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ABSTRACT Initially appearing as an abstract object frequently used in math and physics, tensors have
been attracting increasing interest in a broad range of research fields, such as engineering and data science.
However, a few studies have addressed their application in wireless scenarios. In this paper, we investigate
the wide applications of tensor techniques with an emphasis on the tensor voting method, which serves
as an artificial intelligence approach for automatic inference and perceptual grouping. To illustrate the
efficiency of the tensor voting approach, we tackle the tracking problem of inferring human mobility
traces, which can provide key location information of networking objects. The trace inferring problem is
considered under the circumstance that the recorded location information exhibits missing data and noise.
Based on the tensor voting theory, we propose a sparse tensor voting algorithm and an implementation
scheme with computational efficiency. The model is constructed based on the geometric connections
between the input signals and encodes the structure information in the tensor matrix. The missing location
information and noise can be distinguished via tensor decomposition. Once the trace information has been
completed, further analysis of the inferred trace can be performed based on feature extraction to differentiate
different objects. Moreover, we propose several feature extraction methods to characterize the inferred trace,
including the scale invariant feature obtained from the fractal analysis. The proposed methods for trace
completion and pattern analysis are applied to real human mobility traces. The results show that our proposed
approach effectively recovers human mobility trace from the incomplete and noisy data input, and discovers
meaningful patterns of inferred traces from various objects.

INDEX TERMS Motion tracking, trace inference, normal space, sparse tensor voting, trace analysis, fractal

dimension, Fourier descriptor.

I. INTRODUCTION

Tensor theories nowadays have been widely applied to engi-
neering problems and big data applications. From the numer-
ical point of view, tensors are the extension concept of scalar,
vector and matrix. In addition to the mathematical formation,
tensors can be employed with specific physical meanings
under different contexts. For instance, a tensor can be used
to represent a geometric object whose geometric property is
invariant to the coordinate systems. Also, a tensor can be
utilized to describe linear relation between vectors, scalars
and other multidimensional arrays. The relation can be math-
ematically expressed as a multi-linear mapping. As a pow-
erful and popular tool, tensor theories have been employed
in various research and pragmatic fields. In mechanics, the
stresses are presented by tensors, which brings about concise
modelization and efficient computation [1]. In data science,
tensors are utilized to model the data cube in which the
inherent property of data is encoded and can be revealed

through tensor decomposition [2]. In image processing [3],
tensors can be used to model the geometric objects such
as the normal space, which contributes to the inference of
grouping points. As one of tensor theories, tensor voting [4]
is the artificial intelligence technique widely used for auto-
matic perceptual grouping where the tensor voting algorithm
estimates and infers geometric objects based on the principles
derived from human psychology. In this paper, we focus on
the tensor voting algorithm and study the tracking problem as
an illustration for the sake of rapid development of network-
ing, machine learning and signal processing which bring up
many tracking issues of constant interests.

Significant research efforts nowadays have been devoted
to the challenges and problems in mobile networks as
a result of fast growth of wireless networks [5], [6].
As the innovative development of personal devices such
as smart phones, a prominent amount of location services
are emerging to serve individual user for various purposes.
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For example, LTE-Direct and device-to-device require loca-
tion information so as to enable discovering nearby devices
and their services. However, the location information might
be missing for indoor applications due to loss of signals or
incomplete even for the outdoor GPS data. It is therefore
important and challenging to retrieve the complete device
tracking information to realize various location-based func-
tions of wireless networks. Intensive research efforts have
been focused on the tracking problem from diverse aspects,
ranging from mobility trace study to the image processing
field. Work in [7] investigates the patterns of human walk
traces from the statistical point of view. The synthetic features
of human walk trace are captured by the proposed mobility
model. Rhee et al. [8] employ the random walks model
called Levy-walk, to emulate the characteristics reflected in
the walking patterns. It proves that the statistical similar-
ity does exist between the random walk model and human
walks.

