions . 11

2.1.1 Database . 12

2.1.2 Documents . 12

2.1.3 Information Retrieval . 13

2.1.4 Top-k Algorithms . 16

2.2 Data Integration . 17

2.3 Cube Exploration and
Knowledge Discovery . 19

2.3.1 OLAP Cubes . 19

2.3.2 Cube Exploration . 21

2.4 Ontologies . 21

2.5 Querying and Programming . 25

2.5.1 SQL Queries . 25

vii

2.5.2 SQL Extensibility Mechanisms (UDFs) 26

2.6 Integration and Querying of Programs
and a Database . 28

3 Previous Research 29

3.1 Data Preprocessing . 29

3.2 Data Integration . 32

3.2.1 Keyword Search . 33

3.2.2 Query Recommendation . 35

3.3 Knowledge Discovery . 35

3.3.1 Representing Knowledge as Ontologies 35

3.3.2 Deriving Cubes from Ontologies 36

3.3.3 Integration and Querying of Programs
and Schemas . 38

4 Processing Documents 40

4.1 Storage . 40

4.1.1 Data Layout and Indexing . 42

4.1.2 Document Preprocessing . 45

4.1.3 Stopword Removal . 47

4.2 Exploration of Documents . 47

4.3 Top-k Rank-Join . 53

4.4 Experimental Validation . 59

4.4.1 Document Storage and Retrieval 60

4.4.2 Rank-Join . 67

4.4.3 Conclusions . 73

4.5 Summary of Contributions . 74

5 Data Integration 76

viii

5.1 Integration . 76

5.1.1 Keyword Matching . 77

5.1.2 Keyword Search . 82

5.1.3 Complexity and I/O Cost Analysis 86

5.1.4 DBMS Programming and Optimizations 87

5.1.5 Experiments . 90

5.2 Query Recommendation . 98

5.2.1 Correlation and Metrics . 99

5.2.2 OLAP Cube . 100

5.2.3 Sampling . 102

5.2.4 Experiments . 102

5.3 Conclusions . 107

5.4 Summary of Contributions . 109

6 Knowledge Discovery 111

6.1 Extracting Knowledge as Ontologies 112

6.1.1 Ontocube . 112

6.1.2 CUBO . 121

6.2 Integration and Querying of
Programs and Schemas . 136

6.3 Conclusions . 151

6.4 Summary of Contributions . 154

7 Extended Notation for
Unstructured Data 157

7.1 Extended Notation . 157

7.1.1 Data Preprocessing . 158

7.1.2 Data Integration . 159

ix

7.1.3 Relationship Discovery . 163

7.2 Conclusions . 165

7.3 Summary of Contributions . 165

8 General Conclusions 167

8.1 Most Important Contributions . 167

8.2 Future Research . 169

Bibliography 174

x

List of Figures

1.1 Example of a Registrar’s Office Database and Corpus. 5

2.1 Ontology Example. 22

2.2 Ontology. 24

4.1 Storing and Ranking Framework. 41

4.2 Vertical Layout Storage . 43

4.3 Bucket Data Layout. 44

4.4 Recursive Splitting Function. 46

4.5 Rank-Join Algorithm . 54

4.6 SQL Rank-Join Algorithm. 57

4.7 Inverse Frequency Computation for Workload. 63

4.8 Top-k Performance. 68

4.9 Accuracy Measures. 72

5.1 Relationship Construction Algorithm (Preprocessing). 78

5.2 Derived Relationship Construction Algorithm. 81

5.3 Method 2: Relationship Querying. 84

5.4 Relationship Data Layout. 88

5.5 One-level Online OLAP Cube Algorithm. 101

5.6 Full Document Scan Performance for Levels 2 and 3. 104

xi

5.7 Sampling Performance and Accuracy with Replacement (τ = 10). . . 105

6.1 Ontocube. 115

6.2 Ontology Generation Varying Number of Keywords. 120

6.3 CUBO . 123

6.4 BuildCube . 125

6.5 Stored Procedure SQL Call. 127

6.6 Varying Corpus Size. 131

6.7 Varying Number of Dimensions. 132

6.8 CUBO Size when Varying Number of Dimensions. 133

6.9 Matches between a Program P and a Schema S. 136

6.10 Resulting Graph. 137

6.11 Source Code Matching. 140

6.12 OLAP Cube Query. 143

6.13 Preprocessing and Integration. 146

6.14 Integration (Approximate Matches Performance.) 147

6.15 Querying (Aggregations.) . 148

6.16 Querying (OLAP Cube for Small Projects.) 149

6.17 Querying (OLAP Cube for Large Projects.) 150

6.18 Querying (Graph Searches.) . 151

7.1 Relationships ρ and ρF between D and C. 163

xii

List of Tables

4.1 Documents in the Collection. 60

4.2 Searched Terms. 61

4.3 Document Splitting (UDF vs Recursive Queries) in Seconds. 62

4.4 Stop-word Removal & Splitting in Seconds. 62

4.5 Storage Time for On-demand in Seconds. 63

4.6 Weighting Techniques for Okapi in Seconds. 64

4.7 Conjunctive (C) & Disjunctive (D) Queries (time in seconds). 65

4.8 Top-k Test Data Sets. 67

4.9 Traditional Top-k vs SSQL (time in ms). 69

5.1 Complexity and I/O Cost of Algorithm 1. 86

5.2 Complexity of Algorithm 2. 87

5.3 Texas Water Wells Data Set C and D. 91

5.4 ACM DL Data Set C and D. 92

5.5 Times for Varying Load Factor in Φ a 100 Corpus. 93

5.6 Times for Varying β. 93

5.7 Varying β in 1K Corpus. 93

5.8 Relationship Construction. 95

5.9 Relationships Found (β = 0.0). 95

5.10 Construction Performance (times in sec). 96

xiii

5.11 Derived Relationship Construction. 97

5.12 Method 1: Relationship Querying (β = 0.20, times in ms.). 97

5.13 Method 2: Relationship Querying (β = 0.20, times in ms.). 98

5.14 Method 3: Top-10 Relationship Querying (β = 0.20, times in ms). . . 98

5.15 Collections for Query Recommendation. 102

5.16 Recommendations for Query=“Information” (ranked by frequency and
correlation). 103

6.1 Number of Classes Varying corr, lift, and freq. 118

6.2 Sample Ontology Result. 118

6.3 Accuracy of Results . 119

6.4 Breakdown of Computation Time (in secs). 121

6.5 TPCH Corpora. 129

6.6 dbpedia Corpora. 130

6.7 Performance of Traditional Cube and CUBO (* unable to compute) . 130

6.8 Varying Ontology Levels in dbpedia (time in seconds). 134

6.9 Varying Ontology Levels in TPCH (time in seconds). 134

6.10 Profiling dbpedia (time in seconds). 135

6.11 Profiling TPCH (time in seconds). 135

6.12 Example of Matches between S and P in the Context of Water Quality.136

6.13 Programs. 144

6.14 Schemas. 145

6.15 Integration (Approximate Matches Found.) Performance Time (in
seconds) is shown for β = 0.1. 146

6.16 Integration (QDPC Profiling.) . 147

7.1 Example of E and L. 160

7.2 Data Structures and Subscripts . 162

xiv

Chapter 1

Introduction

The data generation, acquisition, and affordable storage for massive data have pushed

traditional relational database systems to the limit [21]. This is especially evident

when working with large repositories of heterogeneous data generated quickly, such

as text, biological data, or stream data, since these require the generation of new

algorithms for efficient processing and knowledge discovery [81].

This creation of new algorithms for managing the new volume, velocity, and va-

riety of data has been approached in areas such as Database Management Systems,

Information Retrieval, Data Mining, and High Performance Computing. Information

retrieval has focused on effective algorithms for finding relevant information from text

corpora [55, 22], Data Mining has focused on the discovery of new information about

the data [59, 115], and Database Management Systems and High Performance Com-

puting have focused on efficient algorithms for managing, processing, and retrieving

large data repositories [48, 28].

1

The definition of “large” and “big” are subject of debate among these scientific

communities. For the purpose of this dissertation, “large” is considered to be relative

to the computational system. Hence, a repository is considered to be “large” when

the type and amount of data exceed the capabilities of a system, creating a need

for “smart” algorithms that are able to process these data efficiently within the

constraints of the system. For example, a text collection of only a few hundred

documents in a personal computer is considered a“large data repository” with respect

to how it is considered in a large cluster of hundreds of computers.

These large heterogeneous sources are difficult to query and explore not only

because of their volume, but also because of their characteristics. These properties

are exploited in the high-speed generation of stream data or the high dimensionality

of text corpora [7, 49, 40]. Some of these characteristics are also shown in data

that have some structure or were generated from an structured source difficult to

manage. Additional motivating examples of these types of heterogeneous sources

include medical data, digital libraries, emails, social networking data, and phone

data streams, among many others.

Structured data has traditionally been stored in relational database management

systems (DBMS) due to these systems’ unique capabilities for guaranteeing data in-

tegrity and persistence [28]. Also, DBMSs are tuned for efficient data management

of large data sets and provide flexible querying. Unfortunately, traditional DBMSs

cannot guarantee the same efficient performance when working with semistructured

and unstructured data. This limitation has led to the development of a myriad of

2

ad-hoc implementations for managing each type of data [26], in which each imple-

mentation includes only a small subset of the functionalities that are already part of

a database management system.

Numerous companies and researchers have identified the need for a unified plat-

form that is able to manage structured and unstructured data under the same um-

brella [113, 81]. This ‘ideal’ scenario provides multiple advantages during the in-

formation retrieval/data mining processes, because it empowers an organization to

gain more control over its data and offers the possibility of generating more revenue

from it. Therefore, this dissertation defends the idea that it is possible to manage,

in an efficient manner, semistructured and unstructured data from inside a database

management system by extending the functionalities of a relational database man-

agement system.

Multiple ad-hoc solutions have been proposed that attempt to manage the data

resulting from data preprocessing, integration, and knowledge discovery problems.

However, as has been noted by [58], integration and management of heterogenous

data is still in its “teenage years”, and these systems lack the flexibility and ro-

bustness provided by a DBMS. Therefore, modern database systems require hybrid

capabilities to satisfy the necessities of contemporary users regardless of the develop-

ment of ad-hoc solutions for all their data needs [113]. Extending a database system

should allow maintaining the separation that exists between the logical and physical

data model in order to support flexible querying.

3

Different systems and query languages have been proposed to manage heteroge-

nous data preprocessing, exploration, and knowledge discovery within the informa-

tion retrieval (IR) and the database systems (DB) community. However, both com-

munities are still far from obtaining a unified solution.

1.1 Advantages of a DBMS-based Approach

Database management systems (DBMSs) have been well recognized for being key

players in large scale data management and processing [97]. Advantages of such sys-

tems include efficient data entry, amortized management and retrieval costs, data re-

dundancy, data integrity, and data security. In addition to these advantages, DBMSs

allow a clear separation between the logical and physical data layers. This separation

is crucial for several organizations’ goals, as well as for our research objectives, be-

cause it is possible to store and manage the data without the need to compromise our

knowledge discovery and exploratory power. As such, newly developed applications

enjoy efficient data storage and retrieval without the need to explicitly enforce data

integrity, security and persistence.

Given all of these advantages, this dissertation defends the idea that the DBMS

can be extended to effectively and efficiently manage structured and semistructured

sources in an integrated fashion. Thus this research focuses on the problem of extend-

ing the database management system’s capabilities for searching and exploring struc-

tured and unstructured sources based on new algorithms that rely on SQL queries

4

Figure 1.1: Example of a Registrar’s Office Database and Corpus.

and database extensibility functions (e.g. user-defined functions or stored proce-

dures). In particular, we focus on the subproblems of preprocessing unstructured

data inside a DBMS seen as a collection of documents stored, and data integration

and knowledge discovery. Moreover, we present new algorithms to efficiently solve

data preprocessing inside a DBMS, and to perform integrated searches, exploration,

and knowledge discovery on heterogeneous data.

1.2 Motivation

There are multiple domains which require a unique solution for managing hetero-

geneous data. These areas include, but are not limited to, medical data, digital

libraries, social media, geographic information systems, and networking communi-

cation, among many others. Currently, as stated in [16], almost any application

that manages documents and text requires the joint capabilities of IR and database

systems in order to provide the users with a complete application [113, 103]. This

integration allows the users to efficiently answer questions which in a non-integrated

5

scenario would be impossible to answer.

A typical example of heterogeneous data that requires integration can be seen in

a collection of documents (a semistructured source) created from a structured source

such as the registrar’s office at a university. This example is detailed in Figure 1.1,

in which a central relational database containing information about current students

in the university, is maintained, including student ID, name, major, grades, and

financial information. In parallel to this database, each department and professor has

documents about these students, such as medical information, assignments, reports,

theses, and papers, among many others. These unstructured sources are all modified

and created independently, without the database support. Nevertheless, there is a

clear connection between all of these new documents, but the references between both

sources are no longer obvious, and there is an increasing need to perform searches

that will allow us to relate and rank these data sources again. As can be seen in this

example, the keywords “account”, “student,” or “transcript” represent three major

classification topics of the documents contained in the text data set. As a result,

a document that contains any of these keywords is likely to have some relation to

any of these topics. As we analyze additional elements in the database, for example,

student ID, last name, first name or email, some additional references can be inferred

between the DBMS and documents in the corpus that lead to more complex searches.

Some of these complex questions include:

• “What is the average number of publications for graduate students with a GPA

above 3.5?”,

6

• “What are the most popular publication topics for students with a GPA above

3.5?”,

• “What are the most popular research topics for students that are studying Art

History?”

Preprocessed and integrated sources allow us to perform complex searches that

can answer non-trivial questions and promote the discovery of information. For ex-

ample recommending related concepts for Computer Science, such as “Networking”

or “Game Programming” when a user query is performed. However, these types of

searches require complex numerical computations that traditionally have been per-

formed outside the DBMS due to the inability to have arrays in a DBMS. In previous

research [89], it has been proven that it is possible to perform these computations

inside the DBMS without needing to export the data outside of it, thus avoiding

the I/O bottleneck. Therefore, it is necessary to present scalable algorithms that

can perform knowledge discovery tasks for this type of data within the relational

database management system.

1.3 Challenges

Despite the fact that the advantages are clear, a number of challenges arise for

discovering knowledge in preprocessed and integrated data sets [5, 104, 108]. In

order to tackle these problems. This dissertation presents the topics as follows:

• data preprocessing

7

• data integration

• data exploration

• knowledge discovery

Data preprocessing has traditionally been performed outside relational database

management systems due to the need for ad-hoc data structures that allow build-

ing inverted indexes and stemming keywords, and which provide efficient access to

the preprocessed data. However, new Extract-Load-Transform approaches in the

database community (see [111]) have inspired our work to perform data preprocess-

ing tasks after the data has been loaded to the database management system. Some

of these transformations include removing irrelevant keywords, keyword stemming,

inverse index construction, and statistics and data precomputations using SQL, user-

defined functions and various data layouts.

Data integration algorithms focus on finding relevant information across hetero-

geneous sources. In order to do so, the algorithm must provide a way to identify

the correspondence between elements among all the domains. In addition to this,

the efficiency of these algorithms is of the utmost importance due to the size of text

corpora.

An advantage of a preprocessed and integrated set of data sets is the ability to

query and explore them. As a result, efficient and scalable algorithms have to be

provided that allow retrieving non-trivial information for the users. Some examples of

these algorithms include boolean searches, traditional searching models (such as the

8

Vector Space Model and Probabilistic Models), top-k searches, and Online Analytical

Processing (OLAP) techniques for data set summarizations.

The final goal of this dissertation is to provide algorithms that allow for knowl-

edge discovery in integrated sources. Some of these knowledge discovery techniques

include OLAP algorithms that have to deal also with the high dimensionality of text

corpora.

Therefore, the document defends the idea that it is possible to explore, search,

and in some cases, rank the integrated data that exist among heterogeneous sources

residing in a relational database management system. As a result, some typical

Information Retrieval (IR) and Data Mining capabilities will be provided to the user

for querying and exploring medium-sized collections of interrelated documents with

an acceptable performance under the same umbrella as a relational database system.

Hence, the objective of allowing flexible querying while maintaining the physical and

logical data independence that is key for a DBMS.

1.4 Chapter Roadmap

The organization of this dissertation is as follows: Chapter 2 introduces the com-

mon notation and basic definitions to be used for referring to the structured and

semistructured sources. Due to the interdisciplinary nature of this work, definitions

are also provided from the information retrieval community community to address

information presented regarding data retrieval, exploration and knowledge discov-

ery. Background concepts required to better comprehend work presented in this

9

dissertation are also presented.

In Chapter 3, research related to this dissertation is presented. In addition, our

contributions in every area are briefly described (a more thorough description of

contributions is contained within the introduction and conclusions of each chapter.)

Chapter 4 explains proposed algorithms for preprocessing efficiently text data inside

a relational database management system, which include experimental evidence to

support our claims. This dissertation also addresses future work and conclusions,

and is based on the work presented in [39, 45]. Chapter 5 presents our work in

data integration, which includes finding references between the already preprocessed

unstructured data and the relational data already present within the DBMS. In

addition, these integrated data sources are queried using traditional IR techniques

adapted to work efficiently inside a DBMS. Finally, OLAP techniques are adapted to

work efficiently with these text corpora and recommend related searches. This chap-

ter condenses research in [39, 45, 40, 46, 41]. Chapter 6 contains research regarding

Knowledge Discovery within these preprocessed data sources. Some of this research

includes ontology generation, text data exploration using data cubes, and source

code exploration as a particular case from the document exploration approaches pre-

sented in this disseration. This chapter is the result of the most important findings in

[101, 20, 36, 94, 18, 40, 97, 102, 38, 41, 92, 96, 42, 43, 44, 47, 95]. Chapter 7 presents

a final model for preprocessing, integrating, and querying unstructured data. This

model encompasses a conceptualization of all of the work presented in Chapters 5

and Chapter 6. Finally, Chapter 8 presents the overall conclusions of this dissertation

and analysis of future directions.

10

Chapter 2

Background

The interdisciplinary nature of this dissertation requires unifying concepts from in-

formation retrieval and data mining. In addition, all concepts are unified under a

common notation. First, we introduce concepts for managing structured data and

unstructured data. Next, the definitions for ranking, exploring, and discovering

knowledge on the preprocessed and integrated sources are presented.

2.1 Definitions

Let a central database D be stored in a DBMS and a collection of unstructured

sources of text data (corpus) be C. As shown in Figure 1.1, the central database

represents the structured data stored under a schema in a relational database sys-

tem, and the set of theses, account statements, medical records, and migratory infor-

mation represent the unstructured data that holds some relation to the structured

11

information. It is important to notice that even though there is an underlaying

structure behind all the unstructured documents, this information is unknown and

the structure is not shared across all of the documents in the collection.

2.1.1 Database

Let this database D have {T1, T2, . . . , Tm} tables, where m is the number of ta-

bles in D. In addition, each T has |Tj| tuples or rows. Notice that j represents a

subscript from a table in D. Furthermore, each Tj contains attributes defined as

Tj(aj1, aj2, ...). In addition, there exist relationships between tables of the form

Ti(ai1, . . .) → Tj(aj1, . . .) given by primary/foreign key referential integrity con-

straints.

2.1.2 Documents

Let a collection of documents (semistructured data) in a corpus be defined as C =

{d1, d2, . . . , dn}, where n is the number of documents in the collection. Similarly to

the structured domain, i represents a subscript that identifies a particular document

in C. A document di is composed of a set of keywords k, where every k represents a

string that can be mapped to one or more words or concepts. In this dissertation, it

will be common to have a table Tj or an attribute aj1 be mapped (7→) to a keyword

k, which should not be confused to the PK/FK notation.

A result of the algorithms to be presented here is that the user is allowed to

query the heterogeneous sources. A query q or Q is defined as a set of keywords

12

q = {k1, k2, . . .}, where every k is a keyword or concept as defined previously. The

result of a query can be ranked based on different scoring functions (or retrieval

models).

2.1.3 Information Retrieval

Retrieval models assign a similarity coefficient between a given query q and a docu-

ment di. The retrieval models (for further reference consult [55]) are summarized as

follows:

• Boolean Model: Documents that contain all (for conjunctive queries) or some

(for disjunctive queries) of the keywords in q.

• Vector Space Model: The documents and the queries are managed as vectors

of k.

• Probabilistic Retrieval: These models are based on the probability of a k ap-

pearing in a relevant document.

• Language Model: The similarity coefficient is the result of the likelihood that

a document will generate the given query.

• Latent Semantic Indexing: Singular Value Decomposition (SVD) is used to

reduce the dimensionality of the text corpora and to associate documents with

similar semantics.

• Interference Networks: A Bayesian network is used to obtain the relevance of

a document given a user query.

13

• Neural Networks: A set of neurons is used to weight the document given a

query.

• Genetic Algorithms: Document scoring is generated by the evolution of esti-

mated weights.

• Fuzzy Set Retrieval: The documents are mapped to fuzzy sets, and a strength

of membership is associated with each document.

We decided to work with the Vector Space Model, and two alternative methods

that encapsulate the most fundamental trends for information retrieval (the other

one being Page Rank): Okapi Probabilistic Model and the Dirichlet Prior Language

Model. In addition, these models are used because they match directly on keywords.

Some other ranking models, such as Latent Semantic Indexing (LSI), assume that

direct keyword matching is a point of failure and reduce the number of dimension-

alities using singular value decomposition (SVD). Notice that the LSI method is an

extension of the Vector Space Model with the entry data set transformed by SVD.

As a result, the Vector Space Model, Okapi, and Dirichlet Prior, represent the Vector

Space, Probabilistic Retrieval, and Language Model strategies, respectively. There-

fore, these three scoring models share a common framework that can be captured

in a database management system, and the types of aggregations and optimizations

can be shared among these ranking functions. Let Sim represent a function that

takes a query q and a document di and returns a similarity score for such pair. In

addition let function tf(·) return the frequency of the given keywords in a document.

Furthermore, let a function df(·) return the frequency of a keyword in a document

14

di. Then, let function idf(·) to represent the inverse document frequency given by

2.1.

idf(k) = ln
n− df(k) + 0.5

df(k) + 0.5
(2.1)

The Vector Space Model [106, 56], which takes all documents related to a given

query and then obtains the rank of all of these related documents is the most basic

of this methods. Moreover, it is possible to extend this method to other applications.

This ranking is generated by taking the frequency vector of the given query and every

document containing any searched keyword. These frequency vectors are ranked by

applying a Similarity Formula (see Equation 2.2). In this formula, the keyword

vectors of the given query (q) and the ith document (di) are computed with a dot

product between them and then divided by the norm of the q vector and the di

vector.

Sim(q, di) =
−→q · −→di
‖−→q ‖

∥∥∥−→di ∥∥∥ (2.2)

The Okapi Probabilistic Model scoring function has been recognized as an effec-

tive retrieval method for abstracts and titles (see Equation 2.3), although it has to

be adjusted by setting some constants: c1, c2 and c3 as presented in [32]. The OPM

requires additional computations such as the average length of a document (avglen).

This formula may produce negative values when the frequency of the keyword in the

collection is greater than half of the number of total documents in the collection.

15

Sim(q, di) =
∑

k∈q∩di
idf(k) × (c1 + 1)× tf(k, di)

c1(1− c2) + c2
|d|

avglen
) + tf(k, di)

× c3 + 1× tf(k, q)

c3 + tf(k, q)
(2.3)

The Dirichlet Prior Language Model (DPLM) is a language model scoring method

that is based on the probability that a document will “form” a given query (see

Equation 2.4). Therefore, it takes into consideration the probability of occurrence

of a keyword in the collection, although, DPLM has a µ parameter for adjusting the

method based on the characteristics collection [32, 55].

P (q|di) =
∏

k∈q∩di

tf(k, di) + µP (k|C)∑
k tf(k, di) + µ

(2.4)

2.1.4 Top-k Algorithms

The rank operation is holistic; as a result, the whole data set is needed to obtain cor-

rect results. Despite this, top-k algorithms are used to avoid visiting and evaluating

all of the elements in a set of lists that are combined by a given function. The interest

in Top-k algorithms was brought on by different algorithms that have been explored

in numerous recent papers [66, 31, 25, 67, 30, 68, 31]. The most representative ones

are the TA algorithm [30], the NRA algorithm [31], the Rank-Join algorithm [68],

and the J* algorithm [87].

We focus on ranking documents existing within a DBMS, adding new elements to

take into consideration compared to the ones described in the ranking models. We are

16

interested in describing the access of the tuples in the database. The Rank-Join algo-

rithm was chosen because it is possible to pipeline it, extend it to the relational data

layout, and use it with a monotonic aggregation function with conjunctive queries.

We decided that the Rank-Join algorithm is more suitable for being implemented in

SQL and as a UDF because one only needs to keep track of the first element on the

ordered list and the last seen element. Therefore, we avoid having to reach other

elements on the list at a time.

Let Lh be a ranked element h in the list L, which could represent a result table

from a previous Rank-Join step, or a new set of m input tables. Additionally, let q

represent a given query by the user, and p, the number of different keywords that

composes that query. F (t1, ..., tp) represents the ranking function (in this case, the

Vector Space Model formula) based on the weights of the keywords and the frequency

of the keywords in the document. T is a safe cutoff value to report values in the

top-k elements and t(max or last−seen) represents the maximum score of a keyword, on

the list, or the last seen score of t in L, and J represents joint tuple given that join

condition is true.

2.2 Data Integration

Let Ak be a set of all the approximate keywords of k given that the edit distance of

keyword k′ from keyword k is ≤MAX(1, β ∗ |k|), where β is a real number between

0 and 1. Intuitively, the value for β cannot be larger than 0.5 because it will accept

many unrelated keywords as valid approximations. Still, this value can be tuned as

17

required. In the particular case in which exact matches are the only ones desired,

the edit distance between k and k′ should be zero instead.

In addition, let e be an element stored in D in a level of granularity γ. Moreover,

let the granularity level γ be represented by a value representing a table, a column

in a table, or a record in Tj. As a result, an element in the database e with a

granularity level representing a row will require a pointer in the database to be a

set of primary keys and column references, or a reference to a column in the column

level, or a reference to a table in the table level. For example, an element in the

row granularity level is represented as e =< A888, {T = account, c = SID, PK =

503} >. Even though entity resolution is not the focus of this dissertation, different

machine learning (ML) algorithms or natural language processing (NLP) techniques

can be applied to map an element e in D to a keyword [1]. Without loss of generality,

we assume that the elements of the database are the keywords extracted from the

table and column names (metadata) as well as the rows in a table (actual data

content).

Moreover, let δ be the edit distance and let EditDistance(k,k’) be a Boolean

function that returns true if k′ is an approximate keyword match of k.

18

2.3 Cube Exploration and

Knowledge Discovery

Exploring and ranking integrated heterogeneous sources provides relevant informa-

tion to the user. However, it is possible to extract new information for the new user

that is not trivial. In order to do so, we exploit the OLAP algorithm for extracting

new knowledge from a preprocessed source. Finally, an application that exploits all

of the techniques presented here is used in the context of source code analysis.

2.3.1 OLAP Cubes

OLAP techniques are generally used to quickly process complex queries involving

multiple aggregations [54]. While traditional applications of OLAP include summa-

rizations in the form of business reports and financial analysis of large data sets [19],

we believe that the OLAP dimensional lattice can be used to efficiently summarize

text corpora. The main benefit of OLAP is the ability to analyze large amounts

of data at various levels of aggregation in order to obtain additional information.

