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Abstract 

Deep brain stimulation surgery involves placing an electrode in the deep brain to 

suppress the motor symptoms of patients with Parkinson’s disease (PD). Currently 

physicians use the standard Unified Parkinson’s Disease Rating Scale to describe the 

tremor. This scale involves subjective anchor-based observations by the clinical expert. A 

wireless accelerometer system is presented that was built from off the shelf components 

to objectively quantify tremor scores.  

The system consists of a Teensy microcontroller and two accelerometers. It 

wirelessly transmits the readings through a Bluetooth module. The data is received by a 

custom C/C++ that parses and transmits the data to the Simulink environment for real-

time visualization and analysis. The system is used to record data from patients with PD 

during and after DBS surgery. In this thesis, we describe the wireless accelerometer 

system in detail and study the correlation of sensor readings with UPDRS scores in the 

different DBS states. In particular, we provide data showing that such a system can be 

used for the objective quantification of tremor symptoms in PD patients. 
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1 Overview 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disorder that affects approximately 

one millions Americans [1]. Symptoms include bradykinesia, rigidity, postural instability, 

freezing of gait, and tremor.  

Tremor is defined as an involuntary rhythmic oscillation of a body part [2]. The 

characteristic tremor of PD, is usually a 3-6 Hz distal resting tremor, but patients with PD 

may also exhibit postural and kinetic tremors [3]. Rest tremor occurs when a body part is 

at rest or relaxed while postural tremor occurs when a body part is maintained at a 

position against gravity, and kinetic tremor occurs during the movement of a body part. 

Rest tremor is the most common and most recognizable symptom of PD, and is, by itself, 

a positive diagnostic criterion for PD [4]. 

PD is caused by a loss of pigmented dopaminergic neurons in the substantia nigra [5]. 

PD is usually often treated with a dopamine (DA) precursor, levodopa. This drug 

effectively does a good job at improvising the motor symptoms of PD, but is associated 

with the long-term development of motor complications.   

Deep brain stimulation (DBS) surgery is widely used in PD patients where 

medications do not sufficiently control motor symptoms, often with dramatic clinical 

benefit. DBS surgery involves implanting electrodes into specific targets in the brain and 

connecting the electrodes to an implanted pulse generator (IPG).  There are two parts to 

this procedure. The first is where the electrodes are implanted in the deep brain, and the 

second is when the IPG is connected and implanted. The IPG is then programmed to 

deliver stimulation at a particular voltage, rate, and pulse width. DBS programming for 
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each patient includes the selection of optimal electrode contacts, voltage, and pulse width 

to maximize efficacy and minimize side effects of stimulation [5][6].   

Placement of high frequency stimulating electrodes in the region of the ventral 

intermediate nucleus of the thalamus can markedly reduce tremor in these conditions, and 

stimulation of either the subthalamicnucleus or the internal segment of the globus 

pallidus may not only reduce tremor, but also decrease bradykinesia, rigidity, and gait 

impairment that plague people with PD. Furthermore, DSB is approved for Essential 

Tremor, PD, dystonia and OCD and is under investigation for the treatment of pain, 

depression, epilepsy and Tourette syndrome.[7]. 

1.2 Unified Parkinson’s Disease Rating Scale 

Currently, the main method of describing the tremor is using the Unified Parkinson’s 

Disease Rating Scale (UPDRS). This scale involves subjective anchor based observations 

made by a clinical expert. It is a 10-20 minute test that consists of a several questions 

from 4 different categories. Each question is answered on a 5 point scale from 0-4 

(0=normal, 1=slight, 2=mild, 3=moderate, 4=severe). The UPDRS scale has received an 

update in 2008 that addresses some problems with the original scale, but still contains 

inherent problems that arise from using human observations as the main measurement 

tool. In particular, the motor sub-score (part III) is subject to difficulties with inter-rater 

reliability, depends on the rater’s experience, and only represents symptom severity at a 

single point in time. These problems include both variations in scores by different raters 

as well as only using a small temporal resolution of ~10 minutes to determine severity. 

Physicians can use the clinical history and examination observations from clinic 

appointments to determine how best to titrate medications for optimal results [8][9][10].  
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1.3 Tremor Analysis 

Tremor is defined as “a rhythmic, involuntary movement of a body part” [2]. Tremor 

exists in all humans in small magnitude and can be physiological. However, pathologic 

tremor disorders exist, and  are classified according to phenomenology  into three 

categories: rest, postural and kinetic tremor [11]. Physiological tremor has different 

origin and cause compared to pathological tremor and manifests differently in terms of 

amplitude and frequency. Pathologic tremors such as essential tremor and Parkinson’s 

disease are associated with a characteristic frequency range, as noted in Table 1.1. The 

frequency of the pathological tremor tends to remain constant with slight variations [13] 

[14]. Tremor is the most recognizable symptom of PD, so it is also one of the most 

studied and used metrics to help differentiate PD from other tremor disorders. 

Table 1.1 Involuntary Hand Tremor[3][4][14] 

Tremor Type Frequency 

Normal Hand Tremor 9-25 Hz 

Essential Tremor 5-10 Hz 

Parkinson’s Disease 3-6 Hz 

 Tremor analysis refers to the recording of identifiable characteristics of tremor 

through the use of special hardware or techniques. The two most useful features from the 

tremor analysis are frequency and amplitude. Tremor frequency refers to the number of 

oscillations per second and is usually measured in cycles per second (Hz), while tremor 

amplitude refers to the degree of linear or angular displacement of the limb and is 

typically measured in degrees or millimeters. Although tremor frequency is usually used 

to classify tremor, tremor amplitude has an important role in describing the severity of 
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tremor. The degree of linear or angular displacement of the limb or body part, or the 

tremor amplitude, is generally measured in millimeters or degrees.  

