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Abstract

Remote sensing involves measuring and analyzing objects of interests through data col-

lected by a remote imaging modality without physical contact with the objects. Hyperspec-

tral sensors have become increasingly popular for a variety of remote sensing applications.

Hyperspectral data are composed of densely sampled reflectance values over a wide range

of the electromagnetic spectrum. Such a wealth of spectral information can provide unique

spectral signatures of different materials present in a scene, which makes it especially suit-

able for classification tasks. In this dissertation, we present new dimensionality reduction

(feature extraction) and classification algorithms for high-dimensional hyperspectral data.

Specifically, we develop the theory and validate a new dimensionality reduction approach

that maximizes angular separation in the lower dimensional subspace. We also propose

and develop its “local” and “nonlinear kernel” variants for robust feature extraction of hy-

perspectral data. By preserving angular properties, the resulting subspaces demonstrate

robustness to a variety of sources of variability that are commonly encountered in remote

sensing applications. We also extend this approach to its “spatial variant” by incorporat-

ing spatial-contextual information along with spectral information from the hyperspectral

images. We also optimize and develop a suitable sparse representation based classification

framework for hyperspectral images. By extensive experiments on several real-world hyper-

spectral datasets, we demonstrate that the proposed algorithms significantly outperform the

state-of-the-art methods. Further, we also demonstrate the applicability of the proposed

methods for a practical environmental remote sensing task.
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Chapter 1

Introduction

1.1 Remote sensing and its applications

Remote sensing involves measuring and analyzing the characteristics of objects of inter-

ests through the data collected by sensors on a remote platform, without physical contact

with the objects. A majority of the modern remote sensing systems measure energy in

the 400 nm to 2500 nm region of the electromagnetic spectrum, although there are some

sensors that operate at larger wavelengths. Electromagnetic energy reaching the target

suffers scattering and absorption. Scattering happens when there are interactions between

dust particles and electromagnetic radiation, which consequently reduce the intensity of

radiation. The two most common forms of scattering are Rayleigh scattering and Mie scat-

tering. Absorption of electromagnetic radiation is due to absorptions in energy from specific

molecules (e.g., gases or water) in the atmosphere. The three main sources of absorptions

are water vapor, carbon dioxide and ozone. After radiation reaches the target on the Earth,

some portion of the radiation is absorbed by the target, some portion of the radiation

passes through the target, and the remainder is reflected from the target. In remote sensing

applications, we measure the radiation that is reflected from the target.

Recent developments in remote sensing technologies have led the way for the develop-

ment of airborne and spaceborne remote sensors. These sensors are usually mounted on

aircrafts and satellites to capture wide regions of interests. Remote sensing technologies

1



have shifted from multispectral images (with a few selective bands) to hyperspectral images

(with hundreds or even thousands of bands). Hyperspectral data are composed of densely

sampled reflectance values over a wide range of the electromagnetic spectrum. Such a wealth

of spectral information in hyperspectral data can provide unique spectral signatures of dif-

ferent materials present in a scene, which makes it especially suitable for classification tasks.

The wide availability of remotely sensed data, particularly hyperspectral data, is enabling

advancements for various applications such as environmental monitoring, agriculture and

mineral exploration.

1.2 Recent advances in techniques and limitations for hyper-

spectral image analysis

Hyperspectral imagery consists of hundreds or thousands of densely sampled spectral

bands. The resulting spectral information can provide unique spectral signatures of differ-

ent materials present in a scene, which makes hyperspectral imagery especially suitable for

classification problems. Due to its high-dimensionality, we often require large quantities of

training data to accurately model the data. To fully exploit the potentially discriminative

information in remotely sensed data, there is a need to develop dimensionality reduction

techniques, resulting in a lower dimensional “optimal” feature space. Dimensionality reduc-

tion is hence among the most important research areas for remote sensing image analysis,

wherein the high-dimensional data is projected into a lower dimensional subspace subject to

optimization of certain metrics or objective functions. For example, in compression tasks,

an effective dimensionality reduction method should preserve the original data in the re-

duced subspace. For classification, a good dimensionality reduction method should find a

2



subspace where the class specific discriminant information is captured.

Popular linear dimensionality reduction methods include principal component analysis

(PCA), linear discriminant analysis (LDA) and their many variants [1–3]. PCA and LDA

are not designed to exploit potentially non-linear separability of data (e.g., data on mani-

folds). Several manifold learning methods, including local linear embedding [4], ISOMAP

[5], laplacian eigenmap [6], locality preserving projection (LPP) [7], local Fisher discriminant

analysis (LFDA) [8] etc. have been proposed in literature. These methods can effectively

preserve the local (neighborhood) structure of data in the resulting embeddings by utilizing

information about nearest neighbors of every point on a manifold. It has been shown in

[9] that hyperspectral data is inherently a low-dimensional manifold embedded on a high-

dimensional space. Recent work [10–13] has also demonstrated that learning and utilizing

manifold-specific properties is beneficial for hyperspectral image classification.

A majority of the dimensionality reduction methods described above commonly employ

Euclidean distance information. However, advantages of using angular information for hy-

perspectral image analysis have been demonstrated previously [14–16]. A key advantage of

using angular distances (commonly known as spectral angles when used with hyperspectral

imagery, wherein feature vectors correspond to spectral reflectance) stems from the fact that

such a measure is sensitive to the shape of spectral signatures, while simultaneously being

relatively invariant to changes in atmospheric, illumination and topographic conditions. It

is well known that spectral reflectance shapes of samples from the same material often ex-

hibit linear scaling due to various sources of variability, and that angular distances are more

sensitive to shapes of spectral reflectance profiles than Euclidean distances [15, 17].

Realizing the potential relevance of angular information for hyperspectral classification

3



problems, a few feature extraction methods exploring the angular (correlation) relationships

between data samples have been previously developed. In [18], canonical correlation anal-

ysis (CCA) is proposed to find two separate projections, where the correlations between

two sets of multi-dimensional variables onto those projections are maximized. Since the

projections found by CCA are class specific and not global, they can not be directly used

for real-world classification problems, in which class label information of test samples is not

available a-priori. Discriminant analysis of canonical correlation is presented in [19] for im-

age sets classification. In [20], correlation discriminant analysis (CDA) has been proposed

to find a transformation where between-class correlation is minimized while within-class

correlation is maximized simultaneously. Different from CCA, the transformation found by

CDA is global which is suitable for classification problems. However, CDA cannot reduce

the dimensionality of the data and the optimization problem in CDA does not have a closed

form expression, and is solved via a gradient ascent which is computationally very expensive

and subject to related limitations.

Another important area of hyperspectral data analysis is classification. In literature,

various classification techniques including parametric and non-parametric classifiers have

been proposed in the literature to efficiently exploit discriminant information contained

in these rich spectral channels. The K-nearest neighbor (KNN) classifier [13, 21] is one

of the simplest classifier for HSI classification. It is a nonparametric classifier where a

test sample is simply assigned to a class whose samples occur most commonly among its

K nearest neighbors. Parametric classifiers such as Maximum Likelihood (ML) [22] and

Gaussian mixture model (GMM) classifiers [12, 23] are also common — these are based on

statistical models learned from training samples. Due to the high dimensional nature of

4



HSI, either a large number of training samples are required to estimate the statistics of the

data or dimensionality reduction needs to be performed to ensure reliable performance of

such parametric classifiers. Among the various popular classifiers, support vector machines

(SVMs) [24, 25] have been shown to be robust for classifying high-dimensional HSI.

Recently, sparse representations of signals has received great attention. Signals can

potentially have a compact representation in terms of linear combination of atoms in the

dictionary. Based on the theory of sparse representation, Wright et al. proposed a sparse

representation based classification (SRC) [26] for robust face recognition. It relies on the

underlying assumption that a test sample can be linearly represented by a small number

of training samples from the same class. Experiments conducted in [26] have demonstrated

the efficacy of SRC under a variety of scenarios for face recognition problems. Later, Zhang

et al. proposed a collaborative representation classifier (CRC) [27] which seeks to linearly

represent the test sample using all of the training samples in a least-squares sense. It

is demonstrated in [27] that with much less computational complexity, CRC can have a

competitive classification performance compared with SRC. Due to the wide range of appli-

cations, SRC has also been actively adopted to analyze HSI. Chen et al. proposed a joint

sparsity model (JSM) for HSI classification [28, 29] by exploiting the contextual information

of test samples via rectangular analysis windows. A nearest regularized subspace (NRS)

classifier which couples nearest-subspace classification with a distance-weighted Tikhonov

regularization has been proposed in [30]. Also, in [31], the authors exploit the sparsity of

HSI via a graphical model to perform the classification.

However, for the problem of hyperspectral data classification, pixels from different classes

are often characterized by a relatively high correlation with each other, which makes SRC
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challenging. As is known, all atoms in the dictionary need to be `2 normalized to avoid the

bias caused by atoms with varying lengths in SRC. However, by performing `2 normalization,

samples having high correlation with each other will be highly overlapped with each other,

implying that the Euclidean distance information is lost or distorted. Another limitation

of traditional SRC comes from the fact that it does not incorporate the class label (prior)

information of the dataset when learning the representation. It only utilizes the class label

information in post processing when calculating the residuals for each class, while ignoring

it when calculating the representation coefficients. Due to the high correlation between

samples in HSI, using the entire training dataset as the dictionary for SRC results in atoms

potentially being selected from multiple classes. This contradicts the core assumption of

SRC, that the support of a test sample should ideally be in a union of atoms from the same

class as the test sample.

1.3 Dissertation contributions

In this dissertation, we present new dimensionality reduction methods for the problem

of hyperspectral data classification. Specifically, we propose angular discriminant analysis

(ADA) which finds a projection, where the angular separation of between-class samples is

maximized and the within-class samples is minimized simultaneously in a low dimensional

subspace. For data where class specific samples are not clustered into well-defined unimodal

clusters on a unit hypersphere, projections based on ADA may not be able to capture the

multi-modality structure in the resulting subspace. For such data, we propose local angu-

lar discriminant analysis (LADA), an approach which preserves the locality of data in the

projected subspace through an affinity matrix, while simultaneously angularly separating
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between class samples. With such a projection, it is expected that the classification per-

formance of classifiers such as SRC and NN with cosine angle distance is improved. When

samples from different classes are in the same direction or are angularly non-separable in

the original space, both ADA and LADA will fail to find a subspace that can angularly

separate between-class samples. We contend that formulating ADA and LADA in a repro-

ducible kernel Hilbert space (RKHS) will overcome this limitation. We show that ADA

and LADA can be easily extended to their kernelized variants, kernel angular discriminant

analysis (KADA) and kernel local angular discriminant analysis (KLADA) by invoking the

kernel trick.

We also employ the proposed dimensionality reduction methods to address the real-

world application problems of remote sensing. Particularly, we address the classification

problem when some part of the collected hyperspectral images are under shadows due to

clouds or some other nearby objects. Due to the illumination-insensitive of the proposed

dimensionality reduction methods, the projected hyperspectral data based on these methods

exhibit robustness to illumination changes which leads to the higher classification accuracies.

In remote sensing data classification, the process of collecting labeled training data is

very time consuming and expensive. We can however, easily obtain unlabeled samples

without much effort. To be able to use this advantage, we propose an unsupervised variant

of ADA which we call local similarity preserving projection (LSPP). Unlike ADA which

requires the labeled training samples, LSPP does not require labeled training samples to

learn the projection matrix. It is also well-known that utilizing the spatial information in

hyperspectral data can dramatically improve the classification accuracies. This is based

on the observation that neighboring pixels in hyperspectral images usually consist of the

7



same type of materials. It means they are usually from the same class and have similar

spectral characteristics. To incorporate the spatial information of hyperspectral data, we

extend LSPP into its spatial version of LSPP (SLSPP) which effectively use the contextual

information around each pixel in hyperspectral images when learning the projection.

To improve the classification performance of SRC, we propose class-dependent sparse

representation classifier (cdSRC) to effectively exploit the correlation and Euclidean dis-

tance information simultaneously. Different from traditional SRC, the proposed cdSRC

is comprised of two components — class-dependent OMP (cdOMP) and class-dependent

KNN (cdKNN) which perform the OMP and KNN in a classwise manner by incorporating

the prior (class label) information. Specifically, in cdOMP, the residual for the i-th class

is the norm of the difference between the test sample and an approximated test sample

derived through OMP using the dictionary formed by training samples from the i-th class.

In cdKNN, the i-th class distance is measured by the mean of Euclidean distances of the

test sample and its K nearest neighbors. After calculating the residual and distance via

cdOMP and cdKNN, a test sample is assigned a class label via a unified class membership

function.

To further enhance the classification performance of cdSRC, we present cdOLS which is

a class-dependent version of OLS. It is based on the observation that the recovery ability of

OLS is generally better than OMP in terms of the least square error estimation under the

same experimental setting (i.e., the same sparsity level). Therefore, it is expected that the

classification performance of cdOMP can be further improved by replacing OMP with OLS.

We also extend both cdSRC and cdOLS into a kernel cdSRC (KcdSRC) and kernel cdOLS

(KcdOLS) to effectively deal with non-linearly separable data. By extensive experiments
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on several real-world hyperspectral datasets, we demonstrate that the proposed subspace

learning and classification algorithms can significantly increase the classification accuracies

compared with state-of-art results.

Lastly, we effectively combine the simultaneous orthogonal matching pursuit (SOMP)

and block orthogonal matching pursuit (BOMP) and propose simultaneous block orthogonal

matching pursuit (SBOMP) to explore the block structure of test samples and training

samples respectively. A classification technique based on the SBOMP is proposed. SBOMP

can be employed after SLSPP to fully utilize the spatial contextual information of HSI for

classification.
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Chapter 2

Angle-Based Dimensionality Reduc-

tion

2.1 Introduction

In this work, we propose a dimensionality reduction method named angular discrimi-

nant analysis (ADA). ADA finds a projection, where the angular separation of between-class

samples is maximized and the within-class samples is minimized simultaneously in a low di-

mensional subspace. We also propose a local angular discriminant analysis (LADA), which

preserves the locality of data in the projected space through an affinity matrix, while angu-

larly separating different class samples. The ADA and LADA are mainly used to improve

the classification performance of NN classifier with cosine angle distance and SRC, in which

the sparse representation coefficient is learned via orthogonal matching pursuit (OMP) [32],

by learning an appropriate, lower dimensional subspace. With such a projection, it is ex-

pected that the classification performance of NN with cosine angle distance is improved. It

can also enhance the accuracy of the coefficients recovered by OMP, which in turn results in

a better classification performance of SRC. This is due to the fact that OMP selects an atom

(training sample) from the dictionary that produces the largest normalized inner product

with the residual of a signal (test sample) at each iteration, stopping before the number
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of selected atoms becomes larger than the predefined sparsity level or the residual is lower

than some predefined value. We note that ADA and its variants can also be used as pre-

processing to emerging approaches such as subspace-based learning [33], wherein subspaces

are utilized as basic elements for classification. Preliminary work with ADA and LADA

was presented by us in [34, 35]. We also show that ADA and LADA can be easily extended

to their kernelized variants, kernel angular discriminant analysis (KADA) and kernel local

angular discriminant analysis (KLADA) by invoking the kernel trick.

In typical remote sensing data classification applications, the process of collecting la-

beled training data is often very time consuming and expensive. Unlabeled data on the

other hand is easily available and hence unsupervised dimensionality reduction methods

that effectively learn the most appropriate subspace can hence be readily utilized. With

that in mind, we propose an unsupervised counterpart of our recently proposed supervised

subspace algorithm, the angular discriminant Analysis (ADA). This unsupervised counter-

part is referred to as local similarity preserving projection (LSPP) in this paper. Unlike

ADA which requires labeled training samples, LSPP does not require labeled training sam-

ples to learn the projection matrix. Additionally, it is well-known that utilizing spatial

information in hyperspectral data can dramatically improve the classification accuracies

because any such method accounts for the spatial variability of spectral content in local

spatial neighborhoods. This follows from the observation that spatially neighboring pixels

are highly likely to belong to the same class and have similar spectral characteristics. To

incorporate such spatial information of hyperspectral data into our unsupervised projec-

tion, we develop a spatial information driven variant of LSPP (SLSPP) which effectively

uses the spatial contextual information around each pixel in hyperspectral images to learn
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the optimal projection.

2.2 Related work

In this section, we will briefly describe some popular linear subspace learning methods

such as linear discriminant analysis (LDA), local Fisher discriminant analysis (LFDA), and

correlation discriminant analysis (CDA).

Let {xi ∈ Rd, yi ∈ {1, 2, . . . , c}, i = 1, 2, . . . , n} be the d-dimensional i-th training

sample with an associated class label yi, where c is the number of classes and n is the

total number of training samples. n =
∑c

l=1 nl where nl denotes the number of training

samples from class l. Let X = [x1,x2, . . . ,xn] ∈ Rd×n denote the training data matrix

and T ∈ Rd×r be the projection matrix, where r denotes the reduced dimensionality. We

also denote symbols having `2 norm (unit norm) with a tilde and those corresponding to an

optimal value of an objective function or the value in the projected space with hat . In the

context of pattern recognition, our goal is to predict a label for a test sample xtest ∈ Rd.

2.2.1 Linear discriminant analysis

The within-class scatter matrix S (w) and between-class scatter matrix S (b) in LDA take

the form

S (w) =

c∑
l=1

∑
i:yi=l

(xi − µl)(xi − µl)t and (2.1)

S (b) =

c∑
l=1

nl(µl − µ)(µl − µ)t, (2.2)

where µl = 1
nl

∑
i:yi=l

xi is l-th class sample mean and µ = 1
n

∑n
i=1 xi is the total mean.