In this case, the dimensions are represented by the collection of classes, and the

attributes are measurements relating a document and a class, while the level of ag-

gregations (ontology) allows one to obtain various combinations of the parents of the

leaf dimensions.

Traditional OLAP accepts inputs that are horizontal, which means that each row

contains all dimensions used in the analysis.

19

However, this dissertation proposed that the fact table has a vertical layout, which

translates into each row containing a single dimension. This presents a challenge for

the algorithm presented here because normal techniques, such as slicing, cannot

be used with the vertical layout. Despite this, only a small subset (the subset of

dimensions in Q) of all dimensions in the corpus is analyzed. It is nevertheless

time consuming to pivot the dimension into a horizontal layout. This is especially

costly when the number of documents is large and the dimensions are sparse. As a

result, an algorithm was developed that can obtain the necessary aggregations and

perform the required auxiliary computations by taking only the desired dimensions.

Likewise, the entire data cube for all existing combinations is computed with no

minimum threshold required.

OLAP data cubes are able to capture hierarchies in the data. These hierarchies

can be described as flat, balanced, or unbalanced. The most basic type of hierarchy

is flat where only the leaf nodes are present. A second type of hierarchy is balanced,

where all the nodes are present for every level of the tree. Finally, unbalanced hier-

archies are those that do not have nodes in every level of the hierarchy. All of these

types of hierarchies can be represented in an OLAP data cube. However, unbal-

anced hierarchies require additional information in the ontology, such as providing a

hierarchy level for each class as a property. Despite these advantages for managing

hierarchies, it is not possible to model every hierarchy variant, such as a node with

multiple parents. Multiple parent hierarchies cannot be represented in a transparent

manner. In this case, a separate hierarchy is needed to model every parent-child

relation.

20

2.3.2 Cube Exploration

As before, let C be a collection, or corpus, of n documents {d1, d2, . . . , dn}. Each

document di or query q is composed of a set of keywords k. In addition, let xi be

a frequency vector of all the different keywords in C for each document di. The

collection is stored in an inverted list format within the table vtf that contains the

document id, keyword and position in the ith document. A summarization table tf

is computed from vtf as a table with the document id i, the keyword k, and the

keyword frequency f stored. In addition, let d̂ be a subset of documents, t̂f a subset

of keywords from tf , and v̂tf a subset of vtf .

The mathematical representation of the OLAP data cube is the dimensional

lattice, which has a size of 2t̂, where t̂ is the number of keywords. One level (or

depth in the lattice) of the cube is denoted by
(|t̂|
level

)
, such that level ≤

∣∣∣t̂∣∣∣. A similar

algorithm for computing combinations is the A-priori algorithm. For the purpose

of this dissertation, let the transactions T be equivalent to documents, the itemsets

be equivalent to keywords, and the support measure considered as the frequency of

keywords in a document.

2.4 Ontologies

Ontologies embody formal representations of knowledge. As such, several language

proposals have been used to write explicit formal conceptualizations of domain mod-

els [3]. These proposals include the popular RDF/RDFS, as well as some other

21

Figure 2.1: Ontology Example.

representations such as DAML +OIL and OWL languages, among many others.

RDF/RDFS allows some basic knowledge representation. Despite this, features such

as the local scope of properties, the disjointness of classes, Boolean combinations

of classes, cardinality restrictions, and special characteristics or properties are left

out of this language [3]. In order to model more complex relations between classes,

DAML+OIL took an object-oriented approach [62]. Finally, OWL was developed

to standardize all the previous language approaches in a more robust knowledge

representation.

Regardless of the ontology language, all of these knowledge representations rely

on the specification of the main concepts in a given context. The representation of

every concept is defined as a class with a set of properties and interactions between

the classes, subclasses, and their properties. A class (e.g. owl:Class) is a classifi-

cation of individuals that share common characteristics. This class classification is

obtained through a taxonomy (hierarchy). In this work, CUBO is not tied to a spe-

cific language, but on the classes (dimensions) and their relationships. An example of

a class taxonomy is given in Figure 2.1, in which the ontology used for the data cube

example is shown. The first level corresponds to concepts D1 =Parallel processors,

22

D2 =Array and vector processors, D3=Distributed databases; the second level to

concepts H(1,1) =Parallel processors and H(1,2) =Distributed systems; and the root

level (H0) is for the Computer Science concept. Each node in the taxonomy is a

class, and the branches in the tree indicate a type of relationship (e.g. subClassOf).

The instances represented in the leaf classes are specific to a particular class (which

may or may not be considered as part of the data cube).

Due to the hierarchical nature of ontologies, there exists a mapping with OLAP.

Let a collection, or corpus, of n documents, where each document is redefined as ti

and composed of a set of dimensions {D1, D2, . . . Dj, . . . , Dk}, where k is the number

of the dimensions required for building the data cube. Examples of dimensions in

a corpus are the topics “Parallel Processor” or “Distributed Database”. Moreover,

let every set of dimensions in a document be accompanied by a set of attributes

{A1, A2, . . . , Am, . . . , Ae}, where e represents the total number of attributes and Am

is a specific attribute (e.g. minimum common frequency of a set of attributes).

Moreover, let the collection be stored in a relational table inside a DBMS. Thus,

F is a table defined as a vertical fact table F (i,Dj, A1, . . . , Ae) of size e + 2 by∑n
i=1 |ti|, where i represents the document number, Dj is a dimension, and Am is a

summarization attribute. A1 to Ae are constant within every Dj of a document to

avoid generating a much larger fact table. Notice that F differs from a traditional

fact table for OLAP, because the dimensions are not represented in a horizontal

manner and all of the attributes are replicated within every Dj. This is due to the

sparse nature of text data and the limitation of the number of columns that is present

in a traditional row store DBMS. Additionally, if the attributes are not considered

23

to be constant within the same document, additional processing within a document

must be performed to obtain a unique aggregation measurement. Since the OLAP

dimensional lattice has a size of 2k combinations for a set of dimensions, where k is the

number of dimensions. Furthermore, a user-query Q is a subset of dimensions from

F which builds an OLAP data cube for every level in a given dimension hierarchy

represented by the l subscript.

H0

H(1,1)

H(2,1)

...

H(h−2,1)

D1

H(1,2)

...

. . . H1,k1

H2,k2

...

H(h−2,kh−2)

Dk

Figure 2.2: Ontology.

An ontology O, on the other hand, is mapped to a dimension hierarchy as a

tree-like structure where the nodes represent dimensions and the branches model the

relationships between them. In Figure 2.2, the k leaf nodes Dj represent the ground

level dimensions and Hh−2 to H0 represent the parent dimensions, where h is the

depth or height of the ontology. In addition, the number of dimensions per level

kl is always less than or equal to the following k(l+1). Lastly, we will consider an

ontology to have an overall H0 root class (e.g “thing”), and every dimension to have

only a single parent (except for the root that has none). In relational terms, every

concept reference between levels (e.g. Dj and Hh−2) can be seen as a dimension

24

table. However, in this approach, the entire data structure is kept in main memory

(to be detailed in sections to follow) as a tree during the execution of the algorithm.

2.5 Querying and Programming

A database management system offers different mechanisms to access the data.

Structured Query Language (SQL) is a special-purpose language designed to provide

access to the data without the need to know the storage details of the underlying

data (the physical design). SQL takes advantage of the schema of a database to

manage the data. SQL allows flexible querying without the need to provide a new

data accessing infrastructure.

Other mechanisms, such as user-defined functions (UDFs) and stored procedures

(SP) offer the possibility to incorporate extensions to a database management system.

UDFs and SP provide the advantages of structured languages.

2.5.1 SQL Queries

SQL is a declarative language designed to query the data in a DBMS. SQL is based

on relational algebra and provides ways to modify the schema of the data, as well

as insert, update, and delete information and security privileges. The SELECT

statement is the most important because it retrieves the data from one or more tables

and allows the execution of computations or the calling of extensibility mechanisms.

SQL statements provide native parallelism and are portable, in their majority, across

25

DBMS.

There are, unfortunately, important limitations in the SQL language. SQL has a

limited ability to manage scientific computations, and heterogeneous data processing.

These computations are normally related to the lack of data locality exploitation,

the lack of vectors and matrices, as well as the possibility of exploiting ad-hoc data

structures.

2.5.2 SQL Extensibility Mechanisms (UDFs)

Extensibility mechanisms such as user-defined functions (UDFs) and Stored Proce-

dures (SP) are constructs that allow exploiting main memory in an ad-hoc manner

using object-oriented or Procedural Languages constructs. user-defined functions are

divided as scalar, aggregate, and table-valued functions. On the other hand, Stored

Procedures can be considered equivalent to table-valued functions for the purpose

of the research presented in this dissertation, even though they are not equivalent,

since an SP is not an expression.

Aggregate user-defined functions (aggregate UDFs) give users the capability to

extend the functionality of the DBMS [13]. The set of steps (see Figure 2) that must

be implemented by the user to program the aggregation are:

• Initialize: Data structures and variables for the aggregation are initialized.

• Accumulate (or Aggregate): This step is the most important. In this step,

each row of the data set is processed, one at a time. An accumulation in a

26

local variable is performed by every thread. Notice that while the table scan

is being processed, the threads are fed the rows to accumulate.

• Merge (or Combine): This step merges the accumulated values of independent

threads into a single thread. This thread is responsible for merging both local

variables and local data structures into a global aggregation result.

• Terminate: In this final step, after all of the threads partial results have been

merged, the function return value is computed. Once this last step is finalized,

the global aggregation result is returned to the user.

It is important to point out that due to the fact that user-defined functions are

compiled fragments of C code, the input arguments for aggregate functions must be

fixed in order to allocate memory space and allow argument value passing to each

thread [89]. Therefore, to allow a dynamic dimensional vector as an argument, the

values for the attributes of a data point have to be packed: either a string or a

binary object. Execution performance of the aggregate UDF can be improved by

materializing a table with a single column, storing the packed dimensions with the

user-defined type. Even though the aggregation can be computed efficiently when

data are already in binary format, creating such a table is a pre-step which can be

time-consuming, especially for large input tables.

Table-valued functions (TVFs) are a type of user-defined function that, unlike

aggregate UDFs, can return a table as the final result of the function. TVFs read

an input data set as a single data stream and do not implicitly manage parallelism.

Despite the lack of “out-of-the-box” parallelism, it is common that database systems

27

allow the user to implement routines that support parallelism. In this dissertation,

a TVF will be used to compute multidimensional aggregations, with internal thread

management algorithms returning a result table with just one row.

2.6 Integration and Querying of Programs

and a Database

As an extension and area of application of the work presented here, source code

analysis appears as a natural extension. A database D contains all of the elements

that we would like to match against the source code of a program to find non-trivial

information. A program, which is treated as an unstructured source, with n files is

defined as P = {v1, v2, . . .}, in which each vi is a keyword that represents metadata

(e.g. filename), classes, methods (procedures or functions), variables or SQL queries.

Notice that C is renamed as P due to the application domain.

There are additional undirected relationships (due to memberships) between

classes, methods, variables, and queries, in which a class can have methods, vari-

ables and queries, and a method can contain some variables and queries.

28

Chapter 3

Previous Research

The integration of information retrieval systems and DBMSs is an idea that has been

around for several years, but it has been explored from an SQL perspective only a

few times. This is especially true for metadata integration, federated databases, and

multi-threading [113].

3.1 Data Preprocessing

Existing C search engines and libraries for information retrieval, such as the Lemur

Project, Mallet, or Libbow [6, 85, 84] must create their own indexes and their own

data structures for managing text files, and work completely independently from any

relational database system. As stated in [61], the concept of using SQL to perform

an IR search began with [23] parsing text into words using a C implementation,

then storing the words in a DBMS and performing operations in the collection with

29

indexed tables. The advantage of using an SQL implementation, as described in

[56], over using existing solutions or even vendor implementations such as Microsoft

SQL Server or those offered by Oracle, or “application specific” programs, is the

portability of the standard SQL, its independence from the security model of the

system, and fact that it does not compromise the stability and performance of the

database system. Still, we accept that overall performance continues to be limited

when compared with non-restrictive language implementations, and propose this

approach as an alternative option for processing documents already stored in DBMSs.

Some authors [56, 52, 53] have tried extending their systems by applying the

Vector Space Model without considering preprocessing or query optimizations of

clustered databases, or by assuming multi-node processing or parallel computing.

The OPM [83] and word stemming and parsing were developed [61], but differ from

the research presented in this dissertation because they did not address completely

the problem of document preprocessing within the database. Also, various query

optimizations are ignored in [61] precisely because the authors used distributed or

parallel computation,disguising their performance results.

This dissertation additionally explores and tailors the Dirichlet Prior Language

Model for a relational database management system. The costly NOT-IN operation

in the stopword removal, as well as different inverse frequency computation strategies

have been ignored. Because of the limited numbers of approaches in the previous

literature review, especially in the document preprocessing section, we decided to

explore document preprocessing and ranking without using a computer cluster. This

helped improve performance in many of these applications, and the findings presented

30

here are supported with time experiments that will be discussed in future sections.

The rank operation is holistic. As a result, reading the whole data set is needed

in order to obtain correct results. Despite this, top-k algorithms are used to avoid

visiting and evaluating all of the elements in a set of lists that are combined by a

given function. As stated in the previous chapter, numerous recent papers [66, 31,

25, 67, 30, 68, 31] sparked our interest in top-k algorithms. The most representative

top-k algorithms are the TA algorithm [30], the NRA algorithm [31], the Rank-

Join algorithm [68], and the J* algorithm [87]. The work with top-k queries gained

popularity with the publication of the TA algorithm in [30], which assumed a sorted

access to the data, and a later improvement required random access to the data.

These first attempts at top-k queries focused mainly on ranking queries with different

attributes within a single table. Since the proposal of the TA algorithm, research on

top-k queries has been intense, especially with implementations and algorithms that

work around the DBMS, but that are not necessarily inside the database management

system, nor do they exploit the DBMS functionalities.

There have been some approaches for integrating top-k queries into an existing

DBMS system. Initially, [64] presented a first attempt to implement a pipelining

algorithm that worked with materialized views, showing an improvement from the

traditional SQL approach since accessing every tuple in the view was not required.

Later, [25] proposed a new algorithm (LPTA) for working with views, the main con-

tribution of which was adapting the threshold value based on the linear programming

approach, and proposing merging method for pipelining the algorithm. In [87], the

J* top-k approach was presented, which was based on the A* to rank and manage

31

the early joins. [68] then presented a similar algorithm to J* that also modifies

the stopping condition, unlike the TA algorithm. [80] presented an approach that

sends a set of queries with an application working on top of the DBMS and using a

non-monotonic function. One of the contributions of the research presented in this

dissertation is a comparison between an SQL implementation and a UDF implemen-

tation in our novel data layout for storing text data for working with smaller data

sets. This presents a new approach to exploiting database indexes, temporary space,

clustering, and the pipelining of the rank join algorithm.

3.2 Data Integration

For the second part of this research, we had to focus on the schema matching prob-

lem, which consist of finding equivalent concepts among heterogeneous sources. Al-

though schema matching is an important research area that has been explored for

quite a long time [5, 104, 108, 82, 27], schema matching between database-schema

with unstructured sources has been poorly explored. In [76], the authors describe a

way of using a neural network classifier of fields in two databases to discover which

attributes relate to one another. Using this technique, the matches are discovered

from metadata. In addition, in [86], the authors attempted to match both schemata

using a set of given rules. In [9], the authors describe a system called MOMIS,

which uses an Object Data Model that relies on a semantic approach to match the

structured and unstructured sources. Additionally, the description of the schema is

used to link the schema and the documents. Previous work has also been done on

32

managing scientific databases. The authors in [99] presented a prototype system for

managing large output files from numerical simulations. The proposed application

was designed for domain experts who are not familiar with SQL, but have a scientific

background. The authors proposed using intuitive searching and browsing mecha-

nisms, from which the user can store, search, and retrieve large, distributed files from

scientific simulations. In [70], an architecture for creating a collaborative centralized

infrastructure for sharing scientific data is proposed. The architecture uses a search

schema that allows users to locate data sets by exploiting metadata information.

Finally, in [91], we suggest a method of relating schema-keywords with terms

in the documents, and generating macro and micro relationships. The matching

between both sources was done using an Object Data Model, as presented in [9], and

the unstructured sources were managed using XML. We extended this idea to present

macro, micro, and atomic relationships, each on a different level of granularity and

completeness.

3.2.1 Keyword Search

Searching keywords between a database and a collection of documents has been

approached through keyword search and schema matching. In contrast to schema

matching, keyword search in databases is centered on finding keywords in all the

elements in the database. In a coarse view, this can be seen as generating row trees

as answer sets for a given keyword. Different approaches have been developed using

tuple trees, joins [51, 65, 10, 2, 79, 107, 109, 11, 75, 71, 63] or in XML databases

33

[8, 114, 57]. Finding links among these two sources is not directly finding schema

matching or a keyword search. However, ideas from both topics have been improved

upon in order to achieve this task. EROCS is one of the few attempts at obtaining

a linkage between structured and unstructured data [15, 12, 11]. EROCS focuses

on linking transactions and then performing data mining operations over the newly

discovered links. The linkage is performed using templates for identifying entities.

In [112, 74] the authors have a similar objective of linking structured and unstruc-

tured sources (and probably the closest research to the algorithms proposed in this

dissertation). However, in their approach, the DBMS is analyzed as a graph and

then clustered. The final result is a traditional rank on top of the nodes of a graph.

In [91, 45], we suggest a method of relating schema-keywords with keywords in the

documents, and generating macro and micro relationships. The matching between

both sources is done using an Object Data Model, as presented in [9], and the

unstructured sources were managed using XML. We integrate the schema matching

and keyword search ideas to present a more complete analysis of the existing type

of links between elements and documents. We also present a novel idea on how to

rank documents given these relationships within the DBMS. In addition, the research

does not require a given Object Data Model for discovering these links between the

structured and unstructured sources, and the linkage is performed without any entity

templates. Finally, we extend the ideas presented in [40] by providing a third method

for ranking the elements in both the keywords in the database and the collection of

documents. In addition, a more detailed analysis is performed on the involved data

structures, and the derived relationships are introduced.

34

3.2.2 Query Recommendation

Recently, a term “popularity” approach is explored in [72] in which each term is com-

pared to the query terms. Similarly, the authors present the idea of näıve suggestions,

but they do not explore how to efficiently compute such aggregations. Early straight-

forward attempts on query logs for unbiased query recommendations were presented

in [33, 50]. But the authors assume previous knowledge by using these logs. OLAP

has been explored less than association rules for query recommendation. However,

a couple of applications have implemented OLAP to explore document collections

[100, 36]. In [100] a contextualized warehouse (XML data warehouse) of the doc-

uments was built, and then queried by the usage of OLAP on relevant measures

assigned to the documents. However, they focus on the metadata of the documents.

In addition, OLAP sampling was explored initially in [77] as a technique for speed-

ing up OLAP aggregations with approximate results. However, this analysis is not

presented in the context of collections of keywords.

3.3 Knowledge Discovery

3.3.1 Representing Knowledge as Ontologies

The need to automate the time-consuming generation of ontologies has led to multiple

solutions that rely on previous knowledge or time-consuming tasks. OntoLT [14] is

a plug-in for the Protègè ontology tool. It allows the user to define a set of rules for

extracting an ontology from annotated text collections. In [24], the authors present

35

TextOnEx (improved to Text2Onto). This prototype builds an ontology based on

an NLP approach. Unlike the system presented in this dissertation, OntoLT has to

rely on preconditions given by a third party, and TextOnEx requires a set of given

patterns. Data mining approaches, such as [29], propose using a C4.5 decision tree

to extract the main concepts. The non-leaf nodes are classes and the leaf nodes

are individuals. In contrast to the approach presented here, this class extraction

is performed in one pass through the data. Ontobuilder is a ontology extractor

based on a schema matching approach [35]. The ontology extractor is based on

heuristic methods. Doddle-OWL [34] reuses given knowledge to extract classes and

relationships (mostly WordNet). It then relies on a refinement (feedback) to build a

final ontology.

We realized in [37] that the query recommendation algorithm could also discover

the main ontology concepts behind a particular topic. One of the contributions of

the research is that classes and relations may be obtained based only on efficient

computations of several discrimination values (correlation and lift.) Unlike the pro-

posed solutions, this requires minimal human intervention and the tuning of only a

few parameters.

3.3.2 Deriving Cubes from Ontologies

Using OLAP for summarizing text corpora has been presented in several publications

[73, 78, 116]. Early in [73], the authors presented an approach to loading all the

documents inside a DBMS. The documents were all loaded into a star schema that

36

allowed the users to utilize traditional OLAP algorithms. The computations were

focused on keyword frequency. Loading all of the data into a predefined schema

that will allow exploration using traditional OLAP techniques represents a major

drawback of this early works. This approach is prohibitive when dealing with a data

set containing a large number of dimensions, unlike the vertical layout approach

which allows the storage of large dimensional data sets. In [78], the authors propose

Text Cube. This approach focuses on computing a partial cube by using only a partial

materialization. The algorithms in [78] are focused on obtaining “on-demand” OLAP

queries with the optimal processing cost, using a greedy algorithm. This is unlike

the approach presented here, in which the focus is on computing all of the existing

dimensions of the data cube at once by taking advantage of the text sparsity. More

recently in [116], Topic Cube is proposed to obtain a more complex analysis than just

data summarization. The purpose of this new OLAP model is to extract dimensions

for existing text data using the probabilistic latent semantic analysis. Despite the

fact that the model and results are interesting for generating a possible ontology, the

authors do not to propose a new data structure for the multidimensional data cube

(they compute the SQL queries as required), but focus on the quality of the built

hierarchy.

In [37] and [38], we were able to adapt a traditional OLAP data cube to efficiently

process a sparse vertical fact table. However, we were only computing a set of dimen-

sions, and the scalability of the algorithm was limited to only a few dimensions. In

addition, the papers were focused on the aggregation of several measurements inside

text corpora to produce the most frequent cuboids for generating an unsupervised

37

ontology. This ontology was the result of a post-processing phase on the resulting

cuboids. In this dissertation, a given ontology is assumed, and it is used to sum-

marize a set of documents. Thus, one of the contributions of this OLAP approach

focus on a new algorithm that integrates the hierarchy given by an ontology into a

single data structure called CUBO. In addition, a formalization and study in depth

of the theoretical and experimental complexity of our algorithm are presented in

this dissertation. Finally, the proposed algorithm considers a way to manage several

types of hierarchies that can be present in an ontology.

3.3.3 Integration and Querying of Programs

and Schemas

Control and data dependency analysis of programs have been explored for code main-

tainability, reverse engineering, and compilers. Despite this, the interaction between

source code and a database’s schema has rarely been explored. In [60] the authors

propose the DB-MAIN case tool. This tool automatically extracts data structures

and control and data dependencies declared in the source code (including all the

explicit and implicit structures and constraints). The result of this tool is a con-

ceptual representation of the data structures and the relationships between them.

DB-MAIN proposes three techniques for capturing the dependencies in a program

which are based on applying heuristics after a pattern-matching analysis. Unlike

the previous approaches, the proposed approach is based on finding approximate

matches. Moreover, the proposed approach allows the flexibility of analyzing a larger

38

variety of languages and pieces of code. DB-MAIN supports only a few languages

(such as COBOL). Furthermore, a DBMS is relied upon to perform the extraction

and exploration of the matches. In the keyword search domain, several algorithms

have been proposed for performing efficient searches [17]. From this family of algo-

rithms, the closest similarity to the research presented in this dissertation is found

to be in the DBXplorer system [2], BANKS [10], and DISCOVER [65]. The newly

proposed graph algorithm is partially based on the DISCOVER algorithm in the

exploration style. However, in DBXplorer, DISCOVER, and BANKS, the challenge

is to find those tables and attributes that are related to PK/FK constraints. This

differs from our algorithms, which focus on exploring the database’s schema and not

on the data within. Finally, our proposal is the result of ongoing research in the

field of data integration and joint exploration between structured and unstructured

sources. This approach was originally implemented to integrate semistructured data

with structured data, as presented in [91], in which the basic notion of a “link” was

introduced. In addition, several algorithms for finding those links were introduced.

Later on, these ideas were expanded upon to perform efficient approximate keyword

matching inside the DBMS [40]. In this dissertation, the ideas presented in [90] for

preparing a data set for data mining and the ideas in [37] for OLAP exploration are

extended to allow complex analysis of the resulting matches. Finally, this disserta-

tion formalizes the notation in [42] and introduces efficient ranking methods for the

obtained references and source code files.

39

Chapter 4

Processing Documents

Document storage, scoring functions, top-k queries, and the discovery of relationships

require different optimizations and algorithms tailored to the DBMS. We separate

the general IR process into two phases: the storage phase and the retrieval phase (see

Figure 4.1). Document storage requires efficient document preprocessing and term

storage. Document retrieval requires effective aggregations and top-k algorithms.

Without loss of generality, the words a “term” or “keyword” are use interchangeably

in this chapter.

4.1 Storage

We separate the general IR process into two phases: the storage phase and the

retrieval phase. The flow of the operations for the three ranking models is related

to the desired optimizations or selected parameters from the user. The three models

40

Figure 4.1: Storing and Ranking Framework.

have a uniform preprocessing phase, then the term weighting step varies depending

upon the retrieval model. Later, the retrieval phase may contain a weighting task

needed for the scoring of the ranking model. The last step is the scoring of the

ranking model.

The document preprocessing step takes every document and creates a descrip-

tor vector as no hierarchical model (or “bag-of-words”). The vector is the result of

removing stopwords and applying the Porter Algorithm [98] to every non-stopword.

This algorithm has been adopted regularly as the default choice for stemming, al-

though there exist other options such as Lovins, Dawson, and Paice, among others

[98]. The main purpose of using a stemming approach is to lower the number of

dimensions (words) in a document and still be capable of “describing” the document

using a reduced descriptor vector while losing as little information as possible.

41

4.1.1 Data Layout and Indexing

The data layout defines how the document data are stored in the DBMS. Such

a layout is important for speeding up the retrieval models and also allowing that

various techniques can function. Storing the document collection requires a data

layout that will allow pipelining for the top-k algorithms, indexing and clustering of

documents, and terms for weighting and retrieval. Later on, it will be required also

to allow the generation of the document-schema relationship discovery.

We use the Baseline Inverted File technique for weighting and indexing the terms

[117]. This technique consists of two principal structures. The first of these is a search

structure (vocabulary or dictionary) that stores every distinct term in the collection,

and a pointer, or a pair of primary and foreign keys in the relational model, in a

corresponding inverted list. The second structure is the inverted list structure in

which each entry stores terms and the associated set of frequencies of the terms in a

document [79]. This results in the storage of a descriptor vector of every document

in a huge matrix of different numbers of terms and N number of documents in the

collection. The main advantage of using an Inverted Files technique relies on the fact

that the frequency of every term has already been stored. This frequency can then be

easily manipulated into several ranking strategies. Storing vectors in the relational

model is difficult, and we will assume a vector to be a single column relationship for

the relational model.

The schema in the database (see Figure 4.2) includes a table “stopword” which

contains the collection of indexed undesired words. A table “document” stores the

42

Figure 4.2: Vertical Layout Storage

metadata of the document, indexed by the document’s unique identifier i selected as

the primary key. The table “parameter” includes the corpus statistics as a require-

ment for some ranking strategies. The table “termFrequency” contains the terms of

each document and the term’s frequency. The “termFrequency” table is indexed by t

and i, and the terms are clustered by i, because ordinarily they are retrieved together

to be compared in any of the chosen ranking models. For OPM and VSM models,

the weight of each term in the collection is computed with an inverse frequency table

“termInverseFrequency,” indexed by term. In the Dirichlet Prior Language Model,

the probability of each term appears in the “maxLikelihoodDocTerm” table. For

OPM and DPLM ranking strategies, data was collected data from the documents

and those values were stored in “documentData.”