As an example to illustrate tensor methods, we address the
tracking problem of inferring human mobility trace under the
circumstance that the recorded location information exhibits
missing and noisy data. Trace inference provides key location
information of objects such as personal devices in wireless
networks, and can serve as one of the important networking
topics. Based on the tensor voting theory, we propose an effi-
cient tensor voting algorithm and a specified implementation
scheme. The model is constructed based on the geometric
connections between the input signals and encodes the struc-
ture information in the tensor matrix. Thus, the computation
is carried out in the form of matrix, which reduces the com-
putation load. The proposed method is applied to real human
mobility trace. After trace completion by tensor voting, we
develop a systematic framework of feature extraction to ana-
lyze the traces. The fractal analysis is incorporated in the
feature extraction method to characterize scale-independent
features of human mobile trace. The results show that our
proposed approach effectively recovers human mobility trace
from the incomplete data input and provides comprehensive
analysis of the trace. Our key contributions are:

1) Giving the detailed derivation of constructing the

normal space based on the eigenvalue problem;

2) Implementing the tensor voting algorithm efficiently in

the sparse sense;

3) Applying valid evaluation criteria to quantify the

performance of the proposed tensor voting algorithm;

4) Applying fractal analysis to characterize the trace

features for data mining tasks.

This paper is based on our previous work [9] and organized
as follows: In Section II, the literature survey is presented
to provide a broad view of tensor methods as well as the
fractal analysis utilized in this paper. In Section III, the
mathematical model of tensor voting is introduced to encode
the data and perform the structure inferring procedure. The
inference algorithm is given in Section I'V. In Section V, trace
analysis is performed based on the efficient feature extraction
including fractal analysis. Simulation results are presented
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in Section VI. In Section VII, we draw conclusions and
discuss potential future work.

Il. LITERATURE SURVEY

Some tracking problems can be essentially transformed as the
image processing problems where the tensor voting technique
has been widely utilized. Guy elaborated tensor voting theory
with insightful analysis in his Ph.D. thesis [10]. The theory is
then ameliorated by other researchers in the past decade [11].
In tracking applications, as the topic of this paper, tensor
voting systematically infers hidden or incomplete structures,
for instance, gaps and broken parts in the trace curve.
Tensor voting is also referred to as perceptual grouping [12]
emphasize the contribution of the Gestalt principles on which
the theory is based. In brief, the Gestalt principles state that
the presence of each input token (site, pixel, signal, etc.)
implies a hypothesis that the structure passes through it. For
example, considering the 2D imaging process of a chair, if
one pixel has recorded the chair signal, it is highly likely that
some of its neighboring pixels should have captured the same
structure/object signals. In other words, it is human nature
to configure simple elements into the perception of complex
structures. In [13] and [14], the object signals observed by
fixed cameras are represented using spatiotemporal features
which facilitates the application of tensor voting theory. The
advantage of applying tensor voting brings several geomet-
ric properties including smooth continuous trajectories and
bounding boxes with minimum registration error. Although
there are extensive research efforts dedicated to tensor voting
study in the image processing field [15], little work involving
the tensor voting theory has been done in the communication
realm according to the best of our knowledge. Moreover, very
few research handles with the missing data problem in the
tracking context.

Besides tensor voting, tensor theories have been
widely applied to emerging hot topics such as big data.
Tensor decomposition has been developed to address various
data mining tasks as an extension of principal component
analysis (PCA) in higher dimensions. In [16], a scalable
and distributed version of the Tucker model, MR-T, is
implemented using the Hadoop MapReduce framework.
Liavas and Sidiropoulos [17] propose a new constrained
tensor factorization framework, building upon the Alter-
nating Direction method of Multipliers (ADMoM). Work
in [18] permeates benefits from rank minimization to scalable
imputation of missing data, via tracking low-dimensional
subspaces and unraveling latent structure from incomplete
streaming data. Work in [19] addresses the problems of com-
puting decompositions of full tensors by using compressed
sensing (CS) methods working on incomplete tensors, i.e.,
tensors with only a few known elements.

Another topic in tracking problems 1is trajectory
analysis [20], which has wide application scenarios includ-
ing vehicle traffic management, vessel classification by
satellites images and so forth. In [21] a unifying frame-
work is constructed to mine trajectory patterns of various
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temporal tightness. The proposed framework consists of two
phases: initial pattern discovery and granularity adjustment.
Mouillot and Viale [22] employ the fractal analysis of a
fin whale’s trajectory tracked by the satellite. The imple-
mented fractal analysis provides the scale-independent mea-
surement to summarize interactions between an organism
and its ecosystem and depends on the heterogeneity of the
whale’s environment and the whale’s ability to perceive it.
In [23], several real-world human mobility traces are
employed to analyze network robustness in the time domain.
Liu and Li [24] propose a novel integrated framework for
multiple human trajectory detection, learning and analysis in
complicated environments. In [25], a new approach for abnor-
mal loitering detection using trajectory analysis is described
and Inverse Perspective Mapping (IPM) is presented to
resolve distortion of trajectory direction.

lIl. TENSOR VOTING MODEL

In this section, we illustrate the tensor voting framework.
In Subsection III-A, we present the way to encode the normal
space with tensor representation. In Subsection III-B, the
fundamental stick tensor voting is addressed as the basis for
inferring geometric structure via the encoded normal space.
In Subsection III-C, the initialization procedure for tensor
voting is introduced under the circumstance that no prior
structure information is known. In Subsection III-D, the infer-
ence method based on tensor decomposition is explained.