The projection matrix of LDA is defined as the solution that maximizes the Fisher’s
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ratio between and within-class scatter matrices, and is determined to be

TLDA = argmax
T∈Rd×r

[
tr
(
(T tS (w)T )−1T tS (b)T

)]
. (2.3)

2.2.2 Local Fisher discriminant analysis

It is shown in [8] that LDA can not well separate samples when they form several clusters

in a class. LFDA is proposed in [8] to address this problem by preserving the multi-modal

structure of class-conditional distributions in the projected subspace. It effectively combines

the properties of LDA and LPP. LPP is an unsupervised dimensionality reduction method

that is used to preserve the local structure of neighboring samples in a lower-dimensional

projected subspace. LFDA finds an optimal subspace where between-class samples are well-

separated, while simultaneously the local neighborhood structure of within-class samples is

preserved.

In LFDA, the local within-class S (lw) and between-class S (lb) scatter matrices are defined

as

S (lw) =
1

2

n∑
i,j=1

W
(lw)
ij (xi − xj)(xi − xj)t and (2.4)

S (lb) =
1

2

n∑
i,j=1

W
(lb)
ij (xi − xj)(xi − xj)t. (2.5)

The W (lw) and W (lb) are n× n weight matrices defined as

W
(lw)
ij =


Aij/nl, if yi, yj = l,

0, if yi 6= yj and

(2.6)

W
(lb)
ij =


Aij(1/n− 1/nl), if yi, yj = l,

1/n, if yi 6= yj .

(2.7)

13



The affinity matrix Aij ∈ [0, 1] between xi and xj is defined as

Aij = exp

(
−‖xi − xj‖

2

γiγj

)
, (2.8)

where γi = ‖xi − x(knn)
i ‖ denotes the local scaling of data samples in the neighborhood of

xi, and x
(knn)
i is the K -th nearest neighbors of xi. A is a symmetric affinity matrix that

measures the distance between samples. Although other affinity matrices can be used, the

heat kernel as defined in (2.48) has been shown to have very effective locality-preserving

properties. If Aij = 1 for all i and j, LFDA degenerates to traditional LDA. The projection

matrix of LFDA can obtained via

TLFDA = argmax
T∈Rd×r

[
tr
(
(T tS (lw)T )−1T tS (lb)T

)]
. (2.9)

2.2.3 Correlation discriminant analysis

The CDA [20] was recently proposed as a discriminant analysis approach based on

correlation similarity. It seeks a transformation where the difference between the within-

class and between-class samples correlation are maximized.

Let Ĉ (w) and Ĉ (b) be the within-class and between-class correlation in the CDA trans-

formed space, which are defined as

Ĉ (w) =
1

n(w)

c∑
l=1

∑
i,j:yi,yj=l

(T txi)
t(T txj)

‖T txi‖‖T txj‖

=
1

n(w)

c∑
l=1

∑
i,j:yi,yj=l

xtiTT txj√
xtiTT txixtjTT txj

and (2.10)

Ĉ (b) =
1

n(b)

c∑
l=1

∑
i,j:yi 6=yj

(T txi)
t(T txj)

‖T txi‖‖T txj‖

=
1

n(b)

c∑
l=1

∑
i,j:yi 6=yj

xtiTT txj√
xtiTT txixtjTT txj

, (2.11)
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where n(w) and n(b) denote the number of sample pairs from within-class and between-class

respectively. Let M = TT t, then the optimization problem of CDA is defined as one

that maximizes the difference between within-class and between-class correlation matrices,

described below.

M CDA = argmax
M∈Rd×d

[
Ĉ (w) − Ĉ (b)

]
, s. t. M ≥ 0. (2.12)

The optimization problem in (2.12) is solved using a gradient ascent approach followed by

an iterative projection method.

2.3 Proposed angle-based dimensionality reduction

2.3.1 Angular discriminant analysis

We propose ADA, which can be considered as an angular variant of LDA, utilizing angu-

lar separation as opposed to Euclidean distance separation. Similar to LDA, ADA projects

samples into a lower dimensional subspace, where the angular separation of between-class

samples is maximized, while the within-class samples is minimized. The resulting for-

mulations make it a uniquely beneficial pre-processing to classifiers utilizing the angular

relationships of samples such as NN with cosine angle distance, SRC with OMP as the

recovery method etc. In the following, we describe the proposed ADA in detail.

Let Î (w) and Î (b) be the within-class and between-class normalized inner product in the

ADA projected subspace, which are defined as

Î (w) =

c∑
l=1

∑
i:yi=l

(T tx̃i)
t(T tµ̃l) and (2.13)

Î (b) =
c∑
l=1

nl(T
tµ̃l)

t(T tµ̃), (2.14)

where µ̃l = 1
nl

∑
i:yi=l

x̃i is the normalized mean of l-th class samples, and µ̃ = 1
n

∑n
i=1 x̃i
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is defined as a normalized total mean.

Based on the properties of trace operator tr, Î (w) and Î (b) can be converted into

Î (w) = tr
(
Î (w)

)
=

c∑
l=1

∑
i:yi=l

tr
(
(T tx̃i)

t(T tµ̃l)
)

=
c∑
l=1

∑
i:yi=l

tr
(
T tµ̃l(T

t x̃i)
t
)

=

c∑
l=1

∑
i:yi=l

tr
(
T tµ̃lx̃

t
iT
)

= tr
(
T tO(w)T

)
and (2.15)

Î (b) = tr
(
Î (b)

)
=

c∑
l=1

tr
(
nl(T

tµ̃l)
t(T tµ̃)

)
=

c∑
l=1

tr
(
nlT

tµ̃(T tµ̃l)
t
)

=
c∑
l=1

tr
(
T tnlµ̃µ̃

t
lT
)

= tr
(
T tO (b)T

)
, (2.16)

where O (w) and O (b) are the within-class and between-class matrices obtained by outer

product of samples in the original (input) space, defined as

O(w) =

c∑
l=1

∑
i:yi=l

µ̃lx̃
t
i and (2.17)

O (b) =
c∑
l=1

nlµ̃µ̃
t
l . (2.18)

The projection matrix TADA of ADA can be obtained by solving the following trace
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ratio problem

TADA = argmin
T∈Rd×r

[
tr
(
T tO (b)T

)
tr
(
T tO (w)T

)] . (2.19)

Although there is no closed form solution for this trace-ratio problem, an approximate

solution can be easily obtained by solving the corresponding ratio-trace problem [36, 37],

which is defined as

TADA ≈ argmin
T∈Rd×r

[
tr
(
(T tO (w)T )−1T tO (b)T

)]
. (2.20)

The projection matrix TADA in (2.20) can be obtained by solving the generalized eigenvalue

problem involving O (w) and O (b). As can be seen from (2.18), the rank of O(b) is at most

c − 1. It implies that only c − 1 meaningful principal directions can be obtained through

ADA.

Although ADA and CDA are similar in that they exploit the angular and correlation

information of samples respectively, they differ in several ways — (1) the objective function

of ADA minimizes the ratio of between-class to within-class normalized inner products of

samples in the projected space, while CDA is based on their cosine angle difference; (2)

CDA inherently is not a dimensionality reduction algorithm, since it primarily searches

for a transformation to a space of the same dimensionality where angular separation is

enhanced; (3) The optimization problem of ADA can be converted into a simple generalized

eigenvalue problem, while the optimization problem in CDA is solved based on an iterative

gradient-based optimization method which can potentially be trapped in a locally optimal

solution. Furthermore, there are several parameters that need to be tuned in an iterative

gradient based method, such as the initial random projection matrix, gradient step size etc.,

and the computational complexity of CDA is much higher than ADA. Finally, the proposed
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formulation can be easily extended to a localized variant, which will be developed later in

this paper.

Proposition 1 Let Ŝ (w) and Ŝ (b) be the within-class and between-class scatter matrices of

LDA for the projected samples. They can be reformulated as

Ŝ (w) =
c∑
l=1

∑
i:yi=l

(‖T txi‖2 + ‖T tµl‖2)− 2 tr(T tŌ
(w)

T ) and (2.21)

Ŝ (b) =

c∑
l=1

nl(‖T tµl‖2 + ‖T tµ‖2)− 2 tr(T tŌ
(b)

T ), (2.22)

where Ō
(w)

and Ō
(b)

are defined as

Ō
(w)

=
c∑
l=1

∑
i:yi=l

‖xi‖‖µl‖x̃iµ̃tl and (2.23)

Ō
(b)

=

c∑
l=1

nl‖µl‖‖µ‖µ̃lµ̃t. (2.24)

The proof of Proposition 1 is provided in Appendix A.1. Based on Proposition 1, it is ob-

served that the scatter matrices utilized in the LDA formulation can be rewritten as having

two key additive components — a Euclidean distance based terms (that utilizes the norm

of samples), and a term that quantifies angular separation (similar to that used in ADA).

ADA would hence be more favorable compared to LDA for datasets (e.g., hyperspectral

imagery) where source of variability manifest themselves as changes in energy/norm of the

samples.

Fig. 2.1 demonstrates ADA and LDA projections using a three-dimensional three-class

synthetic dataset that is generated from a unit variance Gaussian distribution. It can be

seen that the two-dimensional subspace found by ADA indeed yields much better angular

separation than LDA.
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Figure 2.1: Evaluation of ADA and LDA using a three-dimensional three-class synthetic
data generated from a unit variance Gaussian distribution.
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2.3.2 Local angular discriminant analysis

For data where class specific samples are not clustered into well-defined unimodal clus-

ters on a unit hypersphere, projections based on ADA may not be able to capture the

multi-modality structure in the resulting subspace. For such data, we propose LADA — an

approach which preserves the locality of data in the projected subspace through an affinity

matrix, while simultaneously angularly separating between-class samples.

For the local variant of ADA, we modify the normalized outer-product matrices in

ADA with a locality preserving constraint. Before defining these local within and between-

class outer-product matrices, we provide the derivations of within and between-class outer

product matrices of ADA in a pairwise manner.

O (w) =

c∑
l=1

∑
i:yi=l

µ̃lx̃
t
i

=
c∑
l=1

∑
i:yi=l

(
1

nl

∑
j:yj=l

x̃j)x̃
t
i

=
c∑
l=1

1

nl

∑
i,j:yi,yj=l

x̃ix̃
t
j

=
n∑

i,j=1

W
(w)
ij x̃ix̃

t
j , (2.25)

where

W
(w)
ij =


1/nl, if yi, yj = l,

0, if yi 6= yj .

(2.26)
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Let us define the total outer product matrix as

O (t) =

n∑
i=1

µ̃x̃ti

=

n∑
i=1

(
1

n

n∑
j=1

x̃j)x̃
t
i

=
1

n

n∑
i,j=1

x̃ix̃
t
j , (2.27)

which consequently yields between-class outer product matrix

O (b) = O (t) −O (w)

=
n∑

i,j=1

(
1

n
−W

(w)
ij )x̃ix̃

t
j

=
n∑

i,j=1

W
(b)
ij x̃ix̃

t
j , (2.28)

where

W
(b)
ij =


1/n− 1/nl, if yi, yj = l,

1/n, if yi 6= yj .

(2.29)

After reformulating ADA into a pairwise manner, the within and between-class outer

product matrices of LADA are obtained by multiplying the normalized weight matrices

O (lw) =
n∑

i,j=1

W̃
(lw)
ij x̃ix̃

t
j and (2.30)

O(lb) =
n∑

i,j=1

W̃
(lb)
ij x̃ix̃

t
j , (2.31)
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where the normalized weight matrices are defined as

W̃
(lw)
ij =


Ãij/nl, if yi, yj = l,

0, if yi 6= yj ,

(2.32)

W̃
(lb)
ij =


Ãij(1/n− 1/nl), if yi, yj = l,

1/n, if yi 6= yj .

(2.33)

The normalized affinity matrix Ãij ∈ [0, 1] between x̃i and x̃j is defined as

Ãij = exp

(
−(2− 2x̃tix̃j)

γ̃iγ̃j

)
, (2.34)

where γ̃i =

√
2− 2x̃tix̃

(knn)
i denotes the local scaling of data samples in the neighborhood

of x̃i, and x̃
(knn)
i is the K -th nearest neighbors of x̃i.

We will demonstrate with synthetic (and real-world hyperspectral) data that this locality

preserving constraint will be particularly beneficial when class specific samples are not

clustered into well-defined unimodal clusters on a unit hypersphere. Similar to ADA, the

projection matrix of LADA can be defined as

TLADA = argmin
T∈Rd×r

[
tr
(
(T tO(lw)T )−1T tO (lb)T

)]
. (2.35)

As with ADA, this can be solved via the generalized eigenvalue problem. We note that

LADA significantly departs from LFDA, in that while LFDA is built based on the principle

of preserving locality while pushing between-class samples far apart in a Euclidean sense,

LADA seeks to find compact angular clusters for within-class samples, while between-class

samples are angularly maximized. Additionally, we note that by incorporating the affinity

matrix Ãij in O(lb), the rank of O(lb) is no longer limited to c − 1, implying that the

dimensionality after an LADA can be chosen to be larger than c− 1.

22



We next investigate the benefit of the locality preserving component in the LADA

formulation, for a problem where within-class samples possess a multi-modal distribution

on a unit hypersphere. Assume there are several distinct clusters (multi-modal) in each

class. Let µ̃lk and nlk denote the normalized mean vector and the number of samples in

k-th cluster of the l-th class.

Proposition 2 Consider a scenario wherein the choice of affinity matrix accurately cap-

tures local neighborhood structures, such that within-class samples that belong to different

clusters are not considered neighbors and vice-versa. O (lw) and O (lb) take the following

form,

O(lw) =
c∑
l=1

1

nl

∑
k=q

nlknlqµ̃lkµ̃
t
lq and (2.36)

O(lb) =

c∑
l=1

(
1

nl
− 1

n
)
∑
k=q

nlknlqµ̃lkµ̃
t
lq +

1

n

∑
l 6=m

nlnmµ̃lµ̃
t
m. (2.37)

The proofs of Proposition 2 is provided in Appendix A.2. It can be noticed from this

proposition, LADA preserves locality by ensuring that within-class samples that belong to

different clusters (k 6= q) do not contribute to the objective function.

To highlight the locality preserving property of LADA, we evaluate various dimension-

ality reduction methods using a three-dimensional, two-class multi-modal synthetic (classes

are no longer uni-modal clusters) dataset. In Fig. 2.2, it can be observed that owing to the

multi-modal structure of samples from class-1, LADA and LFDA can well preserve the local

structure of class-1 samples on a two-dimensional subspace owing to the locality preserv-

ing property. We further observe that LADA provides a much better angular separation

compared with LFDA.
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Figure 2.2: Evaluation of LADA, and LFDA using a three-dimensional three-class synthetic
data generated from a unit variance Gaussian distribution.
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2.3.3 Kernel variant of angular discriminant analysis

When samples from different classes are in the same direction or are angularly non-

separable in the original space, both ADA and LADA will fail to find a subspace that can

angularly separate between-class samples. We contend that formulating ADA / LADA in

a Reproducible Kernel Hilbert Space (RKHS) H will overcome this limitation.

By invoking the kernel trick [38], ADA can be extended to its kernel variant. Specifically,

O (w) and O (b) can be represented as

O(w) = X W (w)X t and (2.38)

O (b) = X W (b)X t. (2.39)

The generalized eigenvalue problem in ADA can be defined as

X W (b)X tψ = λX W (w)X tψ. (2.40)

Since ψ can be represented as a linear combination of columns of X , it can be formulated

using a vector ϕ ∈ Rn as

X tψ = X tXϕ = Kϕ, (2.41)

where K is a n× n symmetric kernel matrix. Here Kij = κ(xi,xj) = 〈xi,xj〉 represents a

simple linear kernel, although it can be replaced with any valid (nonlinear) Mercer kernel.

A commonly used non-linear kernel function is the Gaussian radial basis function (RBF)

which is defined as

κ(xi,xj) = exp
(
− ‖xi − xj‖

2

2σ2

)
, (2.42)

where σ is a free parameter.
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By multiplying X t on both sides of (2.40), we obtain the following generalized eigenvalue

problem.

KW (b)Kϕ = λKW (w)Kϕ. (2.43)

Let Φ = {ϕk}rk=1 be the r generalized eigenvectors associated with the r smallest

eigenvalues λ1 ≤ λ2, . . . ,≤ λr. A test sample xtest can be embedded in H via

(X Φ)txtest = ΦtX txtest = ΦtK X ,xtest , (2.44)

where K X ,xtest is a n× 1 vector.

Similar to KADA, the generalized eigenvalue problem of KLADA can be obtained by

simply replacing the weight matrices W (w) and W (b) in (2.43) with their kernel versions,

where the affinity matrix A is calculated in the kernel feature space.

2.3.4 Experimental results and analysis

We first describe the two hyperspectral datasets that will be used in the rest of this

dissertation. The first dataset is acquired using an ITRES-CASI (Compact Airborne Spec-

trographic Imager) 1500 hyperspectral imager over the University of Houston campus and

the neighboring urban area. This image has a spatial dimension of 1905 × 349 with a

spatial resolution of 2.5 m. There are 15 number of classes and 144 spectral bands over

the 380 − 1050 nm wavelength range. Fig. 2.4 shows the true color image of University of

Houston dataset inset with the ground truth.

The second hyperspectral data was acquired using the ProSpecTIR instrument in May

2010 over an agriculture area in Indiana, USA. This image (covering agriculture fields) has

a 1342 × 1287 spatial dimension with 2 m spatial resolution. It has 360 spectral bands

over 400 − 2500 nm wavelength range with approximately 5 nm spectral resolution. The
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Figure 2.3: Evaluation of KLADA, KADA and LADA using a three-dimensional three-class
synthetic data generated from a unit variance Gaussian distribution.
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Figure 2.4: True color University of Houston hyperspectral image inset with ground truth.

19 classes consist of agriculture fields with different residue cover. Fig. 2.5 shows the true

color image of the Indian Pines dataset with the corresponding ground truth.
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Figure 2.5: True color image (top left) and ground-truth (top right) of the Indian Pines
hyperspectral image.

We now evaluate the classification performance of the proposed and existing dimension-

ality reduction algorithms, and show that the proposed methods outperform other existing

methods including CDA, LDA, LFDA, generalized discriminant analysis (GDA) [2], kernel

local Fisher discriminant analysis (KLFDA) [8], traditional NN, SRC, SRC-`1 and nonlin-

ear kernel based support vector machine (SVM). In SRC, the sparse coefficient vector is

28



learned via OMP, and SRC-`1 uses a gradient project [39] to obtain the sparse coefficient.