43

Figure 4.3: Bucket Data Layout.

4.1.1.1 Data Layout for the Top-k Algorithms

The top-k computation required designing how to store the documents in a relational

database system in order to allow pipelining and enhance retrieval performance. But

storing the data layout to fit inside a DBMS is not a trivial task, mostly because

the data must be arranged in a way that will allow the database system to conduct

a fast retrieval without performing full table scans in each table of the collection

for each search. Therefore, we decided to explore with a layout different from just

using a single huge table containing all the document-term pairs in the collection (see

Figure 4.2). We originally started with a huge document-term table that stored all

the document-term-frequency entries of the collection, making it difficult to manage,

and not allowing any advantage when pipelining. We then decided to change the

data layout in order to base it on a divide-and-conquer strategy. so parts of the

document-term-frequency entries were stored in different tables based on some term

interval (see Figure 4.3).

Support summary tables were stored for the ranking model that contained the

44

norm of the documents and weight of the terms, and document-term-frequency en-

tries were divided into ranges. This results in a collection of tables containing just

a “bucket” filled with some terms of a document, and was done precisely to exploit

the sparse nature of documents, and due to the fact that the number of terms to be

searched is generally small compared to the total size of the collection. Therefore, a

physically close storage of all the related terms in a table was enforced. A clustered

index was also added for grouping all the related terms of the same document in a

table based on an index (to allow faster retrieval), allowing us to guarantee that all

of the related terms of a document are stored next to each other (e.g. {doc1,house},

{doc1,home}), since related terms may be needed that are in the same bucket but

are part of the same document and may be aggregated together if needed during

the “scoring phase.” Additionally, some summary tables were created, in which we

stored the norm of each document, and in another table, the term’s idf value was

stored. When m tables are required for ranking, user temporary tables are created,

as will be explained later for some techniques. In some cases, these temporary tables

will be indexed by a surrogate key, from one may simulate random access to the

ordered records in the table. This technique is similar to the data layout presented

in [25].

4.1.2 Document Preprocessing

For the document splitting phase, a recursive function was proposed [88] for porta-

bility and for performing the splitting task (see Figure 4.4), which normally has been

solved using external implementations, language, DBMS specific implementations,

45

WITH TERM(i, word, g, k , j) AS

(SELECT i, word, g, k, j FROM T

UNION ALL

SELECT TERM.i+1

,CAST(SUBSTRING(T.word,TERM.i-TERM.k

,TERM.k+1) AS text)

,CASE WHEN SUBSTRING(T.word, TERM.i,1) = ’ ’

THEN TERM.g+1

ELSE CASE

WHEN TERM.g=1 THEN TERM.g+1

ELSE TERM.g END

END

,CASE WHEN SUBSTRING(T.word, TERM.i,1) = ’ ’

THEN 0 ELSE CASE WHEN TERM.g=1

THEN 1 ELSE TERM.k+1 END END

, 1

FROM T

INNER JOIN TERM

ON (TERM.j = T.j)

WHERE TERM.i < DATALENGTH(T.word)+2

)

INSERT INTO RESULT

SELECT i, word, g, k, j

FROM TERM;

Figure 4.4: Recursive Splitting Function.

or n-gram parsing [61]. We started with the initial text to be parsed in a temporary

table. Using “term” as the table that makes the recursion possible, and then we

select the cumulative word before the “word splitter.” In this case, we decided to use

a blank space as the separator, but this could be replaced with any other character.

The final result was then stored in the temporary term table for future use.

46

4.1.3 Stopword Removal

Upon the conclusion of the splitting step, the resulting words in the table were

stemmed. Prior to this, however, the stopwords were removed, as clearly described

in [61]. These tasks have been executed normally with a NOT-IN operator. Based

on previous research, we decided to modify the stopword removal query by selecting

all the non-matching values in a LEFT-JOIN query. This optimization was explored

in [93], and has not been presented as an alternative technique for comparing and

eliminating stopwords in the original document.

SELECT keyword AS term

FROM Splitter(’{Query String}’)

LEFT JOIN stopword

ON word = keyword

WHERE word is NULL;

4.2 Exploration of Documents

The preselection of the documents to be ranked can be achieved for conjunctive

or disjunctive queries, as well. The idea is to reduce the number of terms and

documents to work with in the on-demand weighting and ranking models. Querying

a collection for disjunctive or conjunctive operations traditionally requires building

a query dynamically for searching for terms in the frequency table. Then, these

selections are constructed by adding “AND” or “OR” operations at the end of a

47

selection. With this optimization, the previous techniques for preprocessing a query

are reused, by purging the user query and then splitting and storing it into the query

temporary table. In a disjunctive query, the selected documents are the result of a

LEFT-JOIN optimization.

SELECT DISTINCT i

FROM termFrequency tf

LEFT JOIN Splitter(’{Query String}’) pa

ON PorterAlgorithm(pa.keyword) = tf.t;

The conjunctive query corresponds to a division relational operation in the database,

including the “termFrequency” table and the query table, necessary for finding all of

the documents that contain all of the query terms. Thus, we execute an optimization

discussed previously in [93], is executed, wherein this division operation is expected

by adding a GROUP-BY, in order to remove duplicates and to count how many

unique terms each document contains from the query. Finally, in a temporary table

stores the number of words in the query. As part of the implementation, a single

occurrence of a term in a user query is assumed.

SELECT i

FROM termFrequency tf

LEFT JOIN Splitter(’{Query String}’) pa

ON PorterAlgorithm(pa.keyword) = tf.t

WHERE pa.keyword IS NOT NULL

GROUP BY i HAVING COUNT(*) = {# Query Words};

48

The retrieval functions for the three models imply a sequence of natural joins with

the termFrequency and the “weight” table. The objective when designing both im-

plementations was to reduce the size of the term tables as quickly as possible. Thus,

several temporary tables were created, such as the table “doc,” which contains the

preselected documents from the disjunctive or conjunctive query, but represents the

set of all the documents that contain the desired terms. This temporary table is used

as part of the on-demand technique for verifying whether or not the termInverseFre-

quency table contains all of the required terms. Finally, it is assumed that the norm

of the query has already been precomputed.

ρt(doc ./ termFrequency)

ρtmpd(iFsum(qd)((t ./ Query)

./ termInverseFrequency))

ρtmpqd(iFsum(d)(t ./ termInverseFrequency))

Πi,qd/(d∗q)(tmpd ./ tmpqd) (4.1)

In order to include our SQL queries, we present them in relational algebra (in-

stead of a larger SQL). For the Vector Space Model (see Equation 4.1), a series of

aggregations in the “tmpd” and the “tmpqd” temporary tables is computed. The

“tmpd” table represents the norm of the documents that contain the desired terms

and the “tmpqd” table stores the dot product between the query table and each

document. At the end of the execution of the queries, the three tables are joined to

obtain the score of each document without needing to perform an aggregate function

49

in this operation.

The ranking function involves several joins, including the term frequency table

and the inverse frequency table. The first part of the query computes a join between

the “query” table and the inverse frequency table, and this query is computed once.

Then, the rest of the query computes the norm of the term vector of every selected

document, which includes a join operation between the frequency table of the terms

involved in the operation and the inverse frequency table. Then, using the selected

documents, the norm of each document is computed with an inner join between

the term frequency table and the inverse frequency table. The last part of the

query is a join with the selected document’s norm and the “tmpqd” table and the

already computed “query” table norm. The ranking function includes five joins for

obtaining those results, but some tables are just obtained once and reused (i.e. the

doc table). Also, as explained previously, in the static frequency table technique,

the inverted frequency table is already precomputed. However, in the on-demand

technique, every term that is needed for its frequency must be searched in the term

frequency table. If the term is found in the term frequency table but not in the

inverse frequency table, then its term inverse frequency must be inserted into the

table. The “termFrequency” table is stored in a cluster based on the document ID,

keeping the terms in the descriptor vector together. This is done in order to obtain

better performance when implemented in the DBMS.

The Okapi Probabilistic Model (see Equation 4.2) requires more information than

the Vector Space Model, since it requires the length of the document (considered

without stopwords) and the average size of a document in the collection.

50

ρt(doc ./ termFrequency)

iFsum(rank)(termInverseFrequency

./ (documentData ./ (Query ./ t))) (4.2)

The implementation of the Okapi formula in SQL is performed with three inner

joins. The deepest query involves the matching of documents of the desired queries,

as in the Vector Space Model. Then another inner join is performed with this tem-

porary document table and the termFrequency table to obtain the second and the

third parts of the formula. This leaves a last inner join operation, in which each

document term is multiplied by its inverse frequency, and then an aggregation oper-

ation is applied on document ID with a SUM on the final score of each term and a

GROUP-BY.

The Dirichlet Prior Language Method (see Equation 4.3) is very close to the

implementation in SQL of the OPM, since it performs joins in similar sized-tables.

Despite this, the ranking elements and the results of the aggregation are very differ-

ent, due to the weight term product, the term weighting, and the ranking equation.

ρt(doc ./ termFrequency)

iFproduct(rank)(maxLikelihoodTermDoc

./ (documentData ./ (Query ./ t))) (4.3)

51

The DPLM implementation is performed very similarly to the Okapi Probabilistic

Function, but instead of performing a SUM in the aggregation, a product is obtained,

to which the given formula is applied. The overall execution time is very similar to

the OPM.

A popular alternative for ranking is the Latent Semantic Indexing approach. La-

tent Semantic Indexing relies on the premise that using direct match on keywords (as

with our previous techniques) may give incorrect results [55]. As a result, LSI reduces

the number of keywords in a document in order to have a new representation of the

documents in a difference space, where all the documents have the same vector size.

Despite this, latent semantics can also be exploited using our described data lay-

out with some precomputations that are the result of Singular Value Decomposition

(SVD).

The process begins with a matrix A, that corresponds to the document-term

matrix. The A matrix is of size C dimensions and the different numbers of t. Each

cell in matrix A represents the frequency of that keyword in each document. This

matrix is decomposed using the correlation matrix, householder decomposition, and

QR factorization into UΣV T , such that Matrix Σ are the singular values. The

singular values are then selected by magnitude and reduced by selecting the most

important k values (the remaining values are set to 0). These singular values are

what we consider to be the latent semantic. Finally, using these new matrices, the

query needs to be transported into the same k-th space by using qTUkΣk
−1. On the

other hand, the transformation of the documents is contained in Vk. The size of those

support tables in the data layout will be the following: matrix V is of size k by N ,

52

matrix Σ is of size k by N and matrix U is of size N by the number of different terms

in the collection. Once this mapping of the query and the documents has finished,

the new obtained vectors with k elements in each need to be ranked. To rank them,

the Vector Space Model is applied to these vectors to obtain the final score. The

computation in SQL is reduced to a set of precomputations and temporary matrices

that are needed for obtaining the latent semantic. The rest of the operations are

reduced to the VSM.

4.3 Top-k Rank-Join

The Rank-Join algorithm, described in [68], is based on the TA and NRA algorithms.

The authors propose that the Rank-Join Algorithm can be extended as a new SQL

operation that can be used in a query plan (pipelined). As explained in [68], this

algorithm exploits the maximum and minimum values of an attribute in two sorted

lists, in order to obtain a computed threshold (or cutoff value like in TA), and it only

reports the documents that are above this computation. The Rank-Join algorithm,

like most top-k algorithms, requires a monotonic increasing function in order to

guarantee that it can find a threshold, and that no value smaller than this will have

a higher score. In order to obtain a monotonic increasing function in the ranking with

the Vector Space Model, the top-k is performed after each term has been associated

with the query vector. Therefore, the sorted lists contain weighted values associated

with the query and the remaining operation is an addition, which can be guaranteed

as a monotonic increasing function.

53

As explained in [68], the Rank-Join algorithm is different from the NRA and

TA algorithms because it does not have a restrictive data access pattern. Instead,

the algorithm only keeps the scores of fully completed join combinations, allowing

the algorithm to be independent of the order in which the data are accessed. In

contrast, an algorithm such as NRA makes assumptions regarding partially viewed

join combinations and is thus more dependent on the access pattern. The Rank-Join

algorithm guarantees obtaining the top-k items within two ordered lists, but requires

a further scheduling extension for pipelining. A summarized version of the Rank-Join

algorithm as presented in [68] is described in Figure 4.5.

Data: Rank-Join(L1, L2, . . . , LM)
Result: Top-k documents

1 Generate a valid join combination;
2 For each resulting join combination compute the score;
3 Let (tl)

max be the top score in List l. Let tlast−seen be the last seen score in List

l. Let T the maximum of the following m values {F (tlast−seen1 , t2
max, ..., tm

max),
F (t1

max, tlast−seen2 , ..., tm
max), · · · , F (t1

max, t2
max,... , tlast−seenm)};

4 Let Lk be a list of the k join results with the maximum combined score seen
so far and let the scorek be the lowest score in Lk; halt when scorek ≥ T ;

Figure 4.5: Rank-Join Algorithm

Unfortunately, there is a problem with the Rank-Join algorithm, due to the fact

that pipelining requires the modification of the number of “documents” to be re-

trieved as one traverses deeper into the query plan.

In order to speed up the document retrieval, we experimented with top-k algo-

rithms using the VSM. Traditional ranking in SQL takes every row into consideration

and obtains the final score for all the joins in J . It then takes the top k documents

for the whole ranked and sorted data set. The main advantage of this type of query

54

over the rest of the approaches is that it delegates the tasks of deciding which is

the best approach for joining the tables by using the query optimizer of the DBMS.

This could represent a great advantage when there are large tables and small tables

present together within the collection. Also, early tuple pruning could reduce the

total time required for returning the top-k documents, which is not possible if there

is not a smart scheduling technique to support the Rank-Join algorithm.

SELECT TOP 5 i, SUM(tbl.rank)

FROM (<union of m tables>) tbl

GROUP BY tbl.i

HAVING COUNT(*) = (SELECT COUNT(*)

FROM irtopk_term WHERE t=’APPLIC’ OR t = ’BECOM’)

ORDER BY SUM(tbl.rank) DESC;

The query above represents the traditional SQL ranking, from which “<union

of m tables>” represents a couple of joins which obtain the terms’ frequencies and

weights for the ranking formula and the norm of each document. The norm of the

query vector is considered to be precomputed when computing this query.

The SQL approach (SSQL) had to be tailored in a different way than the tradi-

tional ranking. Instead of using a single query, we implemented a variation of the

Rank-Join algorithm proposed in [25]. We initially decided to use temporary tables

instead of views to speed up the execution, but the time difference from the actual

materialization of the results was negligible. Temporary tables also relied on the

55

stability of the in-database connection in the used DBMS, which resulted in connec-

tion problems with larger datasets when the connection had to be kept alive during

longer periods of time. This made the connection subject unexpected restarts that

avoided the reuse of temporary tables. Due to this, we relied on indexed tables to

speed up the execution of predicates and the materialization of tables to guarantee

intermediate results reuse.

Temporary tables were used to hold partial result datasets with immediate reuse,

mainly because temporary tables do not require to be stored in the persistent objects

catalog of permanent tables, and they have the capability of adding indexes, as well.

A surrogate key had to be included for allowing sorting, in order to simulate random

access to each sorted table. Once the sorted tables were obtained, each element was

accessed individually, as described in the modified Rank-Join algorithm (see Figure

4.6). The access of both lists is applied evenly. In other words, there is no particular

priority to access a row first from a specific table. This same access pattern is followed

in the rest of the algorithms presented here.

The Rank-Join User Defined Function (UDF) was coded as a table value function

(TVF) because of the flexibility that exists in opening connections inside the DBMS,

managing the data, and returning tables as a result of a function inside the DBMS.

Performance is gained mainly when in-database extensions are used instead of coding

the application outside the DBMS. The UDF’s capability of working in-main memory

is exploited, in contrast to an external application that requires accessing the DBMS

through a connection interface (e.g. JDBC).

Inside the UDF, we had to read both tables, compute their scoring value, and

56

Data: SQLRankJoinAlgorithm(L,R, k)
Result: Top-k documents

1 Retrieve and sort L and R lists based on the resulting score;

2 Insert both sorted lists L and R into a new lists L̂ and R̂ using a a surrogate
key to simulate a random access, and apply an index on the surrogate key and
the document id;

3 Iterate through the lists evenly, and compute the new T for the new visited
values. If there is any new valid join, add into a valid join table, preserve the
sorting in such table and retrieve all the needed elements having higher or
equal score than T . Perform each operation on the indexed tables, using the
surrogate key as a pointer to the end of the list and the document id to hash
the result;

4 If the stopping condition for the Rank-Join has been reached, return. Else if
there are still tuples to retrieve goto step 3, else take the top needed values to
return the top k;

Figure 4.6: SQL Rank-Join Algorithm.

sort them. Then, row by row reads were processed from both lists following the

Rank-Join algorithm, and the execution was suspended when the stopping condition

had been met. The main difference between the SQL implementation and the UDF

is in Step 3, in which it is possible to work without a surrogate key, but the capability

of exploiting the indexes created in the sorted table in the DBMS is also lost. Most

of the computations are executed in main memory and stored in a temporary array

holding all the join results (sorted by size). This Rank-Join algorithm is mainly

based on a sorted list which manages the valid J results.

We took advantage of the 2 GB memory space (specific to SQL Server) that can

be allocated inside the DBMS where all of these computations were performed in

main memory, speeding up the execution of the TVF. The UDF call in SQL needs

both table names as arguments, the norm of the query vector, the terms to look for

57

in the given tables, and the number of results to return. The TVF has limitations

depending on the DBMS and the allocation of space for UDFs. UDF Rank-Join, as

well the SQL implementation, accesses both lists at the same time. The function can

be called as follows:

SELECT *

FROM

RANKJOIN(’irtopk_A’,’irtopk_B’, 5, ’APPLIC’,’BECOM’,5)

An improved version of the Rank-Join algorithm, described in [69], implies man-

aging a hash-join data structure for each visited tuple for each list, and a priority

queue for sorting the valid join tuples. The improved UDF-TVF implementation

exploits both data structures in main memory. These data structures approach the

main issues in the list-based Rank-Join algorithm. By using a priority queue for

holding the valid join tuples, it is possible to improve the bottleneck of managing

these tuples. At the same time, the access to specific joins for finding a faster joins is

achieved by hashing the data tables. This algorithm is similar to our SQL implemen-

tation, due to the fact that the hash access can be achieved in SQL when storing the

tables. Unfortunately, the sorted storage remains as the main limitation for the SQL

implementation and here this problem is addressed here by using an implementation

in a UDF.

The pipelining strategy of the UDFs and SQL Rank-Join was performed following

a näıve scheduling strategy in both implementations. We first grouped all the terms

that were part of the same bucket (e.g. ‘ARCHITECTUR’ ‘ASSOCI’) and ordered

58

the table scheduling list in alphabetical order. The largest table size in the involved

tables was obtained and reduced by a constant α = 30% of each level in the pipelining.

Hence, the α(MAX(|L1|, |L2|)) join result of the first two tables was obtained. We

continued reusing the resulting table of the Rank-Join algorithm and computing the

new k for each level, adding new tables from the scheduling list until the work was

completed. The join results are then the top-k results of all of the desired tables.

This pipelining technique will not work with disjunctive queries, because if some

documents are discarded early by lower ranked terms, the result will have a lower

accuracy than the actual top-k documents.

4.4 Experimental Validation

The experiments presented here were designed to test the performance and feasibility

of each step of the research. The first part of our research focused on testing the

bottlenecks and performance of the algorithms in document storing and ranking.

The second section was designed to verify the performance and accuracy of using a

top-k approach. The last section of the experiments focused on performance of the

relationship-discovery process and the number of relationships that were found in

the given data set.

The experiment were conducted on a computer with an Intel Core Duo P8700

processor at 2.53 GHz. The system hardware configuration also had 4 GB of RAM

and a Western Digital WD2500 hard drive with 250 GB of space. The software

configuration was running a Microsoft SQL Server Developer Edition (32-bit), version

59

9.00.4035.00. All of the data sets were loaded in such a DBMS engine, and a different

database was created for each section of the experiments: document storage and

retrieval, top-k retrieval and relationship discovery.

4.4.1 Document Storage and Retrieval

The collection of documents for testing the document preprocessing, storage, and

retrieval was prepared using the publicly available DBLP bibliography and ACM

Digital Library abstracts, using an automated program (crawler) for preparing the

corpus (see Table 4.1). In some cases, the abstracts were larger than expected and

were reduced to less than one-thousand characters. In order to proceed with the

experimental section, we decided to work with two collections. The first was a

smaller collection from a corpus larger than 18000 documents, creating test runs

of 500, 1000, 2000, 4000, 8000, and 18442 sets of documents. The second was a

larger collection, in which the original corpus was repeated 10 times for testing the

search models with more than 180000 documents. For the rest of the tests that the

documents, abstracts from the test bed were assumed to be already loaded into the

database. Then these strings were preprocessed and stored them using the Baseline

Inverted File technique, as presented in the entity relationship model.

Table 4.1: Documents in the Collection.
Docs Dif. Terms Word Avg Term Avg Std dev

18442 782421 98.43 55.7 24.94

The selected test workload was designed with five terms based on the maxi-

mum, average, and minimum frequencies. The selected keywords for performing the

60

keyword-searches were: design, simulation, island, marginal, and zurich, for perform-

ing conjunctive and disjunctive queries (see Table 4.2). The workload was designed

for querying all of the possible combinations with any of these terms, in order to mea-

sure the performance of querying a term in the collection, although the combination

with all of the terms was ignored for measurement purposes. In these experiments,

all of the retrieved documents were considered relevant, and for the time being, the

precision and recall measurements were ignored, while focusing the experiments on

performance. All of the measurements in the experimental part are given in seconds

when not specified.

Table 4.2: Searched Terms.
Keywords Frequency

design 8914
simulation 1442
island 17
marginal 16
zurich 1

The reviewed the performance of our implementation for document preprocessing

was reviewed with a recursive query, and the results (see Table 4.4) showed that the

performance for splitting documents is approximately 3690 words per second, on

average. The implementation can be extended to work in parallel for a much better

ratio, as shown in similar research by [56, 52]. At the same time, the degradation of

using an SQL-based approach was compared to a UDF implementation. As shown

in Table 4.3, the UDF clearly outperforms the SQL implementation, although the

recursive query is valuable for the portability that is given by being built using ANSI

SQL.

61

Table 4.3: Document Splitting (UDF vs Recursive Queries) in Seconds.

Documents Avg. Words UDF Recursive Query
2500 31 0.1 19
5000 32 0.2 39
7500 32 0.4 59

10000 32 0.5 79
12500 32 0.7 107

The optimization analyzed in the storage phase corresponds to the NOT-IN and

LEFT-JOIN operands for eliminating the stopwords from the document temporary

table. The results showed a reduction of 1-6% in the total time required to remove

the words and store them in the frequency table (see Table 4.4). The LEFT-JOIN

optimization always proved to be faster than using a NOT-IN operation, but the

improvement percentage depends on the number of elements in both tables. However,

these optimizations, the splitting and the removal of stopwords, represent more than

80% of the total storage time (see Table 4.5).

Table 4.4: Stop-word Removal & Splitting in Seconds.

Docs NOT-IN LEFT-JOIN Processing total time

500 11 10 14
1000 22 20 30
2000 46 43 62
4000 93 88 130
8000 195 184 274

18442 430 402 578

For the term weighting step, we analyzed the on-demand and static techniques

for computing the inverse frequency, or probability, of the desired terms. Surprising

results (see Table 4.6) were computed for the Okapi inverse frequency, including

a high overhead when verifying the existence of the required terms in the partial

62

Table 4.5: Storage Time for On-demand in Seconds.

Docs LEFT-JOIN % Preprocesing % Total time

500 37 52 27
1000 34 52 58
2000 35 50 123
4000 34 50 259
8000 34 51 539

18442 35 50 1159

Figure 4.7: Inverse Frequency Computation for Workload.

inverse frequency table. Thus, the time for executing this background check and

then inserting the required terms is higher than weighting the whole collection in

one pass.

At some point, (see Figure 4.7) if no new terms are searched, the time con-

sumption of the on-demand technique will remain with just the overhead cost of

the LEFT-JOIN operation searching for missing terms in the partial-term weight

table. The performance remains steady when the total number of different terms has

already been reached. On the other hand, time consumption of the static inverse

frequency or probability computation will surpass that of the on-demand technique

as the number of terms keeps increasing. Thus, deciding which strategy to apply

63

depends on the workload and the number of different terms that are part of the

collection.

Table 4.6: Weighting Techniques for Okapi in Seconds.

Documents On-demand Static

500 <1 <1
1000 1 <1
2000 1 <1
4000 1 1
8000 1 1

18442 1 1

4.4.1.1 Retrieval

The document preselection on our three ranking models was tested. The performance

with conjunctive queries is faster than the performance with disjunctive queries for

the premature reduction of the number of terms. The search for documents that

contain all the searched terms is a time-consuming operation. However, the limited

number of findings speeds up the overall execution of a conjunctive query, except in

the first case, in which obtaining all of the documents that contain all of the queries

proves to be a more time consuming operation than the disjunctive query. After

more keywords are added to the query, the disjunctive operation involves a larger

number of matches, and therefore, a slower performance. According to the results

that we obtained (see Table 4.7), the VSM implementation is slower than OPM

and the DPLM implementations, except in the first case, when just one keyword

is involved in the search. In general, due to the number of operations that the

VSM must perform, Okapi and DPLM appear as much better options. Also, it is

64

well-known that Okapi is a good model for fixed-length documents, and due to the

similarity amongst the join operations between OPM and DPLM, a similar behavior

is observed in those algorithms, as well. Also, the conjunctive query by itself is

the most time consuming operation (GROUP-BY) in the scoring, but this early

implementation in the document selection retrieves far fewer documents than the

disjunctive operation. Thus, in the overall time for the ranking operations, the

conjunctive operation appears as a much faster option.

Table 4.7: Conjunctive (C) & Disjunctive (D) Queries (time in seconds).

180000 documents
VSM OPM DPLM

Terms C D C D C D
1 6 7 12 4 6 6
2 4 15 2 4 2 7
3 4 24 2 4 2 11
4 4 34 2 4 2 13

We consider these results promising for future optimizations, and they have

proven to reduce the SQL overhead that has been assumed as one of the princi-

pal problems when working with a declarative language such as SQL. Also, these

experiments aided in the exploration and building of an application with this SQL

alternative, taking advantage of indexes, clustered storage of related terms, user-

defined functions, and faster SQL operations. The results obtained showed under

which circumstances any of these optimizations can be applied, taking into consid-

eration the nature of the collections and the workloads.

In particular, the recursive query, described as part of the preprocessing tasks

65

of the documents, proved to be a very effective option for breaking up the docu-

ments and storing them, pivoted and purged, in a temporary table in a standard

SQL implementation. Contrary to previous research, the solution presented here

is not attached to the DBMS proprietary functions, nor is it suited for extracting

n-grams. The LEFT-JOIN operation gives an improvement of 1-6% instead of using

a “traditionally proposed” NOT-IN operation. This saves a lot of time in the overall

process of loading documents. Document splitting and stopword removal have to

be executed for every document, parsed and stored into the collection. The same

idea was also used as part of the on-demand term weighting step, reducing the total

overhead of verifying the existence of terms in the inverse frequency or probability

table.