There are a few different methods used to analyze tremor. The most commonly 

used are electromyography, spirograms, and accelerometry. [15]. EMG provides 

additional useful information about the activity of muscles involved in the generation of 

tremor. EMG activity may be recorded using needle, wire electrodes, or more typically 

surface electrodes overlying active muscles. The EMG can provide information about 

motor unit recruitment and synchronization and can also clarify the relationship between 

involved muscles and tremulous movements, revealing whether antagonist muscles (such 

as flexors and extensors of the wrist) are working at the same time or alternately to 

produce tremor. To utilize the EMG most appropriately in tremor analysis, the signal has 

to be processed by rectification and integration or smoothing to place its frequency 

profile into the tremor range. The recordings require a relatively high sampling frequency 

of 500 Hz or more. EMG recordings require a lengthy setup for using needle or wire 

electrodes. EMGs that utilize surface electrodes may have issues in locating landmarks 

for proper electrode placement because of loose skin or excess adipose tissue [16][17]. 

Archimedean spirals drawn on a digitizing tablet can be analyzed in both the x–y 

plane of the tablet and the z plane of pen pressure perpendicular to the tablet. By 

mathematically ‘‘unraveling’’ drawn spirals and averaging multiple trials together, 

tremor characteristics such as frequency, direction, and amplitude can be detected and 

quantified, as well as an abundance of other variables, including drawing speed and 

acceleration, loop-to-loop width tightness and variation, and drawing pressure over time 

[15][18].  
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Accelerometry is accomplished through the use of accelerometers that measure static 

or dynamic acceleration forces. Miniature accelerometers can be attached to the limbs 

and occasionally the head, neck, or trunk, and usually do not interfere with voluntary or 

involuntary movements. These signals can be fed into a microcontroller or computer to 

filter out low frequency signals such as drift and high frequency electronic interference.  

Integration is needed to determine the displacement of the oscillating body part and to 

better perceive the sinusoidal motion of the tremor [19]. Microcontrollers are capable of 

recording and analyzing large amounts of accelerometric data quickly and efficiently. 

They can give almost instantaneous accelerometer signals. The signals can be either pre- 

or post-processed to remove low frequency noise such as drift or high frequency noise 

such as 60 Hz power signals from electricity. A single accelerometer’s data can be 

difficult to appreciate clinically because sinusoidal motion is not easily perceived in 

accelerometric or rotational units. If using a gyroscope or multiple accelerometers, one 

can calculate the displacement using mathematical double integration. Tremor analysis is 

most useful when the clinical signs are subtle, such as distinguishing between 

Parkinsonian tremor and essential tremor.    

1.4 Previous Work 

Although accelerometers were proposed for the quantification of movement as early 

as the 1960s, the technology was not at a point where they could be efficiently utilized 

due to cost, reliability and size, which often disturbed natural movements [20]. Since its 

beginnings, accelerometer technology has evolved to the point of demonstrating high 

levels of quality and reliability. Their gradual miniaturization plus the decreased cost 
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from the economies of scale, has brought the technology to a point where they are more 

practical for recording in clinical settings.   

Salarian et al. have studied movement characteristics with their wired accelerometer 

system shown in Figure 1.1. Their system used a wired accelerometer in a custom casing 

to record directly to an SD flash card. This storage solution didn’t allow real time 

visualization/processing. Their device had a bulky size for the sensor casing that could 

alter natural movement [10][21][22]. 

 

Figure 1.1 Salarian et al. device for capturing accelerometer data [10].  

In the past half-decade, wireless accelerometer systems have been increasing in use.  

LeMoyne et al. have used wireless systems to record data with patients, without tethering 

them to wires[23]. One of the earliest wireless accelerometer systems used an iPhone for 

the sensor as shown in Figure 1.2. This was convenient because it did not require much 

construction or programming but remained expensive and bulky. Since then, the field has 

improved with more specialized devices and modules to record wirelessly [23][24]. 
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Figure 1.2 LeMoyne et al. using an iPhone to capture accelerometer data wirelessly[23] 

Based on the limitations of present technology, we present an accelerometry system 

that will accurately measure tremor characteristics through an inexpensive, lightweight, 

wireless system that is robust enough to capture data at a high level of fidelity, while still 

being modular and customizable enough to add to our existing research interface. An 

accelerometer based system does not require high sampling frequencies. 50 Hz to 100 Hz 

is high enough to capture the required data. The wireless interface removes sophisticated 

and crowded wires in the operating room space. 
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2 Hardware/Software 

 

Figure 2.1 Schematic of the system from analog accelerometer data to digital recording and visualization in 

Simulink 

2.1 System 

A schematic diagram of the wireless accelerometer system is shown in figure 2.1. The 

system consists of a 72 MHz Teensy 3.1 microcontroller with a Cortex-M4 core that 

digitizes two GY-61 3-axis accelerometers with an ADXL335 chip with 10bit A/D 

resolution and 100Hz sampling frequency. The accelerometers were soldered to one end 

of a HyperThin Flexible HDMI cable (Sanho Corporation, Fremond, CA). The other end 

of the HDMI cable was connected to a 5pin JST connector. The matching plugs for the 

connectors were soldered to the microcontroller. The cable was chosen to allow the 

subjects full range of motion, while not weighing them down or getting tangled. It 

allowed for quick removal and storage of the system. The system wirelessly transmits the 

readings through an HC-05 Bluetooth module (BT) with a CC2541 chip at a baud rate of 

115200.The data is received by a custom C++ program that parses and transmits the data 

through the local UDP port to be recorded by MATLAB/SIMULINK. The total price was 

$70.92, with the detailed list of components listed in table 2.1 below. 
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Table 2.1 Total cost of system 

Item Price 

Teensy $19.80 

ADXL335 x 2 $14.95 

HC-06 Bluetooth Module $5.73 

850mAh LiPo battery $9.95 

Hyperthin HDMI cable $18.99 

5-pin JST SM Plug + Receptacle $1.50 

Total 70.92 

 

 

Figure 2.2 3D printed enclosure 

The system was enclosed in a custom 3D printed box. The 3D file was created on 

Rhino3D (McNeel North America, Seattle, Washington). Figure 2.2 shows the 3D file 

with the dimensions of the box (52.0 mm x 38.0 mm x 23.1 mm). After assembly, the 

accelerometers could be unplugged for storage. Figure 2.3 shows the system before and 

after being assembled. 
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Figure 2.3 Accelerometer system before and after being assembled in 3D printed enclosure 

2.2 Arduino 

Arduino is the name of a family of microcontroller boards with low cost and diverse 

functionality which received noticeable interest in the past decade [25]. The boards are a 

combination of an ATMEL microprocessor including RAM, flash memory, and 

input/output channels. In this study, we use the Teensy 3.1 (PJRC, Portland, Oregon) as 

shown in figure 2.4. It runs on a 72 MHz Cortex-M4 core with 64 kb RAM and 256 kb 

flash memory. It has 2 ADCs with 13 bit possible resolution (10 bit used in our system). 