Note that the atom selection process in OMP used in this work is based on the maximal

normalized inner product instead of maximal absolute normalized inner product between

the residual vector and atoms in the dictionary. This is due to the fact that the angular

separation between samples may potentially be larger than 90o after the projection, and

the normalized inner product considers angles between 0o to 180o (the normalized absolute

inner product on the other hand restricts the range of angles between 0o and 90o). The

time complexity of NN and SRC (with OMP as the recovery method) is O(dn) and O(dnS)

where S is the sparsity level in OMP. Kernel functions used in KLADA, KADA, KLFDA,

GDA and SVM are all based on the RBF kernel defined in (2.42). For both hyperspec-

tral datasets described above, 200 samples per class are used for evaluation, and 10, 30,

50 and 100 samples per class are used for training respectively. Both testing and training

samples are drawn randomly from the ground truth without overlapping with each other.

Each experiment has been repeated 10 times and the average accuracy with its standard

deviation are reported. The parameter values of each algorithm are tuned by searching

through a wide range of the parameter space, and the performance reported here represents

the “optimal” parameters.

Table 2.1 shows the mean classification accuracies along with the corresponding stan-

dard deviations as a function of training sample size for the University of Houston and

Indian Pines datasets. Since LFDA and LDA are Euclidean distance based dimensionality

reduction methods, the distance used in these methods is based on Euclidean distance,

while others are based on spectral angle distance. It can be seen from these results that

the proposed methods generally outperform other existing methods, especially when the
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Table 2.1: Classification accuracy (%) and standard deviation (in parenthesis) as a function
of number of training samples per class.

Dataset University of Houston Indian Pines

Algorithm / Sample Size 10 30 50 100 10 30 50 100

KLADA
NN 84.7 (1.5) 93.9 (0.5) 96.9 (0.4) 98.7 (0.2) 80.3 (2.0) 88.9 (0.8) 90.9 (0.7) 93.3 (0.6)
SRC 85.0 (1.3) 94.2 (0.6) 97.1 (0.4) 98.8 (0.2) 80.3 (1.9) 89.0 (0.8) 91.0 (0.7) 93.3 (0.6)

LADA
NN 81.8 (1.2) 91.4 (0.5) 95.5 (0.5) 98.4 (0.3) 73.3 (1.1) 82.0 (0.5) 85.2 (0.6) 88.8 (0.5)
SRC 82.0 (1.1) 91.5 (0.5) 95.5 (0.5) 98.4 (0.3) 73.7 (1.1) 82.3 (0.5) 85.4 (0.5) 88.9 (0.5)

KADA
NN 82.4 (1.4) 90.2 (1.3) 94.0 (0.5) 97.4 (0.3) 72.0 (1.5) 80.3 (0.6) 83.3 (1.2) 86.9 (0.5)
SRC 82.7 (1.2) 90.4 (1.2) 94.0 (0.4) 97.5 (0.3) 72.6 (1.5) 80.6 (0.7) 83.5 (1.2) 87.0 (0.5)

ADA
NN 78.9 (1.7) 87.6 (0.9) 91.6 (0.5) 95.9 (0.4) 69.3 (1.4) 77.9 (1.0) 81.2 (1.2) 85.6 (0.5)
SRC 80.0 (1.7) 87.9 (1.1) 91.8 (0.9) 95.9 (0.5) 70.0 (1.3) 78.3 (1.1) 81.6 (0.9) 85.8 (0.6)

CDA
NN 75.5 (1.3) 86.2 (0.6) 91.2 (0.5) 96.3 (0.4) 63.6 (1.1) 73.6 (0.8) 76.9 (1.3) 81.2 (0.5)
SRC 77.7 (0.8) 86.6 (0.6) 91.6 (0.6) 96.4 (0.4) 65.7 (1.1) 74.6 (0.8) 77.9 (1.4) 81.6 (0.4)

KLFDA NN 77.6 (1.2) 86.0 (0.7) 90.3 (0.7) 95.4 (0.6) 75.1 (1.4) 81.9 (1.3) 87.7 (1.1) 90.4 (0.5)
LFDA NN 73.5 (1.3) 82.2 (1.1) 88.4 (0.8) 94.9 (0.5) 69.2 (1.4) 74.8 (1.2) 86.2 (0.7) 89.6 (0.6)
GDA NN 66.5 (3.3) 83.4 (1.1) 89.0 (1.2) 95.2 (0.9) 68.1 (3.5) 80.9 (2.9) 85.1 (2.1) 88.6 (0.9)
LDA NN 35.6 (7.1) 81.3 (0.3) 86.4 (0.7) 93.6 (0.5) 16.0 (4.5) 74.9 (1.2) 84.0 (0.8) 88.9 (0.5)

NN 76.6 (1.1) 87.1 (0.6) 91.8 (0.5) 96.6 (0.4) 67.2 (0.7) 76.9 (0.9) 80.2 (1.2) 84.5 (0.6)
SRC 78.7 (0.8) 88.5 (0.5) 92.2 (0.6) 96.9 (0.4) 69.1 (1.2) 78.2 (0.7) 81.0 (1.0) 85.2 (0.6)

SRC-`1 80.4 (1.1) 89.3 (0.7) 92.7 (0.4) 96.0 (0.3) 75.4 (2.6) 82.1 (0.9) 84.3 (1.0) 86.7 (0.5)
SVM 79.1 (1.2) 88.8 (0.7) 92.9 (0.8) 97.2 (0.3) 71.4 (1.4) 83.1 (0.9) 86.9 (0.8) 91.3 (0.3)

number of training samples per class is small.

To provide insights on the benefits of the proposed dimensionality reduction methods

on real-world hyperspectral data, we depict class-specific accuracies for the University of

Houston dataset in Table 2.2. We draw attention to difficult classes, particularly, Road,

Highway, Railway, Parking Lot-1 and Parking Lot-2. These classes are difficult in particular

because they are spectrally very similar (with regards to their spectral shape) as shown in

Fig. 2.6. From the table, we observe that the local variants of KLADA and LADA generally

consistently outperform the non-local variants of ADA and KADA by preserving the local

structure of the data. Further, the kernel variants outperform their non-kernel counterparts

when the signatures of different classes are spectrally very similar (i.e., for difficult classes).

We next demonstrate the benefit of kernel variants of the proposed methods for robust

classification of sub-pixel classes — a scenario commonly found in remotely sensed hyper-

spectral imagery, wherein classes of interest are often mixed with background due to low

spatial resolution. The mixed pixels are (synthetically) generated from real “pure” pixels
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by mixing the pure target spectra for each class with background spectra (from all other

classes) via a linear mixing model. The larger the background abundance (BA), the smaller

the fraction of the target in the pixel. Table 2.3 shows the classification accuracy with the

University of Houston dataset under pixel mixing. 30 training and 200 test samples per

class are used in this experiment. We use NN as the back-end classifier for the proposed

(and baseline) dimensionality reduction methods. It can be seen that the proposed methods

outperform other dimensionality reduction methods.

Table 2.2: Class-specific accuracies (%) for the University of Houston dataset.

Class / Algorithm KLADA KADA LADA ADA

Grass-healthy 99.9 98.4 98.4 98.7

Grass-stressed 97.9 98.9 97.7 96.3

Grass-synthetic 99.9 99.5 100.0 99.7

Tree 99.8 98.5 97.8 99.0

Soil 99.6 99.4 99.9 99.0

Water 98.4 97.7 98.8 98.1

Residential 93.9 88.2 90.9 83.1

Commercial 85.4 85.1 86.7 83.1

Road 88.3 76.9 79.0 72.9

Highway 94.8 82.9 86.6 79.8

Railway 96.1 86.0 79.3 73.0

Parking Lot 1 84.9 77.1 82.4 76.1

Parking Lot 2 70.8 66.7 73.5 56.3

Tennis Court 99.3 99.2 99.5 98.7

Running Track 99.0 98.4 99.9 99.5

Table 2.3: Classification accuracy (%) as a function of BA (%) for University of Houston
dataset.

Algorithm / BA 10 20 30

KLADA 91.8 (1.2) 89.9 (0.9) 85.7 (1.1)

LADA 90.6 (0.7) 89.4 (0.7) 85.4 (0.8)

KADA 89.5 (1.4) 87.3 (1.0) 83.3 (1.5)

ADA 84.7 (1.1) 79.9 (1.0) 74.6 (0.7)

CDA 79.7 (0.5) 73.3 (1.0) 66.5 (0.9)

KLFDA 82.2 (1.1) 77.6 (1.1) 72.4 (1.2)

LFDA 80.8 (0.8) 79.8 (0.9) 77.3 (1.1)

GDA 81.2 (0.7) 75.3 (1.0) 68.6 (1.0)

LDA 80.8 (0.4) 80.0 (0.7) 78.6 (0.6)

In what follows, we demonstrate that the proposed approaches are suitable for SRC

with OMP based coefficient recovery. We first define the reconstructive error caused by the
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Figure 2.6: The mean spectral signatures of the most five confusing classes in the University
of Houston dataset.

intra-class E(w) and inter-class data E(b) [40] as

E(w) =
1

n

c∑
l=1

nl∑
i:yi=l

‖xi −X δl(α̂)‖2 and (2.45)

E(b) =
1

n(c− 1)

c∑
l=1

nl∑
i:yi=l

∑
m 6=l
‖xi −X δm(α̂)‖2, (2.46)

where α̂ is obtained via OMP.

The ratio of E(b) to E(w) is hence a reasonable heuristic to gauge the suitability of the

subspace for SRC. We use the University of Houston dataset with 30 training samples per

class to calculate the ratio of inter-class to intra-class reconstruction error in the projected

subspace obtained by LADA, ADA, CDA, LFDA and LDA. The sparse coefficient α̂ is

calculated by OMP with an optimal sparsity level determined empirically for each algorithm.

Based on Table 2.4, we can infer that the proposed approaches produce a larger ratio than

the traditional approaches, which indicates that the classification ability of SRC is better

in LADA and ADA projected subspaces compared with CDA, LFDA and LDA projected

subspaces.
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Table 2.4: Ratio of inter-class to intra-class reconstruction error calculated in the projected
space

Algorithm LADA ADA CDA LFDA LDA

E(b)/E(w) 12.1 9.4 6.8 5.8 3.5

Finally, we demonstrate the effect of the dimensionality of the projected subspace on

the performance of the proposed methods as well as NN applied directly on the input space

(without any dimensionality reduction) for the University of Houston dataset. In this ex-

periment, we randomly choose 30 training samples per class and 200 test samples per class.

The reduced dimensionality ranges from 5 to 140. Each experiment is repeated 10 times

and the average accuracy is reported for each method. Fig. 2.7 shows the classification

accuracies as a function of the number of dimensions retained after each projection. The

accuracy for NN is constant as a function of dimensionality, since no dimensionality reduc-

tion is performed beforehand. Based on Fig. 2.7, the optimal dimensionality for KLADA,

LADA, KADA, and ADA are found to be 45, 20, 20, and 30 respectively. Note that for

ADA, although the upper limit on the number of relevant dimensions is c − 1 (which is

14 for this dataset), utilizing additional dimensions indeed increases class separability by

enhancing angular separability. We conjecture that this phenomenon is related to complex

data distributions, wherein adding additional dimensions (that do not necessarily contribute

to the objective function) enhances classification performance.

2.4 Proposed spatially-driven angle preserving projection

2.4.1 Local similarity preserving projection

In this paper, we seek to make two related contributions within the context of angular

discriminant analysis — (1) developing an unsupervised approach to spectral angle based

subspace learning, where local spectral angles are preserved following this unsupervised
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Figure 2.7: Effect of the dimensionality of the projected subspace on the performance of
the proposed methods for University of Houston hyperspectral dataset.

project, and (2) developing a projection that incorporates spatial information when learning

such an optimal projection. We first form a unsupervised version of ADA which we refer to

as local similarity preserving projection (LSPP). It seeks a lower dimensional space where

the correlation or angular relationship between samples that are neighbors in the feature

space are preserved. We can also think of it as an angular equivalent of the commonly

employed locality preserving projection (LPP) [7].

Let xi be the i-th training sample and P be the d× r projection matrix, where r is the
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reduced dimensionality. The objective function of LSPP can be simplified as

I =
∑
ij

Wij(P
txi)

t(Ptxj)

=
∑
ij

tr
[
Wij(P

txi)
t(Ptxj)

]
=
∑
ij

tr
[
WijP

txj(P
txi)

t
]

=
∑
ij

tr
[
PtWijxix

t
jP
]

= tr
[
PtXWXtP

]
. (2.47)

The heat kernel Wij ∈ [0, 1] between xi and xj is defined as

Wij = exp

(
−‖xi − xj‖2

σ

)
, (2.48)

where σ is the parameter in the heat kernel.

We impose a constraint (PtXDXtP = 1 where Dii =
∑

j Wij) to avoid biases caused by

different samples. The bigger the value Dii which is corresponding to i-th training sample,

the more important i-th training sample is.

The final objective function is defined as

argmax
P

tr
[
PtXWXtP

]
s. t. PtXDXtP = I. (2.49)

The problem in 2.49 can be solved as a generalized eigenvalue problem as

XWXtP = λXDXtP. (2.50)

The projection matrix P are the eigenvectors corresponding to the r largest eigenvalues.
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2.4.2 Spatially-driven local similarity preserving projection

It is well understood from many recent works [28, 41–43], that by aking into account

the spatial neighborhood information, hyperspectral image classification accuracy can be

significantly increased. This is based on the observation that spatially neighboring samples

in hyperspectral data often consist of similar materials,and hence they are spectrally corre-

lated. In order to utilize spatially neighboring samples in a lower-dimensional subspace, the

spatial neighborhood relationship of hyperspectral data should be preserved. To address

this problem, we propose a spatial variant of LSPP (SLSPP) in this work to further improve

the classification accuracies. Let {zk, k ∈ Ωi} be the spatial neighborhood samples around

a training sample xi, then the objective function of SLSPP can be reduced to

I =
∑
i

∑
k∈Ωi

Wik(P
txi)

t(Ptzk)

=
∑
i

∑
k∈Ωi

tr
[
Wik(P

txi)
t(Ptzk)

]
=
∑
i

∑
k∈Ωi

tr
[
WikPtzk(P

txi)
t
]

=
∑
i

∑
k∈Ωi

tr
[
PtWikzkxtiP

]
= tr

[
PtMP

]
, (2.51)

where M =
∑

i

∑
k∈Ωi

Wikzkxti.

The final objective function is defined as

argmax
P

tr
[
PtMP

]
s. t. PtP = I. (2.52)

Similar to LSPP, the projection matrix P are the eigenvectors corresponding to the r largest

eigenvalues.
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Note that both LSPP and SLSPP are unsupervised projections in the sense that they

do not require labels when learning the projections. We also note that a projection such as

SLSPP is particularly beneficial when the backend classifier utilizes the spatial structure in

the spatially neighboring pixels for each test pixel during classification. Towards that end,

we next propose a modified sparse representation based classifier that utilizes sparse repre-

sentations of the entire spatial neighborhood of a test pixel simultaneously when making a

decision.

2.4.3 Experimental results and analysis

The first experimental hyperspectral dataset employed was collected using the Reflec-

tive Optics System Imaging Spectrometer (ROSIS) sensor [44]. This image, covering the

University of Pavia, Italy, has 103 spectral bands with a spatial coverage of 610×340 pixels,

and 9 classes of interests are considered in this dataset. A three-band true color image and

its ground-truth are shown in Fig. 2.8.

The second hyperspectral data used in this work was acquired by us in Galveston, Texas

in October, 2014 which includes two different wetland scenes captured at ground-level (side-

looking views) over wetlands in Galveston. The two image cubes are referred to as area 1,

and area 2, representing different regions of the wetlands that were imaged — In addition

to common wetland classes, area 2 has Black Mangrove (Avicennia germinans) trees in the

scene, a species which is of particular interest in ecological studies of wetlands, in addi-

tion to Spartina. This data was acquired using a Headwall Photonics hyperspectral imager

which provides measurements in 325 spectral bands with a spatial size of 1004× 5130. The

hyperspectral data uniformly spanned the visible and near-infrared spectrum from 400 nm -

1000 nm. The objects of interests are primarily vegetation species common in such wetlands.
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Six different classes were identified in area-1 including soil, symphyotrichum, schoenoplectus,

spartina patens, borrichia and rayjacksonia. The second area includes Avicennia germinans,

batis, schoenoplectus, spartina alterniflora, soil, water and bridge. Since soil and schoeno-

plectus are included in both areas, the total number of classes in the combined library are

eleven.

(a) (b)

Unlabelled 

Area
Asphalt Meadows Gravel Trees

Metal Sheets Soil Bitumen Bricks Shadows

Figure 2.8: (a) True color image and (b) ground-truth of the University of Pavia hyperspec-
tral data.

The efficacy of the proposed LSPP, SLSPP and SBOMP are evaluated as a function of

training samples per class using the two practical hyperspectral datasets mentioned previ-

ously. SLSPP–SBOMP-C indicates the data is projected based on SLSPP, and SBOMP-C

is employed as the backend classifier. A nearest-neighbor (NN) classifier with cosine angle
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distance is used after LSPP and LADA projection, since they do not take spatial infor-

mation into account when deriving the projection matrix. Similar to SLSPP–SOMP-C,

LSPP–NN and LADA–NN. Each experiment is repeated 10 times using a repeated random

subsampling validation technique, and the average accuracy is reported. The number of

test samples per class is fixed to 100 for every random subsampling.

Wetland data, area - 1

Wetland data, area - 2

Figure 2.9: True color images of the wetland dataset inset with ground truth.

Fig. 2.10 shows the classification accuracies as a function of training samples for the

University of Pavia hyperspectral data. The parameter for each algorithm is determined

via searching through a wide range of the parameter space and the accuracies reported in this

plot is based on the optimal parameter values. As can be seen from this figure, our proposed
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SLSPP followed by SBOMP-C gives the highest classification accuracies consistently over

a wide range of the training sample size. LSPP–NN also gives better classification result

compared with LADA–NN.