For the static and on-demand techniques, we observed that a static ranking will

normally be a much faster approach, but when it is known that the collection includes

millions of different terms, and the queries are over a few of these terms, all of

the terms in the collection do not need to be ranked. We also observed that for

values greater than 10000 different terms, the term weighting becomes the most time

consuming operation in the overall process of preprocessing, storing, and ranking.

Finally, the fact that previously studied query optimizations can be used and applied

in the context of information retrieval to minimize the limitations of a database as

a search engine is an idea that has not been previously explored, as discussed in the

related work section. Also, we consider the improvement found to be significant,

especially when taking into consideration that these operations run for thousands of

documents and terms in the database system.

66

Table 4.8: Top-k Test Data Sets.

Data Set Docs. Terms Entries
KOS 3430 6087 353157
Nips 1500 10950 746313
ENRON Email 39861 24678 3710417
NYTIMES 299752 7979 69679424

4.4.2 Rank-Join

The driver code and the UDF were implemented using C#, in which the UDF was

developed as a Table-Valued Function (TVF). Different-sized data sets were used

to test the Rank-Join implementations in SQL and UDFs, and the traditional SQL

ranking (as the benchmark). The “Bag of Words Data Set,” taken from the UCI

Data Mining Repository [4] (see Table 4.8), each data was identified by its number of

document-term entries in the plots. In this experimental section, the performances of

the SQL Rank-Join algorithm, the UDF Rank-Join algorithm, the Hash Rank-Join

algorithm and the traditional ranking algorithm were compared using the first three

data sets, and the last collection was used only to test accuracy of the top-k elements

due to its non-uniform distribution.

The experiments were focused on performance and accuracy in the collections.

First, we compared the SQL approach and the traditional SQL top-k retrieving the

top 5, with two tables involved for each collection. Then, we compared the rest of the

UDF Rank-Join implementations were compared with the traditional top-k search.

The first three plots in Figure 4.8 tested performance based on the top 5 documents

in each collection and the number of terms to be searched. The terms to search

for were obtained randomly from the common terms among the collections of the

67

a) Top-5 with 2 Terms. b) Top-5 with 3 Terms.

c) Top-5 with 4 Terms. d) Top-5 varying Terms (ENRON).

e) Top-k varying k, with 2 terms (KOS). f) Top-k varying k, with 2 terms (ENRON).

Figure 4.8: Top-k Performance.

68

Table 4.9: Traditional Top-k vs SSQL (time in ms).

KOS NIPS ENRON
Traditional Rank 212 393 1102
SQL Rank 3237 3160 3160

inverse frequency tables of the collections, and then the average time of execution of

five runs was found, discarding the smallest and largest times run. The average of

the remaining executions was then computed. The second set of tables in Figure 4.8

compared the algorithms’ performances while changing the number of terms to be

searched for in a medium-sized collection (ENRON), between 2 and 5 terms. The

fourth and fifth figures compared the performance of the three algorithms, changing

the number of top-k elements to be searched for in small and large-sized collections

(KOS and ENRON). Figures 4.9(a) and 4.9(b) show the accuracy of the final result

after pipelining the algorithm in all the collections by keeping constant the three

terms to be searched for and the top 5. The NYTIMES collection was selected for

analyzing pipelining accuracy, because it is the one that showed the least accuracy

of all the collections.

The SQL Rank Implementation performed three to fifteen times slower than

the top-k search (see Table 4.9), even though the number of operations was not so

different when compared to the other approaches. The rationale behind this is that

even though the SQL uses the Rank-Join algorithm and it is indexed by a surrogate

key, the number of queries that it sends back and forth between the DBMS and

the user application adds overhead to the final execution time. Additionally, the

overhead of using ODBC to transfer the queries does not allow this technique to

be competitive when compared against the traditional SQL top-k search. In some

69

cases, the SQL implementation performs faster than the traditional query, but the

algorithm requires a small top-k and a distribution in the data that allows that the

number of joins needed to fulfill the condition be met very quickly. On the other

hand, there is a clear advantage because we still cannot visit and evaluate all of the

entries in every list, while still working within the hard drive.

We then focused on comparing the UDF implementations and the traditional

top-k search. The first three plots in Figure 4.8, (presented in milliseconds) show

how the UDF implementations usually run faster than the traditional top-k imple-

mentation, independent of the number of terms in the collection size. In particular,

the Hash Rank-Join UDF always performs faster in the larger collection, and clearly

outperforms the other two algorithms. In Figure 4.8a, the traditional top-k query is

the slowest, followed by the UDF implementation, and finally the hash UDF imple-

mentation. When the pipelining algorithm takes place, one may how the three top-k

queries get much closer in time, because the selectivity in the list decreases. There-

fore, the number of documents to manage is much lower, and it appears in some cases

that the top-k search can outperform the UDF implementations, when the overhead

of the UDF created for loading both tables to main memory and ranking is more

costly than a traditional top-k query. The fourth image in Figure 4.8d presents ex-

periments in which the number of terms is changed in the ENRON collection. This

figure shows clearly how the number of documents (selectivity) decreases when the

number of terms is augmented, and therefore, the top-k implementations tend to

perform close to each other. We did not attempt to perform queries with more than

five conjunctive terms because the algorithm was not likely to find enough hits with

70

a random combination of five terms in the collections, and the execution of the query

containing all of these terms would have ended earlier. This was also because a user

search normally involves a small set of terms. Still, the Rank-Join implementation

performs faster than the rest of the algorithms, and in the worst case, (5 terms) it

performs in the same way as in the traditional search. When we varied the number

of top-k terms to be retrieved, we decided to run it in a small data set and a larger

data set with different selectivities to observe the performace, using the KOS data set

and the ENRON data set, respectively. Figure 4.8e shows how the Hash Rank-Join

implementation performs faster on average, than the traditional top-k search, and

normally performs faster than the list Rank-Join UDF implementation. Because of

the size of the collection and the probability that the selected query would contain

just a few documents, there is much variation in the results as compared to a larger

collection, as shown in figure 4.8f. Therefore, more stable performance times were

observed on larger collection. The Hash Rank-Join implementation clearly outper-

forms the other approaches. Also, the list Rank-Join outperforms the traditional

SQL top-k was increased approach. Once we increased the number of top-k in larger

collections, the times remained almost constant. Therefore, we observed that the

bottleneck of the problem is the pipelining of the algorithm caused by increasing the

number of tables to join, (represented in the first three plots) while we observed a

linear growth was observed in the performance as the size of the collection increases.

The last two plots explain how the pipelining approach presented here worked

effectively in the collection, comparing the traditional rank results and the UDF

71

(a) Accuracy in the Collections. (b) Accuracy varying terms (NYTIMES).

Figure 4.9: Accuracy Measures.

Rank-Join results. Figure 4.9(a) shows the evaluation of the accuracy of the algo-

rithm in each collection. From figure Figure 4.9(a), the results were higher than

80% for all the collections, and higher than 90% for two of them, which we consid-

ered to be an acceptable result for this implementation. As discussed previously,

this value must be set taking into consideration the distribution of the data. Figure

4.9(b) shows how the algorithm performed in the collection with the least accuracy:

NYTIMES. The last figure shows how the final result involving just two lists in the

Rank-Join algorithm and retrieving the top 5, has an accuracy higher than 80%,

and when the number of terms and join operators increases, the accuracy decreases.

Then, when the number of valid join conditions decreases, the accuracy increases

again. These results are explained because a higher selectivity in the query (higher

number of terms) will result in a much smaller number number of documents. In-

creasing the percentage of elements that are taken into account in each Rank-Join

operation increases the accuracy, but decreases performance. Hence, this tradeoff

must be evaluated depending on the distribution of the data in the collection and

the accuracy of the top-k results.

72

4.4.3 Conclusions

The first part of this dissertation is an implementation of an IR engine in the DBMS,

mostly in standard SQL. In particular, we takes advantage of recursive queries, SQL

optimizations and in-database extensions, such as UDFs and Stored Procedures for

document preprocessing, storing, ranking, and retrieving. This approach has not

been compared in performance to existing IR-engines since the focus of this work is

not to beat the performance of ad-hoc solutions but rather extend the functionalities

of a DBMS in order to avoid the cost-prohibitive task of exporting the data outside

of a database system. In addition, we are working on some benchmarks with non-

restrictive language implementations and RBDMS commercial modules.

This work presented an alternative SQL approach for breaking up the documents

without using preloaded tables or DBMS-specific implementations. This algorithm

is based entirely on using a recursive query with a tail recursion. Despite the larger

overhead compared to using a UDF, the main advantage of such an algorithm is

the linear scalability. Continuing with the preprocessing phase, optimizations in

the stopword removal step proved to be highly effective, and the computation of

a temporary table when we retrieved the relevant documents were for conjunctive

or disjunctive queries showed a fast retrieval mechanism for the tested collection.

Also, using static and on-demand techniques for inverse document precomputations

gives alternatives for amortizing the cost of building the weights in dynamic or static

collections. The scalability of the solution proved to be linear, and we consider that

these performance results will be similar between different DBMSs, and observed

faster results for multi-thread systems. A satisfactory performance was also observed

73

for a medium-sized digital library, and the implementation of the VSM presented here

is competitive with the other two models (OPM and DPLM).

In addition to all these experiments, we proved the feasibility of achieving a speed

up in the retrieval of the top-k hits with the proposal of a variation of the Rank Join

algorithm. We experimented with the Rank-Join approach, and compared the built-

in top-k, the newly proposed UDFs’ Rank-Join, and SQL Rank Join algorithms for

top-k retrieval in the DBMS. The scalability of the three algorithms was found to

be almost linear. It was also found that the UDFs variation always perform faster

than the Standard SQL and Traditional Built-in SQL implementations. In smaller

collections, the traditional SQL implementation performs slower than the Rank Join

SQL and the Traditional SQL takes advantage of the query optimizer and performs

faster than the UDF Rank Join. Therefore, the UDF Rank-Join improves the current

implementation of the built-in (sort-based) algorithm.

4.5 Summary of Contributions

The contributions of the research presented here are unique in the field, since this

work is one of few that attempts to perform the entire preprocessing inside the DBMS.

This goes along with new schools of thought in the data mining community that

exploit the possibility of loading the data first and then performing transformation

in an efficient manner. Also, we proved that SQL supports performing all the needed

data cleansing tasks and even allows an efficient ranking and complex retrieval of

the resulting data.

74

The result of this chapter is a complete set of data layouts, algorithms, and opti-

mizations for preprocessing unstructured data. These efficient SQL-based algorithms

encompass the building of well-known IR models and a new proposal of Top-k Rank-

Join-based algorithms for fast retrieval. This is important for the database systems

community since the proposed algorithms preserve the separation between the logi-

cal and physical level while obtaining acceptable performance. There are, however,

areas that still require further research in order to improve the performance of the

current algorithms. Part of future work in the area includes exploring blobs for

storing inverted indexes, as well as the usage of UDF functions to build IR models.

Other research directions include the exploration of extending the built-in operator

in a database system to implement one of the Rank-Join variations presented in the

current work. This work also opens the door for integrating the preprocessed unstruc-

tured data and the structured data already existing inside the relational database

system.

75

Chapter 5

Data Integration

5.1 Integration

The integration of keyword search between a database D and a set of documents C,

requires the selection of keywords that appear in both sources. This step requires

the creation of data structures that will allow efficient storage and retrieval of the

relationships that exist between both sources. In addition it is important that these

data structures can be easily analyzed and maintained.

In order to satisfy the flexible querying and efficiency requirements, the process

of extracting and querying all of the relationships is the result of an initial relation-

ship construction phase which can also be identified as a preprocessing phase. This

preprocessing phase includes the inference and storage of relationships and a poste-

rior analysis of the obtained relationships in order to generate derived relationships.

76

Finally, these data structures are used during the querying phase.

The preprocessing phase, or relationship construction, obtains all the ργ relation-

ships and derived relationships in an efficient manner. This step is only computed

once, and is required for allowing easy updates in the data structure when new doc-

uments or rows are integrated in both sources. It is desirable that all the documents

never be preprocessed (e.g. removal of stopwords and symbols, among others), and

that the algorithm extract all the keyword matches directly by analyzing each docu-

ment and performing an approximate keyword match. A final step in the relationship

construction is the computation of additional data structures used for different rank-

ing techniques (e.g. keywords weights).

The second phase presents different algorithms for querying and ranking the newly

discovered relationships. The first two proposed methods rely on the frequency of a

relationship given an approximate boolean keyword search in L. The third approach

is intended to find relevant keywords related to a document in the corpus. However,

this is not a traditional search given that the keywords related to the documents

represent the matches between the element in the DBMS and keywords in each

document. As a result, the R data structure is used as an inverse index.

5.1.1 Keyword Matching

The relationship inference can be seen as seen as a simple but costly operation defined

by querying every element of the database and every document in the collection.

However, such an approach is extremely inefficient, and will result in a large I/O

77

Input: D, C, β
01 : L← ∅, E ← ∅,R← ∅
02 : foreach k in D
03 : if(k /∈ L)
04 : L← L ∪ {< k >}
05 : foreach k in L
06 : tk ← 0,dtk ← 0
07 : foreach di in C
08 : Ak ← Φ(k, di, β)
09 : if(Ak 6= ∅)
10 : R← R ∪ {< k, di, |Ak|, |Ak|δ̄ >}
11 : tk ←tk + |Ak|
12 : dtk ←dtk + 1
13 : foreach ρ in Rk

14 : w ← w/tk|w ∈ ρ
15 : if(tk 6= 0)
16 : foreach k′ in D
17 : if(k = k′)
18 : E ← E ∪ {< k, γ >}
19 : IEFk ← IEFk + 1
20 : else
21 : L← L− k
22 : IDFk = log((N/dtk) + 1)
23 : foreach k in L
24 : IEFk ← log((|E|/IEFk) + 1)
25 : return R,E

Figure 5.1: Relationship Construction Algorithm (Preprocessing).

cost and time complexity. As a result, the purpose of the new algorithm presented

in Figure 5.1 is to reduce the number of elements to be searched and maximize the

number of relationships that can be found between the two data sources.

The maximization of the number of keywords that can be found in a document was

obtained by performing an approximate string matching instead of assuming a perfect

match scenario in which a keyword exactly matches a keyword in a document. The

78

Approximate Boyer-Moore pattern matching algorithm (ABM) described in [110,

105] was adapted to search for approximate keywords in the collection of documents

in the DBMS. In the rest of this dissertation, the ABM algorithm will be identified

as a function Φ. An approximate string matching algorithm requires defining the

maximum number of mismatches (edit distance) that a keyword can have in order

to be considered a valid approximate keyword. Hence, a β parameter is assigned

to guarantee that the number of mistakes is proportional to the size of the keyword

instead of fixing the number of mismatches for all the keywords. Moreover, the

tuning of the β parameter follows d|k|βe = δ, where δ is specified by the user to fit

better the elements to match. For example, setting β = 0.1 allows all of the keywords

of size 10 or less to have a maximum of δ = 1.

In Figure 5.1, we present an efficient approach for discovering all the relationships

between sources. The input for the algorithm is a Database D, a Corpus C and

parameter β for the ABM algorithm. In the first lines, the output sets are initialized

to the empty set. R will contain all the matches between a keyword and a document

existing in C. L will contain all the different keywords existing between the elements.

E contains all the elements of the database and is also initialized to the empty set.

The following lines of the algorithm obtain the set of all the possible keywords to

look for (without considering γ) and obtain the set of unique keywords L. Despite

this, notice that L has still some keywords that are not necessarily in C. The most

important loop is the one that iterates through the whole unique set of keywords to

search, and finds all the approximate keywords that exist in the corpus of documents.

Moreover, additional data structures required for computing the uniqueness of a

79

keyword in both sources can be computed. In line 11, the tk temporary variable stores

the cumulative value of the number of approximate matches that link a document to

a keyword. This value is later used for weighting the frequency of the document for

every relationship. In lines 16-19, each existing keyword is matched with any existing

element in the database. Also, this iteration is used to compute the IEF in a single

pass for each k. This step is performed at this stage to guarantee that E occupies

the least space possible. Line 21 removes all the keywords that could not be found

in the collection of documents. Hence, L will refer only to the matching keywords

in both sources. Finally, line 25 returns the only important data structures that are

required: a set of all the entities in the database, and the existing relationships and

their weights. The last couple of lines (23 to 24) compute the final score for each

keyword representing an element in the database. This algorithm creates all of the

structures for the three ranking methods discussed here. However, the IDF and IEF

structures, as well as δ, can be removed from the algorithm if this value is not used

by the ranking method.

Derived relationships are obtained by analyzing the elements found in the database

stored in the E data set. It is important to notice that while the matches between

the keywords and the documents are contained in R, only E is important for ob-

taining the derived relationships. Also, a derived relationship does not increase the

number of keywords in L. The rationale behind this is that every element in E is

already linked to a document. As such, only E is required to extend the relation-

ships. Also, the final derived relationship implies having elements in the database

80

Algorithm 1: Relationship Construction
Input: E
01 : E ′ ← ∅
02 : foreach e in E
03 : foreach(ρ ∈ R)
03 : if(γ = row)
04 : if(< k, tableid >/∈ E
04 : ∧ < k, table id >/∈ E ′)
05 : E ′ ← E ′ ∪< k, table id >
06 : if(< k, columnid >/∈ E
06 : ∧ < k, column id >/∈ E ′)
07 : E ′ ← E ′ ∪< k, column id >
08 : if(γ = column)
09 : if(< k, tableid >/∈ E
09 : ∧ < k, table id >/∈ E ′)
10 : E ′ ← E ′ ∪< k, table id >
11 : return E ′

Figure 5.2: Derived Relationship Construction Algorithm.

that do not contain a direct approximate keyword that matches a document. Fig-

ure 5.2 describes in detail the algorithm for obtaining these new relationships. The

resulting links are stored in a different set E ′, which is initialized to the empty set

from the base relationships. The algorithm for extracting the derived relationships

iterates through all the elements in the database linked to the collection. Therefore,

in one pass (full scan) in E, it is possible to obtain all the derived relationships by

taking every pair e and promoting it to the immediate higher granularity level by the

transitive properties of the elements in the database. Verification must be performed

to avoid adding an existing relationship in E ′.

81

5.1.2 Keyword Search

Once these relationships have been found, we focus on querying these links stored in

R, E, and L. In this paper, we propose three methods for querying the set of ρ and

ρF :

• Method 1: Approximate Boolean Search ranked by γ and frequency.

• Method 2: Approximate Boolean Search ranked by γ and the average edit

distance.

• Method 3: Relationship Frequency.

The first two methods are based on querying directly the relationships (approx-

imate boolean search) and raking using γ and frequency. The third method is the

result of querying and ranking the documents in C using the inverse document index

resulting from the relationships stored in R and a given query Q.

Our first method returns all the ρ ranked by the importance of the element based

on γ, the δ between a keyword in L and a k ∈ Q, and finally by the importance of

the link between the keyword and the document, where the importance is defined

as the frequency of a keyword in each document. For example, let “student” be a

k ∈ Q. As a result, the first and second sorting criteria are obtained by analyzing

the L structure. Given that EditDistance(k,k’), where k′ ∈ L, is valid (less or equal

to a given threshold based on β) all the relationships related to k’ are returned. As

a result, all the relationships in the table name level with a δ = 0 (exact match) are

82

returned first. The last sorting criterion is based on the frequency of approximate

match found for a keyword in a document.

The second method also relies on the importance of the element in the database

and δ of the keyword to the searched element. However, we use a more complex

weighting scheme, in which the importance of a document for a given keyword will be

defined as the average of the edit distance multiplied by the frequency of approximate

keywords in each document. As a result, a document which contains more frequent

matches with a smaller average edit distance will be ranked higher.

Notice in the first two ranking methods, if a set of keywords is given, the result

includes any relation that contain any of the keywords in Q. This is due to the fact

that we are considering all the keywords to be independent from any association.

However, a more complex ranking method can be obtained by querying the docu-

ments in the collection given the existing relationships found between the two data

sources.

Querying the discovered relationships requires searching only over the newly ex-

tracted relationships. Therefore, Figure 5.3 presents an efficient way to traverse the

R and E data structures. Method 1 is a reduction of Method 2 by removing δ̄. Hence,

we focus on explaining the second querying method. The input of this algorithm is

a set of keywords Q = {k1, k2, . . .}. In the initial lines, the Result set and a partial

result container are initialized to the empty set. The first two loops represent a join

condition for extracting the valid keyword-document pairs in R that have keywords

in a valid approximate distance to a given query Q. Notice that the search can be

performed efficiently in L and then joined with the R table. This search can be

83

Input: Q,R,E
01 : Result← ∅, R′ ← ∅
02 : foreach k in R
03 : foreach k′ in Q
04 : if(EditDistance(k′, k))
05 : R′ ← R′ ∪ {< k, di, δ >}
06 : foreach< k, di, δ > in R′

07 : foreach e in E
08 : if(k = e)
09 : Result← Result∪
09 : {< ρ, δ, wk,i ¯δk,i >}
10 : Sort Result by γ, δ and wk,i ¯δk,i
11 : return Result

Figure 5.3: Method 2: Relationship Querying.

performed efficiently by joining using a hash join on kid.

All the valid keyword-document pairs are stored in a partial set. Lines 06 to

09 match the relationships with the elements residing in the DBMS. Notice that

all of these joining steps are presented in polynomial time. However, this time can

easily be trimmed down so that it is almost linear by using hashes or indexes. The

conditional statement in line 08 verifies whether there exists a relationship (or derived

relationship) between an element in the database and a given keyword. Line 10 sorts

the Result set by the granularity level, the edit distance of the keyword and the

weight of each relationship. The last step returns the sorted set.

The third proposed ranking method is based on the transitive property of the

keywords and documents pairs in R. Thus, a rank can be obtained by obtaining a

weight for each keyword and applying a ranking model to all the keywords related

to each document. In addition, the weight of each keyword is computed to be an

84

indicator of “uniqueness” in the database and the corpus. Hence, this weight of

each keyword can be understood as an inverse relation frequency (IRF). The IRF is

defined in Equation 5.1 based on the uniqueness of both keywords in the collection, in

which n̂ is the number of documents that contain k and ê is the number of elements

mapped to k. The first part of the equation is the well-known Inverse Document

Frequency (IDF). A second weight is obtained for computing the uniqueness of a

keyword in the database. Therefore, the second part of the equation represents the

Inverse Element Frequency (IEF). Notice that Equation 5.1 can be summarized as

IRF (k) = IDF (k) ∗ IEF (k).

irf(k) = log
(
n

n̂
+ 1

)
∗ log

(
|E|
ê

+ 1

)
(5.1)

The final ranking of the elements is obtained by applying a ranking function that

uses the IRF weight for each keyword. The third ranking method relies on finding

how relevant an element is between a database and the collection of documents. As

such, a document in the collection can be ranked on how related it is to a given query.

In order to do so, the common keywords associated with a document are assigned

a weight. Therefore, a document can be ranked using traditional IR techniques.

Following this approach, the computed IRF values (which contain the weight of a

keyword in both sources) are exploited and a rank is obtained by implementing the

cosine similarity formula. In addition to the precomputed IRF values, additional

summary tables for computing the normalized table values are required to speed up

the computation. For example, a table containing the norm of the document using

the IRF values should be precomputed.

85

Table 5.1: Complexity and I/O Cost of Algorithm 1.

Step Complexity I/O Cost
L O(m|Tj|) m|Tj|
Φ1 O(k̄ + βk̄) -
Φ2 O(|d̄i|βk̄(1/(k̄ − βk̄)) + βk̄) -
R O(|L|Φ1 + nΦ2) |L|n
E O(|L̂|m|Tj|) |L̂||Tj|m

5.1.3 Complexity and I/O Cost Analysis

A discussion follows of the complexity analysis of the relationship construction algo-

rithm and the first two querying methods. The processing algorithm can be divided

into two steps that need to be performed sequentially. The first step is the storage of

the unique set of keywords L from the database. The second step is the extraction

of all the ρ relationships. A breakdown of the complexity and the I/O cost of all the

steps of Figure 5.1 are described in Table 5.1. The first step is the extraction of the

unique step of keywords from the database, which is performed in the time it takes

to scan all the elements in the database. The second step is the computation of R,

which is dependent on the size of |L|, the average size of the keyword to search k̄, and

the average size of a document in the collection. Notice that this step represents the

bottleneck of the time complexity of the algorithm. The extraction of all the valid

matches between elements in D and E is dependent on the number of keywords with

matches in the documents L̂ given by ABM. In the worst case |L̂| will be equal to

|L|. Thus the total complexity is O(m|Tj|+ |L|(Φ1 + nΦ2) + |L̂|m|Tj|). Despite the

number of variables in the algorithm, the most important variable is the set of unique

keywords to search L.

86

Table 5.2: Complexity of Algorithm 2.

Step Complexity I/O Cost
R′ O(|R||Q|k̄2) |R|
Result O(|R′||E|) |R′||E|
Sort O(|Result| log |Result|) |Result|

In Table 5.2, the breakdown of the search algorithm and the I/O costs are de-

scribed. The first step consists of obtaining the valid relationships that are within a

valid edit distance from any of the given queries in the keyword. The search com-

plexity can be optimized by reducing the size of R with a preselection and then

performing the loop. The second phase of the search requires matching the elements

in the database with the keyword-document pairs. The last step requires a sort

based on the edit distance, the granularity level and the importance of di. The final

complexity of the search is O(|R||Q|k̄2 + |R′||E| + |Result| log |Result|), in which

early selection and hashes can improve these “joins”. The space complexity of the

third ranking method is of based on the number of unique keywords in L since is the

maximum space required to store the IDF and IEF computations. The time com-

plexity for computing the IRF is the result of a scan in all the keywords C and id D.

Therefore, the time complexity is is O(|D|+ |C|). The complexity of the relationship

ranking is based on the selected model that exploits the IRF weights.

5.1.4 DBMS Programming and Optimizations

A DBMS implementation requires an efficient storage and retrieval layout. A database

schema for storing the relationships is shown in Figure 5.4. The existing elements

of the DBMS E are contained in the table level, column level and row level

87

Figure 5.4: Relationship Data Layout.

tables. The format for storing each relationship type has different requirements in

order to store their location in the database. As such, a different vertical format is

stored for each type. For example, primary keys’ values are different among tables.

The element-keyword table maps all the existing elements e into a keyword. A sim-

ilar table can be created to store the derived relationships. The L set is stored in the

keyword table. The document collection is stored in the collection table. The re-

sulting keyword-document relations R are stored in the relationship table. A final

weight is assigned to each relationship based on the number of approximate matches

found between a specific keyword and the collection. In order to efficiently extract

the type of relationships, indexes must be created in the PK/FK relations. Addi-

tional indexes on keyword id kid must be included to speed up the join operations

in the retrieval.

The relationship discovery phase requires a process for querying the catalog and

finding all the elements that exist in the DBMS. A Stored Procedure that iterates

through all the tables extracts the unique set of keywords. An additional process is

required to validate whether or not this keyword is a valid element (e.g. numbers are

88

ignored). This step is necessary when traditional search engines discard stopwords or

non-representative words in the text. For further reference, see [39]. The relationship

discovery process is then performed in two queries in the DBMS. The first query takes

the keyword table and analyzes each document through a Table Valued Function

(TVF). This TVF performs as many of the computations in main memory as possible

in order to speed up the execution. Unfortunately, TVF does not allow parallel

execution in this context. Hash tables are used as backbone data structures for

computing the summarizations required in this step. The following step removes

all the keywords without any occurrence. A final query in the preprocessing step

is performed to populate the element-keyword table and each element table. This

query compares the elements in the DBMS to the list with possible matches.