 

Figure 2.4 Teensy 3.1 microcontroller.  

Part of the Teensy/Arduino package is a programming environment, where code is 

written in a C-like language, and transferred to the Teensy using a USB cable. After 
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programming, a Teensy can work while being connected to a PC (and thereby transmit 

data), or operate standalone. The Arduino family can be used as a tool for a measurement 

platform. First of all, it connects easily by USB to a PC, and can transmit data using a 

serial port to these operating systems. It is also open source hardware, which means that 

everybody can access, modify, and use the board design. Likewise, the software is free 

and open source. This has led to both a low price of a board (~$20) and a large 

community that develops hardware and software compatible with the Arduino. The 

boards can be connected to actuators and sensors, either commercial or build from 

scratch. Many extensions of a board come as so-called shields, additional small boards 

that are plugged into an Arduino board. For instance, some shields provide wireless 

access (WiFi, Bluetooth, etc.), whereas others allow storing data on flash memory cards. 

In addition, this idea of extending a board by plugging in components is taken further 

with small components that can be connected by plugging them directly into the I/O pins. 

A pinout of the available I/O pins are shown in figure 2.5. Users can connect LEDs, small 

vibrating motors, buttons, accelerometers, gyroscopes, or hall sensors to the Arduino 

within seconds. With the active community and open source code, this guarantees an 

opportunity to use a wide range of sensors to create new kinds of measurement tools [26]. 

A USB cable connects Arduino and PC, and provides a serial connection. On the PC 

side, driver software creates a virtual serial (COM) port. This serial port can be accessed 

with any software that can communicate with a serial port. The driver offers several baud 
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rates; for instance, the driver for the Teensy offers 57,600 and 115,200 baud as the fastest 

speeds.  

Figure 2.5 Teensy 3.1 pinout sheet 

Despite its simplicity and low price, the Arduino can function as a reliable controller 

for experimental settings. When investigating how an Arduino can replace more 

complicated hardware as a standalone controller of experimental input and stimuli, 

D’Ausilio confirmed that signals generated by an Arduino were reliably constant in 

length and delay. He also found that typical combinations of input and output were 

performed with remarkable accuracy and precision, often with standard deviations of 

only microseconds [26], [27]. 

2.3 Accelerometer Sensor 

Accelerometer sensors measure the acceleration experienced by the sensor and 

anything to which the sensor is directly attached. Accelerometer sensors have many 

applications. The most common commercial application is impact sensors for triggering 
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airbag deployment in automobiles: when the acceleration exceeds a certain amount, an 

accident is assumed and the airbags deploy. Such sensors are designed to be rugged and 

reliable, and are made in high volume and at low cost by several chip manufacturers. 

Airbag sensors don’t need to be very accurate: with a threshold of ~50 g’s, an accuracy of 

1 to 2 g is acceptable [1]. When working with accelerometers in the earth’s gravitational 

field, one should always consider the acceleration due to gravity. The signal from an 

accelerometer sensor can be separated into two signals: the acceleration from gravity, and 

external acceleration.  

 

Figure 2.6 ADXL335 accelerometer modules. Top module has headers and wrapping already in place. 

The goal of this thesis is to measure the 3 dimensional acceleration of the human 

hand with accuracy and precision, while not weighing down or preventing normal 

motion. With these necessities in mind, we required a small, lightweight accelerometer. 

The ADXL335 was adequate for our study. It is shown in figure 2.6 with and without the 

protective shrink wrap and headers. It is a complete 3-axis acceleration measurement 

system. The ADXL335 has a measurement range of ±3 g minimum. The output signals 
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are analog voltages that are proportional to acceleration. The accelerometer can measure 

the static acceleration of gravity in tilt-sensing applications as well as dynamic 

acceleration resulting from motion, shock, or vibration. The sensor is a polysilicon 

surface-micromachined structure built on top of a silicon wafer. Polysilicon springs 

suspend the structure over the surface of the wafer and provide a resistance against 

acceleration forces. Deflection of the structure is measured using a differential capacitor 

that consists of independent fixed plates and plates attached to the moving mass. The 

fixed plates are driven by 180° out-of-phase square waves. Acceleration deflects the 

moving mass and unbalances the differential capacitor resulting in a sensor output whose 

amplitude is proportional to acceleration. Phase-sensitive demodulation techniques are 

then used to determine the magnitude and direction of the acceleration [28][29]. 

2.4 Bluetooth 

Bluetooth is a wireless communication technology for exchanging data over short 

distances. It uses a master-slave type of network gathering a maximum of eight active 

nodes.  A Bluetooth unit includes a radio which operates in the 2.4GHz frequency in the 

free ISM-band (Industrial, Scientific, and Medical). Bluetooth devices communicate to 

each other through a piconet.  
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Figure 2.7 Bluetooth piconet showing different possible combinations of master/slave connections 

A typical piconet is shown in figure 2.7. It is formed with up to 8 devices. One of the 

devices is the piconet master, while up to 7 others can connect as piconet slaves. 

Although there is only one master device in each piconet, a device can be a master as 

well as a slave if it is in multiple piconets.  The master schedules packet transmission to 

every slave node in slots of 625us. After each transmission, the master device waits 

another 625 us for packet reception. Therefore, the maximum theoretical speed at which a 

Bluetooth device can send information is 1.25 ms [30]. The HC-05 Bluetooth module 

was chosen as the wireless protocol for our system because it provided an acceptable 

transfer speed as well as low power consumption. 
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Figure 2.8 HC-05 Bluetooth module (BT) with a CC2541 chip 

2.5 Teensy Programming 

The Teensy was programmed to read both the accelerometer’s data and composes it 

in a form that will be read by our software. It will do this by scaling the values to a range 

of consistent length while adding a terminator character (!) to the end of each packet. It 

will then output the values over a Bluetooth serial port at 100 Hz. A flow chart of the 

logic is shown in figure 2.9.   