We perform a similar analysis using the wetland hyperspectral data. Fig. 2.11 and

Fig. 2.12 plot the classification accuracies with respect to the training sample size per class

for wetland area - 1 and wetland area - 2 respectively. It can be seen from the two plots that

the proposed methods generally outperform other baseline methods for the vegetation type

of hyperspectral data which demonstrate the diverse applicability of the proposed methods.
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Figure 2.10: Overall classification accuracy (%) versus number of training samples for the
University of Pavia data.

The class specific accuracies for different datasets are shown in Table 2.5, Table 2.6 and

Table 2.7 respectively. In this experiment, the training sample size per class is fixed to 10

and the test sample size is 100 per class. Each experiment is repeated 10 times and the
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Figure 2.11: Overall classification accuracy (%) versus number of training samples for the
wetland data, area - 1.
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Figure 2.12: Overall classification accuracy (%) versus number of training samples for the
wetland data, area - 2.
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average accuracy is reported. As can be seen from the class-specific tables for the wetland

data, the spatial information plays a crucial role, especially for the species with complex

textures and shapes such as Spartina-Patens, Sedge and Symphyotrichum. These three

species are shown in Fig. 2.13.

Table 2.5: Class-specific accuracies (%) for the University of Pavia Data.

Class Name / Algorithm LSPP–SBOMP-C LSPP–SOMP-C LSPP–NN LADA–NN

Asphalt 77.2 60.8 31.4 30.9
Meadows 64.4 62.5 60.2 59.6

Gravel 79.2 65.5 61.1 59
Trees 88.2 79 94.4 94.1

Metal Sheets 98.9 98.2 99.9 99.9
Soil 67.6 59.1 57.1 53.4

Bitumen 84.9 83 84.8 84.4
Bricks 60.1 64.8 66.2 62.9

Shadows 99.2 96.9 96.9 95.9
Overall Accuracy 80.0 74.4 72.4 71.1

Table 2.6: Class-specific accuracies (%) for the Wetland, Area-1 data.

Class Name / Algorithm LSPP–SBOMP-C LSPP–SOMP-C LSPP–NN LADA–NN

Soil 99.8 100 99.8 99.9
Symphyotrichum 86.8 85.5 78.1 76.1

Sedge 93.4 93.3 91.6 92.1
Spartina-Paten 68.4 59.1 64.2 56

Borrichia 91.6 91.2 91.7 93.7
Rayjacksonia 91.6 89 84.7 92.2

Overall Accuracy 88.6 86.4 85.0 85.0

Table 2.7: Class-specific accuracies (%) for the Wetland, Area-2 data.

Class Name / Algorithm LSPP–SBOMP-C LSPP–SOMP-C LSPP–NN LADA–NN

Soil 96.1 96.8 87.7 86.7
Mangrove Tree 97.1 95 97.1 98.5

Batis 99.2 99.1 97.9 97.2
Sedge 97 94.3 92.3 89.8

Spartina-Alterniflora 89.7 90.2 75.3 48
Water 99 99 98.5 98.7
Bridge 99.9 99.4 94.3 85.7

Overall Accuracy 96.9 96.3 91.9 86.4

Next, we analyze the effect of the window size (that defines the spatial neighborhood) for

the SLSPP method. Fig. 2.14 depicts the classification accuracies as a function of different

42



Spartina-Paten Sedge Symphyotrichum

Figure 2.13: Three wetland species having complex spatial texture features.

window size using the University of Pavia dataset. From this figure, we can see that the

optimal window size is 5.
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Figure 2.14: Overall classification accuracy (%) versus different window size for the Univer-
sity of Pavia data.

In this work, we also visualize the data distributions after projection for the proposed

angle-based SLSPP and the Euclidean-based LPP methods. Figure 2.15 (a) shows the

subset image for University of Pavia and Figure 2.15 (b) plots all the training samples used

in this experiment on an `2 normalized sphere. Figure 2.15 (c) and (d) show the same

samples after an SLSPP and LPP projection on an `2 normalized sphere respectively. U1,

U2 and U3 are the three projections found by SLSPP and LPP corresponding to the largest
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eigenvalues. As can be seen from this figure, SLSPP is much more effective at preserving

the inter-sample relationships in terms of spectral angle in the lower-dimensional subspace

compared to LPP.

(a) (b)

(c) (d)

Figure 2.15: Illustrating the (a) subset image of the University of Pavia, (b) original sam-
ples, (c) SLSPP projected samples and (d) LPP projected samples on the
sphere.

2.5 Conclusion

The proposed ADA seeks to learn an “optimal” projection in an angular sense, wherein

the ratio of within-class to between class inner products after an `2 normalization is maxi-

mized in the projected space. The optimization problem formed by ADA can be solved by

a simple generalized eigenvalue problem, and is readily extended to its locality-preserving

and kernel variants (which are also developed in this paper). We also provide geometrical
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insight for the proposed methods. In this work, ADA is used as a feature pre-processing

with the goal of improving the classification ability of NN with cosine angle distance and

SRC with OMP as the recovery method. Since OMP selects atoms based on the normalized

inner products, it is expected that the accuracy of coefficient recovery will increase after an

ADA projection. LADA is proposed to address the scenario wherein class specific samples

are not clustered into well-defined unimodal clusters on a unit hypersphere, but are rather

dispersed across multiple clusters. The nonlinear kernel variant proposed in this paper is

beneficial when between-class samples are distributed along the same radial direction or

angularly non-separable in the original space.

Besides the supervised angle-based dimensionality reduction, we have presented an un-

supervised variant (LSPP) of the recently developed supervised dimensionality reduction

method — ADA, as well as its spatial variant, SLSPP, that utilize spatial information

around the samples when learning the projections. By incorporating spatial information in

the dimensionality reduction projection, we are able to learn much more effective subspaces

that not only preserves angular information among the training pixels in the feature space,

but also their spatial neighbors.

Experimental results based on different benchmarking hyperspectral datasets show that

the proposed dimensionality reduction methods outperform other existing traditional di-

mensionality reduction methods — the resulting classification performance is similar or

better than the nonlinear SVM a common benchmarking algorithm for hyperspectral data.
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Chapter 3

Sparse Representation-Based Clas-

sification

3.1 Introduction

In this work, we propose class dependent sparse representation classifier (cdSRC) to

exploit the spectral content of HSI based on sparse representation. In essence, cdSRC effec-

tively combines the ideas of SRC and KNN in a class-wise manner to exploit both correlation

and Euclidean distance relationship between test and training samples. Towards this goal,

a unified class membership function is developed, that utilizes residual and distance infor-

mation simultaneously. In doing so, cdSRC not only utilizes the correlation information

but also harnesses the Euclidean information which may be lost due to the `2 normalization

(the length of each of atoms in the dictionary is unit length) preprocessing step in the SRC.

Experimental results based on several real-world hyperspectral datasets demonstrate that

cdSRC can dramatically increase the classification performance of traditional SRC and also

outperform kernel based SVM. We also propose an extension of the proposed algorithm in

a kernel induced space.

Finding the sparsest solution in SRC is a combinatorial problem as it involves searching

through every combination of S atoms in a dictionary, where S denotes the optimal sparsity
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level. There are two major approaches to approximate this problem. One is to relax this

non-convex combinatorial problem into an `1 convex optimization problem — also known as

basis pursuit. Several methods have been proposed to solve this `1-norm problem including

interior-point method [45], gradient projection [39] etc. The other major category is based

on iterative greedy pursuit algorithms such as matching pursuit, orthogonal matching pur-

suit (OMP) and orthogonal least square (OLS). These greedy approaches have been widely

used due to their computational simplicity and easy implementation. They find an atom

at a time based on different criterion and update the sparse solution iteratively. Among

these approaches, the OMP algorithm is by far the most popular approach and is used in a

wide range of applications. OLS is similar to OMP except for the atom selection process.

A major difference between OMP and OLS relies on their atom selection procedure in that

OMP selects an atom that best correlates with the current residual, while OLS selects an

atom giving the smallest residual after orthogonalization. Note that the first atom selected

by OMP is identical to OLS. For more detailed information about the differences between

these two algorithms, readers can refer to [46, 47] and a k-step analysis of OMP and OLS

can be found in [48].

OLS has been widely used in many applications [49–53], but it has not gained much

attention for classification problems. In [54], the authors implement SRC in a classwise

manner to improve the classification accuracy, in which the sparse coefficient is recovered

by OMP. In this work, we implement A class-dependent version of OLS to perform clas-

sification. Since OLS produces lower signal reconstruction error compared to OMP under

similar condition [46] (such as the same sparsity level, same dictionary etc.) — an obser-

vation that will be further analyzed and explained in the next section, we hypothesize that
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more accurate signal estimation will further improve the classification performance of SRC.

Compared with convex optimization based techniques such as interior point and gradient

projection methods [39, 45], greedy pursuit-based approaches are more efficient and appro-

priate to recover the sparse coefficient in SRC due to their low time-complexity. By using

the kernel trick, we extend the proposed cdOLS into its kernel variant to handle nonlinearly

separable data as well.

In [28], the authors propose a join sparsity model to incorporate the contextual in-

formation of test samples to improve the classification performance of SRC. However, the

contextual information of training samples have not been used. In this work, we also propose

a sparse representation based classifier which takes into account the spatial information for

both training and test samples in this work.

3.2 Related work

In this section, we introduce several popular classification methods used for remote

sensed image classification such as nearest neighbor (NN) classifier, sparse representation-

based classification (SRC), and support vector machine (SVM).

3.2.1 Nearest neighbor-based classification

The NN classifier is a nonparametric classification method that assigns a test sample

xtest to the l-th class if its nearest (measured by an appropriate distance metric) training

sample belongs to class l. The Euclidean distance DE is a commonly used, though angular

cosine distance DC [14, 15] is also used to measure the similarity between a test sample
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xtest and a training sample xi which are defined as

DE(xtest,xi) = ‖xtest − xi‖ and (3.1)

DC(xtest,xi) = 1− x̃ttestx̃i.

3.2.2 Sparse representation-based classification

In SRC [26], a test sample xtest is represented as a linear combination of the available

training samples in X ,

xtest = Xα, (3.2)

where α = [α1, α2, . . . , αn]t is a coefficient vector corresponding to all training samples. In

an ideal case, if a test sample xtest belongs to the l-th class, the entries of α are all zeros

except those related to the training samples from the l-th class.

To obtain the sparsest solution in (3.2), one can solve the following optimization prob-

lem:

α̂ = argmin
α∈Rn

‖α‖0, s. t. Xα = xtest, (3.3)

where the `0 norm ‖ · ‖0 simply counts the number of nonzero entries in α. Problem (3.3) is

NP hard — hence, as is common in other related applications [55, 56], the `0 norm can be

relaxed with an `1 norm — the resulting approach is referred to as basis pursuit [57]. This

can be cast as a linear programming problem and can be solved via gradient projection [39]

or interior-point method [45]. The `0 norm problem can also be approximately solved by

greedy pursuit algorithms such as OMP. Before computing the sparse coefficient based on

the methods described above, atoms in the dictionary need to be `2 normalized to avoid

biases caused by atoms with varying lengths [26].
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After calculating the sparse coefficient vector α̂, the residual of each class can be calcu-

lated via

rl(xtest) = ‖xtest −X δl(α̂)‖, l = 1, 2, . . . , c, (3.4)

where δl(α̂) is a characteristic function whose only non-zero entries in α̂ corresponding to

l-th class training samples. Finally, xtest is assigned a class label l corresponding to the

class that resulted in the minimal residual.

3.2.3 Support vector machines

Assume each data sample xi belongs to one of its class label in yi ∈ {+1,−1} and n

denotes the total number of training samples. SVM classifies binary data by solving the

following objective function defined as

min
ω,ξi,b

{
1

2
‖ω‖2 + ς

n∑
i=1

ξi

}
, (3.5)

subject to the constraint

yi
(
〈φ(ω,xi)〉+ b

)
≥ 1− ξi, (3.6)

where φ(·) is a mapping function, ω is normal to the optimal hyperplane, b is the bias term,

ς is the regularization parameter which controls the generalization capacity of the machine

and ξi ≥ 0 is a slack variable which measures the degree of misclassification of the data.

3.3 Proposed class-dependent sparse representation classifier

3.3.1 Limitations of SRC

Many works have been proposed to enhance the performance of SRC in which they rely

on the spatial context of HSI or are based on collaborative representation. In this work,

we propose class-dependent sparse representation classifier (cdSRC) to exploit the spectral
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content of HSI. In essence, cdSRC effectively combines the ideas of SRC and KNN in a class-

wise manner to exploit both correlation and Euclidean distance relationship between test

and training samples. Towards this goal, a unified class membership function is developed,

that utilizes residual and distance information simultaneously. In doing so, cdSRC not only

utilizes the correlation information but also harnesses the Euclidean information which may

be lost due to the `2 normalization (the length of each of atoms in the dictionary is unit

length) preprocessing step in the SRC. Experimental results based on several real-world

hyperspectral datasets demonstrate that cdSRC can dramatically increase the classification

performance of traditional SRC and also outperform kernel based SVM. We also propose

an extension of the proposed algorithm in a kernel induced space.

For hyperspectral data classification, pixels from different classes are usually charac-

terized by relatively high correlation with each other and hence makes SRC challenging.

This is because the recovered coefficient under such scenarios may potentially be inaccu-

rate. Specifically, the locations of non-zero values in the recovered coefficients may not

correspond to the training samples that have the same membership as the true membership

of the test sample.

As we have mentioned before, the coefficient vector in Eq. (3.3) can be calculated via a

greedy pursuit algorithm such as OMP. Since OMP only exploits correlation (measured by

inner products) between a test sample and training samples, it suffers from a limitation in

that it does not utilize the Euclidean distance information which can potentially be useful

when samples from different classes possess high correlation.

In practical hyperspectral data classification, it is common to encounter problems where

samples from two different classes are highly correlated with each other but separated in
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the Euclidean space. In this scenario, OMP will be likely select atoms (training samples)

whose class membership are different from the test sample which consequently results in

classification errors. Fig. 3.1 illustrates this phenomenon based on synthetic data. From

this figure, one can easily notice that although the test sample is likely to belong to class-1,

it is more correlated with samples from class-2 than class-1, although with respect to the

Euclidean distance, the test sample is closer to the samples from class-1 compared with

samples from class-2.

ɵ1 > ɵ2

ɵ1

ɵ2

d1

d2

d1 < d2

µ1

µ2

Class - 1

Class - 2

Test sample

Figure 3.1: Illustrating the case where a test sample is highly correlated with samples from
other class but separated in the Euclidean distance. Note that cross symbol
denotes means for each class.

Let’s explain this phenomenon in another way. It is well known that before solving

Eq. (3.3) using OMP, all of atoms in the dictionary need to be `2 normalized to avoid the

bias caused by atoms with varying lengths [26]. However, by performing `2 normalization,

samples having high correlation with each other will be highly overlapped with each other

which means the Euclidean distance information is lost or changed. Fig. 3.2 illustrates this

phenomenon based on the same synthetic data used in Fig. 3.1. As seen in this figure, highly
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correlated samples from two different classes which are well separated in the Euclidean space

are completely overlapped after `2 normalization. In this scenario, OMP is more likely to

select atoms from class-2 rather than class-1 which will lead to misclassification. Later, we

will see that some real-world hyperspectral datasets also exhibit similar phenomenon.

ɵ1 > ɵ2

ɵ1

ɵ2
d1

d1 > d2

d2

Class - 1

Class - 2

Test sample

µ1

µ2

Figure 3.2: Illustrating the case where Euclidean distance information between a test sample
and training samples is changed after `2 normalization.

Another limitation of traditional SRC comes from the fact that it does not incorporate

the class label (prior) information of the dataset. It only utilizes the class label information

in post processing when calculating the residuals for each class and ignores it when calculat-

ing the coefficients. In the supervised or semi-supervised hyperspectral data classification

problems, we are given a set of training samples with corresponding labels, although the

available number of training samples is very limited, since collecting hyperspectral data is

very expensive and time-consuming. Due to the high correlation between samples in HSI,

using the entire training dataset as the dictionary for SRC results in atoms potentially being

selected from multiple classes. This contradicts the assumption of SRC that the support of

a test sample should ideally be in a union of atoms from the same class as the test sample.
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3.3.2 Class-dependent sparse representation classifier

To cope with these dilemmas, we propose a cdSRC algorithm to effectively exploit

the correlation and Euclidean distance information simultaneously. Different from tradi-

tional SRC, the proposed cdSRC is comprised of two components — class-dependent OMP

(cdOMP) and class-dependent KNN (cdKNN) which perform the OMP and KNN in a class-

wise manner by incorporating the prior (class label) information. In essence, this approach

unifies ideas from SRC and traditional classification information obtained via utilizing inter-

sample distances. Additionally, by formulating the solver class-wise (i.e., cdOMP), we better

condition the SRC. The proposed cdSRC algorithm is described in Algorithm 1. The class

label of a test sample is not directly determined in cdOMP or cdKNN. Instead, a residual

and Euclidean distance between a test sample and training samples in the dictionary is

calculated via cdOMP and cdKNN respectively. Specifically, in cdOMP, the residual for

the i-th class is the norm of the difference between the test sample and an approximated

test sample derived through OMP using the dictionary formed by training samples from

the i-th class. In cdKNN, the i-th class distance is measured by the mean of Euclidean

distances of the test sample and its K nearest neighbors. It should be noted that cdOMP is

used to sparsely represent the test sample by exploiting the correlation information between

the test sample and training samples in every class, while cdKNN is used to exploit the

Euclidean distance information. Note that in cdKNN, the data are not `2 normalized to

avoid between-class samples being overlapped with each other, while cdOMP necessitates

`2 normalization [26].

After calculating the residual and distance via cdOMP and cdKNN, a test sample is

assigned class label ω via ω = argmini=1,2,...c(ri+λdi). Here, λ is a regularization parameter
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to balance the relative importance between correlation and Euclidean distance information.