The retrieval of the related relationships for the first two methods is performed

with an initial search in the keyword table to obtain the valid keywords using a

user defined function for the edit distance. The last query obtains the relationships

from a hash join based on the keyword id and orders them using the frequency of

the number of approximate keywords in each document, including the average edit

distance (in the second method). The third method requires the computation of

summary tables similar to the ones in traditional ranking techniques to compute the

IRF. In order to do so, the IDF and the IEF must be stored in the temporary tables

and the final IRF should be stored in the keyword table by performing aggregations

on R.

89

5.1.5 Experiments

Our motivation for developing this novel approach was to find a reduced set of

relationships in complex database schemes which can be stored, used, and efficiently

managed in a DBMS, instead of using the original document collection. As a result,

algorithms were developed to extract and query such relationships.

The experimental section is divided into the link extraction and the querying of

the extracted relationships tested in two real collections: a water pollution data set

and a digital library data set. The first set of experiments will focus on showing

how the approximate results vary with the β parameter. Thereafter, the rest of the

experiments in the relationship discovery phase are focused on showing the number of

elements and links that are obtained in each structure. The second set of experiments

focuses on the performance of the three querying techniques.

The experiments were conducted on a computer with an Intel Dual Core proces-

sor at 2.53 GHz. The system hardware configuration also has 8 GB of RAM and a

hard drive with 1.5 TB of space. The database management systems was a running

instance of Microsoft SQL Server on Windows XP. The application was developed

using C#, for dynamically generated SQL queries, as a thin front-end for running

queries. The relationship construction algorithm and the relationship query algo-

rithm were developed using User Defined Functions (UDFs) and Stored Procedures

(SP), as explained previously.

The algorithms were tested using two real data sets in different domains. The

first set is a real scientific database containing water pollution data from wells in the

90

Table 5.3: Texas Water Wells Data Set C and D.
Description Value Min Max

Corpus
Documents 1000 - -
Avg. k per di 217 1 250

Database
Number of Tables 32 - -
Number of Columns 214 - -
|E| 36892343 - -
|Tj| 111488 0 706223
|L| 278408 - -

state of Texas (TWWD), and a collection of public documents downloaded from the

Texas Commission on Environmental Quality (see Table 5.3). Note that the database

is of a considerable size and complexity (including several PK/FK relations and the

corpus is of medium size. The second data set of documents was created from the

ACM Digital Library. In addition, a medium-sized database was built from DBLP

to associate these data (see Table 5.4). Keywords smaller than three characters, stop

words, symbols, and numbers were ignored in both collections. In addition, subsets of

these collections {100, 250, 500, 1000} were taken to evaluate the performance when

varying the number of documents.

5.1.5.1 Relationship Discovery

The first concern when performing approximate keyword searches is related to se-

lecting a good value for β when defining a valid edit distance and the load factor

for the algorithm. Tables 5.5 and Table 5.6 shows the effect of modifying the values

of β and the ψ factor. When the multisearch algorithm is used with a small β the

91

Table 5.4: ACM DL Data Set C and D.
Description Value Min Max

Corpus
Documents 1000 - -
Avg. k per di 206 53 236

Database
Number of Tables 3 - -
Number of Columns 9 - -
|E| 462778 - -
|Tj| 469902 74498 1216779
|L| 190233 - -

expected performance of reducing the I/O cost is observed. However, as the value

of β increases the overhead of allocating and deallocating several structures and the

random access in memory increases the total time when performing such a task.

Therefore, this approach shows to be a good candidate for exact matches or small

values of β. Table 5.6, it is possible to observe a significant performance increment

with values larger than 0.20. As a result, allowing more than a single character for

approximate matches reduces significantly the performance of the algorithm. Be-

cause we are mostly interested in exact and small variation of these exact matches,

this is an acceptable value for our objective.

In Table 5.7, we observe that in these two collections the smallest value of β

in which the number of relationships appears to have an improvement in all of the

elements in the DBMS is in β = 0.20. Intuitively, this allows all the keywords with

less than five characters to have a maximum edit distance of one and any keyword

between 6 and 10 will allow a maximum edit distance of two. It is desirable to have

β as small as possible to avoid unrelated matches.

92

Table 5.5: Times for Varying Load Factor in Φ a 100 Corpus.
TWWD ACM DL

Load Varying β Varying β
0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 15 17 18 18 20 20 23 25 22 31 31 32 33 38 42 48
5 14 19 17 19 22 23 27 32 20 31 31 33 35 45 53 62

10 14 18 18 19 22 23 27 32 19 31 31 33 36 45 55 66

Table 5.6: Times for Varying β.
TWWD ACM DL

Load Varying β Varying β
N=100 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5

15 17 18 18 20 20 23 25 22 31 31 32 33 38 42 48
N = 250 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 26 35 33 38 37 38 45 51 43 61 65 67 70 84 89 102
N=500 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 39 36 64 72 79 73 94 99 80 106 119 122 129 152 178 188
N=1000 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5

1 98 125 144 145 160 145 190 199 155 216 234 242 255 303 355 376

Table 5.7: Varying β in 1K Corpus.
TWWD ACM DL

β e in t e in c e in r |R| e in t e in c e in r |R|
0.00 4 25 509738 60817 0 7 36950 61386
0.10 5 25 1623186 7093 0 7 3729 60116
0.15 5 25 1623197 7023 0 7 3752 60512
0.20 5 30 509727 62238 0 7 3376 58517
0.30 5 30 1623127 6971 0 7 3428 57530
0.40 5 30 509626 59140 0 7 3382 54873

93

The experiments on relationship discovery focus on scalability and performance

of extracting the relationships between a database and a corpus. Table 5.8 shows

the number of elements in the granularity levels. Notice that only a small subset of

elements is required to obtain the elements in a higher granularity level. However,

elements in lower levels of granularity require a larger number of documents. In

Table 5.9, the amount of relationships between a given collection and a corpus are

presented. In contrast to the behavior of the different number of elements, in this

case, the number of relationships in each level follows a linear increase with respect to

the number of documents. Table 5.10 shows an analysis of the time breakdown of the

time performance of relationship discovery algorithm. The first set of experiments

shows how the element-keyword relationship does not vary significantly once the

size of the collection increases. This is due to the fact that the increase is only

produced in the relationship table. As a result, E increases in smaller intervals.

Depending on how “descriptive” the schema is, it may happen that a few or none

of the relationships will be related to an element in the table name or column name

granularity levels. For example, in the ACM DL collection, most of the relationships

were found in the row level. In the second set of experiments, the bottleneck of the

algorithm for the TWWD and ACM DL occurs in the relationship computation. The

rationale behind this is that storing the location of the elements in the database is

a costly operation. In addition, we observed that 99% of the time for building the

E data structure is spent on obtaining the elements contained in the lowest level of

granularity. The algorithm has an acceptable performance when obtaining all of the

relationships. Despite this, the performance is highly tied to the size of L, as we

94

Table 5.8: Relationship Construction.
TWWD ACM DL

Corpus e in t e in c e in r |R| e in t e in c e in r |R|
β = 0.0

100 5 25 1623126 7394 0 6 35548 6112
250 3 27 604993 15364 0 6 35970 15657
500 4 28 509676 30517 0 7 36400 30190

1000 4 25 509738 60817 0 7 36950 61386
β = 0.20

100 5 25 1623189 6949 0 6 2078 5689
250 3 27 604970 15496 0 6 2456 14222
500 3 28 508273 30436 0 7 2927 27493

1000 5 30 509727 60736 0 7 3428 57530

Table 5.9: Relationships Found (β = 0.0).
TWWD ACM DL

Corpus ρ in t ρ in c ρ in r ρ in t ρ in c ρ in r
β = 0.0

100 39 331 128921106 0 384 3373533
250 128 814 73951624 0 973 8434298
500 265 1461 100303935 0 1949 16857213

1000 527 3057 197475582 0 3857 33702661
β = 0.20

100 39 285 129332489 0 387 28678
250 128 681 75292424 0 977 68075
500 264 1256 106447827 0 1956 138849

1000 526 2551 209477569 0 3876 296939

observed in the complexity analysis. It is worth mentioning that the preprocessing

step is only executed once for every set of documents, and is easily manageable for

adding more documents incrementally without having to recompute any previous

value.

The experiments in Table 5.11 show the number of relationships derived (to the

column level and the table level) using the transitive properties of the elements in

the DBMS. This is important because some collections may have ambiguous column

names or tables which make them difficult to match. However, the derived relation-

ships are able to find additional links to these elements by analyzing related links.

A good example is shown in the ACM DL, in which none of the relationships were

found to relate a table name element to any document. Despite this, by analyzing the

95

Table 5.10: Construction Performance (times in sec).
TWWD ACM DL

Corpus E L R Total E L R Total
β = 0.0

100 13 66 430 509 20 5 143 168
250 26 44 418 488 40 5 201 246
500 51 54 650 755 71 6 222 299

1000 101 40 657 798 138 5 242 385
β = 0.20

100 21 45 415 481 35 5 116 156
250 45 36 412 493 75 6 157 238
500 86 43 659 788 138 5 222 365

1000 173 37 659 869 275 5 221 501

final links, a set of new relationships can be exploited to rank these elements. Also,

in Table 5.11, one can appreciate that the amount of derivate relationships is only

related to the number of unique keywords in both data sets. Hence, adding new doc-

uments to the collection will not affect the size of the data structures dramatically,

as this is shown in the small increase of entries in the different sized collections.

5.1.5.2 Relationship Querying

In the second section of the experiments, We focus on querying the extracted re-

lationships during the preprocessing step. This is achieved by selecting a set of 20

random queries of author names from the keyword table for each subset of documents

and comparing the three methods. Table 5.12 and Table 5.13 show the average, the

maximum, the minimum, and the standard deviation performance times required by

each set of queries in every collection and subset of documents.

In these sets of experiments, the query times were quite efficient and similar in

all the cases for all the ranking techniques. In particular, in the first two methods,

96

Table 5.11: Derived Relationship Construction.
β = 0.0 β = 0.20

TWWD ACM DL TWWD ACM DL
Corpus c t c t c t c t

100 0 23 0 487 0 23 0 422
250 0 24 0 606 0 24 0 521
500 0 25 0 745 0 25 0 659

1000 0 27 0 897 0 27 0 814

Table 5.12: Method 1: Relationship Querying (β = 0.20, times in ms.).
TWWD ACM DL

Corpus Mean StdDev Max Min Mean StdDev Max Min
100 5282 19803 88547 16 23 12 63 16
250 8547 37851 169359 31 28 13 63 16
500 13993 62277 278578 16 35 28 125 16

1000 20741 92439 413469 16 75 80 234 16

the querying times are constant between the set of documents in the same collec-

tion. However, as expected, the times increase when the number of elements found

increases. The rationale behind this behavior is that the first query in the data set

has to verify the keywords that are at a valid edit distance. As a result, a full scan

in the keyword table is required. Once this step is performed, a join between the

relationship table and the element-keyword table on the indexed kid columns is

performed. As a result, the time for the join (hash joined) is quite efficient, and the

bottleneck of the query search becomes the early reduction of the keyword table,

which requires a full table scan. Notice that the first two methods have very simi-

lar performance times and similar standard deviation. As shown in Table 5.14, the

third method performs in similar times to the first two methods. Note too, that the

standard deviation is much smaller than in the other two methods.

97

Table 5.13: Method 2: Relationship Querying (β = 0.20, times in ms.).
TWWD ACM DL

Corpus Mean StdDev Max Min Mean StdDev Max Min
100 3602 14313 64188 16 22 9 47 16
250 5589 24594 110078 16 28 12 47 16
500 9626 42698 191031 16 41 41 203 16

1000 20809 92706 414672 31 46 35 125 16

Table 5.14: Method 3: Top-10 Relationship Querying (β = 0.20, times in ms).
TWWD ACM DL

Corpus Mean StdDev Max Min Mean StdDev Max Min
100 148 36 281 109 159 37 266 125
250 155 32 266 125 259 141 719 156
500 169 56 359 125 191 44 297 125

1000 225 79 406 141 207 51 328 125

5.2 Query Recommendation

The query recommendation analysis process presented here is the result of the ag-

gregation of the frequencies of a set of keywords (that have a positive correlation)

appearing in a subset of documents. In practice, it is not feasible to obtain the

combinations of all the keywords in a set of documents. There are often too many

keywords to have a tractable problem. Thus, in order to speed up the execution of

the process, we select the d̂ most important documents of the collection based on

an initial user query. Unfortunately, even with an abridged set of documents, the

number of keywords in the documents can still be considered too overwhelming for

efficient correlation analysis to be conducted. As a result, the top-k keywords are

also obtained from these d̂ documents and an importance metric is applied. With

these objectives, two different approaches were adopted: using the a-priori algorithm

and using an online OLAP algorithm. Since the a-priori algorithm is well known, we

will only cover how the OLAP cube algorithm was adapted to efficiently compute

recommendations.

98

5.2.1 Correlation and Metrics

The correlation will represent how related the frequency of one keyword is with

another in terms of the whole collection. An efficient one-pass method to compute

the correlation values of unique terms in the collection [89]. In addition to the

previous definitions, let L be an additional set containing the total sum of all of the

different terms in the collection (L =
∑n
i=1 xi). Moreover, let Q be a lower triangular

matrix containing the squared measures between the terms (Q =
∑n
i=1 xix

T
i). In

the last step, the correlation of a pair of terms a and b is obtained by applying

ρab = nQab−LaLb√
nQaa−L2

a

√
nQbb−L2

b

.

Once the combinations have been created and verified for having valid correla-

tions, a final analysis of the importance of the concept can be performed by summariz-

ing the occurrences of such combinations of terms in the subset of ranked documents.

Three different techniques for ranking these recommendations are proposed here: a

single match method, a distance method, and a correlation method.

The single match technique is built on performing a single scan of the data

counting all the occurrences based on the appearance of the set of terms in a docu-

ment. Therefore, the occurrence of a combination will be represented by the MIN

frequency of any of the terms in the combinations within a particular document.

A user-defined threshold is used to filter the final results. The distance match

method, also called proximity match, takes into account the position of the terms in

the document and counts the number of times a set of selected terms in the combi-

nation appear within a certain user-defined distance, δ. As a result, highly-ranked

99

recommendations will imply that the concept holds a stronger meaning due to the

proximity of the terms. The correlation method uses the correlation table to make

recommendations. In this approach, the validity of a set of keywords depends on its

correlation with the initial query. The correlation between each keyword of the user

query and each keyword of the candidate set is obtained. From these, an average

correlation is then obtained to determine if the keyword set should be recorded. The

difference between these three methods is in how the initial query is handled. For

the frequency and distance methods, the initial query is used to filter the document

collection into a more manageable size. While the same approach is used by the

correlation method, it also takes into account the correlation between the initial user

query and the keyword set candidates.

5.2.2 OLAP Cube

OLAP techniques can be used to efficiently obtain query recommendations. Figure

5.5 shows a general online algorithm for the computation of aggregations on key-

words in the vertical format. In this algorithm, the structure S is a data structure

that is used to store the combinations of keywords along with their frequency. The

main input table for this algorithm is the keyword table, which always contains a

“document id” column and a “keyword” column. The third column, v, is a column

that changes depending upon the final filtering method. With such a structure held

in main memory, we are able to produce the required combinations and values using

only one-pass of the large data set.

100

Input: level , t̂
1 : Init data structure S
2 : Init Listtf
3 : foreach<i, t̂, v>r in t̂f sorted by i
4 : if i changed
5 : Listtf ← {r.t, r.v}
6 : else
7 : C ← GetNextCombo(Listtf , level)
8 : while isCorrelated (C)
9 : if checkTolerance (v, tol)
10: SC++
11: else
12: SC ← 1
13: C ← GetNextCombo(Listtf , level)
14: end while
15: return S

Figure 5.5: One-level Online OLAP Cube Algorithm.

The validity of a set of keywords is determined by the filtering method: sin-

gle match method, distance method, or correlation method. For the single match

method, v becomes the frequency of the keyword. For multiple frequencies, the min-

imum frequency of the keywords was selected to represent the set. The distance

method bases the validity of a set of keywords on their positioning. In this case,

v represents the position of the keyword in the document. The correlation method

bases the validity on the correlation between the initial query and the sets of key-

words. The average correlation of the initial query and the candidate set is obtained

by retrieving them from the correlation tables. If multiple levels of the lattice are

desired, the online OLAP algorithm can take a bottom-up or top-down approach.

101

Collection C Total t Avg. t per d |tf |
ACM 7675 23404 57 0.5M
NYTIMES 299752 92829 226 68M
PUBMED 8200000 134317 58 479M
TWWD 1002 129470 5926 6M

Table 5.15: Collections for Query Recommendation.

5.2.3 Sampling

To further improve the efficiency of the proposed algorithm, the effect of sampling on

both performance and accuracy was explored. The first step is to obtain a smaller list

of documents, d̂, based on φ(q, tf), where φ is the ranking function based on the query

and the original set of documents. From this set, we draw τ samples, each having a

d̂ = {d1, d2, . . . , dm} with replacement from the result of φ(q, tf). The probability of

any document in d̂ of being selected in the τ samples is P (1−(1−1/m)τ). Each of the

d̂ samples of documents is then used as a source for obtaining its top-k keywords t̂ and

computing the techniques. Finally, the scores for each combination are obtained as

the average of the frequencies. Notice that the set of keywords t̂ is different between

samples. Accuracy is calculated as the percentage of total combinations of the top

k keywords that are found through the course of the iterations.

5.2.4 Experiments

The experiments were performed on an Intel Xeon E3110 server and 4 GB in RAM.

The OLAP and the A-priori algorithms were implemented in SQL and UDFs. Four

different collections were used during the experiments (see Table 5.15). The first

102

collection is a subset of the ACM Digital Library. The NYTIMES and PUBMED

were obtained from the UCI Repository. The Texas Water Well Data Set of Texas

(TWWD) was used only for analyzing the quality of the results.

Single Match Distance Match Correlation
rank combination cnt combination cnt combination corr

1 water, system 368 quality, water 246 information, tceq 0.885
2 tceq, water 368 reduction, requirements 211 information, required 0.848
3 monitoring, water 328 water, surface 170 annual, information 0.848

Table 5.16: Recommendations for Query=“Information” (ranked by frequency and
correlation).

The quality of the results was validated in TWWD with ten initial keyword

queries (air, america, dissolved, information, quality, residential, texas, treatment,

waste, and water). With these queries, the query recommendations were recorded

using the frequency, the distance, and the correlation. Table 5.16 shows the query

recommendation returned by the initial query for “information”. Of these three

approaches, the correlation method definitely returned the most accurate results.

In this case, a recommendation is considerated to be accurate if a majority of the

returned queries contains data similar to what a user might search for. The recom-

mendations from the correlation method are almost always close to what the user

initially queried while those from the other two methods are often more general.

For the single and distance methods, the quality of their recommendations heavily

depends on the initial query. An average of 25% overlap was found between these

two recommendations. The remainder of the queries are very similar to one another,

with only subtle differences.

The set of plots in Figure 5.6 present the performance results of the A-priori

103

a) Cube: i=10K,topk=5. b) A-priori: i=10K,topk=5.

c) Cube: top-5 terms (NYT). d) A-priori: top-5 terms (NYT).

Figure 5.6: Full Document Scan Performance for Levels 2 and 3.

104

a) Cube: Performance. b) A-priori: Performance.

c) Cube: Accuracy (ACM). d) A-priori: Accuracy (ACM).

Figure 5.7: Sampling Performance and Accuracy with Replacement (τ = 10).

105

and OLAP cube algorithms. Note that the execution time increases with the size

of the collection because of the time required to perform the extraction of the t̂f

subset. However, because the extraction of this subset is obtained differently in both

algorithms, the performance change may also be different. Interestingly, such a dif-

ference between the two algorithms reveals some intriguing trends. For example, the

OLAP cube algorithm performs faster on collections in which the average number of

keywords per document is large. In such situations, the A-priori algorithm is heavily

penalized because of the extra matches that the algorithm must perform. Hence, we

believe that OLAP proves to be a more stable option due to its ability to be fairly

independent of the size of the collection. Having said this, the A-priori algorithm is

still quite fast, especially when t̂f can be extracted quickly and managed in main

memory. However, the OLAP approach is favored whenever the computations are

complex.

Figures 5.6c and 5.6d demostrate the execution time with respect to an increasing

the number of documents. The results show that the online OLAP algorithm appears

to have a linear reaction. For the A-priori algorithm, when the number documents

to be analyzed is small, the performance trend is similar to n2. However, as the

number of documents analyzed increases, the algorithm becomes much more stable,

and is significantly faster than the cube approach. For the online OLAP algorithm,

performance was expected to be linear (this depends on the number of documents.)

The execution times for 10K documents become unmanageable. Hence, the effect

of sampling on both overall performance and safety was analyzed. Figure 5.7a and

Figure 5.7b present the performance results for executing τ = 10 iterations. Each

106

iteration would only analyze a small portion of the overall original data set. From

these experiments, the A-priori algorithm is slightly faster on data sets with a small

average number of keywords per document. In addition, the OLAP Cube algorithm

also appears to be more stable than the other options. However, the question arises

regarding the validity of using sampling as an approximate solution. Figures 5.7c and

5.7d show results on the number of iterations required to arrive to the final solution.

Surprisingly, only a few iterations are needed (normally less than 5) to reach high

accuracy. Hence, bootstrapping proves to be a viable alternative for reducing the

times.

5.3 Conclusions

This chapter presented a process for discovering “links” between the elements of a

central database and a collection of documents without a semantic analysis of the

keywords. To the best of our knowledge, this research is one of the few efforts to

obtain, manage, and rank links between heterogeneous sources.

These links or references are defined as relationships in the table name, column

name and record level of granularity (ργ) that exist against a keyword in a document.

In this chapter, a novel and efficient algorithm was introduced during the integration

phase that discovers approximate matches between the elements of a database and

the unstructured data. The usage of a β parameter during the approximate search

was proposed, which provides a fair policy for finding an approximate match based on

the length of the keyword. It was found that a small β, such as β = 0.20, maintains

107

a link focused on exact matches and provides flexibility for small variations of the

keyword (since the edit distance in most cases is at most one).

It was also found that that the bottleneck of the algorithm occurs when searching

for the elements in the database given a set of keywords. In addition, the paral-

lelization of the search of approximate keywords appears to be a target for future

optimizations. Also, the extraction of derivate relationships given the schema hier-

archy is presented. Moreover, three methods for searching in the newly discovered

relationships proved to be efficient and they each display different perspectives of the

extracted links.

The retrieval algorithms for integrated data perform efficiently because the search

is executed in small and indexed data structures containing the set of valid relation-

ships and summarized tables. The size of these data structures allow pushing most

of the tuples into main memory, resulting in fewer I/Os. In order to reduce the

number of I/Os, a data layout, indexing and querying strategies were proposed that

optimized retrieval times. Our third retrieval method proposes a document ranking

using a novel IRF as a weight for common keywords using traditional ranking to

retrieve the top-k documents.

In an effort to improve the retrieval and exploration capabilities of a user in

an integrated source, we showed that OLAP can greatly enhance the capability of a

traditional search by providing query recommendations. Through this dissertation, it

has been shown how the analysis of the intrinsic knowledge of keywords in a collection

of documents can be efficiently performed. Specifically, the A-priori and OLAP

Cube algorithms were used to provide query recommendations. The experimental

108

results showed that while the A-priori algorithm is slightly faster than the online

OLAP algorithm, the latter appears to be more stable in its times. Furthermore, the

experiments also show that even with a few iterations, sampling was able to obtain

fairly high accuracies. As a result, the experimental results proved that obtaining a

few samples with replacement of large collection can achieve a high accuracy. Three

main approaches to determining the validity of a set of keywords were created: single,

distance, and correlation. The single match method was found to be the fastest of

the three methods while the correlation method produces better quality results.

5.4 Summary of Contributions

The proposed algorithms for integrating structured and unstructured data through

SQL queries and user-defined functions extend the functionalities of a DBMS, since

these algorithms allows performing tasks that are generated outside the DBMS. In

addition, the proposed “linking” algorithm discovers relationships that do not need

an integration model or rules to work. As such, the matching algorithm is an unsu-

pervised method for integrating data that only requires setting the approximation

parameter β. In addition, the complexity of the algorithm is only based on the num-

ber of unique keywords to match and the number of documents in the collection.

In a complementary manner, retrieval algorithms for exploring the discovered

links are also introduced. The first two algorithms provide a boolean retrieval of the

discovered links, which rank the results based on their edit distance to the queried

result. A third novel method was proposed that retrieved the results ranked based

109

on the vector space model adapted for exploring links.

Finally, we contributed novel algorithms for query recommendation using OLAP

cubes and the A-priori algorithm. This proposal is novel because it explores al-

gorithms that have never been used in this context and provide an enhanced data

exploration. The recommendations were obtained by computing one-pass sufficient

statistics on a text data set and determining the top results using an OLAP or A-

priori like algorithm. The results are the most frequent combinations of keywords

that are close to the original query. These results proved that these computations

that seem unlikely in database management can be quite efficient by pushing the

data structures in main memory, and also can be performed in a sample of the text

corpora with similar results.

Future work in this research includes exploring a parallel implementation of the

proposed algorithms (only L is needed first), which can speed up the execution of

both tasks (preprocessing and retrieval). The optimization for approximate string

matching with multiple keywords appears as an interesting area of research, as well.

Also, experiments to measure precision and recall of our proposed searching strate-

gies remains as future work. Moreover, the combination of more complex weighting

techniques is an open problem for future research. Additional work includes com-

paring our system to other query recommender systems and trying different policies

for finding the occurrences of the set of keywords. Similarly, exploring the effect of

injecting knowledge to such query exploration is something that should be explored

in more depth. As a result, we decided to experiment with injecting and generating

ontologies for OLAP cubes based on heuristics and known taxonomies.

110

Chapter 6

Knowledge Discovery

This chapter explores preprocessed and integrated sources for extracting non-trivial

knowledge from unstructured sources contained inside a database management sys-

tem. This type of knowledge discovery has always been performed outside of a

DBMS, especially, Ontologies and Source Code analysis, which are the focus of this

chapter. Moreover, work we developed in the previous chapter is expanded upon

in order to extend OLAP algorithms for extracting ontologies from text corpora,

as well as for generating OLAP cubes from a given ontology. The final section of

this chapter finds references between source code and the schema of a database as a

particular case of document integration.

111

6.1 Extracting Knowledge as Ontologies

This section presents Ontocube, a new algorithm inspired by the query recommen-

dation algorithm presented here, used to extract ontologies from text corpora. Un-

like traditional techniques which use some preexisting knowledge or clustering, this

efficient algorithm takes advantage of data summarization techniques for finding on-

tologies by applying a few heuristics based on newly introduced measurements.

6.1.1 Ontocube

While normal applications of OLAP include business reports and financial analysis

[19], we believe that the OLAP dimensional lattice can be used to efficiently obtain

classes and their relationships. In this case, the data is represented by the collection

of keywords and documents, while the level of aggregation allows one to obtain

various combinations of these keywords to generate concepts.