In order to infer the hidden or missing structures, we need
to model the structures mathematically first. Generally, the
structure types in the form of 2D images can be classified into
two categories: curves and regions. Curves are modeled as the
structures that have a 1-d normal space, which is referred to
as a stick. Regions are modeled as the structures that have
a 2-d normal space, referred to as a ball. Normal space
represents the structure types well, but it is required to know
how salient the structures are in order to adequately model the
structure. Hence, the parameter defined as saliency associated
with each structure type is employed to indicate the size of
structure. Both the normal space and saliency information
are encoded in a tensor via specific calculation that will be
described later.

After developing the mathematical models, we can further
explain the hints obtained from the Gestalt principles [26]:
(1) a token ‘“‘communicates’ its structure information to
its surrounding tokens in a certain way with respect to its
normal space, i.e., the surrounding tokens under its influence
are supposed to have the same kind of normal space; (2)
in the real world, a token may contain a combination of
information of both structure types. For instance, a token that
actually belongs to a curve has a dominant saliency in the 1-d
normal space while it probably has minor saliency in the 2-d
normal space.

A. ENCODE NORMAL SPACE WITH TENSOR
In math, a normal space is an N-by-N matrix for objects in
N-dimension, denoted by N,;. Consider a d-dimension
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normal space in the N-dimension world, which is spanned
by the first d out of N orthonormal basis vectors ey,
k = 1,2,...,N, we have the normal space matrix
expressed as:

d
Ny = Zeke,{. (H
k=1

The projection of any vector v into this normal space is:
v, = Ngv. 2)

It can be easily proved that v, is the projection of v into
the normal space by showing that: (1) v, can be linearly
expressed by the basis vectors e, k = 1,2,...,N; (2) dot
product (v, — v, v,) = 0.

The exact tensor matrix V that encodes both normal spaces
and their saliency is assumed to be known. From the previous
discussion, we know that V is a symmetric, positive semi-
definite N-by-N matrix. Suppose its eigenvalues are ordered
as A1 > ... > Ay > 0 with corresponding eigenvectors
e}, ..., ey. By the knowledge of linear algebra, we know
that the eigenvectors of V are orthogonal with each other (for
the eigenvectors that belong to 0 eigenvalue, we can generate
those eigenvectors in a way that they meet this requirement).
Then if we normalize these eigenvectors into unit vectors, we
have a set of orthonormal basis €y, . .., &y. Furthermore, we
have the following derivations,

Ve, = g€y, 3)
Vel = r 8480, )
N N
VZédég = deédég, 5)
d=1 d=1

N N-1 d

~ AT A AT

V= E Ad€qe; = E ()»d—?\d+1)E €€,
d=1 d=1 k=1

N
+an D &y (6)
k=1
N-1
V=) (0~ A+DNa + yNy. ™
d=1

From (7), we define the saliency s; in the straight forward
fashion: s = Ay — Ag+1,1fd < N;s4 = An,ifd = N.
Thus, substituting the saliency into (7), we have,

N
V= ZSde. (8)
d=1

B. INFERRING STRUCTURE
To simplify the illustration procedure, we will assume that
we already know the structure types and saliencies for now.
We will discuss how to obtain this information later.