HSI data samples usually reside on manifolds, implying that Euclidean distance in the

input space may not be an appropriate to describe inter-sample relationships [10]. Hence we

adopt a manifold learning technique that exploits the nonlinear structure of HSI by embed-

ding high-dimensional hyperspectral data into a lower dimensional transformed space where

the neighborhood structure of the data is preserved. Various works have been proposed in

literature such as ISOMAP, Locally Linear Embedding (LLE), Locality Preserving Projec-

tion (LPP) [7] and Local Fisher Discriminant Analysis (LFDA) [8]. In recent work, we have

shown that LFDA provides a superior projection of the data into a lower dimensional sub-

space, where samples from different classes are well separated, and additionally, the local

structure of point-clouds of each class is preserved [10, 12]. LFDA can be implemented via

effectively combing the properties of Linear Discriminant Analysis (LDA) and LPP. Readers

can refer to [8] for a detailed description of LFDA, and to [10, 12] for a description on how

to effectively utilize LFDA for hyperspectral classification.

Inspired by these recent observations, we measure the Euclidean distance information

used in cdKNN in an LFDA projected subspace such that the local structure of hyperspectral

data is effectively captured. Let T ∈ Rd̂×d be the LFDA projection matrix, where d̂ is the

reduced dimensionality. In this work, the Euclidean distance between a test sample xtest

and training sample xij in cdKNN is calculated in the LFDA projected space via

D(xtest,xij) = ‖Txtest − Txij‖2. (3.7)

By projecting the data into the lower dimensional LFDA projected space, we not only

increase the inter-class separability but preserve the neighboring distances of samples. This

implies that the neighboring samples of a test sample are likely to have the same membership
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Algorithm 1 Class-Dependent Sparse Representation Classifier

1: Input: d × n training data X = {Xi}ci=1 where Xi = {xij}ni

j=1, test data xtest ∈

Rd, sparsity level S, number of nearest neighbors K and regularization parameter λ.

Normalize columns of X and xtest to have unit norm.

2: for all i ∈ 1, 2, . . . c do

3: Initialization: Λ0
i = ∅, r0

i = xtest, and t = 1.

4: while t ≤ S do

5: Update the support set Λti = Λt−1
i ∪ λti by solving λti = argmax

j=1,2,... ,ni

|〈rt−1
i ,xij〉|.

6: Calculate the coefficient αti over the current support set Λti by solving

αti = argmin
α
‖xtest − (Xi)Λt

i
α‖2.

7: Calculate the residual rti by solving rti = xtest − (Xi)Λt
i
αti.

8: t← t+ 1

9: end while

10: Calculate the i-th class residual ri = ‖rt−1
i ‖2.

11: end for

12: for all i ∈ 1, 2, . . . c do

13: for all j ∈ 1, 2, . . . ni do

14: Calculate the Euclidean distance D between xtest and xij dij = D(xtest,xij).

15: end for

16: Calculate the mean of K smallest dij as the i-th class distance di.

17: end for

18: Determine the class label of xtest based on ω = argmin
i=1,2,...c

(ri + λdi).

19: Output: A class label ω.
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as the test sample and the corresponding cluster of training points is made compact, while

the distance between the test sample and training samples whose membership are different

from the test sample are increased.

In this section, we provide an argument for using the same sparsity level for each class in

cdSRC algorithm. As is described in Algorithm 1, we fix the sparsity level for every class.

For signal reconstruction problems, it is reasonable to assume that the sparsity level for

different classes should be set individually to faithfully represent the test sample. However,

for our cdSRC approach, we contend that the sparsity level for each class should be the

same for each class, a motivation for which is provided below.

In HSI, in addition to the samples from the same class being highly correlated with

each other, it is possible that samples from different classes are also highly correlated. This

can be seen from the 9 class mean correlation matrix of University of Pavia hyperspectral

dataset in Fig. 3.3. More details of this dataset can be found in Sec. V. This implies that
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Figure 3.3: Illustrating the 9-class mean correlation matrix of University of Pavia dataset.

a test sample may be faithfully reconstructed using training samples from several different

57



classes. In other words, the residuals obtained for these classes are similar. In this scenario,

it is likely to cause the residual for the class with high sparsity level smaller than the one

with low sparsity level. This is due to the fact that in greedy pursuit algorithm such as

OMP, the calculated residual monotonically decreases as the sparsity level increases. Hence

we want to calculate the residual for every class under the same sparsity level to avoid bias.

We provide additional empirical evidence to illustrate this point. We have chosen the

most correlated four classes out of 9 classes in the dataset, namely asphalt, gravel, bitumen

and bricks from the University of Pavia dataset. Then we randomly select a test sample

from the asphalt class and also select 50 training samples from each of the four classes, while

ensuring that the test and training samples do not overlap. Following this, we calculate

the residual for every class by gradually increasing the sparsity level. This experiment is

repeated 50 times and the average residuals are reported in Fig. 3.4. As can be seen from

this figure, for a fixed sparsity level, the residual for the asphalt class is always the smallest

among the four classes, which leads to correct classification. But when the sparsity level for

the asphalt class is lower than the other classes, the residuals calculated for the other classes

may potentially be smaller than the asphalt class, resulting in incorrect classification.

3.3.3 Kernel class-dependent sparse representation classifier

By introducing the kernel trick, cdSRC can be easily extended to the kernelized version

of cdSRC (KcdSRC). KcdSRC is especially useful when samples from different classes cannot

be linearly distinguished in terms of both correlation and distance information in the input

space. By projecting into a reproducing kernel Hilbert space, the underlying discriminant

information can be effectively exploited for classification.

Let Φ be the nonlinear function, mapping the data to the kernel feature space and κ be
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Figure 3.4: Plotting residuals as a function of sparsity level for the most correlated four
classes from the University of Pavia dataset.

the corresponding kernel function. A data sample x in the input space X can be mapped

into the feature space F via Φ : x ∈ X → Φ(x) ∈ F . By invoking the kernel trick, the

inner product of any two samples xi and xj in the feature space can be represented as

κ(xi,xj) = 〈Φ(xi),Φ(xj)〉. Eq. (3.2) can be represented in the feature space as

Φ(xtest) = Φ(X)α̃, (3.8)

where Φ(xtest) and Φ(X) represent the test and training samples in the feature space, and α̃

is the corresponding coefficient vector. The sparse coefficient vector α̃ in F can be obtained

by solving

α̂ = argmin ‖α̃‖0, s. t. Φ(X)α̃ = Φ(xtest). (3.9)

The problem posed in Eq. (3.9) can be solved by a “kernelized” variant of OMP (KOMP)

[58]. In a manner similar to the cdOMP formulation proposed for cdSRC, we can construct

a kernelized variant, KcdOMP, that serves as a class-dependent version of KOMP. The

KcdSRC algorithm is described in Algorithm 2.
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To capture Euclidean information of data points in F , we have a KcdKNN component

within the KcdSRC formulation. The Euclidean distance between a test sample xtest and

training sample xij can be calculated in the kernel LFDA (KLFDA) projected feature space

via

D̃ = ‖T̃ xtest − T̃ xij‖2, (3.10)

where T̃ is the projection matrix of KLFDA. The motivation for the choice of KLFDA here is

similar to that for using LFDA in cdSRC. KLFDA is an embedding suited for data possessing

complex structures, such as data that is on a manifold and essentially implements LFDA

in the kernel induced space F . The reader is referred to [8] for further details on KLFDA,

and to [59] for a description on the appropriateness of this preprocessing for hyperspectral

classification. With these formulations, the remainder of the KcdSRC algorithm is similar

to cdSRC.

3.3.4 Experimental results and analysis

In this section, the efficacy of the cdSRC and KcdSRC (as measured by overall clas-

sification accuracy) are evaluated as a function of training samples using three different

real-world hyperspectral data. Several baseline approaches including SRC, Kernelized SRC

(KSRC), CRC, Kernelized CRC (KCRC), KNN, NRS as well as SVM with radial basis

function (RBF) as the kernel function are used to compare the efficacy of the proposed

algorithms. The kernel functions used in KcdSRC, KSRC and KCRC are all based on the

RBF. Each experiment is repeated 10 times using a repeated random sub-sampling vali-

dation technique, and the average accuracies are reported in this work. For KcdSRC and

SVM based classification, an RBF kernel is used. A one-against-one strategy is used for

the multi-class implementation of standard SVM. All free parameters of these algorithms
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Algorithm 2 Kernel Class Dependent Sparse Representation Classifier

1: Input: d × n training data X = {Xi}ci=1 where Xi = {xij}ni

j=1, test data xtest ∈ Rd,

kernel function κ, sparsity level S, number of nearest neighbors K and regularization

parameter λ.

2: for all i ∈ 1, 2, . . . c do

3: Initialization: Calculate i-th class kernel matrix KXi
∈ Rni×ni whose (j, k)-th entry

is κ(xij ,xik) and kXi,xtest
∈ Rni whose j-th entry is κ(xij ,xtest). Set Λ1

i to be the

index corresponding to the largest entry in kXi,xtest
and iteration counter t = 2.

4: while t ≤ S do

5: Calculate β ∈ Rni via β = kXi,xtest
− (KXi

):,Λt−1
i

(
(KXi

)Λt−1
i ,Λ

t−1
i

)−1
(kXi,xtest

)Λt−1
i
.

6: Update the support set Λti = Λt−1
i ∪ λti by solving λti = argmax

j=1,2,...ni

|βj |.

7: t← t+ 1

8: end while

9: Let Λi = Λt−1
i , the i-th class coefficient α̃Λi

whose nonzero entries indexed by Λi can

be calculated via α̃Λi
=
(

(KXi
)Λi,Λi

)−1
(kXi,xtest

)Λi
.

10: Calculate i-th class residual r̃i = k(xtest,xtest)−2α̃
′

Λi
(kXi,xtest

)Λi
+ α̃

′

Λi
(KXi

)Λi,Λi
α̃Λi

.

11: end for

12: for all i ∈ 1, 2, . . . c do

13: for all j ∈ 1, 2, . . . ni do

14: Calculate the Euclidean distance in the feature space d̃ij = D̃(xtest,xij).

15: end for

16: Calculate the mean of K smallest d̃ij as the i-th class distance d̃i.

17: end for

18: Determine the class label of xtest based on ω = argmin
i=1,2,...c

(r̃i + λd̃i).

19: Output: A class label ω.
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(e.g., sparsity level, regularization value, parametrization of the kernel function etc.) are

determined via cross validation, using training data only.

Since the dictionary used in cdSRC is class dependent (i.e., for c classes, there are c

sub-dictionaries), the dictionary size is much smaller than what is commonly encountered

in traditional SRC, which is formed based on training samples overall c classes. Together

with the high dimensionality of HSI, this results in class-specific sub-dictionaries in cdSRC

to often be under-complete when the training sample size is small. To test the premise and

performance of cdSRC with both under-complete and over-complete dictionaries, we have

tested over a wide range of the number of training samples, varying from 5 samples per class

through 150 samples per class. When using 150 samples per class, the dictionaries used

in University of Pavia and University of Houston datasets are over-complete, and hence

test out the performance under over-complete conditions. For the Indian Pines dataset,

the dimensionality of the dataset is very high, and there are classes that do not have

enough labeled samples to make the dictionary over-complete. Consequently, this test is

only conducted with the University of Pavia and the University of Houston hyperspectral

datasets.

The overall classification accuracies of the proposed methods and baseline algorithms

for the University of Pavia are summarized in Table 3.1. The “optimal” parameter values

for the algorithms (as determined using 50 training samples per class) are as follows. The

sparsity levels for cdSRC and KcdSRC, SRC and KSRC are 10, 10, 1, and 30 respectively.

The dimensionality of the LFDA/KLFDA feature space in cdSRC/KcdSRC is 30. The λ

values of cdSRC, KcdSRC and NRS are 0.05 and 0.001 and 0.00001 respectively. The sigma

values in the RBF kernel function of KcdSRC, KSRC, KCRC and SVM are 2, 0.1, 0.1
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and 0.05 respectively. It can be observed from the results that the proposed cdSRC and

KcdSRC outperform all other baseline approaches. We also note that cdSRC (and KcdSRC)

consistently outperform baseline approaches with both under-complete and over-complete

dictionaries. The proposed methods have a performance that is comparable to SVM when

using very limited training data (5 and 10 samples per class). Other than that, in general,

the proposed methods outperform SVM.

Table 3.1: Overall classification accuracies (%) and standard deviation (in bracket) as a
function of the number of training samples per class for University of Pavia
dataset.

Number of training samples per class

Algorithm 5 10 30 50 100 150

cdSRC 73.1 (2.7) 78.9 (2.4) 86.0 (1.0) 87.6 (0.9) 89.0 (0.8) 91.1 (0.8)
KcdSRC 72.8 (2.9) 79.8 (2.1) 87.6 (0.9) 89.6 (0.8) 91.4 (0.3) 92.3 (0.5)

SRC 68.0 (1.5) 70.6 (1.2) 75.3 (1.6) 77.3 (1.0) 79.0 (0.8) 80.4 (0.4)
KSRC 69.2 (1.1) 73.5 (1.9) 79.7 (1.8) 81.6 (1.1) 84.3 (0.8) 85.5 (0.5)
NRS 70.9 (2.4) 75.5 (1.8) 82.3 (2.3) 82.0 (2.4) 82.3 (1.4) 80.9 (2.2)
CRC 64.9 (3.6) 66.0 (4.2) 70.6 (0.6) 71.6 (0.9) 72.0 (0.8) 72.8 (0.5)

KCRC 69.6 (1.4) 72.2 (4.6) 79.8 (1.0) 80.5 (0.8) 82.9 (0.9) 83.9 (0.6)
KNN 70.4 (2.1) 73.0 (2.3) 78.2 (1.1) 80.1 (1.0) 82.6 (0.4) 84.0 (0.8)
SVM 73.5 (3.0) 79.7 (1.4) 85.8 (1.1) 87.4 (0.9) 88.9 (1.2) 90.4 (0.4)

To illustrate the impact of the regularization parameter λ for the performance of cdSRC,

we first look at how the `2 normalization will affect the mean spectral signatures of samples

from different classes. In University of Pavia data, four different classes such as Asphalt,

Gravel, Bitumen and Bricks are highly correlated with each other but slightly separated in

the `2 norm (Euclidean distance) sense. After `2 normalization which is shown in Fig. 3.5,

these four classes are almost completely overlapped with each other. It makes classifying

these four classes very challenging. Hence, in Table 3.1, we note that the traditional SRC

and CRC give relatively low classification accuracies compared with the proposed methods

which is designed to handle these overlapping.
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Figure 3.5: Mean spectral signatures of University of Pavia dataset after `2 normalization.

Fig. 3.6 shows the overall classification accuracies versus different values of λ. If λ value

is set to 0, it means only correlation information is exploited during the classification stage.

One can notice that as the λ value increases, the classification accuracy also increases until

the λ value reaches around 0.06. Also, as the λ value keeps increasing, the accuracy drops.

It is expected since the correlation information is gradually excluded and Euclidean distance

information is dominated. Hence by properly adding the Euclidean distance information

using cdKNN will improve the classification performance of cdSRC.

Next, we demonstrate the effect of sparsity level S and number of nearest neighbors K

on the performance of cdSRC which is depicted in Fig. 3.7 as a mesh plot. By looking at

this figure, the high classification accuracies are obtained when both S and K are small.

The classification maps of University of Pavia generated using the proposed methods and

baseline algorithms are shown in Fig. 3.8 to test the generalization capability of these meth-

ods. 30 training samples per class are used in this experiment. It can be seen from Fig. 3.8

that the proposed methods (cdSRC/KcdSRC) result in more accurate and “smoother”
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Figure 3.6: Overall classification accuracies (%) versus different values of λ for University
of Pavia dataset. 50 number of training samples per class are employed in this
experiment.
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Figure 3.7: Overall classification accuracies versus sparsity level S and number of nearest
neighbor K for University of Pavia dataset. 50 training samples per class are
employed in this experiment.
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classification maps (with reduced salt-and-pepper classification noise) compared with tra-

ditional SRC/KSRC/CRC/KCRC, and they have performance that is visually comparable

to NRS and SVM — KcdSRC provides better classification for pixels corresponding to the

Brick class, while SVM yields superior performance for pixels corresponding to the Meadows

class. The actual improvements are quantified by accuracies discussed previously.

(a) (b) (c) (d)

(e) (f) (g) (h)

Unlabelled 

Area
Asphalt Meadows Gravel Trees

Metal Sheets Soil Bitumen Bricks Shadows

Figure 3.8: Classification maps of University of Pavia dataset generated using (a) cdSRC
(b) KcdSRC (c) SRC (d) KSRC (e) NRS (f) CRC (g) KCRC (h) SVM.

The overall classification results for the Indian Pines data are summarized in Table 3.2.
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The “optimal” parameter values for the algorithms (as determined using 50 training samples

per class) are as follows. The sparsity levels of cdSRC and KcdSRC, SRC and KSRC are

10, 15, 12, and 45 respectively. The reduced dimensionality values of LFDA/KLFDA in

cdSRC/KcdSRC are both 30. The λ values of cdSRC, KcdSRC and NRS are 0.05 and

0.00005 and 0.00005 respectively. The sigma values in the RBF kernel function of KcdSRC,

KSRC, KCRC and SVM are 2, 0.1, 0.1 and 0.01 respectively. Based on the result in

Table 3.2, we can easily see that the classification performance of cdSRC and KcdSRC

are considerably and consistently better than other baseline algorithms under the different

training sample sizes. Even with a small number of training samples (5 and 10 per class),

the proposed methods have a much better classification performance than SVM.

Table 3.2: Overall classification accuracies (%) and standard deviation (in bracket) as a
function of the number of training samples per class for Indian Pines dataset.