Traditional OLAP accepts inputs that are horizontal. However, in the proposed

system, vtf has a vertical format, with each row containing a single keyword. This

presents a challenge to aggregations because the usual techniques, such as slicing,

cannot be used with the vertical format. Despite this, only a small subset is analyzed

(the most frequent keywords), t̂, of all keywords in the collection. As a result, an

algorithm was developed that can obtain the necessary aggregations and perform the

required auxiliary computations with the associated keyword frequency (correlations

and lift) directly from the vertical format. The correlation will represent how related

the frequency of one keyword is with another keywords of the whole collection. In

112

addition to the previous definitions, let L be an additional set containing the total

sum of all the different keywords in the collection (L =
∑n
i=1 xi). Moreover, let Q

be a lower triangular matrix containing the squared measures between the keywords

Q =
∑n
i=1 xix

T
i . In the last step, the correlation of a pair of keywords a and b is

obtained by computing equation ρab = nQab−LaLb√
nQaa−L2

a

√
nQbb−L2

b

. An additional measure

to evaluate the relationship between a pair of keywords is obtained through lift, λ.

λ represents how often these two keywords appear in the collection. This value is

computed as λ =
na,b

Max(na,nb)
, where na and nb are the number of documents containing

keywords a and b, respectively.

6.1.1.1 Ontocube Algorithm

In this section, the ontology extraction process and every optimization performed to

obtain classes and build the ontology is explained.

A one-time preprocessing step is required for setting the environment for ob-

taining the frequency of the keywords. The data set was preprocessed by removing

the stopwords and assigning a position for every keyword in every document. The

proposed process for extracting concepts is the result of analyzing the most fre-

quent keywords and generating combinations with these keywords. The frequencies

of these combinations are also computed, as well as the correlation and lift of these

pairs of keywords. The classes are obtained from the combinations by answering

these questions:

• Do the keywords appear in the same documents frequently?

113

• Are the sets of keywords close to each other?

• How often do keywords appear together within the corpus?

• How often is one keyword found in a document but not the other?

The first question addresses the problem of finding keywords that appear in the

same documents. In addition to this, one must know if they appear in the same

proportion within the collection. As such, the correlation of each combination is

computed. The second question, deals with finding how close the keywords appear

to each other. This distance between keywords is obtained as the difference between

the positions of the keywords. The last two questions attempt to identify those

sets of keywords that commonly appear together throughout the collection, or those

that do not. The rationale behind this is that the core concepts appear consistently

together throughout the collection. On the other hand, there are concepts that may

appear strong when present together, but are often found in separate areas. Both of

these questions can be answered by observing the lift of the concept.

Efficient summarization is performed in one-pass by creating the keyword com-

binations “on-the-fly” during the OLAP cube aggregation. The final result of this

step is a set of classes from which the ontology will be extracted. The algorithm for

obtaining such classes is as follows:

• obtain all available classes by pairing all of keywords within each document,

• for each class, determine the frequency of occurrence and average position gap

within the corpus,

114

Input: level , t̂
Set of Classes S
Init Listtf
foreach<i, t̂, p> r in vtf sorted by i

if i changed
C ← GetNextCombo(Listtf , level)
DoWhile (C!=null)
SC .freq++
SC .pos+=r.p
C ← GetNextCombo(Listtf , level)

endwhile
else
Listtf ← {r.t, r.p}

endif
endforeach
return S

Figure 6.1: Ontocube.

• filter out all classes whose keywords have a position gap greater than a user-

defined threshold, pDiff , and

• filter out all classes whose frequency, correlation, or lift does not meet user-

defined thresholds.

The pseudocode for the first two steps is shown in Figure 6.1. The remaining two

steps can be accomplished by traversing S and removing those classes that do not

meet the user-defined thresholds. We are only interested in the classes formed by

keywords within a specific document. As a result, it was found to be easiest to first

gather all the keywords within a document into Listvtf before processing them once

the document id, i, had changed. Notice that this algorithm would not generate the

combinations of keywords that are not present in the data set.

115

An efficient one-pass method was adopted to compute the correlation values of

unique keywords in the collection similar to the one presented in [19, 37]. The

correlation and lift values are computed with the resulting aggregations from the

summarization step. As a result, the vtf table is not scanned again to compute both

values. Instead, only a summarization table was used. The lift values for each set

of keywords are computed from a separate aggregation step wherein the number of

documents that each keyword appears in is stored.

The ontology is built from the pool of classes generated from the previous step.

Links are then built between the individual classes. Initially, each class is paired with

of the other classes within the pool. Let each set of two classes be a relationship. For

each of these relationships, the correlation and lift of each set of two keywords was

extracted. For example, suppose the relationship {A,B}, {C,D}. It is then needed

to obtain the correlation and lift for the following set of keywords: (A,C), (A,D),

(B,C), (B,D). These values would show how closely related these two classes are to

one another. A high correlation and a high lift from any one of these four subsets

would confirm that this is a valid relationship. On the other hand, if these four

subsets do not show a high connection, this relationship would be discarded.

Upon completion of this process, a set of valid relationships is obtained, each

formed from two classes. The final step is identification of relationships of the form

“has a”, which define a hierarchy. In other words, we are only concerned with parent-

child relationships to build a vertical ontology. The parent is determined with a

heuristic based on the frequency of appearance of these classes. We considered a

class (A) to be the parent of another class (B) in a relationship if the following

116

criteria is satisfied:

• Number of documents containing A - Number of documents containing B <

10% of total documents,

• Number of classes containing keywords in class A > Number of classes con-

taining keywords in class B.

As a result, if class A passes both criteria, then we consider it to be a parent of class

B.

6.1.1.2 Experiments

Our experiments were run on an Intel Xeon E3110 server at 3.00 GHz with a 750

GB in hard drive and 4 GB of RAM. The server was running an instance of SQL

SERVER 2005. The OLAP algorithm was implemented entirely with SQL. We tested

our approach with a real data set comprised of a corpus of sports articles centered

around the Boston Celtics basketball team. There are a total of 50 documents based

on game recaps with a total of nearly 15K individual keywords.

Table 6.1 displays the total number of classes that are found when the shown

thresholds are applied. These are the classes that form the pool from which the

ontologies are later extracted. It is important to note that the total number of

possible classes is 786382. Thus, even with minimal thresholds, we are still able

to filter more than 99% of the possible classes. It may also be observed that most

influential threshold on the number of classes is lift. An important property observed

117

Table 6.1: Number of Classes Varying corr, lift, and freq.
Corr Freq Lift No. t Corr Freq Lift No. t

0.6 10 0.0 3765 0.8 10 0.0 2383
0.6 10 0.5 146 0.8 10 0.5 48
0.6 20 0.0 1122 0.8 20 0.0 529
0.6 20 0.5 83 0.8 20 0.5 22
0.6 40 0.0 229 0.8 40 0.0 91
0.6 40 0.5 42 0.8 40 0.5 5

Table 6.2: Sample Ontology Result.
Parent Child Parent Child
Boston Celtics Rajon Rondo Box Score Ray Allen
Boston Celtics Ray Allen Box Score Kevin Garnett
Boston Celtics Doc Rivers Key Moment Ray Allen
Boston Celtics Kevin Garnett Key Moment Rajon Rondo
Box Score Rajon Rondo Key Score Kevin Garnett

during the experiments is that the larger the collection of documents, the fewer

the number of incorrect classes is obtained. The rationale behind this is that true

concepts tend to be more consistent throughout the collection.

Once the appropriate classes have been filtered, the next step in the algorithm

is to extract meaningful ontologies from this set of classes. Table 6.2 shows several

examples of meaningful ontologies that were extracted. We were able to extract

several key players from the Celtics team and also apply the correct parent-child

relationship. Rondo, Allen, and Garnett are all players, while Rivers is the coach of

the Celtics. The link of Box Score to the actual players makes perfect sense, since

each player would have their own set of scores. The last three relationships are the

118

Table 6.3: Accuracy of Results
Parent No. Ch. Acc. (%) Parent No. Ch. Acc. (%)
Boston Celtics 19 89 Key Moment 11 91
Box Line 11 82 Key Score 12 83
Box Score 12 75 Paul Pierce 6 50
Doc Rivers 3 0 Points Rebounds 9 88
Game Celtics 17 100 Rajon Rondo 6 50
Glen Davis 1 100 Ray Allen 4 50
Kevin Garnett 3 33 Score Line 12 83
Key Box 11 0 Score Points 7 43
Key Line 11 0
Overall 155 67

most interesting because they provide us with descriptive keywords. From them, one

can surmise that the writers of these documents consider both Allen and Rondo to

be vital in Key Moments while Garnett is a Key Scorer. Additional verification of

these discoveries was conducted and they were found to be true.

It is also important to look at how many erroneous links are formed. To showcase

this, the accuracy of our resulting ontologies was examinated. In this case, accuracy

represents whether a certain link makes sense or not. For example, Boston Celtics→

Rajon Rondo is correct because Rondo is a player on the Celtics. Had the relationship

been reversed, then this would be considered incorrect. The final tally of the accuracy

is shown in Table 6.3. Parents that are players consistently had lower accuracies than

parents that represented items or stats. This can be explained by the fact that the

documents we obtained were all game recap articles. As such, those articles contain

a wide variety of players and teams, but are quite consistent in reporting the scores

and stats of each game. The classes Key Box and Key Line obtained 0% accuracy

119

Figure 6.2: Ontology Generation Varying Number of Keywords.

because these classes themselves do not represent viable sets. We believe that with

a larger and more varied pool of documents, the accuracies would improve.

Performance is a key factor in determining the usefulness of an algorithm. Thus,

two performance indicators are provided. First, Figure 6.2 shows the general trend

for both the preprocessing steps and the summarization/ontology extraction steps

as the number of initial keywords is varied. One can observe that the trend is linear

with respect to the number of keywords. This is to be expected since mostly self-joins

and table scans are being used, so the number of keywords should not exponentially

120

Table 6.4: Breakdown of Computation Time (in secs).
Step T ime Percentage
PreProcessing 11.0 40
Corr and Lift 2.3 8
Pairing keywords 11.9 44
Ontology 2.3 8

affect the execution time.

A breakdown of the times for executing our algorithm with an initial keyword size

of 15K is shown in Table 6.4. The most heavily-weighted steps are the preprocessing

step and the validating pairs step. These two steps were expected to be the most

costly because of the self-join that is present in both steps. The preprocessing step

includes the NLQ calculation for pairs of keywords, while the other step involves the

actual pairing of the keywords to produce the classes.

6.1.2 CUBO

CUBO is an array of data cubes that contain only the existing dimensions within

the fact table F given Q. However, the notion of CUBO is based on the premise that

a set of documents does not contain all the dimensions in every document. Thus,

only a set of “on-demand” computations of the dimensions are required for every

document. Moreover, our algorithm takes advantage of this property when comput-

ing the aggregation on superior levels in the hierarchy. In other words, CUBO has

a lazy policy that waits to perform the computations until it is absolutely neces-

sary. Furthermore, the algorithm avoids redundant computations by focusing only

121

on storing those dimensions that contain attributes to aggregate. If the entire data

cube is desired, a post-processing phase can be executed to compute all the missing

combinations.

The algorithm for obtaining the CUBO given an ontology O, fact table F , di-

mensions Q, and a maximum ontology depth T is shown in Figure 6.3. The result is

temporarily stored in R that contains a level, combination of classes (combo) and the

aggregation measurements. Furthermore, the entire computation of all of the data

cubes is computed through a single scan over the filtered data set. CUBO is com-

posed of three major steps: load ontology, computation of on-demand combinations

and the data cube aggregation. The final step of our algorithm stores the resulting

data cubes into a relational table. Example 2: Given an ontology with the following

characteristics h = 3, k3 = 2, k2 = 1, and given that all the dimensions share parent

H(1,1), the resulting CUBO is {{{D1, D2}, {D1}, {D2}}, {{H(1,1)}}, {{H0}}}.

6.1.2.1 Ontology Loading

Loading the ontology in main memory is the initial step for the algorithm presented

here. The format of the ontology is language-specific (OWL is used in this case).

However, this algorithm builds a balanced internal tree-like representation of the

given ontology stored as a set of linked lists (every node has a parent pointer). This

in-memory loading is important for avoiding joins with dimension tables and allows

a fast hierarchy traversal. Due to the fact that we are only interested in capturing

class and relationships, all of the properties and types of relationships are ignored

122

Input: O,F ,Q,T ,{A1, . . .}
Output: R

1 R ← ∅;
2 O ← LoadOntologyFromOWL();

3 F̂ ← {ti|ti ∈ F ∧ ∃Dj s.t.Dj ∈ ti ∧Dj ∈ Q} ;
4 t ← ∅;
5 while row in F̂ do
6 if document changed then
7 R ← R ∪ BuildCube(t,O,T,R,{A1, . . .});
8 end
9 t ← t ∪ {Dj}; /* Dj ∈ row. */

10 end
11 BuildCube(t,O,T,R,{A1, . . .});/* Adds last doc. */

Figure 6.3: CUBO

during this process. Ontologies that are equivalent to flat or balanced hierarchies

are easy to capture and traverse. By counting the number of parents, it is possible

to know the level. However, an unbalanced ontology must be captured in a tree

representation that preserves the level for each node in the tree. Otherwise, the

algorithm will return incorrect results by pairing dimensions that are not within the

same level. In order to avoid this problem, dummy nodes must be included in the

tree data structure, and must be ignored during the combination computation and

aggregation. For example, if a dimension D1 does not have a parent in the immediate

superior level h − 2, in which dimension D2 has parent H(h−2,1), a dummy parent

node must be added for D1 in order to allow the algorithm to traverse the tree all

the way to the root. As a result, if the user desires to support unbalanced ontologies,

the given ontology should have a way to provide a property that specifies the level of

a dimension in the tree. In this algorithm, hierarchies with multiple parents are not

covered, but it is possible to extend the algorithm to handle such cases. Extensions

123

to the algorithm also include adding a new indirection level in the h− 1 level of the

R structure to manage the summarization of instances.

6.1.2.2 On-demand Combinations

The lazy-policy of only working with those combinations that are present in the data

set is critical for efficient performance in a space data set. Once the ontology has

been loaded into main memory, the fact table F is filtered to only focus on those

dimensions that are in Q. A single scan through the data set is performed to read

all the entries containing a document ti and a dimension Dj. In order to process

a document ti, all the dimensions must be collected before proceeding. With all

the dimensions of a document collected, the algorithm computes the combinations

possible with this set of dimensions and stores them in a list for accumulating all

of the desired measurements. The incoming attributes are always sorted in order

to guarantee that the combination will be unique when storing the resulting com-

bination in R. The sorting, as well as the combination computations, are relatively

inexpensive operations due to the limited amount of dimensions to consider per doc-

ument. However, if the data set is dense, these tasks will represent the bottleneck of

the algorithm.

6.1.2.3 Data Cube Aggregation

The data cube aggregation will cover storing every combination in the corresponding

data cube (level) and traversing the loaded hierarchy all the way to the root H0.

124

This function is covered in the BuildCube function shown in Figure 6.4.

Input: t,O,T ,R,{A1, . . .}
Output: R

1 sh ← Combos();
/* Aggregate all the existing combos of the h-1 level. */

2 foreach combo do
3 R ← R ∪ {1, combo, {A1, . . .}};
4 end
/* Recursive function to extract all unique concepts by level h-2

to 0. */

5 s0,...,h−2 ← CombosForOntologyLevel(s,O,T);
/* Increments found combos by level. */

6 foreach l in s0,...,h−2 do
7 foreach combo in sl do
8 R ← R ∪ {l, combo, {A1, . . .}};
9 end

10 end
11 return R;

Figure 6.4: BuildCube

The BuildCube algorithm takes the result of the on-demand combinations of each

document and stores the result in main memory. Then, it traverses the ontology tree

for every dimension Dj in ti. The corresponding combinations are accumulated in

R, in which if a corresponding combo does not exist, a new entry will be created.

Otherwise, the corresponding measurements are aggregated. For each Dj that exists

in each document, all of the superior H are extracted, and their combinations are

computed and stored in s0,...,h−2. Finally, the corresponding value is accumulated for

each existing combination in every level. The CombosForOntologyLevel function is

a recursive function that will stop after a certain number of levels T has been reached,

or the parent is null. Due to the fact that balanced trees are always considered, it

is possible to perform this operation in a simple manner. Support for dummy nodes

125

should be considered in this section of the algorithm. Once the resulting data cube

R is computed, R can be stored as relational tables inside a database management

system.

6.1.2.4 Complexity

The complexity of the algorithm is given by the time it takes to compute all the com-

binations of the dimensions for each document n2k. Moreover, because the ontology

representation is always the result of balanced hierarchies (remember the introduc-

tion of dummy nodes), the time it takes to traverse an entire branch of the tree

for each dimension requires h steps. Thus, the total complexity of the algorithm is

O(n2kh). Despite the time complexity of the algorithm being larger than the tra-

ditional data cube computation that has a complexity of hn2k (because there is a

need to compute a data cube for every level), in practice, the average size of k per

document is small (around 1 or 2) and h is almost always small (less than 5). This

results in a faster performance because there is no need to concentrate on computing

dimensions that are not within the data set.

The space complexity of the algorithm is limited only by the number of dimensions

per level in h. If the data set is dense, the space required by the algorithm is given

by
∑h
l=0 2kl , where kl is the number of dimensions per level. Therefore, in the worst

case scenario, the space complexity of the algorithm is of the order O(2k).

126

6.1.2.5 Integration with a DBMS

The fact table F and the filtered table are assumed to be cluster indexed by i. This

is an important assumption for guaranteeing that all the dimensions of a document

are contiguous in one block. Extending a relational database management system

to support the algorithm requires injecting the algorithm as a routine programmed

in a procedural language (e.g. C or C#). In order to do so, database extensibility

mechanisms (e.g stored procedures or table-valued functions) can be used to achieve

this goal. The main advantage of using an extensibility mechanism is that it is

possible to maintain the ontology, as well as the CUBO structure, in main memory.

Database extensibility mechanisms provide a framework to hold data structures in

main memory while scanning a data set in a cursor fashion. Unlike other types of

user-defined functions, such as user-defined aggregates (UDAs), a stored procedure or

table-valued function that requires processing every row will not offer the parallelism

that is native to UDAs by default. Figure 6.5 shows a stored procedure call to execute

the CUBO algorithm in a DBMS.

EXEC CUBO ’D:\ontology.owl’, ’dataset’,’D1,D2,D3’

Figure 6.5: Stored Procedure SQL Call.

The extensibility mechanism contains a SELECT statement that filters the fact

table F using a WHERE/IN clause to consider only those dimensions in Q. This

will be the only pass through the data set. Notice that this query is represented as

two steps in the algorithm. The backbone data structure R that contains all of the

aggregated attributes A1, . . . , Ae for all the levels in the hierarchy is an array list of

127

hash tables, wherein each hash table contains a data cube.

Unfortunately, there are limitations associated with every relational database

management system (which limits the portability of a stored procedure or user-

defined function implementation). For example, the amount of data that can be

maintained in main memory at one time, the ability to access and read external files

(used to load the ontology), or the possibility of creating and storing the resulting

data in a relational table are some limitations.

6.1.2.6 Experiments

To verify that the algorithm presented here performs better than a traditional ap-

proach, as well as to scale to large datasets and dimensions, the algorithm was tested

on two databases. The experiments were run on an Intel Xeon E3110 server at 3.00

GHz with a 750 GB in hard drive and 4 GB of RAM. The server was running an

instance of SQL SERVER 2005. The application was developed entirely as a stored

procedure in C#, as part of an extensibility mechanism from SQL SERVER 2005.

The databases used for testing the application included an ontology in OWL for-

mat and a real and a synthetic data set stored in a relational table F . The synthetic

data set is a materialized view from the TPCH data set. The view is the result of

Lineitem ./ Part, wherein each row represents a dimension in a document (in fact,

a document can be seen as a transaction). The real data set is the dbpedia project,

which contains 3 million abstracts with 308 dimensions extracted from the Wikipedia

project. Every Dj in this project represents a classification topic for each document

128

Table 6.5: TPCH Corpora.

n Avg k Max k Min k Total k
1K 1 3 1 1038

10K 1 3 1 6589
100K 1 5 1 9702

1M 1 5 1 9702
10M 1 5 1 9702

in dbpedia. Furthermore, A1 was assigned to be one for all the Dj as our purpose

is to count the number of documents per topic. This data set was preprocessed and

stored in a relational table F . The preprocessing phase required almost two days to

extract the classes existing in the original abstracts. Both databases were given an

OWL ontology of 2MB and 1MB in size, respectively. Both ontologies had a depth

of 3 levels. A full description of the databases is given in Table 6.5 and Table 6.6.

All of the performance experiments were repeated five times and the results were

averaged after removing the upper and lower quantities. The dimensions in Q were

obtained randomly for every run from the pool of all possible classes in the h − 1

level of the ontology. In addition, the default databases for testing the algorithms

were the original 3M dbpedia data set and the 10M TPCH data set. All of the times

are in seconds unless otherwise specified.

Initially, we focused on studying the performance of our algorithm as compared to

the traditional cube implementation from SQL SERVER 2005. In order to perform

this experiment, the vertical dbpedia data set F had to be modified to have the

classes as column names and the documents as rows. Hence, the experiments were

set to use this horizontal layout for the traditional cube operator and the vertical

129

Table 6.6: dbpedia Corpora.

n Avg k Max k Min k Total k
1K 2 9 1 156

10K 2 14 1 231
100K 2 16 1 263

1M 2 26 1 302
10M 2 46 1 308

Table 6.7: Performance of Traditional Cube and CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

layout was used for CUBO. In addition, the traditional cube was only performed

in the lowest hierarchical level due to the lack of native support for hierarchies.

Obtaining a similar result with the cube (or SQL queries) would require loading the

ontology in a star schema that should be known upfront, and then running the cube

operator several times for every level. The results, presented in Table 6.7, show

that our algorithm performs an order of magnitude better than the traditional data

cube operator in only the lowest level of the hierarchy (level h − 1). Moreover, the

traditional data cube operator cannot scale to a larger number of dimensions to

compute. This is due to the fact that the traditional data cube is also computing

those dimensions that have zeroes. This experiment was not performed in the TPCH

data set because this data set exceeds the maximum number of dimensions allowed

130

Figure 6.6: Varying Corpus Size.

in a relational table.

Figure 6.6 presents scalability experiments by varying the size of the corpus in the

synthetic and real databases. The size of Q was fixed to ten, and the corpora included

a range of collections from 1K to 10M of documents. The experiments showed

that CUBO scales linearly based on the number of documents in the collection.

However, the speed of the increase is related to the average number of dimensions

per document. Therefore, a data set with a smaller average number of dimensions

per document will be processed faster than one with a larger average of dimensions.

131

Figure 6.7: Varying Number of Dimensions.

Additional scalability experiments for the algorithm include modifying the num-

ber of dimensions in Q. Figure 6.7 shows the results for the TPCH and dbpedia

databases. The results perform as expected in the complexity analysis discussed

in subsection 6.1.2.4. The plot shows an exponential increase related to the aver-

age number of dimensions per document. Hence, dbpedia has a larger exponential

growth than the TPCH data set. This is due to the larger average number of sparse

dimensions per document in dbpedia than TPCH. A lower number of average dimen-

sions per document results in the avoidance of computing large combinations and a

decrease in the exponential growth (shown in the TPCH data set). The inflection

point of the function is the result of the selectivity of dimensions in the corpora;

132

Figure 6.8: CUBO Size when Varying Number of Dimensions.

hence, this point depends on each data set.

Experiments showing the space complexity of the algorithm were also run. Figure

6.8 presents the results of this experiment for both collections. Notice that the axes

have different scales due to the sparsity of the databases (TPCH is more sparse).

The dbpedia data set shows a clear exponential growth of the data structure size.

In a similar manner, TPCH has a similar growth that is almost undetectable due to

the sparsity of the data set. It was also found that the maximum k that could be

computed was around 100 dimensions and an ontology input file of around 2 MB.

However, this limitation is DBMS-specific.

133

Table 6.8: Varying Ontology Levels in dbpedia (time in seconds).

n ALL MAX 2 MAX 1
1K 2 2 1

10K 2 3 1
100K 2 3 1

1M 7 6 5
10M 36 28 25

Table 6.9: Varying Ontology Levels in TPCH (time in seconds).

n ALL MAX 2 MAX 1
1K 2 2 2

10K 2 2 2
100K 2 2 2

1M 3 2 2
10M 7 7 7

Further experimental analysis of complexity of the algorithm is shown in Tables

6.8 and 6.9. These tables show the performance results of modifying the number

of levels that are taken into consideration from both ontologies and databases. The

results showed that in both databases, the overall impact of modifying the level in

the hierarchy is minimal when the average k is small in all of the text collections.

However, there is an almost linear increase for the real data set in the largest of the

collections. It is then possible to observe that the experimental results support the

theoretical upper bound of O(n2kh), in which there is an exponential growth. Due

to the lazy policy of only computing those dimensions that are present, in practice,

the complexity of the algorithm is followed by an almost constant performance (e.g.

there are no combinations involving all the k dimensions).

134

Table 6.10: Profiling dbpedia (time in seconds).

Task Time Percentage
Load Ontology 0.017 0%
On-demand Combinations 0.030 1%
Data Cube Aggregation 0.061 1%
I/O 5.891 98%
Total 6.000 100%

Table 6.11: Profiling TPCH (time in seconds).

Task Time Percentage
Load Ontology 0.068 1%
On-demand Combinations 0.001 0%
Data Cube Aggregation 0.010 0%
I/O 6.921 99%
Total 7.000 100%

Finally, a profiling analysis of the algorithm in both databases is shown in Tables

6.10 and 6.11. The experiments are consistent regardless of the data set and show

that obtaining the combinations is the least costly step, along with storing the results

in the hash table. However, reading and building the ontology in main memory takes

longer than building the actual CUBO. As expected, the majority of the processing

is spent in access to secondary storage.

135

6.2 Integration and Querying of

Programs and Schemas

QDPC is a system that allows joint keyword searches and complex analysis of the

resulting matches to be performed. As a result, QDPC is composed of an integration

phase and an extraction phase. The system presented here exploits a relational

database as a backbone for efficient extraction and retrieval of matches. In other

words, the entire process of managing both sources is performed within the DBMS.

Therefore, both modules rely on optimizations that exploit either SQL or UDFs,

depending on the required task. In Figure 6.9, we exemplify the relationships between

all the elements of S and P . Table 6.12 shows in detail several matches present in

Figure 6.9.

Table 6.12: Example of Matches between S and P in the Context of Water Quality.
name in S parent in S type in S keyword in P distance type in P loc. in file file
Pollutant null table name Pollutant 0 metadata filename Pollutant.java
Pollutant null table name Pollutant 0 SQL SELECT * FROM Pollutant Pollutant.java
ptype Pollutant column name ntype 1 var String ntype = ”” Pollutant.java

Figure 6.9: Matches between a Program P and a Schema S.

136

Figure 6.10: Resulting Graph.

QDPC also takes a query Q which is composed of a set of keywords Q = {k1, k2, . . .}

in order to perform a uniform search in both sources. The searches are performed

over a set of approximate matches between P and S mapped to a keyword. An

approximate match of a keyword k is obtained based on an edit distance function

edit(k,k’), where the edit distance represents the minimum number of insertions,

deletions, or substitutions required to turn k into k′. Therefore, we consider an

approximate match if and only if edit(k, k′) ≤ dβ ∗ |k|e, where β is a real number

in the interval [0,1]. Intuitively, the value for β cannot be larger than 0.5 because

it will accept many unrelated keywords as valid approximations. In the particular

case in which exact matches are the only ones desired, the value of β equals zero.