We start with the simplest case that is the fundamental
unit stick vote when the normal space is 1-d. Consider a
voter point p (a token that passes its structure information
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FIGURE 1. lllustration of the fundamental stick vote.

to others) on a curve. Its normal is a known unit vector V,,.
We want to know how it influences its neighboring votee
point x (a token that receives structure information from
voters). Based on the previous discussion, we assume
that p and x share the same structure type when we consider
p is influencing x. To approximate the path of the same
structure type that passes through p and x, we take the arc
of the osculating circle centered at o passing through p and
x as the most likely smooth path [27]. Figure 1 shows the
geometric relationship between p and x. V; is the known
tangent vector at p, and v is the vector from p to x. V. is the
normal vector at x that we want to calculate. 6 is the vote
angle between v and v,. We take the influence as 0 when 6
is larger than 7 /4 for the reason that two points that have
an angle larger than 90 degrees between their normals are
least likely to influence each other. a is the arc length between
p and x. k is the curvature of the osculating circle, which is
the reciprocal of the radius R = ox. To calculate 6 and V.,

6 = arcsinv! vy, 9

Ve = V,c0820 — ¥, sin 20. (10)
We also add a decay profile to the tensor to model the decay-
ing influence of the information going through the structure.
Therefore, the complete unit stick vote (tensor) that encodes
the normal space information received by the votee is,

VP = DF(a, k, 0)V.V!. (11)

DF(a, k, o) is the decay profile that takes a, k and o as
parameters. o is the free parameter set by the user to control
the scale of voting. The decay profile can be given empirically
or based on a traditional choice,

a?+ck? )
2

DF(a,k,cr):ei( o2 7, (12)

where the parameters can be derived by the geometry:
—16l0g(0.1)(c — 1)

= , 13

¢ = (13)
Ol1v||

= , 14

“ sin 6 (14)
e

g s1n9. (15)
[1vl]
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Usually, a voter’s stick vote is not a unit vector. If so, the unit
tensor expressed in (11) is multiplied with the corresponding
saliency of the 1-d normal space of the voter.

Likewise, when inferring structures for the 2-d normal
space, we attempt to find the same normal space at the votee.
In that case, 2 basis vectors are required for the 2-d normal
space. The procedure is equivalent to: (1) find out the basis
vectors that span voter’s normal space; (2) vote or project
these basis vectors, respectively, in the way the fundamental
stick vote does to the votee. (3) reconstruct the complete
normal space information at the votee by combining the
newly generated normal space information, i.e., adding the
tensor matrices created by the stick vote, respectively.

To find out the basis vectors of the voter’s normal space,
Mordohai proposes a method [27] that projects the voter-to-
votee vector into voter’s normal space and then computes the
orthonormal basis vectors for the voter’s normal space based
on the projection and Gram-Schmidt orthogonalization pro-
cedure. This method significantly reduces the computation
when calculating the basis vectors of the high dimensional
normal space.

o o o o
“ e =, o
° o..°'o - - o;§of£ .
® #

Initial Ball Tensors After Token Refinement

FIGURE 2. lllustration of the token refinement procedure: each point is
initialized with a ball tensor; points nearby with each other form stick
tensors while points far away from others remain ball tensors.

Suppose the voter’s normal space is known and encoded
as the tensor matrix Ns, where p represents the voter point in
Figure 2 and d represents the dimension of its normal space.
For any fixed votee point x that receives p’s vote, the voter-
to-votee vector v is known. Then the projected vector is,

vu = Nv. (16)
Thus, the tangent vector v,, is computed by
vi=(UI—-N)Hv=v—v,, (17)

where [ is the identity matrix of dimension N-by-N. Based
on (17), these two vectors are then normalized as V,, and V;.
The first constructed basis vector for the normal space is

selected as V,.1 = V,. Next, the Gram-Schmidt procedure
is employed to construct the rest d — 1 orthonormal basis
vectors Vi, i = 2,3,...,d. As a consequence, each V,;

is considered as the fundamental stick vote and voted to the
votee as the voting procedure described above. Each stick
vote results in a tensor matrix V‘;’ ,i = 1,2,...,d for the
d-dimension normal space. Finally, these tensors are summed
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up into one matrix that represents the complete information
for the d-dimension normal space at votee x. The proposed
method of generating the basis set facilitates the computation
because for i = 2, 3, ..., d, the basis vector V; is orthogonal
to v, which means the vote angle & = 0. Hence, (10) is
simplified during the computation.

C. TOKEN REFINEMENT
So far, the discussions are based on the presumption that
the normal space and saliencies information are known at a
given voter site. Nevertheless, in most cases, it is impossible
to obtain this kind of prior knowledge. Thus, the proper
initialization called token refinement, which estimates the
prior information, is needed.