Number of training samples per class

Algorithm 5 10 30 50 100 150

cdSRC 73.1 (1.6) 81.6 (1.7) 89.4 (0.9) 92.1 (0.5) 94.2 (0.4) 95.0 (0.3)
KcdSRC 73.2 (3.1) 81.6 (2.1) 90.3 (0.7) 92.5 (0.4) 94.4 (0.3) 95.2 (0.4)

SRC 63.5 (1.6) 67.7 (2.0) 77.3 (2.0) 80.9 (0.9) 84.8 (0.3) 86.7 (0.3)
KSRC 67.8 (2.6) 75.3 (1.8) 84.5 (1.0) 87.9 (0.9) 91.2 (0.2) 92.7 (0.3)
NRS 64.0 (4.1) 79.4 (1.5) 87.8 (1.0) 89.8 (0.7) 90.2 (1.1) 89.8 (1.1)
CRC 65.3 (1.9) 70.8 (2.3) 77.9 (1.1) 80.6 (0.8) 82.9 (0.9) 84.1 (0.3)

KCRC 68.2 (2.2) 75.4 (3.0) 85.9 (0.8) 88.7 (0.5) 91.4 (0.3) 93.0 (0.4)
KNN 57.5 (1.7) 62.3 (0.7) 71.2 (0.9) 74.5 (0.7) 79.2 (0.4) 81.4 (0.4)
SVM 64.6 (2.4) 75.5 (1.6) 86.9 (1.0) 89.9 (0.5) 93.0 (0.2) 94.0 (0.3)

Fig. 3.9 illustrates the influence of λ on the performance of cdSRC. Again by gradually

increasing the λ value (adding the Euclidean distance information), the classification per-

formance of cdSRC increases. However, it degrades the performance of cdSRC if too much

Euclidean information is included.
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The overall classification accuracies versus sparsity level S and number of nearest neigh-

bors K is depicted in Fig. 3.10 as a mesh plot. Slightly different with the University of

Pavia data, the optimal performance of cdSRC is achieved at the high values of S and K.

0 0.05 0.1 0.15 0.2 0.25 0.3
90

90.5

91

91.5

92

92.5

93

93.5

λ

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Figure 3.9: Overall classification accuracies (%) versus differet values of λ for Indian Pines
dataset.

Fig. 3.11 shows the classification maps obtained using the proposed and baseline al-

gorithms which is based on the 30 training samples per class. The proposed cdSRC and

KcdSRC have a better or comparable performance compared with SVM. Specifically, Kcd-

SRC and SVM correctly classify most of pixels in Soybean-middle class residing in the

top-right corner of the map, while other methods have a poor performance for these pixels.

Also, KcdSRC provides the best overall classification performance of pixels in the Corn-

middle class residing in the top-right corner of the map, while other methods either fail or

have a poor performance.

The classification result for the University of Houston dataset is shown in Table 3.3. The

“optimal” parameter values for the algorithms (as determined using 50 training samples

per class) are as follows. The sparsity levels of cdSRC and KcdSRC, SRC and KSRC
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Figure 3.10: Overall classification accuracies versus sparsity level S and number of near-
est neighbors K for Indian Pines dataset. 50 training samples per class are
employed in this experiment.

are 10, 10, 10, and 50 respectively. The reduced dimensionality values of LFDA/KLFDA

in cdSRC/KcdSRC are both 30. The λ values of cdSRC, KcdSRC and NRS are 0.01

and 0.00005 and 0.0005 respectively. The sigma values in the RBF kernel function of

KcdSRC, KSRC, KCRC and SVM are 3, 0.1, 0.1 and 0.01 respectively. It is obvious from

Table 3.3 that the proposed algorithms yield higher classification accuracies than any other

baseline algorithms. As with the University of Houston dataset, we observe that cdSRC

(and KcdSRC) consistently outperform baseline approaches with both under-complete and

over-complete dictionaries.

The overall classification accuracies versus λ value is plotted in Fig. 3.12. Fig. 3.13

illustrates the overall classification accuracy versus sparsity level S and number of nearest

neighbors K.

The classification maps of University of Houston data are shown in Fig. 3.14j, which

are generated using the proposed algorithms as well as baselines. The number of training
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Figure 3.11: Classification maps of Indian Pines dataset generated using (a) cdSRC (b)
KcdSRC (c) SRC (d) KSRC (e) NRS (f) CRC (g) KCRC (h) SVM.

70



Table 3.3: Overall classification accuracies (%) and standard deviation (in bracket) as a
function of the number of training samples per class for University of Houston
dataset.

Number of training samples per class

Algorithm 5 10 30 50 100 150

cdSRC 67.6 (2.8) 73.3 (2.8) 79.1 (1.8) 82.1 (0.8) 82.6 (0.7) 83.0 (0.2)
KcdSRC 67.9 (2.3) 73.0 (2.0) 80.0 (1.1) 82.0 (0.4) 82.9 (0.5) 82.8 (0.3)

SRC 59.4 (1.0) 62.8 (2.0) 68.4 (1.7) 71.0 (0.8) 73.0 (0.7) 73.7 (0.4)
KSRC 62.6 (3.1) 68.2 (1.3) 73.0 (2.4) 76.3 (0.7) 77.4 (0.6) 78.1 (0.3)
NRS 62.0 (7.6) 68.9 (2.0) 74.2 (0.6) 75.3 (1.7) 74.3 (1.4) 71.7 (1.1)
CRC 60.2 (2.8) 64.6 (2.6) 67.4 (1.2) 68.5 (0.6) 69.1 (0.5) 69.2 (0.4)

KCRC 63.7 (1.5) 66.7 (3.6) 74.2 (0.7) 74.7 (0.6) 77.0 (0.5) 77.7 (0.4)
KNN 59.1 (2.7) 62.6 (1.8) 68.1 (1.3) 70.1 (0.4) 71.2 (0.4) 72.4 (0.3)
SVM 65.4 (2.1) 69.7 (1.9) 76.4 (1.4) 78.1 (1.2) 78.6 (0.6) 79.2 (0.4)
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Figure 3.12: Overall classification accuracies (%) versus different values of λ for University
of Houston dataset.
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Figure 3.13: Overall classification accuracies versus sparsity level S and number of nearest
neighbor K for University of Houston dataset. 50 training samples per class
are employed in this experiment.

samples per class used here is 30. From the classification maps in Fig. 3.14, we can see

that all methods exhibit poor classification performance under the cloud shadow due to

no training sample is selected in that area. The proposed methods have comparable (and

for some classes, better) performance compared with other baseline methods in cloud-free

areas.

To test the computational complexity of the proposed cdSRC and KcdSRC approaches,

we compare it with standard SRC/KSRC. We choose the University of Pavia dataset to

perform this test. The total number of test samples used here is 100, and the sparsity level

for all of these four algorithms are set to 10 for fair comparison. All the experiments are

based on a single desktop PC, 8-core, 2.14GHz, using Matlab R2012a. Based on the test,

the CPU times (milliseconds) for cdSRC and KcdSRC are 2.69 and 2.41 respectively, and

0.72 and 0.63 for SRC and KSRC which are approximately 4 times faster than the proposed

approaches. This is primarily due to the class dependent structure of cdSRC. However, the
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Figure 3.14: Classification maps of University of Houston dataset generated (a) cdSRC (b)
KcdSRC (c) SRC (d) KSRC (e) NRS (f) SVM.
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proposed approaches can be easily implemented in a distributed manner for efficiency by

calculating the residual and distance for each class simultaneously.

3.4 Proposed class-dependent orthogonal least square

3.4.1 Difference between OMP and OLS

Before we describe our proposed method, we first review the difference between OMP

and OLS in detail. Although there are several different ways to solve this sparse approxi-

mation problem in (3.3), we focus on greedy pursuit based approaches including OMP and

OLS in this work. For other approaches such as convex relaxation and Bayesian based

framework etc., we refer readers to these works [45, 57, 60]. Both OMP and OLS can be

used to approximate the sparsest solution in (3.3). In each iteration, the atom selected by

OMP is not designed to minimize the residual norm after projecting the target signal onto

the selected elements, while OLS selects the atom that minimizes the residual based on the

previously selected atoms. Thus the final residual norm generated by OLS is always smaller

than OMP under similar conditions. However, OLS does not always give the sparsest solu-

tion. To find an optimal S-term representation of an signal x in (3.3), a simple approach

to finding the sparsest solution then is to search over all possible linear combinations of S

atoms in A. Let us denote this exhaustive searching algorithm as combinatorial orthogonal

least square (COLS).

We use an intuitive example to illustrate the differences of OMP, OLS and COLS algo-

rithms. In [46], the authors use a graphical interpretation to show the difference between

OMP and OLS in terms of atom selection procedure. In this example, we will further illus-

trate that the norm of residual generated by OLS is smaller than OMP but they are both
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not optimal. We will demonstrate later that the signal reconstruction performance of OLS

is close to optimal. Assume the true sparsity level in (3.3) is S. Let z1, z2 and z3 be the

axes in a 3-dimensional space, and a1, a2, a3 be the atoms in a dictionary D. Without

loss of generality, assume a1 and z1 are overlapped with each other, and a2 and a3 are in

the z1z2-plane and z1z3-plane respectively. Let x be a target signal, and assume that a1

is the most correlated with x than a2 and a3. Let ~OF = ~AD. Let φ1 and φ2 be the angles

between a2 and ~OF , and a3 and ~OF respectively. Under this scenario, we will analyze

the optimal sparse S-term representation using OMP, OLS and COLS, where S equals to

2. 1) OMP first selects the most correlated atom which is a1, and produces the residual

~AD by projecting x onto it. Next, OMP selects an atom that is mostly correlated with

~AD. Since ~OF = ~AD and φ1 < φ2, OMP selects a2. Therefore, the final residual norm

produced by OMP is ‖ ~AB‖2, which is obtained by projecting x onto a1a2-plane. 2) For

OLS, the first atom selected is a1, since OMP and OLS are the same in the first iteration.

Next, OLS calculates the residual norms of ‖ ~AC‖2 and ‖ ~AB‖2 obtained by projecting x

onto a1a3-plane and a1a2-plane respectively, and selects a3, since ‖ ~AC‖2 < ‖ ~AB‖2. Thus,

the final residual norm of OLS is ‖ ~AC‖2 obtained by projecting x onto z1z3-plane. 3)

COLS calculates all residuals by projecting x onto planes formed by every combination of

two atoms. Since ‖ ~AE‖2 < ‖ ~AC‖2 < ‖ ~AB‖2, COLS selects a2 and a3. The final residual

norm is ‖ ~AE‖2. For the special case when D is an orthonormal dictionary, all of the above

three methods will find an optimal S-term representation [61]. Overall, the performance of

these methods with regard to the reconstruction error are COLS ≥ OLS ≥ OMP.
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Figure 3.15: Graphically illustrating OMP, OLS and COLS.

3.4.2 Class-dependent orthogonal least square

The recent work in [54] demonstrates that operating SRC in a class-wise manner can

significantly improve the classification performance of SRC. As is explained in the previous

section, the recovery ability of OLS is always better than OMP in terms of the least square

error under the same condition (i.e. the same sparsity level). Therefore, it is expected

that the classification performance can be significantly enhanced by replacing OMP with

OLS under this framework. We name this algorithm class-dependent OLS (cdOLS). Note

that the stopping criterion in cdOLS is based on the sparsity level. This is because the

signal estimation error monotonically decreases as the sparsity level increases. Hence, we

use the same sparsity level for each class to circumvent this bias. We also extend cdOLS

to a “kernel” cdOLS (KcdOLS). The cdOLS and KcdOLS algorithms are described in

Algorithm 3 and Algorithm 4 respectively. For a faster implementation of OLS, readers can

refer to [46].
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Algorithm 3 cdOLS

1: Input: A training dataset A ∈ {Al}cl=1 ∈ Rd×n, test sample x ∈ Rd and sparsity level

S.

2: for all l ∈ 1, 2, . . . , c do

3: Set Λ0 = ∅, r0 = y, and iteration counter m = 1.

4: while m ≤ S do

5: Update the support set Λm = Λm−1 ∪ λm by solving

λm = argmin
j=1,2,... ,n

‖x− (Al):,Λm−1∪jβ̃‖2,

where β̃ = (A†l ):,Λm−1∪jx.

6: Calculate the residual rm by solving

rm = x−A:,Λmβ̂,

where β̂ = (A†l ):,Λmx.

7: m← m+ 1

8: end while

9: Calculate the l-th class residual norm νl = ‖rm−1‖2.

10: end for

11: Class label of x: ω = argmin
l=1,2,... ,c

νl.

12: Output: A class label ω.
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Algorithm 4 KcdOLS

1: Input: A training dataset A = {Al}cl=1 ∈ Rd×n, where Al = {ali}nl

i=1 ∈ Rd×nl , test

sample x ∈ Rd, kernel function κ, sparsity level S.

2: for all l ∈ 1, 2, . . . , c do

3: Calculate l-th class kernel matrix K l ∈ Rnl×nl whose (i, j)-th entry is κ(ali,alj) and

kl ∈ Rnl whose i-th entry is κ(x,ali). Set index set Λ1 to be the index corresponding

to the largest entry in kl and iteration counter m = 2.

4: while m ≤ S do

5: Update the support set Λm = Λm−1 ∪ λm by solving

λm = argmin
j∈1,2,... ,n

(κ(x,x) − 2(k>l )Λm−1∪jβ̃ +

β̃
>

(K l)Λm−1∪j,Λm−1∪jβ̃),

where β̃ = ((K l)Λm−1∪j,Λm−1∪j)
−1(kl)Λm−1∪j .

6: m← m+ 1

7: end while

8: The l-th class residual norm can be calculated via

νl =

√
κ(y,y)− 2(β̂)>(kl)Λm−1 + (β̂)>(K l)Λm−1,Λm−1β̂,

where β̂ =
(
(K l)Λm,Λm

)−1
(kl)Λm .

9: end for

10: Class label of x: ω = argmin
l=1,2,... ,c

νl.

11: Output: A class label ω.
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3.4.3 Experimental results and analysis

The classification results based on the University of Pavia and University of Houston

datasets are presented in Table 3.4 and Table 3.5 respectively. To evaluate the classification

performance of cdOLS and KcdOLS, several baseline approaches including SRC, kernel

SRC (KSRC), class-dependent OMP (cdOMP), kernel cdOMP (KcdOMP), and nonlinear

support vector machine (SVM) are compared. For SRC (KSRC), we use OMP (KOMP) as

the recovery method for fair comparison, although convex optimization-based approaches

generally outperform greedy-based approaches. Additionally, we also implement the COLS

in a class-wise manner (cdCOLS) as well as its kernel version KcdCOLS — these COLS

based variants can be considered as upper bounds in performance of OLS based methods.

The kernel functions used in these kernel-based methods was the radial basis function

(RBF). The optimal parameters including sparsity level and kernel parameter in RBF are

determined via cross-validation.

The classification results for these two datasets are presented in Table 3.4 and Table 3.5

respectively. As expected, we observe that the higher the reconstruction accuracy, the better

the classification result. Since COLS is a combinatorial searching method, it is practically

unfeasible, particularly when the dictionary size is large. We add it as a comparative method

in this work in order to compare the performance gap between cdOLS and cdCOLS. We

note that cdCOLS may be feasible in scenarios where the dictionary size is small, and so is

the underlying sparsity level for the representations. The overall performance of cdCOLS

and cdOLS are similar with a slightly better performance for cdCOLS (as expected). The

average performance of cdOLS is generally better than cdOMP.

To analyze the effect of sparsity level, we evaluate the performance of cdCOLS, cdOLS
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Table 3.4: Classification accuracy (%) and standard deviation (in bracket) as a function of
training sample size per class for University of Pavia data.

Algorithm / Sample Size 10 30 50

KcdCOLS 79.6 (1.5) 86.8 (0.9) 88.4 (0.8)
cdCOLS 73.9 (2.1) 79.3 (1.4) 81.0 (0.8)
KcdOLS 79.6 (1.5) 85.7 (0.9) 87.6 (0.5)
cdOLS 73.3 (1.8) 77.4 (1.2) 78.9 (1.1)

KcdOMP 79.6 (1.5) 85.8 (1.1) 87.3 (0.6)
cdOMP 73.0 (1.8) 76.3 (1.8) 77.8 (1.4)
KSRC 79.7 (1.4) 84.6 (0.9) 86.4 (0.6)
SRC 70.8 (1.0) 75.1 (1.3) 77.8 (1.4)
SVM 79.1 (1.6) 85.8 (0.6) 87.9 (0.8)

and cdOMP under the different sparsity levels. Fig. 3.16 and Fig. 3.17 show the classification

accuracy as a function of sparsity level for University of Pavia and University of Houston

data respectively. The number of samples per class in this experiment is set to 30. Hence

we test the sparsity level starting from 1 to the highest possible number 30. From these two

figures, we notice that the optimal sparsity level for these methods are generally very low.

This is due to the fact that the within-class hyperspectral data samples are very correlated

with each other, and a low residual norm can be derived using a small number of atoms.

Table 3.5: Classification accuracy (%) and standard deviation (in bracket) as a function of
training sample size per class for University of Houston data.

Algorithm / Sample Size 10 30 50

KcdCOLS 85.8 (1.7) 95.2 (0.6) 97.3 (0.2)
cdCOLS 84.6 (1.3) 93.4 (0.6) 96.3 (0.4)
KcdOLS 85.7 (1.7) 94.8 (0.7) 97.2 (0.3)
cdOLS 84.5 (1.5) 92.9 (0.9) 95.9 (0.6)

KcdOMP 82.4 (1.3) 89.6 (0.8) 92.5 (0.5)
cdOMP 79.7 (1.2) 87.1 (0.6) 91.8 (0.5)
KSRC 80.0 (0.9) 87.6 (0.7) 91.8 (0.6)
SRC 78.7 (0.8) 88.5 (0.5) 92.2 (0.6)
SVM 79.1 (1.2) 88.8 (0.7) 92.9 (0.8)

Next, we analyze the class-specific residuals obtained for cdCOLS, cdOLS and cdOMP.