The value of β should be tuned based on the programming style in the source code

problem. Because exact matches are clearly the more important ones, a small value

of β is normally desired (e.g. between 0.10 to 0.20). A match is represented as a pair

of the form (k, v). Finally, the result of a query Q is all the graphs, G, containing

all elements (e.g. tables, columns, class, methods, variables, SQL queries) that are

required to satisfy all the approximate matches between P and S.

For example, as shown in Figure 6.10, let S1 have two tables T1(a11, a12, a13) and

137

T2(a21, a22), where there T1(a12)→ T2(a21); and P1 has a single class:

Given that T2 7→ k1 and a12 7→ k2, and edit(k1, v1) ≤ dβ∗|k1|e and edit(k2, v2) ≤

dβ ∗ |k2|e, then (k1, v1) and (k2, v2) represent a match between S1 and P1. If a

query is given involving keywords k1 and k2, then the resulting graph is G1 =

{T2, T1, a12, v1, v2}.

public class v1

{

int v2;

int v3;

}

6.2.0.7 Integration

The integration is a refinement of an earlier idea presented in [40] for managing

structured and unstructured sources. However, the analysis was limited to simple

queries. The integration phase can be summarized as:

• Preprocessing

1. Analyze source code files to extract all v.

2. Extract control dependencies.

• Integration.

1. Obtain unique keywords.

138

2. Search for approximate matches in the preprocessed source code.

3. Apply indexes to the resulting tables.

The notion of achieving the integration relies on a two-step process. The first step

preprocesses all the source code files to extract all the metadata, class names, method

names, and variables, as well as the calls that exist between them. This will generate

three tables: a source code table (P document) which contains an identifier for each

v ∈ P and the location in the file, P mcall (caller method, method) which has the

control dependencies between methods, and P ccall (caller method, method) which

has the control dependencies between classes. Notice that the P prefix indicates

that a table contains information regarding a program P . The integration step will

rely on three main tables M predicate (keyword id, keyword), S database (keyword,

location, parent) and M document (keyword id, edit distance, type, parent method,

parent class, location in file), in which M document will hold all the approximate

matches to the source code files. Similar to the P prefix, the S and M prefixes relate

to the schema and matching results, respectively.

The first task during the integration will focus on obtaining the unique keywords

of the database’s schema and finding all the approximate matches that exist between

these unique keywords and every v in P . Therefore, this process is bounded by the

number of unique keywords and the number of files. During this integration phase,

a batch of keywords is tested one a time. As a result, if the number of unique

keywords in S is small, the algorithm is only bounded by the number of discovered

elements v in the source code repository P . In order to find approximate matches, the

Approximate Boyer-Moore algorithm (ABM) was used [110]. The rationale behind

139

Figure 6.11: Source Code Matching.

this is that by using this algorithm, it is possible to capture valid text patterns within

the desired edit distance. For example, in Figure 6.11, the string “pollution” is found

as a class name and as a SQL query.

Once this discovery phase has been finished, indexes are applied to the summary

tables containing the approximate matches. Indexes were also added to the unique

keywords, source code, and metadata summary tables.

Matches between the database and the source code files are discovered as follows:

a set of all the elements from the database (T and a) is queried from the catalog

in order to extract all of the unique keywords. This set of keywords will be stored

in two summary tables. M predicate will contain all of the unique keywords (ob-

tained with a UNION query) and S database, which will contain the location of the

elements in the database. The keywords in M predicate are then matched between

every element in the database and then for every keyword k in the code repository

P . The resulting matches in the source code are stored in a M document table.

Table M predicate is pruned to only hold those keywords that are represented in

140

the matches. This matching is performed through database extensibility features,

such as using user-defined functions (UDFs), in order to keep in-main memory all of

the data structures used to obtain an approximate distance (using edit distance) for

every concept and every given string coming from the database or collection of source

code files. This matching step is the bottleneck of the keyword matching. However,

to ease the processing, the matching is performed in batches. In other words, a set of

keywords k mapped from S is scanned simultaneously to avoid multiple passes over

the P document table and reduce I/Os.

Tables S database, M document, and M predicate (summary tables) are created

to avoid repeated searches on a particular data source and they include the location

of the concept in the database and in the source repository. By using these summary

tables, it is possible to obtain the matches (stored as a view called M table) by

joining these three tables, in which there is a hash join on the matching keywords

between M predicate and S database, and a hash join on the id of v present in

M predicate and S database.

This query is quite efficient due to the keyword indexes. An example of the

resulting matches is shown in Table 6.12. Furthermore, the data type is considered

irrelevant when matching metadata, but this remains something to be explored in

the future.

The complexity of the integration is given by the number of unique keywords to

search and the number of files in P . Therefore, the integration is on the order of

O(rn), where r is the number of unique keywords and n is the number of files.

141

6.2.0.8 Querying

The exploration is conducted only by analyzing the summarization tables obtained

in the previous phase (mainly the approximate matches in the M table view).

Analytical queries are obtained mostly from the predicate table and the approx-

imate match table as shown in Equation 6.1. These analytical queries are efficient

one-pass aggregations in SQL using functions such as SUM, COUNT, MAX, and

MIN.

πF (σQ(M predicate) ./ (M document)) (6.1)

These queries are able to answer questions dealing with the number of matches

that are associated with a particular v, T or a, as well as which matches are present

if the aggregation (πF) is removed.

Furthermore, these aggregations may be taken one step further and OLAP cubes

may be computed from these matches by generating aggregations with different di-

mensions that include all the granularity levels inside the DBMS and within the

source code. An OLAP query that exploits the summarization tables based on the

CUBE operator from SQL SERVER is shown in Figure 6.12.

This query can answer complex analytical queries such as “Which column a has

the highest number of dependencies associated with v?”

Finally, the most complex searches are those that require following the depen-

dencies. These searches answer queries such “What are all the methods associated

142

SELECT

CASE

WHEN GROUPING(a) = 1

THEN ’ALL’

ELSE a

END a,

CASE

WHEN GROUPING(v) = 1

THEN ’ALL’

ELSE v

END v,

SUM(f) AS f

FROM M_TABLE GROUP BY a, v

WITH CUBE;

Figure 6.12: OLAP Cube Query.

with a particular column?” In order to find these dependency graphs G, we propose

the following algorithm: The computation of the graph in S is performed efficiently

in main memory due to the reduced number of elements. However, computing the

resulting graph in P cannot be performed in main memory. The algorithm for com-

puting graphs in P is based on filtering the approximate match table to find all

matches associated to Q, and sorting them by their frequencies in ascending order

(least frequent first). Then, each of these matches is explored in a breadth-first-

search fashion by joining the M document table filtered using M predicate with the

transition tables P mcall and P ccall (each explored path is maintained as a tuple

in a temporary table). If a valid graph is found, the result is returned to the user.

The exploration continues in a recursive manner by joining the resulting table of the

previous iteration with the transition tables (those tables that contain the relation-

ships between the methods and classes). The exploration will halt when a certain

143

number of steps has been reached or when a certain time threshold has expired (the

exploration can fall into infinite loops). The resulting graphs are returned to the

user in ascending order based on the number of elements required to satisfy Q.

6.2.0.9 Experiments

QDPC is a standalone system developed entirely in C# as two modules: a thin client

that uses ODBC to connect to the DBMS and a set of UDFs and store procedures

that perform the integration and searches. Experiments were run on an Intel Xeon

E3110 server at 3.00 GHz with 750 GB of hard drive and 4 GB of RAM. The server

was running an instance of SQL SERVER 2005. All the experiments are the result of

an average of 30 runs unless otherwise specified. The times are presented in seconds.

Table 6.13: Programs.

Description WP SE PJ1 PJ2
Num. Files 52 44 119 316
Num. Classes 52 0 158 460
Avg. File Size (KB) 1409 4787 12388 11474
Lines of Code (LOC) 5488 5463 28180 70815
Avg. Num. Variables 8 29 19 35
Avg. SQL queries 0 1 0 5
OLTP N N Y Y

QDPC was tested using four different source code repositories and their correspond-

ing databases’ schemas. The programs and schemas are a program used for capturing

information to a database of water quality of wells in the State of Texas (WP), the

144

Table 6.14: Schemas.

Description WP SE PJ1 PJ2
Num. Tables 52 25 21 95
Avg. No. Columns 7 4 6 5
Max No. Columns 110 12 15 29
Min No. Columns 1 2 2 2
Processing Type OLAP OLTP OLTP OLTP

Sphider open source search engine (SE) program, and a couple of management sys-

tems (PJ1 and PJ2). Table 6.13 and Table 6.14 contain the details of each repository

and schema.

Figure 6.13 exhibits the results of preprocessing the source code repositories, and

obtaining the approximate matches (allowing a proportional edit distance of 10%).

This figure also shows that looking for the approximate matches and creating the

summarization tables uses only a small portion of the time compared to the source

code analysis. Despite this larger source code analysis task, the entire integration

phase takes less than 1 minute in all the source code repositories.

Table 6.15 and Figure 6.14 analyze the effect of the approximate matches and

the performance of such an exploration. Table 6.15 shows that even though WP

contains the fewest LOC, it has the highest number of unique keywords to search.

This table shows that the value of β is critical to finding good matches (and avoiding

having meaningless matches). As is shown in this table, the values from β should be

between 0.10 and 0.25. However, when the value of β exceeds that range, the number

of approximate matches increases by a factor of 4x. Furthermore, Figure 6.14 shows

that the performance of the algorithm is bounded by the number of unique matches.

145

 0

 10

 20

 30

 40

 50

 60

WP SE PJ1 PJ2

T
im

e
in

 s
ec

on
ds

Programs

Integrating
Preprocessing

Figure 6.13: Preprocessing and Integration.

PJ2 has the highest performance time due to the number of LOC. However, WP

ranks second due to the number of unique keywords to search, regardless of the size

of the program. An interesting finding of this plot is that the performance of the

algorithm is not affected by the selected β because all of these computations are

performed efficiently in batches stored within main memory.

Table 6.15: Integration (Approximate Matches Found.) Performance Time (in sec-
onds) is shown for β = 0.1.

Program M predicate β = 0.10 β = 0.25 β = 0.50 Time
WP 375 850 979 4008 11
SE 60 1438 1478 3619 4

PJ1 88 4188 4304 13411 5
PJ2 332 42217 42742 143928 16

Table 6.16 shows a breakdown of the performance of the integration phase. As

146

 0

 5

 10

 15

 20

 25

 30

WP SE PJ1 PJ2

T
im

e
in

 s
ec

on
ds

Programs

0.10
0.25
0.50

Figure 6.14: Integration (Approximate Matches Performance.)

expected, the bottleneck of the algorithm is in the computation of the approximate

matches between the collections (Compute M document).

Table 6.16: Integration (QDPC Profiling.)

Program Compute M predicate Compute M document
WP 1 4
SE 1 2
PJ1 1 4
PJ2 1 14

The first type of querying to be discussed here involves finding the number of

matches associated with elements in either P or S. Figure 6.15 shows the result of

obtaining the SUM, MAX, MIN, and COUNT aggregations in a single pass through

the data. Figure 6.15 presents similar results for all the collections regardless of the

original size. This is due to the fact that the summarization is quite efficient because

147

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

WP SE PJ1 PJ2

T
im

e
in

 s
ec

on
ds

Programs

Figure 6.15: Querying (Aggregations.)

the size of the input table is quite small and the aggregate functions are performed

within main memory using a hash aggregate. The aggregation is not necessary as

long as only these matches are sought, speeding up the query and resulting in a

natural join.

A more complex analysis of aggregations can be computed by generating OLAP

cubes. These queries answer analytical questions that focus on finding all of the

aggregations at different granularity levels. Some of the information obtained in the

OLAP cube includes: the matches that are associated with all of the methods and

all of the classes, or all the matches that are associated with all of the elements

in P . Figures 6.16 and 6.17 show the result of computing an entire OLAP lattice

based on the summary tables. The first plot contains the computation of the lattice

in different levels of the hierarchy. Therefore, the “P-type, S-type” cube shows

148

 0

 1

 2

 3

 4

 5

WP SE

T
im

e
in

 s
ec

on
ds

Programs

P-type,S-type
P-type,tablename

class,tablename

Figure 6.16: Querying (OLAP Cube for Small Projects.)

the number of matches associated with a column, table, class, method, and so on.

The “P-type, tablename” obtains an OLAP cube indicating the number of matches

associated per v with each T . The last aggregation generates the OLAP cube showing

the number of matches associated with every class and T . This plot shows that

regardless of the level, the OLAP cube is generated in less than 3 seconds in the

smaller programs (see Figure 6.16) and in less than 17 seconds in the larger ones (see

Figure 6.17). The highest times are associated with the programs with the largest

number of approximate matches. In addition, Figure 6.16 and Figure 6.17 also show

that computing a cube in a lower level in the hierarchy is faster due to the early

pruning of the match table allowing the exploitation of a hash aggregate.

Finally, all of the elements associated with a particular keyword search are sought,

due the dependencies between these. Notice that this type of querying is the most

149

 0

 5

 10

 15

 20

 25

PJ1 PJ2

T
im

e
in

 s
ec

on
ds

Programs

P-type,S-type
P-type,tablename

class,tablename

Figure 6.17: Querying (OLAP Cube for Large Projects.)

complex because it requires performing a breadth-first traversal of P and S in order to

find all the G that cover a Q. This search answers queries of the form “Is a particular

method dependent on a particular column?”. Figure 6.18 (which is the result of 30

random conjunctive queries with a maximum recursion depth of 5) shows that the

exploration is equally efficient when generating the graphs G by taking only a few

seconds for the most time-consuming searches (2 and 3 keywords). When the number

of keywords increases in Q, the performance time of the algorithm decreases due to

the limited number of graphs that can satisfy Q, resulting in an early termination of

the algorithm.

150

 0

 5

 10

 15

 20

WP SE PJ1 PJ2

T
im

e
in

 s
ec

on
ds

Programs

2 keywords
3 keywords

Figure 6.18: Querying (Graph Searches.)

6.3 Conclusions

This chapter introduced Ontocube, an algorithm for ontology extraction with OLAP

cubes. The core of the proposal is the obtaining of an efficient keyword frequency

summarization with a one-pass algorithm for computing the correlation and lift from

pairs of keywords from a corpus. Once this analysis has been performed, a set of

heuristics are used to create a hierarchy and find the relationship between the classes.

The experiments show that the candidate classes are pruned early with minimal

thresholds for lift and correlation to obtain meaningful classes. It was observed

that the most influential threshold on the number of classes is lift, with frequency

and correlation having similar selectivity effects. It was also found that the most

of the classes are quite relevant, and the overall hierarchy accuracy had an overall

performance of 67% with a few misclassified concepts decreasing the overall average.

151

However, for most of the concepts, the hierarchy achieved outstanding results of 75%

or higher. The algorithm also exhibited linear scalability with keyword pairing and

preprocessing as the most costly steps, respectively.

As a complement to Ontocube, we proposed a novel approach, CUBO, for sum-

marizing text corpora based on a given ontology using OLAP data cubes. CUBO

represents an efficient, compact, and scalable data structure and algorithm that

generates a data cube for every level of an ontology. Unlike traditional OLAP ap-

proaches, CUBO takes advantage of the sparsity of text corpora and generates the

combinations for only those dimensions that are present in each document.

All the data cubes are stored in an array with all the levels of a given ontology for

efficiency purposes. Every level in the ontology that is analyzed is stored in a hash

table and computed for only those existing dimensions in each document. CUBO

was adapted into a relational database system using extensibility mechanisms, such

as store procedures. The algorithm was tested in real and synthetic databases, and it

was shown that the algorithm has linear scalability when the number of documents

increases in the collection. In addition, it was shown that unlike traditional algo-

rithms, CUBO is able to scale to a larger number of dimensions due to the avoidance

of computing and storing unnecessary combinations. Moreover, the experiments

showed that the running time of the algorithm in real and synthetic databases is

significantly less than the expected exponential upper bound. This was also ap-

preciated when analyzing the overhead of computing the lattice in higher levels of

the hierarchy, resulting in only a small time difference (almost negligible). Hence,

the complexity of the algorithm is still highly dependent upon the average number

152

of dimensions in a document. Further analysis of the algorithm in both databases

proved that the processing time for building and storing the CUBO is mostly spent

on the latter. As a result, CUBO showed to be an efficient and scalable algorithm

for summarizing text data with hierarchies.

The final section of this chapter presents an extension to the integration algo-

rithms in the context of source code analysis related to a database schema. The

result is a novel system that allows flexible querying of a source code repository and

the schema of a database. In order to do so, our approach relies on an efficient inte-

gration phase that summarizes these dependencies and stores them in the database

management system. The keyword searches in the approach are performed over these

summary structures that allow all the graphs that cover the keywords given by the

user to be returned. Additional searches based on aggregation and OLAP cubes can

be generated using these summary tables to answer complex analytical queries. The

experiments also showed that integration of several programs varying in the levels of

dependency with the database’s schema can be obtained quite efficiently (in less than

a minute in all the cases). Furthermore, the scalability of the algorithm is observed

to be bounded by the number of keywords to be searched for. It was also shown

that searching for dependency graphs that cover the keywords of a query can also

be conducted in less than 20 seconds in all of the cases tested. Moreover, the algo-

rithm also prunes all the undesired matches early (if there are not matches covering

all the keywords), resulting in a faster evaluation when no graphs are found. The

integration obtained with the proposed system also allowed an efficient evaluation of

153

aggregate functions and an efficient construction of OLAP cubes, allowing such com-

plex queries as, “What are the methods that have the highest number of associated

dependencies?” to be answered.

6.4 Summary of Contributions

The topics and algorithms presented in this chapter introduce innovative research

paths that extend and adapt the integration and OLAP algorithms presented in the

previous chapters. This extends the state of the art for exploiting and adapting algo-

rithms that are well known in the database community for analyzing heterogeneous

sources.

Ontocube represents an efficient unsupervised algorithm that extracts concepts

for text corpora and generates an ontology. The ontology construction is based on

some heuristics that establish the relationship between the concepts. To the best of

our knowledge, this is the only algorithm that exploits an OLAP cube for building

ontologies. Future research includes hybrid approaches (NLP, ML, OLAP), trying

other heuristics, and finding other types of relationships between classes.

CUBO is a complement to Ontocube since it takes an ontology and builds a hier-

archical data cube. This algorithm is not the first of its kind for building hierarchies

inside a DBMS, but it is the only one that takes an ontology and builds a data cube

by exploiting the sparse nature of text data. The result of the “on-the-fly” com-

bination computation is that it allows storing a larger number of dimensions than

traditional algorithms, since it stores only the combination of dimensions that are

154

present in the data. Future work on this topic includes testing the performance of

the algorithm when a new level of indirection is added for capturing instances under

the h− 1 level. Also, we would like to test the algorithm with larger ontologies that

do not fit in main memory and have to be loaded in a relational table, as well as

more complex real ontologies that have a large depth. Coverage of more complex

ontologies that include unbalanced hierarchies and multiple parents is part of future

work, too.

The last section of this chapter introduced a novel approach called QDPC, a

unique system that allows flexible querying of a source code repository and the

schema of a database. The integration presented in QDPC allows the complex com-

puting of efficient aggregations, OLAP queries, and graph querying.

Several problems remain to be addressed in future research. Additional work is

required to improve the integration and exploration of source code repositories and

a database’s schema (e.g. parallel processing techniques). A richer analysis of the

semantics of the source code (e.g. considering the type of the data) needs to be

incorporated. Moreover, a way to deal with the ambiguity between the source code

repository and the schema (e.g. “id” may be a column of several tables) needs to

be discovered. The expansion of this method for representing complex relationships

and interactions between multiple programs and databases remains to be explored.

The optimization for string matching with multiple keywords represents an area of

opportunity. Along the line of source code analysis, statistical models (e.g. linear

regression) can be introduced to identify which source code elements are more prone

155

to producing bugs. Finally, we believe that it is possible to extend and general-

ize the proposal to integrate, explore and rank complex programs, databases and

documentation efficiently in a database management system.

156

Chapter 7

Extended Notation for

Unstructured Data

This chapter focuses on setting the ground for having unified notation and properties

regarding the integration and exploration of structured and unstructured sources.

7.1 Extended Notation

Our unified notation and properties analysis is divided into data preprocessing, data

integration, and knowledge discovery phases.

157

7.1.1 Data Preprocessing

Unstructured data, such as text corpora, possess several properties that make it

challenging and difficult to query. Unstructured data do not posses an schema and

the relation between the keywords and their relevance is unknown. In addition, the

semantics of a particular keyword modify its meaning which could lead to several

keywords sharing the same meaning. Based on all these properties, the number of

assumptions that can be made about the data are minimal without the support of

some domain knowledge. On the other hand, structured data possesses a schema.

The data have meaning and the relationships between the data are explicitly defined

as functional dependencies, referential integrity, and constraints.

All of the keywords’ properties dictate their modeling, as well as the type of

operations that can be can performed within them. As defined in the Definition

Section 2, let a document di contain a string representing a keyword k, where k is a

concept that consists of a single word or more words (e.g. ‘football field’ or ’sports’).

Despite the fact the relationships between k’s are not defined by a schema, it is

possible to extract some structure via the definition of taxonomies. Hence, a concept

k′ can be a generalization of keyword k′′.

A keyword k can be modified by transformation functions f , such as stemmers

or soundex functions. Also, a keyword k can be modified by scalar functions that

return a measurement between two or more keywords. Finally, the entire data set

of k can be transformed or analyzed to create new data sets or measurements that

represent the relationships between all of the k’s.

158

Transformation functions f are not commutative, since the order on which these

functions are applied returns different results. On the other hand, scalar and analyt-

ical functions do not modify the original data and can be applied in a commutative

manner.

7.1.2 Data Integration

Following the basic definitions, let us focus on the linkage of both sources. In order

to do so, we propose some definitions for obtaining such “links”. Intuitively, a link

represents a reference of an element in the database and a document or a part of it

(e.g. keyword).

Definition 1. Let S ⊇ all possible links between D and C.

The universe of all possible links that exist between both sources is contained in

S. As such, S contains links that can be inferred from analyzing both collections,

which are the focus of this paper, and some other types of links that are the result

of previous knowledge of both sources (e.g. a user defined object mapping). Based

on the definition of e, which is e =< k, γ >, let a link between a database element

and a document keyword be formally defined as follows:

Definition 2. Let ρ be a relationship representing a link between a document di and

an element in the database e based on the finding of approximate keywords of a given

element in D.

ρ = (e, di) ∈ S|Ak 6= ∅.

159

Table 7.1: Example of E and L.
L E

kid k kid γ
1 student 1 {T = student}
2 major 2 {T = major}

. . . 2 {T = student, c = lastname, PK = A890}
5 balance 5 {T = account, c = balance}
6 sid 6 {T = transcript, c = SID}

. . . 6 {T = account, c = SID}
20 a888 20 {T = student, c = ID, PK = A888}
21 english 20 {T = account, c = SID, PK = 503}

.

These newly inferred “links” now are identified as relationships between both

sources. As a result, an attempt will be made to find all of e that are related to all

of the keywords in the documents. Moreover, let E be the set of all of the elements

in the database considering the granularity level. Therefore, E = {e|e(k, γ) ∈ D}.

In addition, let L be a set of all unique keywords existing in D without considering

γ. Hence, L = {distinct(k)|e ∈ E}

For example, “major” exists in D, such that “major” can be found as a table

name and as a value in a row in one of the tables in D (e.g. as a surname). In

such a particular case, “major” has two entries in E and only one in L. In addition,

the “major” keyword may have more references in the record level, therefore linking

more records to a keyword. The construction of E is then the result of creating a

set of unique keywords L and a dictionary that maps each k to a granularity level.

Notice these data structures (see Table 7.1) can be designed and maintained quite

easily and efficiently in a database system with tables in 3NF.

Even though E and L define the keywords that are contained in the database, an

160

additional set is required to store the pairs between a keyword and a set of documents.

Then, let R store all the < k, di > pairs. As a result, R = {(k, di)|k ∈ di and di ∈ C}.

Based on this, the maximum size of R is bounded by the number of unique keywords

and the number of documents.

Property 1. The size of the R data structure is at most n|L|, where L contains only

the common keywords between D and C.

Proof. There can only exist a unique pair of < k, di > in R given that Ak 6= ∅ for di.

Therefore, the maximum number of pairs for a k is the total number of documents

in the collection n. Hence, the maximum size of the structure is that every keyword

in |L| is contained in every document in the database.

The e elements in the DBMS must only be extracted only once all the k ∈ R have

been discovered. In addition, ρ is the result of a inner join between the E and R data

sets. Notice that the ργ (relationships at each granularity level) are independent sets.

As a result, a relationship existing between a keyword of a granularity level in the

database may not exist in another granularity level. Despite this, by the transitive

properties expressed as part of the Entity-Relation Model (a value in a row is covered

by a column c and a table Tj. Similarly, a column c is covered by a table Tj) that

exist between the granularity elements in the DBMS (e.g. a table contains attributes

and records), one can “assume” new relationships by performing aggregations. A

summarization of the sets and structures is show in Table 7.2.

For example, assume a small database with a single T1(a1,a2) and a corpus of

a single document d1 = {a1}. The relationships inferred from both sources will

161

Table 7.2: Data Structures and Subscripts
Index Range Used for
i 1 . . . n Documents
j 1 . . .m Tables
l 1 . . . |L| Unique set of k
g 1 . . . |E| Elements in D

be ρ1 = (a1, d1). With further aggregations, one could assume that there is a new

relation ρF 1 = (T1, d1). These types of relationships will be considered derived, and

the finding of these relationships is the result of a posterior analysis of the initial

relationships found.

Definition 3. Let ρF be a derived relationship iff ρF is equivalent to ρ = (eγ1 , di)

obtained from ρ′ = (eγ2 , di) where γ1 ≥ γ2 and ρ /∈ R.

Furthermore, these derived relationships represent a weaker link between an ele-

ment in the database and the related document. However, they cannot be ignored.

In particular, these new relationships can overlap with already existing links between

an element in the DBMS and a document. In addition, notice that one could also

obtain some derived relationships by assigning a link between every row of a table

given a relationship between a table and a document. However, this type of rela-

tionship is considered to be less significant than connecting an element in a higher

granularity level. In addition, this important property of a link is exploited during

the retrieval of the results as a ranking criterion. As such, derived relationships are

always computed from a lower granularity level to a higher one.

These ρ and ρF relationships can be used to compute how relevant a keyword is

among both collections. Based on this, different traditional ranking techniques, such

162

Figure 7.1: Relationships ρ and ρF between D and C.

as the Vector Space Model, Probabilistic Models or any other traditional ranking

model can be applied to query these documents with additional summarization data

structures. Figure 7.1 summarizes the relationship and derived relationships that

can be inferred between a database and a set of documents.

7.1.3 Relationship Discovery

The complexity of searching across the inferred relationships is strictly tied to the

taxonomy that can be extracted from the keywords k of the unstructured data. As a

generalization of the taxonomy-types presented in the definitions, the relationships

between unstructured data can be represented as trees, direct acyclic graphs (DAGs)

or graphs. The consequence of the “topology” of the unstructured data is that the

searches become more costly in terms of nodes that have to be explored.

Let a database D be a balanced tree. In a similar manner, let a set of n keywords

in the unstructured domain have different topologies. Lastly, let r represent the

number of relationships that are analyzed within the integrated sources. Therefore,

based on the topology-type of the unstructured data the following properties can be

observed:

163

Property 2. The maximum number of elements associated within all the inferred

relationships given r is of the order of nr, since the maximum number of levels of

the schema is a constant.

Property 3. The maximum number of elements associated within all the inferred

relationships in a binary tree structure, given r, is of the order of r log n, since the

logn is the maximum height of the balanced tree.