 

Figure 2.9 Flowchart of teensy programming 

2.6 Custom software 

SIMULINK has known issues that prevent it reading directly from a virtual serial port 

created from a Bluetooth connection. In order to circumvent this issue, we needed to 

create a workaround. First we used an open source TCP/IP based redirection program to 

forward all the serial data to a TCP/IP address that MATLAB/SIMULINK could then 

read. The program faced problems with the parsing in that it would not align the data 
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correctly. It also was very crash prone and would require a reboot of the whole model. 

This would be impossible for data collection, especially in the OR.  

We then set to create a custom C++ solution from scratch that would solve the issues 

that the previous solutions left. The program was created in Visual Basic 14 (Microsoft, 

Inc.). We based it on the Windows Multimedia Timer for high resolution (<5 ms) timing.  

The program creates a timer that runs every 1 ms to check for new data in the serial port 

(real or virtual). It then reads the data until it comes to a custom terminator character (!). 

From there, it checks to see if the packet is the correct size; if it is, the UDP port is open 

and the transmission begins. 

Because of the nature of Bluetooth transmission not being as stable as direct USB, 

many of the packets were being delayed inconsistently. This was causing errors in 

dropped and delayed packets. To compensate for this, a 10 packet buffer array was 

introduced to the program which fills up to 5 packets before beginning the transmission. 

This puts the inherent delay of the system at 50 ms, which is adequate for our purposes. 

The first in first out (FIFO) buffer will continuously output a packet every 10 ms. A flow 

chart of the logic of the buffer is shown in figure 2.10. 
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Figure 2.10 Flow chart of custom C++ program to parse and transmit data via USB. 

 In the figures below, the utility of the addition of the buffer is shown. In figure 

2.11, the same signal is sent via BT-UDP. The signal is more discrete and not as smooth. 

This is due to the inconsistent jitter from the BT communication. Figure 2.12 shows 
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another sine wave sent through BT-UDP, except this time the FIFO buffer is 

implemented.  

 

Figure 2.11 BT-UDP connection before buffer is added 

 

Figure 2.12 BT-UDP connection after buffer is added 

 With the buffer, the BT-UDP signal is comparable to the USB-UDP signal. The 

dynamic sized buffer allows for a consistent flow of data to Simulink, which improves 
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the signal fidelity while adding a small fixed latency to the data. The buffer will vary in 

size but allow for consistent flow of data.  

 

Figure 2.13 Buffer level during data transmission 

 The buffer level is usually at its highest point at the beginning of the UDP 

transmission. This is because it stores 5 packets before it begins. After this point, the 

buffer will empty slightly before stabling out. It remains steady at approximately 2-5 
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packets in the buffer, while rarely going up to 6 or down to 1. The buffer level’s variance 

can be seen in figure 2.13. As long as it never gets to 0, the UDP port will always have 

data available, thus compensating for the jitter of the BT communication. 

2.7 Latency 

The wireless nature of the system could present issues with timing that we needed to 

evaluate. We needed to calculate the latency of the whole system to determine if the 

fidelity of our wireless solution was acceptable for the signals we needed. To calculate 

this we sent a 5 V 10 Hz pulse wave for 500 seconds from a function generator to both 

the microcontroller as well as the parallel port of a windows computer (optimized for real 

time computation) as shown in figure 2.14. The Teensy is connected via USB or BT 

while parallel port is connected directly to the bus. We then recorded and compared the 

timing of the two signals on MATLAB/SIMULINK as shown in figure 2.15.  We used a 

parallel port for its extremely low latency. It has been measured at less than 1 ms in the 

literature[31].  

 

Figure 2.14 Flowchart of latency test. The Function generator emitted a pulse signal simultaneously to both 

systems.  
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Figure 2.15 Simulink model for testing latency of the system. When testing USB-UDP and BT-UDP, the 

‘Serial Receive’ and ‘Serial Configuration’ blocks were replaced by a ‘UDP Receive’ block. 

After running each test, the peaks of the signals were subtracted from each other 

to give us the latency of the system. Three different protocol setups were used: direct 

USB, USB to UDP, and BT to UDP.  
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Figure 2.16 Histogram of latency between parallel port and USB. This hardwired solution was expected to 

be the most reliable and lowest latency. 
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Figure 2.17 Histogram of latency between parallel port and USB-UDP. 

 

 

Figure 2.18 Histogram of latency between parallel port and BT-UDP. This setup was used in the actual 

system. 
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Figure 2.19 Box plot of latency between all protocols. 

Table 2.2 Statistical features of latency (ms) test for all protocols. Note that the Direct USB had several 

latencies that were small enough to go undetected and reported as 0 ms. 

Protocol Mean Standard Deviation Median 

Direct USB 2.0750 4.5203 0 

USB-UDP 10.8050 3.7496 10 

BT-UDP 45.1230 10.5878 40 
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3 Operating Room Data 

3.1 Overview 

The system was placed on the tremor dominant side of 3 PD patients during DBS 

surgery. The two accelerometers were placed on the subjects hand and foot. The subjects’ 

activity was measured from when the microelectrode implantation began to when it 

reached 5 mm past the target site.  

 

Figure 3.1Intraoperative recording from tremor dominant side of patient during DBS surgery. The arrow is 

pointing to the location of an accelerometer 

 The patients’ tremor was visualized and recorded along with neural data. In figure 

3.2, the accelerometer data wave form is shown.   



28 
 

 

Figure 3.2 Accelerometer wave forms captured during DBS surgery 

4 Ambulatory Data 

4.1 Experimental Design 

We collected data from 4 patients with PD treated with deep brain stimulation (DBS) 

in the Parkinson’s Disease Center and Movement Disorders Clinic at Baylor College of 

Medicine. The two accelerometers were attached to either of the patient’s hands. Patients 

were then asked to perform 3 tasks to examine tremor: resting quietly to assess rest 

tremor (rest), forward posture holding to assess forward postural tremor (fwd) and lateral 

posture holding to assess lateral postural tremor (lat). The tasks are shown in figure 4.1. 
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Figure 4.1 Patient during 3 different tasks of the procedure. 

The tasks were performed under 3 DBS conditions: with the DBS on at their usual 

setting, with the DBS at a lower (intermediate) setting, and with the DBS off. Each 

patient took approximately 10 minutes to go through the whole exam. 