In this experiment, we select a test sample from class-1 and calculate the residual of the

test sample using the training samples from class-1 for both datasets. This experiment is
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repeated 100 times and the average residuals are reported. Fig. 3.18 and Fig. 3.19 show the

residual plots for University of Pavia and University of Houston data respectively. As can

be seen from the figures, the residual obtained from cdOLS in each iteration is smaller than

the residual obtained from cdOMP. Also, the residual obtained from cdOLS is close to the

optimal one obtained from cdCOLS in each iteration.

Finally, in order to validate the generalization capabilities of these classifiers, we plot

for the University of Pavia dataset in Fig. 3.20. In this experiment, 30 training samples per

class are used. As can be seen from these maps, KcdOLS and cdOLS generally gives much

more accurate classification maps compared with KcdOMP and cdOMP. For e.g., there is

substantially less salt and pepper misclassification error for the brick and bitumen classes

for KcdOLS compared with KcdOMP. We use a white rectangle to mark the regions in the

maps.
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Figure 3.16: Overall classification accuracy (%) versus sparsity level S for the University of
Pavia data.
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Figure 3.17: Overall classification accuracy (%) versus sparsity level S for the University of
Houston data.
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Figure 3.18: Norm of residual versus iteration number for the University of Pavia data.
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Figure 3.19: Norm of residual versus iteration number for the University of Houston data.

3.5 Proposed simultaneous block orthogonal matching based

classification

3.5.1 Simultaneous orthogonal matching pursuit

The simultaneous orthogonal matching pursuit (SOMP) [62] and block orthogonal match-

ing pursuit (BOMP) [63] are all variants of orthogonal matching pursuit (OMP) that explore

the block structure of test samples and training samples respectively. In this work, we ef-

fectively combine these two recovery methods and propose SBOMP to explore the block

structure of both training and test samples simultaneously. SBOMP is illustrated in Al-

gorithm 5. Let xt be a test sample. Assume Ai contains spatial neighborhood samples

around xi (inclusive of xi), S contains the spatial neighborhood samples of xt (inclusive of

xt) and K is the sparsity level. SBOMP estimates the coefficient Ĉ based on the K mostly

correlated spatial training samples in A.
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Metal Sheets Soil Bitumen Bricks Shadows

Figure 3.20: Classification maps of University of Pavia dataset generated using (a) Kcd-
COLS (b) cdCOLS (c) KcdOLS (d) cdOLS (e) KcdOMP (f) cdOMP (g) KSRC
(h) SRC (i) SVM.
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Algorithm 5 SBOMP

1: Input: A training dataset A = {Ai}ni=1, test data S and row sparsity level K.

2: Initialize R0 = S, Λ0 = ∅, and the iteration counter m = 1.

3: while m ≤ K do

4: Update the support set Λm = Λm−1 ∪ λ by solving

λ = argmax
i=1,2,... ,n

‖At
iR

m−1‖2,1.

5: Derive the coefficient matrix Cm based on

Cm =
(
At

ΛmAΛm

)−1
At

ΛmS

6: Update the residual matrix Rm

Rm = S−AΛmCm

7: m← m+ 1

8: end while

9: Output: Coefficient matrix Ĉ = Cm−1.
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3.5.2 Simultaneous orthogonal matching pursuit based classification

The classification method employed after SLSPP is SBOMP-based Classification (SBOMP-

C), as described in Algorithm 6. Since SLSPP can preserve the spatial neighboring samples

for both training and test samples in a lower-dimensional subspace, by using SBOMP-C,

we can exploit the block structure relationship effectively in the spatial domain between

training and test samples.

Algorithm 6 SBOMP-C

1: Input: A spectral-spatial training data A = {Ai}ni=1, test data S and row sparsity level

K.

2: Calculate row-sparsity coefficient Ĉ based on

Ĉ = SBOMP (A, S,K)

3: Calculate residuals for each class

rk(S) = ‖S−Aδk(Ĉ)‖2, k = 1, 2, . . . , c

4: Determine the class label of S based on

ω = argmin
k=1,2,... ,c

(rk(S)).

5: Output: A class label ω.

3.6 Conclusion

In this work, we have presented a new sparse representation based classifier — cdSRC for

HSI classification. In cdSRC, a test sample is represented in a way that exploits the corre-

lation and Euclidean distance information between the test sample and training samples in
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a class-wise manner. Through experimental results based on three real-world hyperspectral

datasets, it is clear that cdSRC not only dramatically improves the performance of tra-

ditional SRC but also outperforms popular traditional classifiers, including `2-regularized

classifiers and SVM. Additional improvements in classification performance can be observed

with the kernel variant of the proposed approach (KcdSRC).

We also present a class-dependent OLS-based classification method named cdOLS for the

problem of hyperspectral image classification. We also extend cdOLS into its kernel variant.

Through two real-world hyperspectral datasets, we demonstrate that our proposed methods

outperform cdOMP, KcdOMP as well as SVM. We also demonstrate that the classification

performance of the proposed methods are close to that of cdCOLS and KcdCOLS. Our

proposed developments are based on the observation that OLS is generally better suited for

sparse coefficient recovery. We also present an combinatorial OLS based classifier - COLS,

that acts as an upper bound on the performance of such classifiers, and can itself be used

as well when the training dictionary is small. For scenarios where training dictionaries are

not small, the more feasible cdOLS method has very similar performance to cdCOLS (in

both the input and kernel induced space).

Finally, we present SBOMP based classification method to exploit the spatial structure

between training and test samples. Since it incorporates the spatial information of training

and test samples, the classification accuracy is dramatically higher than the ones without

using spatial information. We also demonstrate that its classification performance can be

further improve by preprocessing the data using the SLSPP which preserves the angular

relationship between samples and their spatial neighborhood.

87



Chapter 4

Real-World Applications

4.1 Introduction

A primary purpose of using remote sensing images, such as hyperspectral images, is to

identify or classify target materials present in a scene without physical contact. Modern

hyperspectral sensors are able to acquire densely sampled spectral information of objects

across the wide range of electromagnetic spectrum ranging from visible to near-infrared.

This enormous information can facilitate the identification and classification process of ob-

ject materials present in a scene. However, for hyperspectral images, the desired objects are

occasionally covered by shadows of buildings, trees or clouds (or in general, suffer from illu-

mination variation between training and testing conditions). Hyperspectral measurements

under such variation results in significant variability in the spectral profiles of such objects.

Such scenarios can complicate or even destroy performance of classification systems if they

are not invariant to such behavior.

There has been some prior work focused on addressing the issue of different illumina-

tion conditions for remote sensing images. In [64, 65], the authors first segment out the

shadow areas and correct their intensity differences based on the information provided by

the non-shadow areas. In [66], shadow-insensitive detection and classification based on the

atmospherically corrected hyperspectral imagery are presented. A spectral anomaly detec-

tion algorithm under the deep shadow areas has been proposed in [67]. In [68], the authors
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use the spectral angle measure to estimate abundance. A cloud-shadow atmospheric cor-

rection technique is developed in [69] for hyperspectral coastal ocean data. However, such

an approach needs specific pixels under the shadows and sunlit areas to be able to obtain

good correction results. In [70], the authors combine LiDAR and hyperspectral data to

detect vehicles under the shadow areas. The problem of hyperspectral data change detec-

tion under the different illumination conditions is addressed in [71]. The methods described

above rely on either pre-processing the hyperspectral data to reduce the effect of shadows

or employing another data source, such as LiDAR to capture the characteristics of mate-

rials under shadow areas. In [72], the authors proposed a morphological shadow index to

automatically detect the presence of shadows, which is then used as a spatial constraint

for extracting building features from remotely sensed images — it is very specific to the

extraction of buildings based on the spatial constraint of shadows. In our work, we focus on

robust classification of object pixels that are occluded by shadow and make no assumptions

about the spatial properties of objects.

A marsh is a type of wetland whose main characteristics depend on the soil type, salinity

of the water, the plants as well as some other environmental factors. Marshes provide

habitat for variety of plants and wildlife which are of economic importance. Some other

functionalities of marshes include controlling floods and purifying water by filtering out

pollutants etc. Therefore conserving marshes are of great importance. Since marshes are

composed of a variety of plants, the identification of wetland plant species is an important

research topic for rapid marsh delineation and proactive management.

Mangroves are of considerable importance for the salt marsh ecosystem. Most impor-

tantly, they can provide wild life habit and a nursery area for many important coastal
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creatures as well as provide natural protection of the coastline. Most of commercial seafood

spent their lives in mangroves residing in the wetland. Besides these benefits, mangroves

are also a profound sources of food. The mangroves leaves can be turned into a rich source

of food called detritus for many animals including crabs and shrimps. Mangroves also have

the ability to improve the water quality and clarity by cycling pollutants and filtering sed-

iments and debris. Realizing its importance for the marsh ecosystem and tremendous lost

during the last decades, mangrove vegetation are now legally prohibited by government from

cutting and destruction without a permit. Considering the uniqueness and their multiple

ecological functions they provide, maintaining successful establishment of mangroves are vi-

tal for the salt marsh ecosystem. Therefore, finding an efficient way to monitor the increase

or decrease of the mangrove vegetation in the salt marsh area plays a vital role. Another

important species in wetland is the spartina alterniflora which is native to the southern and

east coasts of North America. Although spartina alterniflora sometimes can be beneficial

to human beings in that it can trap sediment and raise marsh elevations to protect against

flooding and provide habitat for aquatic animals, it is a non-native and invasive species in

salt marsh systems. It is well-known that wetlands are generally susceptible to invasion,

and non-native species can cause changes to the wetlands including populations and com-

munities of plants and animals as well as the nutrients. The spartina alterniflora suppresses

the seedlings of mangroves. The most effective way to estimate the increase or decrease of

the mangroves and spartina alterniflora are based on the aerial photographs of the coastal

areas. In the following paragraphs, we will discuss the remote sensing techniques in the

application of wetland species monitoring and classifications.
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There has recently been a growing interest in the application of remote sensing ap-

proaches for the analysis of marsh species thanks to the recent advances in airborne imaging

sensors as well as some remote sensing satellites. Using remote sensing images for mapping

and monitoring the wetlands can avoid directly accessing to the wetland, where there are

some dangerous wildlife and endemic diseases. Different types of wetlands classification

and identification based on the satellite remote sensing data is studied in [73] including

which classification techniques were most effective and useful in identifying wetlands and

separating them from other land cover classes. In [74], the authors apply spectral mix-

ture analysis technique on AVIRIS hyperspectral data to study the structure of wetlands

with emphasis on the complex of spartina species. In [75], several satellite and airborne

multispectral and hyperspectral remote sensing images are used to classify different types

of salt-marsh vegetation species based on several unsupervised and supervised classifiers

including K-means, maximum likelihood and spectral angle mapper. In [76], the authors

developed a comprehensive way to build spectral libraries of wetland species to facilitate

the application of hyperspectral images for wetlands cover classification and monitoring. In

[77], hyperspectral images and light detection and ranging are combined to exploit both

the spectral and elevation information of different salt marsh cover classes based on the

decision tree. A comprehensive review of multispectral and hyperspectral remote sensing

for mapping of wetland vegetation can be found in [78, 79].

4.2 Urban hyperspectral data classification under the shadow

The first validation dataset is acquired using an ITRES-CASI 1500 hyperspectral imager

over the University of Houston campus and the neighboring urban area. It has 144 spectral

bands over the 380 - 1050nm wavelength range. This image has a spatial dimension of
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1905 × 349 with a spatial resolution of 2.5 m. The image has a prominent cloud in a part

of the scene. There are eight classes defined under the shadow and non-shadow areas. The

true color image of University of Houston dataset inset with the ground truth is shown in

Fig. 4.1. Fig. 4.2 shows the mean signature for these classes under the sun and shadow

(in the remainder of this paper, for notational convenience, we refer to pixels under well

illuminated regions with as being under sun, and regions under cloud shadows as being

under shadows). Note that this is a subset of the 15 classes available for this dataset

(released by us for the 2013 IEEE GRSS Data Fusion Contest 1) — we focus on classes

where such illumination variations exist, to demonstrate performance for the specific case

of such illumination variations. The total number of samples under the well-lit and cloud

shadow areas for each class is listed in Table 4.1.

Grass-

healthy

Grass-

stressed
Tree Residential Commercial Highway Railway Road

Figure 4.1: True color image of hyperspectral University of Houston data inset with ground
truth used in this work.

We first visualize the subspaces found by different dimensionality reduction methods for

the data affected by varying illumination conditions. For the purpose of visualization, we

pick three wavelength bands (two in visible and one in near-infrared) to show the distribution

of three different class samples including tree, building and road under sun and shadow

1http://hyperspectral.ee.uh.edu/?page_id=459
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Figure 4.2: Mean signatures of hyperspectral University of Houston dataset under (a) well-
lit and (b) well-lit and cloud-shadow areas.
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Table 4.1: The number of samplers for eight classes that exist under the well-lit and cloud-
shadow areas in the University of Houston data.

Class Name
Number of Samples

Non-Shadow Shadow

1 Grass-healthy 875 178

2 Grass-stressed 906 158

3 Tree 986 119

4 Residential 992 80

5 Commercial 597 456

6 Highway 710 326

7 Railway 914 232

8 Road 1059 150

on a sphere in Fig. 4.3. Note that we expect to see similar trends in general for various

combinations of spectral wavelengths. We use triangle and circle to represent samples under

the sun and shadow areas respectively. From the figure, we can see that samples under the

sun and shadow areas are close to each other in terms of angle. The samples in building

and road classes are close to each other because of the similarity in spectral response, likely

due to similar types of materials being used.

We then analyze the subspaces found by dimensionality reduction methods based on

Euclidean distance and angular information respectively. In this experiment, we combine

samples under the non-shadow and shadow areas into the same class. As is shown in [34],

the rank of ADA and LDA is at most c − 1, where c is the number of classes. Thus

ADA and LDA both find two-dimensional subspaces for this particular example since we

only consider three classes. Fig. 4.4 depicts the subspaces found by ADA, LDA, LADA

and LFDA using the University of Houston datasets. From the figure, we can tell that

the subspace found by ADA is more discriminative than the one found by LDA. The poor

performance of LDA is mainly caused by the huge intensity differences of spectral signatures

under the non-shadow and shadow areas which form different clusters in Euclidean-distance
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Tree Shadow Building Shadow Road Shadow

Tree Sun Building Sun Road Sun

Figure 4.3: Illustrating the normalized clusters on a sphere, corresponding to classes under
the well-illuminated and shadow areas.
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domain. Due to its global structure, LDA can not preserve these local structures which

causes inaccurate estimation of within-class scatter matrices. ADA, on the other hand,

is minimally affected by the illumination differences due to its invariance nature to linear

scaling. LFDA can preserve these clusters locally but there are still some overlaps between

samples from different classes. LADA on the other hand, not only can angularly separate

between-class samples but also preserves the local structure of within-class samples which

lead to even better separation of between-class samples in terms of angle.

−1 −0.5 0 0.5 1 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

P1 

P2 

−50 −40 −30 −20 −10 0 10

−40

−30

−20

−10

0

10

P1 

P2 

ADA LDA

P1 P2 

P3 

−5

0

5

−4

−2

0

1

2

3

4

5

P1 P2 

P3 

LADA LFDA

Tree Shadow Building Shadow Road Shadow

Tree Sun Building Sun Road Sun

Figure 4.4: Subspaces found by ADA, LDA, LADA and LFDA for three classes including
tree, building and road in University of Houston data under the well-lit and
cloud-shadow areas.

The class-wise accuracies using NN and SRC as the backend classifiers for various di-

mensionality reduction methods for the University of Houston are shown in Table 4.2 and
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Table 4.3. The class-wise accuracies are calculated using 50 training samples per class. Each

experiment is repeated 10 times and the average accuracy is reported. As can be seen from

the tables, the angle-based dimensionality reduction methods yield very high classification

accuracies for each class and significantly outperform the corresponding Euclidean-based

dimensionality reduction methods.

Table 4.2: Classwise accuracies using NN as the backend classifier for various dimensionality
reduction methods for the University of Houston data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Grass-healthy 96.9 95.9 95.4 92.4 95.6 86.3 91.6 80.1
2 Grass-stressed 97.5 97.1 96.4 92.6 95.5 91.4 72.7 81.5
3 Tree 98.2 98.2 95.2 95.4 95.1 90.8 84.1 84.5
4 Residential 94.7 86.5 83.6 77.5 86.4 84.9 77.2 68.8
5 Commercial 89.2 90.9 82.6 86.1 75.5 78.5 80.5 55.6
6 Highway 95 91.1 85.7 82.7 83.2 71.8 79.9 51.1
7 Railway 93 80.9 75.1 65.0 76.1 70.9 77.2 48.8
8 Road 91.4 85.2 82 75.1 86.7 78.0 82.2 53.7

Overall Accuracy 94.5 90.7 87.0 83.4 86.8 81.6 80.7 65.5

Table 4.3: Classwise accuracies using SRC as the backend classifier for various dimension-
ality reduction methods for the University of Houston data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Grass-healthy 97 95.9 95.4 92.5 96.6 85.8 94.5 79.9
2 Grass-stressed 98 97.1 96.4 92.7 95.5 84.7 91.0 74.5
3 Tree 98.3 98.2 95.3 95.6 97.6 90.8 88.1 85.2
4 Residential 95.1 86.8 83.6 78.4 87.5 68.8 80.0 53.6
5 Commercial 90.1 91.0 82.6 86.9 84.1 74.0 84.0 46.6
6 Highway 95 91.1 85.7 83.0 87.7 65.0 82.3 48.5
7 Railway 93.1 80.9 75.2 65.1 80.6 63.1 78.9 45.0
8 Road 91.5 85.2 82 75.1 86.2 66.6 81.3 41.9

Overall Accuracy 94.8 90.8 87.0 83.7 89.5 74.9 85.0 59.4

Next, we demonstrate how the number of training samples affects the classification

performance for different methods. We test the number of training samples per class from

20 to 80 with a step size of 5. Fig. 4.5 and Fig. 4.6 show the classification accuracies versus

number of training samples per class using NN and SRC for the University of Houston
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dataset respectively. It is obvious from the figure that the classification performance of

angle-based dimensionality reduction methods are approximately insensitive to the number

of training samples, and they significantly outperform the corresponding Euclidean distance-

based dimensionality reduction methods, especially when the number of training samples

is small. This is a very useful property for remote sensing data analysis since acquiring

labelled samples is time-consuming and expensive. Euclidean distance-based dimensionality

reduction methods generally need sufficient training samples to accurately estimate the

parameters due to the within-class high variance of data caused by different illumination

conditions.
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Figure 4.5: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, LFDA, GDA and LDA followed by
NN for the University of Houston data.