Figure 2 illustrates the token refinement procedure in
a 2D space. In the token refinement procedure, each input
token is initialized with a unit ball tensor indicating neither
direction preference nor prior saliency information. The input
tokens are then considered one by one as the voter and voted
to its neighboring input tokens. In the end, all the tensors
received by each input token are summed up and stored
as the known normal space and saliency information. If a
cluster of tokens actually belong to the same curve in the
real world, and then the way they influence each other using
their initial ball tensors will put major emphasis on the stick
tensor, namely the 1-d normal space in a 2D world. As can
be seen in Figure 2, the tokens along the curve influence
each other during token refinement, resulting in elongating
their tensors to become stick tensors in the 2D space, while
the tokens that sparsely spread out the space receive little
information from others, causing the existing ball tensors to
remain.

D. TOKEN DECOMPOSITION

After token refinement, the tensor voting procedure can be
completed by the method described in Section III-B. The
result in the 2D image case is that each pixel is associated
with a 2 x 2 matrix T. The ultimate objective is to decide
which structure type the candidate pixel should belong to.
Hence, the tensor matrix T needs to be decomposed by (7)
to extract the saliencies for the 2 structure types. In 2D case,
it becomes:

T =188l = —r)eel + @8l +e8l). (18)

If &1 — X > Ay > O, the stick saliency is the dominant
one, which indicates the certainty of one normal orientation.
Therefore, the token is inferred as the part of a curve, with its
estimated normal being €;. If A &~ Ay > 0, the dominant
component is the ball saliency, which means there is no
preference of orientation. Thus, the token is estimated as the
part of a region or a junction where two or more curves
intersect with multiple orientations present simultaneously.
Note that, if both the saliency values are very small, the
candidate token is likely an outlier. This makes tensor voting
capable of filtering noise.
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IV. INFERENCE ALGORITHM

Based on the previous discussion, there are multiple choices
with respect to how to implement the tensor voting technique.
One feasible way to implement the tensor voting technique
is to compute the so called voting field for each token; this
method is referred to as the per-voter scheme. After token
refinement procedure is complete, the per-voter algorithm
examines every input token as a voter and computes the set of
votes it casts to all its neighbors. That set of votes is referred
as the voting field. The algorithm then integrates all the voting
fields and performs tensor decomposition at each site. In [28],
tensor voting is implemented based on the per-voter scheme.
In addition, the algorithm is combined with the steerable
filter theory [29] to rewrite the tensor voting operation as a
linear combination of complex-valued convolutions, which
significantly reduces the computation load.

In this paper, a straightforward implementation method of
tensor voting technique referred to as the per-votee scheme
is proposed to infer the human mobility trace encoded in
the location data with some recordings missing. The per-
voter scheme calculates one vote from point to point at one
time. In order to reduce the computation, we also implement
tensor voting in a sparse sense. When examining one site
as a votee, we only consider the influence it received from
the neighboring pixels {C,.} within the radius of approxi-
mately 30 as reported in [10]. Furthermore, we define the
sparse voting region, gather all the tensors received by each
votee only in that region and decompose the result tensor
matrix M., to determine its actual structure type. Finally, we
make the voting procedure iterative so that it is able to fill
the large gaps. The implementation scheme is summarized in
the Algorithm 1. In the initialization stage, each voter matrix
is initialized as the identity matrix M,,, representing the ball
tensor while each votee matrix M,, is initialized by the zero
matrix. During the voting procedure, the voter matrix M,
is firstly decomposed into two normal vectors {V,1, V2}
which are then voted as the fundamental stick tensor to the
votee. As reported in [10], each voter decomposition using (8)
is computed in O(N 3) time where N is the dimension of
input data. And each stick vote indicated in (11) is computed
in O(N?) time.

V. TRACE ANALYSIS

In this section, we carry on to analyze the trace patterns in
order to discover representative behaviors or characteristics
of the objects. The underlying philosophy of trace analysis is
that we believe different objects’ traces reflect some hidden
features that can be differentiated. The objective of mining
traces can vary in different contexts. For example, in our
study, due to the different road layouts of distinct cities, it is
highly likely that the corresponding collected human mobile
traces carry different hidden features. Hence, by analyzing the
properly extracted features of human mobile traces, different
corresponding cities can be inferred as well as the road layout
styles. Another application of trace analysis is the traffic
control problem. Based on the trace analysis of each vehicle,
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Algorithm 1 Tensor Voting Based on the Per-Votee
Scheme
input 2D image with the incomplete trace points set
{Pjj}, set scale of voting 0.
for r = 1,2, ..., number of iterations do
initialize voter matrix M,, and votee matrix M.
fori,j=1,2,...,indexes of trace points do
for each point p lies in the neighbohood of {P;;}
do

if p € {P;;} then

calculate DF and 6 by the coordinates of
the voting pair {p, P;};

decompose p’s M, into 2 normal
vectors {V,1, Vinl;

multiple {V,1, V,2} with DF and project
them respectively to Pj;

collect all vectors received at Pj; and
convert them into tensor.