We recorded all accelerometer data along with video using a custom model we 

developed in MATLAB/Simulink (The MathWorks Inc, Natick, Massachusetts). This 

model runs in soft real-time and receives the accelerometer data from the UDP port and 

displays the signal waveform and the time-frequency plot. The patients were recorded 

during these tests using a Logitech c270 webcam that was synchronized with the rest of 
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the data by capturing the frame number along with the accelerometer data [32] The 

recording set up we used is shown in figure 4.2. 

 

Figure 4.2 Screenshot of raw data and time-frequency map from patient trial. 

4.2 Results and Discussion 

The system recorded and visualized the changes in acceleration with respect to time. 

As is the case with accelerometers, they are prone to drift after time. To compensate for 

that, the data was detrended by subtracting the mean value of the data set from each value 

in the data set. After the drift was compensated for, the scale of the dataset was reshaped 

from 0 to 1023 (10 bit analog value) to -3 to 3(range of accelerometer). The data from 

before and after this scaling and detrending can be seen in figure 4.3.  
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Figure 4.3 A tremor is shown before and after scaling to g’s and compensating for drift by offsetting the 

data. 

Time-frequency maps were used during the test for visualization as well as analysis. 

In figure 4.4, patient 3’s fwd tremor recordings are shown. We can see the frequency of 

the tremor falls into the range we would expect in Parkinsonian tremor (3-6 Hz). 
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Figure 4.4 Comparison of patient 3 forward postural tremor between ON, INT, and OFF states. The time-

frequency map illustrates the increasingly stronger presence of a tremor around the 5 Hz 

frequency band. 

 

4.3 Analysis 

    The patients’ data was segmented into 3 different parts (one for each task). The power 

spectrum density (PSD) estimates of each of these segments under the 3 DBS conditions 

(ON, INTERMEDIATE, OFF) were then calculated using a 1 second Hanning window 

with 50% overlap. An example of the PSD difference between DBS OFF and INT are 
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shown below in figures 4.5 and 4.6. 

 

Figure 4.5 Patient 2 rest tremor while DBS is OFF. The peaks in the 3-6 Hz range are very prominent. 

 

Figure 4.6 Patient 2 rest tremor while DBS is turned to an INT setting. The peaks in the 3-6 Hz range are 

much smaller and that is reflected in the less severe tremor in the time domain. 

To capture the power of the tremor, the root mean square was calculated from 

between 3-6 Hz frequency. In typical parkinsonian tremor, it is expected that there is a 
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significant peak in this range, thus causing a large proportion of the power of the 

spectrum to also exist in this range. An example is shown in figure 4.5 and 4.6 which 

show a peak for all 3 axes in between 3-6 Hz while the DBS is OFF. This is drastically 

reduced when the DBS is set to an INT level. While there is still a peak in the same 

frequency range, the reduced tremor severity is reflected in the smaller peak. 

 Figures 4.7-4.10 show the total energy for each DBS state. For all but patient 4, there 

is a downward trend in power when going from DBS OFF to ON. 

Table 4.1 Total energy (g) in 3-6 Hz band  

P

at

ie

nt 

Off Intermediate On 

Rest Fwd Lat Rest Fwd Lat Rest Fwd Lat 

1 0.27700 0.39260 0.22260 0.00131 0.06296 0.00002 0.00024 0.00037 0.00001 

2 0.40814 1.96352 6.92297 0.02080 0.34970 2.59953 0.00798 0.00840 0.01928 

3 7.60251 28.71398 5.10005 0.00358 0.10039 0.24431 0.00506 0.06531 0.09567 

4 0.00038 0.11853 1.73476 0.00051 0.01230 0.21634 0.00049 0.00718 0.88312 
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Figure 4.7 Log of total energy in 3-6 Hz band for subject 1 during rest task 

 

Figure 4.8 Log of total energy in 3-6 Hz band for subject 2 during rest task 
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Figure 4.9 Log of total energy in 3-6 Hz band for subject 3 during rest task 

 

Figure 4.10 Log of total energy in 3-6 Hz band for subject 4 during rest task 
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Figure 4.11UPDRS sub score vs log of total energy for all patients with DBS OFF and during rest task 

 In figure 4.11, the log of total energy during the rest task is compared to 

physicians UPDRS score during the rest task. The correlation was calculated between the 

total energy and the UPDRS score for the  rest task. 

Table 4.2 Pearson's correlation coefficient and Spearman correlation for total energy in 3-6 Hz band and 

UPDRS sub score during rest task 

Characteristics 
Pearson Correlation Spearman Correlation 

R p ρ p 

Total Energy 3-6 Hz 

Rest 

0.4345 0.1581 0.7379 0.3333 
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Figure 4.12 Log of total energy for all patients and all DBS states during rest 

Table 4.3 Results of Pearson correlation and Spearman Rank Correlation between total energy between 3-6 

Hz band of the accelerometer signal and the UPDRS sub scores for all tasks. 

Characteristics 
Pearson Correlation Spearman Correlation 

R p ρ p 

Total energy 3-6 Hz 0.569 0.0003 

 

0.6998 4.61E-06 

5 Discussion 

5.1 Conclusion 

This study shows a system that will allow objective, accurate information on the 

existence and severity of tremor as a tool to supplement clinical observations. It can 

objectively measure both frequency and severity (amplitude) of tremor, based on PSD 

analysis. The system was able to record accelerometer data that confirmed that the total 

energy of all 3 axes in the 3-6 Hz band can be used as a characteristic for UPDRS 

correlation. This wireless sensor interface will allow physicians to identify meaningful 

differences in tremor severity that might be difficult to stratify on an ordinal scale such as 

the UPDRS. Furthermore, the system can easily be added to the clinical assessment 

procedure. 
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5.2 Future Work 

There are several possible optimizations that can be made to the system. Some of the 

changes are simple while others would need significant work or a complete redesign of 

the system. 

Future work should include further miniaturization and improvement of battery life of 

the hardware. Although the Teensy was a good microcontroller for the scope of this 

study, a bare AVR chip would have a much smaller footprint. Not only would the size of 

the microcontroller be smaller, the Bluetooth module can be built into the AVR chip. 