Property 4. The maximum number of elements associated within all the inferred

relationships in a general graph, given r, is of the order of nr with the possibility of

having cycles.

In the first property, there is no possibility for optimizations since nothing can be

inferred between the taxonomy of the keywords. The second property is a particular

case of a general graph. The advantage of such an approach is that it is possible to

avoid visiting other branches that are not related to the given r. The possibility of

cycles in a general graph is a problem that has to be tackled during the exploration

phase. This can be approached by limiting the number of levels to traverse or

‘counting’ the number of keywords that were visited.

As can be seen given these properties of unstructured data, if no assumptions

or efforts are made for extracting some structure in the unstructured domain, the

maximum number of elements that must be explored has the complexity of a “cross

product”. On the other hand, effective indexing and assumptions about the data

(e.g. binary tree) speeds up the searching strategies.

164

7.2 Conclusions

In this section, we formalizes and provides properties of the structured and unstruc-

tured data for exploring the integrated data. Unlike our previous sections, the focus

of this section is to summarize the properties of the inherited complexity of the

unstructured data, from the preprocessing phase to the searching and knowledge

discovery phase. This also shows the properties from the integrated data and the

bounds that exists for the data structures explored in chapter 5. In addition, an anal-

ysis of the cost that implies exploring integrated sources with different topologies was

presented here, as a complement to the exploration shown in chapter 6.

Finally, as it was shown in this chapter, the worst case scenarios results in a costly

cross product that requires scanning all the keywords in all the data sets. Therefore

future efficient algorithms have to focus on avoiding multiple passes through the

data, early pruning of duplicates and the elimination of irrelevant keywords.

7.3 Summary of Contributions

This chapter’s main contribution is the analysis and formalization of the algorithms

explored during this dissertation, which results in proposal of general properties of

integrated structured and unstructured data. Moreover, this chapter also provided

storage upper bounds of the data structures presented in this thesis.

However, there are multiple questions that remain to be addressed in future

research. Some of these problems are exploring the consequence of adding a semantic

165

meaning to a keyword, which may result in complex relationships that the current

proposal may not be able to capture. Also, there is a pressing need to develop

benchmarks that can be used to compare the performance of the obtained algorithms.

Finally, the extension of SQL to support preprocessing, integrating and querying

unstructured data remain as a major challenge to be resolved.

166

Chapter 8

General Conclusions

This chapter presents a summary of the document’s overall contributions, and con-

tains a discussion on this dissertation’s general conclusions Finally, there is a brief

discussion of the open problems that remain to be explored in the area of document

preprocessing inside a DBMS, unstructured data integration, query recommendation,

OLAP on unstructured data, and source code analysis.

8.1 Most Important Contributions

This research extends the capabilities of a traditional relational database manage-

ment system to support unstructured data. In order to do so, several data layouts,

data structures and algorithms are proposed to support efficient performance.

The document’s proposed algorithms offer efficient in-memory tools that permit

167

the preprocessing of already loaded unstructured data. The advantage of these al-

gorithms is that they reduce the time that it would take to export and process data

sets outside the DBMS. In addition, this work presents algorithms that allow flexible

query in contrast to those used in ad-hoc system. Furthermore, this dissertation pro-

poses a data layout that reduces the number of I/Os required to retrieve the data,

as well as storage tables that can allocate pre-computations for traditional ranking

models computed inside a DBMS. An additional contribution is that this data layout

supports an extension for the Rank-Join algorithm to be executed within the DBMS

as a UDF

A new in-memory UDF-based algorithm for integrating structured and unstruc-

tured data is also provided. Finally, these preprocessed or integrated data are ex-

ploited with newly proposed UDF-based algorithms for query recommendation and

ontology extraction.

Unlike previous approaches, all of the algorithms presented here are contained

within the database system, resulting in an entire system that is able to process

unstructured data. The system also supports flexible querying for future knowledge

discovery algorithms.

The vision of this research extends to uncharted territory by using OLAP cubes

for query recommendation and ontology extraction in text corpora. Moreover, the

data integration model presented here has opened up a new topic of exploration by

allowing the answering of complex queries between a source code repository and the

schema of a database.

168

We have provided efficient algorithms, data layouts, and data structures that

support the preprocessing, integrating, querying, and exploring text data with var-

ious algorithms that allow knowledge discovery. The contributions of the research,

explained by this dissertation, extend a traditional DBMS such that it may man-

age unstructured data and drive the entire process of transforming the data and

discovering new knowledge within it.

The advantages of such a system are evident in the source code exploration section

of this dissertation, in which all of these tools are used to explore the source code

connected to the schema of a database in an efficient manner. However, there are

multiple areas of opportunity that remain to be explored (e.g. medical domain or

patent searching). Hence, these tools offer and advantageous unified system for

managing unstructured data within a DBMS, opening the door to the exploration of

the deep web.

8.2 Future Research

Given the number of topics this dissertation explores, there are multiple areas of

investigation that remain open for further research. The following section identify

major opportunities left open for exploration based on the areas presented in this

dissertation.

Part of future work in document storage and retrieval involves improving the time

needed for loading documents into the DBMS, which has become a bottleneck for the

implementation of an IR system. The implementation of other storage techniques

169

experimenting with different indexes also remain as possible future investigation.

Retrieval proved to be fast enough to consider comparing the results with some

benchmarks, but loading and preprocessing large amounts of text data neared the

limits of the DBMS’s capabilities. Also, it was observed that the optimizations

presented here performed better than some other commonly used techniques for

building IR-engines in SQL, and we are considering comparing his SQL application

with a similar engine, using just user-defined functions. Finally, we would like to

explore how the research in a DBMS for implementing text searching models can

give acceptable performance in document processing and retrieval by exploiting the

database’s strengths.

Top-k future work implies implementing different ranking formulas dissimilar to

the VSM presented in this dissertation, in order to observe the performance with

the Okapi Probabilistic formula or the Dirichlet Prior. Also, the Rank-Join algo-

rithm focuses only on conjunctive queries, and extending this schema to work with

disjunctive queries makes it more challenging to guarantee the return of the top-k

queries with a pipelining algorithm. Additionally, a much deeper exploration needs

to the done on the pipelining algorithm, to guarantee that any top-k result is not

lost in the top-k propagation during the execution tree of the algorithm. This is

particularly true if the α parameter is large enough to define such a propagation

independently from the data distribution. Also, we believe that it is possible to stop

the top-k algorithm much earlier in the database scan, and at the same time avoid

loading large data sets into memory.

170

Relationship discovery and structured and unstructured data exploration is pos-

sibly the topics covered in this thesis that have a much broader area of improvement

and the expansion of ideas. First, defining which relationships are more relevant

than others is vital to the final user. Also, a complete analysis of the scalability of

relationship generation by experimenting in massive document collections remains

unexplored. Another important improvement is to consider the data type and con-

text matching between the database’s data and the documents’ keywords. At the

same time, the expansion of the relationship definition to target a more specific set

of records (e.g. adding a PK attribute in atomic relationships) and finding some

structure in the unstructured sources may modify the relationship-matching schema

presented here. Multicore processing, cloud computing, and parallel computing are

other research areas in which the proposed algorithms can be improved upon in order

to allow further acceleration in the process presented in this dissertation. Despite

the larger numbers of optimizations and explorations that can be done in all of these

fields, we believe that this dissertation proves that the DBMS can be exploited for

managing structured and unstructured sources efficiently and effectively.

Subsequent goals to finding efficient algorithms for schema matching include ex-

tracting a structure from the unstructured sources in order to obtain better “descrip-

tors” and achieve a deeper level of integration (schema mapping). These descriptors

can be found by extracting the hidden entities that exist within the unstructured

sources. A related problem is resolving ambiguities and data types, which is partic-

ularly important when dealing with scientific databases. Therefore, future research

plans will focus on resolving entity extraction, ambiguity, and data type resolution.

171

Taking into consideration the semantics of the data will permit obtaining better

quality results when querying and exploring these integrated sources.

Data preprocessing and integration are not complete if it is not possible to re-

turn meaningful results to the user. As a consequence, new ranking models, query

expansion, query recommendation, and query exploration are part of the topics that

remain to be seen.

In particular, future research needs to be conducted to develop new ranking mod-

els that can be adapted to the integrated model aside from the proposed VSM. This

includes new measurements that can be used as part of the ranking methods to

identify the most relevant relationships. Also, the proposal of new exploration algo-

rithms that provide new views of the data are required, such as high dimensionality

data cubes is needed. Another opportunity for future work includes extending the

OLAP query recommendations to consider new scalable and efficient algorithms for

returning suggestions to the user. This should address the current limitation of per-

forming “on-the-fly” summarizations in massive databases. The efficient extraction

of statistical measurements is important for the proposal of more robust and efficient

algorithms.

Future work could focus on finding efficient, scalable and effective data mining

algorithms that will be adapted properly to deal with heterogeneous sources. As a re-

sult, exploring possible solutions should include taking advantage of the extensibility

functions of a DBMS, MPP databases, and MapReduce. Another unexplored area

with huge potential is the extension of using OLAP to create and explore ontologies

from heterogeneous.

172

Finally, the application of the current integration and exploration algorithms

may be extended in the future to handle any type of heterogeneous data. However,

we believe that the present work has shown that it is possible to extend a relational

database management system to offer a unified platform for managing heterogeneous

data.

173

Bibliography

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti. Scalable ad-hoc
entity extraction from text collections. In Proc. of VLDB Conference, pages
945–957, 2008.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-
based search over relational databases. In Proc. of ICDE Conference, pages
5–16, 2002.

[3] G. Antoniou and F.v. Harmelen. Web ontology language: OWL. In Peter
Bernus, Jacek Blazewics, Gnter Schmidt, Michael Shaw, Steffen Staab, and
Rudi Studer, editors, Handbook on Ontologies, International Handbooks on
Information Systems, pages 91–110. Springer Berlin Heidelberg, 2009.

[4] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[5] G. Avigdor. Why is schema matching tough and what can we do about it?
ACM SIGMOD Record, 35(4):2–5, 2006.

[6] T.T. Avrahami, L. Yau, L. Si, and J. Callan. The fedlemur project: Federated
search in the real world. Journal of the American Society for Information
Science and Technology, 57(3):347–358, 2006.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proc. of ACM PODS Conference, pages 1–16, 2002.

[8] A. Balmin, V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava, and
T. Wang. A system for keyword proximity search on XML databases. In Proc.
of VLDB Conference, pages 1069–1072, 2003.

[9] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. ACM SIGMOD Record, 28(1):54–59, 1999.

174

[10] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In Proc. of IEEE ICDE
Conference, pages 431–440, 2002.

[11] M. Bhide, V. Chakravarthy, A. Gupta, H. Gupta, M. Mohania, K. Puniyani,
P. Roy, S. Roy, and V. Sengar. Enhanced Business Intelligence using EROCS.
In Proc. of IEEE ICDE Conference, pages 1616–1619, 2008.

[12] M.A. Bhide, A. Gupta, R. Gupta, P. Roy, M.K. Mohania, and Z. Ichhaporia.
LIPTUS: associating structured and unstructured information in a banking
environment. In Proc. of ACM SIGMOD Conference, pages 915–924, 2007.

[13] J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C. Kleinerman.
.NET database programmability and extensibility in Microsoft SQL Server. In
Proc. of ACM SIGMOD Conference, pages 1087–1098, 2008.

[14] P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A Protégé plug-in for ontology
extraction from text. In Proc. of ISWC, pages 3–4, 2003.

[15] V.T. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania. Efficiently link-
ing text documents with relevant structured information. In Proc. of VLDB
Conference, pages 667–678, 2006.

[16] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR
technologies: What is the sound of one hand clapping. In Proc. of CIDR
Conference, pages 1–12, 2005.

[17] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on structured and
semi-structured data. In Proc. of ACM SIGMOD Conference, pages 1005–1010,
2009.

[18] Z. Chen, C. Garcia-Alvarado, and C. Ordonez. Enhancing document explo-
ration with olap. In Proc. of IEEE ICDM Conference, pages 1407–1410, 2010.

[19] Z. Chen and C. Ordonez. Efficient OLAP with UDFs. In Proc. of ACM CIKM
Workshop on Data Warehousing and OLAP (DOLAP), pages 41–48, 2008.

[20] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast and dynamic OLAP explo-
ration using UDFs. In Proc. of ACM SIGMOD Conference, pages 1087–1090,
2009.

[21] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. MAD skills:
New analysis practices for big data. In Proc. of VLDB Conference, pages
1481–1492, 2009.

175

[22] W.B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Re-
trieval in Practice. Addison-Wesley, 2010.

[23] J. Driscoll D.A. Grossman. Structuring text within a relational system. In
Proc. of International Conference on Database and Expert Systems Applica-
tions (DEXA), pages 72–77, 1992.

[24] M.Y. Dahab, H.A. Hassan, and A. Rafea. TextOntoEx: Automatic ontol-
ogy construction from natural English text. Journal on Expert Systems with
Applications, 34(2):1474–1480, 2008.

[25] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k
queries using views. In Proc. of VLDB Conference, pages 451–462, 2006.

[26] J. Dittrich and A. Jindal. Towards a one size fits all database architecture. In
Proc. of Conference on Innovative Data Systems Research, pages 9–12, 2011.

[27] H.H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evalua-
tions. Lecture Notes in Computer Science, pages 221–237, 2003.

[28] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-
Wesley, 4th edition, 2003.

[29] A. Elsayed, S.R. El-Beltagy, M. Rafea, and O. Hegazy. Applying Data Mining
for Ontology Building. In Proc. of IEEE International Workshop on Security
in e-Science and e-Research (ISSR), pages 1:1–1:14, 2007.

[30] R. Fagin. Combining fuzzy information: an overview. ACM SIGMOD Record,
31(2):109–118, 2002.

[31] R. Fagin, A. Lotem., and M. Naor. Optimal aggregation algorithms for mid-
dleware. In Proc. of ACM PODS Conference, pages 102–113, 2001.

[32] H. Fang, T. Tao, and C.-X. Zhai. A formal study of information retrieval
heuristics. In Proc. of ACM SIGIR Conference, pages 49–56, 2004.

[33] B.M. Fonseca, P.B. Golgher, E.S. De Moura, and N. Ziviani. Using association
rules to discover search engines related queries. In LA-WEB, pages 66–71,
2003.

[34] N. Fukuta, T. Yamaguchi, T. Morita, and N. Izumi. DODDLE-OWL: Interac-
tive Domain Ontology Development with Open Source Software in Java. IEICE
TOIS, 91(4):945–958, 2008.

176

[35] A. Gal, G. Modica, and H. Jamil. Ontobuilder: Fully automatic extraction
and consolidation of ontologies from web sources. In Proc. of ICDE, page 853,
2004.

[36] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. OLAP with UDFs in digital
libraries. In Proc. of ACM CIKM Conference, pages 2073–2074, 2009.

[37] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. OLAP-based query recommen-
dation. In Proc. of ACM CIKM Conference, pages 1353–1356, 2010.

[38] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. ONTOCUBE: Efficient ontology
extraction using OLAP cubes. In Proc. of ACM CIKM Conference, pages
2429–2432, 2011.

[39] C. Garcia-Alvarado and C. Ordonez. Information retrieval from digital libraries
in SQL. In Proc. of ACM CIKM Workshop on Web Information and Data
Management (WIDM), pages 55–62, 2008.

[40] C. Garcia-Alvarado and C. Ordonez. Keyword search across databases and
documents. In Proc. of ACM SIGMOD Workshop on Keyword Search on
Structured Data (KEYS), pages 2:1–2:6, 2010.

[41] C. Garcia-Alvarado and C. Ordonez. Integrating and querying web databases
and documents. In Proc. of ACM CIKM Conference, pages 2369–2372, 2011.

[42] C. Garcia-Alvarado and C. Ordonez. Integrating and querying source code of
programs working on a database. In Proc. of ACM SIGMOD Workshop on
Keyword Search on Structured Data (KEYS), pages 47–53, 2012.

[43] C. Garcia-Alvarado and C. Ordonez. Query processing on cubes mapped from
ontologies to dimension hierarchies. In Proc. of ACM CIKM Workshop on
Data Warehousing and OLAP (DOLAP), pages 57–64, 2012.

[44] C. Garcia-Alvarado, C. Ordonez, and V. Baladandayuthapani. Querying ex-
ternal source code files of programs connecting to a relational database. In
Proc. of ACM Ph.D. Workshop in Information and Knowledge Management
(PIKM, CIKM Conference Workshop), pages 9–16, 2012.

[45] C. Garcia-Alvarado, C. Ordonez, and Z. Chen. DBDOC: Querying and brows-
ing databases and interrelated documents. In Proc. of ACM SIGMOD Work-
shop on Keyword Search on Structured Data (KEYS), pages 47–48, 2009.

177

[46] C. Garcia-Alvarado, C. Ordonez, and Z. Chen. Query recommendation in
digital libraries using OLAP. In Proc. of ACM SIGMOD Workshop on Keyword
Search on Structured Data (KEYS), pages 6:1–6:2, 2010.

[47] C. Garcia-Alvarado, V. Raghavan, S. Narayanan, and M.F. Waas. Automatic
data placement in mpp databases. In Proc. of IEEE ICDE Workshop on Self-
Managing Database Systems (SMDB), pages 322–327, 2012.

[48] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Com-
plete Book. Prentice Hall, 1st edition, 2001.

[49] M.N. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data
streams: You only get one look: A tutorial. In Proc. of ACM SIGMOD Con-
ference, page 635, 2002.

[50] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query recommendations
for OLAP discovery driven analysis. In Proc. of ACM CIKM Workshop on
Data Warehousing and OLAP (DOLAP), pages 81–88, 2009.

[51] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina.
Proximity search in databases. In Proc. of VLDB Conference, pages 26–37,
1998.

[52] T. Grabs, K. Böhm, and H.J. Schek. PowerDB-IR: information retrieval on
top of a database cluster. In Proc. of ACM CIKM Conference, pages 411–418,
2001.

[53] T. Grabs, K. Böhm, and H.J. Schek. PowerDB-IR–Scalable Information Re-
trieval and Storage with a Cluster of Databases. Knowledge and Information
Systems, 6(4):465–505, 2004.

[54] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab and sub-total. In Proc.
of IEEE ICDE Conference, pages 152–159, 1996.

[55] D.A. Grossman and O. Frieder. Information Retrieval: Algorithms And Heuris-
tics. Springer, 2004.

[56] D.A. Grossman, D.O. Holmes, and O. Frieder. A parallel DBMS approach to
IR in TREC-3. In Proc. of TREC, pages 279–279, 1994.

[57] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked
keyword search over XML documents. In Proc. of ACM SIGMOD Conference,
pages 16–27, 2003.

178

[58] A. Halevy, A. Rajaraman, and J. Ordille. Data integration: the teenage years.
In Proc. of VLDB Conference, pages 9–16, 2006.

[59] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 1st edition, 2001.

[60] J. Henrard and J.L. Hainaut. Data dependency elicitation in database reverse
engineering. In Proc of IEEE European Conference on Software Maintenance
and Reengineering, pages 11–19, 2001.

[61] D. Holmes. SQL text parsing for information retrieval. In Proc. of ACM CIKM,
pages 496–499, 2003.

[62] I. Horrocks. DAML+ OIL: a description logic for the semantic web. IEEE
Computer Society Technical Committee on Data Engineering, 25(1):4–9, 2002.

[63] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword
search over relational databases. In Proc. of VLDB Conference, pages 850–861,
2003.

[64] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the
efficient execution of multi-parametric ranked queries. ACM SIGMOD Record,
30(2):259–270, 2001.

[65] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In Proc. of VLDB Conference, pages 670–681, 2002.

[66] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for an-
swering ranked queries using ranked views. VLDB Journal, 13(1):49–70, 2004.

[67] S. Hwang and K.C. Chang. Optimizing top-k queries for middleware access: A
unified cost-based approach. ACM Transactions on Database Systems (TODS),
32(1):5, 2007.

[68] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting top-k join queries in
relational databases. VLDB Journal, 13(3):207–221, 2004.

[69] I.F. Ilyas, G. Beskales, and M.A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys, pages
1–58, 2008.

[70] A.R. Jaiswal, C.L. Giles, P. Mitra, and J.Z. Wang. An architecture for creating
collaborative semantically capable scientific data sharing infrastructures. In
Proc. of ACM CIKM Workshop on Web Information and Data Management
(WIDM), pages 75–82, 2006.

179

[71] N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword Proximity
Search in XML Trees. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 18(4):525–539, 2006.

[72] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina. Data clouds: summarizing
keyword search results over structured data. In Proc. of EDBT Conference,
pages 391–402, 2009.

[73] J. Lee, D. Grossman, O. Frieder, and M.C. McCabe. Integrating structured
data and text: A multi-dimensional approach. In Proc. of IEEE International
Conference on Information Technology: Coding and Computing, pages 264–
269, 2000.

[74] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-1
keyword search method for unstructured, semi-structured and structured data.
In Proc. of ACM SIGMOD Conference, pages 903–914, 2008.

[75] G. Li, X. Zhou, J. Feng, and J. Wang. Progressive keyword search in relational
databases. In Proc. of IEEE ICDE Conference, pages 1183–1186, 2009.

[76] W.S. Li and C. Clifton. Semantic integration in heterogeneous databases using
neural networks. In Proc. of VLDB Conference, page 1, 1994.

[77] X. Li, J. Han, Z. Yin, J.G. Lee, and Y. Sun. Sampling cube: A framework for
statistical OLAP over sampling data. In Proc. of ACM SIGMOD Conference,
pages 779–790, 2008.

[78] C.X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text cube: Computing IR
measures for multidimensional text database analysis. In Proc. of IEEE ICDM
Conference, pages 905–910, 2008.

[79] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in
relational databases. In Proc. of ACM SIGMOD Conference, pages 563–574,
2006.

[80] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in
relational databases. In Proc. of ACM SIGMOD Conference, pages 115–126,
2007.

[81] S. Madden. From databases to big data. IEEE Internet Computing, 16(3):4–6,
2012.

[82] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with
cupid. In Proc. of VLDB Conference, pages 49–58, 2001.

180

[83] M.C. McCabe, D. Holmes, D.A. Grossman, and O. Frieder. Parallel platform-
independent implementation of information retrieval algorithms. In Proc. of
International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA), pages 1:1–1:6, 2000.

[84] A.K. McCallum. Bow: A toolkit for statistical language modeling, text re-
trieval, classification and clustering. http://www.cs.cmu.edu/ mccallum/bow,
1996.

[85] A.K. McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[86] T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In Proc. of VLDB Conference, pages 122–133, 1998.

[87] A. Natsev, Y.C. Chang, J.R. Smith, C.S. Li, and J.S. Vitter. Supporting
incremental join queries on ranked inputs. In Proc. of VLDB Conference,
pages 281–290, 2001.

[88] C. Ordonez. Optimizing recursive queries in SQL. In Proc. of ACM SIGMOD
Conference, pages 834–839, 2005.

[89] C. Ordonez. Statistical Model Computation with UDFs. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 22(12):1752–1765, 2010.

[90] C. Ordonez. Data set preprocessing and transformation in a database system.
Intelligent Data Analysis (IDA), 15(4):613–631, 2011.

[91] C. Ordonez, Z. Chen, and J. Garćıa-Garćıa. Metadata management for feder-
ated databases. In ACM CIMS Workshop, pages 31–38, 2007.

[92] C. Ordonez and C. Garcia-Alvarado. A data mining system based on sql queries
and udfs for relational databases. In Proc. of ACM CIKM Conference, pages
2521–2524, 2011.

[93] C. Ordonez and J. Garćıa-Garćıa. Referential integrity quality metrics. Deci-
sion Support Systems Journal, 44(2):495–508, 2008.

[94] C. Ordonez, J. Garcia-Garcia, R. Montero-Campos, and C. Garcia-Alvarado.
A referential integrity browser for distributed databases. In Proc. of ACM
SIGMOD Workshop on the Web and Databases (WebDB), pages 14:1–14:2,
2009.

181

[95] C. Ordonez, N. Mohanam, C. Garcia-Alvarado, P.T. Tosic, and E. Martinez.
Fast PCA Computation in a DBMS with Aggregate UDFs and LAPACK. In
Proc. of ACM CIKM Conference, pages 2219–2223, 2012.

[96] C. Ordonez, M. Navas, and C. Garcia-Alvarado. Parallel multithreaded pro-
cessing for data set summarization on multicore CPUs. Journal of Computing
Science and Engineering (JCSE), 5(2):111–120, 2011.

[97] C. Ordonez, I.Y. Song, and C. Garcia-Alvarado. Relational versus non-
relational database systems for data warehousing. In Proc. of ACM CIKM
Workshop on Data Warehousing and OLAP (DOLAP), pages 67–68, 2010.

[98] C.D. Paice. Another stemmer. SIGIR Forum, 24(3):56–61, 1990.

[99] M. Papiani, J.L. Wason, A.N. Dunlop, and D.A. Nicole. A distributed scientific
data archive using the Web, XML and SQL/MED. SIGMOD Record, 28(3):56–
62, 1999.

[100] J.M. Perez, R. Berlanga, M.J. Aramburu, and T.B.Pedersen. R-cubes: OLAP
cubes contextualized with documents. In Proc. of IEEE ICDE Conference,
pages 1477–1478, 2007.

[101] S. Pitchaimalai, C. Ordonez, and C. Garcia-Alvarado. Efficient distance com-
putation using SQL queries and UDFs. In Proc. of IEEE HPDM, pages 533–
542, 2008.

[102] S. Pitchaimalai, C. Ordonez, and C. Garcia-Alvarado. Comparing SQL and
MapReduce to compute Naive Bayes in a single table scan. In Proc. of ACM
CloudDB, pages 9–16, 2010.

[103] L. Qin, J.X. Yu, and L. Chang. Keyword search in databases: the power of
RDBMS. In Proc. of ACM SIGMOD Conference, pages 681–694, 2009.

[104] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334–350, 2001.

[105] L. Salmela, J. Tarhio, and P.Kalsi. Approximate Boyer-Moore string matching
for small alphabets. Algorithmica, 58(3):591–609, 2009.

[106] G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

182

[107] M. Sayyadian, H. LeKhac, A.H. Doan, and L. Gravano. Efficient keyword
search across heterogeneous relational databases. In Proc. of IEEE ICDE Con-
ference, pages 346–355, 2007.

[108] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.
Lecture Notes in Computer Science, 3730(1):146–171, 2005.

[109] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: from unstructured keywords
as queries to structured databases as answers. VLDB Journal, 17(1):117–149,
2008.

[110] J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string
matching. In Proc. of Lecture Notes in Computer Science, pages 348–359.
Springer, 1990.

[111] P. Vassiliadis. A survey of extract-transform-load technology. International
Journal of Data Warehousing and Mining (IJDWM), 5(3):1–27, 2009.

[112] Q.H. Vu, B.C. Ooi, D. Papadias, and A.K.H. Tung. A graph method for
keyword-based selection of the top-K databases. In Proc. of ACM SIGMOD
Conference, pages 915–926, 2008.

[113] G. Weikum. DB&IR: both sides now. In Proc. of ACM SIGMOD Conference,
pages 25–30, 2007.

[114] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs
in XML databases. In Proc. of ACM SIGMOD Conference, pages 527–538,
2005.

[115] N. Ye. The Handbook of Data Mining. Lawrence Erlbaum, 2003.

[116] D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for olap on
multidimensional text databases. In Proc. of SIAM SDM Conference, pages
1124–1135, 2009.

[117] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2):6, 2006.

183