end
M, of P;j = sum up all tensors that P;j has

received;
end

update the M, for {P;j} by M., = M,,;

end

find out a new set of votees {C,.} that are defined by
the sparse region of {P;;};

set the votee matrix M., for {C,.} as 2-by-2 zero
matrix;

for each point in {C,.} do

repeat the similar voting procedure above using
the updated voter matrices.

end

or each pixel x of the image do

if x € {C,.} then
decompose the M., of x;

classify the pixel x according to its

saliencies;
end

e

end
Skeletonize the updated trace points.

end

it is possible to identify outlier vehicles which may cause
damage and loss to the traffic.

In order to perform trace analysis, proper hidden features
of the complete traces have to be extracted first. Note that
feature extraction depends on the specific application. Here
we propose three features to be used to characterize a human
mobile trace: normalized trajectory mean, Fourier descriptor
and fractal dimension. These features can be categorized into
two classes: spatial features (the first two) and scale-invariant
feature (the fractal feature). It is worth to point out that
the fractal feature provides suitable descriptions of inherent
nature of the object data recorded by the GPS due to the
scale-independent property brought by the fractal analysis.
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Hence, regardless of any resolution of the GPS measurements
or any unit (meters, kilometers, etc.) that is taken to represent
the trace, the fractal feature stays consistent.

To ease the illustration of feature extraction procedure, we
assume the trace data are in 2D. Let the set of inferred trace
points be {T'}, and we assume there are n points that con-
tinuously form the inferred trace, each with two coordinates
in the 2D space: (T)g, T;),i = 1,2,...,n. The normalized
trajectory mean is defined as:

m = % ;(T;, T}) — (min(T}), min(T}). ~ (19)

The normalized trajectory mean is to roughly indicate the
cover range or off-set range of the trace. Sometimes the trace
might form a loop and therefore, the Fourier descriptor is
needed to characterize the trace in this case. For the coor-
dinates of each trace point, there is a corresponding complex
value formed as:

=Tl 4T, (20)

where j is the imaginary unit. Thus, we can obtain a sequence
of {z'} and the discrete Fourier transform of {z'} is:

1 n—1 o .
a) =~y eIy =01, .n—1. Q)
n
i=0

The complex coefficient a(u) is referred to as the Fourier
descriptor and its absolute value indicates the magnitude of
corresponding frequency component. Note that the Fourier
descriptor is independent of how the first trace point is
chosen. High frequency components present rapidly varying
details in the trace while low frequency components deter-
mine the shape of trace at the coarse level. Denote the abso-
lute value of low frequency components and high frequency
components as a and ay, respectively. We then define Ry to
be the ratio of low vs high frequency components:

Rr =ar/an, (22)

which serves as the Fourier descriptor feature for the further
trace analysis.

In order to include scale-independent feature, we briefly
introduce the fractal dimension to the feature extraction
procedure. The underlying philosophy of fractal dimension
is that self-similarity and repeating patterns exist in nature
objects. A fractal is a shape made of parts similar to the whole
in some way. Usually, a fractal is a set of objects that has
a fractal dimension that exceeds its topological dimension.
The fractal dimension indicates the effect of space occupa-
tion by the complex shape. There are many ways to formu-
late fractal dimension, such as the Hausdorff dimension, the
Richardson Law [22] and so forth. Here we adopt the
Richardson Law to define fractal dimension as:

L(€) o €P70r (23)

where D is the topological dimension of the trace and D = 1.
Dy is the fractal dimension. € is the imaginary unit “‘rule”
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FIGURE 3. Simulation results. (a) One instance of complete human mobility trace converted from the GPS data. (b) Corresponding sampled
human mobility trace with missing segments. (c) Inferred result employing tensor voting with voting scale o = 1. (d) Inferred result employing
tensor voting with voting scale o = 2. (e) Corresponding true positive, false positive and false negative curves. (f) Corresponding true positive

ratio curve.

used to measure the trace. It can be a line segment for mea-
suring curves, or a square/circle for measuring planar objects,
or a cube/ball for measuring solid objects. L(¢) is the num-
ber of “rulers” used to continuously cover the entire trace.
By taking the log of (23), we have

In(L(¢)) = (1 — Dy)Ine. (24)
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Therefore, we can vary the unit “ruler” € and compute
the corresponding counts (L(e€)) of the trace. The frac-
tal dimension Dy is then calculated by linear regression
via (24).