Along with the small size, the less power consumption would allow for us to use a 

significantly smaller battery. This would help in the comfort level for the patient as the 

battery was the largest part of the system. This miniaturization and battery life 

improvement can allow for long term continuous recording. The dynamic temporal 

tremor data from long term recording can be analyzed and processed by computers and 

physicians to offer highly personal treatment plans as well as offer insight on how motor 

symptoms change over time in regards to DBS stimulation ON and OFF states.   

In order to more accurately measure displacement from accelerometer readings, a second 

accelerometer can be affixed to the same limb. Although this would increase the number 

of sensors to 4, the added benefit of measuring displacement would be beneficial as it is a 

direct parameter to look for in UPDRS test. With a single accelerometer on each limb, the 

double integration leaves too much room for error for an accurate interpretation of 

displacement. Further research into more complex algorithms can be done to expand the 

scope of this device in order to detect more difficult to detect conditions such as 

bradykinesia, dystonia, and freezing of gait. 
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Although it was not done in this study, it would be interesting to use this system to 

quantify the time from turning the stimulator off to when the tremor emerges. While most 

patients’ tremor begins shortly after the stimulation is turned off, a look into the statistical 

significance of between stimulation voltage, latency of tremor starting, and severity of 

tremor. Other studies can use this system to look at quantifying or describing the effect of 

frequency of stimulation on tremor reduction, the latency to onset or offset of tremor 

according to DBS condition, or intraoperative clinical testing to determine optimal 

electrode localization.  
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Appendix A 

Teensy Code 

const int xpin1 = A9; 

const int ypin1 = A8; 

const int zpin1 = A7; 

 

const int xpin2 = A6; 

const int ypin2 = A5; 

const int zpin2 = A4; 

 

int x_1 = 0; 

int y_1 = 0; 

int z_1 = 0; 

 

int x_2 = 0; 

int y_2 = 0; 

int z_2 = 0; 

 

long interval=10; 

long previousMs=0; 

 

void setup()  { 

 // analogReference(EXTERNAL); 

 // analogReadResolution(12); 

  //analogReadAveraging(32);  

  Serial1.begin(115200); 

} 

 

void loop() { 

  unsigned long currentMs=millis();   

 

  x_1 = analogRead(xpin1); 

  y_1 = analogRead(ypin1); 

  z_1 = analogRead(zpin1); 

 

  x_2 = analogRead(xpin2); 

  y_2 = analogRead(ypin2); 

  z_2 = analogRead(zpin2); 

 

  x_1=map(x_1,0,1023,1000,2023); 

  y_1=map(y_1,0,1023,1000,2023); 

  z_1=map(z_1,0,1023,1000,2023); 

 

  x_2=map(x_2,0,1023,1000,2023); 

  y_2=map(y_2,0,1023,1000,2023); 

  z_2=map(z_2,0,1023,1000,2023); 

 

  if(currentMs-previousMs>interval) { 

    previousMs=currentMs; 

     

    Serial1.print(x_1); 

    Serial1.print(','); 

    Serial1.print(y_1); 
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    Serial1.print(','); 

    Serial1.print(z_1); 

    Serial1.print(','); 

    Serial1.print(x_2); 

    Serial1.print(','); 

    Serial1.print(y_2); 

    Serial1.print(','); 

    Serial1.print(z_2); 

    Serial1.print("!"); 

  } 

} 

 

Appendix B  

   

Serial-UDP software code 
 
#define _CRT_SECURE_NO_WARNINGS 

#define _WINSOCK_DEPRECATED_NO_WARNINGS 

#define PORTTYPE HANDLE 

#define BAUD 115200 

 

#include <winsock2.h> 

#include <Ws2tcpip.h> 

#include <stdio.h> 

#include <windows.h> 

#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <stdarg.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <errno.h> 

#include <iostream> 

#include <conio.h> 

#include <vector> 

 

#pragma comment(lib, "winmm.lib") 

#pragma comment(lib, "Ws2_32.lib") 

 

PORTTYPE open_port_and_set_baud_or_die(const char *name, long baud); 

void close_port(PORTTYPE port, const char* cport); 

void die(const char *format, ...); 

bool setClipBoardString(std::string source); 

 

UINT period; 

UINT dur; 

const char *COMport; 

unsigned short port; 

char COM[80]; 

 

UINT idx; 

UINT dmp = 0; 
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double *data = NULL; 

UINT counter = 0; 

LARGE_INTEGER start, current, fs; 

 

COMMTIMEOUTS timeout; 

DWORD n = 0; 

BOOL r; 

char Recieve_Buffer[1024]; 

int iResult; 

WSADATA wsaData; 

SOCKET SendSocket = INVALID_SOCKET; 

sockaddr_in RecvAddr; 

 

DWORD dwCommEvent; 

char  chRead; 

PORTTYPE fd; 

char ch[1]; 

COMSTAT comStat; 

DWORD   dwErrors; 

BOOL    fOOP, fOVERRUN, fPTO, fRXOVER, fRXPARITY, fTXFULL; 

BOOL    fBREAK, fDNS, fFRAME, fIOE, fMODE; 

char ParseBuf[1024]; 

int k = 0; 

 

int ix = 0, tm = 0; 

bool UDP_ready = FALSE; 

double time_diff = 0; 

int trigger_value; 

int packet_size; 

int packet = 0; 

std::vector<char> sendbuffer(n, 0); 

int packets_to_skip = 5; 

int j=0; 

float timer_buf; 

float timer_buf_original; 

float offset; 

std::vector<char> buffer(n, 0); 

 

void CALLBACK SynchSender(UINT nIDEvent, UINT msg, DWORD_PTR dwUser, 

DWORD_PTR dw1, DWORD_PTR dw2) 

{ 

    FILE *fp = *(FILE **)dwUser; 

 

    //-----------------------------------------------------------------

- 

    // Calculates time difference between sent packets 

    QueryPerformanceCounter(&current); 

    DOUBLE time_difference = ((double)(current.QuadPart - 

start.QuadPart)) / fs.QuadPart; 

    time_difference *= 1000; 

 

    //-----------------------------------------------------------------

- 

    // Get and clear current errors on the port. 