4.3 Wetland hyperspectral data classification under the shadow

The second hyperspectral data was acquired by us in Galveston, Texas in October,

2014 and includes two scenes captured at ground-level (side-looking views) over wetlands in
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Figure 4.6: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, LFDA, GDA and LDA followed by
SRC for the University of Houston data.

Galveston. The two image cubes are referred to as area 1, and area 2, representing different

regions of the wetlands that were imaged — In addition to common wetland classes, area

2 has Black Mangrove (Avicennia germinans) trees in the scene, a species which is of

particular interest in ecological studies of wetlands. The two true color images of Galveston

data are shown in Fig. 4.7. We acquired this data using a Headwall Photonics hyperspectral

imager which provides measurements in 325 spectral bands with a spatial size of 1004×5130.

The hyperspectral data uniformly spanned the visible and near-infrared spectrum from 400

nm - 1000 nm. The objects of interests are primarily vegetation species common in such

wetlands. Six different classes were identified in area-1 including soil, symphyotrichum,

sedge, spartina patens, borrichia and rayjacksonia. The second area includes Avicennia

germinans, batis, schoenoplectus, spartina alterniflora, soil, water and bridge. Since soil

and schoenoplectus are included in both areas, the total number of classes in the combined
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library are eleven. The total number of samples for each class is tabulated in Table 4.4

and the mean signatures are plotted in Fig. 4.8 for the samples under the sun and shadow.

We note that very little work has been done with such side-looking hyperspectral images

of vegetation, and that such images are very likely to have the same class appear in well-lit

and shadow areas (shadows from the canopy of plants).

Wetland data, area - 1

Wetland data, area - 2

Figure 4.7: True color images of the wetland dataset.

Table 4.4: Six classes under well-lit and shadow in Galveston data and the corresponding
number of samples

Class Name
Number of Samples

Non-Shadow Shadow

1 Soil 233 181

2 Symphyotrichum 196 247

3 Sedge 485 334

4 Spartina patens 469 393

5 Borrichia 227 213

6 Rayjacksonia 209 161

7 Avicennia germinans 590 598

8 Batis 204 152

9 Spartina alterniflora 228 232

10 Water 254 240

11 Bridge 280 313

100



400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Wavelength (nm)

R
ad

ia
nc

e

 

 

Soil

Symphyotrichum

Sedge

Spartina−Paten

Borrichia

Rayjacksonia

Mangrove Tree

Batis

Spartina alterniflora

Water

Bridge

(a)

400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Wavelength (nm)

R
ad

ia
nc

e

 

 

Soil

Sedge

Mangrove Tree

Soil−Shadow

Sedge−Shadow

Mangrove Tree−Shadow

(b)

Figure 4.8: Mean signatures of hyperspectral University of Houston dataset under (a) well-
lit and (b) well-lit and cloud shadow areas.
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A similar analysis was performed for the wetland data. The main focus of this data is

on the different types of vegetation species found in marshes around the Texas coast — the

ability to monitor such species is very beneficial for a variety of ecological studies. Fig. 4.9

shows distributions of three different types of species including schoenoplectusz, borrichia,

rayjacksonia on a sphere under the well-lit and shadow areas respectively. Since these three

classes are different types of grasses, they are all somewhat close to each other even in an

angular sense. The subspaces found by angle and Euclidean distance based dimensionality

reduction methods are shown in Fig. 4.10. Even for this very challenging data, angle-based

dimensionality reduction methods generally find subspaces that are more discriminative

than Euclidean-based counterparts.

Table 4.5 and Table 4.6 show the class-specific accuracies using NN and SRC as the

backend classifiers for the Galveston dataset respectively. Fig. 4.11 and Fig. 4.12 show the

classification accuracies obtained as a function of training sample size per class using NN and

SRC as the backend classifiers. It can be seen from these two results that the angle-based

dimensionality reduction methods still outperform Euclidean distance-based counterparts

for this complex vegetation imagery, particularly for difficult classes, using very few training

samples.

We also generated classification maps for the wetland dataset (which is a very unique

kind of hyperspectral imagery) to demonstrate the potential for using such imagery for

classification. Fig. 4.13 and Fig. 4.14 shows the classification maps of wetland data in the

two areas respectively. We use 50 training samples per class for both areas. From these two

figures, it is clear that we can identify the complex canopy structure of the major species

much better with the angular approach (KLADA), compared to an approach that uses
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Schoenoplectus - Sun

Schoenoplectus - Shadow

Borrichia - Sun

Borrichia - Shadow

Rayjacksonia - Sun

Rayjacksonia - Shadow

Figure 4.9: Illustrating the normalized clusters on a sphere corresponding to the schoeno-
plectus, borrichia, rayjacksonia classes under the well-illuminated and shadow
areas.
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Figure 4.11: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, LFDA, GDA and LDA follwed by
NN for the wetland data.
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Figure 4.12: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, LFDA, GDA and LDA follwed by
SRC for the wetland data.
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Euclidean distances (KLFDA).

KLADA (94.0%)

KLFDA (90.9%)

Figure 4.13: Classification maps and accuracies in bracket of wetland data, area-1 generated
by KLADA and KLFDA, followed by a NN classifier.

We also validate this method for the problem of wetland mapping using satellite hyper-

spectral imagery — We used Hyperion imagery, which is widely used due to its spectral range

and resolution for ground cover classification [80–82]. We extracted 7 pertinent broader

classes (consistent with the labeling potential of Hyperion imagery, with a spatial resolu-

tion of 30m) including saline marsh, intermediate marsh, forest, soil, water, developed areas,

and cloud. Marsh classes were extracted using ground truth available through the United

States Geological Survey National Wetlands Research Center (USGS-NWRC)2. Additional

background classes were extracted using the National Land Cover Dataset (NLCD)3. Among

2http://pubs.usgs.gov/sir/2014/5110/

3http://www.mrlc.gov/

106



KLADA (90.0%)

KLFDA (89.0%)

Figure 4.14: Classification maps and accuracies in bracket of wetland data, area-2 generated
by KLADA and KLFDA, followed by a NN classifier.

Table 4.5: Classwise accuracies using NN as the backend classifier for various dimensionality
reduction methods for the wetland data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Soil 98.6 97.7 97 96.4 98.0 96.7 94.3 89.4
2 Symphyotrichum 90.5 87.5 84.1 85.3 72.7 66.0 78.5 62.1
3 Sedge 95.5 96.5 95.9 95.2 94.5 90.0 88.7 83.4
4 Spartina patens 77.2 73.0 72.1 67.3 65.9 59.2 68.3 40.9
5 Borrichia 94.9 91.6 92.6 88.6 86.4 82.1 88.6 73.0
6 Rayjacksonia 97.2 94.3 95.6 88.0 90.0 85.1 85.4 72.8
7 Mangrove trees 95.2 97.3 95 95.3 94.1 92.9 63.6 85.9
8 Batis 99.6 97.9 92.8 94.4 98.8 97.2 61.2 83.2
9 Spartina alterniflora 89.7 66.0 84.8 66.8 92.8 89.3 76.3 73.0
10 Water 99.9 99.7 100 99.6 99.7 99.4 84.6 96.7
11 Bridge 92 97.7 97.9 98.8 98.8 83.6 94.6 65.4

Overall Accuracy 93.7 90.8 91.6 88.7 90.2 85.6 80.4 75.1
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Table 4.6: Classwise accuracies using SRC as the backend classifier for various dimension-
ality reduction methods for the wetland data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Soil 98.6 97.7 97.2 97.9 97.9 91.7 94.9 78.5
2 Symphyotrichum 90.5 87.5 84.1 73.3 73.3 62.3 79.5 61.1
3 Sedge 95.6 96.5 96 94.7 94.7 89.8 92.6 83.2
4 Spartina patens 77.4 73.0 72.1 67.1 67.1 53.3 70.4 34.6
5 Borrichia 94.9 91.7 92.6 86.6 86.6 79.7 87.5 69.2
6 Rayjacksonia 97.2 94.3 95.6 91.1 91.1 84.0 86.3 70.5
7 Mangrove trees 95.3 97.3 95.4 95.1 95.1 92.6 93.0 83.0
8 Batis 99.6 97.9 92.8 99.1 99.1 96.2 88.7 72.6
9 Spartina alterniflora 89.9 66.7 85 91.7 91.7 64.7 65.5 43.7
10 Water 99.9 99.7 100 99.7 99.7 98.7 99.5 94.7
11 Bridge 91.9 97.7 97.9 99.0 99.0 69.2 92.4 51.9

Overall Accuracy 93.7 90.9 91.7 90.5 90.5 80.2 86.4 67.5

these classes, intermediate marsh, forest, soil and water classes are both under the well il-

luminated and cloud shadow regions in the Hyperion hyperspectral images, as shown in

Fig. 4.15. The image size is 600× 330, and the class name with corresponding sample size

are tabulated in Table 4.7. The Hyperion hyperspectral imager is aboard NASA’s Earth

Observing 1 (EO-1) spacecraft, and it has spectral range between 300 nm and 2400 nm with

a spatial resolution of 30 m. Radiance values from the Hyperion image are converted to

reflectance image using Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH).

The specific model input parameter values used in FLAASH are set as follows: atmospheric

model is set to tropical, aerosol model is set to maritime and the water absorption feature

is set to 1135 nm.

Table 4.8 and Table 4.9 show the class-specific accuracies using NN and SRC as the

backend classifiers for the hyperion dataset respectively. The classification results using

NN and SRC as a function of different number of training samples for the hyperion data

are shown in Fig. 4.16 and Fig. 4.17 respectively. Fig. 4.18 shows the classification maps

for the hyperion data using the KLADA and KLFDA to demonstrate the benefit of the
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Figure 4.15: True color images of the hyperion hyperspectral data under the cloud.

Table 4.7: Seven classes in Hyperion data and the corresponding number of samples

Class Name Number of Samples

1 Saline marsh 228
2 Intermediate marsh 402
3 Forest 491
4 Soil 364
5 Water 330
6 Developed 329
7 Cloud 164
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angular-based dimensionality reduction methods. 10 training samples per class are used for

this experiment. We also highlighted some of the regions which demonstrate the benefit of

the KLADA, particularly when classifying important marsh classes under cloud shadows.
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Figure 4.16: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, and LFDA follwed by NN for the
first data.

Table 4.8: Classwise accuracies using NN as the backend classifier for various dimensionality
reduction methods for the hyperion data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Saline marsh 75.6 59.5 68 57.7 66.0 63.3 67.8 15.4
2 Intermediate marsh 75.3 74.7 67.8 70.6 68.3 58.8 56.9 26.7
3 Forest 71.6 70.9 68.9 67.4 48.0 60.5 59.0 43.9
4 Soil 83.9 85.8 78.6 78.7 74.7 61.9 75.5 10.8
5 Water 98.3 92.5 93 89.2 89.1 94.9 84.4 73.8
6 Developed 86.6 87.6 82.9 84.1 90.9 85.1 26.7 60.3
7 Cloud 99.2 99.7 89.3 99.1 94.6 92.6 33.3 64.8

Overall Accuracy 84.4 81.5 78.4 78.1 75.9 73.9 57.7 42.2

4.4 Conclusion

In this paper, we presented an approach to perform hyperspectral image classification

under the challenging scenario of varying illumination conditions in a scene. Specifically, we
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Figure 4.17: Classification accuracies versus number of training samples per class using
KLADA, LADA, KADA, ADA, KLFDA, and LFDA follwed by SRC for the
Hyperion data.

Table 4.9: Classwise accuracies using SRC as the backend classifier for various dimension-
ality reduction methods for the hyperion data.

Class / Algorithms KLADA LADA KADA ADA KLFDA LFDA GDA LDA

1 Saline marsh 70.9 56.5 68.1 52.4 69.4 30.4 78.0 33.3
2 Intermediate marsh 70.8 74.7 67.7 66.0 73.4 43.5 70.2 44.0
3 Forest 68.2 70.9 68.8 66.1 56.6 52.5 64.8 37.8
4 Soil 79.4 84.2 79.2 74.7 79.0 25.1 76.8 20.9
5 Water 96.3 88.6 93 84.5 94.1 81.4 94.1 76.2
6 Developed 85.4 87.6 83.1 78.9 85.5 86.3 81.6 40.2
7 Cloud 99.3 99.7 89.5 95.2 98.0 98.6 94.1 52.9

Overall Accuracy 81.5 80.3 78.5 74.0 79.4 59.7 79.9 43.6
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KLADA (73.0%) KLFDA (65.6%)

Figure 4.18: Classification maps and accuracies in bracket of hyperion data generated by
KLADA and KLFDA, followed by a NN classifier.
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demonstrate that the recently developed spectral angle based discriminant analysis methods

are particularly suited to hyperspectral image analysis applications where there are illumi-

nation variations within the classes. Experimental results on two hyperspectral datasets

show that the proposed methods greatly outperform traditional methods, using very lim-

ited training data. Within the context of remote sensing images (aerial and satellite images

in particular), we note that although the proposed methods would still not be able to

classify pixels corresponding to cloud cover, they neverthless have significant potential to

improve ground cover classification in regions where there are cloud shadows. It is expected

that the classification performance can be further improved by adding spatial (contextual)

information when analyzing such challenging hyperspectral imagery with significant illu-

mination variability. In future work, we will extend the dimensionality reduction methods

proposed in [34] by incorporating the spatially adjacent information around each sample

when learning our optimal subspace.
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Chapter 5

Summary and Conclusion
In this dissertation, we proposed several dimensionality reduction and classification

methods for hyperspectral image analysis as well as their applications to real-world remote

sensing data classification problems.

The main contributions of this dissertation are summarized as follows:

a. ADA, an angle-based dimensionality reduction method, is proposed to project hyper-

spectral data into a lower-dimensional subspace to separate different class samples in

an angular sense. For scenarios where the hyperspectral data exhibit multi-modality

or nonlinear separation, we propose local and kernel extensions of ADA — LADA and

KLADA, respectively, to tackle the multi-modality and nonlinearity of hyperspectral

data.

b. We extend ADA to its unsupervised variant (LSPP) to harness the unlabeled samples

as well as preserve the angular relationship between the training samples in the pro-

jected subspace. In order to explore the spatial contextual information of HSI, which

is known to be useful for hyperspectral data classification, the spatial variant of LSPP

(SLSPP) is also proposed, developed and validated.

c. Class dependent Sparse Representation based Classification (cdSRC) is proposed to

address the limitations of SRC and improve its classification performance. To deal

with classification problems when different class samples cannot be linearly separable,
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its kernel variant KcdSRC is also developed.

d. To overcome the limitations of cdOMP for the sparse coefficient recovery, we pro-

posed cdOLS to improve the accuracy of the recovered sparse coefficients which in

turn increase the backend classification performance of sparse representation based

classifiers.

e. In order to utilize the spatial information of training and test samples, we also propose

SBOMP-C. The classification performance of SBOMP-C can be further improved if

we preprocess the data with the SLSPP projection we previously developed, which can

preserve the spatial information of samples in terms of angle in the lower dimensional

subspace.

f. Finally, we use the proposed method to solve real-world remote sensing classification

problems including classifying different objects under varying illumination conditions

and classifying coastal wetland vegetation species which are of great importance for

ecological studies.
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Appendix A

Appendix

A.1 Proof of Proposition 1

Ŝ (w) can be reformulated as

Ŝ (w) =

c∑
l=1

∑
i:yi=l

‖T txi −T tµl‖2

=
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T ),

(A.1)

where Ō
(w)

=
∑c

l=1

∑
i:yi=l

‖xi‖‖µl‖x̃iµ̃tl .

Similar to Ŝ (w), Ŝ (b) can be reformulated as

Ŝ (b) =

c∑
l=1

nl(‖T tµl‖2 + ‖T tµ‖2)− 2 tr(T tŌ
(b)

T ),

(A.2)

where Ō
(b)

=
∑c

l=1 nl‖µl‖‖µ‖µ̃lµ̃
t.

A.2 Proof of Proposition 2

Let zi denote the cluster label of xi. O(lw) and O(lb) defined in (2.32) and (2.33) can
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be reformulated as
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In O (w) and O(b), Ãij = 1 for all pairs of within-class samples. Thus based on (A.3)

and (A.4), O (w) and O (b) can be defined as

O (w) =
c∑
l=1

1

nl
(
∑
k=q

nlknlqµ̃lkµ̃
t
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k 6=q
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lq) and (A.5)
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m. (A.6)

Define x̃i and x̃j as neighbors if ‖x̃i − x̃j‖ ≤ ε, where ε is the radius of a hypersphere

around a sample x̃i that defines the neighborhood of x̃i. For simplicity, let Ãij = 1 if within-

class sample pair x̃i and x̃j are neighbors and Ãij = 0 otherwise. It indicates within-class

samples from different clusters are not neighbors of each other on a unit hypersphere,
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yielding Ãij = 0 for zi 6= zj , then O (lw) and O(lb) can be simplified to

O(lw) =
c∑
l=1

1

nl

∑
k=q

nlknlqµ̃lkµ̃
t
lq and (A.7)

O (lb) =
c∑
l=1

(
1

nl
− 1

n
)
∑
k=q

nlknlqµ̃lkµ̃
t
lq +

1

n

∑
l 6=m

nlnmµ̃lµ̃
t
m. (A.8)

Note that we can relax the strict definition of neighborhood (based on the choice of Ãij

above) by utilizing smooth functions to generate the affinity matrix (e.g., the heat kernel).

Proposition 2 would still hold in an approximate sense for such a choice.
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