So far we have obtained all the features to characterize a
trace: the normalized trajectory mean m, the Fourier descrip-
tor feature Ry, and the fractal dimension Dy. These extracted
features of traces are then input into our classification model
to infer the different corresponding cities. We choose the
logistic regression model for our trace classification/city
inference task. Since the classification model is not the key
point in our paper, we refer readers to the work in [30] for
further information regarding the classification model used
here.

VI. EXAMPLE AND ANALYSIS

The performance of the proposed tensor voting algorithm is
verified through extensive experiments on the human mobil-
ity data collected in New York city by the GPS [31]. Each
of the 39 collected traces is firstly converted into 2D binary
images of the dimension 314 x 351. The 2D images are then
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randomly sampled to have missing or broken segments of
approximately 7-pixel length on average. Finally, the pro-
posed tensor voting algorithm is applied to the images with
missing parts and outputs the inferred complete trace of the
human object. Due to the small size of missing gaps, the
iteration number is set fixed to 1 in this paper for simplicity.
For the cases where there are large missing gaps, the iteration
number should be set larger when the adjacent iterations
return sufficiently similar results. The experiments are con-
ducted extensively to each image with various values of o,
which is the only free parameter that controls the scale of
voting, ranging from 1 to 50. One instance of the complete
traces and corresponding sampled trace with missing parts
are shown in Fig. 3 (a) and (b), respectively. Fig. 3 (c) and (d)
are the inferred traces by setting the scale of voting parameter
o 1 and 0 = 2, respectively. As can be seen in these
two figures, the gaps are not fully connected using too small
voting scale because the structure elements are unable to
influent further points. While in the situation that o is too
large, the gaps can be connected however there are many
over-detected segments of the traces, which make the perfor-
mance inefficient. One particularly interesting point is that
the algorithm even recovers the missing arcs appropriately.
During the whole procedure of tensor voting algorithm, there
is no user effort required to be input to indicate which part
of the trace is missing and should be inferred. The inference
is completed fully automatically once the only free param-
eter o is fixed. This is one aspect of the strength of tensor
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voting method. The key of implementing tensor voting algo-
rithm is the determination of data-driven parameters: the
number of iterations and the scale of voting o. Empirically,
larger values of iterations and o will make the algorithm capa-
ble of filling larger missing gaps, while the smaller values
of them are more suitable for the traces of plenty of narrow
missing gaps.

There are massive efforts contributed to the performance
measure for the tracking problems [32]-[34]. To validate the
inferred traces and quantify the performance of the proposed
algorithm, the similarity metrics proposed in [35] is adopted
due to its practical merits. Denote the complete trace points
of the ground truth as the set {S} while the set of inferred
trace points being regarded as set {T'} as defined in previous
sections. The true positive (TP) of the inference algorithm is
defined as the cardinality of the set {p}; satisfying that:

{p}i = {plp € {T}. p € {S}}. (25)

The false positive (FP) and false negative (FN) of the infer-
ence algorithm are defined in the similar fashion:

FP = Card({p})); {p}j = {plp ¢ {T}.p € {S}}, (26)
FN = Card({p}1); {p}x = {plp € {T}.p ¢ {S}}. (27)

Since the trace points only occupy a small portion of the entire
image, it would be irrational to take the true negative (TN)
into account when evaluating the accuracy of the algorithm.
In addition, due to the specific setting of the tracking prob-
lem, most interests have been focused on the value of TP.
Furthermore, in order to compare the performance on various
traces, we compute the TP ratio by dividing the TP values by
the cardinality of the set {S}. The quantified performance of
the tensor voting algorithm with various o values is shown
in Fig. 3(e)-(f). The importance is placed on the TP curve
due to the specific settings of the tracking problem. And
the optimal TP ratio achieves 90.36% at ¢ = 2 while the
numbers of FP and FN are relatively small. Considering the
average lenght of the missing segments in our experiments
is 7-pixel, this result is consistent with the theory represent
in [10], which states that the points within the circle centered
at a voter of a radius of approximate 30 would effectively
receive the votes. When the o is chosen too small, the points
are under little influence from others, leading to the failure
of inferring large gaps. On the other hand, as the o grows
larger, the points far away with each other interfere so much
that the reconstructed results are full of noise. The small fluc-
tuations present locally in the four curves are consequence of
different lengths of missing segments that appear in the input
images.