    ClearCommError(fd, &dwErrors, &comStat); 
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    //-----------------------------------------------------------------

- 

    // Reads and parses serial data. Then puts it into a buffer. Once 

the buffer 

    // fills up with the trigger value amount of packets, it enables 

UDP tranmission 

    // mode. 

    while (comStat.cbInQue >= 1) {  // comStat.cbInQue bytes have been 

received, but not read 

        r = ReadFile(fd, 

            ch, 

            1, 

            &n, 

            NULL); 

 

        ClearCommError(fd, &dwErrors, &comStat); // Get and clear 

current errors on the port 

 

        Recieve_Buffer[k] = ch[0]; 

        k++; 

 

        if (ch[0] == '!' && k == packet_size) { 

            j++; 

            if (j > packets_to_skip){ 

                k = 0; 

                if (ix <= buffer.size()){ 

                    for (int i = 0; i < packet_size; ++i){ 

                        buffer[ix] = Recieve_Buffer[i]; 

                        ix++; 

                    } 

                    packet++; 

                } 

                else{ 

                    printf("buffer overrun\n"); 

                } 

 

                if (UDP_ready == FALSE && packet == trigger_value) { 

                    printf("entering UDP mode...\n\n"); 

                    UDP_ready = TRUE; 

                } 

            } 

            else { 

                k = 0; 

                printf("packet skipped\n"); 

            } 

        } 

        else if (ch[0] == '!' && k != packet_size) { 

            printf("\nmisaligned packet\n"); 

            k = 0; 

        } 

    } 

 

    //-----------------------------------------------------------------

- 

    // Sends a packet of data to UDP and realigns buffer index 

    if (UDP_ready && packet > 0 && time_difference >= timer_buf) { 

        for (int i = 0; i < packet_size; ++i){ 
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            sendbuffer[i] = buffer[i]; 

        } 

        --packet; 

         

        //-------------------------------------------------------------

----- 

        // Adjusts the timer to send data to UDP by a given offset to 

keep 

        // the buffer level steady. 

        if (packet > trigger_value + 5){ 

            timer_buf = timer_buf_original - offset; 

        } 

        else if (packet < trigger_value - 5){ 

            timer_buf = timer_buf_original + offset; 

        } 

        else{ 

            timer_buf = timer_buf_original; 

        } 

 

        start = current;//resetting time 

 

        const char* SEND_BUFFER = &sendbuffer[0]; 

 

        iResult = sendto(SendSocket, 

                        SEND_BUFFER, 

                        packet_size, 

                        0, 

                        (SOCKADDR *)& RecvAddr, 

                        sizeof(RecvAddr)); 

 

        if (iResult == SOCKET_ERROR) { 

            wprintf(L"sendto failed with error: %d\n", 

WSAGetLastError()); 

            closesocket(SendSocket); 

            WSACleanup(); 

            exit(0); 

        } 

 

        ix = ix - packet_size; 

 

        printf("Time Difference: %.4lg\tBuffer Level: %4d\r", 

time_difference, ix); 

        fprintf(fp, "%d\t%lg\t%lg\n",ix,time_difference,timer_buf); 

 

        for (int i = 0; i < buffer.size() - packet_size; i++){ 

            buffer[i] = buffer[i + packet_size]; 

        } 

    }    

 

    //-----------------------------------------------------------------

- 

    // Closes application after specified duration 

    if (dur < idx) { 

        idx++; 

        close_port(fd, COMport);  

        exit(0); 

    } 
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} 

 

 

int main(int argc, char **argv) 

{ 

    system("cls"); 

    printf("\n\n\t\t--------------------------------------\n"); 

    printf("\t\tSerial to UDP Command Line Application\n"); 

    printf("\t\t--------------------------------------\n\n"); 

 

    if (argc == 9) 

    { 

        COMport = argv[1]; 

        packet_size = atoi(argv[2]); 

        port = atoi(argv[3]); 

        period = atoi(argv[4]); 

        dur = atoi(argv[5]) * 1000; 

        timer_buf_original = std::atof(argv[6]); 

        offset = std::atof(argv[7]); 

        trigger_value = atoi(argv[8]); 

 

    }   else if (argc != 9){ 

        std::cout << "COM port(\"COM#\"):"; 

        std::cin.getline(COM, sizeof COM); 

        COMport = COM; 

        std::cout << "Bytes to read:"; 

        std::cin >> packet_size; 

        packet_size = (int)packet_size; 

        std::cout << "Port:"; 

        std::cin >> port; 

        std::cout << "Period(ms):"; 

        std::cin >> period; 

        std::cout << "Duration(s):"; 

        std::cin >> dur; 

        dur = dur * 1000; 

        std::cout << "Timer(ms):"; 

        std::cin >> timer_buf_original; 

        std::cout << "Timer Offset(ms):"; 

        std::cin >> offset; 

        std::cout << "Trigger Value:"; 

        std::cin >> trigger_value; 

 

        char usage[100]; 

        sprintf(usage, "%s %d %d %d %d %g %.g %d", COMport, 

packet_size, port, period, dur / 1000, timer_buf_original, offset, 

trigger_value); 

        setClipBoardString(usage);  

 

        printf("\n\t\tParameters copied to clipboard\n\n"); 

            system("pause"); 

    } 

 

    system("cls"); 

    printf("\n\n\t\t--------------------------------------\n"); 

    printf("\t\tSerial to UDP Command Line Application\n"); 

    printf("\t\t--------------------------------------\n\n"); 
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    printf("COM Port:%s\nPacket 

Size:%d\nPort:%d\nPeriod:%d\nDuration:%d\nTimer:%g\nTimer 

Offset:%g\nTrigger Value:%d\n", COMport, packet_size, port, period, 

dur/1000, timer_buf_original, offset, trigger_value); 

 

    timer_buf = timer_buf_original; 

    dur = ((double)dur) / period; 

    data = new double[dur]; 

 

    TIMECAPS    tc; 

    MMRESULT    m_nTimerId; 

    UINT        wTimerRes; 

    FILE        *fp; 

 

    fp = fopen("Teensy_Buffer.txt", "w+t"); 

 

    //-----------------------------------------------------------------

- 

    //resize buffers to double the size of the value at trigger point 

    int n = packet_size * trigger_value * 2; 

    buffer.resize(n); 

    sendbuffer.resize(packet_size); 

 

    //-----------------------------------------------------------------

- 

    // Open COM port 

    fd = open_port_and_set_baud_or_die(COMport, 115200); 

    printf("\nport %s opened\n\n", COMport); 

    printf("\t\tSending data from %s to 127.0.0.1:%d\n\n", COMport, 

port); 

 

    GetCommTimeouts(fd, &timeout); 

    timeout.ReadIntervalTimeout = MAXDWORD; // non-blocking 

    timeout.ReadTotalTimeoutMultiplier = 0; 

    timeout.ReadTotalTimeoutConstant = 0; 

    SetCommTimeouts(fd, &timeout); 

 

    //-----------------------------------------------------------------

- 

    // Initialize Winsock 

    iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); 

    if (iResult != NO_ERROR) { 

        wprintf(L"WSAStartup failed with error: %d\n", iResult); 

        return 1; 

    } 

 

    //-----------------------------------------------------------------

- 

    // Create a socket for sending data 

    SendSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); 

    if (SendSocket == INVALID_SOCKET) { 

        wprintf(L"socket failed with error: %ld\n", WSAGetLastError()); 

        WSACleanup(); 

        return 1; 

    } 
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    //-----------------------------------------------------------------

- 

    // Set up the RecvAddr structure with the IP address of 

    // the receive and the specified port number. 

    RecvAddr.sin_family = AF_INET; 

    RecvAddr.sin_port = htons(port); 

    RecvAddr.sin_addr.s_addr = inet_addr("127.0.0.1"); 

 

    //-----------------------------------------------------------------

- 

    // Queries the timer device to determine its resolution. 

    if (timeGetDevCaps(&tc, sizeof(TIMECAPS)) != TIMERR_NOERROR)     

        exit(0); 

 

    wTimerRes = min(max(tc.wPeriodMin, 1), tc.wPeriodMax); 

    QueryPerformanceFrequency(&fs); 

    timeBeginPeriod(wTimerRes);                                     // 

requests a minimum resolution for periodic timers 

 

 

    //-----------------------------------------------------------------

- 

    // Starts timer that runs callback function for specified duration  

    // with a specified period 

    m_nTimerId = timeSetEvent((UINT)(period * 1),                   

//delay 

                                wTimerRes,                          

//resolution 

                                SynchSender,                        

//pointer to callback function 

                                (DWORD_PTR)&fp,                     

//user supplied callback data 

                                TIME_PERIODIC);                     

//periodic or oneshot 

 

    QueryPerformanceCounter(&start); 

    _getch(); 

    printf("\n\n"); 

 

    if (m_nTimerId){ 

        timeKillEvent(m_nTimerId); 

        timeEndPeriod(wTimerRes); 

        m_nTimerId = 0; 

    } 

 

    if (dmp == 0) 

    { 

        fclose(fp); 

        fp = NULL; 

    } 

    return 0; 

} 

 

PORTTYPE open_port_and_set_baud_or_die(const char *name, long  baud) 

{ 

    PORTTYPE fd; 

    COMMCONFIG cfg; 
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    COMMTIMEOUTS timeout; 

    DWORD n = 0; 

    char portname[256]; 

    int num; 

 

    if (sscanf_s(name, "COM%d", &num) == 1) { 

        sprintf_s(portname, "\\\\.\\COM%d", num); // Microsoft KB115831 

    } 

    else { 

        strncpy_s(portname, name, sizeof(portname) - 1); 

        portname[n - 1] = 0; 

    } 

 

    fd = CreateFile(portname, 

        GENERIC_READ | GENERIC_WRITE, 

        0, 

        0, 

        OPEN_EXISTING, 

        NULL, 

        0); 

 

    if (fd == INVALID_HANDLE_VALUE) die("unable to open port %s\n", 

name); 

 

    GetCommConfig(fd, &cfg, &n); 

    cfg.dcb.BaudRate = 115200; 

    cfg.dcb.fBinary = TRUE; 

    cfg.dcb.fParity = FALSE; 

    cfg.dcb.fOutxCtsFlow = FALSE; 

    cfg.dcb.fOutxDsrFlow = FALSE; 

    cfg.dcb.fOutX = FALSE; 

    cfg.dcb.fInX = FALSE; 

    cfg.dcb.fErrorChar = FALSE; 

    cfg.dcb.fNull = FALSE; 

    cfg.dcb.fRtsControl = RTS_CONTROL_ENABLE; 

    cfg.dcb.fAbortOnError = FALSE; 

    cfg.dcb.ByteSize = 8; 

    cfg.dcb.Parity = NOPARITY; 

    cfg.dcb.StopBits = ONESTOPBIT; 

    cfg.dcb.fDtrControl = DTR_CONTROL_ENABLE; 

    SetCommConfig(fd, &cfg, n); 

    GetCommTimeouts(fd, &timeout); 

    timeout.ReadIntervalTimeout = 0; 

    timeout.ReadTotalTimeoutMultiplier = 0; 

    timeout.ReadTotalTimeoutConstant = 1; 

    timeout.WriteTotalTimeoutConstant = 0; 

    timeout.WriteTotalTimeoutMultiplier = 0; 

    SetCommTimeouts(fd, &timeout); 

    return fd; 

} 

 

void close_port(PORTTYPE port, const char *cport) 

{ 

    CloseHandle(port); 

    printf("port %s closed\n", cport); 

} 

 



55 
 

void die(const char *format, ...) 

{ 

    va_list args; 

    va_start(args, format); 

    vfprintf(stderr, format, args); 

    exit(1); 

} 

 

bool setClipBoardString(std::string source){ 

    if (OpenClipboard(NULL)) 

    { 

        HGLOBAL clipbuffer; 

        char * Clip_Buffer; 

        EmptyClipboard(); 

        clipbuffer = GlobalAlloc(GMEM_DDESHARE, source.size() + 1); 

        Clip_Buffer = (char*)GlobalLock(clipbuffer); 

        strcpy(Clip_Buffer, LPCSTR(source.c_str())); 

        GlobalUnlock(clipbuffer); 

        SetClipboardData(CF_TEXT, clipbuffer); 

        CloseClipboard(); 

        return true; 

    } 

    return false; 

} 



 

 