To show the advantage of proposed sparse tensor vot-
ing algorithm, we also construct the control group or so
called victim image using other approach to accomplish the
inference task. In this study, we choose to directly connect
each pair of the end points of the missing segments, i.e. the
control approach assumes the missing parts are all linear
segments, which will fail where the true trace exhibits curves.

VOLUME 3, 2015

The performance comparison between the proposed tensor
voting (TV) algorithm and control method is shown in
the Table 1, where the experiments are both conducted on
the same trace. It can be seen from the Table 1 that the
proposed algorithm outperforms the control one since the
missing segments are not all linear segments. In the sit-
uation where most miss segments are curves, the perfor-
mance difference between the two methods will be more
significant.

TABLE 1. Performance comparison between the proposed tensor voting
algorithm and victim method.

Method TP TP ratio FP FN
TV 966  90.36% 230 103
Victim 887  82.97% 293 182
6 D=1.0063
s
=
=
4
3
10 15 20 30 35 40

In(:sj)

FIGURE 4. Fractal dimension computation via In(L(¢)) vs In € plot,
corresponding to the same trace used in Fig. 3.

To evaluate the proposed methods for trace analysis, we
first present the illustrations of extracting fractal dimen-
sions for each trace. The traces are converted into binary
images which are then computed using (24) with the varying
€=2,3,4,6,8,12, 16, 32, 64 in the unit of pixels. In Fig. 4,
we illustrate the fractal dimension calculated by linear regres-
sion for the same trace used in Fig. 3. As can be seen in Fig. 4,
the fractal dimension of the investigating trace is larger than 1,
indicating that the shape of the trace is ‘““more complex’” than
a straight line in 2D. For the Fourier descriptor feature Ry,
we take the average of first 30% portion of the frequency
components in (21) as the low frequency components a;, and
the average of last 30% portion of the frequency components
as the high frequency components ay . The feature Ry is then
computed according to (22). As indicated in Section V, we
feed the logistic regression model with the extracted features:
the normalized trajectory mean m, the Fourier descriptor
feature Ry, and the fractal dimension Dy to classify the traces
into different cities. We perform the trace analysis on two data
sets with 39 traces from New York (label 0) and 41 traces
from Orlando (label 1), respectively. The training and testing
data sets are formed by 4-fold cross validation, each time with
60 traces in the training set and 20 traces in the testing
set where the traces are divided randomly. The precision
of regression results are obtained by averaging each cross
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TABLE 2. Trace analysis via logistic regression.

Training set  Estimated label 0  Estimated label 1

True label 0 26 4
True label 1 8 22
Testing set Estimated label 0  Estimated label 1
True label 0 7 2
True label 1 1 10

validation result, and are shown as the confusion matrices in
Table 2 where the numerical values refer to the counts of cor-
recly/incorrectly classified traces. As can be seen in Table 2,
the precision is 80% in the training set and 85% in the testing
set, which demonstrates the effectiveness of our trace analysis
methods.

VII. CONCLUSIONS AND FUTURE WORK

This work provides an effective approach to infer the human
mobility trace as the key object frequently utilized in net-
working, given that the observed location data exist missing
parts. Traditional tracking techniques seldom deal with the
problem of missing data setting. By employing the tensor
voting technique as one of the artificial intelligence methods,
the trace inference is done in an automatic fashion. The only
free parameter that requires the user input is the voting scale.
One advantage of the proposed algorithm is that there is no
requirement of user instructions for identifying which part
to inferred. The algorithm discovers the missing positions
and accomplishes inference. The sparse per-votee implemen-
tation scheme significantly reduce the computation, making
the algorithm suitable for potentially large-scale data set and
online analysis. By employing the similarity metrics between
the inferred trace and the ground truth, our algorithm shows
its power in recover the human mobility trace accurately.
The tensor grouping method can be applied to estimate local
dimension in manifold learning or function approximation
tasks. The fractal analysis can be designed for image com-
pression, denoising and channel estimation. Future work may
also involve with: (1) modifying decay profile to better fit
specific problems; (2) combining tensor representations with
other information, for instance, combining the second order
tensor voting with the first order information as the polarity
coefficient to detect end point, which prevents over-detecting
points.
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